[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023037428A1 - Optically transparent antenna - Google Patents

Optically transparent antenna Download PDF

Info

Publication number
WO2023037428A1
WO2023037428A1 PCT/JP2021/032944 JP2021032944W WO2023037428A1 WO 2023037428 A1 WO2023037428 A1 WO 2023037428A1 JP 2021032944 W JP2021032944 W JP 2021032944W WO 2023037428 A1 WO2023037428 A1 WO 2023037428A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
mesh
conductor
conductive member
portions
Prior art date
Application number
PCT/JP2021/032944
Other languages
French (fr)
Japanese (ja)
Inventor
弘樹 萩原
央 丸山
Original Assignee
日本電業工作株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電業工作株式会社 filed Critical 日本電業工作株式会社
Priority to PCT/JP2021/032944 priority Critical patent/WO2023037428A1/en
Publication of WO2023037428A1 publication Critical patent/WO2023037428A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support

Definitions

  • the present invention relates to a light transmission antenna.
  • transmissive antenna that is configured to transmit light such as visible light by providing a transparent conductive film on a transparent base material.
  • the transmissive antenna can suppress the visibility of the antenna and suppress deterioration of the appearance at the installation location of the antenna.
  • Patent Literature 1 discloses a transparent electromagnetic radiation element that has a radiating element that radiates electromagnetic waves in a certain frequency band, and that the radiating element is made of one or both of a tin-doped indium oxide (ITO) thin film and a fluorine-doped tin oxide (FTO) thin film.
  • a transparent antenna is disclosed which is a conductive film, the transparent conductive film has a certain film thickness, a certain level or more of transmittance in the visible light wavelength region, and a certain level or less of sheet resistance.
  • the surface resistance greatly affects the gain and power handling performance of the antenna, as well as the light transmittance of the transparent conductive film. Specifically, the higher the resistance value of the surface, the greater the loss and the lower the gain and power handling capability. On the other hand, the higher the resistance value of the surface of the transparent conductive film, the higher the total light transmittance, so the transparency increases and the visibility decreases.
  • through-beam antennas are configured so that the overall surface resistance is constant, so the resistance value of the entire antenna was lowered to improve the gain and power handling capability of the antenna.
  • the resistance value of the entire antenna is lowered, the light transmittance of the entire antenna is lowered and the visibility of the antenna is improved.
  • An object of the present invention is to improve the gain and power handling capability of a light-transmissive antenna, and to suppress the deterioration of the light-transmittance of the antenna as a whole.
  • the present invention for achieving the above objects includes a substrate formed of a light-transmitting insulating member, and an antenna section provided on the surface of the substrate and constructed of a light-transmitting conductive member.
  • the antenna section is a light transmission type antenna characterized in that a portion of the conductive member where electric power is concentrated has a lower resistance value than other portions.
  • the conductive member is composed of a mesh-like conductor, and the wires forming the mesh of the conductor are thicker in a portion where electric power is concentrated than in other portions.
  • the conductive member is made of a mesh-like conductor, and the size of the mesh of the conductor is smaller in a part where electric power concentrates than in other parts.
  • the conductive member is made of a film-like conductor, and the film thickness of the conductor is thicker at a portion where electric power is concentrated than at other portions.
  • another aspect of the present invention for achieving the above object is to provide a substrate formed of an insulating member having translucency, and an antenna section provided on the surface of the substrate and constituted by a conductive member having translucency. and wherein the antenna section is configured such that a portion of the conductive member near the feeding portion has a lower resistance value than other portions.
  • the conductive member is made of a mesh-like conductor, and the wires forming the mesh of the conductor are thicker at a portion near the power supply portion than at other portions.
  • the conductive member is made of a mesh-like conductor, and the size of the mesh of the conductor is smaller at a portion near the power supply portion than at other portions. Also, the conductive member is made of a film-like conductor, and the film thickness of the conductor is thicker at a portion near the power supply portion than at other portions.
  • a transmissive antenna in a transmissive antenna, it is possible to improve the gain and power resistance of the antenna and to suppress the deterioration of the translucency of the entire antenna.
  • FIG. 4 is a diagram showing an example of setting resistance values at respective parts of the antenna section of the light transmission type antenna;
  • FIG. 4 is a diagram comparing mesh-like conductors with different mesh sizes.
  • FIG. 4 is a diagram comparing mesh-like conductors having different thicknesses of lines forming the mesh.
  • FIG. 6A is a diagram showing how the temperature rises when electric power is applied to the light-transmitting antenna, and
  • FIG. 6B is a diagram showing the temperature distribution in a transmissive antenna in which a uniform resistance value is set over the entire antenna section.
  • FIG. 4 is a diagram showing another configuration example of a light transmission antenna;
  • FIG. 1 is a diagram showing an installation example of a light transmissive antenna.
  • the transmissive antenna 10 is installed on the ceiling, wall surface, or the like of a house.
  • the example shown in FIG. 1 shows an example in which the light transmissive antenna 10 is installed on the ceiling 100 .
  • the side of the ceiling 100 on which the light transmission type antenna 10 is installed is called the front side of the ceiling 100 .
  • the transmissive antenna 10 is fixed to the ceiling 100 by means of legs 20 .
  • a power line (not shown) for supplying power to the transmissive antenna 10 is wired on the back side of the ceiling 100 , and a part of the line is drawn into the foot portion 20 .
  • the leg portion 20 incorporates a power supply board (not shown) that is connected to the terminal of the light transmissive antenna 10 . As a result, power is supplied from the power line behind the ceiling 100 to the transmissive antenna 10 through the legs 20 .
  • FIG. 2 is a diagram showing a configuration example of the light transmissive antenna 10.
  • the transmissive antenna 10 includes a substrate 14 , and antenna portions 11 and 12 and terminals 13 provided on the surface of the substrate 14 .
  • the substrate 14 is a plate-shaped member made of an electrically insulating material having high visible light transmittance.
  • the substrate 14 may be made of any material as long as it has high transparency to visible light and electrical insulation.
  • the substrate 14 can be formed using a material such as a highly translucent resin such as PET (Poly Ethylene Terephthalate) resin or glass. Further, the substrate 14 may have flexibility (flexibility).
  • the antenna sections 11 and 12 are formed on one side surface of the substrate 14 by a translucent conductive member.
  • the antenna section 11 is, for example, a radiation element corresponding to a target frequency band
  • the antenna section 12 is, for example, an antenna GND connected to the ground (GND).
  • the antenna sections 11 and 12 have a shape corresponding to a target frequency band (for example, 1.7 GHz to 5 GHz).
  • the antenna section 11 has a shape that gradually widens from the root section (lower side in FIG. 2) where the terminal 13 is provided toward the tip section (upper side in FIG. 2).
  • Two antenna units 12 are provided on both sides of the antenna unit 11 on the substrate 14 .
  • the two antenna sections 12 extend in a direction orthogonal to the direction in which the tip of the antenna section 11 extends. Note that the shapes of the antenna portions 11 and 12 may be appropriately determined according to the target frequency band, and are not limited to the shape shown in FIG.
  • the terminal 13 is connected to the power supply board of the leg portion 20 in a state where the light transmission type antenna 10 is attached to the leg portion 20 and supplies power to the antenna portions 11 and 12 .
  • the terminal 13 consists of a terminal 13a provided at the base of the antenna section 11 and two terminals 13b provided at each of the two antenna sections 12. As shown in FIG.
  • the terminal 13 a is a power feeding section that supplies power to the antenna section 11
  • the terminal 13 b is a power feeding section that supplies power to the antenna section 12 .
  • a mesh-like conductor (hereinafter referred to as a "mesh-like conductor") is mainly used will be described as an example.
  • a conductive material forming the mesh-shaped conductor used for the antenna portions 11 and 12 a material having high electrical conductivity and being easily processed into a mesh-like shape is used. For example, copper (Cu), silver (Ag), aluminum (Al), etc. can be used.
  • the mesh pattern of the mesh conductor is not particularly limited, but in the example shown in FIG. 2, an orthogonal grid pattern is used.
  • the mesh conductor of the light transmission antenna 10 is manufactured by etching a conductor material such as a copper (Cu) film or a silver (Ag) film formed on the substrate 14, for example.
  • etching masks for forming the antenna portions 11 and 12 are generated. Specifically, this etching mask is formed by cutting a conductive material into the shape of the antenna portions 11 and 12, and has a mesh pattern forming surfaces within the shape of the antenna portions 11 and 12. The portion is formed so that the conductive material remains without being processed into a mesh shape. Then, using this etching mask, the conductive material formed on the substrate 14 is etched. By doing so, the antenna portions 11 and 12 having a mesh shape and a desired outer diameter and the terminal 13 are integrally formed by one etching.
  • a method of processing a conductive material that has been processed into a mesh shape in advance into the shape of the antenna portions 11 and 12 and attaching them to the substrate 14 is conceivable.
