[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023032679A1 - High frequency circuit, and communication device - Google Patents

High frequency circuit, and communication device Download PDF

Info

Publication number
WO2023032679A1
WO2023032679A1 PCT/JP2022/031100 JP2022031100W WO2023032679A1 WO 2023032679 A1 WO2023032679 A1 WO 2023032679A1 JP 2022031100 W JP2022031100 W JP 2022031100W WO 2023032679 A1 WO2023032679 A1 WO 2023032679A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
power
signal
power amplifier
frequency
Prior art date
Application number
PCT/JP2022/031100
Other languages
French (fr)
Japanese (ja)
Inventor
聡 田中
伸也 人見
弘嗣 森
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2023032679A1 publication Critical patent/WO2023032679A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/52Circuit arrangements for protecting such amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits

Definitions

  • the present invention relates to high frequency circuits and communication devices.
  • frequency division duplex (FDD) bands for power classes that allow higher maximum output power than before (e.g. power classes 1, 1.5, 2, etc.) Its application to
  • the module may be damaged by high power signals.
  • the present invention provides a high-frequency circuit and a communication device that can suppress module damage due to high-power signals.
  • a high-frequency circuit includes: a power amplifier circuit corresponding to a first power class that allows a first maximum output power that is equal to or higher than the maximum output power allowed in power class 2; a first filter circuit having a passband including an uplink operating band of a first band for frequency division duplexing; a directional coupler; and a control circuit for controlling the power amplifier circuit; has an input port connected to the output terminal of the power amplifier circuit via the first filter circuit, an output port connected to the antenna connection terminal, and a coupling port connected to the control circuit and the external connection terminal.
  • the control circuit limits amplification of the high frequency signal by the power amplifier circuit based on the first signal from the coupling port.
  • a high-frequency circuit includes: a power amplifier circuit corresponding to a first power class that allows a first maximum output power that is equal to or higher than the maximum output power allowed in power class 2; a first filter circuit having a passband including a first band uplink operating band for frequency division duplexing, a first directional coupler and a second directional coupler, and a control circuit for controlling a power amplifier circuit.
  • the first directional coupler has a first input port connected to the output terminal of the power amplifier circuit via the first filter circuit, a first output port connected to the antenna connection terminal, and an external a first coupling port connected to the connection terminal;
  • the second directional coupler has a second input port connected to the output end of the power amplifier circuit; and the antenna connection terminal via the first filter circuit. and a second coupling port coupled to a control circuit, wherein the control circuit amplifies a high frequency signal by a power amplifier circuit based on a first signal from the second coupling port. limit.
  • the high-frequency circuit it is possible to suppress the module from being damaged by a high-power signal.
  • FIG. 1 is a circuit configuration diagram of a high-frequency circuit and a communication device according to Embodiment 1.
  • FIG. FIG. 2 is a functional configuration diagram of the control circuit according to the first embodiment.
  • FIG. 3 is a flow chart showing processing of the control circuit according to the first embodiment.
  • FIG. 4 is a circuit configuration diagram of a high-frequency circuit and a communication device according to Embodiment 2.
  • FIG. 5 is a circuit configuration diagram of a high-frequency circuit and a communication device according to the third embodiment.
  • FIG. 6 is a circuit configuration diagram of a high-frequency circuit and a communication device according to the fourth embodiment.
  • FIG. 7 is a circuit configuration diagram of a high-frequency circuit and a communication device according to the fifth embodiment.
  • FIG. 8 is a circuit configuration diagram of a high frequency circuit and a communication device according to another embodiment.
  • each drawing is a schematic diagram that has been appropriately emphasized, omitted, or adjusted in proportion to show the present invention, and is not necessarily strictly illustrated, and the actual shape, positional relationship, and ratio may differ.
  • substantially the same configurations are denoted by the same reference numerals, and redundant description may be omitted or simplified.
  • connection includes not only direct connection with connection terminals and/or wiring conductors, but also electrical connection via other circuit elements.
  • Directly connected means directly connected by connection terminals and/or wiring conductors without intervening other circuit elements.
  • Connected between A and B means connected to both A and B between A and B, in addition to being connected in series with the path connecting A and B , is connected between the path and ground.
  • FIG. 1 is a circuit configuration diagram of a high-frequency circuit 1 and a communication device 5 according to this embodiment.
  • the communication device 5 corresponds to a so-called UE, and is typically a mobile phone, smart phone, tablet computer, or the like.
  • a communication device 5 includes a high frequency circuit 1 , an antenna 2 , an RFIC (Radio Frequency Integrated Circuit) 3 and a BBIC (Baseband Integrated Circuit) 4 .
  • RFIC Radio Frequency Integrated Circuit
  • BBIC Baseband Integrated Circuit
  • the high frequency circuit 1 transmits high frequency signals between the antenna 2 and the RFIC 3 .
  • the internal configuration of the high frequency circuit 1 will be described later.
  • the antenna 2 is connected to the antenna connection terminal 101 of the high frequency circuit 1 .
  • the antenna 2 receives a high frequency signal from the high frequency circuit 1 and outputs it to the outside.
  • the RFIC 3 is an example of a signal processing circuit that processes high frequency signals. Specifically, the RFIC 3 performs signal processing such as up-conversion on the transmission signal input from the BBIC 4 , and outputs the high-frequency transmission signal generated by the signal processing to the transmission path of the high-frequency circuit 1 .
  • the RFIC 3 also has a control section that controls the switch circuit, amplifier circuit, and the like of the high-frequency circuit 1 .
  • a part or all of the functions of the RFIC 3 as a control unit may be configured outside the RFIC 3 , for example, in the BBIC 4 or the high frequency circuit 1 .
  • the BBIC 4 is a baseband signal processing circuit that performs signal processing using an intermediate frequency band that is lower in frequency than the high frequency signal transmitted by the high frequency circuit 1 .
  • Signals processed by the BBIC 4 include, for example, image signals for image display and/or audio signals for calling through a speaker.
  • the antenna 2 and the BBIC 4 are not essential components in the communication device 5 according to the present embodiment.
  • the high frequency circuit 1 includes a power amplifier circuit 10, a directional coupler 31, a filter circuit 60, a control circuit 70, an antenna connection terminal 101, a high frequency input terminal 111, a control terminal 131 , and external output terminals 141 and 142 .
  • the antenna connection terminal 101 is connected to the antenna 2 outside the high frequency circuit 1 .
  • a high-frequency input terminal 111 is an input terminal for receiving a transmission signal of band A for FDD from the outside of the high-frequency circuit 1 .
  • the high frequency input terminal 111 is connected to the RFIC 3 outside the high frequency circuit 1 .
  • Band A is an example of the first band, and is constructed using a radio access technology (RAT: Radio Access Technology) predefined by standardization organizations (for example, 3GPP and IEEE (Institute of Electrical and Electronics Engineers), etc.) It is a frequency band for a communication system that uses Examples of communication systems that can be used include, but are not limited to, 5GNR (5th Generation New Radio) systems, LTE (Long Term Evolution) systems, and WLAN (Wireless Local Area Network) systems.
  • 5GNR Fifth Generation New Radio
  • LTE Long Term Evolution
  • WLAN Wireless Local Area Network
  • the control terminal 131 is connected to the RFIC 3 outside the high frequency circuit 1 .
  • the control terminal 131 is a terminal for transmitting control signals. That is, the control terminal 131 is a terminal for receiving a control signal from the outside of the high frequency circuit 1 and/or a terminal for supplying a control signal to the outside of the high frequency circuit 1 .
  • a control signal is a signal relating to control of an electronic circuit included in the high-frequency circuit 1 . Specifically, the control signal is a digital signal for controlling the power amplifier circuit 10 .
  • Each of the external output terminals 141 and 142 is a terminal for supplying a signal to the outside of the high frequency circuit 1 .
  • each of the external output terminals 141 and 142 is connected to the RFIC 3 .
  • the external output terminal 141 is connected to the coupling port 313 of the directional coupler 31
  • the external output terminal 142 is connected to the isolation port 314 of the directional coupler 31 .
  • the power amplifier circuit 10 is connected between the high frequency input terminal 111 and the filter circuit 60, and can amplify the transmission signal of band A using the power supply voltage supplied from the outside of the high frequency circuit 1.
  • the power amplifier circuit 10 corresponds to a first power class that allows a first maximum output power that is equal to or higher than the maximum output power allowed in power class 2 .
  • a power class is a classification of UE output power defined by maximum output power, etc.
  • a smaller power class value indicates that a higher power output is allowed.
  • the maximum allowed output power for power class 1 is 31 dBm
  • the maximum allowed output power for power class 1.5 is 29 dBm
  • the maximum allowed output power for power class 2 is 26 dBm
  • the maximum allowed output power for power class 2 is 26 dBm.
  • 3 is 23 dBm.
  • the first power class is a power class that allows a maximum output power of 26 dBm or more that is allowed in power class 2. Therefore, in 5GNR FR1 (Frequency Range 1), the first power class is power class 1 that allows a maximum output power of 31 dBm, power class 1.5 that allows a maximum output power of 29 dBm, and a maximum output power of 26 dBm. Any of the power classes 2 and 2 can be used.
  • the maximum output power of the UE is defined as the output power at the antenna end of the UE.
  • the measurement of the maximum output power of the UE is done, for example, in a manner defined by 3GPP or the like.
  • the maximum output power is measured by measuring the radiated power at antenna 2 .
  • the power class to which the power amplifier circuit corresponds can be specified by the maximum output power of the power amplifier circuit.
  • the maximum output power of a power amplifier circuit corresponding to power class 2 is greater than 26 dBm.
  • the higher the maximum output power the larger the size of the power amplifier circuit. Therefore, by comparing the sizes of the two power amplifier circuits, it may be possible to make a relative comparison of the power classes supported by the two power amplifier circuits.
  • the power amplifier circuit 10 includes a power amplifier 11 .
  • the power amplifier 11 corresponds to the first power class. That is, the power amplifier 11 can amplify the transmission signal of band A to power higher than the first maximum output power allowed in the first power class.
  • the configuration of the power amplifier circuit 10 is not limited to this.
  • the power amplifier circuit 10 may be a multistage amplifier circuit.
  • the directional coupler 31 can extract part of the power propagating in a specific direction on the path between the filter circuit 60 and the antenna connection terminal 101 .
  • the directional coupler 31 is a bidirectional coupler, and extracts part of the forward propagating power (progressive wave) and part of the backward propagating power (reflected wave). can be done.
  • the directional coupler 31 has an input port 311 , an output port 312 , a coupled port 313 and an isolated port 314 .
  • the input port 311 is a port to which power (traveling wave) is applied, and is connected to the output end of the power amplifier circuit 10 via the filter circuit 60 .
  • the coupling port 313 is a port to which part of the power (traveling wave) applied to the input port 311 is coupled, and is connected to the control circuit 70 and the external output terminal 141 .
  • the output port 312 is a port that outputs the other part of the power (traveling wave) applied to the input port 311 and is connected to the antenna connection terminal 101 .
  • the isolation port 314 is a port to which part of the power (reflected wave) applied to the output port 312 is coupled, and is connected to the control circuit 70 and the external output terminal 142 .
  • the filter circuit 60 is an example of a first filter circuit and has a passband that includes the Band A uplink operating band.
  • Filter circuit 60 is connected between antenna connection terminal 101 and power amplifier circuit 10 .
  • the filter circuit 60 comprises a filter 61 having a passband that includes the Band A uplink operating band.
  • the filter 61 is connected between the antenna connection terminal 101 and the power amplifier circuit 10 . Specifically, one end of the filter 61 is connected to the output end of the power amplifier 11 , and the other end of the filter 61 is connected to the antenna connection terminal 101 via the directional coupler 31 .
  • Filter 61 corresponds to the first power class. That is, the filter 61 has power durability corresponding to the first power class. As a result, the filter circuit 60 can pass the band A transmission signal amplified by the power amplifier circuit 10 to an output power higher than the first maximum output power.
  • the filter 61 may be configured using, for example, a surface acoustic wave (SAW) filter, a bulk acoustic wave (BAW) filter, an LC resonance filter, or a dielectric filter, and further are not limited to these.
  • SAW surface acoustic wave
  • BAW bulk acoustic wave
  • LC resonance filter an LC resonance filter
  • dielectric filter a dielectric filter
  • the control circuit 70 is connected to the control terminal 131 and can control the power amplifier circuit 10 and the like. Specifically, the control circuit 70 receives a digital control signal from the RFIC 3 via the control terminal 131 and outputs the control signal to the power amplifier circuit 10 and the like.
  • control circuit 70 is connected to the coupling port 313 and the isolation port 314 of the directional coupler 31 .
  • the control circuit 70 is connected to the coupling port 313 via a branch path branched from the path connecting the coupling port 313 and the external output terminal 141, and is connected to the isolation port 314 and the external output terminal 142. is connected to the isolation port 314 via a branch path branched from.
  • the control circuit 70 may be directly connected to the directional coupler 31 without passing through the branch path.
  • the control circuit 70 limits the amplification of the high frequency signal by the power amplifier circuit 10 based on the signal (first signal) from the coupling port 313 and the signal (second signal) from the isolation port 314 .
  • the circuit configuration of the high-frequency circuit 1 in FIG. 1 is an example, and is not limited to this.
  • the high-frequency circuit 1 includes a switch connected between the antenna connection terminal 101 and the directional coupler 31 and/or a switch connected between the directional coupler 31 and the filter circuit 60. good too.
  • FIG. 2 is a functional configuration diagram of the control circuit 70 according to the first embodiment.
  • the control circuit 70 includes preamplifiers 701 a and 701 b, detectors 702 a and 702 b, a power calculator 703 , a comparator 704 and a controller 705 .
  • Preamplifiers 701a and 701b amplify the signal from the coupling port 313 and the signal from the isolation port 314, respectively. Thereby, the preamplifier 701a can amplify the signal corresponding to the traveling wave, and the preamplifier 701b can amplify the signal corresponding to the reflected wave.
  • Detectors 702a and 702b detect modulated signals from the signals amplified by preamplifiers 701a and 701b, respectively. As a result, the power value P3 of the signal from the coupling port 313 and the power value P4 of the signal from the isolation port 314 can be obtained.
  • a power calculator 703 calculates the power supply value Ps supplied to the directional coupler 31 . Specifically, power calculator 703 calculates the sum (P3+P4) of power value P3 of the signal from coupling port 313 and power value P4 from isolation port 314 as supply power value Ps. The power calculator 703 may calculate the weighted sum of the power values P3 and P4 as the supplied power value Ps. At this time, the weight of each of the power values P3 and P4 may be determined in advance empirically and/or experimentally. Note that 0 can also be used as the weight of the power value P3 or P4.
  • the comparator 704 compares the power supply value Ps calculated by the power calculator 703 with the threshold value Pth, and outputs the comparison result to the controller 705 .
  • the threshold value Pth the maximum power value allowed in the high-frequency circuit 1 can be used, and an empirically and/or experimentally predetermined value may be used.
  • the comparator 704 does not necessarily have to compare the power supply value Ps with the threshold value Pth.
  • the comparator 704 may compare only one of the power value P3 of the signal from the coupling port 313 and the power value P4 of the signal from the isolation port 314 with the threshold value Pth. In this case, the power calculator 703 does not need to calculate the supplied power value Ps.
  • the controller 705 limits amplification of the high frequency signal by the power amplifier circuit 10 based on the comparison result. Specifically, when the power supply value Ps is greater than or equal to the threshold value Pth, the controller 705 limits amplification of the high-frequency signal by the power amplifier circuit 10 . On the other hand, when the power supply value Ps is less than the threshold value Pth, the controller 705 does not limit amplification of the high frequency signal by the power amplifier circuit 10 .
  • a bias current supplied to the power amplifier circuit 10 can be used to limit the amplification of the high-frequency signal by the power amplifier circuit 10 .
  • the controller 705 reduces the bias current based on the control signal from the RFIC 3 when the power supply value Ps is greater than or equal to the threshold value Pth.
  • an attenuator for reducing the bias current can be used.
  • a method for reducing the bias current is not particularly limited.
  • the power supply voltage supplied to the power amplifier circuit 10 may be used to limit the amplification of the high-frequency signal by the power amplifier circuit 10 .
  • the controller 705 may stop supplying the power supply voltage when the power supply value Ps is greater than or equal to the threshold value Pth.
  • FIG. 3 is a flow chart showing processing of the control circuit 70 according to the first embodiment.
  • the preamplifier 701a and the detector 702a acquire the power value P3 of the signal from the coupling port 313 (S101). Furthermore, the preamplifier 701b and the detector 702b acquire the power value P4 of the signal from the coupling port 313 (S102).
  • the power calculator 703 calculates the power supply value Ps (S103). For example, power calculator 703 calculates the sum of power values P3 and P4 as supply power value Ps.
  • the comparator 704 compares the calculated power supply value Ps with the threshold value Pth (S104). Specifically, comparator 704 determines whether power supply value Ps is greater than or equal to threshold value Pth.
  • the controller 705 limits the amplification of the high frequency signal in the power amplifier circuit 10 (S105), and ends the process.
  • step S105 is skipped.
  • steps S101 and S102 may be performed at the same time or their order may be changed.
  • the high-frequency circuit 1 includes the power amplifier circuit 10 corresponding to the first power class that allows the first maximum output power that is equal to or higher than the maximum output power allowed in the power class 2, and the power amplifier circuit 10 a filter circuit 60 connected to the output of the circuit 10 and having a passband including the band A uplink operating band for frequency division duplexing; a directional coupler 31; and a control circuit 70 for controlling the power amplifier circuit 10;
  • the directional coupler 31 includes an input port 311 connected to the output end of the power amplifier circuit 10 via the filter circuit 60, an output port 312 connected to the antenna connection terminal 101, a control circuit 70 and and a coupling port 313 connected to the external connection terminal 141
  • the control circuit 70 limits amplification of the high-frequency signal by the power amplifier circuit 10 based on the first signal from the coupling port 313 .
  • the amplification of the power amplifier circuit 10 is limited based on the signal corresponding to the traveling wave, and the limitation is performed by the control circuit 70. Since the control circuit 70 is included in the high frequency circuit 1, quicker feedback control is possible. For example, when a high-frequency signal with an output power exceeding the maximum output power allowed by the high-frequency circuit 1 is output, the amplification of the power amplifier circuit 10 can be quickly limited, and the module will not be damaged by the high-power signal. can be suppressed. In particular, in the FDD band, there is no switching between transmission and reception, and high-frequency signals are continuously transmitted. Furthermore, the directional coupler 31 connected to the external connection terminal 141 for feedback control by the RFIC 3 or the like can be used for feedback control by the control circuit 70 . Therefore, an increase in the number of directional couplers included in the high frequency circuit 1 can be suppressed.
  • control circuit 70 may limit the amplification of the high-frequency signal by the power amplifier circuit 10 by stopping the supply of the power supply voltage to the power amplifier circuit 10. .
  • control circuit 70 may limit the amplification of the high-frequency signal by the power amplifier circuit 10 by reducing the bias current of the power amplifier circuit 10 .
  • the control circuit 70 limits the amplification of the high-frequency signal by the power amplifier circuit 10 when the power value of the first signal from the coupling port 313 is equal to or greater than the threshold.
  • the amplification of the high frequency signal by the power amplifier circuit 10 may not be restricted.
  • the amplification of the power amplifier circuit 10 can be limited, and when a high frequency signal with an output power exceeding the maximum output power allowed by the high frequency circuit 1 is output, , the amplification of the power amplifier circuit 10 can be limited quickly.
  • the directional coupler 31 may further include an isolation port 314 connected to the control circuit 70 , and the control circuit 70 connects the coupling port 313 to Amplification of the high frequency signal by the power amplifier circuit 10 may be limited based on the first signal from the isolation port 314 and the second signal from the isolation port 314 .
  • the amplification of the power amplifier circuit 10 is limited based on not only the traveling wave but also the reflected wave, so feedback control based on the power supplied to the directional coupler 31 is possible. Therefore, it is possible to more accurately reflect the power of the high-frequency signal passing through the components on the transmission path (for example, the filter circuit 60, etc.) in the control, and to more effectively suppress damage to the module due to high-power signals. .
  • the control circuit 70 determines that the sum of the power value of the first signal from the coupling port 313 and the power value of the second signal from the isolation port 314 is equal to or greater than the threshold.
  • the amplification of the high frequency signal by the power amplifier circuit 10 may be restricted, and when the sum of the power value of the first signal and the power value of the second signal is less than the threshold, the power amplifier circuit 10 may limit the amplification of the high frequency signal. Amplification need not be limited.
  • the amplification of the power amplifier circuit 10 can be limited, and the components (for example, the filter circuit 60) on the transmission path allow When a high-frequency signal with power exceeding the maximum output power is output, the amplification of the power amplifier circuit 10 can be quickly limited.
  • the communication device 5 includes an RFIC 3 that processes high frequency signals, and a high frequency circuit 1 that transmits high frequency signals between the RFIC 3 and the antenna 2 .
  • the effect of the high-frequency circuit 1 can be realized in the communication device 5.
  • Embodiment 2 Next, Embodiment 2 will be described.
  • the present embodiment is mainly different from the first embodiment in that connection and disconnection between the directional coupler 31 and the control circuit 70 can be switched.
  • the present embodiment will be described below with reference to FIG. 4, focusing on the differences from the first embodiment.
  • FIG. 4 is a circuit configuration diagram of a high frequency circuit 1A and a communication device 5A according to this embodiment. Note that the communication device 5A is the same as the communication device 5 according to the first embodiment except that the high frequency circuit 1A is provided instead of the high frequency circuit 1, so the description is omitted.
  • the high frequency circuit 1A includes a power amplifier circuit 10, a directional coupler 31, switches 32 and 33, a filter circuit 60, a control circuit 70, an antenna connection terminal 101, a high frequency input terminal 111, and a control terminal 131. , and external output terminals 141 and 142 .
  • the switch 32 is an example of a first switch and is connected between the coupling port 313 of the directional coupler 31 and the control circuit 70 .
  • Switch 32 has terminals 321 and 322 .
  • Terminal 321 is connected to coupling port 313 .
  • Terminal 322 is connected to control circuit 70 .
  • the switch 32 can switch connection and disconnection of the terminals 321 and 322 based on a control signal from the RFIC 3, for example. That is, the switch 32 can switch connection and disconnection of the coupling port 313 and the control circuit 70 .
  • the switch 32 connects the coupling port 313 to the control circuit 70 when the first power class is applied to the transmission of band A signals, and connects the coupling port 313 to the control circuit 70 when the second power class is applied to the transmission of the band A signals.
  • coupling port 313 is not connected to control circuit 70 .
  • the switch 32 is configured by, for example, an SPST (Single-Pole Single-Throw) type switch circuit.
  • the second power class is a power class that allows a second maximum output power that is lower than the first maximum output power that is allowed in the first power class. For example, if power class 2, which allows a maximum output power of 26 dBm, is used as the first power class, power class 3, which allows a maximum output power of 23 dBm, can be used as the second power class.
  • the switch 33 is an example of a second switch and is connected between the isolation port 314 of the directional coupler 31 and the control circuit 70.
  • the switch 33 has terminals 331 and 332 .
  • Terminal 331 is connected to isolation port 314 .
  • Terminal 332 is connected to control circuit 70 .
  • the switch 33 can switch connection and disconnection of the terminals 331 and 332 based on a control signal from the RFIC 3, for example. That is, the switch 33 can switch connection and disconnection of the isolation port 314 and the control circuit 70 .
  • the switch 33 connects the isolation port 314 to the control circuit 70 when the first power class is applied to transmission of band A signals, and the second power class is applied to transmission of band A signals. , the isolation port 314 is not connected to the control circuit 70 .
  • the switch 33 is configured by, for example, an SPST type switch circuit.
  • the high-frequency circuit 1A may further include the switch 32 connected between the coupling port 313 and the control circuit 70.
  • the switch 32 is used for transmitting band A signals.
  • the coupling port 313 may be connected to the control circuit 70 when a first power class is applied to the second power class allowing a second maximum output power lower than the first maximum output power for the transmission of signals in band A.
  • the coupling port 313 may not be connected to the control circuit 70 when the power class is applied.
  • the control circuit 70 when the second power class is applied to transmission of band A signals, the control circuit 70 is not connected to the coupling port 313 . Therefore, the extraction of a portion of the signal from the coupling port 313 to the control circuit 70 can be discontinued when the module is unlikely to be damaged by a high power signal.
  • the power of the signal from the coupling port 313 is also reduced. Therefore, by interrupting the extraction of the signal to the control circuit 70, the signal is output to the RFIC 3 or the like via the external output terminal 141. It is possible to suppress the decrease in the signal level caused by the
  • the high-frequency circuit 1A may further include a switch 33 connected between the isolation port 314 and the control circuit 70.
  • the switch 33 is used for transmitting band A signals.
  • Isolation port 314 may be connected to control circuit 70 when a first power class is applied and a second power class permitting a second maximum output power lower than the first maximum output power for transmission of band A signals.
  • the isolation port 314 may not be connected to the control circuit 70 when the power class is applied.
