[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023035342A1 - 一种凸轮式飞机舱门负载模拟装置及模拟方法 - Google Patents

一种凸轮式飞机舱门负载模拟装置及模拟方法 Download PDF

Info

Publication number
WO2023035342A1
WO2023035342A1 PCT/CN2021/122010 CN2021122010W WO2023035342A1 WO 2023035342 A1 WO2023035342 A1 WO 2023035342A1 CN 2021122010 W CN2021122010 W CN 2021122010W WO 2023035342 A1 WO2023035342 A1 WO 2023035342A1
Authority
WO
WIPO (PCT)
Prior art keywords
cam
simulation device
load
wind
inertia
Prior art date
Application number
PCT/CN2021/122010
Other languages
English (en)
French (fr)
Inventor
吴昊
王晓露
聂振金
刘帅
潘哲
王丹阳
牛光冉
李林
Original Assignee
北京精密机电控制设备研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京精密机电控制设备研究所 filed Critical 北京精密机电控制设备研究所
Priority to EP21956518.1A priority Critical patent/EP4202398A4/en
Priority to US18/037,844 priority patent/US20230406542A1/en
Publication of WO2023035342A1 publication Critical patent/WO2023035342A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F5/00Designing, manufacturing, assembling, cleaning, maintaining or repairing aircraft, not otherwise provided for; Handling, transporting, testing or inspecting aircraft components, not otherwise provided for
    • B64F5/10Manufacturing or assembling aircraft, e.g. jigs therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F5/00Designing, manufacturing, assembling, cleaning, maintaining or repairing aircraft, not otherwise provided for; Handling, transporting, testing or inspecting aircraft components, not otherwise provided for
    • B64F5/60Testing or inspecting aircraft components or systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G1/00Weighing apparatus involving the use of a counterweight or other counterbalancing mass
    • G01G1/02Pendulum-weight apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/14Windows; Doors; Hatch covers or access panels; Surrounding frame structures; Canopies; Windscreens accessories therefor, e.g. pressure sensors, water deflectors, hinges, seals, handles, latches, windscreen wipers
    • B64C1/1407Doors; surrounding frames
    • B64C1/1423Passenger doors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • G01M99/007Subject matter not provided for in other groups of this subclass by applying a load, e.g. for resistance or wear testing