  • the non-mesh terminal 13 is formed separately from the antenna portions 11 and 12 and is attached to the substrate 14 while being connected to the antenna portions 11 and 12 .
  • various existing methods can be used as a method for manufacturing the light transmission type antenna 10 .
  • the conductive members of the antenna units 11 and 12 are configured so that the electric power concentrates at a portion having a lower resistance value than other electric power diffused portions. As a result, the current is dispersed over a wide area of the antenna units 11 and 12, and local concentration of power is suppressed.
  • the concentration of electric power at specific portions of the antenna portions 11 and 12 is suppressed, thereby improving the power handling capability and gain of the antenna.
  • a decrease in translucency of the portions 11 and 12 can be suppressed.
  • PIM Passive Intermodulation
  • Which part of the antenna units 11 and 12 the electric power concentrates depends on the shape of the antenna units 11 and 12 .
  • electric power is likely to be concentrated at a portion near a power supply portion or at the edge of a conductive member.
  • a simulation may be performed to estimate the power concentration locations according to the shape of the antenna units 11 and 12, or actual measurements of the actual light transmission antenna 10 may be performed. A location where power concentration occurs may be determined.
  • FIG. 3 is a diagram showing a setting example of resistance values at respective portions of the antenna sections 11 and 12 of the light transmission type antenna 10.
  • FIG. 3 the antenna section 11 is divided into three regions (a) to (c) and a terminal 13a, and the antenna section 12 is divided into two regions (d) and (e) and a terminal. 13b.
  • the resistance values are set for the regions (a) to (e) shown in FIG.
  • the area (c) is the closest to the terminal 13a, which is the feeding section, among the three areas. Therefore, the resistance value of the region (c) is set to be lower than that of the regions (a) and (b). In addition, both the area (a) and the area (b) are far from the terminal 13a, which is the feeding section, but since the area (b) is located on both sides of the antenna section 11, it is not as far as the area (c). There is more power concentration than in region (a), although there is none. On the other hand, the region (a) also includes the tip side edge of the antenna section 11, but since it is far from the terminal 13a, which is the feeding section, significant power concentration does not occur. Therefore, the resistance value of the region (b) is set to be lower than that of the region (a). Therefore, regarding the antenna section 11, Area (a) > Area (b) > Area (c) A resistance value for each region is set so that
  • each mesh-like conductor is made to have different thicknesses of lines forming the mesh or different mesh sizes, so that each mesh-like conductor Different resistance values can be used.
  • FIG. 4 is a diagram comparing mesh conductors with different mesh sizes.
  • the width (thickness) of the lines forming the mesh is set to 10 ⁇ m, and the interval between the lines is set to 100 ⁇ m.
  • the width (thickness) of the lines forming the mesh is 10 ⁇ m, and the interval between the lines is 50 ⁇ m.
  • the low-resistance mesh B has a line interval of 1/2 that of the reference mesh A. Therefore, the mesh size of the low resistance mesh B is 1/4 of the mesh size of the reference mesh A. In this way, the low-resistance mesh B has a surface resistance smaller than that of the reference mesh A by narrowing the line spacing in the mesh-like conductor.
  • FIG. 5 is a diagram comparing mesh-like conductors having different thicknesses of lines forming the mesh.
  • the mesh-like conductor on the left side shown in FIG. 5 is the reference mesh A, which is the same as the reference mesh A shown in FIG.
  • the width (thickness) of the lines forming the mesh is 30 ⁇ m
  • the interval between the lines is 100 ⁇ m.
  • the low resistance mesh C has a line width (thickness) three times that of the reference mesh A. In this way, by increasing the wire thickness of the mesh-like conductor, the low-resistance mesh C has a surface resistance smaller than that of the reference mesh A. As shown in FIG.
  • the surface resistance of the low-resistance mesh C is smaller than that of the low-resistance mesh B and the low-resistance mesh C. As shown in FIG. Therefore, the surface resistance of the reference mesh A, the low-resistance mesh B, and the low-resistance mesh C is Reference mesh A > low resistance mesh B > low resistance mesh C becomes. It should be noted that the numerical values of the thickness and spacing of the mesh conductors shown in FIGS. 4 and 5 are merely examples for comparison. In practice, it is only necessary to select meshes of appropriate size for each part according to the shape of the antenna parts 11 and 12 and the set resistance value.
  • the antenna parts 11 and 12 are mesh-like conductors with different meshes for each region corresponding to the regions (a) to (e) shown in FIG. is shown to be constructed using As an example, a mesh with a line width of 0.03 mm and a line spacing of 0.3 mm is used in regions (c) and (d), and a line width of 0 is used in regions (b) and (e). A mesh with a line width of 0.03 mm and a line spacing of 0.5 mm is used, and in region (a) a mesh with a line width of 0.03 mm and a line spacing of 0.8 mm is used. Each region is distinguished by the code of the corresponding region in FIG.
  • the resistance values of the regions (c) and (d) are the lowest, the resistance values of the regions (b) and (e) are the next lowest, and the resistance value of the region (a) is
  • the resistance value of the entire antenna units 11 and 12 is set so that
  • an example is shown in which the resistance value of each region is changed by changing only the distance between lines without changing the line width, but as described above, the resistance value of each region can be changed by changing the line width. They may be different, or both the line width and line spacing may be different to make the resistance value of each region different.
  • FIG. 6 is a diagram showing how the temperature rises when power is applied to the transmissive antenna 10.
  • FIG. FIG. 6(A) shows the temperature distribution in the light transmission type antenna 10 of the present embodiment in which the antenna portions 11 and 12 are set with multistage resistance values
  • FIG. FIG. 10 is a diagram showing temperature distribution in a transmissive antenna in which various resistance values are set; Comparing the temperature distributions of FIGS. 6(A) and 6(B), FIG. 6(A) has a flat temperature rise over a wide range, and the temperature difference is higher than that of FIG. 6(B). Less is. In other words, this means that power is widely diffused over the entire antenna sections 11 and 12, and concentration of power on a specific portion is suppressed. Therefore, it is possible to suppress the deterioration of the translucency of the antenna sections 11 and 12 caused by increasing the resistance value of the entire antenna sections 11 and 12 in order to deal with concentration of electric power to a specific portion.
  • the mesh pattern in the mesh-like conductor of the antenna parts 11 and 12 can be set with meshes of different sizes depending on the parts of the antenna parts 11 and 12, the grid-like pattern shown in FIG. It is not limited and can take various patterns. As an example, a mesh that spreads radially from one point on the antenna sections 11 and 12 may be applied.
  • FIG. 7 is a diagram showing another configuration example of the light transmissive antenna 10.
  • the antenna portions 11 and 12 of the light transmission type antenna 10 have a mesh shape that applies a mesh that spreads radially from one point (point O in the drawing) of the terminal 13 toward the tips of the antenna portions 11 and 12. It is composed of a conductor.
  • a straight line hereinafter referred to as a "vertical line”
  • a network of curved lines hereinafter referred to as "horizontal lines” is formed.
  • the distance between the radial vertical lines increases as the distance from the point O increases. Therefore, as shown in FIG. 7, by setting the point O to the terminal 13, which is the power supply unit, the mesh becomes dense near the power supply unit where electric power concentration tends to occur, and the mesh becomes sparse as the distance from the power supply unit increases. It is easy to create a state In the example shown in FIG. 7, by changing the interval of the horizontal lines in two stages, a region with the lowest resistance value near the feeder, a region with the second lowest resistance value The region with the largest value is formed.
  • each region in the antenna sections 11 and 12 is varied depending on the line spacing, but as described with reference to FIGS.
  • Each region may have a different resistance value, or both the line width and the line spacing may be different to make the resistance value of each region different.
  • the light transmissive antenna 10 described with reference to FIGS. 2 to 7 shows an example in which the antenna portions 11 and 12 are made of a mesh conductor.
  • a film-like conductor hereinafter referred to as a "film-like conductor”
  • a translucent metal thin film such as Ag-Stacked Film can be used.
  • the surface resistance can be changed. Specifically, the thicker the film, the lower the surface resistance, and the thinner the film, the higher the surface resistance. Therefore, the film thickness is increased to reduce the resistance value at the portions where power is concentrated in the antenna portions 11 and 12 (for example, near the feeding portion), and the film thickness is decreased at other portions where power is diffused.
  • the film conductor is configured to increase the resistance value.
  • the technical scope of the present invention is not limited to the above embodiments.
  • the meshes of the mesh-like conductors forming the antenna units 11 and 12 are orthogonal lattice meshes (see FIG. 2) or radially expanding meshes (FIG. 7). ), but the mesh pattern is not limited to these patterns. Any pattern may be used as long as the mesh size can be adjusted for each specific portion of the antenna units 11 and 12 to set a desired resistance value. can be
  • the present invention includes various modifications and alternative configurations that do not depart from the scope of the technical idea of the present invention.