  • the control circuit 70 is not connected to the isolation port 314 when the second power class is applied to transmission of band A signals. Therefore, when the possibility of module damage due to high power signals is low, extraction of a portion of the signal from the isolation port 314 to the control circuit 70 can be discontinued. When the second power class is applied, the power of the signal from the isolation port 314 is also reduced. Therefore, by interrupting the extraction of the signal to the control circuit 70, the signal is output to the RFIC 3 or the like via the external output terminal 142. It is possible to suppress a decrease in the signal level that is received.
  • Embodiment 3 Next, Embodiment 3 will be described.
  • This embodiment mainly differs from the above-described first embodiment in that in addition to band A for FDD, band B for time division duplex (TDD) is also supported.
  • the present embodiment will be described below with reference to FIG. 5, focusing on the differences from the first embodiment.
  • FIG. 5 is a circuit configuration diagram of a high frequency circuit 1B and a communication device 5B according to this embodiment. Note that the communication device 5B is the same as the communication device 5 according to the first embodiment except that the high-frequency circuit 1B is provided instead of the high-frequency circuit 1, so the description is omitted.
  • the high frequency circuit 1B includes a power amplifier circuit 10B, a directional coupler 31, switches 51 to 54, filter circuits 601 and 602, a control circuit 70, an antenna connection terminal 101, a high frequency input terminal 111, and a high frequency output.
  • a terminal 121 , a control terminal 131 , and external output terminals 141 and 142 are provided.
  • a high-frequency input terminal 111 is an input terminal for receiving a transmission signal of band A for FDD and a transmission signal of band B for TDD from the outside of the high-frequency circuit 1B.
  • the high frequency input terminal 111 is connected to the RFIC 3 outside the high frequency circuit 1B.
  • the high-frequency output terminal 121 is an output terminal for supplying a received signal of band A for FDD and a received signal of band B for TDD to the outside of the high-frequency circuit 1B.
  • the high frequency output terminal 121 is connected to the RFIC 3 outside the high frequency circuit 1B.
  • the power amplifier circuit 10B is connected between the high frequency input terminal 111 and the filter circuits 601 and 602, and can amplify the transmission signals of the bands A and B using the power supply voltage supplied from the outside of the high frequency circuit 1B. .
  • the power amplifier circuit 10B corresponds to a first power class that allows a first maximum output power that is equal to or higher than the maximum output power allowed in power class 2 .
  • the power amplifier circuit 10B includes a power amplifier 11B.
  • the power amplifier 11B corresponds to the first power class. That is, the power amplifier 11B can amplify the transmission signals of the bands A and B to power higher than the first maximum output power allowed in the first power class.
  • the low noise amplifier 21 is connected between the filter circuits 601 and 602 and the high frequency output terminal 121, and can amplify the received signals of the bands A and B using the power supply voltage supplied from the outside of the high frequency circuit 1B. .
  • the filter circuit 601 is an example of a first filter circuit, and can pass transmission signals and reception signals of band A for FDD.
  • the filter circuit 601 has filters 61 and 62 .
  • the filter 61 has a passband including the uplink operating band of band A, and is connected between the antenna connection terminal 101 and the power amplifier circuit 10B. Specifically, one end of the filter 61 is connected via the switch 52 to the output terminal of the power amplifier 11B, and the other end of the filter 61 is connected via the switch 51 to the antenna connection terminal 101 .
  • Filter 61 corresponds to the first power class. That is, the filter 61 has power durability corresponding to the first power class.
  • the filter circuit 601 can pass the band A transmission signal that has been amplified to an output power higher than the first maximum output power by the power amplifier circuit 10B.
  • the filter 62 has a passband that includes the downlink operation band of band A and is connected between the antenna connection terminal 101 and the low noise amplifier 21 . Specifically, one end of filter 62 is connected to antenna connection terminal 101 via switch 51 , and the other end of filter 62 is connected to the input terminal of low noise amplifier 21 via switch 54 .
  • the filter circuit 602 is an example of a second filter circuit, and can pass the transmission signal and reception signal of band B for TDD.
  • the filter circuit 602 has a filter 63 .
  • the filter 63 has a passband including band B, and is connected between the antenna connection terminal 101 and the power amplifier circuit 10B and the low noise amplifier 21. Specifically, one end of the filter 63 is connected to the antenna connection terminal 101 via the switch 51, the other end of the filter 63 is connected to the output terminal of the power amplifier 11B via the switches 53 and 52, and the switch 53 and 54 to the input end of the low noise amplifier 21 .
  • Filter 63 corresponds to the first power class. That is, the filter 63 has power durability corresponding to the first power class.
  • the filter circuit 602 can pass the transmission signal of band B that has been amplified to an output power higher than the first maximum output power by the power amplifier circuit 10B.
  • Band B is an example of a second band, and is a frequency band for a communication system built using a RAT predefined by a standardization organization or the like.
  • the switch 51 is connected between the antenna connection terminal 101 and the filter circuits 601 and 602 .
  • the switch 51 has terminals 511-513.
  • Terminal 511 is connected to antenna connection terminal 101 via directional coupler 31 .
  • Terminal 512 is connected to filter circuit 601 .
  • Terminal 513 is connected to filter circuit 602 .
  • the switch 51 can connect the terminal 511 to either of the terminals 512 and 513 based on a control signal from the RFIC 3, for example. That is, the switch 51 can switch the connection of the antenna connection terminal 101 between the filter circuits 601 and 602 .
  • the switch 51 is configured by, for example, an SPDT (Single-Pole Double-Throw) type switch circuit.
  • the switch 52 is connected between the power amplifier circuit 10B and the filters 61 and 63.
  • the switch 52 has terminals 521-523.
  • Terminal 521 is connected to power amplifier circuit 10B.
  • Terminal 522 is connected to filter 61 .
  • Terminal 523 is connected to filter 63 via switch 53 .
  • the switch 52 can connect the terminal 521 to either of the terminals 522 and 523 based on a control signal from the RFIC 3, for example. That is, the switch 52 can switch the connection of the power amplifier circuit 10B between the filters 61 and 63.
  • FIG. The switch 52 is composed of, for example, an SPDT type switch circuit.
  • the switch 53 is connected between the filter 63 and the power amplifier circuit 10B and the low noise amplifier 21.
  • the switch 53 has terminals 531-533.
  • Terminal 531 is connected to filter 63 .
  • Terminal 532 is connected via switch 52 to the output terminal of power amplifier 11B. Specifically, terminal 532 is connected to terminal 523 of switch 52 .
  • Terminal 533 is connected to the input terminal of low noise amplifier 21 via switch 54 . Specifically, terminal 533 is connected to terminal 543 of switch 54 .
  • the switch 53 can connect the terminal 531 to either of the terminals 532 and 533 based on a control signal from the RFIC 3, for example. That is, the switch 53 can switch the connection of the filter 63 between the power amplifier 11B and the low noise amplifier 21.
  • FIG. The switch 53 is composed of, for example, an SPDT type switch circuit.
  • a switch 54 is connected between the low noise amplifier 21 and the filters 62 and 63 .
  • the switch 54 has terminals 541-543. Terminal 541 is connected to the input terminal of low noise amplifier 21 . Terminal 542 is connected to filter 62 . Terminal 543 is connected to filter 63 via switch 53 .
  • the switch 54 can connect the terminal 541 to either of the terminals 542 and 543 based on a control signal from the RFIC 3, for example. That is, the switch 54 can switch the connection of the low noise amplifier 21 between the filters 62 and 63 .
  • the switch 54 is composed of, for example, an SPDT type switch circuit.
  • circuit configurations of the high-frequency circuit 1B and the communication device 5B in FIG. 5 are merely examples, and are not limited thereto.
  • the low noise amplifier 21 is shared by the bands A and B in FIG. In this case, one of the two low noise amplifiers should be connected to the filter 62 and the other of the two low noise amplifiers should be connected to the filter 63 .
  • the antenna 2 is shared by the bands A and B, but the communication device 5B may have two antennas for the bands A and B separately.
  • the high frequency circuit 1B further includes the filter circuit 602 connected to the output terminal of the power amplifier circuit 10B and having a passband including the band B for time division duplexing.
  • the band A for FDD not only the band A for FDD but also the band B for TDD can achieve the same effect as the high-frequency circuit 1 according to the first embodiment.
  • Embodiment 4 differs from the first embodiment mainly in that two power amplifiers connected in parallel are used in the power amplifier circuit.
  • the present embodiment will be described below with reference to FIG. 6, focusing on the differences from the first embodiment.
  • FIG. 6 is a circuit configuration diagram of a high frequency circuit 1C and a communication device 5C according to this embodiment. Note that the communication device 5C is the same as the communication device 5 according to the first embodiment except that the high frequency circuit 1C is provided instead of the high frequency circuit 1, so the description is omitted.
  • the high frequency circuit 1C includes a power amplifier circuit 10C, a directional coupler 31, transformers 41 and 42, a filter circuit 60C, a control circuit 70, an antenna connection terminal 101, a high frequency input terminal 111, and a control terminal 131. , and external output terminals 141 and 142 .
  • the power amplifier circuit 10C is connected between the high frequency input terminal 111 and the filter circuit 60C, and can amplify the transmission signal of band A using the power supply voltage supplied from the outside of the high frequency circuit 1C.
  • the power amplifier circuit 10C corresponds to a first power class that allows a first maximum output power that is equal to or higher than the maximum output power allowed in power class 2 .
  • the power amplifier circuit 10C includes power amplifiers 11a and 11b connected in parallel.
  • the power amplifier 11 a is an example of a first power amplifier, and can amplify one of the two signals distributed by the transformer 41 .
  • the power amplifier 11a alone does not have to support the first power class. That is, the power amplifier 11a may not be able to amplify the transmission signal of band A to power higher than the first maximum output power allowed in the first power class.
  • the power amplifier 11b is an example of a second power amplifier, and can amplify the other of the two signals distributed by the transformer 41.
  • the power amplifier 11b alone does not have to support the first power class. That is, the power amplifier 11b may not be able to amplify the transmission signal of band A to power higher than the first maximum output power allowed in the first power class.
  • the power amplifiers 11a and 11b do not have to individually correspond to the first power class.
  • the band A transmission signal can be amplified to a power higher than the first maximum output power allowed in the first power class.
  • the power amplifier circuit 10C may be a multistage amplifier circuit. At this time, the power amplifier circuit 10C may include two power amplifiers connected to the input terminals of the power amplifiers 11a and 11b, respectively, as power amplifiers corresponding to the input stage. Moreover, the power amplifier circuit 10C may include one power amplifier connected to the input terminals of the power amplifiers 11a and 11b as a power amplifier corresponding to the input stage. In this case, one power amplifier may be connected between the input terminal 411 of the transformer 41 and the high frequency input terminal 111 .
  • the transformer 41 functions as a distributor and can distribute one signal into two signals with phases opposite to each other.
  • Transformer 41 includes input terminal 411 , ground terminal 412 , output terminals 413 and 414 , primary coil 415 and secondary coil 416 .
  • the input terminal 411 constitutes one end of the primary coil 415 .
  • the input terminal 411 is connected to the high frequency input terminal 111 .
  • the ground terminal 412 constitutes the other end of the primary coil 415 .
  • a ground terminal 412 is connected to the ground.
  • the output terminal 413 constitutes one end of the secondary coil 416 .
  • the output terminal 413 is connected to the input terminal of the power amplifier 11a.
  • the output terminal 414 constitutes the other end of the secondary coil 416 .
  • the output terminal 414 is connected to the input terminal of the power amplifier 11b.
  • the transformer 42 is an example of a synthesizer, and can synthesize two signals with opposite phases to each other.
  • Transformer 42 includes input terminals 421 and 422 , output terminal 423 , ground terminal 424 , primary coil 425 and secondary coil 426 .
  • the input terminal 421 is an example of a first input terminal and constitutes one end of the primary coil 425 .
  • the input terminal 421 is connected to the output terminal of the power amplifier 11a through the filter 61a.
  • the input terminal 422 is an example of a second input terminal and constitutes the other end of the primary coil 425 .
  • the input terminal 422 is connected to the output terminal of the power amplifier 11b through the filter 61b.
  • the output terminal 423 constitutes one end of the secondary coil 426 .
  • the output terminal 423 is connected to the antenna connection terminal 101 .
  • the ground terminal 424 constitutes the other end of the secondary coil 426 .
  • Ground terminal 424 is connected to the ground.
  • the combiner is not limited to this.
  • a Wilkinson synthesizer may be used as the synthesizer.
  • the filter circuit 60C is an example of a first filter circuit and has a passband that includes the band A uplink operating band.
  • Filter circuit 60C is connected between antenna connection terminal 101 and power amplifier circuit 10C.
  • the filter circuit 60C comprises filters 61a and 61b each having a passband that includes the Band A uplink operating band.
  • the filter 61a is an example of a first filter and is connected between the output terminal of the power amplifier 11a and the input terminal 421 of the transformer 42. Specifically, one end of the filter 61 a is connected to the output end of the power amplifier 11 a, and the other end of the filter 61 a is connected to the input terminal 421 of the transformer 42 .
  • the filter 61b is an example of a second filter and is connected between the output terminal of the power amplifier 11b and the input terminal 422 of the transformer 42. Specifically, one end of the filter 61b is connected to the output end of the power amplifier 11b, and the other end of the filter 61b is connected to the input terminal 422 of the transformer .
  • the circuit configuration of the high-frequency circuit 1C in FIG. 6 is an example, and is not limited to this.
  • the transformer 41 may not be included in the high frequency circuit 1C.
  • two phase-adjusted band A signals may be supplied from the RFIC 3 to the high-frequency circuit 1C.
  • the high-frequency circuit 1C further includes a transformer 42.
  • the transformer 42 has input terminals 421 and 422 and an output terminal 423 connected to the input port 311 of the directional coupler 31.
  • power amplifier circuit 10C having power amplifiers 11a and 11b
  • filter circuit 60C having a passband that includes the uplink operating band of band A
  • filter circuit 60C having a passband that includes the uplink operating band of band A
  • filter 61a connected between the input terminal 421 of the transformer 42 and having a passband including the uplink operating band of band A, connected between the output of the power amplifier 11b and the input terminal 422 of the transformer 42.
  • a filter 61b is a filter 61b.
  • the two power amplifiers 11a and 11b connected in parallel can be used to amplify the transmission signal to a power higher than the first maximum output power. That is, the power amplifiers 11a and 11b can achieve the first maximum output power even if the transmission signal cannot be amplified to a power higher than the first maximum output power. Furthermore, since two filters 61a and 61b connected in parallel are used, the individual power durability of the filters 61a and 61b can be suppressed.
  • Embodiment 5 differs from the first embodiment mainly in that the high-frequency circuit includes two directional couplers.
  • the present embodiment will be described below with reference to FIG. 7, focusing on the differences from the first embodiment.
  • FIG. 7 is a circuit configuration diagram of a high-frequency circuit 1D and a communication device 5D according to this embodiment. Note that the communication device 5D is the same as the communication device 5 according to the first embodiment except that the high-frequency circuit 1D is provided instead of the high-frequency circuit 1, so the description is omitted.
  • the high frequency circuit 1D includes a power amplifier circuit 10, directional couplers 31 and 34, a filter circuit 60, a control circuit 70, an antenna connection terminal 101, a high frequency input terminal 111, a control terminal 131, and an external output terminal. 141 and 142.
  • the directional coupler 31 is an example of a first directional coupler, and the input port 311, the output port 312 and the coupling port 313 of the directional coupler 31 are respectively the first input port, It is an example of a first output port and a first coupling port.
  • a coupling port 313 and an isolation port 314 of the directional coupler 31 are not connected to the control circuit 70 .
  • the directional coupler 34 is an example of a second directional coupler, and can extract part of the power propagating in a specific direction on the path between the power amplifier circuit 10 and the filter circuit 60.
  • the directional coupler 34 is a bidirectional coupler, and extracts part of the forward propagating power (progressive wave) and part of the backward propagating power (reflected wave). be able to.
  • the directional coupler 34 has an input port 341 , an output port 342 , a coupling port 343 and an isolation port 344 .
  • the input port 341 is an example of a second input port, is a port to which power (traveling wave) is applied, and is connected to the output end of the power amplifier circuit 10 .
  • the coupling port 343 is an example of a second coupling port, is a port to which part of the power (traveling wave) applied to the input port 341 is coupled, and is connected to the control circuit 70 .
  • the output port 342 is an example of a second output port, and is a port that outputs the other part of the power (traveling wave) applied to the input port 341. Through the filter circuit 60 and the directional coupler 31, It is connected to the antenna connection terminal 101 .
  • the isolation port 344 is a port to which part of the power (reflected wave) applied to the output port 342 is coupled, and is connected to the control circuit 70 .
  • the high-frequency circuit 1D includes the power amplifier circuit 10 corresponding to the first power class that allows the first maximum output power that is equal to or higher than the maximum output power allowed in the power class 2, and the power amplifier circuit 10 a filter circuit 60 connected to the output of circuit 10 and having a passband including the band A uplink operating band for frequency division duplexing; directional couplers 31 and 34; and a control circuit for controlling power amplifier circuit 10.
  • the directional coupler 31 has an input port 311 connected to the output terminal of the power amplifier circuit 10 via the filter circuit 60, an output port 312 connected to the antenna connection terminal 101, and an external connection.
  • the directional coupler 34 has an input port 341 connected to the output terminal of the power amplifier circuit 10 and is connected to the antenna connection terminal 101 via the filter circuit 60. and a coupling port 343 connected to the control circuit 70 , and the control circuit 70 limits amplification of the high-frequency signal by the power amplifier circuit 10 based on the first signal from the coupling port 343 . do.
  • control circuit 70 can acquire a signal from the coupling port 343 of the directional coupler 34 connected between the power amplifier circuit 10 and the filter circuit 60 . Therefore, it is possible to more accurately grasp the power of the high-frequency signal input to the filter circuit 60, and to more effectively suppress damage to the filter circuit 60 due to a high-power signal.
  • control circuit 70 may limit the amplification of the high-frequency signal by the power amplifier circuit 10 by stopping the supply of the power supply voltage to the power amplifier circuit 10. .
  • control circuit 70 may limit the amplification of the high-frequency signal by the power amplifier circuit 10 by reducing the bias current of the power amplifier circuit 10.
  • the control circuit 70 limits the amplification of the high-frequency signal by the power amplifier circuit 10 when the power value of the first signal from the coupling port 343 is equal to or greater than the threshold.
  • the amplification of the high frequency signal by the power amplifier circuit 10 may not be restricted.
  • the amplification of the power amplifier circuit 10 can be limited, and when a high frequency signal with an output power exceeding the maximum output power allowed by the high frequency circuit 1D is output, , the amplification of the power amplifier circuit 10 can be limited quickly.
  • the directional coupler 34 may further include an isolation port 344 connected to the control circuit 70 , and the control circuit 70 receives the second signal from the coupling port 343 .
  • Amplification of high frequency signals by the power amplifier circuit 10 may be limited based on the 1 signal and the second signal from the isolation port 344 .
  • the amplification of the power amplifier circuit 10 is limited based on not only the traveling wave but also the reflected wave, so feedback control based on the power supplied to the directional coupler 34 is possible. Therefore, it is possible to more accurately reflect the power of the high-frequency signal passing through the components on the transmission path (for example, the filter circuit 60, etc.) in the control, and to more effectively suppress damage to the module due to high-power signals. .
  • the control circuit 70 determines that the sum of the power value of the first signal from the coupling port 343 and the power value of the second signal from the isolation port 344 is equal to or greater than the threshold.
  • the amplification of the high frequency signal by the power amplifier circuit 10 may be restricted, and when the sum of the power value of the first signal and the power value of the second signal is less than the threshold, the power amplifier circuit 10 may limit the amplification of the high frequency signal. Amplification need not be limited.
  • the amplification of the power amplifier circuit 10 can be limited, and the components (for example, the filter circuit 60) on the transmission path allow When a high-frequency signal with power exceeding the maximum output power is output, the amplification of the power amplifier circuit 10 can be quickly limited.
  • the communication device 5D includes an RFIC 3 that processes high frequency signals, and a high frequency circuit 1D that transmits high frequency signals between the RFIC 3 and the antenna 2.
  • the effect of the high-frequency circuit 1D can be realized in the communication device 5D.
  • the high-frequency circuit, communication device, and communication method according to the present invention have been described above based on the embodiments, the high-frequency circuit, communication device, and communication method according to the present invention are not limited to the above-described embodiments. do not have.
  • the present invention also includes various devices incorporating the high-frequency circuit.
  • an impedance matching circuit may be inserted between the power amplifier circuit 10 and the filter circuit 60 and/or between the filter circuit 60 and the antenna connection terminal 101 .
  • the first to fifth embodiments may be combined arbitrarily.
  • the switches 32 and 33 in the above second embodiment may be employed in any one of the high frequency circuits 1B to 1D according to the third to fifth embodiments.
  • the third and fifth embodiments may be combined. That is, the high-frequency circuit 1D according to the fifth embodiment may further include a filter circuit 602 connected to the output end of the power amplifier circuit 10 and having a passband including band B for time division duplexing.
  • directional coupler 34 may be connected between power amplifier circuit 10 and filter circuits 60 and 602 .
  • bidirectional couplers are used as the directional couplers 31 and 34 in each of the above embodiments, they are not limited to this.
  • unidirectional couplers may be used as directional couplers 31 and/or 34 .
  • the directional couplers 31 and/or 34 may not have isolation ports. That is, the isolation port 314 or 344 does not have to be connected to the control circuit 70 and the external output terminal 142 .
  • the control circuit 70 may not include the preamplifier 701b and the wave detector 702b, and the power calculator 703 may not calculate the supplied power value Ps.
  • the high-frequency circuit 1B and the communication device 5B correspond to the bands A and B
  • the number of bands that can correspond is not limited to two.
  • the high-frequency circuit and communication device may be configured to support band C in addition to bands A and B. Such a high frequency circuit and communication device will be described with reference to FIG.
  • FIG. 8 is a circuit configuration diagram of a high frequency circuit 1E and a communication device 5E according to another embodiment.
  • the communication device 5E is the same as the communication device 5B according to the third embodiment, except that the communication device 5E further includes an antenna 2E and a high-frequency circuit 1E instead of the high-frequency circuit 1B, so description thereof will be omitted.
  • the high frequency circuit 1E includes a power amplifier circuit 10B, a power amplifier 12, directional couplers 31 and 35, switches 51E, 52, 53 and 54, filter circuits 601 and 602, a filter 64, and a control circuit 70. , antenna connection terminals 101 and 102, high frequency input terminals 111 and 112, a high frequency output terminal 121, a control terminal 131, and external output terminals 141-143.
  • the antenna connection terminal 102 is connected to the antenna 2E outside the high frequency circuit 1E.
  • the high frequency input terminal 112 is an input terminal for receiving a transmission signal of band C from the outside of the high frequency circuit 1E.
  • the high frequency input terminal 112 is connected to the RFIC 3 outside the high frequency circuit 1E.
  • the external output terminal 143 is a terminal for supplying a signal to the outside of the high frequency circuit 1E.
  • the external output terminal 143 is connected to the RFIC 3 outside the high frequency circuit 1E.
  • the external output terminal 143 is connected to the coupling port 353 of the directional coupler 35 inside the high frequency circuit 1E.
  • the power amplifier 12 is connected between the high frequency input terminal 112 and the filter 64, and can amplify the band C transmission signal.
  • the power amplifier 12 supports the second power class and does not need to support the first power class.
  • the directional coupler 35 can extract part of the power propagating in a specific direction on the path between the filter 64 and the antenna connection terminal 102 .
  • the directional coupler 35 is a unidirectional coupler, and can extract part of the forward propagating power (travelling wave).
  • a bidirectional coupler may be used as the directional coupler 35 .
  • the directional coupler 35 may not be included in the high frequency circuit 1E.
  • the directional coupler 35 has an input port 351 , an output port 352 and a coupling port 353 .
  • the input port 351 is a port to which power (traveling wave) is applied, and is connected to the output terminal of the power amplifier 12 via the filter 64 .
  • a coupling port 353 is a port to which a part of the power (traveling wave) applied to the input port 351 is coupled, and is connected to the external output terminal 143 but not connected to the control circuit 70 .
  • the output port 352 is a port that outputs the other part of the power (traveling wave) applied to the input port 351 and is connected to the antenna connection terminal 102 .
  • the switch 51E is connected between the antenna connection terminals 101 and 102, the filter circuits 601 and 602, and the filter 63.
  • the switch 51E has terminals 511-515.
  • Terminal 511 is connected to antenna connection terminal 101 via directional coupler 31 .
  • Terminal 512 is connected to filter circuit 601 .
  • Terminal 513 is connected to filter circuit 602 .
  • Terminal 514 is connected to antenna connection terminal 102 via directional coupler 35 .
  • Terminal 515 is connected to filter 64 .
  • the switch 51E can exclusively connect the terminal 511 to the terminals 512 and 513 based on a control signal from the RFIC 3, for example.
  • switch 51E can connect terminal 514 to terminal 515 exclusively.
  • the filter 64 is connected between the antenna connection terminal 102 and the power amplifier 12 . Specifically, one end of the filter 64 is connected to the output end of the power amplifier 12, and the other end of the filter 64 is connected to the antenna connection terminal 102 via the switch 51E and the directional coupler 35.
  • the filter 64 has a passband that includes the band C transmission band.
  • Band C is a frequency band for communication systems built using RATs predefined by standards bodies and the like.
  • Band C may be the frequency band for FDD, the frequency band for TDD, or the SUL (Supplementary Uplink) band.
  • the present invention can be widely used in communication equipment such as mobile phones as a high-frequency circuit arranged in the front end section.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transmitters (AREA)