Definitions

  • the invention belongs to the field of mechanical transmission, and relates to a cam-type aircraft door load simulation device and a simulation method.
  • the technical problem solved by the present invention is: to overcome the deficiencies of the prior art, to propose a cam-type aircraft door load simulation device and simulation method, and realize simultaneous simulation of gravity load, inertia load, friction load, gust disturbance load, etc. load.
  • a cam-type aircraft door load simulation device including n cam sets, input shafts, 3n couplings and friction discs; n cam sets and friction discs are connected in series through the input shaft; 3n couplings are arranged on the input shaft Above; each cam group includes a gravity cam simulation device, an inertia cam simulation device and a wind load cam simulation device; in each cam group, the gravity cam simulation device, inertia cam simulation device and wind load cam simulation device are connected in series through the input shaft in turn, and the gravity There is a coupling between the cam simulation device and the inertia cam simulation device, between the inertia cam simulation device and the wind load cam simulation device, n cam groups share 2n couplings; One coupling is set, and n-1 couplings are shared among the cam groups; the tail ends of n cam groups connected in series are connected to the friction disc through one coupling.
  • the load simulation device also includes 3n+1 brackets, n is a positive integer not less than 1; each cam group is provided with 3 brackets, the gravity cam simulation device, inertia
  • the cam simulation device and the wind-loaded cam simulation device correspond to a bracket respectively; the friction disc corresponds to a bracket.
  • the gravity cam simulation device includes a gravity cam and a gravity weight; wherein, the bracket supports the input shaft, and the gravity cam fitted on the input shaft is limited Circumferential rotation is realized on the top of the bracket; the gravity weight is connected to the outer circular side wall of the gravity cam through a wire rope, and the corresponding torque is generated by the gravity weight; the gravity cam drives the gravity weight to simulate the gravity load;
  • the inertia cam simulation device includes an inertia cam and an inertia weight; wherein, the bracket supports the input shaft, and the inertia cam set on the input shaft is limited to the top of the bracket to realize circumferential rotation; the inertia weight is connected by a wire rope To the outer circular side wall of the inertia cam, the corresponding torque is generated by the weight of the inertia weight; the inertia cam drives the inertia weight to simulate the inertia load;
  • the bracket supports the input shaft, and the friction disc fitted on the input shaft is limited to the top of the bracket to realize the circumferential rotation; by applying friction resistance on the surface of the friction disc, the simulated friction load is realized.
  • the wind-loaded cam simulation device includes a wind-loaded cam, a wind-loaded weight and a spring; wherein, the bracket realizes support for the input shaft, and will be sleeved on the input shaft
  • the wind-loaded cam is limited at the top of the bracket to realize circumferential rotation; the wind-loaded weight is connected to the outer circular side wall of the wind-loaded cam through a spring, and the corresponding torque is generated by the self-weight of the wind-loaded weight.
  • the wind-loaded cam simulation device also includes a support rod; the root of the support rod points to the input shaft, and the head contacts the inner wall of the wind-loaded cam along the radial direction of the wind-loaded cam.
  • the support rod realizes the support of the outer convex circular surface of the wind-loaded cam; the support rod is a bent rod structure, and the change of the outer diameter of the wind-loaded cam is realized by bending the support rod; the wind-loaded cam drives the wind-loaded weight to simulate the wind load.
  • the axial length of the support rod before bending is set as L, and the remaining axial length of the support rod after bending is
  • the gravity cam and the inertia cam are the same cam structure whose external surface is fixed and unchanged; with the center of the input shaft as the center, the minimum radius R1 of the cam is placed horizontally, and the minimum radius Set the horizontal line where R1 is located to 0°; set a radius every 30° counterclockwise to obtain the radius R2-radius R12 of the cam in turn; connect the outer ends of R1 to R2 with smooth curves to obtain the outer surface of the cam structure;
  • i is the serial number of the radius of radius R2-radius R12;
  • a is a parameter, and the value range of a is R1-2R1;
  • is the angle between the straight line where the i-th radius is located and the 0° straight line.
  • the friction disc is a disc-shaped structure.
  • the gravity cam, inertia cam and wind-loaded cam adopt the same adjustable cam assembly
  • the adjustable cam assembly includes variable cams and m actuators; each action Centered on the center of the input shaft, the actuator is set along the radial direction of the variable cam, and the m actuators are distributed evenly inside the variable cam; the outer ends of the m actuators realize the support for the outer circular surface of the variable cam; m is a positive integer not less than 3.
  • the actuator is a telescopic structure in the axial direction; the change of the outer circular profile of the variable cam is realized through the expansion and contraction of the actuator; the actuator is set to shrink completely
  • the axial length in the state is R
  • the axial length in the fully extended state of the actuator is 2R, that is, the actuator realizes the adjustment of the radius of the outer circular surface of the variable cam from R-2R.
  • the distance between two adjacent cams is not less than twice the thickness of the cams; each weight is arranged on the same side of each cam or alternately distributed on each cam on both sides; the input shaft realizes the rotation of the gravity cam, the inertia cam and the wind load cam, and the input speed of the input shaft is less than 1000r/min.
  • the floor space of the present invention is little, and general aircraft cargo cabin door area is 1m * 1.5m to 2m * 3m not etc., and fuselage size is bigger, and loading cam diameter can be done below ⁇ 200mm even smaller, can greatly reduce The footprint of the small load simulator;
  • the gravity cam curve, size, number and weights of the present invention can be configured, and any continuous load curve loading can be realized through the configuration, and any load under different cabin door masses, centroids and different four-bar linkages can be simulated;
  • the wind-loaded cam of the present invention releases the springs and weights on the steel wire rope through random instantaneous deformation to simulate a sudden disturbance wind load, and can continue to act.
  • Fig. 1 is the schematic diagram of hatch load simulation device of the present invention
  • Fig. 2 is the same column distribution schematic diagram of the present invention.
  • Fig. 3 is the schematic diagram of the wind-loaded cam simulation device of the present invention.
  • Fig. 4 is a schematic diagram of a fixed cam on the external surface of the present invention.
  • Fig. 5 is a schematic diagram of the force situation when the cam of the present invention is in operation
  • Fig. 6 is the relationship curve between output radius and angle provided by the cam of the present invention.
  • the present invention provides a cam-type aircraft door load simulation device and simulation method, each cam group and friction disc 41 are set up by bracket 9, gravity cam 11, inertia cam 21 and wind load cam 31, three kinds of cams are installed on the input shaft 7 on.
  • the gravity cam 11 cooperates with the gravity weight 12 to simulate the gravity load
  • the wind load cam 31 cooperates with the wind load weight 32 to simulate the wind load
  • the inertia cam 21 cooperates with the inertia weight 22 to adjust the total inertia of the system, simulate the inertial load, and at the same time adjust the dynamics of the entire shaft system. Balancing effect.
  • the invention realizes simultaneous simulation of multiple loads such as gravity load, inertial load, friction load, gust disturbance load and the like.