Landscapes

  • Details Of Aerials (AREA)

Abstract

The present invention includes a substrate 14 formed from an insulating material with translucency and antenna units 11 and 12 that are provided on a surface of the substrate 14 and are formed from a conductive material with translucency. Each of the antenna units 11 and 12 is configured such that the resistance value of a portion of the conductive material where power is concentrated, such as a portion near a feeding unit, becomes less than the resistance value of another portion where power is diffused.

Description

光透過型アンテナlight transmission antenna
 本発明は、光透過型アンテナに関する。 The present invention relates to a light transmission antenna.
 透明な基材上に透明導電膜を設け、可視光等の光を透過するように構成された透過型アンテナがある。透過型アンテナは、透明な基材および透明導電膜を用いることによりアンテナの視認性を抑え、アンテナの設置場所における見栄えの悪化を抑制し得る。 There is a transmissive antenna that is configured to transmit light such as visible light by providing a transparent conductive film on a transparent base material. By using a transparent base material and a transparent conductive film, the transmissive antenna can suppress the visibility of the antenna and suppress deterioration of the appearance at the installation location of the antenna.
 特許文献1には、一定の範囲の周波数帯で電磁波を放射する放射エレメントを有し、放射エレメントがスズドープ酸化インジウム(ITO)薄膜とフッ素ドープ酸化スズ(FTO)薄膜との一方又は両方からなる透明導電膜であり、透明導電膜は、一定の膜厚を有し、可視光波長領域での透過率が一定以上、シート抵抗が一定以下である透明アンテナが開示されている。 Patent Literature 1 discloses a transparent electromagnetic radiation element that has a radiating element that radiates electromagnetic waves in a certain frequency band, and that the radiating element is made of one or both of a tin-doped indium oxide (ITO) thin film and a fluorine-doped tin oxide (FTO) thin film. A transparent antenna is disclosed which is a conductive film, the transparent conductive film has a certain film thickness, a certain level or more of transmittance in the visible light wavelength region, and a certain level or less of sheet resistance.
特表2009―533888号公報Japanese Patent Publication No. 2009-533888
 透明導電膜を使用したアンテナでは、表面の抵抗が、アンテナの利得や耐電力の性能および透明導電膜の光の透過率に大きく影響する。具体的には、表面の抵抗値が高いほど、損失が大きくなるために利得と耐電力が低下する。一方、透明導電膜は、表面の抵抗値が高いほど全光線透過率が高くなるため、透明度が上がり、視認性が低くなる。  In an antenna using a transparent conductive film, the surface resistance greatly affects the gain and power handling performance of the antenna, as well as the light transmittance of the transparent conductive film. Specifically, the higher the resistance value of the surface, the greater the loss and the lower the gain and power handling capability. On the other hand, the higher the resistance value of the surface of the transparent conductive film, the higher the total light transmittance, so the transparency increases and the visibility decreases.
 従来、透過型アンテナでは、全体の面抵抗が一定となるように構成されるため、アンテナの利得および耐電力を向上させる場合、アンテナ全体の抵抗値を下げていた。しかし、アンテナ全体の抵抗値を下げると、アンテナ全体の光の透過率が低下し、アンテナの視認性が上がってしまっていた。 Conventionally, through-beam antennas are configured so that the overall surface resistance is constant, so the resistance value of the entire antenna was lowered to improve the gain and power handling capability of the antenna. However, when the resistance value of the entire antenna is lowered, the light transmittance of the entire antenna is lowered and the visibility of the antenna is improved.
 本発明は、光透過型アンテナにおいて、アンテナの利得および耐電力を向上させると共に、アンテナ全体における透光性の低下を抑制することを目的とする。 An object of the present invention is to improve the gain and power handling capability of a light-transmissive antenna, and to suppress the deterioration of the light-transmittance of the antenna as a whole.
 上記の目的を達成する本発明は、透光性を有する絶縁部材により形成された基板と、この基板の表面上に設けられ、透光性を有する導電性部材により構成されたアンテナ部と、を備え、アンテナ部は、導電性部材の電力が集中する部位が、他の部位よりも抵抗値が低くなるように構成されることを特徴とする光透過型アンテナである。
 より詳細には、導電性部材は、網目状の導電体で構成され、電力が集中する部位では、当該導電体の網目を構成する線の太さが他の部位よりも太い構成である。
 また、導電性部材は、網目状の導電体で構成され、電力が集中する部位では、導電体の網目の大きさが他の部位よりも小さい構成である。
 また、導電性部材は、膜状の導電体で構成され、電力が集中する部位では、導電体の膜厚が他の部位よりも厚い構成である。
 また、上記の目的を達成する他の本発明は、透光性を有する絶縁部材により形成された基板と、基板の表面上に設けられ、透光性を有する導電性部材により構成されたアンテナ部と、を備え、アンテナ部は、導電性部材における給電部の近傍の部位が、他の部位よりも抵抗値が低くなるように構成されることを特徴とする光透過型アンテナである。
 より詳細には、導電性部材は、網目状の導電体で構成され、給電部の近傍の部位では、導電体の網目を構成する線の太さが他の部位よりも太い構成である。
 また、導電性部材は、網目状の導電体で構成され、給電部の近傍の部位では、導電体の網目の大きさが他の部位よりも小さい構成である。
 また、導電性部材は、膜状の導電体で構成され、給電部の近傍の部位では、導電体の膜厚が他の部位よりも厚い構成である。
The present invention for achieving the above objects includes a substrate formed of a light-transmitting insulating member, and an antenna section provided on the surface of the substrate and constructed of a light-transmitting conductive member. In addition, the antenna section is a light transmission type antenna characterized in that a portion of the conductive member where electric power is concentrated has a lower resistance value than other portions.
More specifically, the conductive member is composed of a mesh-like conductor, and the wires forming the mesh of the conductor are thicker in a portion where electric power is concentrated than in other portions.
Also, the conductive member is made of a mesh-like conductor, and the size of the mesh of the conductor is smaller in a part where electric power concentrates than in other parts.
Also, the conductive member is made of a film-like conductor, and the film thickness of the conductor is thicker at a portion where electric power is concentrated than at other portions.
Further, another aspect of the present invention for achieving the above object is to provide a substrate formed of an insulating member having translucency, and an antenna section provided on the surface of the substrate and constituted by a conductive member having translucency. and wherein the antenna section is configured such that a portion of the conductive member near the feeding portion has a lower resistance value than other portions.
More specifically, the conductive member is made of a mesh-like conductor, and the wires forming the mesh of the conductor are thicker at a portion near the power supply portion than at other portions.
Also, the conductive member is made of a mesh-like conductor, and the size of the mesh of the conductor is smaller at a portion near the power supply portion than at other portions.
Also, the conductive member is made of a film-like conductor, and the film thickness of the conductor is thicker at a portion near the power supply portion than at other portions.