Abstract

A high-frequency circuit (1) equipped with a power amplification circuit (10) which corresponds to a first power class which allows a first maximum output power that is equal to or greater than the maximum output power allowed by a power class 2, a filter circuit (60) which is connected to the output end of the power amplification circuit (10) and has a passband that includes the uplink operation band of a band A for frequency division duplexing, a directional coupler (31), and a control circuit (70) for controlling the power amplification circuit (10), wherein: the directional coupler (31) has an input port (311) connected to the output end of the power amplification circuit (10), an output port (312) connected to an antenna connection terminal (101), and a coupling port (313) connected to the control circuit (70) and the external connection terminal (141); and the control circuit (70) restricts amplification of the high-frequency signal via the power amplification circuit (10) on the basis of a first signal from the coupling port (313).

Description

高周波回路及び通信装置High frequency circuit and communication device
 本発明は、高周波回路及び通信装置に関する。 The present invention relates to high frequency circuits and communication devices.
 3GPP(登録商標)(3rd Generation Partnership Project)では、従来よりも高い最大出力パワーを許容するパワークラス(例えばパワークラス1、1.5、2等)の周波数分割複信(FDD:Frequency Division Duplex)用バンドへの適用が議論されている。 In 3GPP (registered trademark) (3rd Generation Partnership Project), frequency division duplex (FDD) bands for power classes that allow higher maximum output power than before (e.g. power classes 1, 1.5, 2, etc.) Its application to
米国特許出願公開第2015/0133067号明細書U.S. Patent Application Publication No. 2015/0133067
 しかしながら、従来よりも高い最大出力パワーを許容するパワークラスがFDD用バンドに適用されれば、高パワー信号によってモジュールが破損する可能性がある。 However, if a power class that allows a higher maximum output power than before is applied to the FDD band, the module may be damaged by high power signals.
 そこで、本発明は、高パワー信号によってモジュールが破損することを抑制することができる高周波回路及び通信装置を提供する。 Therefore, the present invention provides a high-frequency circuit and a communication device that can suppress module damage due to high-power signals.
 本発明の一態様に係る高周波回路は、パワークラス2で許容される最大出力パワー以上である第1最大出力パワーを許容する第1パワークラスに対応する電力増幅回路と、電力増幅回路の出力端に接続され、周波数分割複信用の第1バンドのアップリンク動作バンドを含む通過帯域を有する第1フィルタ回路と、方向性結合器と、電力増幅回路を制御する制御回路と、を備え、方向性結合器は、第1フィルタ回路を介して電力増幅回路の出力端に接続される入力ポートと、アンテナ接続端子に接続される出力ポートと、制御回路及び外部接続端子に接続される結合ポートと、を有し、制御回路は、結合ポートからの第1信号に基づいて電力増幅回路による高周波信号の増幅を制限する。 A high-frequency circuit according to an aspect of the present invention includes: a power amplifier circuit corresponding to a first power class that allows a first maximum output power that is equal to or higher than the maximum output power allowed in power class 2; a first filter circuit having a passband including an uplink operating band of a first band for frequency division duplexing; a directional coupler; and a control circuit for controlling the power amplifier circuit; has an input port connected to the output terminal of the power amplifier circuit via the first filter circuit, an output port connected to the antenna connection terminal, and a coupling port connected to the control circuit and the external connection terminal. The control circuit limits amplification of the high frequency signal by the power amplifier circuit based on the first signal from the coupling port.
 本発明の一態様に係る高周波回路は、パワークラス2で許容される最大出力パワー以上である第1最大出力パワーを許容する第1パワークラスに対応する電力増幅回路と、電力増幅回路の出力端に接続され、周波数分割複信用の第1バンドのアップリンク動作バンドを含む通過帯域を有する第1フィルタ回路と、第1方向性結合器及び第2方向性結合器と、電力増幅回路を制御する制御回路と、を備え、第1方向性結合器は、第1フィルタ回路を介して電力増幅回路の出力端に接続される第1入力ポートと、アンテナ接続端子に接続される第1出力ポートと、外部接続端子に接続される第1結合ポートと、を有し、第2方向性結合器は、電力増幅回路の出力端に接続される第2入力ポートと、第1フィルタ回路を介してアンテナ接続端子に接続される第2出力ポートと、制御回路に接続される第2結合ポートと、を有し、制御回路は、第2結合ポートからの第1信号に基づいて電力増幅回路による高周波信号の増幅を制限する。 A high-frequency circuit according to an aspect of the present invention includes: a power amplifier circuit corresponding to a first power class that allows a first maximum output power that is equal to or higher than the maximum output power allowed in power class 2; a first filter circuit having a passband including a first band uplink operating band for frequency division duplexing, a first directional coupler and a second directional coupler, and a control circuit for controlling a power amplifier circuit. and, the first directional coupler has a first input port connected to the output terminal of the power amplifier circuit via the first filter circuit, a first output port connected to the antenna connection terminal, and an external a first coupling port connected to the connection terminal; the second directional coupler has a second input port connected to the output end of the power amplifier circuit; and the antenna connection terminal via the first filter circuit. and a second coupling port coupled to a control circuit, wherein the control circuit amplifies a high frequency signal by a power amplifier circuit based on a first signal from the second coupling port. limit.
 本発明の一態様に係る高周波回路によれば、高パワー信号によってモジュールが破損することを抑制することができる。 According to the high-frequency circuit according to one aspect of the present invention, it is possible to suppress the module from being damaged by a high-power signal.
図1は、実施の形態1に係る高周波回路及び通信装置の回路構成図である。FIG. 1 is a circuit configuration diagram of a high-frequency circuit and a communication device according to Embodiment 1. FIG. 図2は、実施の形態1に係る制御回路の機能構成図である。FIG. 2 is a functional configuration diagram of the control circuit according to the first embodiment. 図3は、実施の形態1に係る制御回路の処理を示すフローチャートである。FIG. 3 is a flow chart showing processing of the control circuit according to the first embodiment. 図4は、実施の形態2に係る高周波回路及び通信装置の回路構成図である。FIG. 4 is a circuit configuration diagram of a high-frequency circuit and a communication device according to Embodiment 2. FIG. 図5は、実施の形態3に係る高周波回路及び通信装置の回路構成図である。FIG. 5 is a circuit configuration diagram of a high-frequency circuit and a communication device according to the third embodiment. 図6は、実施の形態4に係る高周波回路及び通信装置の回路構成図である。FIG. 6 is a circuit configuration diagram of a high-frequency circuit and a communication device according to the fourth embodiment. 図7は、実施の形態5に係る高周波回路及び通信装置の回路構成図である。FIG. 7 is a circuit configuration diagram of a high-frequency circuit and a communication device according to the fifth embodiment. 図8は、他の実施の形態に係る高周波回路及び通信装置の回路構成図である。FIG. 8 is a circuit configuration diagram of a high frequency circuit and a communication device according to another embodiment.
 以下、本発明の実施の形態について、図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置及び接続形態などは、一例であり、本発明を限定する主旨ではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. It should be noted that the embodiments described below are all comprehensive or specific examples. Numerical values, shapes, materials, components, arrangement of components, connection forms, and the like shown in the following embodiments are examples, and are not intended to limit the present invention.
 なお、各図は、本発明を示すために適宜強調、省略、又は比率の調整を行った模式図であり、必ずしも厳密に図示されたものではなく、実際の形状、位置関係、及び比率とは異なる場合がある。各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡素化される場合がある。 In addition, each drawing is a schematic diagram that has been appropriately emphasized, omitted, or adjusted in proportion to show the present invention, and is not necessarily strictly illustrated, and the actual shape, positional relationship, and ratio may differ. In each figure, substantially the same configurations are denoted by the same reference numerals, and redundant description may be omitted or simplified.
 本発明の回路構成において、「接続される」とは、接続端子及び/又は配線導体で直接接続される場合だけでなく、他の回路素子を介して電気的に接続される場合も含む。「直接接続される」とは、他の回路素子を介さずに接続端子及び/又は配線導体で直接接続されることを意味する。「A及びBの間に接続される」とは、A及びBの間でA及びBの両方に接続されることを意味し、A及びBを結ぶ経路に直列に接続されることに加えて、当該経路とグランドとの間に接続されることを含む。 In the circuit configuration of the present invention, "connected" includes not only direct connection with connection terminals and/or wiring conductors, but also electrical connection via other circuit elements. "Directly connected" means directly connected by connection terminals and/or wiring conductors without intervening other circuit elements. "Connected between A and B" means connected to both A and B between A and B, in addition to being connected in series with the path connecting A and B , is connected between the path and ground.
 (実施の形態1)
 [1.1 高周波回路1及び通信装置5の回路構成]
 実施の形態1に係る高周波回路1及びそれを備える通信装置5の回路構成について、図1を参照しながら説明する。図1は、本実施の形態に係る高周波回路1及び通信装置5の回路構成図である。
(Embodiment 1)
[1.1 Circuit configuration of high-frequency circuit 1 and communication device 5]
A circuit configuration of a high-frequency circuit 1 according to Embodiment 1 and a communication device 5 including the same will be described with reference to FIG. FIG. 1 is a circuit configuration diagram of a high-frequency circuit 1 and a communication device 5 according to this embodiment.
 [1.1.1 通信装置5の回路構成]
 まず、通信装置5について説明する。通信装置5は、いわゆるUEに相当し、典型的には、携帯電話、スマートフォン、タブレットコンピュータ等である。このような通信装置5は、高周波回路1と、アンテナ2と、RFIC(Radio Frequency Integrated Circuit)3と、BBIC(Baseband Integrated Circuit)4と、を備える。
[1.1.1 Circuit Configuration of Communication Device 5]
First, the communication device 5 will be described. The communication device 5 corresponds to a so-called UE, and is typically a mobile phone, smart phone, tablet computer, or the like. Such a communication device 5 includes a high frequency circuit 1 , an antenna 2 , an RFIC (Radio Frequency Integrated Circuit) 3 and a BBIC (Baseband Integrated Circuit) 4 .
 高周波回路1は、アンテナ2とRFIC3との間で高周波信号を伝送する。高周波回路1の内部構成については後述する。 The high frequency circuit 1 transmits high frequency signals between the antenna 2 and the RFIC 3 . The internal configuration of the high frequency circuit 1 will be described later.
 アンテナ2は、高周波回路1のアンテナ接続端子101に接続される。アンテナ2は、高周波回路1から高周波信号を受信して外部に出力する。 The antenna 2 is connected to the antenna connection terminal 101 of the high frequency circuit 1 . The antenna 2 receives a high frequency signal from the high frequency circuit 1 and outputs it to the outside.
 RFIC3は、高周波信号を処理する信号処理回路の一例である。具体的には、RFIC3は、BBIC4から入力された送信信号をアップコンバート等により信号処理し、当該信号処理して生成された高周波送信信号を、高周波回路1の送信経路に出力する。また、RFIC3は、高周波回路1が有するスイッチ回路及び増幅回路等を制御する制御部を有する。なお、RFIC3の制御部としての機能の一部又は全部は、RFIC3の外部に構成されてもよく、例えば、BBIC4又は高周波回路1に構成されてもよい。 The RFIC 3 is an example of a signal processing circuit that processes high frequency signals. Specifically, the RFIC 3 performs signal processing such as up-conversion on the transmission signal input from the BBIC 4 , and outputs the high-frequency transmission signal generated by the signal processing to the transmission path of the high-frequency circuit 1 . The RFIC 3 also has a control section that controls the switch circuit, amplifier circuit, and the like of the high-frequency circuit 1 . A part or all of the functions of the RFIC 3 as a control unit may be configured outside the RFIC 3 , for example, in the BBIC 4 or the high frequency circuit 1 .
 BBIC4は、高周波回路1が伝送する高周波信号よりも低周波の中間周波数帯域を用いて信号処理するベースバンド信号処理回路である。BBIC4で処理される信号としては、例えば、画像表示のための画像信号、及び/又は、スピーカを介した通話のために音声信号が用いられる。 The BBIC 4 is a baseband signal processing circuit that performs signal processing using an intermediate frequency band that is lower in frequency than the high frequency signal transmitted by the high frequency circuit 1 . Signals processed by the BBIC 4 include, for example, image signals for image display and/or audio signals for calling through a speaker.
 なお、本実施の形態に係る通信装置5において、アンテナ2とBBIC4とは、必須の構成要素ではない。 Note that the antenna 2 and the BBIC 4 are not essential components in the communication device 5 according to the present embodiment.
 [1.1.2 高周波回路1の回路構成]
 次に、高周波回路1について説明する。図1に示すように、高周波回路1は、電力増幅回路10と、方向性結合器31と、フィルタ回路60と、制御回路70と、アンテナ接続端子101と、高周波入力端子111と、制御端子131と、外部出力端子141及び142と、を備える。
[1.1.2 Circuit configuration of high-frequency circuit 1]
Next, the high frequency circuit 1 will be described. As shown in FIG. 1, the high frequency circuit 1 includes a power amplifier circuit 10, a directional coupler 31, a filter circuit 60, a control circuit 70, an antenna connection terminal 101, a high frequency input terminal 111, a control terminal 131 , and external output terminals 141 and 142 .
 アンテナ接続端子101は、高周波回路1の外部でアンテナ2に接続される。 The antenna connection terminal 101 is connected to the antenna 2 outside the high frequency circuit 1 .
 高周波入力端子111は、高周波回路1の外部から、FDD用のバンドAの送信信号を受けるための入力端子である。本実施の形態では、高周波入力端子111は、高周波回路1の外部でRFIC3に接続される。 A high-frequency input terminal 111 is an input terminal for receiving a transmission signal of band A for FDD from the outside of the high-frequency circuit 1 . In this embodiment, the high frequency input terminal 111 is connected to the RFIC 3 outside the high frequency circuit 1 .
 バンドAは、第1バンドの一例であり、標準化団体など(例えば3GPP及びIEEE(Institute of Electrical and Electronics Engineers)等)によって予め定義された無線アクセス技術(RAT:Radio Access Technology)を用いて構築される通信システムのための周波数バンドである。通信システムとしては、例えば5GNR(5th Generation New Radio)システム、LTE(Long Term Evolution)システム及びWLAN(Wireless Local Area Network)システム等を用いることができるが、これに限定されない。 Band A is an example of the first band, and is constructed using a radio access technology (RAT: Radio Access Technology) predefined by standardization organizations (for example, 3GPP and IEEE (Institute of Electrical and Electronics Engineers), etc.) It is a frequency band for a communication system that uses Examples of communication systems that can be used include, but are not limited to, 5GNR (5th Generation New Radio) systems, LTE (Long Term Evolution) systems, and WLAN (Wireless Local Area Network) systems.
 制御端子131は、高周波回路1の外部でRFIC3に接続される。制御端子131は、制御信号を伝送するための端子である。つまり、制御端子131は、高周波回路1の外部から制御信号を受けるための端子、及び/又は、高周波回路1の外部に制御信号を供給するための端子である。制御信号とは、高周波回路1に含まれる電子回路の制御に関する信号である。具体的には、制御信号は、電力増幅回路10を制御するためのデジタル信号である。 The control terminal 131 is connected to the RFIC 3 outside the high frequency circuit 1 . The control terminal 131 is a terminal for transmitting control signals. That is, the control terminal 131 is a terminal for receiving a control signal from the outside of the high frequency circuit 1 and/or a terminal for supplying a control signal to the outside of the high frequency circuit 1 . A control signal is a signal relating to control of an electronic circuit included in the high-frequency circuit 1 . Specifically, the control signal is a digital signal for controlling the power amplifier circuit 10 .
 外部出力端子141及び142の各々は、高周波回路1の外部に信号を供給するための端子である。高周波回路1の外部において、外部出力端子141及び142の各々はRFIC3に接続される。高周波回路1の内部において、外部出力端子141は方向性結合器31の結合ポート313に接続され、外部出力端子142は方向性結合器31のアイソレーションポート314に接続される。 Each of the external output terminals 141 and 142 is a terminal for supplying a signal to the outside of the high frequency circuit 1 . Outside the high frequency circuit 1 , each of the external output terminals 141 and 142 is connected to the RFIC 3 . Inside the high-frequency circuit 1 , the external output terminal 141 is connected to the coupling port 313 of the directional coupler 31 , and the external output terminal 142 is connected to the isolation port 314 of the directional coupler 31 .
 電力増幅回路10は、高周波入力端子111とフィルタ回路60との間に接続され、高周波回路1の外部から供給される電源電圧を用いてバンドAの送信信号を増幅することができる。電力増幅回路10は、パワークラス2で許容される最大出力パワー以上である第1最大出力パワーを許容する第1パワークラスに対応している。 The power amplifier circuit 10 is connected between the high frequency input terminal 111 and the filter circuit 60, and can amplify the transmission signal of band A using the power supply voltage supplied from the outside of the high frequency circuit 1. The power amplifier circuit 10 corresponds to a first power class that allows a first maximum output power that is equal to or higher than the maximum output power allowed in power class 2 .
 パワークラスとは、最大出力パワーなどで定義されるUEの出力パワーの分類であり、パワークラスの値が小さいほど高いパワーの出力を許容することを示す。例えば、3GPPでは、パワークラス1で許容される最大出力パワーは31dBmであり、パワークラス1.5で許容される最大出力パワーは29dBmであり、パワークラス2で許容される最大出力パワーは26dBmであり、パワークラス3で許容される最大出力パワーは23dBmである。 A power class is a classification of UE output power defined by maximum output power, etc. A smaller power class value indicates that a higher power output is allowed. For example, in 3GPP, the maximum allowed output power for power class 1 is 31 dBm, the maximum allowed output power for power class 1.5 is 29 dBm, the maximum allowed output power for power class 2 is 26 dBm, and the maximum allowed output power for power class 2 is 26 dBm. 3 is 23 dBm.
 第1パワークラスは、パワークラス2で許容される26dBm以上の最大出力パワーを許容するパワークラスである。したがって、5GNRのFR1(Frequency Range 1)では、第1パワークラスとして、31dBmの最大出力パワーを許容するパワークラス1と、29dBmの最大出力パワーを許容するパワークラス1.5と、26dBmの最大出力パワーを許容するパワークラス2とのうちのいずれかを用いることができる。 The first power class is a power class that allows a maximum output power of 26 dBm or more that is allowed in power class 2. Therefore, in 5GNR FR1 (Frequency Range 1), the first power class is power class 1 that allows a maximum output power of 31 dBm, power class 1.5 that allows a maximum output power of 29 dBm, and a maximum output power of 26 dBm. Any of the power classes 2 and 2 can be used.
 UEの最大出力パワーは、UEのアンテナ端における出力パワーで定義される。UEの最大出力パワーの測定は、例えば、3GPP等によって定義された方法で行われる。例えば、図1において、アンテナ2における放射パワーを測定することで最大出力パワーが測定される。なお、放射パワーの測定の代わりに、アンテナ2の近傍に端子を設けて、その端子に計測器(例えばスペクトルアナライザなど)を接続することで、アンテナ2の出力パワーを測定することもできる。  The maximum output power of the UE is defined as the output power at the antenna end of the UE. The measurement of the maximum output power of the UE is done, for example, in a manner defined by 3GPP or the like. For example, in FIG. 1 the maximum output power is measured by measuring the radiated power at antenna 2 . Instead of measuring the radiation power, it is also possible to measure the output power of the antenna 2 by providing a terminal near the antenna 2 and connecting a measuring instrument (such as a spectrum analyzer) to the terminal.
 また、電力増幅回路が対応するパワークラスは、電力増幅回路の最大出力パワーにより特定することができる。例えば、パワークラス2に対応する電力増幅回路の最大出力パワーは26dBmよりも大きい。一般的に、最大出力パワーが高いほど電力増幅回路のサイズが増大する。したがって、2つの電力増幅回路のサイズを比較することで、2つの電力増幅回路が対応するパワークラスの相対的な比較を行うことができる場合もある。 Also, the power class to which the power amplifier circuit corresponds can be specified by the maximum output power of the power amplifier circuit. For example, the maximum output power of a power amplifier circuit corresponding to power class 2 is greater than 26 dBm. Generally, the higher the maximum output power, the larger the size of the power amplifier circuit. Therefore, by comparing the sizes of the two power amplifier circuits, it may be possible to make a relative comparison of the power classes supported by the two power amplifier circuits.
 本実施の形態では、電力増幅回路10は、電力増幅器11を備える。電力増幅器11は、第1パワークラスに対応している。つまり、電力増幅器11は、第1パワークラスで許容される第1最大出力パワーより高いパワーまでバンドAの送信信号を増幅することができる。なお、電力増幅回路10の構成は、これに限定されない。例えば、電力増幅回路10は、多段構成の増幅回路であってもよい。 In this embodiment, the power amplifier circuit 10 includes a power amplifier 11 . The power amplifier 11 corresponds to the first power class. That is, the power amplifier 11 can amplify the transmission signal of band A to power higher than the first maximum output power allowed in the first power class. Note that the configuration of the power amplifier circuit 10 is not limited to this. For example, the power amplifier circuit 10 may be a multistage amplifier circuit.
 方向性結合器31は、フィルタ回路60とアンテナ接続端子101との間の経路上を特定の方向に伝搬する電力の一部を取り出すことができる。ここでは、方向性結合器31は、双方向性結合器であり、順方向に伝搬する電力(進行波)の一部と、逆方向に伝搬する電力(反射波)の一部とを取り出すことができる。 The directional coupler 31 can extract part of the power propagating in a specific direction on the path between the filter circuit 60 and the antenna connection terminal 101 . Here, the directional coupler 31 is a bidirectional coupler, and extracts part of the forward propagating power (progressive wave) and part of the backward propagating power (reflected wave). can be done.
 方向性結合器31は、入力ポート(input port)311と、出力ポート(output port)312と、結合ポート(coupled port)313と、アイソレーションポート(isolatedport)314と、を有する。入力ポート311は、電力(進行波)が印加されるポートであり、フィルタ回路60を介して電力増幅回路10の出力端に接続される。結合ポート313は、入力ポート311に印加された電力(進行波)の一部が結合されるポートであり、制御回路70及び外部出力端子141に接続される。出力ポート312は、入力ポート311に印加された電力(進行波)の他部が出力されるポートであり、アンテナ接続端子101に接続される。アイソレーションポート314は、出力ポート312に印加された電力(反射波)の一部が結合されるポートであり、制御回路70及び外部出力端子142に接続される。 The directional coupler 31 has an input port 311 , an output port 312 , a coupled port 313 and an isolated port 314 . The input port 311 is a port to which power (traveling wave) is applied, and is connected to the output end of the power amplifier circuit 10 via the filter circuit 60 . The coupling port 313 is a port to which part of the power (traveling wave) applied to the input port 311 is coupled, and is connected to the control circuit 70 and the external output terminal 141 . The output port 312 is a port that outputs the other part of the power (traveling wave) applied to the input port 311 and is connected to the antenna connection terminal 101 . The isolation port 314 is a port to which part of the power (reflected wave) applied to the output port 312 is coupled, and is connected to the control circuit 70 and the external output terminal 142 .
 フィルタ回路60は、第1フィルタ回路の一例であり、バンドAのアップリンク動作バンド(uplink operating band)を含む通過帯域を有する。フィルタ回路60は、アンテナ接続端子101と電力増幅回路10との間に接続される。本実施の形態では、フィルタ回路60は、バンドAのアップリンク動作バンドを含む通過帯域を有するフィルタ61を有する。 The filter circuit 60 is an example of a first filter circuit and has a passband that includes the Band A uplink operating band. Filter circuit 60 is connected between antenna connection terminal 101 and power amplifier circuit 10 . In this embodiment, the filter circuit 60 comprises a filter 61 having a passband that includes the Band A uplink operating band.
 フィルタ61は、アンテナ接続端子101と電力増幅回路10との間に接続される。具体的には、フィルタ61の一端は、電力増幅器11の出力端に接続され、フィルタ61の他端は、方向性結合器31を介してアンテナ接続端子101に接続される。フィルタ61は、第1パワークラスに対応している。つまり、フィルタ61は、第1パワークラスに対応する耐電力性を有する。これにより、フィルタ回路60は、電力増幅回路10によって第1最大出力パワーよりも高い出力パワーまで増幅されたバンドAの送信信号を通過させることができる。 The filter 61 is connected between the antenna connection terminal 101 and the power amplifier circuit 10 . Specifically, one end of the filter 61 is connected to the output end of the power amplifier 11 , and the other end of the filter 61 is connected to the antenna connection terminal 101 via the directional coupler 31 . Filter 61 corresponds to the first power class. That is, the filter 61 has power durability corresponding to the first power class. As a result, the filter circuit 60 can pass the band A transmission signal amplified by the power amplifier circuit 10 to an output power higher than the first maximum output power.
 フィルタ61は、例えば、弾性表面波(SAW:Surface Acoustic Wave)フィルタ、バルク弾性波(BAW:Bulk Acoustic Wave)フィルタ、LC共振フィルタ、及び誘電体フィルタのいずれを用いて構成されてもよく、さらには、これらには限定されない。 The filter 61 may be configured using, for example, a surface acoustic wave (SAW) filter, a bulk acoustic wave (BAW) filter, an LC resonance filter, or a dielectric filter, and further are not limited to these.
 制御回路70は、制御端子131に接続され、電力増幅回路10等を制御することができる。具体的には、制御回路70は、RFIC3から制御端子131を介してデジタル制御信号を受けて、電力増幅回路10等に制御信号を出力する。 The control circuit 70 is connected to the control terminal 131 and can control the power amplifier circuit 10 and the like. Specifically, the control circuit 70 receives a digital control signal from the RFIC 3 via the control terminal 131 and outputs the control signal to the power amplifier circuit 10 and the like.
 また、制御回路70は、方向性結合器31の結合ポート313及びアイソレーションポート314に接続される。具体的には、制御回路70は、結合ポート313及び外部出力端子141を結ぶ経路から分岐した分岐経路を介して結合ポート313に接続され、かつ、アイソレーションポート314及び外部出力端子142を結ぶ経路から分岐した分岐経路を介してアイソレーションポート314に接続される。なお、制御回路70は、分岐経路を介さずに、方向性結合器31に直接接続されてもよい。制御回路70は、結合ポート313からの信号(第1信号)及びアイソレーションポート314からの信号(第2信号)に基づいて電力増幅回路10による高周波信号の増幅を制限する。 Also, the control circuit 70 is connected to the coupling port 313 and the isolation port 314 of the directional coupler 31 . Specifically, the control circuit 70 is connected to the coupling port 313 via a branch path branched from the path connecting the coupling port 313 and the external output terminal 141, and is connected to the isolation port 314 and the external output terminal 142. is connected to the isolation port 314 via a branch path branched from. Note that the control circuit 70 may be directly connected to the directional coupler 31 without passing through the branch path. The control circuit 70 limits the amplification of the high frequency signal by the power amplifier circuit 10 based on the signal (first signal) from the coupling port 313 and the signal (second signal) from the isolation port 314 .