  • Cam type aircraft door load simulation device as shown in Figure 1, comprises n cam groups, input shaft 7, 3n shaft couplings 8 and friction disc 41; n cam groups and friction disc 41 are connected in series through input shaft 7; 3n couplings 8 are arranged on the input shaft; each cam group includes gravity cam simulation device 1, inertia cam simulation device 2 and wind load cam simulation device 3; in each cam group, gravity cam simulation device 1, inertia cam simulation device The device 2 and the wind-loaded cam simulation device 3 are connected in series through the input shaft 7 in sequence, and a coupling is set between the gravity cam simulation device 1 and the inertia cam simulation device 2, and between the inertia cam simulation device 2 and the wind-loaded cam simulation device 3 8.
  • n cam groups share 2n couplings 8; one coupling 8 is set between two adjacent cam groups, and n-1 couplings 8 are shared between cam groups; n cams in series
  • the tail end of the group is connected with the friction disc 41 through a shaft coupling 8 .
  • the cam-type aircraft door load simulation method is specifically that the input shaft 7 drives n cam sets and friction discs 41 to rotate synchronously through 3n couplings 8, so that the aircraft door can bear gravity load, inertia load, wind load and friction load. Simulation of the load.
  • the load simulation device simulates more complex working conditions by connecting multiple cam groups in series.
  • the cam group can be arranged on one side or in a staggered way to meet the requirements of load simulation, and the distance between each group of cams is not less than 2 times the thickness of the cam.
  • the load simulation device also includes 3n+1 brackets 9, where n is a positive integer not less than 1; each cam group is provided with three brackets 9, and the gravity cam simulation device 1, the inertia cam simulation device 2 and the wind load cam simulation device 3 are respectively Corresponding to one bracket 9; the friction disc 41 is correspondingly provided with one bracket 9.
  • the gravity cam simulation device 1 includes a gravity cam 11 and a gravity weight 12; wherein, the bracket 9 supports the input shaft 7, and the gravity cam 11 set on the input shaft 7 is limited to the top of the bracket 9 to realize circumferential rotation;
  • the gravity weight 12 is connected to the outer circular side wall of the gravity cam 11 through a wire rope, and the corresponding torque is generated by the gravity weight 12; the gravity cam 11 drives the gravity weight 12 to simulate a gravity load;
  • the inertia cam simulation device 2 includes an inertia cam 21 and an inertia weight 22; wherein, the bracket 9 supports the input shaft 7, and the inertia cam 21 set on the input shaft 7 is limited to the top of the bracket 9 to realize the circumferential Rotation; the inertia weight 22 is connected to the outer circular side wall of the inertia cam 21 through a wire rope, and the corresponding torque is generated by the inertia weight 22 self-weight; the inertia cam 21 drives the inertia weight 22 to simulate an inertia load.
  • the bracket 9 supports the input shaft 7, and the friction disc 41 sleeved on the input shaft 7 is limited on the top of the bracket 9 to realize circumferential rotation; by applying friction resistance on the surface of the friction disc 41, a simulated friction load is realized.
  • the wind-loaded cam simulation device 3 includes a wind-loaded cam 31, a wind-loaded weight 32 and a spring 33; wherein, the bracket 9 supports the input shaft 7, and the wind-loaded cam 31 set on the input shaft 7 is limited to the bracket 9.
  • the top realizes circumferential rotation; the wind-loaded weight 32 is connected to the outer circular side wall of the wind-loaded cam 31 through a spring 33, and the corresponding torque is generated by the self-weight of the wind-loaded weight 32.
  • G is the shear modulus of the material of the spring 33
  • d is the wire diameter of the spring 33
  • d1 is the middle diameter of the spring 33
  • n is the number of turns of the spring 33
  • the wind-loaded cam simulation device 3 also includes a support rod 34; the root of the support rod 34 points to the input shaft 7, and the head is in contact with the inner wall of the wind-loaded cam 31 along the radial direction of the wind-loaded cam 31, and is realized by the support rod 34.
  • the support for the outer convex circular surface of the wind-loaded cam 31; the support rod 34 is a bent rod structure, and the change of the outer diameter of the wind-loaded cam 31 is realized by bending the support rod 34; the wind-loaded cam 31 drives the wind-loaded weight 32 to simulate wind load.
  • the weights 32 are all instantaneously moved from the support position of the length of the support rod 34 before bending to the support position of the length of the support rod 34 after bending;
  • the gravity cam 11 and the inertia cam 21 are the same cam structure with a fixed and unchanged outer surface; with the center of the input shaft 7 as the center, the minimum radius R1 of the cam is placed horizontally, and the horizontal line where the minimum radius R1 is located is set to 0° ; Set a radius every 30° counterclockwise to obtain the radius R2-radius R12 of the cam in turn; connect R1 to the outer end of R2 with a smooth curve to obtain the outer surface of the cam structure.
  • i is the serial number of the radius of radius R2-radius R12;
  • a is a parameter, and the value range of a is R1-2R1;
  • is the angle between the straight line where the i-th radius is located and the 0° straight line.
  • the friction disc 41 is a disc-shaped structure.
  • Gravity cam 11 and inertia cam 21 can use ordinary cams or adjustable cams.
  • the adjustable cams can adjust the cam shape in real time through multiple actuators 6 to achieve different motion curves and realize load simulation under different working conditions.
  • the gravity cam 11, the inertia cam 21 and the wind-loaded cam 31 adopt the same adjustable cam assembly, and the adjustable cam assembly includes a variable cam 5 and m actuators 6; each actuator 6 takes the center of the input shaft 7 as the center, along The variable cam 5 is set in the radial direction, and the m actuators 6 are distributed evenly inside the variable cam 5; the outer ends of the m actuators 6 realize the support for the outer circular surface of the variable cam 5; m is not less than 3 positive integer of .
  • the actuator 6 is a telescopic structure in the axial direction; through the expansion and contraction of the actuator 6, the outer circular profile of the variable cam 5 can be changed; when the actuator 6 is fully contracted, the axial length is R, and the actuator 6 The axial length in the fully extended state is 2R, that is, the actuator 6 realizes the adjustment of the radius of the outer circular profile of the variable cam 5 from R-2R.
  • the distance between two adjacent cams is not less than 2 times the thickness of the cams; each weight is set on the same side of each cam (as shown in Figure 2) or distributed alternately on both sides of each cam (as shown in Figure 1 shown).
  • the input shaft 7 drives the gravity cam 11, the inertia cam 21 and the wind cam 31 to rotate, and the input speed of the input shaft 7 is less than 1000r/min.
  • the actuator 6 can adopt various schemes such as hydraulic cylinder + piston rod or motor + lead screw, including the actuator base and the actuator push rod.
  • the push rod can be adjusted telescopically to achieve the purpose of adjusting the cam profile curve.
  • Figure 6 shows the relationship between the output radius and the angle provided by the cam.
  • the position of the weight on the edge of the cam from the center of the axis changes continuously when the cam rotates counterclockwise at different angles, thereby generating force arms R( ⁇ ) of different lengths to match the weight of the weight.
  • G(x) can generate different moment T to achieve the simulation of full working condition load;
  • cam sets are connected in series through the coupling 8, and different numbers of loading systems can be selected according to different working conditions to realize full working condition simulation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Transportation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Transmission Devices (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