 本発明によれば、光透過型アンテナにおいて、アンテナの利得および耐電力を向上させると共に、アンテナ全体における透光性の低下を抑制することができる。 According to the present invention, in a transmissive antenna, it is possible to improve the gain and power resistance of the antenna and to suppress the deterioration of the translucency of the entire antenna.
光透過型アンテナの設置例を示す図である。It is a figure which shows the installation example of a transmissive antenna. 光透過型アンテナの構成例を示す図である。It is a figure which shows the structural example of a transmissive antenna. 光透過型アンテナのアンテナ部の各部位における抵抗値の設定例を示す図である。FIG. 4 is a diagram showing an example of setting resistance values at respective parts of the antenna section of the light transmission type antenna; 網目の大きさが異なる網目状導電体を対比させた図である。FIG. 4 is a diagram comparing mesh-like conductors with different mesh sizes. 網目を構成する線の太さが異なる網目状導電体を対比させた図である。FIG. 4 is a diagram comparing mesh-like conductors having different thicknesses of lines forming the mesh. 光透過型アンテナに電力をかけたときの温度上昇の様子を示す図であり、図6(A)はアンテナ部に多段階の抵抗値を設定した本実施形態の光透過型アンテナにおける温度分布を示し、図6(B)はアンテナ部の全体に一様な抵抗値を設定した光透過型アンテナにおける温度分布を示す図である。FIG. 6A is a diagram showing how the temperature rises when electric power is applied to the light-transmitting antenna, and FIG. FIG. 6B is a diagram showing the temperature distribution in a transmissive antenna in which a uniform resistance value is set over the entire antenna section. 光透過型アンテナの他の構成例を示す図である。FIG. 4 is a diagram showing another configuration example of a light transmission antenna;
 以下、添付図面を参照して、本発明の実施の形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
<光透過型アンテナの構成>
 図1は、光透過型アンテナの設置例を示す図である。光透過型アンテナ10は、家屋の天井や壁面等に設置される。図1に示す例では、光透過型アンテナ10が天井100に設置された例が示されている。図1において、天井100の光透過型アンテナ10が設置された側を天井100の表側と呼ぶ。光透過型アンテナ10は、足部20により天井100に固定されている。天井100の裏側には、光透過型アンテナ10に給電するための電力線が配線され(図示せず)、一部が足部20に引き込まれている。足部20は、光透過型アンテナ10の端子に接続する給電基板(図示せず)を内蔵している。これにより、天井100の裏の電力線から足部20を介して光透過型アンテナ10への給電が行われる。
<Structure of Light Transmission Type Antenna>
FIG. 1 is a diagram showing an installation example of a light transmissive antenna. The transmissive antenna 10 is installed on the ceiling, wall surface, or the like of a house. The example shown in FIG. 1 shows an example in which the light transmissive antenna 10 is installed on the ceiling 100 . In FIG. 1 , the side of the ceiling 100 on which the light transmission type antenna 10 is installed is called the front side of the ceiling 100 . The transmissive antenna 10 is fixed to the ceiling 100 by means of legs 20 . A power line (not shown) for supplying power to the transmissive antenna 10 is wired on the back side of the ceiling 100 , and a part of the line is drawn into the foot portion 20 . The leg portion 20 incorporates a power supply board (not shown) that is connected to the terminal of the light transmissive antenna 10 . As a result, power is supplied from the power line behind the ceiling 100 to the transmissive antenna 10 through the legs 20 .
 図2は、光透過型アンテナ10の構成例を示す図である。光透過型アンテナ10は、基板14と、基板14の表面に設けられたアンテナ部11、12および端子13とを備える。基板14は、可視光の透過性が高い電気絶縁性材料で構成された板状部材である。基板14は、可視光に対する透過性が高く、電気絶縁性を有していれば良く、材料の種類は問わない。例えば、基板14は、PET(Poly Ethylene Terephthalate)樹脂等の透光性の高い樹脂やガラス等の素材を用いて形成し得る。また、基板14は、可撓性(柔軟性)を有しても良い。 FIG. 2 is a diagram showing a configuration example of the light transmissive antenna 10. FIG. The transmissive antenna 10 includes a substrate 14 , and antenna portions 11 and 12 and terminals 13 provided on the surface of the substrate 14 . The substrate 14 is a plate-shaped member made of an electrically insulating material having high visible light transmittance. The substrate 14 may be made of any material as long as it has high transparency to visible light and electrical insulation. For example, the substrate 14 can be formed using a material such as a highly translucent resin such as PET (Poly Ethylene Terephthalate) resin or glass. Further, the substrate 14 may have flexibility (flexibility).
 アンテナ部11、12は、透光性を有する導電性部材により基板14の一面側の表面上に形成される。アンテナ部11は、例えば、目的とする周波数帯に対応した放射素子であり、アンテナ部12は、例えば、グランド(GND)に接続されるアンテナGNDである。アンテナ部11、12は、目的とする周波数帯(例えば、1.7GHz~5GHz)に対応させた形状を有する。図2に示す例では、アンテナ部11は、端子13が設けられた根元部(図2の下方)から先端部(図2の上方)へ向かって次第に広がる形状を有する。アンテナ部12は、基板14上でアンテナ部11の両側に二つ設けられている。二つのアンテナ部12は、アンテナ部11の先端が伸びる方向に対して直交する方向に延びている。なお、アンテナ部11、12の形状は、目的とする周波数帯に応じて適宜定めれば良く、図2に示す形状には限定されない。 The antenna sections 11 and 12 are formed on one side surface of the substrate 14 by a translucent conductive member. The antenna section 11 is, for example, a radiation element corresponding to a target frequency band, and the antenna section 12 is, for example, an antenna GND connected to the ground (GND). The antenna sections 11 and 12 have a shape corresponding to a target frequency band (for example, 1.7 GHz to 5 GHz). In the example shown in FIG. 2, the antenna section 11 has a shape that gradually widens from the root section (lower side in FIG. 2) where the terminal 13 is provided toward the tip section (upper side in FIG. 2). Two antenna units 12 are provided on both sides of the antenna unit 11 on the substrate 14 . The two antenna sections 12 extend in a direction orthogonal to the direction in which the tip of the antenna section 11 extends. Note that the shapes of the antenna portions 11 and 12 may be appropriately determined according to the target frequency band, and are not limited to the shape shown in FIG.
 端子13は、光透過型アンテナ10が足部20に取り付けられた状態で、足部20の給電基板に接続され、アンテナ部11、12に電力を供給する。端子13は、アンテナ部11の根本部に設けられた端子13aと、二つのアンテナ部12の各々に設けられた二つの端子13bとからなる。端子13aは、アンテナ部11に電力を供給する給電部であり、端子13bは、アンテナ部12に電力を供給する給電部である。 The terminal 13 is connected to the power supply board of the leg portion 20 in a state where the light transmission type antenna 10 is attached to the leg portion 20 and supplies power to the antenna portions 11 and 12 . The terminal 13 consists of a terminal 13a provided at the base of the antenna section 11 and two terminals 13b provided at each of the two antenna sections 12. As shown in FIG. The terminal 13 a is a power feeding section that supplies power to the antenna section 11 , and the terminal 13 b is a power feeding section that supplies power to the antenna section 12 .