 なお、図1の高周波回路1の回路構成は、一例であり、これに限定されない。例えば、高周波回路1は、アンテナ接続端子101と方向性結合器31との間に接続されたスイッチ、及び/又は、方向性結合器31とフィルタ回路60との間に接続されたスイッチを備えてもよい。 Note that the circuit configuration of the high-frequency circuit 1 in FIG. 1 is an example, and is not limited to this. For example, the high-frequency circuit 1 includes a switch connected between the antenna connection terminal 101 and the directional coupler 31 and/or a switch connected between the directional coupler 31 and the filter circuit 60. good too.
 [1.2 制御回路70の機能構成]
 次に、制御回路70の機能構成について図2を参照しながら説明する。図2は、実施の形態1に係る制御回路70の機能構成図である。
[1.2 Functional Configuration of Control Circuit 70]
Next, the functional configuration of the control circuit 70 will be described with reference to FIG. FIG. 2 is a functional configuration diagram of the control circuit 70 according to the first embodiment.
 制御回路70は、プリアンプ701a及び701bと、検波器702a及び702bと、電力計算器703と、コンパレータ704と、コントローラ705と、を備える。 The control circuit 70 includes preamplifiers 701 a and 701 b, detectors 702 a and 702 b, a power calculator 703 , a comparator 704 and a controller 705 .
 プリアンプ701a及び701bは、結合ポート313からの信号及びアイソレーションポート314からの信号をそれぞれ増幅する。これにより、プリアンプ701aは、進行波に対応する信号を増幅することができ、プリアンプ701bは、反射波に対応する信号を増幅することができる。 Preamplifiers 701a and 701b amplify the signal from the coupling port 313 and the signal from the isolation port 314, respectively. Thereby, the preamplifier 701a can amplify the signal corresponding to the traveling wave, and the preamplifier 701b can amplify the signal corresponding to the reflected wave.
 検波器702a及び702bは、プリアンプ701a及び701bで増幅された信号から変調信号をそれぞれ検出する。これにより、結合ポート313からの信号の電力値P3及びアイソレーションポート314からの信号の電力値P4を取得することができる。 Detectors 702a and 702b detect modulated signals from the signals amplified by preamplifiers 701a and 701b, respectively. As a result, the power value P3 of the signal from the coupling port 313 and the power value P4 of the signal from the isolation port 314 can be obtained.
 電力計算器703は、方向性結合器31に供給された供給電力値Psを計算する。具体的には、電力計算器703は、結合ポート313からの信号の電力値P3とアイソレーションポート314からの電力値P4との和(P3+P4)を供給電力値Psとして計算する。なお、電力計算器703は、電力値P3及びP4の重み付け和を供給電力値Psとして計算してもよい。このとき、電力値P3及びP4の各々の重みは、経験的及び/又は実験的に予め定められればよい。なお、電力値P3又はP4の重みとして、0を用いることもできる。 A power calculator 703 calculates the power supply value Ps supplied to the directional coupler 31 . Specifically, power calculator 703 calculates the sum (P3+P4) of power value P3 of the signal from coupling port 313 and power value P4 from isolation port 314 as supply power value Ps. The power calculator 703 may calculate the weighted sum of the power values P3 and P4 as the supplied power value Ps. At this time, the weight of each of the power values P3 and P4 may be determined in advance empirically and/or experimentally. Note that 0 can also be used as the weight of the power value P3 or P4.
 コンパレータ704は、電力計算器703によって計算された供給電力値Psと閾値Pthとを比較し、比較結果をコントローラ705に出力する。閾値Pthとはしては、高周波回路1で許容される最大電力値を用いることができ、経験的及び/又は実験的に予め定められた値が用いられればよい。 The comparator 704 compares the power supply value Ps calculated by the power calculator 703 with the threshold value Pth, and outputs the comparison result to the controller 705 . As the threshold value Pth, the maximum power value allowed in the high-frequency circuit 1 can be used, and an empirically and/or experimentally predetermined value may be used.
 なお、コンパレータ704は、必ずしも供給電力値Psを閾値Pthと比較しなくてもよい。例えば、コンパレータ704は、結合ポート313からの信号の電力値P3及びアイソレーションポート314からの信号の電力値P4の一方のみを閾値Pthと比較してもよい。この場合、電力計算器703は、供給電力値Psを計算しなくてもよい。 Note that the comparator 704 does not necessarily have to compare the power supply value Ps with the threshold value Pth. For example, the comparator 704 may compare only one of the power value P3 of the signal from the coupling port 313 and the power value P4 of the signal from the isolation port 314 with the threshold value Pth. In this case, the power calculator 703 does not need to calculate the supplied power value Ps.
 コントローラ705は、比較結果に基づいて、電力増幅回路10による高周波信号の増幅を制限する。具体的には、供給電力値Psが閾値Pth以上である場合に、コントローラ705は、電力増幅回路10による高周波信号の増幅を制限する。一方、供給電力値Psが閾値Pth未満である場合には、コントローラ705は、電力増幅回路10による高周波信号の増幅を制限しない。 The controller 705 limits amplification of the high frequency signal by the power amplifier circuit 10 based on the comparison result. Specifically, when the power supply value Ps is greater than or equal to the threshold value Pth, the controller 705 limits amplification of the high-frequency signal by the power amplifier circuit 10 . On the other hand, when the power supply value Ps is less than the threshold value Pth, the controller 705 does not limit amplification of the high frequency signal by the power amplifier circuit 10 .
 なお、電力増幅回路10による高周波信号の増幅の制限には、電力増幅回路10に供給されるバイアス電流を用いることができる。この場合、コントローラ705は、供給電力値Psが閾値Pth以上である場合に、RFIC3からの制御信号に基づくバイアス電流を減少させる。バイアス電流の減少には、例えばバイアス電流を減少させるための減衰器を用いることができる。なお、バイアス電流を減少させる方法は、特に限定されない。 A bias current supplied to the power amplifier circuit 10 can be used to limit the amplification of the high-frequency signal by the power amplifier circuit 10 . In this case, the controller 705 reduces the bias current based on the control signal from the RFIC 3 when the power supply value Ps is greater than or equal to the threshold value Pth. For reducing the bias current, for example, an attenuator for reducing the bias current can be used. A method for reducing the bias current is not particularly limited.
 また、電力増幅回路10による高周波信号の増幅の制限には、電力増幅回路10に供給される電源電圧が用いられてもよい。例えば、コントローラ705は、供給電力値Psが閾値Pth以上である場合に、電源電圧の供給を停止してもよい。 Also, the power supply voltage supplied to the power amplifier circuit 10 may be used to limit the amplification of the high-frequency signal by the power amplifier circuit 10 . For example, the controller 705 may stop supplying the power supply voltage when the power supply value Ps is greater than or equal to the threshold value Pth.
 [1.3 制御回路70の処理]
 次に、以上のように構成された制御回路70による処理について図3を参照しながら説明する。図3は、実施の形態1に係る制御回路70の処理を示すフローチャートである。
[1.3 Processing of Control Circuit 70]
Next, processing by the control circuit 70 configured as described above will be described with reference to FIG. FIG. 3 is a flow chart showing processing of the control circuit 70 according to the first embodiment.
 まず、プリアンプ701a及び検波器702aは、結合ポート313からの信号の電力値P3を取得する(S101)。さらに、プリアンプ701b及び検波器702bは、結合ポート313からの信号の電力値P4を取得する(S102)。 First, the preamplifier 701a and the detector 702a acquire the power value P3 of the signal from the coupling port 313 (S101). Furthermore, the preamplifier 701b and the detector 702b acquire the power value P4 of the signal from the coupling port 313 (S102).
 次に、電力計算器703は、供給電力値Psを計算する(S103)。例えば、電力計算器703は、電力値P3及びP4の和を供給電力値Psとして計算する。 Next, the power calculator 703 calculates the power supply value Ps (S103). For example, power calculator 703 calculates the sum of power values P3 and P4 as supply power value Ps.
 そして、コンパレータ704は、計算された供給電力値Psを閾値Pthと比較する(S104)。具体的には、コンパレータ704は、供給電力値Psが閾値Pth以上であるか否かを判定する。 Then, the comparator 704 compares the calculated power supply value Ps with the threshold value Pth (S104). Specifically, comparator 704 determines whether power supply value Ps is greater than or equal to threshold value Pth.
 ここで、供給電力値Psが閾値Pth以上である場合(S104のYes)、コントローラ705は、電力増幅回路10における高周波信号の増幅を制限し(S105)、処理を終了する。 Here, if the power supply value Ps is greater than or equal to the threshold value Pth (Yes in S104), the controller 705 limits the amplification of the high frequency signal in the power amplifier circuit 10 (S105), and ends the process.
 一方、供給電力値Psが閾値Pth未満である場合(S104のNo)、コントローラ705は、電力増幅回路10における高周波信号の増幅を制限せずに、処理を終了する。つまり、ステップS105がスキップされる。 On the other hand, if the power supply value Ps is less than the threshold value Pth (No in S104), the controller 705 ends the process without limiting the amplification of the high-frequency signal in the power amplifier circuit 10. That is, step S105 is skipped.
 なお、図3のフローチャートにおける処理の順番は、一例であり、これに限定されない。例えば、ステップS101及びS102は、同時に行われてもよく、順番が入れ替えられてもよい。 The order of processing in the flowchart of FIG. 3 is an example, and is not limited to this. For example, steps S101 and S102 may be performed at the same time or their order may be changed.
 [1.4 効果など]
 以上のように、本実施の形態に係る高周波回路1は、パワークラス2で許容される最大出力パワー以上である第1最大出力パワーを許容する第1パワークラスに対応する電力増幅回路10と、電力増幅回路10の出力端に接続され、周波数分割複信用のバンドAのアップリンク動作バンドを含む通過帯域を有するフィルタ回路60と、方向性結合器31と、電力増幅回路10を制御する制御回路70と、を備え、方向性結合器31は、フィルタ回路60を介して電力増幅回路10の出力端に接続される入力ポート311と、アンテナ接続端子101に接続される出力ポート312と、制御回路70及び外部接続端子141に接続される結合ポート313と、を有し、制御回路70は、結合ポート313からの第1信号に基づいて電力増幅回路10による高周波信号の増幅を制限する。
[1.4 Effect etc.]
As described above, the high-frequency circuit 1 according to the present embodiment includes the power amplifier circuit 10 corresponding to the first power class that allows the first maximum output power that is equal to or higher than the maximum output power allowed in the power class 2, and the power amplifier circuit 10 a filter circuit 60 connected to the output of the circuit 10 and having a passband including the band A uplink operating band for frequency division duplexing; a directional coupler 31; and a control circuit 70 for controlling the power amplifier circuit 10; , the directional coupler 31 includes an input port 311 connected to the output end of the power amplifier circuit 10 via the filter circuit 60, an output port 312 connected to the antenna connection terminal 101, a control circuit 70 and and a coupling port 313 connected to the external connection terminal 141 , and the control circuit 70 limits amplification of the high-frequency signal by the power amplifier circuit 10 based on the first signal from the coupling port 313 .
 これによれば、進行波に対応する信号に基づいて電力増幅回路10の増幅が制限され、その制限が制御回路70によって行われる。制御回路70は、高周波回路1に含まれるので、より迅速なフィードバック制御が可能となる。例えば、高周波回路1で許容される最大出力パワーを超える出力パワーの高周波信号が出力されるときに、迅速に電力増幅回路10の増幅を制限することができ、高パワー信号によってモジュールが破損することを抑制することができる。特に、FDD用バンドでは、送信及び受信の切り替えがなく、高周波信号が連続送信されるので、高パワー信号によるモジュールの破損を抑制する効果が大きい。さらに、RFIC3等によるフィードバック制御のために外部接続端子141に接続される方向性結合器31を、制御回路70によるフィードバック制御に流用することができる。したがって、高周波回路1に含まれる方向性結合器の数の増加を抑制することができる。 According to this, the amplification of the power amplifier circuit 10 is limited based on the signal corresponding to the traveling wave, and the limitation is performed by the control circuit 70. Since the control circuit 70 is included in the high frequency circuit 1, quicker feedback control is possible. For example, when a high-frequency signal with an output power exceeding the maximum output power allowed by the high-frequency circuit 1 is output, the amplification of the power amplifier circuit 10 can be quickly limited, and the module will not be damaged by the high-power signal. can be suppressed. In particular, in the FDD band, there is no switching between transmission and reception, and high-frequency signals are continuously transmitted. Furthermore, the directional coupler 31 connected to the external connection terminal 141 for feedback control by the RFIC 3 or the like can be used for feedback control by the control circuit 70 . Therefore, an increase in the number of directional couplers included in the high frequency circuit 1 can be suppressed.
 また例えば、本実施の形態に係る高周波回路1において、制御回路70は、電力増幅回路10への電源電圧の供給を停止することにより、電力増幅回路10による高周波信号の増幅を制限してもよい。 Further, for example, in the high-frequency circuit 1 according to the present embodiment, the control circuit 70 may limit the amplification of the high-frequency signal by the power amplifier circuit 10 by stopping the supply of the power supply voltage to the power amplifier circuit 10. .
 これによれば、電源電圧を用いて電力増幅回路10の増幅が制限されるので、より高速なフィードバック制御を実現することができる。 According to this, since the amplification of the power amplifier circuit 10 is restricted using the power supply voltage, faster feedback control can be realized.
 また例えば、本実施の形態に係る高周波回路1において、制御回路70は、電力増幅回路10のバイアス電流を減少させることにより、電力増幅回路10による高周波信号の増幅を制限してもよい。 Further, for example, in the high-frequency circuit 1 according to the present embodiment, the control circuit 70 may limit the amplification of the high-frequency signal by the power amplifier circuit 10 by reducing the bias current of the power amplifier circuit 10 .
 これによれば、バイアス電流を用いて電力増幅回路10の増幅が制限されるので、より簡易にフィードバック制御を実現することができる。 According to this, since the amplification of the power amplifier circuit 10 is limited using the bias current, feedback control can be realized more easily.
 また例えば、本実施の形態に係る高周波回路1において、制御回路70は、結合ポート313からの第1信号の電力値が閾値以上である場合に、電力増幅回路10による高周波信号の増幅を制限してもよく、結合ポート313からの第1信号の電力値が閾値未満である場合に、電力増幅回路10による高周波信号の増幅を制限しなくてもよい。 Further, for example, in the high-frequency circuit 1 according to the present embodiment, the control circuit 70 limits the amplification of the high-frequency signal by the power amplifier circuit 10 when the power value of the first signal from the coupling port 313 is equal to or greater than the threshold. Alternatively, if the power value of the first signal from the coupling port 313 is less than the threshold, the amplification of the high frequency signal by the power amplifier circuit 10 may not be restricted.
 これによれば、進行波の電力値が大きい場合に電力増幅回路10の増幅を制限することができ、高周波回路1で許容される最大出力パワーを超える出力パワーの高周波信号が出力されるときに、迅速に電力増幅回路10の増幅を制限することができる。 According to this, when the power value of the traveling wave is large, the amplification of the power amplifier circuit 10 can be limited, and when a high frequency signal with an output power exceeding the maximum output power allowed by the high frequency circuit 1 is output, , the amplification of the power amplifier circuit 10 can be limited quickly.
 また例えば、本実施の形態に係る高周波回路1において、方向性結合器31は、さらに、制御回路70に接続されるアイソレーションポート314を有してもよく、制御回路70は、結合ポート313からの第1信号及びアイソレーションポート314からの第2信号に基づいて、電力増幅回路10による高周波信号の増幅を制限してもよい。 Further, for example, in the high-frequency circuit 1 according to the present embodiment, the directional coupler 31 may further include an isolation port 314 connected to the control circuit 70 , and the control circuit 70 connects the coupling port 313 to Amplification of the high frequency signal by the power amplifier circuit 10 may be limited based on the first signal from the isolation port 314 and the second signal from the isolation port 314 .
 これによれば、進行波だけでなく反射波にも基づいて電力増幅回路10の増幅が制限されるので、方向性結合器31に供給された電力に基づくフィードバック制御が可能となる。したがって、送信経路上の部品(例えばフィルタ回路60等)を通過する高周波信号のパワーをより正確に制御に反映することができ、高パワー信号によるモジュールの破損をより効果的に抑制することができる。 According to this, the amplification of the power amplifier circuit 10 is limited based on not only the traveling wave but also the reflected wave, so feedback control based on the power supplied to the directional coupler 31 is possible. Therefore, it is possible to more accurately reflect the power of the high-frequency signal passing through the components on the transmission path (for example, the filter circuit 60, etc.) in the control, and to more effectively suppress damage to the module due to high-power signals. .
 また例えば、本実施の形態に係る高周波回路1において、制御回路70は、結合ポート313からの第1信号の電力値及びアイソレーションポート314からの第2信号の電力値の和が閾値以上である場合に、電力増幅回路10による高周波信号の増幅を制限してもよく、第1信号の電力値及び第2信号の電力値の和が閾値未満である場合に、電力増幅回路10による高周波信号の増幅を制限しなくてもよい。 Further, for example, in the high-frequency circuit 1 according to the present embodiment, the control circuit 70 determines that the sum of the power value of the first signal from the coupling port 313 and the power value of the second signal from the isolation port 314 is equal to or greater than the threshold. In this case, the amplification of the high frequency signal by the power amplifier circuit 10 may be restricted, and when the sum of the power value of the first signal and the power value of the second signal is less than the threshold, the power amplifier circuit 10 may limit the amplification of the high frequency signal. Amplification need not be limited.
 これによれば、進行波の電力値と反射波の電力値の和が大きい場合に電力増幅回路10の増幅を制限することができ、送信経路上の部品(例えばフィルタ回路60)で許容される最大出力パワーを超えるパワーの高周波信号が出力されるときに、迅速に電力増幅回路10の増幅を制限することができる。 According to this, when the sum of the power value of the forward wave and the power value of the reflected wave is large, the amplification of the power amplifier circuit 10 can be limited, and the components (for example, the filter circuit 60) on the transmission path allow When a high-frequency signal with power exceeding the maximum output power is output, the amplification of the power amplifier circuit 10 can be quickly limited.
 また、本実施の形態に係る通信装置5は、高周波信号を処理するRFIC3と、RFIC3とアンテナ2との間で高周波信号を伝送する高周波回路1と、を備える。 Further, the communication device 5 according to the present embodiment includes an RFIC 3 that processes high frequency signals, and a high frequency circuit 1 that transmits high frequency signals between the RFIC 3 and the antenna 2 .
 これによれば、上記高周波回路1の効果を通信装置5で実現することができる。 According to this, the effect of the high-frequency circuit 1 can be realized in the communication device 5.
 (実施の形態2)
 次に、実施の形態2について説明する。本実施の形態では、方向性結合器31と制御回路70との接続及び非接続を切り替えることができる点が、上記実施の形態1と主として異なる。以下に、本実施の形態について、上記実施の形態1と異なる点を中心に図4を参照しながら説明する。
(Embodiment 2)
Next, Embodiment 2 will be described. The present embodiment is mainly different from the first embodiment in that connection and disconnection between the directional coupler 31 and the control circuit 70 can be switched. The present embodiment will be described below with reference to FIG. 4, focusing on the differences from the first embodiment.
 [2.1 高周波回路1Aの回路構成]
 図4は、本実施の形態に係る高周波回路1A及び通信装置5Aの回路構成図である。なお、通信装置5Aは、高周波回路1の代わりに高周波回路1Aを備える点を除いて、実施の形態1に係る通信装置5と同様であるので説明を省略する。
[2.1 Circuit Configuration of High Frequency Circuit 1A]
FIG. 4 is a circuit configuration diagram of a high frequency circuit 1A and a communication device 5A according to this embodiment. Note that the communication device 5A is the same as the communication device 5 according to the first embodiment except that the high frequency circuit 1A is provided instead of the high frequency circuit 1, so the description is omitted.
 高周波回路1Aは、電力増幅回路10と、方向性結合器31と、スイッチ32及び33と、フィルタ回路60と、制御回路70と、アンテナ接続端子101と、高周波入力端子111と、制御端子131と、外部出力端子141及び142と、を備える。 The high frequency circuit 1A includes a power amplifier circuit 10, a directional coupler 31, switches 32 and 33, a filter circuit 60, a control circuit 70, an antenna connection terminal 101, a high frequency input terminal 111, and a control terminal 131. , and external output terminals 141 and 142 .
 スイッチ32は、第1スイッチの一例であり、方向性結合器31の結合ポート313と制御回路70との間に接続される。スイッチ32は、端子321及び322を有する。端子321は、結合ポート313に接続される。端子322は、制御回路70に接続される。 The switch 32 is an example of a first switch and is connected between the coupling port 313 of the directional coupler 31 and the control circuit 70 . Switch 32 has terminals 321 and 322 . Terminal 321 is connected to coupling port 313 . Terminal 322 is connected to control circuit 70 .
 この接続構成において、スイッチ32は、例えばRFIC3からの制御信号に基づいて、端子321及び322の接続及び非接続を切り替えることができる。つまり、スイッチ32は、結合ポート313及び制御回路70の接続及び非接続を切り替えることができる。ここでは、スイッチ32は、バンドAの信号の送信に第1パワークラスが適用される場合に、結合ポート313を制御回路70に接続し、バンドAの信号の送信に第2パワークラスが適用される場合に、結合ポート313を制御回路70に接続しない。スイッチ32は、例えばSPST(Single-Pole Single-Throw)型のスイッチ回路で構成される。 In this connection configuration, the switch 32 can switch connection and disconnection of the terminals 321 and 322 based on a control signal from the RFIC 3, for example. That is, the switch 32 can switch connection and disconnection of the coupling port 313 and the control circuit 70 . Here, the switch 32 connects the coupling port 313 to the control circuit 70 when the first power class is applied to the transmission of band A signals, and connects the coupling port 313 to the control circuit 70 when the second power class is applied to the transmission of the band A signals. Also, coupling port 313 is not connected to control circuit 70 . The switch 32 is configured by, for example, an SPST (Single-Pole Single-Throw) type switch circuit.
 第2パワークラスは、第1パワークラスで許容される第1最大出力パワーよりも低い第2最大出力パワーを許容するパワークラスである。例えば、第1パワークラスとして26dBmの最大出力パワーを許容するパワークラス2が用いられる場合には、第2パワークラスとして、23dBmの最大出力パワーを許容するパワークラス3を用いることができる。 The second power class is a power class that allows a second maximum output power that is lower than the first maximum output power that is allowed in the first power class. For example, if power class 2, which allows a maximum output power of 26 dBm, is used as the first power class, power class 3, which allows a maximum output power of 23 dBm, can be used as the second power class.
 スイッチ33は、第2スイッチの一例であり、方向性結合器31のアイソレーションポート314と制御回路70との間に接続される。スイッチ33は、端子331及び332を有する。端子331は、アイソレーションポート314に接続される。端子332は、制御回路70に接続される。 The switch 33 is an example of a second switch and is connected between the isolation port 314 of the directional coupler 31 and the control circuit 70. The switch 33 has terminals 331 and 332 . Terminal 331 is connected to isolation port 314 . Terminal 332 is connected to control circuit 70 .
 この接続構成において、スイッチ33は、例えばRFIC3からの制御信号に基づいて、端子331及び332の接続及び非接続を切り替えることができる。つまり、スイッチ33は、アイソレーションポート314及び制御回路70の接続及び非接続を切り替えることができる。ここでは、スイッチ33は、バンドAの信号の送信に第1パワークラスが適用される場合に、アイソレーションポート314を制御回路70に接続し、バンドAの信号の送信に第2パワークラスが適用される場合に、アイソレーションポート314を制御回路70に接続しない。スイッチ33は、例えばSPST型のスイッチ回路で構成される。 In this connection configuration, the switch 33 can switch connection and disconnection of the terminals 331 and 332 based on a control signal from the RFIC 3, for example. That is, the switch 33 can switch connection and disconnection of the isolation port 314 and the control circuit 70 . Here, the switch 33 connects the isolation port 314 to the control circuit 70 when the first power class is applied to transmission of band A signals, and the second power class is applied to transmission of band A signals. , the isolation port 314 is not connected to the control circuit 70 . The switch 33 is configured by, for example, an SPST type switch circuit.
 [2.2 効果など]
 以上のように、本実施の形態に係る高周波回路1Aは、さらに、結合ポート313と制御回路70との間に接続されたスイッチ32を備えてもよく、スイッチ32は、バンドAの信号の送信に第1パワークラスが適用される場合に、結合ポート313を制御回路70に接続してもよく、バンドAの信号の送信に第1最大出力パワーよりも低い第2最大出力パワーを許容する第2パワークラスが適用される場合に、結合ポート313を制御回路70に接続しなくてもよい。
[2.2 Effects, etc.]
As described above, the high-frequency circuit 1A according to the present embodiment may further include the switch 32 connected between the coupling port 313 and the control circuit 70. The switch 32 is used for transmitting band A signals. The coupling port 313 may be connected to the control circuit 70 when a first power class is applied to the second power class allowing a second maximum output power lower than the first maximum output power for the transmission of signals in band A. The coupling port 313 may not be connected to the control circuit 70 when the power class is applied.
 これによれば、バンドAの信号の送信に第2パワークラスが適用される場合に、結合ポート313に制御回路70が接続されない。したがって、高パワー信号によるモジュールの破損の可能性が低い場合には、結合ポート313からの信号の一部を制御回路70に取り出すことを中断することができる。第2パワークラスが適用される場合には、結合ポート313からの信号のパワーも低下するので、制御回路70への信号の取り出しを中断することで、外部出力端子141を介してRFIC3などに出力される信号レベルの低下を抑制することができる。 According to this, when the second power class is applied to transmission of band A signals, the control circuit 70 is not connected to the coupling port 313 . Therefore, the extraction of a portion of the signal from the coupling port 313 to the control circuit 70 can be discontinued when the module is unlikely to be damaged by a high power signal. When the second power class is applied, the power of the signal from the coupling port 313 is also reduced. Therefore, by interrupting the extraction of the signal to the control circuit 70, the signal is output to the RFIC 3 or the like via the external output terminal 141. It is possible to suppress the decrease in the signal level caused by the
 また例えば、本実施の形態に係る高周波回路1Aは、さらに、アイソレーションポート314と制御回路70との間に接続されたスイッチ33を備えてもよく、スイッチ33は、バンドAの信号の送信に第1パワークラスが適用される場合に、アイソレーションポート314を制御回路70に接続してもよく、バンドAの信号の送信に第1最大出力パワーよりも低い第2最大出力パワーを許容する第2パワークラスが適用される場合に、アイソレーションポート314を制御回路70に接続しなくてもよい。 Further, for example, the high-frequency circuit 1A according to the present embodiment may further include a switch 33 connected between the isolation port 314 and the control circuit 70. The switch 33 is used for transmitting band A signals. Isolation port 314 may be connected to control circuit 70 when a first power class is applied and a second power class permitting a second maximum output power lower than the first maximum output power for transmission of band A signals. The isolation port 314 may not be connected to the control circuit 70 when the power class is applied.
 これによれば、バンドAの信号の送信に第2パワークラスが適用される場合に、アイソレーションポート314に制御回路70が接続されない。したがって、高パワー信号によるモジュールの破損の可能性が低い場合には、アイソレーションポート314からの信号の一部を制御回路70に取り出すことを中断することができる。第2パワークラスが適用される場合には、アイソレーションポート314からの信号のパワーも低下するので、制御回路70への信号の取り出しを中断することで、外部出力端子142を介してRFIC3などに出力される信号レベルの低下を抑制することができる。 According to this, the control circuit 70 is not connected to the isolation port 314 when the second power class is applied to transmission of band A signals. Therefore, when the possibility of module damage due to high power signals is low, extraction of a portion of the signal from the isolation port 314 to the control circuit 70 can be discontinued. When the second power class is applied, the power of the signal from the isolation port 314 is also reduced. Therefore, by interrupting the extraction of the signal to the control circuit 70, the signal is output to the RFIC 3 or the like via the external output terminal 142. It is possible to suppress a decrease in the signal level that is received.