一种凸轮式飞机舱门负载模拟装置及模拟方法,该装置包括n个凸轮组、输入轴(7)、3n个联轴器(8)和摩擦盘(41)负载装置;n个凸轮组和摩擦盘(41)负载装置通过输入轴(7)串联;3n个联轴器(8)设置在输入轴(7)上;每个凸轮组包括重力凸轮模拟装置(1)、惯量凸轮模拟装置(2)和风载凸轮模拟装置(3);每个凸轮组中,重力凸轮模拟装置(1)、惯量凸轮模拟装置(2)和风载凸轮模拟装置(3)依次通过输入轴(7)串联,n个凸轮组尾端通过1个联轴器(8)与摩擦盘(41)负载装置串联;该装置实现了对飞机舱门同时承受重力负载、惯性负载、摩擦负载、突风扰动负载等多种载荷。

Description

一种凸轮式飞机舱门负载模拟装置及模拟方法
本申请要求于2021年9月13日提交中国专利局、申请号为202111070247.7、发明名称为“一种凸轮式飞机舱门负载模拟装置及模拟方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于机械传动领域,涉及一种凸轮式飞机舱门负载模拟装置及模拟方法。
背景技术
在研制飞机舱门作动系统过程中,需要设计一种精确模拟飞机舱门负载特性的负载模拟装置,可同时模拟重力负载、摩擦负载、突风扰动负载,舱门密封负载等多种载荷。通过对飞机舱门作动系统进行加载试验,来确保飞机舱门作动系统能够满足飞机实际使用需求,而目前并没有相关负载模拟设计,实现对飞机舱门作动系统进行加载试验,无法满足飞机舱门实际使用过程的模拟需求。
发明内容
本发明解决的技术问题是:克服现有技术的不足,提出一种凸轮式飞机舱门负载模拟装置及模拟方法,实现了同时模拟重力负载、惯性负载、摩擦负载、突风扰动负载等多种载荷。
本发明解决技术的方案是:
一种凸轮式飞机舱门负载模拟装置,包括n个凸轮组、输入轴、3n个联轴器和摩擦盘;n个凸轮组和摩擦盘通过输入轴串联;3n个联轴器设置在输入轴上;每个凸轮组包括重力凸轮模拟装置、惯量凸轮模拟装置和风载凸轮模拟装置;每个凸轮组中,重力凸轮模拟装置、惯量凸轮模拟装置和风载凸轮模拟装置依次通过输入轴串联,且重力凸轮模拟装置与惯量凸轮模拟装置之间、惯量 凸轮模拟装置与风载凸轮模拟装置之间均设置一个联轴器,n个凸轮组共用2n个联轴器;相邻2个凸轮组之间均设置1个联轴器,凸轮组之间共用n-1个联轴器;串联的n个凸轮组尾端通过1个联轴器与摩擦盘连接。
在上述的一种凸轮式飞机舱门负载模拟装置,负载模拟装置还包括3n+1个支架,n为不小于1的正整数;每个凸轮组设置有3个支架,重力凸轮模拟装置、惯量凸轮模拟装置和风载凸轮模拟装置分别对应1个支架;摩擦盘对应设置1个支架。
在上述的一种凸轮式飞机舱门负载模拟装置,所述重力凸轮模拟装置包括重力凸轮和重力砝码;其中,支架实现对输入轴的支撑,且将套装在输入轴上的重力凸轮限位在支架顶部实现周向转动;重力砝码通过钢丝绳连接到重力凸轮外圆侧壁处,通过重力砝码自重产生对应扭矩;重力凸轮带动重力砝码模拟重力负载;
所述惯量凸轮模拟装置包括惯量凸轮和惯量砝码;其中,支架实现对输入轴的支撑,且将套装在输入轴上的惯量凸轮限位在支架顶部实现周向转动;惯量砝码通过钢丝绳连接到惯量凸轮外圆侧壁处,通过惯量砝码自重产生对应扭矩;惯量凸轮带动惯量砝码模拟惯量负载;
支架实现对输入轴的支撑,且将套装在输入轴上的摩擦盘限位在支架顶部实现周向转动;通过在摩擦盘盘面施加摩擦阻力,实现模拟摩擦载荷。
在上述的一种凸轮式飞机舱门负载模拟装置,所述风载凸轮模拟装置包括风载凸轮、风载砝码和弹簧;其中,支架实现对输入轴的支撑,且将套装在输入轴上的风载凸轮限位在支架顶部实现周向转动;风载砝码通过弹簧连接到风载凸轮外圆侧壁处,通过风载砝码自重产生对应扭矩。
在上述的一种凸轮式飞机舱门负载模拟装置,所述风载凸轮模拟装置还包括支撑杆;支撑杆的根部指向输入轴,头部沿风载凸轮径向与风载凸轮内壁接触,通过支撑杆实现对风载凸轮外凸圆型面的支撑;支撑杆为弯折杆结构,通过支撑杆弯折实现风载凸轮外径的变化;风载凸轮带动风载砝码模拟风载。
在上述的一种凸轮式飞机舱门负载模拟装置,当风载凸轮周向转动到凸点接近水平位置时,支撑杆迅速弯折回收,风载凸轮的凸点变由弯折后的支撑杆支撑;弹簧及其连接的风载砝码,均由弯折前支撑杆长度的支撑位置瞬时移动到弯折后支撑杆长度的支撑位置;风载砝码产生突变的速度,实现模拟突变干扰扰动风载;释放瞬间风载砝码产生的动能E为
Figure PCTCN2021122010-appb-000001
其中,m为风载砝码质量,v为风载砝码线速度;对负载模拟装置产生的附加力F为F=E/s,s为风载砝码位移。
在上述的一种凸轮式飞机舱门负载模拟装置,设定弯折前支撑杆的轴向长度为L,弯折后支撑杆剩余轴向长度为
Figure PCTCN2021122010-appb-000002