 アンテナ部11、12を構成する導電性部材としては、網目状の導電体や膜状の導電体など、既存の光透過型アンテナに用い得る種々の材料を用い得る。以下では、主に網目状の導電体(以下、「網目状導電体」と呼ぶ)を用いた場合を例として説明する。アンテナ部11、12に用いられる網目状導電体を構成する導電体材料としては、電気伝導度が高く、網目状に加工しやすい材料が用いられる。例えば、銅(Cu)、銀(Ag)、アルミニウム(Al)等を用い得る。網目状導電体の網目のパターンは特に限定されないが、図2に示す例では直交する格子状のパターンが用いられている。 As the conductive members forming the antenna parts 11 and 12, various materials that can be used in existing light-transmitting antennas, such as mesh-like conductors and film-like conductors, can be used. In the following, a case where a mesh-like conductor (hereinafter referred to as a "mesh-like conductor") is mainly used will be described as an example. As a conductive material forming the mesh-shaped conductor used for the antenna portions 11 and 12, a material having high electrical conductivity and being easily processed into a mesh-like shape is used. For example, copper (Cu), silver (Ag), aluminum (Al), etc. can be used. The mesh pattern of the mesh conductor is not particularly limited, but in the example shown in FIG. 2, an orthogonal grid pattern is used.
 光透過型アンテナ10の網目状導電体は、例えば、基板14上に形成された銅(Cu)膜や銀(Ag)膜などの導電体材料をエッチングして製造される。この製造方法では、まず、アンテナ部11、12を成形するためのエッチングマスクが生成される。具体的には、このエッチングマスクは、導電体材料をアンテナ部11、12の形状に切り出すと共に、アンテナ部11、12の形状内の面を構成する網目のパターンを有し、さらに、端子13の部位において導電体材料が網目状に加工されることなく残るように形成される。そして、このエッチングマスクを用いて、基板14上に形成された導電体材料がエッチングされる。このようにすることで、1回のエッチングにより、網目状で所望の外径を有するアンテナ部11、12と、端子13とが一体に形成される。 The mesh conductor of the light transmission antenna 10 is manufactured by etching a conductor material such as a copper (Cu) film or a silver (Ag) film formed on the substrate 14, for example. In this manufacturing method, first, etching masks for forming the antenna portions 11 and 12 are generated. Specifically, this etching mask is formed by cutting a conductive material into the shape of the antenna portions 11 and 12, and has a mesh pattern forming surfaces within the shape of the antenna portions 11 and 12. The portion is formed so that the conductive material remains without being processed into a mesh shape. Then, using this etching mask, the conductive material formed on the substrate 14 is etched. By doing so, the antenna portions 11 and 12 having a mesh shape and a desired outer diameter and the terminal 13 are integrally formed by one etching.
 他の製造方法としては、例えば、予め網目状に加工された導電体材料を、アンテナ部11、12の形状に加工し、基板14に貼りつける方法が考えられる。この場合、網目状でない端子13は、アンテナ部11、12とは別に形成され、アンテナ部11、12に接続させて基板14に貼りつけられる。この他、光透過型アンテナ10の製造方法としては、既存の種々の手法を用い得る。 As another manufacturing method, for example, a method of processing a conductive material that has been processed into a mesh shape in advance into the shape of the antenna portions 11 and 12 and attaching them to the substrate 14 is conceivable. In this case, the non-mesh terminal 13 is formed separately from the antenna portions 11 and 12 and is attached to the substrate 14 while being connected to the antenna portions 11 and 12 . In addition, various existing methods can be used as a method for manufacturing the light transmission type antenna 10 .
<アンテナ部の網目パターン>
 光透過型アンテナ10のアンテナ部11、12は、導電性部材の抵抗値が全体で一様である場合、その形状に応じて局所的な電力の集中が生じる。そして、電力が集中する箇所における電力の損失を抑えることがアンテナの耐電力や利得の向上に大きく寄与する。そこで、本実施形態では、アンテナ部11、12の導電性部材における電力の集中する部位を、電力が拡散する他の部位よりも抵抗値が低くなるように構成する。これにより、電流がアンテナ部11、12の広い面積に分散し、局所的な電力の集中が抑制される。このようにすれば、アンテナ部11、12の特定の部位における電力の集中が抑制されることによってアンテナの耐電力や利得を向上させ得ると共に、その他の部位においては抵抗値を低下させないことによりアンテナ部11、12の透光性が低下することを抑制することができる。また、アンテナ部11、12における局所的な電力の集中を軽減することによって、アンテナ部11、12のPIM(Passive Intermodulation;パッシブ相互変調)の改善も期待される。
<Mesh pattern of antenna part>
If the resistance value of the conductive member is uniform throughout the antenna sections 11 and 12 of the light transmission type antenna 10, local concentration of electric power occurs depending on the shape thereof. Suppressing the loss of power at locations where power concentrates greatly contributes to the improvement of the power handling capability and gain of the antenna. Therefore, in the present embodiment, the conductive members of the antenna units 11 and 12 are configured so that the electric power concentrates at a portion having a lower resistance value than other electric power diffused portions. As a result, the current is dispersed over a wide area of the antenna units 11 and 12, and local concentration of power is suppressed. In this way, the concentration of electric power at specific portions of the antenna portions 11 and 12 is suppressed, thereby improving the power handling capability and gain of the antenna. A decrease in translucency of the portions 11 and 12 can be suppressed. Also, by reducing local power concentration in the antenna units 11 and 12, PIM (Passive Intermodulation) of the antenna units 11 and 12 is expected to be improved.
 アンテナ部11、12のどの部位に電力が集中するかは、アンテナ部11、12の形状に応じて異なる。一般に、給電部に近い部位や導電性部材の縁部などに電力の集中が生じやすい。より具体的かつ精度良く電力の集中箇所を特定するには、シミュレーションを行ってアンテナ部11、12の形状に応じた電力が集中する箇所を推定したり、実際の光透過型アンテナ10に対する実測により電力の集中が生じる箇所を判定したりしても良い。 Which part of the antenna units 11 and 12 the electric power concentrates depends on the shape of the antenna units 11 and 12 . In general, electric power is likely to be concentrated at a portion near a power supply portion or at the edge of a conductive member. In order to more specifically and accurately identify power concentration locations, a simulation may be performed to estimate the power concentration locations according to the shape of the antenna units 11 and 12, or actual measurements of the actual light transmission antenna 10 may be performed. A location where power concentration occurs may be determined.
 図3は、光透過型アンテナ10のアンテナ部11、12の各部位における抵抗値の設定例を示す図である。図3に示す例では、アンテナ部11を領域(a)~領域(c)の三つの領域と端子13aとに分け、アンテナ部12を領域(d)および領域(e)の二つの領域と端子13bとに分けている。図示の例で、抵抗値の設定は、図3に示す領域(a)~領域(e)に対して行われる。 FIG. 3 is a diagram showing a setting example of resistance values at respective portions of the antenna sections 11 and 12 of the light transmission type antenna 10. FIG. In the example shown in FIG. 3, the antenna section 11 is divided into three regions (a) to (c) and a terminal 13a, and the antenna section 12 is divided into two regions (d) and (e) and a terminal. 13b. In the illustrated example, the resistance values are set for the regions (a) to (e) shown in FIG.
 図3に示すアンテナ部11において、領域(c)は、三つの領域のうちで給電部である端子13aに最も近い。そこで、領域(c)の抵抗値は、領域(a)および領域(b)よりも低い抵抗値となるように設定する。また、領域(a)および領域(b)は共に給電部である端子13aから遠いが、領域(b)は、アンテナ部11の両側の縁部に位置しているため、領域(c)ほどではないものの領域(a)よりも電力の集中が生じる。一方、領域(a)にもアンテナ部11の先端側の縁部が含まれるが、給電部である端子13aから遠いため、顕著な電力の集中は生じない。そこで、領域(b)の抵抗値は、領域(a)よりも低い抵抗値となるように設定する。したがって、アンテナ部11に関しては、