 (実施の形態3)
 次に、実施の形態3について説明する。本実施の形態では、FDD用のバンドAに加えて時分割複信(TDD:Time Division Duplex)用のバンドBにも対応する点が、上記実施の形態1と主として異なる。以下に、本実施の形態について、上記実施の形態1と異なる点を中心に図5を参照しながら説明する。
(Embodiment 3)
Next, Embodiment 3 will be described. This embodiment mainly differs from the above-described first embodiment in that in addition to band A for FDD, band B for time division duplex (TDD) is also supported. The present embodiment will be described below with reference to FIG. 5, focusing on the differences from the first embodiment.
 [3.1 高周波回路1Bの回路構成]
 図5は、本実施の形態に係る高周波回路1B及び通信装置5Bの回路構成図である。なお、通信装置5Bは、高周波回路1の代わりに高周波回路1Bを備える点を除いて、実施の形態1に係る通信装置5と同様であるので説明を省略する。
[3.1 Circuit Configuration of High Frequency Circuit 1B]
FIG. 5 is a circuit configuration diagram of a high frequency circuit 1B and a communication device 5B according to this embodiment. Note that the communication device 5B is the same as the communication device 5 according to the first embodiment except that the high-frequency circuit 1B is provided instead of the high-frequency circuit 1, so the description is omitted.
 高周波回路1Bは、電力増幅回路10Bと、方向性結合器31と、スイッチ51~54と、フィルタ回路601及び602と、制御回路70と、アンテナ接続端子101と、高周波入力端子111と、高周波出力端子121と、制御端子131と、外部出力端子141及び142と、を備える。 The high frequency circuit 1B includes a power amplifier circuit 10B, a directional coupler 31, switches 51 to 54, filter circuits 601 and 602, a control circuit 70, an antenna connection terminal 101, a high frequency input terminal 111, and a high frequency output. A terminal 121 , a control terminal 131 , and external output terminals 141 and 142 are provided.
 高周波入力端子111は、高周波回路1Bの外部から、FDD用のバンドAの送信信号及びTDD用のバンドBの送信信号を受けるための入力端子である。本実施の形態では、高周波入力端子111は、高周波回路1Bの外部でRFIC3に接続される。 A high-frequency input terminal 111 is an input terminal for receiving a transmission signal of band A for FDD and a transmission signal of band B for TDD from the outside of the high-frequency circuit 1B. In this embodiment, the high frequency input terminal 111 is connected to the RFIC 3 outside the high frequency circuit 1B.
 高周波出力端子121は、高周波回路1Bの外部に、FDD用のバンドAの受信信号及びTDD用のバンドのBの受信信号を供給するための出力端子である。本実施の形態では、高周波出力端子121は、高周波回路1Bの外部でRFIC3に接続される。 The high-frequency output terminal 121 is an output terminal for supplying a received signal of band A for FDD and a received signal of band B for TDD to the outside of the high-frequency circuit 1B. In this embodiment, the high frequency output terminal 121 is connected to the RFIC 3 outside the high frequency circuit 1B.
 電力増幅回路10Bは、高周波入力端子111とフィルタ回路601及び602との間に接続され、高周波回路1Bの外部から供給される電源電圧を用いてバンドA及びBの送信信号を増幅することができる。電力増幅回路10Bは、パワークラス2で許容される最大出力パワー以上である第1最大出力パワーを許容する第1パワークラスに対応している。 The power amplifier circuit 10B is connected between the high frequency input terminal 111 and the filter circuits 601 and 602, and can amplify the transmission signals of the bands A and B using the power supply voltage supplied from the outside of the high frequency circuit 1B. . The power amplifier circuit 10B corresponds to a first power class that allows a first maximum output power that is equal to or higher than the maximum output power allowed in power class 2 .
 本実施の形態では、電力増幅回路10Bは、電力増幅器11Bを備える。電力増幅器11Bは、第1パワークラスに対応している。つまり、電力増幅器11Bは、第1パワークラスで許容される第1最大出力パワーより高いパワーまでバンドA及びBの送信信号を増幅することができる。 In this embodiment, the power amplifier circuit 10B includes a power amplifier 11B. The power amplifier 11B corresponds to the first power class. That is, the power amplifier 11B can amplify the transmission signals of the bands A and B to power higher than the first maximum output power allowed in the first power class.
 低雑音増幅器21は、フィルタ回路601及び602と高周波出力端子121との間に接続され、高周波回路1Bの外部から供給される電源電圧を用いてバンドA及びBの受信信号を増幅することができる。 The low noise amplifier 21 is connected between the filter circuits 601 and 602 and the high frequency output terminal 121, and can amplify the received signals of the bands A and B using the power supply voltage supplied from the outside of the high frequency circuit 1B. .
 フィルタ回路601は、第1フィルタ回路の一例であり、FDD用のバンドAの送信信号と受信信号とを通過させることができる。フィルタ回路601は、フィルタ61及び62を有する。 The filter circuit 601 is an example of a first filter circuit, and can pass transmission signals and reception signals of band A for FDD. The filter circuit 601 has filters 61 and 62 .
 フィルタ61は、バンドAのアップリンク動作バンドを含む通過帯域を有し、アンテナ接続端子101と電力増幅回路10Bとの間に接続される。具体的には、フィルタ61の一端は、スイッチ52を介して電力増幅器11Bの出力端に接続され、フィルタ61の他端は、スイッチ51を介してアンテナ接続端子101に接続される。フィルタ61は、第1パワークラスに対応している。つまり、フィルタ61は、第1パワークラスに対応する耐電力性を有する。これにより、フィルタ回路601は、電力増幅回路10Bによって第1最大出力パワーよりも高い出力パワーまで増幅されたバンドAの送信信号を通過させることができる。 The filter 61 has a passband including the uplink operating band of band A, and is connected between the antenna connection terminal 101 and the power amplifier circuit 10B. Specifically, one end of the filter 61 is connected via the switch 52 to the output terminal of the power amplifier 11B, and the other end of the filter 61 is connected via the switch 51 to the antenna connection terminal 101 . Filter 61 corresponds to the first power class. That is, the filter 61 has power durability corresponding to the first power class. As a result, the filter circuit 601 can pass the band A transmission signal that has been amplified to an output power higher than the first maximum output power by the power amplifier circuit 10B.
 フィルタ62は、バンドAのダウンリンク動作バンド(downlink operation band)を含む通過帯域を有し、アンテナ接続端子101と低雑音増幅器21との間に接続される。具体的には、フィルタ62の一端は、スイッチ51を介してアンテナ接続端子101に接続され、フィルタ62の他端は、スイッチ54を介して低雑音増幅器21の入力端に接続される。 The filter 62 has a passband that includes the downlink operation band of band A and is connected between the antenna connection terminal 101 and the low noise amplifier 21 . Specifically, one end of filter 62 is connected to antenna connection terminal 101 via switch 51 , and the other end of filter 62 is connected to the input terminal of low noise amplifier 21 via switch 54 .
 フィルタ回路602は、第2フィルタ回路の一例であり、TDD用のバンドBの送信信号と受信信号とを通過させることができる。フィルタ回路602は、フィルタ63を有する。 The filter circuit 602 is an example of a second filter circuit, and can pass the transmission signal and reception signal of band B for TDD. The filter circuit 602 has a filter 63 .
 フィルタ63は、バンドBを含む通過帯域を有し、アンテナ接続端子101と電力増幅回路10B及び低雑音増幅器21との間に接続される。具体的には、フィルタ63の一端は、スイッチ51を介してアンテナ接続端子101に接続され、フィルタ63の他端は、スイッチ53及び52を介して電力増幅器11Bの出力端に接続され、スイッチ53及び54を介して低雑音増幅器21の入力端に接続される。フィルタ63は、第1パワークラスに対応している。つまり、フィルタ63は、第1パワークラスに対応する耐電力性を有する。これにより、フィルタ回路602は、電力増幅回路10Bによって第1最大出力パワーよりも高い出力パワーまで増幅されたバンドBの送信信号を通過させることができる。 The filter 63 has a passband including band B, and is connected between the antenna connection terminal 101 and the power amplifier circuit 10B and the low noise amplifier 21. Specifically, one end of the filter 63 is connected to the antenna connection terminal 101 via the switch 51, the other end of the filter 63 is connected to the output terminal of the power amplifier 11B via the switches 53 and 52, and the switch 53 and 54 to the input end of the low noise amplifier 21 . Filter 63 corresponds to the first power class. That is, the filter 63 has power durability corresponding to the first power class. As a result, the filter circuit 602 can pass the transmission signal of band B that has been amplified to an output power higher than the first maximum output power by the power amplifier circuit 10B.
 バンドBは、第2バンドの一例であり、標準化団体などによって予め定義されたRATを用いて構築される通信システムのための周波数バンドである。 Band B is an example of a second band, and is a frequency band for a communication system built using a RAT predefined by a standardization organization or the like.
 スイッチ51は、アンテナ接続端子101とフィルタ回路601及び602との間に接続される。スイッチ51は、端子511~513を有する。端子511は、方向性結合器31を介してアンテナ接続端子101に接続される。端子512は、フィルタ回路601に接続される。端子513は、フィルタ回路602に接続される。 The switch 51 is connected between the antenna connection terminal 101 and the filter circuits 601 and 602 . The switch 51 has terminals 511-513. Terminal 511 is connected to antenna connection terminal 101 via directional coupler 31 . Terminal 512 is connected to filter circuit 601 . Terminal 513 is connected to filter circuit 602 .
 この接続構成において、スイッチ51は、例えばRFIC3からの制御信号に基づいて、端子511を端子512及び513のいずれかに接続することができる。つまり、スイッチ51は、アンテナ接続端子101の接続をフィルタ回路601及び602の間で切り替えることができる。スイッチ51は、例えばSPDT(Single-Pole Double-Throw)型のスイッチ回路で構成される。 In this connection configuration, the switch 51 can connect the terminal 511 to either of the terminals 512 and 513 based on a control signal from the RFIC 3, for example. That is, the switch 51 can switch the connection of the antenna connection terminal 101 between the filter circuits 601 and 602 . The switch 51 is configured by, for example, an SPDT (Single-Pole Double-Throw) type switch circuit.
 スイッチ52は、電力増幅回路10Bとフィルタ61及び63との間に接続される。スイッチ52は、端子521~523を有する。端子521は、電力増幅回路10Bに接続される。端子522は、フィルタ61に接続される。端子523は、スイッチ53を介してフィルタ63に接続される。 The switch 52 is connected between the power amplifier circuit 10B and the filters 61 and 63. The switch 52 has terminals 521-523. Terminal 521 is connected to power amplifier circuit 10B. Terminal 522 is connected to filter 61 . Terminal 523 is connected to filter 63 via switch 53 .
 この接続構成において、スイッチ52は、例えばRFIC3からの制御信号に基づいて、端子521を端子522及び523のいずれかに接続することができる。つまり、スイッチ52は、電力増幅回路10Bの接続をフィルタ61及び63の間で切り替えることができる。スイッチ52は、例えばSPDT型のスイッチ回路で構成される。 In this connection configuration, the switch 52 can connect the terminal 521 to either of the terminals 522 and 523 based on a control signal from the RFIC 3, for example. That is, the switch 52 can switch the connection of the power amplifier circuit 10B between the filters 61 and 63. FIG. The switch 52 is composed of, for example, an SPDT type switch circuit.
 スイッチ53は、フィルタ63と電力増幅回路10B及び低雑音増幅器21との間に接続される。スイッチ53は、端子531~533を有する。端子531は、フィルタ63に接続される。端子532は、スイッチ52を介して電力増幅器11Bの出力端に接続される。具体的には、端子532は、スイッチ52の端子523に接続される。端子533は、スイッチ54を介して低雑音増幅器21の入力端に接続される。具体的には、端子533は、スイッチ54の端子543に接続される。 The switch 53 is connected between the filter 63 and the power amplifier circuit 10B and the low noise amplifier 21. The switch 53 has terminals 531-533. Terminal 531 is connected to filter 63 . Terminal 532 is connected via switch 52 to the output terminal of power amplifier 11B. Specifically, terminal 532 is connected to terminal 523 of switch 52 . Terminal 533 is connected to the input terminal of low noise amplifier 21 via switch 54 . Specifically, terminal 533 is connected to terminal 543 of switch 54 .
 この接続構成において、スイッチ53は、例えばRFIC3からの制御信号に基づいて、端子531を端子532及び533のいずれかに接続することができる。つまり、スイッチ53は、フィルタ63の接続を電力増幅器11B及び低雑音増幅器21の間で切り替えることができる。スイッチ53は、例えばSPDT型のスイッチ回路で構成される。 In this connection configuration, the switch 53 can connect the terminal 531 to either of the terminals 532 and 533 based on a control signal from the RFIC 3, for example. That is, the switch 53 can switch the connection of the filter 63 between the power amplifier 11B and the low noise amplifier 21. FIG. The switch 53 is composed of, for example, an SPDT type switch circuit.
 スイッチ54は、低雑音増幅器21とフィルタ62及び63との間に接続される。スイッチ54は、端子541~543を備える。端子541は、低雑音増幅器21の入力端に接続される。端子542は、フィルタ62に接続される。端子543は、スイッチ53を介してフィルタ63に接続される。 A switch 54 is connected between the low noise amplifier 21 and the filters 62 and 63 . The switch 54 has terminals 541-543. Terminal 541 is connected to the input terminal of low noise amplifier 21 . Terminal 542 is connected to filter 62 . Terminal 543 is connected to filter 63 via switch 53 .
 この接続構成において、スイッチ54は、例えばRFIC3からの制御信号に基づいて、端子541を端子542及び543のいずれかに接続することができる。つまり、スイッチ54は、低雑音増幅器21の接続をフィルタ62及び63の間で切り替えることができる。スイッチ54は、例えばSPDT型のスイッチ回路で構成される。 In this connection configuration, the switch 54 can connect the terminal 541 to either of the terminals 542 and 543 based on a control signal from the RFIC 3, for example. That is, the switch 54 can switch the connection of the low noise amplifier 21 between the filters 62 and 63 . The switch 54 is composed of, for example, an SPDT type switch circuit.
 なお、図5の高周波回路1B及び通信装置5Bの回路構成は、一例であり、これに限定されない。例えば、図5において、低雑音増幅器21は、バンドA及びBで共用されているが、高周波回路1Bは、バンドA及びBのために個別に2つの低雑音増幅器を備えてもよい。この場合、2つの低雑音増幅器の一方がフィルタ62に接続され、2つの低雑音増幅器の他方がフィルタ63に接続されればよい。また、図5において、アンテナ2は、バンドA及びBで共用されているが、通信装置5Bは、バンドA及びBのために個別に2つのアンテナを備えてもよい。 Note that the circuit configurations of the high-frequency circuit 1B and the communication device 5B in FIG. 5 are merely examples, and are not limited thereto. For example, although the low noise amplifier 21 is shared by the bands A and B in FIG. In this case, one of the two low noise amplifiers should be connected to the filter 62 and the other of the two low noise amplifiers should be connected to the filter 63 . Also, in FIG. 5, the antenna 2 is shared by the bands A and B, but the communication device 5B may have two antennas for the bands A and B separately.
 [3.2 効果など]
 以上のように、本実施の形態に係る高周波回路1Bは、さらに、電力増幅回路10Bの出力端に接続され、時分割複信用のバンドBを含む通過帯域を有するフィルタ回路602を備える。
[3.2 Effects, etc.]
As described above, the high frequency circuit 1B according to the present embodiment further includes the filter circuit 602 connected to the output terminal of the power amplifier circuit 10B and having a passband including the band B for time division duplexing.
 これによれば、FDD用のバンドAだけでなく、TDD用のバンドBに対しても、上記実施の形態1に係る高周波回路1と同様の効果を実現することができる。 According to this, not only the band A for FDD but also the band B for TDD can achieve the same effect as the high-frequency circuit 1 according to the first embodiment.
 (実施の形態4)
 次に、実施の形態4について説明する。本実施の形態では、並列に接続された2つの電力増幅器が電力増幅回路に用いられる点が、上記実施の形態1と主として異なる。以下に、本実施の形態について、上記実施の形態1と異なる点を中心に図6を参照しながら説明する。
(Embodiment 4)
Next, Embodiment 4 will be described. The present embodiment differs from the first embodiment mainly in that two power amplifiers connected in parallel are used in the power amplifier circuit. The present embodiment will be described below with reference to FIG. 6, focusing on the differences from the first embodiment.
 [4.1 高周波回路1Cの回路構成]
 図6は、本実施の形態に係る高周波回路1C及び通信装置5Cの回路構成図である。なお、通信装置5Cは、高周波回路1の代わりに高周波回路1Cを備える点を除いて、実施の形態1に係る通信装置5と同様であるので説明を省略する。
[4.1 Circuit Configuration of High Frequency Circuit 1C]
FIG. 6 is a circuit configuration diagram of a high frequency circuit 1C and a communication device 5C according to this embodiment. Note that the communication device 5C is the same as the communication device 5 according to the first embodiment except that the high frequency circuit 1C is provided instead of the high frequency circuit 1, so the description is omitted.
 高周波回路1Cは、電力増幅回路10Cと、方向性結合器31と、トランスフォーマ41及び42と、フィルタ回路60Cと、制御回路70と、アンテナ接続端子101と、高周波入力端子111と、制御端子131と、外部出力端子141及び142と、を備える。 The high frequency circuit 1C includes a power amplifier circuit 10C, a directional coupler 31, transformers 41 and 42, a filter circuit 60C, a control circuit 70, an antenna connection terminal 101, a high frequency input terminal 111, and a control terminal 131. , and external output terminals 141 and 142 .
 電力増幅回路10Cは、高周波入力端子111とフィルタ回路60Cとの間に接続され、高周波回路1Cの外部から供給される電源電圧を用いてバンドAの送信信号を増幅することができる。電力増幅回路10Cは、パワークラス2で許容される最大出力パワー以上である第1最大出力パワーを許容する第1パワークラスに対応している。本変形例では、電力増幅回路10Cは、並列に接続された電力増幅器11a及び11bを備える。 The power amplifier circuit 10C is connected between the high frequency input terminal 111 and the filter circuit 60C, and can amplify the transmission signal of band A using the power supply voltage supplied from the outside of the high frequency circuit 1C. The power amplifier circuit 10C corresponds to a first power class that allows a first maximum output power that is equal to or higher than the maximum output power allowed in power class 2 . In this modification, the power amplifier circuit 10C includes power amplifiers 11a and 11b connected in parallel.
 電力増幅器11aは、第1電力増幅器の一例であり、トランスフォーマ41で分配された2つの信号の一方を増幅することができる。ここでは、電力増幅器11a単体では、第1パワークラスに対応しなくてもよい。つまり、電力増幅器11aは、第1パワークラスで許容される第1最大出力パワーより高いパワーまでバンドAの送信信号を増幅することができなくてもよい。 The power amplifier 11 a is an example of a first power amplifier, and can amplify one of the two signals distributed by the transformer 41 . Here, the power amplifier 11a alone does not have to support the first power class. That is, the power amplifier 11a may not be able to amplify the transmission signal of band A to power higher than the first maximum output power allowed in the first power class.
 電力増幅器11bは、第2電力増幅器の一例であり、トランスフォーマ41で分配された2つの信号の他方を増幅することができる。ここでは、電力増幅器11b単体では、第1パワークラスに対応しなくてもよい。つまり、電力増幅器11bは、第1パワークラスで許容される第1最大出力パワーより高いパワーまでバンドAの送信信号を増幅することができなくてもよい。 The power amplifier 11b is an example of a second power amplifier, and can amplify the other of the two signals distributed by the transformer 41. Here, the power amplifier 11b alone does not have to support the first power class. That is, the power amplifier 11b may not be able to amplify the transmission signal of band A to power higher than the first maximum output power allowed in the first power class.
 このように本実施の形態では、電力増幅器11a及び11bは、個々では第1パワークラスに対応しなくてもよい。2つの電力増幅器11a及び11bで増幅された2つの信号が合成されることで、第1パワークラスで許容される第1最大出力パワーより高いパワーまでバンドAの送信信号を増幅することができる。 Thus, in this embodiment, the power amplifiers 11a and 11b do not have to individually correspond to the first power class. By synthesizing the two signals amplified by the two power amplifiers 11a and 11b, the band A transmission signal can be amplified to a power higher than the first maximum output power allowed in the first power class.
 なお、電力増幅回路10Cは、多段構成の増幅回路であってもよい。このとき、電力増幅回路10Cは、入力段に相当する電力増幅器として、電力増幅器11a及び11bの入力端にそれぞれ接続される2つの電力増幅器を備えてもよい。また、電力増幅回路10Cは、入力段に相当する電力増幅器として、電力増幅器11a及び11bの入力端に接続される1つの電力増幅器を備えてもよい。この場合、1つの電力増幅器は、トランスフォーマ41の入力端子411と高周波入力端子111との間に接続されてもよい。 Note that the power amplifier circuit 10C may be a multistage amplifier circuit. At this time, the power amplifier circuit 10C may include two power amplifiers connected to the input terminals of the power amplifiers 11a and 11b, respectively, as power amplifiers corresponding to the input stage. Moreover, the power amplifier circuit 10C may include one power amplifier connected to the input terminals of the power amplifiers 11a and 11b as a power amplifier corresponding to the input stage. In this case, one power amplifier may be connected between the input terminal 411 of the transformer 41 and the high frequency input terminal 111 .
 トランスフォーマ41は、分配器として機能し、1つの信号を互いに逆相の2つの信号に分配することができる。トランスフォーマ41は、入力端子411と、グランド端子412と、出力端子413及び414と、一次コイル415と、二次コイル416と、を備える。 The transformer 41 functions as a distributor and can distribute one signal into two signals with phases opposite to each other. Transformer 41 includes input terminal 411 , ground terminal 412 , output terminals 413 and 414 , primary coil 415 and secondary coil 416 .
 入力端子411は、一次コイル415の一端を構成する。入力端子411は、高周波入力端子111に接続される。 The input terminal 411 constitutes one end of the primary coil 415 . The input terminal 411 is connected to the high frequency input terminal 111 .
 グランド端子412は、一次コイル415の他端を構成する。グランド端子412は、グランドに接続される。 The ground terminal 412 constitutes the other end of the primary coil 415 . A ground terminal 412 is connected to the ground.
 出力端子413は、二次コイル416の一端を構成する。出力端子413は、電力増幅器11aの入力端に接続される。 The output terminal 413 constitutes one end of the secondary coil 416 . The output terminal 413 is connected to the input terminal of the power amplifier 11a.
 出力端子414は、二次コイル416の他端を構成する。出力端子414は、電力増幅器11bの入力端に接続される。 The output terminal 414 constitutes the other end of the secondary coil 416 . The output terminal 414 is connected to the input terminal of the power amplifier 11b.
 トランスフォーマ42は、合成器の一例であり、互いに逆相の2つの信号を合成することができる。トランスフォーマ42は、入力端子421及び422と、出力端子423と、グランド端子424と、一次コイル425と、二次コイル426と、を備える。 The transformer 42 is an example of a synthesizer, and can synthesize two signals with opposite phases to each other. Transformer 42 includes input terminals 421 and 422 , output terminal 423 , ground terminal 424 , primary coil 425 and secondary coil 426 .
 入力端子421は、第1入力端子の一例であり、一次コイル425の一端を構成する。入力端子421は、フィルタ61aを介して電力増幅器11aの出力端に接続される。 The input terminal 421 is an example of a first input terminal and constitutes one end of the primary coil 425 . The input terminal 421 is connected to the output terminal of the power amplifier 11a through the filter 61a.
 入力端子422は、第2入力端子の一例であり、一次コイル425の他端を構成する。入力端子422は、フィルタ61bを介して電力増幅器11bの出力端に接続される。 The input terminal 422 is an example of a second input terminal and constitutes the other end of the primary coil 425 . The input terminal 422 is connected to the output terminal of the power amplifier 11b through the filter 61b.
 出力端子423は、二次コイル426の一端を構成する。出力端子423は、アンテナ接続端子101に接続される。 The output terminal 423 constitutes one end of the secondary coil 426 . The output terminal 423 is connected to the antenna connection terminal 101 .
 グランド端子424は、二次コイル426の他端を構成する。グランド端子424は、グランドに接続される。 The ground terminal 424 constitutes the other end of the secondary coil 426 . Ground terminal 424 is connected to the ground.
 なお、本実施の形態では、合成器として、トランスフォーマ42が用いられているが、合成器はこれに限定されない。例えば、合成器として、ウィルキンソン合成器が用いられてもよい。 Although the transformer 42 is used as the combiner in this embodiment, the combiner is not limited to this. For example, a Wilkinson synthesizer may be used as the synthesizer.
 フィルタ回路60Cは、第1フィルタ回路の一例であり、バンドAのアップリンク動作バンドを含む通過帯域を有する。フィルタ回路60Cは、アンテナ接続端子101と電力増幅回路10Cとの間に接続される。本変形例では、フィルタ回路60Cは、バンドAのアップリンク動作バンドを含む通過帯域をそれぞれ有するフィルタ61a及び61bを有する。 The filter circuit 60C is an example of a first filter circuit and has a passband that includes the band A uplink operating band. Filter circuit 60C is connected between antenna connection terminal 101 and power amplifier circuit 10C. In this variant, the filter circuit 60C comprises filters 61a and 61b each having a passband that includes the Band A uplink operating band.
 フィルタ61aは、第1フィルタの一例であり、電力増幅器11aの出力端とトランスフォーマ42の入力端子421との間に接続される。具体的には、フィルタ61aの一端は、電力増幅器11aの出力端に接続され、フィルタ61aの他端は、トランスフォーマ42の入力端子421に接続される。 The filter 61a is an example of a first filter and is connected between the output terminal of the power amplifier 11a and the input terminal 421 of the transformer 42. Specifically, one end of the filter 61 a is connected to the output end of the power amplifier 11 a, and the other end of the filter 61 a is connected to the input terminal 421 of the transformer 42 .
 フィルタ61bは、第2フィルタの一例であり、電力増幅器11bの出力端とトランスフォーマ42の入力端子422との間に接続される。具体的には、フィルタ61bの一端は、電力増幅器11bの出力端に接続され、フィルタ61bの他端は、トランスフォーマ42の入力端子422に接続される。 The filter 61b is an example of a second filter and is connected between the output terminal of the power amplifier 11b and the input terminal 422 of the transformer 42. Specifically, one end of the filter 61b is connected to the output end of the power amplifier 11b, and the other end of the filter 61b is connected to the input terminal 422 of the transformer .
 なお、図6の高周波回路1Cの回路構成は、一例であり、これに限定されない。例えば、トランスフォーマ41は、高周波回路1Cに含まれなくてもよい。この場合、位相調整されたバンドAの2つの信号がRFIC3から高周波回路1Cに供給されればよい。 Note that the circuit configuration of the high-frequency circuit 1C in FIG. 6 is an example, and is not limited to this. For example, the transformer 41 may not be included in the high frequency circuit 1C. In this case, two phase-adjusted band A signals may be supplied from the RFIC 3 to the high-frequency circuit 1C.
 [4.2 効果など]
 以上のように、本実施の形態に係る高周波回路1Cは、さらに、トランスフォーマ42を備え、トランスフォーマ42は、入力端子421及び422と、方向性結合器31の入力ポート311に接続される出力端子423と、を有し、電力増幅回路10Cは、電力増幅器11a及び11bと、を有し、フィルタ回路60Cは、バンドAのアップリンク動作バンドを含む通過帯域を有し、電力増幅器11aの出力端とトランスフォーマ42の入力端子421との間に接続されるフィルタ61aと、バンドAのアップリンク動作バンドを含む通過帯域を有し、電力増幅器11bの出力端とトランスフォーマ42の入力端子422との間に接続されるフィルタ61bと、を有する。
[4.2 Effects, etc.]
As described above, the high-frequency circuit 1C according to the present embodiment further includes a transformer 42. The transformer 42 has input terminals 421 and 422 and an output terminal 423 connected to the input port 311 of the directional coupler 31. , power amplifier circuit 10C having power amplifiers 11a and 11b, filter circuit 60C having a passband that includes the uplink operating band of band A, and the output of power amplifier 11a and A filter 61a connected between the input terminal 421 of the transformer 42 and having a passband including the uplink operating band of band A, connected between the output of the power amplifier 11b and the input terminal 422 of the transformer 42. and a filter 61b.