在上述的一种凸轮式飞机舱门负载模拟装置,所述重力凸轮、惯量凸轮为外形面固定无变化的相同凸轮结构;以输入轴中心为中心,将凸轮的最小半径R1水平放置,最小半径R1所在水平线设置为0°;沿逆时针每30°设置一个半径,依次得到凸轮的半径R2-半径R12;将R1至R2的外端圆滑曲线连接,即得到凸轮结构的外形面;
则各半径Ri的计算公式为:
Figure PCTCN2021122010-appb-000003
式中,i为半径R2-半径R12的半径的序号;
a为参数,a取值范围为R1-2R1;
θ为第i个半径所在直线与0°直线的夹角。
在上述的一种凸轮式飞机舱门负载模拟装置,所述摩擦盘为圆盘状结构。
在上述的一种凸轮式飞机舱门负载模拟装置,所述重力凸轮、惯量凸轮和风载凸轮采用相同的可调节凸轮组件,可调节凸轮组件包括变凸轮和m个作动器;每个作动器以输入轴中心为中心,沿变凸轮径向方向设置,且m个作动器在变凸轮内部发散均匀分布;m个作动器的外端实现对变凸轮外圆型面的支撑;m为不小于3的正整数。
在上述的一种凸轮式飞机舱门负载模拟装置,所述作动器为沿轴向伸缩结构;通过作动器的伸缩实现对变凸轮外圆型面的改变;设定作动器完全收缩状态下轴向长度为R,作动器完全伸出状态下轴向长度为2R,即作动器实现对变凸轮外圆型面的半径从R-2R的调整。
在上述的一种凸轮式飞机舱门负载模拟装置,相邻2个凸轮之间的间距不小于2倍凸轮的厚度;各砝码呈单侧设置在各凸轮的同侧或交错分布在各凸轮的两侧;输入轴实现带动重力凸轮、惯量凸轮和风载凸轮旋转,输入轴的输入转速小于1000r/min。
一种基于权利要求1所述的一种凸轮式飞机舱门负载模拟装置实现的一种凸轮式飞机舱门负载模拟方法,输入轴通过3n个联轴器带动n个凸轮组和摩擦盘同步转动,实现对飞机舱门承受重力负载、惯量负载、风载负载和摩擦负载的模拟。
本发明与现有技术相比的有益效果是:
(1)本发明的占地面积小,一般飞机货舱舱门面积为1m×1.5m到2m×3m不等,机身尺寸更大,加载凸轮直径可做到φ200mm以下甚至更小,可大幅减小负载模拟装置的占地面积;
(2)本发明的重力凸轮曲线、大小、个数及砝码均可配置,通过配置可实现任意连续负载曲线加载,模拟不同舱门质量、质心及不同四连杆机构情况下的任意载荷;
(3)本发明风载凸轮通过随机瞬间形变释放钢丝绳上的弹簧及砝码模拟突然施加的扰动风载,并能够持续作用。
附图说明
图1为本发明舱门负载模拟装置示意图;
图2为本发明同列分布示意图;
图3为本发明风载凸轮模拟装置示意图;
图4为本发明外形面固定凸轮示意图;
图5为本发明凸轮运行时的受力情况示意图;
图6为本发明凸轮提供的出力半径和角度关系曲线。
具体实施方式
下面结合实施例对本发明作进一步阐述。
本发明提供一种凸轮式飞机舱门负载模拟装置及模拟方法,将各凸轮组和摩擦盘41通过支架9架起,重力凸轮11、惯量凸轮21和风载凸轮31、三种凸轮安装在输入轴7上。重力凸轮11配合重力砝码12模拟重力负载;风载凸轮31配合风载砝码32模拟风载;惯量凸轮21配合惯量砝码22调节系统总惯量,模拟惯性负载,同时起调节整个轴系动平衡作用。本发明实现了同时模拟重力负载、惯性负载、摩擦负载、突风扰动负载等多种载荷。
凸轮式飞机舱门负载模拟装置,如图1所示,包括n个凸轮组、输入轴7、3n个联轴器8和摩擦盘41;n个凸轮组和摩擦盘41通过输入轴7串联;3n个联轴器8设置在输入轴上;每个凸轮组包括重力凸轮模拟装置1、惯量凸轮模拟装置2和风载凸轮模拟装置3;每个凸轮组中,重力凸轮模拟装置1、惯量凸轮模拟装置2和风载凸轮模拟装置3依次通过输入轴7串联,且重力凸轮模拟装置1与惯量凸轮模拟装置2之间、惯量凸轮模拟装置2与风载凸轮模拟装置3之间均设置一个联轴器8,n个凸轮组共用2n个联轴器8;相邻2个凸轮组之间均设置1个联轴器8,凸轮组之间共用n-1个联轴器8;串联的n个凸轮组尾端通过1个联轴器8与摩擦盘41连接。凸轮式飞机舱门负载模拟方法具体为,输入轴7通过3n个联轴器8带动n个凸轮组和摩擦盘41同步转动,实现对飞机舱门承受重力负载、惯量负载、风载负载和摩擦负载的模拟。
本发明中负载模拟装置通过串联多个凸轮组,模拟更为复杂的工况。凸轮组可采用单侧布置亦可采用交错布置方式来达到载荷模拟的要求,各组凸轮间距不小于2倍凸轮厚度。
负载模拟装置还包括3n+1个支架9,n为不小于1的正整数;每个凸轮组设置有3个支架9,重力凸轮模拟装置1、惯量凸轮模拟装置2和风载凸轮模 拟装置3分别对应1个支架9;摩擦盘41对应设置1个支架9。
重力凸轮模拟装置1包括重力凸轮11和重力砝码12;其中,支架9实现对输入轴7的支撑,且将套装在输入轴7上的重力凸轮11限位在支架9顶部实现周向转动;重力砝码12通过钢丝绳连接到重力凸轮11外圆侧壁处,通过重力砝码12自重产生对应扭矩;重力凸轮11带动重力砝码12模拟重力负载;
所述惯量凸轮模拟装置2包括惯量凸轮21和惯量砝码22;其中,支架9实现对输入轴7的支撑,且将套装在输入轴7上的惯量凸轮21限位在支架9顶部实现周向转动;惯量砝码22通过钢丝绳连接到惯量凸轮21外圆侧壁处,通过惯量砝码22自重产生对应扭矩;惯量凸轮21带动惯量砝码22模拟惯量负载。