     領域(a)>領域(b)>領域(c)

となるように、各領域に対する抵抗値が設定される。
In the antenna section 11 shown in FIG. 3, the area (c) is the closest to the terminal 13a, which is the feeding section, among the three areas. Therefore, the resistance value of the region (c) is set to be lower than that of the regions (a) and (b). In addition, both the area (a) and the area (b) are far from the terminal 13a, which is the feeding section, but since the area (b) is located on both sides of the antenna section 11, it is not as far as the area (c). There is more power concentration than in region (a), although there is none. On the other hand, the region (a) also includes the tip side edge of the antenna section 11, but since it is far from the terminal 13a, which is the feeding section, significant power concentration does not occur. Therefore, the resistance value of the region (b) is set to be lower than that of the region (a). Therefore, regarding the antenna section 11,

Area (a) > Area (b) > Area (c)

A resistance value for each region is set so that
 また、図3に示すアンテナ部12において領域(d)は、二つの領域のうちで給電部である端子13bに最も近い。そこで、領域(d)の抵抗値は、領域(e)よりも低い抵抗値となるように設定する。したがって、アンテナ部12に関しては、

     領域(e)>領域(d)

となるように、各領域に対する抵抗値が設定される。なお、領域(a)~領域(c)の各領域の抵抗値と、領域(d)および領域(e)の抵抗値とは、それぞれ個別に設定し得るが、例えば、最も低い領域(c)と領域(d)とを同じ抵抗値とし、二番目の領域(b)と領域(e)とを同じ抵抗値としても良い。この場合、各領域の抵抗値は、

     領域(a)>領域(b)=領域(e)>領域(c)=領域(d)

となる。
Further, in the antenna section 12 shown in FIG. 3, the area (d) is the closest to the terminal 13b, which is the feeding section, among the two areas. Therefore, the resistance value of the region (d) is set to be lower than that of the region (e). Therefore, regarding the antenna section 12,

area (e) > area (d)

A resistance value for each region is set so that The resistance values of the regions (a) to (c) and the resistance values of the regions (d) and (e) can be set individually. and the region (d) may have the same resistance value, and the second region (b) and the region (e) may have the same resistance value. In this case, the resistance value of each region is

area (a) > area (b) = area (e) > area (c) = area (d)

becomes.
 次に、アンテナ部11、12を網目状導電体により構成する場合の抵抗値の設定方法について説明する。アンテナ部11、12の場所に応じて導電性部材の抵抗値を異ならせるには、導電性部材の面抵抗を異ならせる手法を取り得る。導電性部材として網目状導電体を用いた場合、網目を構成する線の太さを相互に異ならせるか、網目の大きさを相互に異ならせることにより、各網目状導電体が該当する部位における抵抗値を異ならせることができる。 Next, a method of setting the resistance value when the antenna sections 11 and 12 are made of a mesh conductor will be described. In order to make the resistance value of the conductive member different depending on the location of the antenna parts 11 and 12, a method of making the surface resistance of the conductive member different can be taken. When a mesh-like conductor is used as the conductive member, each mesh-like conductor is made to have different thicknesses of lines forming the mesh or different mesh sizes, so that each mesh-like conductor Different resistance values can be used.
 図4は、網目の大きさが異なる網目状導電体を対比させた図である。図4に示す左側の網目状導電体を基準メッシュAとする。ここでは、基準メッシュAは、網目を構成する線の幅(太さ)を10μm、線どうしの間隔を100μmとしている。一方、図4に示す右側の網目状導電体を低抵抗メッシュBとする。ここでは、低抵抗メッシュBは、網目を構成する線の幅(太さ)を10μm、線どうしの間隔を50μmとしている。基準メッシュAと低抵抗メッシュBとを比較すると、低抵抗メッシュBは、線どうしの間隔が基準メッシュAの1/2になっている。したがって、低抵抗メッシュBは、網目の大きさが基準メッシュAの1/4である。このように、網目状導電体における線の間隔を狭くすることにより、低抵抗メッシュBは、面抵抗が基準メッシュAよりも小さくなる。 FIG. 4 is a diagram comparing mesh conductors with different mesh sizes. Let the mesh-like conductor on the left side in FIG. Here, in the reference mesh A, the width (thickness) of the lines forming the mesh is set to 10 μm, and the interval between the lines is set to 100 μm. On the other hand, the mesh-like conductor on the right side shown in FIG. Here, in the low-resistance mesh B, the width (thickness) of the lines forming the mesh is 10 μm, and the interval between the lines is 50 μm. Comparing the reference mesh A and the low-resistance mesh B, the low-resistance mesh B has a line interval of 1/2 that of the reference mesh A. Therefore, the mesh size of the low resistance mesh B is 1/4 of the mesh size of the reference mesh A. In this way, the low-resistance mesh B has a surface resistance smaller than that of the reference mesh A by narrowing the line spacing in the mesh-like conductor.
 図5は、網目を構成する線の太さが異なる網目状導電体を対比させた図である。図5に示す左側の網目状導電体は、基準メッシュAであり、図4に示した基準メッシュAと同様である。一方、図5に示す右側の網目状導電体を低抵抗メッシュCとする。ここでは、低抵抗メッシュCは、網目を構成する線の幅(太さ)を30μm、線どうしの間隔を100μmとしている。基準メッシュAと低抵抗メッシュCとを比較すると、低抵抗メッシュCは、線の幅(太さ)が基準メッシュAの3倍になっている。このように、網目状導電体における線の太さを太くすることにより、低抵抗メッシュCは、面抵抗が基準メッシュAよりも小さくなる。 FIG. 5 is a diagram comparing mesh-like conductors having different thicknesses of lines forming the mesh. The mesh-like conductor on the left side shown in FIG. 5 is the reference mesh A, which is the same as the reference mesh A shown in FIG. On the other hand, the mesh-like conductor on the right side shown in FIG. Here, in the low-resistance mesh C, the width (thickness) of the lines forming the mesh is 30 μm, and the interval between the lines is 100 μm. Comparing the reference mesh A and the low resistance mesh C, the low resistance mesh C has a line width (thickness) three times that of the reference mesh A. In this way, by increasing the wire thickness of the mesh-like conductor, the low-resistance mesh C has a surface resistance smaller than that of the reference mesh A. As shown in FIG.
 図4および図5に示した例において、低抵抗メッシュBと低抵抗メッシュCとでは、低抵抗メッシュCの方が、面抵抗が小さい。したがって、基準メッシュA、低抵抗メッシュBおよび低抵抗メッシュCの面抵抗の大きさは、

     基準メッシュA>低抵抗メッシュB>低抵抗メッシュC

となる。なお、図4および図5に示した各網目状導電体の太さおよび間隔の数値は、比較のための例示に過ぎない。実際には、アンテナ部11、12の形状および設定される抵抗値に応じて、部位ごとに適切なサイズの網目を選択すれば良い。
In the examples shown in FIGS. 4 and 5, the surface resistance of the low-resistance mesh C is smaller than that of the low-resistance mesh B and the low-resistance mesh C. As shown in FIG. Therefore, the surface resistance of the reference mesh A, the low-resistance mesh B, and the low-resistance mesh C is