 これによれば、並列に接続された2つの電力増幅器11a及び11bを用いて、送信信号を第1最大出力パワーよりも高いパワーまで増幅することができる。つまり、個々の電力増幅器11a及び11bでは、送信信号を第1最大出力パワーよりも高いパワーまで増幅することができない場合でも、第1最大出力パワーを実現することができる。さらに、並列に接続された2つのフィルタ61a及び61bが用いられるので、フィルタ61a及び61bの個々の耐電力性を抑制することができる。 According to this, the two power amplifiers 11a and 11b connected in parallel can be used to amplify the transmission signal to a power higher than the first maximum output power. That is, the power amplifiers 11a and 11b can achieve the first maximum output power even if the transmission signal cannot be amplified to a power higher than the first maximum output power. Furthermore, since two filters 61a and 61b connected in parallel are used, the individual power durability of the filters 61a and 61b can be suppressed.
 (実施の形態5)
 次に、実施の形態5について説明する。本実施の形態では、高周波回路に2つの方向性結合器が含まれる点が、上記実施の形態1と主として異なる。以下に、本実施の形態について、上記実施の形態1と異なる点を中心に図7を参照しながら説明する。
(Embodiment 5)
Next, Embodiment 5 will be described. The present embodiment differs from the first embodiment mainly in that the high-frequency circuit includes two directional couplers. The present embodiment will be described below with reference to FIG. 7, focusing on the differences from the first embodiment.
 [5.1 高周波回路1Dの回路構成]
 図7は、本実施の形態に係る高周波回路1D及び通信装置5Dの回路構成図である。なお、通信装置5Dは、高周波回路1の代わりに高周波回路1Dを備える点を除いて、実施の形態1に係る通信装置5と同様であるので説明を省略する。
[5.1 Circuit Configuration of High Frequency Circuit 1D]
FIG. 7 is a circuit configuration diagram of a high-frequency circuit 1D and a communication device 5D according to this embodiment. Note that the communication device 5D is the same as the communication device 5 according to the first embodiment except that the high-frequency circuit 1D is provided instead of the high-frequency circuit 1, so the description is omitted.
 高周波回路1Dは、電力増幅回路10と、方向性結合器31及び34と、フィルタ回路60と、制御回路70と、アンテナ接続端子101と、高周波入力端子111と、制御端子131と、外部出力端子141及び142と、を備える。 The high frequency circuit 1D includes a power amplifier circuit 10, directional couplers 31 and 34, a filter circuit 60, a control circuit 70, an antenna connection terminal 101, a high frequency input terminal 111, a control terminal 131, and an external output terminal. 141 and 142.
 本実施の形態では、方向性結合器31は、第1方向性結合器の一例であり、方向性結合器31の入力ポート311、出力ポート312及び結合ポート313は、それぞれ、第1入力ポート、第1出力ポート及び第1結合ポートの一例である。方向性結合器31の結合ポート313及びアイソレーションポート314は、制御回路70に接続されていない。 In this embodiment, the directional coupler 31 is an example of a first directional coupler, and the input port 311, the output port 312 and the coupling port 313 of the directional coupler 31 are respectively the first input port, It is an example of a first output port and a first coupling port. A coupling port 313 and an isolation port 314 of the directional coupler 31 are not connected to the control circuit 70 .
 方向性結合器34は、第2方向性結合器の一例であり、電力増幅回路10とフィルタ回路60との間の経路上を特定の方向に伝搬する電力の一部を取り出すことができる。ここでは、方向性結合器34は、双方向性結合器であり、順方向に伝搬する電力(進行波)の一部と、逆方向に伝搬する電力(反射波)の一部と、を取り出すことができる。 The directional coupler 34 is an example of a second directional coupler, and can extract part of the power propagating in a specific direction on the path between the power amplifier circuit 10 and the filter circuit 60. Here, the directional coupler 34 is a bidirectional coupler, and extracts part of the forward propagating power (progressive wave) and part of the backward propagating power (reflected wave). be able to.
 方向性結合器34は、入力ポート341と、出力ポート342と、結合ポート343と、アイソレーションポート344と、を有する。入力ポート341は、第2入力ポートの一例であり、電力(進行波)が印加されるポートであり、電力増幅回路10の出力端に接続される。結合ポート343は、第2結合ポートの一例であり、入力ポート341に印加された電力(進行波)の一部が結合されるポートであり、制御回路70に接続される。出力ポート342は、第2出力ポートの一例であり、入力ポート341に印加された電力(進行波)の他部が出力されるポートであり、フィルタ回路60及び方向性結合器31を介して、アンテナ接続端子101に接続される。アイソレーションポート344は、出力ポート342に印加された電力(反射波)の一部が結合されるポートであり、制御回路70に接続される。 The directional coupler 34 has an input port 341 , an output port 342 , a coupling port 343 and an isolation port 344 . The input port 341 is an example of a second input port, is a port to which power (traveling wave) is applied, and is connected to the output end of the power amplifier circuit 10 . The coupling port 343 is an example of a second coupling port, is a port to which part of the power (traveling wave) applied to the input port 341 is coupled, and is connected to the control circuit 70 . The output port 342 is an example of a second output port, and is a port that outputs the other part of the power (traveling wave) applied to the input port 341. Through the filter circuit 60 and the directional coupler 31, It is connected to the antenna connection terminal 101 . The isolation port 344 is a port to which part of the power (reflected wave) applied to the output port 342 is coupled, and is connected to the control circuit 70 .
 [5.2 効果など]
 以上のように、本実施の形態に係る高周波回路1Dは、パワークラス2で許容される最大出力パワー以上である第1最大出力パワーを許容する第1パワークラスに対応する電力増幅回路10と、電力増幅回路10の出力端に接続され、周波数分割複信用のバンドAのアップリンク動作バンドを含む通過帯域を有するフィルタ回路60と、方向性結合器31及び34と、電力増幅回路10を制御する制御回路70と、を備え、方向性結合器31は、フィルタ回路60を介して電力増幅回路10の出力端に接続される入力ポート311と、アンテナ接続端子101に接続される出力ポート312と、外部接続端子141に接続される結合ポート313と、を有し、方向性結合器34は、電力増幅回路10の出力端に接続される入力ポート341と、フィルタ回路60を介してアンテナ接続端子101に接続される出力ポート342と、制御回路70に接続される結合ポート343と、を有し、制御回路70は、結合ポート343からの第1信号に基づいて電力増幅回路10による高周波信号の増幅を制限する。
[5.2 Effects, etc.]
As described above, the high-frequency circuit 1D according to the present embodiment includes the power amplifier circuit 10 corresponding to the first power class that allows the first maximum output power that is equal to or higher than the maximum output power allowed in the power class 2, and the power amplifier circuit 10 a filter circuit 60 connected to the output of circuit 10 and having a passband including the band A uplink operating band for frequency division duplexing; directional couplers 31 and 34; and a control circuit for controlling power amplifier circuit 10. 70, the directional coupler 31 has an input port 311 connected to the output terminal of the power amplifier circuit 10 via the filter circuit 60, an output port 312 connected to the antenna connection terminal 101, and an external connection. The directional coupler 34 has an input port 341 connected to the output terminal of the power amplifier circuit 10 and is connected to the antenna connection terminal 101 via the filter circuit 60. and a coupling port 343 connected to the control circuit 70 , and the control circuit 70 limits amplification of the high-frequency signal by the power amplifier circuit 10 based on the first signal from the coupling port 343 . do.
 これによれば、制御回路70は、電力増幅回路10とフィルタ回路60との間に接続された方向性結合器34の結合ポート343から信号を取得することができる。したがって、フィルタ回路60に入力される高周波信号のパワーをより正確に把握することができ、高パワー信号によるフィルタ回路60の破損をより効果的に抑制することができる。 According to this, the control circuit 70 can acquire a signal from the coupling port 343 of the directional coupler 34 connected between the power amplifier circuit 10 and the filter circuit 60 . Therefore, it is possible to more accurately grasp the power of the high-frequency signal input to the filter circuit 60, and to more effectively suppress damage to the filter circuit 60 due to a high-power signal.
 また例えば、本実施の形態に係る高周波回路1Dにおいて、制御回路70は、電力増幅回路10への電源電圧の供給を停止することにより、電力増幅回路10による高周波信号の増幅を制限してもよい。 Further, for example, in the high-frequency circuit 1D according to the present embodiment, the control circuit 70 may limit the amplification of the high-frequency signal by the power amplifier circuit 10 by stopping the supply of the power supply voltage to the power amplifier circuit 10. .
 これによれば、電源電圧を用いて電力増幅回路10の増幅が制限されるので、より高速なフィードバック制御を実現することができる。 According to this, since the amplification of the power amplifier circuit 10 is restricted using the power supply voltage, faster feedback control can be realized.
 また例えば、本実施の形態に係る高周波回路1Dにおいて、制御回路70は、電力増幅回路10のバイアス電流を減少させることにより、電力増幅回路10による高周波信号の増幅を制限してもよい。 Further, for example, in the high-frequency circuit 1D according to the present embodiment, the control circuit 70 may limit the amplification of the high-frequency signal by the power amplifier circuit 10 by reducing the bias current of the power amplifier circuit 10.
 これによれば、バイアス電流を用いて電力増幅回路10の増幅が制限されるので、より簡易にフィードバック制御を実現することができる。 According to this, since the amplification of the power amplifier circuit 10 is limited using the bias current, feedback control can be realized more easily.
 また例えば、本実施の形態に係る高周波回路1Dにおいて、制御回路70は、結合ポート343からの第1信号の電力値が閾値以上である場合に、電力増幅回路10による高周波信号の増幅を制限してもよく、結合ポート343からの第1信号の電力値が閾値未満である場合に、電力増幅回路10による高周波信号の増幅を制限しなくてもよい。 Further, for example, in the high-frequency circuit 1D according to the present embodiment, the control circuit 70 limits the amplification of the high-frequency signal by the power amplifier circuit 10 when the power value of the first signal from the coupling port 343 is equal to or greater than the threshold. Alternatively, if the power value of the first signal from the coupling port 343 is less than the threshold, the amplification of the high frequency signal by the power amplifier circuit 10 may not be restricted.
 これによれば、進行波の電力値が大きい場合に電力増幅回路10の増幅を制限することができ、高周波回路1Dで許容される最大出力パワーを超える出力パワーの高周波信号が出力されるときに、迅速に電力増幅回路10の増幅を制限することができる。 According to this, when the power value of the traveling wave is large, the amplification of the power amplifier circuit 10 can be limited, and when a high frequency signal with an output power exceeding the maximum output power allowed by the high frequency circuit 1D is output, , the amplification of the power amplifier circuit 10 can be limited quickly.
 また例えば、本実施の形態に係る高周波回路1Dにおいて、方向性結合器34は、さらに、制御回路70に接続されるアイソレーションポート344を含んでもよく、制御回路70は、結合ポート343からの第1信号及びアイソレーションポート344からの第2信号に基づいて、電力増幅回路10による高周波信号の増幅を制限してもよい。 Further, for example, in the high-frequency circuit 1D according to the present embodiment, the directional coupler 34 may further include an isolation port 344 connected to the control circuit 70 , and the control circuit 70 receives the second signal from the coupling port 343 . Amplification of high frequency signals by the power amplifier circuit 10 may be limited based on the 1 signal and the second signal from the isolation port 344 .
 これによれば、進行波だけでなく反射波にも基づいて電力増幅回路10の増幅が制限されるので、方向性結合器34に供給された電力に基づくフィードバック制御が可能となる。したがって、送信経路上の部品(例えばフィルタ回路60等)を通過する高周波信号のパワーをより正確に制御に反映することができ、高パワー信号によるモジュールの破損をより効果的に抑制することができる。 According to this, the amplification of the power amplifier circuit 10 is limited based on not only the traveling wave but also the reflected wave, so feedback control based on the power supplied to the directional coupler 34 is possible. Therefore, it is possible to more accurately reflect the power of the high-frequency signal passing through the components on the transmission path (for example, the filter circuit 60, etc.) in the control, and to more effectively suppress damage to the module due to high-power signals. .
 また例えば、本実施の形態に係る高周波回路1Dにおいて、制御回路70は、結合ポート343からの第1信号の電力値及びアイソレーションポート344からの第2信号の電力値の和が閾値以上である場合に、電力増幅回路10による高周波信号の増幅を制限してもよく、第1信号の電力値及び第2信号の電力値の和が閾値未満である場合に、電力増幅回路10による高周波信号の増幅を制限しなくてもよい。 Further, for example, in the high-frequency circuit 1D according to the present embodiment, the control circuit 70 determines that the sum of the power value of the first signal from the coupling port 343 and the power value of the second signal from the isolation port 344 is equal to or greater than the threshold. In this case, the amplification of the high frequency signal by the power amplifier circuit 10 may be restricted, and when the sum of the power value of the first signal and the power value of the second signal is less than the threshold, the power amplifier circuit 10 may limit the amplification of the high frequency signal. Amplification need not be limited.
 これによれば、進行波の電力値と反射波の電力値の和が大きい場合に電力増幅回路10の増幅を制限することができ、送信経路上の部品(例えばフィルタ回路60)で許容される最大出力パワーを超えるパワーの高周波信号が出力されるときに、迅速に電力増幅回路10の増幅を制限することができる。 According to this, when the sum of the power value of the forward wave and the power value of the reflected wave is large, the amplification of the power amplifier circuit 10 can be limited, and the components (for example, the filter circuit 60) on the transmission path allow When a high-frequency signal with power exceeding the maximum output power is output, the amplification of the power amplifier circuit 10 can be quickly limited.
 また、本実施の形態に係る通信装置5Dは、高周波信号を処理するRFIC3と、RFIC3とアンテナ2との間で高周波信号を伝送する高周波回路1Dと、を備える。 Further, the communication device 5D according to the present embodiment includes an RFIC 3 that processes high frequency signals, and a high frequency circuit 1D that transmits high frequency signals between the RFIC 3 and the antenna 2.
 これによれば、上記高周波回路1Dの効果を通信装置5Dで実現することができる。 According to this, the effect of the high-frequency circuit 1D can be realized in the communication device 5D.
 (他の実施の形態)
 以上、本発明に係る高周波回路、通信装置及び通信方法について、実施の形態に基づいて説明したが、本発明に係る高周波回路、通信装置及び通信方法は、上記実施の形態に限定されるものではない。上記実施の形態における任意の構成要素を組み合わせて実現される別の実施の形態や、上記実施の形態に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、上記高周波回路を内蔵した各種機器も本発明に含まれる。
(Other embodiments)
Although the high-frequency circuit, communication device, and communication method according to the present invention have been described above based on the embodiments, the high-frequency circuit, communication device, and communication method according to the present invention are not limited to the above-described embodiments. do not have. Another embodiment realized by combining arbitrary constituent elements in the above embodiment, and a modification obtained by applying various modifications that a person skilled in the art can think of without departing from the scope of the present invention to the above embodiment For example, the present invention also includes various devices incorporating the high-frequency circuit.
 例えば、上記各実施の形態に係る高周波回路及び通信装置の回路構成において、図面に開示された各回路素子及び信号経路を接続する経路の間に、別の回路素子及び配線などが挿入されてもよい。例えば、電力増幅回路10とフィルタ回路60との間、及び/又は、フィルタ回路60とアンテナ接続端子101との間に、インピーダンス整合回路が挿入されてもよい。 For example, in the circuit configuration of the high-frequency circuit and the communication device according to each of the above-described embodiments, even if another circuit element and wiring are inserted between the paths connecting the circuit elements and signal paths disclosed in the drawings. good. For example, an impedance matching circuit may be inserted between the power amplifier circuit 10 and the filter circuit 60 and/or between the filter circuit 60 and the antenna connection terminal 101 .
 また例えば、上記実施の形態1~5は、任意に組み合わせられてもよい。例えば、上記実施の形態2におけるスイッチ32及び33は、実施の形態3~5に係る高周波回路1B~1Dのいずれかに採用されてもよい。また、上記実施の形態3及び5が組み合わされてもよい。つまり、実施の形態5に係る高周波回路1Dは、さらに、電力増幅回路10の出力端に接続され、時分割複信用のバンドBを含む通過帯域を有するフィルタ回路602を備えてもよい。この場合、方向性結合器34は、電力増幅回路10とフィルタ回路60及び602との間に接続されてもよい。 Also, for example, the first to fifth embodiments may be combined arbitrarily. For example, the switches 32 and 33 in the above second embodiment may be employed in any one of the high frequency circuits 1B to 1D according to the third to fifth embodiments. Moreover, the third and fifth embodiments may be combined. That is, the high-frequency circuit 1D according to the fifth embodiment may further include a filter circuit 602 connected to the output end of the power amplifier circuit 10 and having a passband including band B for time division duplexing. In this case, directional coupler 34 may be connected between power amplifier circuit 10 and filter circuits 60 and 602 .
 なお、上記各実施の形態において、方向性結合器31及び34として、それぞれ、双方向性結合器が用いられていたが、これに限定されない。例えば、方向性結合器31及び/又は34として、単方向性結合器が用いられてもよい。この場合、方向性結合器31及び/又は34は、アイソレーションポートを備えなくてよい。つまり、アイソレーションポート314又は344は、制御回路70及び外部出力端子142に接続されなくてもよい。このとき、制御回路70は、プリアンプ701b及び検波器702bを備えなくてもよく、電力計算器703は、供給電力値Psを計算しなくてもよい。 Although bidirectional couplers are used as the directional couplers 31 and 34 in each of the above embodiments, they are not limited to this. For example, unidirectional couplers may be used as directional couplers 31 and/or 34 . In this case, the directional couplers 31 and/or 34 may not have isolation ports. That is, the isolation port 314 or 344 does not have to be connected to the control circuit 70 and the external output terminal 142 . At this time, the control circuit 70 may not include the preamplifier 701b and the wave detector 702b, and the power calculator 703 may not calculate the supplied power value Ps.
 なお、上記実施の形態3に係る高周波回路1B及び通信装置5Bは、バンドA及びBに対応していたが、対応可能なバンドの数は、2つに限定されない。例えば、高周波回路及び通信装置は、バンドA及びBに加えて、バンドCに対応可能に構成されてもよい。このような高周波回路及び通信装置について図8を参照しながら説明する。 Although the high-frequency circuit 1B and the communication device 5B according to the third embodiment correspond to the bands A and B, the number of bands that can correspond is not limited to two. For example, the high-frequency circuit and communication device may be configured to support band C in addition to bands A and B. Such a high frequency circuit and communication device will be described with reference to FIG.
 図8は、他の実施の形態に係る高周波回路1E及び通信装置5Eの回路構成図である。なお、通信装置5Eは、さらにアンテナ2Eを備え、高周波回路1Bの代わりに高周波回路1Eを備える点を除いて、実施の形態3に係る通信装置5Bと同様であるので説明を省略する。 FIG. 8 is a circuit configuration diagram of a high frequency circuit 1E and a communication device 5E according to another embodiment. Note that the communication device 5E is the same as the communication device 5B according to the third embodiment, except that the communication device 5E further includes an antenna 2E and a high-frequency circuit 1E instead of the high-frequency circuit 1B, so description thereof will be omitted.
 高周波回路1Eは、電力増幅回路10Bと、電力増幅器12と、方向性結合器31及び35と、スイッチ51E、52、53、54と、フィルタ回路601及び602と、フィルタ64と、制御回路70と、アンテナ接続端子101及び102と、高周波入力端子111及び112と、高周波出力端子121と、制御端子131と、外部出力端子141~143と、を備える。 The high frequency circuit 1E includes a power amplifier circuit 10B, a power amplifier 12, directional couplers 31 and 35, switches 51E, 52, 53 and 54, filter circuits 601 and 602, a filter 64, and a control circuit 70. , antenna connection terminals 101 and 102, high frequency input terminals 111 and 112, a high frequency output terminal 121, a control terminal 131, and external output terminals 141-143.
 アンテナ接続端子102は、高周波回路1Eの外部でアンテナ2Eに接続される。 The antenna connection terminal 102 is connected to the antenna 2E outside the high frequency circuit 1E.
 高周波入力端子112は、高周波回路1Eの外部から、バンドCの送信信号を受けるための入力端子である。本実施の形態では、高周波入力端子112は、高周波回路1Eの外部でRFIC3に接続される。 The high frequency input terminal 112 is an input terminal for receiving a transmission signal of band C from the outside of the high frequency circuit 1E. In this embodiment, the high frequency input terminal 112 is connected to the RFIC 3 outside the high frequency circuit 1E.
 外部出力端子143は、高周波回路1Eの外部に信号を供給するための端子である。高周波回路1Eの外部において、外部出力端子143はRFIC3に接続される。高周波回路1Eの内部において、外部出力端子143は方向性結合器35の結合ポート353に接続される。 The external output terminal 143 is a terminal for supplying a signal to the outside of the high frequency circuit 1E. The external output terminal 143 is connected to the RFIC 3 outside the high frequency circuit 1E. The external output terminal 143 is connected to the coupling port 353 of the directional coupler 35 inside the high frequency circuit 1E.
 電力増幅器12は、高周波入力端子112とフィルタ64との間に接続され、バンドCの送信信号を増幅することができる。電力増幅器12は、、第2パワークラスに対応しており、第1パワークラスには対応しなくてもよい。 The power amplifier 12 is connected between the high frequency input terminal 112 and the filter 64, and can amplify the band C transmission signal. The power amplifier 12 supports the second power class and does not need to support the first power class.
 方向性結合器35は、フィルタ64とアンテナ接続端子102との間の経路上を特定の方向に伝搬する電力の一部を取り出すことができる。ここでは、方向性結合器35は、単方向性結合器であり、順方向に伝搬する電力(進行波)の一部を取り出すことができる。なお、方向性結合器35として、双方向性結合器が用いられてもよい。また、方向性結合器35は、高周波回路1Eに含まれなくてもよい。 The directional coupler 35 can extract part of the power propagating in a specific direction on the path between the filter 64 and the antenna connection terminal 102 . Here, the directional coupler 35 is a unidirectional coupler, and can extract part of the forward propagating power (travelling wave). A bidirectional coupler may be used as the directional coupler 35 . Moreover, the directional coupler 35 may not be included in the high frequency circuit 1E.
 方向性結合器35は、入力ポート351と、出力ポート352と、結合ポート353と、を有する。入力ポート351は、電力(進行波)が印加されるポートであり、フィルタ64を介して電力増幅器12の出力端に接続される。結合ポート353は、入力ポート351に印加された電力(進行波)の一部が結合されるポートであり、外部出力端子143に接続されるが、制御回路70には接続されない。出力ポート352は、入力ポート351に印加された電力(進行波)の他部が出力されるポートであり、アンテナ接続端子102に接続される。 The directional coupler 35 has an input port 351 , an output port 352 and a coupling port 353 . The input port 351 is a port to which power (traveling wave) is applied, and is connected to the output terminal of the power amplifier 12 via the filter 64 . A coupling port 353 is a port to which a part of the power (traveling wave) applied to the input port 351 is coupled, and is connected to the external output terminal 143 but not connected to the control circuit 70 . The output port 352 is a port that outputs the other part of the power (traveling wave) applied to the input port 351 and is connected to the antenna connection terminal 102 .
 スイッチ51Eは、アンテナ接続端子101及び102とフィルタ回路601及び602並びにフィルタ63との間に接続される。スイッチ51Eは、端子511~515を有する。端子511は、方向性結合器31を介してアンテナ接続端子101に接続される。端子512は、フィルタ回路601に接続される。端子513は、フィルタ回路602に接続される。端子514は、方向性結合器35を介してアンテナ接続端子102に接続される。端子515は、フィルタ64に接続される。 The switch 51E is connected between the antenna connection terminals 101 and 102, the filter circuits 601 and 602, and the filter 63. The switch 51E has terminals 511-515. Terminal 511 is connected to antenna connection terminal 101 via directional coupler 31 . Terminal 512 is connected to filter circuit 601 . Terminal 513 is connected to filter circuit 602 . Terminal 514 is connected to antenna connection terminal 102 via directional coupler 35 . Terminal 515 is connected to filter 64 .
 この接続構成において、スイッチ51Eは、例えばRFIC3からの制御信号に基づいて、端子511を端子512及び513に排他的に接続することができる。さらに、スイッチ51Eは、端子514を端子515に排他的に接続することができる。 In this connection configuration, the switch 51E can exclusively connect the terminal 511 to the terminals 512 and 513 based on a control signal from the RFIC 3, for example. In addition, switch 51E can connect terminal 514 to terminal 515 exclusively.
 フィルタ64は、アンテナ接続端子102と電力増幅器12との間に接続される。具体的には、フィルタ64の一端は、電力増幅器12の出力端に接続され、フィルタ64の他端は、スイッチ51E及び方向性結合器35を介してアンテナ接続端子102に接続される。 The filter 64 is connected between the antenna connection terminal 102 and the power amplifier 12 . Specifically, one end of the filter 64 is connected to the output end of the power amplifier 12, and the other end of the filter 64 is connected to the antenna connection terminal 102 via the switch 51E and the directional coupler 35.
 フィルタ64は、バンドCの送信帯域を含む通過帯域を有する。バンドCは、標準化団体などによって予め定義されたRATを用いて構築される通信システムのための周波数バンドである。バンドCは、FDD用の周波数バンドであってもよく、TDD用の周波数バンドであってもよく、SUL(Supplementary Uplink)バンドであってもよい。 The filter 64 has a passband that includes the band C transmission band. Band C is a frequency band for communication systems built using RATs predefined by standards bodies and the like. Band C may be the frequency band for FDD, the frequency band for TDD, or the SUL (Supplementary Uplink) band.
 本発明は、フロントエンド部に配置される高周波回路として、携帯電話などの通信機器に広く利用できる。 The present invention can be widely used in communication equipment such as mobile phones as a high-frequency circuit arranged in the front end section.
 1、1A、1B、1C、1D、1E 高周波回路
 2 アンテナ
 3 RFIC
 4 BBIC
 5、5A、5B、5C、5D、5E 通信装置
 10、10B、10C 電力増幅回路
 11、11a、11b、11B、12 電力増幅器
 21 低雑音増幅器
 31、34、35 方向性結合器
 32、33、51、51E、52、53、54 スイッチ
 41、42 トランスフォーマ
 60、60C、601、602 フィルタ回路
 61、61a、61b、62、63、64 フィルタ
 70 制御回路
 101、102 アンテナ接続端子
 111、112 高周波入力端子
 121 高周波出力端子
 131 制御端子
 141、142、143 外部出力端子
 311、341 入力ポート
 312、342 出力ポート
 313、343 結合ポート
 314、344 アイソレーションポート
 321、322、331、332、511、512、513、521、522、523、531、532、533、541、542、543 端子
 411、421、422 入力端子
 412、424 グランド端子
 413、414、423 出力端子
 415、425 一次コイル
 416、426 二次コイル
 701a、701b プリアンプ
 702a、702b 検波器
 703 電力計算器
 704 コンパレータ
 705 コントローラ
1, 1A, 1B, 1C, 1D, 1E high frequency circuit 2 antenna 3 RFIC
4 BBIC
5, 5A, 5B, 5C, 5D, 5E Communication Device 10, 10B, 10C Power Amplifier Circuit 11, 11a, 11b, 11B, 12 Power Amplifier 21 Low Noise Amplifier 31, 34, 35 Directional Coupler 32, 33, 51 , 51E, 52, 53, 54 Switches 41, 42 Transformers 60, 60C, 601, 602 Filter circuits 61, 61a, 61b, 62, 63, 64 Filters 70 Control circuits 101, 102 Antenna connection terminals 111, 112 High frequency input terminal 121 High-frequency output terminal 131 Control terminals 141, 142, 143 External output terminals 311, 341 Input ports 312, 342 Output ports 313, 343 Coupling ports 314, 344 Isolation ports 321, 322, 331, 332, 511, 512, 513, 521 , 522, 523, 531, 532, 533, 541, 542, 543 Terminals 411, 421, 422 Input terminals 412, 424 Ground terminals 413, 414, 423 Output terminals 415, 425 Primary coils 416, 426 Secondary coils 701a, 701b Preamplifier 702a, 702b Detector 703 Power calculator 704 Comparator 705 Controller