支架9实现对输入轴7的支撑,且将套装在输入轴7上的摩擦盘41限位在支架9顶部实现周向转动;通过在摩擦盘41盘面施加摩擦阻力,实现模拟摩擦载荷。
风载凸轮模拟装置3包括风载凸轮31、风载砝码32和弹簧33;其中,支架9实现对输入轴7的支撑,且将套装在输入轴7上的风载凸轮31限位在支架9顶部实现周向转动;风载砝码32通过弹簧33连接到风载凸轮31外圆侧壁处,通过风载砝码32自重产生对应扭矩。
弹簧33的刚度K参考:K=Gd4/8d13n,G为弹簧33材料切变模量,d为弹簧33线径,d1为弹簧33中径,n为弹簧33圈数,系统可以根据所需冲击载荷来预先设置弹簧刚度。
如图3所示,风载凸轮模拟装置3还包括支撑杆34;支撑杆34的根部指向输入轴7,头部沿风载凸轮31径向与风载凸轮31内壁接触,通过支撑杆34实现对风载凸轮31外凸圆型面的支撑;支撑杆34为弯折杆结构,通过支撑杆34弯折实现风载凸轮31外径的变化;风载凸轮31带动风载砝码32模拟风载。
当风载凸轮31周向转动到凸点接近水平位置时,支撑杆34迅速弯折回收,风载凸轮31的凸点变由弯折后的支撑杆34支撑;弹簧33及其连接的风载砝 码32,均由弯折前支撑杆34长度的支撑位置瞬时移动到弯折后支撑杆34长度的支撑位置;风载砝码32产生突变的速度,实现模拟突变干扰扰动风载;释放瞬间风载砝码32产生的动能E为
Figure PCTCN2021122010-appb-000004
其中,m为风载砝码32质量,v为风载砝码32线速度;对负载模拟装置产生的附加力F为F=E/s,s为风载砝码32位移。故而会对系统产生突变扭矩。
设定弯折前支撑杆34的轴向长度为L,弯折后支撑杆34剩余轴向长度为
Figure PCTCN2021122010-appb-000005
如图4所示,重力凸轮11、惯量凸轮21为外形面固定无变化的相同凸轮结构;以输入轴7中心为中心,将凸轮的最小半径R1水平放置,最小半径R1所在水平线设置为0°;沿逆时针每30°设置一个半径,依次得到凸轮的半径R2-半径R12;将R1至R2的外端圆滑曲线连接,即得到凸轮结构的外形面。
则各半径Ri的计算公式为:
Figure PCTCN2021122010-appb-000006
式中,i为半径R2-半径R12的半径的序号;
a为参数,a取值范围为R1-2R1;
θ为第i个半径所在直线与0°直线的夹角。
摩擦盘41为圆盘状结构。
重力凸轮11、惯量凸轮21可以使用普通凸轮也可使用可调节凸轮,可调节凸轮通过多个作动器6,来实时调节凸轮外形以达到不同运动曲线,实现不同工况下载荷的模拟。
重力凸轮11、惯量凸轮21和风载凸轮31采用相同的可调节凸轮组件,可调节凸轮组件包括变凸轮5和m个作动器6;每个作动器6以输入轴7中心为中心,沿变凸轮5径向方向设置,且m个作动器6在变凸轮5内部发散均匀分布;m个作动器6的外端实现对变凸轮5外圆型面的支撑;m为不小于3的正整数。
作动器6为沿轴向伸缩结构;通过作动器6的伸缩实现对变凸轮5外圆型面的改变;设定作动器6完全收缩状态下轴向长度为R,作动器6完全伸出状态下轴向长度为2R,即作动器6实现对变凸轮5外圆型面的半径从R-2R的调整。
相邻2个凸轮之间的间距不小于2倍凸轮的厚度;各砝码呈单侧设置在各凸轮的同侧(如图2所示)或交错分布在各凸轮的两侧(如图1所示)。输入轴7实现带动重力凸轮11、惯量凸轮21和风载凸轮31旋转,输入轴7的输入转速小于1000r/min。
作动器6可以采用液压缸+活塞杆或者电机+丝杠等多种方案,包括作动器基座和作动器推杆,推杆可以伸缩调节,来达到调整凸轮外形曲线的目的。
图5为凸轮运行时的受力情况,T=R(θ)×G(x),T为凸轮产生的扭矩负载,R(θ)凸轮中心到边距离,G(x)为砝码重力,G(x)=a+bx,其中a为钢丝绳及砝码框架自重,b为增加单个砝码重量,x为砝码数量,x≥0,惯性凸轮的转动惯量为J=∑miri 2,mi为凸轮质量,ri为质心到转轴中心距离,惯性凸轮可以通过改变外形,以产生不同的转动惯量来调整系统响应速度;
图6为凸轮提供的出力半径和角度关系曲线,凸轮逆时针旋转不同的角度凸轮边缘砝码距离轴心的位置随之不断变化,进而产生不同长度的力臂R(θ),配合砝码重量G(x)可产生不同的力矩T,以达到全工况载荷的模拟;
n个凸轮组通过联轴器8相互串联,可根据不同工况选择不同数量的加载系统,实现全工况模拟。
本发明虽然已以较佳实施例公开如上,但其并不是用来限定本发明,任何本领域技术人员在不脱离本发明的精神和范围内,都可以利用上述揭示的方法和技术内容对本发明技术方案做出可能的变动和修改,因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化及修饰,均属于本发明技术方案的保护范围。