Reference mesh A > low resistance mesh B > low resistance mesh C

becomes. It should be noted that the numerical values of the thickness and spacing of the mesh conductors shown in FIGS. 4 and 5 are merely examples for comparison. In practice, it is only necessary to select meshes of appropriate size for each part according to the shape of the antenna parts 11 and 12 and the set resistance value.
 ここで、図2に示す光透過型アンテナ10を参照すると、アンテナ部11、12は、図3に示した領域(a)~領域(e)に対応する領域ごとに異なる網目の網目状導電体を用いて構成されることが示されている。一例として、領域(c)および領域(d)には、線幅が0.03mm、線の間隔が0.3mmの網目が用いられ、領域(b)および領域(e)には線幅が0.03mm、線の間隔が0.5mmの網目が用いられ、領域(a)には、線幅が0.03mm、線の間隔が0.8mmの網目が用いられるものとする。なお、各領域は図3における対応する領域の符号で区別した。 Here, referring to the light transmission type antenna 10 shown in FIG. 2, the antenna parts 11 and 12 are mesh-like conductors with different meshes for each region corresponding to the regions (a) to (e) shown in FIG. is shown to be constructed using As an example, a mesh with a line width of 0.03 mm and a line spacing of 0.3 mm is used in regions (c) and (d), and a line width of 0 is used in regions (b) and (e). A mesh with a line width of 0.03 mm and a line spacing of 0.5 mm is used, and in region (a) a mesh with a line width of 0.03 mm and a line spacing of 0.8 mm is used. Each region is distinguished by the code of the corresponding region in FIG.
 このような網目を適用することで、領域(c)および領域(d)の抵抗値が最も小さく、領域(b)および領域(e)の抵抗値が次に小さく、領域(a)の抵抗値が最も大きくなるように、アンテナ部11、12全体の抵抗値が設定される。なお、ここでは線幅を変えず、線の間隔のみを異ならせることにより各領域の抵抗値を異ならせる例を示したが、上述したように、線幅を変えることにより各領域の抵抗値を異ならせても良いし、線幅および線の間隔の両方を異ならせて各領域の抵抗値を異ならせても良い。 By applying such a mesh, the resistance values of the regions (c) and (d) are the lowest, the resistance values of the regions (b) and (e) are the next lowest, and the resistance value of the region (a) is The resistance value of the entire antenna units 11 and 12 is set so that Here, an example is shown in which the resistance value of each region is changed by changing only the distance between lines without changing the line width, but as described above, the resistance value of each region can be changed by changing the line width. They may be different, or both the line width and line spacing may be different to make the resistance value of each region different.
 図6は、光透過型アンテナ10に電力をかけたときの温度上昇の様子を示す図である。図6(A)はアンテナ部11、12に多段階の抵抗値を設定した本実施形態の光透過型アンテナ10における温度分布を示し、図6(B)はアンテナ部11、12の全体に一様な抵抗値を設定した光透過型アンテナにおける温度分布を示す図である。図6(A)と図6(B)の温度分布を比較すると、図6(A)は、広い範囲で平坦に温度が上昇しており、図6(B)と比較して温度の高低差が少ない。これは言い換えれば、アンテナ部11、12の全体に広く電力が拡散し、特定の部位に対する電力の集中が抑制されていることを意味する。したがって、特定の部位への電力の集中に対応するためにアンテナ部11、12全体の抵抗値を高めることで生じる、アンテナ部11、12の透光性の低下を抑制することができる。 FIG. 6 is a diagram showing how the temperature rises when power is applied to the transmissive antenna 10. FIG. FIG. 6(A) shows the temperature distribution in the light transmission type antenna 10 of the present embodiment in which the antenna portions 11 and 12 are set with multistage resistance values, and FIG. FIG. 10 is a diagram showing temperature distribution in a transmissive antenna in which various resistance values are set; Comparing the temperature distributions of FIGS. 6(A) and 6(B), FIG. 6(A) has a flat temperature rise over a wide range, and the temperature difference is higher than that of FIG. 6(B). Less is. In other words, this means that power is widely diffused over the entire antenna sections 11 and 12, and concentration of power on a specific portion is suppressed. Therefore, it is possible to suppress the deterioration of the translucency of the antenna sections 11 and 12 caused by increasing the resistance value of the entire antenna sections 11 and 12 in order to deal with concentration of electric power to a specific portion.
<アンテナ部の他の網目パターン>
 アンテナ部11、12を構成する網目状導電体に関して、図2の光透過型アンテナ10では、直交する格子状のパターンを用いた例を示した。しかしながら、アンテナ部11、12の網目状導電体における網目のパターンは、アンテナ部11、12の部位により異なるサイズの網目を設定し得るものであれば、図2に示すような格子状のパターンに限定されず、種々のパターンを取り得る。一例として、アンテナ部11、12上の一点などから放射状に広がるような網目を適用しても良い。
<Other mesh patterns of the antenna part>
As for the mesh-shaped conductors forming the antenna sections 11 and 12, the light transmission type antenna 10 of FIG. However, if the mesh pattern in the mesh-like conductor of the antenna parts 11 and 12 can be set with meshes of different sizes depending on the parts of the antenna parts 11 and 12, the grid-like pattern shown in FIG. It is not limited and can take various patterns. As an example, a mesh that spreads radially from one point on the antenna sections 11 and 12 may be applied.
 図7は、光透過型アンテナ10の他の構成例を示す図である。図7に示す例において、光透過型アンテナ10のアンテナ部11、12は、端子13の一点(図示の点O)からアンテナ部11、12の先端へ向かって放射状に広がる網目を適用した網目状導電体により構成されている。網目状導電体には、一端側が放射状に広がって延びると共に他端側が点Oへ向かって集束するように伸びる直線(以下、「縦線」と呼ぶ)と、点Oを中心とする円弧を描く曲線(以下、「横線」と呼ぶ)とからなる網目が形成されている。 FIG. 7 is a diagram showing another configuration example of the light transmissive antenna 10. FIG. In the example shown in FIG. 7, the antenna portions 11 and 12 of the light transmission type antenna 10 have a mesh shape that applies a mesh that spreads radially from one point (point O in the drawing) of the terminal 13 toward the tips of the antenna portions 11 and 12. It is composed of a conductor. In the mesh-like conductor, a straight line (hereinafter referred to as a "vertical line") extending radially at one end and converging toward a point O at the other end, and an arc centered at the point O are drawn. A network of curved lines (hereinafter referred to as "horizontal lines") is formed.
 図7に示すような放射状の網目において、放射状の縦線は、点Oから遠ざかるほど線の間隔が広がる。このため、図7に示すように点Oを給電部である端子13に設定することにより、電力の集中が生じやすい給電部の付近では網目が密となり、給電部から遠ざかるほど網目が疎となる状態を作りやすい。図7に示す例ではさらに、横線の間隔を2段階で変更することにより、給電部付近の抵抗値が最も小さい領域と、その外側の抵抗値が2番目に小さい領域と、さらにその外側の抵抗値が最も大きい領域とを形成している。 In the radial mesh shown in FIG. 7, the distance between the radial vertical lines increases as the distance from the point O increases. Therefore, as shown in FIG. 7, by setting the point O to the terminal 13, which is the power supply unit, the mesh becomes dense near the power supply unit where electric power concentration tends to occur, and the mesh becomes sparse as the distance from the power supply unit increases. It is easy to create a state In the example shown in FIG. 7, by changing the interval of the horizontal lines in two stages, a region with the lowest resistance value near the feeder, a region with the second lowest resistance value The region with the largest value is formed.
 なお、図7に示す例では、線の間隔によってアンテナ部11、12における各領域の抵抗値を異ならせたが、図2乃至図5を参照して説明したように、線幅を変えることにより各領域の抵抗値を異ならせても良いし、線幅および線の間隔の両方を異ならせて各領域の抵抗値を異ならせても良い。 In the example shown in FIG. 7, the resistance value of each region in the antenna sections 11 and 12 is varied depending on the line spacing, but as described with reference to FIGS. Each region may have a different resistance value, or both the line width and the line spacing may be different to make the resistance value of each region different.
<膜状の導電性部材によるアンテナ部の形成>
 図2乃至図7を参照して説明した光透過型アンテナ10は、アンテナ部11、12を網目状導電体で構成した例を示した。しかしながら、光透過型アンテナ10のアンテナ部11、12として用い得る導電性部材としては、膜状の導電体(以下、「膜状導電体」と呼ぶ)を用いても良い。膜状導電体としては、例えば、Agスタックフィルム(Ag-Stacked Film)等の透光性を有する金属薄膜などを用い得る。
<Formation of Antenna Part by Film-like Conductive Member>
The light transmissive antenna 10 described with reference to FIGS. 2 to 7 shows an example in which the antenna portions 11 and 12 are made of a mesh conductor. However, as a conductive member that can be used as the antenna portions 11 and 12 of the light transmission type antenna 10, a film-like conductor (hereinafter referred to as a "film-like conductor") may be used. As the film conductor, for example, a translucent metal thin film such as Ag-Stacked Film can be used.
 金属薄膜は、膜厚を変えることで面抵抗を異ならせることができる。具体的には、膜厚が厚くなると面抵抗が小さくなり、膜厚が薄くなると面抵抗が大きくなる。したがって、アンテナ部11、12における電力の集中が生じる部位(例えば、給電部の近傍)では、膜厚を厚くして抵抗値を小さくし、その他の電力が拡散する部位では膜厚を薄くして抵抗値を大きくするように膜状導電体が構成される。 By changing the thickness of the metal thin film, the surface resistance can be changed. Specifically, the thicker the film, the lower the surface resistance, and the thinner the film, the higher the surface resistance. Therefore, the film thickness is increased to reduce the resistance value at the portions where power is concentrated in the antenna portions 11 and 12 (for example, near the feeding portion), and the film thickness is decreased at other portions where power is diffused. The film conductor is configured to increase the resistance value.
 以上、本発明の実施形態について説明したが、本発明の技術的範囲は上記実施形態には限定されない。例えば、上記の実施形態では、アンテナ部11、12を構成する網目状導電体の網目が、直交する格子状の網目である場合(図2参照)や、放射状に広がる網目である場合(図7参照)について説明したが、網目のパターンはこれらのパターンに限定されない。アンテナ部11、12の特定の部位ごとに網目のサイズを調整して所望の抵抗値を設定し得るパターンであれば良く、そのようなサイズの制御が可能であれば、ランダムネットワークのような網目であっても良い。その他、本発明の技術思想の範囲から逸脱しない様々な変更や構成の代替は、本発明に含まれる。 Although the embodiments of the present invention have been described above, the technical scope of the present invention is not limited to the above embodiments. For example, in the above embodiment, the meshes of the mesh-like conductors forming the antenna units 11 and 12 are orthogonal lattice meshes (see FIG. 2) or radially expanding meshes (FIG. 7). ), but the mesh pattern is not limited to these patterns. Any pattern may be used as long as the mesh size can be adjusted for each specific portion of the antenna units 11 and 12 to set a desired resistance value. can be In addition, the present invention includes various modifications and alternative configurations that do not depart from the scope of the technical idea of the present invention.
10…光透過型アンテナ、11、12…アンテナ部、13…端子、14…基板、20…足部、100…天井 DESCRIPTION OF SYMBOLS 10... Light transmission type antenna, 11, 12... Antenna part, 13... Terminal, 14... Substrate, 20... Foot part, 100... Ceiling