Claims (19)

  1.  パワークラス2で許容される最大出力パワー以上である第1最大出力パワーを許容する第1パワークラスに対応する電力増幅回路と、
     前記電力増幅回路の出力端に接続され、周波数分割複信用の第1バンドのアップリンク動作バンドを含む通過帯域を有する第1フィルタ回路と、
     方向性結合器と、
     前記電力増幅回路を制御する制御回路と、を備え、
     前記方向性結合器は、
     前記第1フィルタ回路を介して前記電力増幅回路の出力端に接続される入力ポートと、
     アンテナ接続端子に接続される出力ポートと、
     前記制御回路及び外部接続端子に接続される結合ポートと、を有し、
     前記制御回路は、前記結合ポートからの第1信号に基づいて前記電力増幅回路による高周波信号の増幅を制限する、
     高周波回路。
    a power amplifier circuit corresponding to a first power class that allows a first maximum output power that is equal to or higher than the maximum output power allowed in power class 2;
    a first filter circuit connected to the output of the power amplifier circuit and having a passband including a first band uplink operating band for frequency division duplexing;
    a directional coupler;
    a control circuit that controls the power amplifier circuit,
    The directional coupler is
    an input port connected to the output end of the power amplifier circuit via the first filter circuit;
    an output port connected to the antenna connection terminal;
    a coupling port connected to the control circuit and an external connection terminal;
    wherein the control circuit limits amplification of a high frequency signal by the power amplifier circuit based on a first signal from the coupling port;
    high frequency circuit.
  2.  前記制御回路は、前記電力増幅回路への電源電圧の供給を停止することにより、前記電力増幅回路による高周波信号の増幅を制限する、
     請求項1に記載の高周波回路。
    The control circuit limits the amplification of the high-frequency signal by the power amplifier circuit by stopping the supply of the power supply voltage to the power amplifier circuit.
    A high-frequency circuit according to claim 1.
  3.  前記制御回路は、前記電力増幅回路のバイアス電流を減少させることにより、前記電力増幅回路による高周波信号の増幅を制限する、
     請求項1又は2に記載の高周波回路。
    The control circuit limits amplification of the high-frequency signal by the power amplifier circuit by reducing the bias current of the power amplifier circuit.
    3. The high-frequency circuit according to claim 1 or 2.
  4.  前記制御回路は、前記第1信号の電力値が閾値以上である場合に、前記電力増幅回路による高周波信号の増幅を制限し、前記第1信号の電力値が前記閾値未満である場合に、前記電力増幅回路による高周波信号の増幅を制限しない、
     請求項1~3のいずれか1項に記載の高周波回路。
    The control circuit limits amplification of the high-frequency signal by the power amplifier circuit when the power value of the first signal is equal to or greater than a threshold, and limits the amplification of the high-frequency signal by the power amplifier circuit when the power value of the first signal is less than the threshold. Do not limit the amplification of high-frequency signals by the power amplifier circuit,
    A high-frequency circuit according to any one of claims 1 to 3.
  5.  さらに、前記結合ポートと前記制御回路との間に接続された第1スイッチを備え、
     前記第1スイッチは、
     前記第1バンドの信号の送信に前記第1パワークラスが適用される場合に、前記結合ポートを前記制御回路に接続し、
     前記第1バンドの信号の送信に前記第1最大出力パワーよりも低い第2最大出力パワーを許容する第2パワークラスが適用される場合に、前記結合ポートを前記制御回路に接続しない、
     請求項1~4のいずれか1項に記載の高周波回路。
    further comprising a first switch connected between said coupling port and said control circuit;
    The first switch is
    connecting the coupling port to the control circuit when the first power class is applied to the transmission of the signal in the first band;
    not connecting the coupling port to the control circuit when a second power class allowing a second maximum output power lower than the first maximum output power is applied for transmission of signals in the first band;
    A high-frequency circuit according to any one of claims 1 to 4.
  6.  前記方向性結合器は、さらに、前記制御回路に接続されるアイソレーションポートを有し、
     前記制御回路は、前記結合ポートからの前記第1信号及び前記アイソレーションポートからの第2信号に基づいて前記電力増幅回路による高周波信号の増幅を制限する、
     請求項1~5のいずれか1項に記載の高周波回路。
    The directional coupler further has an isolation port connected to the control circuit,
    The control circuit limits amplification of a high frequency signal by the power amplifier circuit based on the first signal from the coupling port and the second signal from the isolation port.
    A high-frequency circuit according to any one of claims 1 to 5.
  7.  前記制御回路は、前記第1信号の電力値及び前記第2信号の電力値の和が閾値以上である場合に、前記電力増幅回路による高周波信号の増幅を制限し、前記第1信号の電力値及び前記第2信号の電力値の和が前記閾値未満である場合に、前記電力増幅回路による高周波信号の増幅を制限しない、
     請求項6に記載の高周波回路。
    The control circuit limits amplification of the high-frequency signal by the power amplifier circuit when the sum of the power value of the first signal and the power value of the second signal is equal to or greater than a threshold, and the power value of the first signal and not limiting the amplification of the high-frequency signal by the power amplification circuit when the sum of the power values of the second signal is less than the threshold;
    A high-frequency circuit according to claim 6.
  8.  さらに、前記アイソレーションポートと前記制御回路との間に接続された第2スイッチを備え、
     前記第2スイッチは、
     前記第1バンドの信号の送信に前記第1パワークラスが適用される場合に、前記アイソレーションポートを前記制御回路に接続し、
     前記第1バンドの信号の送信に前記第1最大出力パワーよりも低い第2最大出力パワーを許容する第2パワークラスが適用される場合に、前記アイソレーションポートを前記制御回路に接続しない、
     請求項6又は7に記載の高周波回路。
    further comprising a second switch connected between the isolation port and the control circuit;
    The second switch is
    connecting the isolation port to the control circuit when the first power class is applied to transmission of the first band signal;
    not connecting the isolation port to the control circuit when a second power class that allows a second maximum output power lower than the first maximum output power is applied to the transmission of the signal in the first band;
    A high-frequency circuit according to claim 6 or 7.
  9.  前記高周波回路は、さらに、前記電力増幅回路の出力端に接続され、時分割複信用の第2バンドを含む通過帯域を有する第2フィルタ回路を備える、
     請求項1~8のいずれか1項に記載の高周波回路。
    The high frequency circuit further comprises a second filter circuit connected to the output end of the power amplifier circuit and having a passband including a second band for time division duplexing.
    A high-frequency circuit according to any one of claims 1 to 8.
  10.  前記高周波回路は、さらに、合成器を備え、
     前記合成器は、
     第1入力端子と、
     第2入力端子と、
     前記入力ポートに接続される出力端子と、を有し、
     前記電力増幅回路は、
     第1電力増幅器と、
     第2電力増幅器と、を有し、
     前記第1フィルタ回路は、
     前記第1バンドのアップリンク動作バンドを含む通過帯域を有し、前記第1電力増幅器の出力端と前記合成器の前記第1入力端子との間に接続される第1フィルタと、
     前記第1バンドのアップリンク動作バンドを含む通過帯域を有し、前記第2電力増幅器の出力端と前記合成器の前記第2入力端子との間に接続される第2フィルタと、を有する、
     請求項1~9のいずれか1項に記載の高周波回路。
    The high-frequency circuit further comprises a synthesizer,
    The combiner is
    a first input terminal;
    a second input terminal;
    an output terminal connected to the input port;
    The power amplifier circuit is
    a first power amplifier;
    a second power amplifier;
    The first filter circuit is
    a first filter having a passband that includes the first band of uplink operating bands and connected between the output of the first power amplifier and the first input of the combiner;
    a second filter having a passband that includes the first band of uplink operating bands and connected between the output of the second power amplifier and the second input of the combiner;
    A high-frequency circuit according to any one of claims 1 to 9.
  11.  高周波信号を処理する信号処理回路と、
     前記信号処理回路とアンテナとの間で前記高周波信号を伝送する、請求項1~10のいずれか1項に記載の高周波回路と、を備える、
     通信装置。
    a signal processing circuit that processes high frequency signals;
    A high-frequency circuit according to any one of claims 1 to 10, which transmits the high-frequency signal between the signal processing circuit and the antenna,
    Communication device.
  12.  パワークラス2で許容される最大出力パワー以上である第1最大出力パワーを許容する第1パワークラスに対応する電力増幅回路と、
     前記電力増幅回路の出力端に接続され、周波数分割複信用の第1バンドのアップリンク動作バンドを含む通過帯域を有する第1フィルタ回路と、
     第1方向性結合器及び第2方向性結合器と、
     前記電力増幅回路を制御する制御回路と、を備え、
     前記第1方向性結合器は、
     前記第1フィルタ回路を介して前記電力増幅回路の出力端に接続される第1入力ポートと、
     アンテナ接続端子に接続される第1出力ポートと、
     外部接続端子に接続される第1結合ポートと、を有し、
     前記第2方向性結合器は、
     前記電力増幅回路の出力端に接続される第2入力ポートと、
     前記第1フィルタ回路を介して前記アンテナ接続端子に接続される第2出力ポートと、
     前記制御回路に接続される第2結合ポートと、を有し、
     前記制御回路は、前記第2結合ポートからの第1信号に基づいて前記電力増幅回路による高周波信号の増幅を制限する、
     高周波回路。
    a power amplifier circuit corresponding to a first power class that allows a first maximum output power that is equal to or higher than the maximum output power allowed in power class 2;
    a first filter circuit connected to the output of the power amplifier circuit and having a passband including a first band uplink operating band for frequency division duplexing;
    a first directional coupler and a second directional coupler;
    a control circuit that controls the power amplifier circuit,
    The first directional coupler is
    a first input port connected to the output terminal of the power amplifier circuit via the first filter circuit;
    a first output port connected to the antenna connection terminal;
    a first coupling port connected to the external connection terminal;
    The second directional coupler is
    a second input port connected to the output terminal of the power amplifier circuit;
    a second output port connected to the antenna connection terminal via the first filter circuit;
    a second coupling port connected to the control circuit;
    wherein the control circuit limits amplification of a high frequency signal by the power amplifier circuit based on a first signal from the second coupling port;
    high frequency circuit.
  13.  前記制御回路は、前記電力増幅回路への電源電圧の供給を停止することにより、前記電力増幅回路による高周波信号の増幅を制限する、
     請求項12に記載の高周波回路。
    The control circuit limits the amplification of the high-frequency signal by the power amplifier circuit by stopping the supply of the power supply voltage to the power amplifier circuit.
    A high frequency circuit according to claim 12.
  14.  前記制御回路は、前記電力増幅回路のバイアス電流を減少させることにより、前記電力増幅回路による高周波信号の増幅を制限する、
     請求項12又は13に記載の高周波回路。
    The control circuit limits amplification of the high-frequency signal by the power amplifier circuit by reducing the bias current of the power amplifier circuit.
    14. The high frequency circuit according to claim 12 or 13.
  15.  前記制御回路は、前記第1信号の電力値が閾値以上である場合に、前記電力増幅回路による高周波信号の増幅を制限し、前記第1信号の電力値が前記閾値未満である場合に、前記電力増幅回路による高周波信号の増幅を制限しない、
     請求項12~14のいずれか1項に記載の高周波回路。
    The control circuit limits amplification of the high-frequency signal by the power amplifier circuit when the power value of the first signal is equal to or greater than a threshold, and limits the amplification of the high-frequency signal by the power amplifier circuit when the power value of the first signal is less than the threshold. Do not limit the amplification of high-frequency signals by the power amplifier circuit,
    The high-frequency circuit according to any one of claims 12-14.
  16.  前記第2方向性結合器は、さらに、前記制御回路に接続されるアイソレーションポートを有し、
     前記制御回路は、前記第2結合ポートからの前記第1信号及び前記アイソレーションポートからの第2信号に基づいて前記電力増幅回路による高周波信号の増幅を制限する、
     請求項12~15のいずれか1項に記載の高周波回路。
    The second directional coupler further has an isolation port connected to the control circuit,
    The control circuit limits amplification of a high frequency signal by the power amplifier circuit based on the first signal from the second coupling port and the second signal from the isolation port.
    The high-frequency circuit according to any one of claims 12-15.
  17.  前記制御回路は、前記第1信号の電力値及び前記第2信号の電力値の和が閾値以上である場合に、前記電力増幅回路による高周波信号の増幅を制限し、前記第1信号の電力値及び前記第2信号の電力値の和が前記閾値未満である場合に、前記電力増幅回路による高周波信号の増幅を制限しない、
     請求項16に記載の高周波回路。
    The control circuit limits amplification of the high-frequency signal by the power amplifier circuit when the sum of the power value of the first signal and the power value of the second signal is equal to or greater than a threshold, and the power value of the first signal and not limiting the amplification of the high-frequency signal by the power amplification circuit when the sum of the power values of the second signal is less than the threshold;
    17. A high frequency circuit according to claim 16.
  18.  前記高周波回路は、さらに、前記電力増幅回路の出力端に接続され、時分割複信用の第2バンドを含む通過帯域を有する第2フィルタ回路を備える、
     請求項12~17のいずれか1項に記載の高周波回路。
    The high frequency circuit further comprises a second filter circuit connected to the output end of the power amplifier circuit and having a passband including a second band for time division duplexing.
    The high-frequency circuit according to any one of claims 12-17.
  19.  高周波信号を処理する信号処理回路と、
     前記信号処理回路とアンテナとの間で前記高周波信号を伝送する、請求項12~18のいずれか1項に記載の高周波回路と、を備える、
     通信装置。
    a signal processing circuit that processes high frequency signals;
    The high-frequency circuit according to any one of claims 12 to 18, which transmits the high-frequency signal between the signal processing circuit and the antenna,
    Communication device.
PCT/JP2022/031100 2021-09-02 2022-08-17 High frequency circuit, and communication device WO2023032679A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021143489 2021-09-02
JP2021-143489 2021-09-02

Publications (1)

Publication Number Publication Date
WO2023032679A1 true WO2023032679A1 (en) 2023-03-09

Family

ID=85411141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/031100 WO2023032679A1 (en) 2021-09-02 2022-08-17 High frequency circuit, and communication device

Country Status (1)

Country Link
WO (1) WO2023032679A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1168611A (en) * 1997-08-25 1999-03-09 Oki Electric Ind Co Ltd Radio communication equipment
WO2013099543A1 (en) * 2011-12-28 2013-07-04 株式会社村田製作所 High frequency signal processing apparatus and wireless communication apparatus
JP2015126458A (en) * 2013-12-27 2015-07-06 株式会社村田製作所 Front-end circuit
JP2018157396A (en) * 2017-03-17 2018-10-04 株式会社東芝 Output monitor device and transmitter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1168611A (en) * 1997-08-25 1999-03-09 Oki Electric Ind Co Ltd Radio communication equipment
WO2013099543A1 (en) * 2011-12-28 2013-07-04 株式会社村田製作所 High frequency signal processing apparatus and wireless communication apparatus
JP2015126458A (en) * 2013-12-27 2015-07-06 株式会社村田製作所 Front-end circuit
JP2018157396A (en) * 2017-03-17 2018-10-04 株式会社東芝 Output monitor device and transmitter

Similar Documents

Publication Publication Date Title
CN111245468B (en) Radio frequency circuit and electronic device
US20180248569A1 (en) Demultiplexing apparatus and method of designing the apparatus
KR101301371B1 (en) Systems and methods for maintaining a controlled power output at an antenna port over a range of frequencies defined by two or more frequency bands
US8699975B1 (en) Directional coupler architecture for radio frequency power amplifier
JP5435309B2 (en) Directional coupler and wireless communication device
US20140306780A1 (en) Duplexers
CN111245469B (en) Radio frequency circuit and electronic device
US20150200631A1 (en) Dual-band doherty combiner/impedance transformer circuit and doherty power amplifier including the same
US11349510B2 (en) Radio frequency front end module and communication device
US11336310B2 (en) Radio frequency circuit and communication device
US11381261B2 (en) Radio-frequency module and communication apparatus
US11757476B2 (en) Radio frequency module and communication device
US20130316663A1 (en) Matching device, transmitting amplifier, and wireless communication device
WO2023032679A1 (en) High frequency circuit, and communication device
US7505743B2 (en) Dual band transmitter having filtering coupler
US20240097629A1 (en) Radio-frequency module and communication apparatus
US12095489B2 (en) High-frequency circuit and communication device
WO2022138001A1 (en) High-frequency circuit, high-frequency module, and communication device
JP2014090222A (en) Radio communication device
US20210314010A1 (en) Radio-frequency module and communication device
JP2004343419A (en) Directional coupler
JP2013030904A (en) Directional coupler and wireless communication device
WO2023243175A1 (en) High-frequency circuit and communication device
CN115004562A (en) High-frequency circuit and communication device
US20240014845A1 (en) Radio-frequency circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864264

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22864264

Country of ref document: EP

Kind code of ref document: A1