Claims (13)

  1. 一种凸轮式飞机舱门负载模拟装置,其特征在于:包括n个凸轮组、输入轴(7)、3n个联轴器(8)和摩擦盘(41);n个凸轮组和摩擦盘(41)通过输入轴(7)串联;3n个联轴器(8)设置在输入轴上;每个凸轮组包括重力凸轮模拟装置(1)、惯量凸轮模拟装置(2)和风载凸轮模拟装置(3);每个凸轮组中,重力凸轮模拟装置(1)、惯量凸轮模拟装置(2)和风载凸轮模拟装置(3)依次通过输入轴(7)串联,且重力凸轮模拟装置(1)与惯量凸轮模拟装置(2)之间、惯量凸轮模拟装置(2)与风载凸轮模拟装置(3)之间均设置一个联轴器(8),n个凸轮组共用2n个联轴器(8);相邻2个凸轮组之间均设置1个联轴器(8),凸轮组之间共用n-1个联轴器(8);串联的n个凸轮组尾端通过1个联轴器(8)与摩擦盘(41)连接。
  2. 根据权利要求1所述的一种凸轮式飞机舱门负载模拟装置,其特征在于:负载模拟装置还包括3n+1个支架(9),n为不小于1的正整数;每个凸轮组设置有3个支架(9),重力凸轮模拟装置(1)、惯量凸轮模拟装置(2)和风载凸轮模拟装置(3)分别对应1个支架(9);摩擦盘(41)对应设置1个支架(9)。
  3. 根据权利要求2所述的一种凸轮式飞机舱门负载模拟装置,其特征在于:所述重力凸轮模拟装置(1)包括重力凸轮(11)和重力砝码(12);其中,支架(9)实现对输入轴(7)的支撑,且将套装在输入轴(7)上的重力凸轮(11)限位在支架(9)顶部实现周向转动;重力砝码(12)通过钢丝绳连接到重力凸轮(11)外圆侧壁处,通过重力砝码(12)自重产生对应扭矩;重力凸轮(11)带动重力砝码(12)模拟重力负载;
    所述惯量凸轮模拟装置(2)包括惯量凸轮(21)和惯量砝码(22);其中,支架(9)实现对输入轴(7)的支撑,且将套装在输入轴(7)上的惯量凸轮(21)限位在支架(9)顶部实现周向转动;惯量砝码(22)通过钢丝绳连接到惯量凸轮(21)外圆侧壁处,通过惯量砝码(22)自重产生对应扭矩;惯量 凸轮(21)带动惯量砝码(22)模拟惯量负载;
    支架(9)实现对输入轴(7)的支撑,且将套装在输入轴(7)上的摩擦盘(41)限位在支架(9)顶部实现周向转动;通过在摩擦盘(41)盘面施加摩擦阻力,实现模拟摩擦载荷。
  4. 根据权利要求3所述的一种凸轮式飞机舱门负载模拟装置,其特征在于:所述风载凸轮模拟装置(3)包括风载凸轮(31)、风载砝码(32)和弹簧(33);其中,支架(9)实现对输入轴(7)的支撑,且将套装在输入轴(7)上的风载凸轮(31)限位在支架(9)顶部实现周向转动;风载砝码(32)通过弹簧(33)连接到风载凸轮(31)外圆侧壁处,通过风载砝码(32)自重产生对应扭矩。
  5. 根据权利要求4所述的一种凸轮式飞机舱门负载模拟装置,其特征在于:所述风载凸轮模拟装置(3)还包括支撑杆(34);支撑杆(34)的根部指向输入轴(7),头部沿风载凸轮(31)径向与风载凸轮(31)内壁接触,通过支撑杆(34)实现对风载凸轮(31)外凸圆型面的支撑;支撑杆(34)为弯折杆结构,通过支撑杆(34)弯折实现风载凸轮(31)外径的变化;风载凸轮(31)带动风载砝码(32)模拟风载。
  6. 根据权利要求5所述的一种凸轮式飞机舱门负载模拟装置,其特征在于:当风载凸轮(31)周向转动到凸点接近水平位置时,支撑杆(34)迅速弯折回收,风载凸轮(31)的凸点变由弯折后的支撑杆(34)支撑;弹簧(33)及其连接的风载砝码(32),均由弯折前支撑杆(34)长度的支撑位置瞬时移动到弯折后支撑杆(34)长度的支撑位置;风载砝码(32)产生突变的速度,实现模拟突变干扰扰动风载;释放瞬间风载砝码(32)产生的动能E为
    Figure PCTCN2021122010-appb-100001
    其中,m为风载砝码(32)质量,v为风载砝码(32)线速度;对负载模拟装置产生的附加力F为F=E/s,s为风载砝码(32)位移。
  7. 根据权利要求6所述的一种凸轮式飞机舱门负载模拟装置,其特征在于:设定弯折前支撑杆(34)的轴向长度为L,弯折后支撑杆(34)剩余轴向 长度为
    Figure PCTCN2021122010-appb-100002
  8. 根据权利要求7所述的一种凸轮式飞机舱门负载模拟装置,其特征在于:所述重力凸轮(11)、惯量凸轮(21)为外形面固定无变化的相同凸轮结构;以输入轴(7)中心为中心,将凸轮的最小半径R1水平放置,最小半径R1所在水平线设置为0°;沿逆时针每30°设置一个半径,依次得到凸轮的半径R2-半径R12;将R1至R2的外端圆滑曲线连接,即得到凸轮结构的外形面;
    则各半径Ri的计算公式为:
    Figure PCTCN2021122010-appb-100003
    式中,i为半径R2-半径R12的半径的序号;
    a为参数,a取值范围为R1-2R1;
    θ为第i个半径所在直线与0°直线的夹角。
  9. 根据权利要求8所述的一种凸轮式飞机舱门负载模拟装置,其特征在于:所述摩擦盘(41)为圆盘状结构。
  10. 根据权利要求4所述的一种凸轮式飞机舱门负载模拟装置,其特征在于:所述重力凸轮(11)、惯量凸轮(21)和风载凸轮(31)采用相同的可调节凸轮组件,可调节凸轮组件包括变凸轮(5)和m个作动器(6);每个作动器(6)以输入轴(7)中心为中心,沿变凸轮(5)径向方向设置,且m个作动器(6)在变凸轮(5)内部发散均匀分布;m个作动器(6)的外端实现对变凸轮(5)外圆型面的支撑;m为不小于3的正整数。
  11. 根据权利要求10所述的一种凸轮式飞机舱门负载模拟装置,其特征在于:所述作动器(6)为沿轴向伸缩结构;通过作动器(6)的伸缩实现对变凸轮(5)外圆型面的改变;设定作动器(6)完全收缩状态下轴向长度为R,作动器(6)完全伸出状态下轴向长度为2R,即作动器(6)实现对变凸轮(5)外圆型面的半径从R-2R的调整。
  12. 根据权利要求11所述的一种凸轮式飞机舱门负载模拟装置,其特征在于:相邻2个凸轮之间的间距不小于2倍凸轮的厚度;各砝码呈单侧设置在各凸轮的同侧或交错分布在各凸轮的两侧;输入轴(7)实现带动重力凸轮(11)、惯量凸轮(21)和风载凸轮(31)旋转,输入轴(7)的输入转速小于1000r/min。
  13. 一种基于权利要求1所述的一种凸轮式飞机舱门负载模拟装置实现的一种凸轮式飞机舱门负载模拟方法,其特征在于:输入轴(7)通过3n个联轴器(8)带动n个凸轮组和摩擦盘(41)同步转动,实现对飞机舱门承受重力负载、惯量负载、风载负载和摩擦负载的模拟。
PCT/CN2021/122010 2021-09-13 2021-09-30 一种凸轮式飞机舱门负载模拟装置及模拟方法 WO2023035342A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21956518.1A EP4202398A4 (en) 2021-09-13 2021-09-30 CAM TYPE AIRCRAFT CABIN DOOR LOAD SIMULATION DEVICE AND SIMULATION METHOD
US18/037,844 US20230406542A1 (en) 2021-09-13 2021-09-30 Cam Type Airplane Cabin Door Load Simulation Device and Simulation Method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111070247.7 2021-09-13
CN202111070247.7A CN113911387B (zh) 2021-09-13 2021-09-13 一种凸轮式飞机舱门负载模拟装置及模拟方法

Publications (1)

Publication Number Publication Date
WO2023035342A1 true WO2023035342A1 (zh) 2023-03-16

Family

ID=79234886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/122010 WO2023035342A1 (zh) 2021-09-13 2021-09-30 一种凸轮式飞机舱门负载模拟装置及模拟方法

Country Status (4)