Claims (8)

  1.  透光性を有する絶縁部材により形成された基板と、
     前記基板の表面上に設けられ、透光性を有する導電性部材により構成されたアンテナ部と、を備え、
     前記アンテナ部は、前記導電性部材の電力が集中する部位が、他の部位よりも抵抗値が低くなるように構成されることを特徴とする光透過型アンテナ。
    a substrate formed of an insulating member having translucency;
    an antenna unit provided on the surface of the substrate and configured by a conductive member having translucency;
    A light transmission type antenna, wherein the antenna section is configured such that a portion of the conductive member where electric power concentrates has a lower resistance value than other portions.
  2.  前記導電性部材は、網目状の導電体で構成され、前記電力が集中する部位では、当該導電体の網目を構成する線の太さが他の部位よりも太いことを特徴とする、請求項1に記載の光透過型アンテナ。 3. The conductive member is composed of a mesh-like conductor, and in the portion where the electric power is concentrated, the thickness of the wire forming the mesh of the conductor is thicker than in other portions. 2. The light transmission antenna according to 1.
  3.  前記導電性部材は、網目状の導電体で構成され、前記電力が集中する部位では、当該導電体の網目の大きさが他の部位よりも小さいことを特徴とする、請求項1に記載の光透過型アンテナ。 2. The apparatus according to claim 1, wherein said conductive member is composed of a mesh-like conductor, and the mesh size of said conductor is smaller in said part where said electric power is concentrated than in other parts. Optical transmission type antenna.
  4.  前記導電性部材は、膜状の導電体で構成され、前記電力が集中する部位では、当該導電体の膜厚が他の部位よりも厚いことを特徴とする、請求項1に記載の光透過型アンテナ。 2. The light transmission according to claim 1, wherein the conductive member is composed of a film-like conductor, and the conductor is thicker at a portion where the electric power is concentrated than at other portions. type antenna.
  5.  透光性を有する絶縁部材により形成された基板と、
     前記基板の表面上に設けられ、透光性を有する導電性部材により構成されたアンテナ部と、を備え、
     前記アンテナ部は、前記導電性部材における給電部の近傍の部位が、他の部位よりも抵抗値が低くなるように構成されることを特徴とする光透過型アンテナ。
    a substrate formed of an insulating member having translucency;
    an antenna unit provided on the surface of the substrate and configured by a conductive member having translucency;
    A light transmission type antenna, wherein the antenna section is configured such that a portion of the conductive member near the feeding portion has a lower resistance value than other portions.
  6.  前記導電性部材は、網目状の導電体で構成され、前記給電部の近傍の部位では、当該導電体の網目を構成する線の太さが他の部位よりも太いことを特徴とする、請求項5に記載の光透過型アンテナ。 The conductive member is composed of a mesh-like conductor, and in a portion near the power supply portion, the thickness of the wire forming the mesh of the conductor is thicker than in other portions. Item 6. The light transmission antenna according to item 5.
  7.  前記導電性部材は、網目状の導電体で構成され、前記給電部の近傍の部位では、当該導電体の網目の大きさが他の部位よりも小さいことを特徴とする、請求項5に記載の光透過型アンテナ。 6. The conductive member according to claim 5, wherein the conductive member is made of a mesh-shaped conductor, and the size of the mesh of the conductor is smaller at a portion near the power supply portion than at other portions. light transmission antenna.
  8.  前記導電性部材は、膜状の導電体で構成され、前記給電部の近傍の部位では、当該導電体の膜厚が他の部位よりも厚いことを特徴とする、請求項5に記載の光透過型アンテナ。 6. The light according to claim 5, wherein the conductive member is composed of a film-shaped conductor, and the film thickness of the conductor is thicker at a portion near the power supply portion than at other portions. Transparent antenna.
PCT/JP2021/032944 2021-09-08 2021-09-08 Optically transparent antenna WO2023037428A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/032944 WO2023037428A1 (en) 2021-09-08 2021-09-08 Optically transparent antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/032944 WO2023037428A1 (en) 2021-09-08 2021-09-08 Optically transparent antenna

Publications (1)

Publication Number Publication Date
WO2023037428A1 true WO2023037428A1 (en) 2023-03-16

Family

ID=85507322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/032944 WO2023037428A1 (en) 2021-09-08 2021-09-08 Optically transparent antenna

Country Status (1)

Country Link
WO (1) WO2023037428A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002076769A (en) * 2000-08-30 2002-03-15 Shigeo Kawasaki Active element antenna
JP2011205635A (en) * 2010-03-25 2011-10-13 Sony Ericsson Mobilecommunications Japan Inc Antenna device and portable device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002076769A (en) * 2000-08-30 2002-03-15 Shigeo Kawasaki Active element antenna
JP2011205635A (en) * 2010-03-25 2011-10-13 Sony Ericsson Mobilecommunications Japan Inc Antenna device and portable device

Similar Documents

Publication Publication Date Title
US20150009089A1 (en) Antennas
Haraty et al. Improving the efficiency of transparent antenna using gold nanolayer deposition
US20170214150A1 (en) Apparatus comprising antenna and heat sink
JP7516470B2 (en) Antenna unit and window glass with antenna unit
US8278673B2 (en) Light emitting diode and method for making same
US20220200156A1 (en) Antenna unit and window glass
US7453401B2 (en) Vertical complementary fractal antenna
US10998609B2 (en) Loop antenna
CN104347155A (en) Transparent conducting film
JP6913942B2 (en) Transparent surface heating element, transparent surface heating element manufacturing method
WO2023037428A1 (en) Optically transparent antenna
Ito et al. See-through microstrip antennas constructed on a transparent substrate
WO2023058664A1 (en) Wiring substrate, module, and image display device
KR100819060B1 (en) Shaped-beam antenna with multi-layered disk array structure surrounded by dielectric ring
US12057631B2 (en) Antenna unit and window glass
CN108717999B (en) Isolation structure of large array antenna and antenna
KR20140117855A (en) Patch antenna for circle type array on mesh structure
US20240188227A1 (en) Wiring board and method of manufacturing wiring board
Kumar et al. Compact modified Sierpinski fractal monopole antenna for multiband wireless applications
JP2021093705A (en) Microstrip antenna, microstrip antenna unit, and microstrip antenna unit group
JP2021044483A (en) Impedance matching film and radio wave absorber
WO2016194888A1 (en) Horn antenna
JP2023181004A (en) Wiring board and image display device
CN108278517A (en) A kind of double, multiple rows of LED light strip
JP2016100802A (en) Antenna device and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21956725

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21956725

Country of ref document: EP

Kind code of ref document: A1