Country Link
US (1) US20230406542A1 (zh)
EP (1) EP4202398A4 (zh)
CN (1) CN113911387B (zh)
WO (1) WO2023035342A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010054483A (ko) * 1999-12-07 2001-07-02 안우희 철도차량의 모의관성부하장치
CN101477174A (zh) * 2008-10-31 2009-07-08 北京理工大学 伺服系统复杂负载工况模拟和性能测试装置
CN102507056A (zh) * 2011-11-09 2012-06-20 江苏帝达贝轴承有限公司 滚动轴承摩擦力矩动态跟踪测量仪
CN103604601A (zh) * 2013-10-21 2014-02-26 浙江大学 基于风电齿轮箱工况模拟的故障诊断试验台
CN106323618A (zh) * 2016-08-30 2017-01-11 北京交通大学 电动伺服机构负载模拟系统及其模拟方法
CN106706306A (zh) * 2017-03-09 2017-05-24 江苏省特种设备安全监督检验研究院 低速轴制动器能效测试台及其测试方法
GB2562485A (en) * 2017-05-15 2018-11-21 Airbus Operations Ltd Aircraft door control
CN110763486A (zh) * 2019-11-08 2020-02-07 吉林大学 一种带负载的转动惯量模拟装置
CN212872795U (zh) * 2020-07-30 2021-04-02 上海拓攻机器人有限公司 一种负载惯量模拟盘及电机测试装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10032851C2 (de) * 2000-06-29 2003-04-03 Jenoptik Jena Gmbh Einrichtung zum elektrischen Betätigen einer Tür eines Luftfahrzeugs
CN1307377C (zh) * 2004-08-12 2007-03-28 西安交通大学 空间谐波齿轮减速器试验台用扭矩弹簧加载器
JP5245121B2 (ja) * 2008-05-16 2013-07-24 地方独立行政法人北海道立総合研究機構 車体組み付けミッション簡易性能試験評価装置
CN202267609U (zh) * 2011-08-31 2012-06-06 中国商用飞机有限责任公司 飞机起落架加载系统
CN102530265B (zh) * 2012-02-15 2013-12-04 西北工业大学 一种飞机舱门锁可靠性试验装置
CN103983443B (zh) * 2014-05-21 2016-07-06 西北工业大学 用于飞机起落架舱门上位锁可靠性试验的卧式试验装置
CN107466285A (zh) * 2015-03-23 2017-12-12 庞巴迪公司 飞机组装期间对飞机结构构件上的负载的模拟
CN107607236A (zh) * 2016-07-11 2018-01-19 李启飞 异型串联型极大负荷可调磁力测功器
EP3401208A1 (en) * 2017-05-10 2018-11-14 AIRBUS HELICOPTERS DEUTSCHLAND GmbH An aircraft door with at least one weight compensation device
CN107271160A (zh) * 2017-06-02 2017-10-20 中国商用飞机有限责任公司 一种验证飞机舱门耐久性开关功能的试验方法
CN107264836B (zh) * 2017-07-28 2020-04-14 中国航空工业集团公司西安飞机设计研究所 舱门大范围随动加载试验装置及试验方法
CN108088670A (zh) * 2017-11-29 2018-05-29 中国航空工业集团公司沈阳飞机设计研究所 一种飞机装机系统低载疲劳试验系统
JP2020079721A (ja) * 2018-11-12 2020-05-28 三菱重工業株式会社 抵抗負荷装置及び抵抗負荷方法
CN113173263B (zh) * 2021-04-30 2023-08-29 北京精密机电控制设备研究所 一种起落架收放作动器试验台

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010054483A (ko) * 1999-12-07 2001-07-02 안우희 철도차량의 모의관성부하장치
CN101477174A (zh) * 2008-10-31 2009-07-08 北京理工大学 伺服系统复杂负载工况模拟和性能测试装置
CN102507056A (zh) * 2011-11-09 2012-06-20 江苏帝达贝轴承有限公司 滚动轴承摩擦力矩动态跟踪测量仪
CN103604601A (zh) * 2013-10-21 2014-02-26 浙江大学 基于风电齿轮箱工况模拟的故障诊断试验台
CN106323618A (zh) * 2016-08-30 2017-01-11 北京交通大学 电动伺服机构负载模拟系统及其模拟方法
CN106706306A (zh) * 2017-03-09 2017-05-24 江苏省特种设备安全监督检验研究院 低速轴制动器能效测试台及其测试方法
GB2562485A (en) * 2017-05-15 2018-11-21 Airbus Operations Ltd Aircraft door control
CN110763486A (zh) * 2019-11-08 2020-02-07 吉林大学 一种带负载的转动惯量模拟装置
CN212872795U (zh) * 2020-07-30 2021-04-02 上海拓攻机器人有限公司 一种负载惯量模拟盘及电机测试装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4202398A4

Also Published As

Publication number Publication date
EP4202398A1 (en) 2023-06-28
CN113911387A (zh) 2022-01-11
EP4202398A4 (en) 2024-09-04
US20230406542A1 (en) 2023-12-21
CN113911387B (zh) 2023-09-29

Similar Documents

Publication Publication Date Title
JP6294502B2 (ja) アウタカップ回転型軸方向渦電流ダンパー
CN105637255B (zh) 离心力摆装置
CN111845930B (zh) 主动侧倾车辆转向延时机构
WO2023035342A1 (zh) 一种凸轮式飞机舱门负载模拟装置及模拟方法
CN109113203B (zh) 力放大式主动调谐质量阻尼器
CN202219840U (zh) 一种摆线桨控制机构
JP6424254B2 (ja) ロータ及びかかるロータが提供された航空機
US20140099204A1 (en) Braking devices for vertical axis wind turbines
US5945598A (en) Dynamometer test apparatus for aircraft brakes
US2276702A (en) Transmission mechanism with automatically variable ratio
CN110486429A (zh) 变速装置
WO2016128006A1 (en) Maintenance member for a wind turbine and method for using it
CN110439966A (zh) 平衡装置
RU174366U1 (ru) Модель сферического тренажера вестибулярного аппарата
CN102923302A (zh) 一种直升机柔性连接旋转升力翼
CN110539896A (zh) 一种挂轴类结构高温转动摩擦性能试验测试系统
CN101476551A (zh) 重力转化动力装置
CN117067815A (zh) 一种车轮及其提高车辆运行稳定性的方法
CN111765193B (zh) 一种悬浊液涡流式活塞阻尼器
RU2780246C2 (ru) Устройство гашения вибраций для вертолета
US1027775A (en) Balancing two-crank engines.
WO2014175755A1 (en) Vertical axis wind turbine brake
CN221302614U (zh) 转动惯量快速调节模拟装置
CN201697757U (zh) 用于摇摆台的弹簧平衡装置
Sticht Development of drive mechanism for an oscillating airfoil

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021956518

Country of ref document: EP

Effective date: 20230324

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21956518

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18037844

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE