[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023030468A1 - 内外混燃机 - Google Patents

内外混燃机 Download PDF

Info

Publication number
WO2023030468A1
WO2023030468A1 PCT/CN2022/116643 CN2022116643W WO2023030468A1 WO 2023030468 A1 WO2023030468 A1 WO 2023030468A1 CN 2022116643 W CN2022116643 W CN 2022116643W WO 2023030468 A1 WO2023030468 A1 WO 2023030468A1
Authority
WO
WIPO (PCT)
Prior art keywords
turbine
rotating shaft
motor
combustion chamber
thrust
Prior art date
Application number
PCT/CN2022/116643
Other languages
English (en)
French (fr)
Inventor
靳普
Original Assignee
靳普科技(北京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 靳普科技(北京)有限公司 filed Critical 靳普科技(北京)有限公司
Publication of WO2023030468A1 publication Critical patent/WO2023030468A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/12Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engines being mechanically coupled
    • F01K23/14Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engines being mechanically coupled including at least one combustion engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • F01K27/02Plants modified to use their waste heat, other than that of exhaust, e.g. engine-friction heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to an internal and external mixed combustion engine, which belongs to the technical field of engines.
  • the gas turbine uses continuously flowing gas as the working medium to drive the impeller to rotate at high speed, and converts the energy of the fuel into useful work.
  • It is a rotating impeller heat engine. It mainly includes three major parts: compressor, combustion chamber and turbine: the compressor sucks in air from the external atmosphere, and compresses it step by step to pressurize it, and the air temperature also increases accordingly; the compressed air is compressed to the combustion chamber and the nozzle
  • the incoming fuel is mixed and burned to generate high-temperature and high-pressure gas; then it enters the turbine to expand and do work, and the turbine drives the compressor and the external load rotor to rotate at high speed, which can realize the partial conversion of the chemical energy of the gas or liquid fuel into mechanical work and heat energy , and can output electric energy by connecting a generator.
  • the gas turbine has the advantages of compact structure, high power, and easy installation, and has become a widely used power machine.
  • a single gas turbine has limited efficiency, and a large amount of useful energy is wasted when the exhaust gas is discharged into the surrounding environment, resulting in energy waste, and the waste heat in the exhaust gas will have a certain impact on the environment.
  • the present invention provides an internal and external mixed combustion engine, which can effectively recover the waste heat of the exhaust gas, realize the combined utilization of gas and steam of the gas turbine, improve the efficiency of the gas turbine, and reduce energy waste.
  • An internal and external mixed combustion engine including a gas turbine and a steam generator, the exhaust end of the gas turbine is connected to the intake end of the steam generator, and the steam outlet end of the steam generator is connected to the gas turbine;
  • the gas turbine is a multi-rotor gas turbine, including a first rotor system and a second rotor system;
  • the first rotor system includes a first rotating shaft, a first motor, a first compressor, a first turbine, and a first combustion chamber, and the first motor, first compressor, and first turbine are sequentially sleeved on the first rotating shaft ;
  • the outlet end of the first compressor is connected to the intake end of the first combustion chamber;
  • the exhaust end of the first combustion chamber is connected to the intake end of the first turbine;
  • the second rotor system includes a second rotating shaft, a second turbine and a second motor, the second turbine and the second motor are sleeved on the second rotating shaft, the exhaust end of the first turbine is connected to the intake port of the second turbine The end is connected, and the exhaust end of the second turbine is connected with the intake end of the steam generator;
  • the first rotating shaft and the second rotating shaft are coaxially arranged, and the first rotating shaft is arranged before the second rotating shaft, and the first rotating shaft and the second rotating shaft are decoupled (the speed does not have to be the same, which is convenient for flexible matching of the aerodynamic design of the turbine);
  • the exhaust end of the first turbine is connected with the intake end of the second turbine, and the tail gas discharged by the first turbine can push the second turbine to rotate to do work, and the tail gas is discharged through the exhaust end after doing work.
  • connection position between the outlet end of the steam generator and the gas turbine includes any one or two or three or four of the following four places:
  • connection position is located at the intake end of the first combustion chamber of the gas turbine.
  • the steam is premixed with the working medium before the working medium enters the combustion chamber.
  • the working medium and steam are evenly distributed and serve as a new combustion working medium.
  • connection position is located in the first combustion chamber of the gas turbine, the steam is injected into the first combustion chamber, and the wet combustion is directly carried out in the first combustion chamber.
  • the steam outlet end of the steam generator can be connected to the first combustion chamber through a pipeline, and the steam can be connected to the first combustion chamber through the pipeline, and a steam nozzle or a straight-through pipe can also be arranged at the end of the pipeline, and the steam can be added through the steam nozzle or the straight-through pipe in the first combustion chamber.
  • a pressurizer can also be provided at the pipeline or the steam nozzle to pressurize the steam before the steam enters the first combustion chamber, so as to increase the pressure of the steam entering the first combustion chamber, which is more conducive to sufficient fuel consumption. combustion.
  • the steam finally enters the first combustion chamber to participate in the combustion.
  • the working principle is: when the water vapor is sprayed on the fuel that is burning at high temperature, the water vapor chemically reacts with the carbon element of the fuel that is burning at high temperature to form Carbon monoxide and hydrogen, both carbon monoxide and hydrogen are combustible gases, can play an obvious combustion-supporting role, make combustion more complete, reduce the emission of toxic and harmful gases caused by incomplete combustion, and thus greatly increase the heat energy of fuel combustion utilization rate.
  • connection position is located at the front end of the first turbine of the gas turbine, and the steam is injected from the front end of the first turbine to further push the first turbine to do work.
  • connection position is between the first turbine and the second turbine of the gas turbine.
  • the first motor is an inspiring integrated motor.
  • the inspiring integrated motor is used as a motor to drive the first compressor to rotate. After being accelerated to the point where it can operate independently, it is disengaged and used as a generator. The rotation of the first turbine drives the first rotating shaft and then drives the first motor to generate electricity.
  • a diffuser may also be provided at the connection between the first compressor and the first combustion chamber; the working fluid enters the first combustion chamber after being compressed by the first compressor and diffused by the diffuser.
  • the first combustion chamber can be an annular recirculation combustion chamber or an axial flow combustion chamber or a single cylinder combustion chamber or a baffle combustion chamber, the axis of the first combustion chamber is coaxial with the first rotation axis, and is arranged around the first rotation axis and located on the periphery of the first compressor and/or the first turbine.
  • a thrust bearing and a thrust plate may be provided on the first rotating shaft and/or the second rotating shaft.
  • At least one radial bearing may be provided on the first rotating shaft and/or the second rotating shaft.
  • the radial bearing can be arranged at the front end of the first rotating shaft to solve the problem that the cantilever at the front end of the first rotating shaft is too long and the rotating shaft shifts due to the magnetic force of the motor; in addition, the radial bearing can also It can be arranged on one side or both sides of the first motor, or between the first compressor and the first turbine.
  • first turbines can be provided, and when there are two or more turbines, they are arranged in series at the tail end of the first rotating shaft in sequence. Radial bearings may be arranged between adjacent first turbines.
  • the high-temperature gas discharged from the first combustion chamber drives each first turbine to rotate and perform work in turn.
  • the connection position between the steam outlet end of the steam generator and the gas turbine is located at the front end of the first turbine, the steam of the steam generator pushes each first turbine to rotate in turn to perform work.
  • one, two or more second turbines can be provided, and when there are two or more turbines, they are arranged in parallel and in series at the tail end of the second rotating shaft. Radial bearings may be arranged between adjacent second turbines. The gas discharged from the first turbine drives each second turbine to rotate and perform work in turn.
  • the drop pressure ratio of the first compressor is relatively high, more than two first turbines and/or second turbines can be set to make full use of the pressure difference generated by the first compressor to obtain higher power generation efficiency.
  • the internal and external mixed combustion engine also includes a condenser, the steam outlet of the steam generator is connected to the steam inlet of the condenser, and the water outlet of the condenser is connected to the water inlet of the steam generator through a pump.
  • a first compressor, a first motor, and a first turbine are sequentially arranged on the first rotating shaft, and a radial rotor is arranged on the first rotating shaft between the first compressor and the first motor Bearings, a first thrust disk is arranged on the first rotating shaft between the first motor and the first turbine, and a pair of first pair of side thrust disks is arranged on the stator surrounding the first rotating shaft and the first motor, and the first The thrust disk is located between a pair of first pair of side thrust disks, and a thrust bearing is arranged between it and the first pair of side thrust disks, and a radial bearing is arranged on the first rotating shaft on the intake side of the first turbine;
  • a second turbine and a second motor are sequentially arranged on the second rotating shaft, radial bearings are arranged at both ends of the second rotating shaft, and the second rotating shaft is located between the second turbine and the second motor.
  • the second thrust disk, a pair of second pair of side thrust disks is arranged around the second rotating shaft and the stator of the second motor, the second thrust disk is located between the pair of second pair of side thrust disks, and it is connected to the first pair of thrust disks
  • Thrust bearings are arranged between the two opposite side thrust discs.
  • the first compressor, the first motor, and the first turbine are sequentially arranged on the first rotating shaft, and thrust bearings are arranged on the back air surface of the first compressor and the air inlet surface of the first turbine.
  • thrust bearings are arranged on the back air surface of the first compressor and the air inlet surface of the first turbine.
  • radial bearings are arranged at both ends of the first motor;
  • a second turbine and a second motor are sequentially arranged on the second rotating shaft, radial bearings are arranged at both ends of the second rotating shaft, and the second rotating shaft is located between the second turbine and the second motor.
  • the second thrust disk, a pair of second pair of side thrust disks is arranged around the second rotating shaft and the stator of the second motor, the second thrust disk is located between the pair of second pair of side thrust disks, and it is connected to the first pair of thrust disks
  • Thrust bearings are arranged between the two opposite side thrust discs.
  • the internal and external mixed combustion engine of the present invention when working, the gas turbine discharges the tail gas into the steam generator through the exhaust port, and the tail gas exchanges heat with water in the steam generator to produce steam; part of the generated steam is injected back into the gas turbine, and in practical application , can control the flow rate of the steam injected back into the gas turbine, for example, control the flow ratio of the steam and the working fluid entering the gas turbine to be 2 to 3:1; part of it is injected into the condenser, and the steam forms condensed water in the condenser, and the condensed water is added to the steam through the pump generator to replenish the water that evaporates into steam.
  • the internal and external mixed combustion engine of the present invention can effectively recover the waste heat of the exhaust gas of the gas turbine (the steam in the exhaust gas is condensed and returned to the water tank to be evaporated into steam again and injected into the combustion chamber of the gas turbine), realizing the combined utilization of gas and steam of the gas turbine , improve the efficiency of the gas turbine and reduce energy waste.
  • the burned pollutants will be cleaned by the steam to avoid being discharged into the atmosphere, which can significantly improve the cleanliness of the discharge.
  • the gas turbine adopts a multi-rotor gas turbine, which has higher power generation efficiency (the first shaft and the second shaft can rotate to do work, both are power generation shafts, and the two power generation shafts are decoupled, and the speed does not have to be the same, which is convenient for flexible matching of the aerodynamic design of the turbine) .
  • the internal and external mixed combustion engine of the present invention has the advantages of high power supply efficiency, less investment, short construction period, less land use and water use, high degree of automatic operation, and less pollutant discharge.
  • Figure 1 Schematic diagram of the internal and external co-combustion engine.
  • Figure 2 Schematic diagram of the structure of a gas turbine.
  • Fig. 3 Structural schematic diagram of a gas turbine rotor system (embodiment 3).
  • FIG. 4 Schematic diagram of the structure of the gas turbine rotor system (embodiment 4).
  • Embodiment 1 internal and external mixed combustion engine
  • An internal and external mixed combustion engine comprising a gas turbine 1, a steam generator 2 and a condenser 3, as shown in Figure 1, the exhaust end of the gas turbine 1 is connected to the intake end of the steam generator 2, and the outlet of the steam generator The end is connected to the gas turbine 1, the steam outlet of the steam generator 2 is connected to the steam inlet of the condenser 3, and the water outlet of the condenser 3 is connected to the water inlet of the steam generator 2 through a pump 4.
  • the gas turbine 1 discharges the tail gas 5 into the steam generator 2 through the exhaust port, and the tail gas 5 exchanges heat with water in the steam generator 2 to produce steam 6; a part of the generated steam 6 is injected back into the gas turbine 1.
  • the flow rate of the steam 6 injected back into the gas turbine 1 for example, the flow ratio of the steam 6 and the working medium 8 entering the gas turbine 1 is controlled to be 2-3:1; a part of the steam 6 is injected into the condenser 3, and the steam 6 forms condensation in the condenser 3 Water 7, condensed water 7 is fed into the steam generator 2 through the pump 4 to supplement the water evaporated into steam.
  • the gas turbine 1 is a multi-rotor gas turbine, including a first rotor system and a second rotor system.
  • the first rotor system includes a first rotating shaft 100, a first motor 200, a first compressor 300, a first turbine 400 and a first combustion chamber 500, as shown in FIG. 2, the first motor 200, the first compressor 300.
  • the first turbine 400 is sequentially sleeved on the first rotating shaft 100; the outlet end of the first compressor 300 is connected to the intake end of the first combustion chamber 500; the exhaust end of the first combustion chamber 500 is connected to the first turbine 400 air inlet connection.
  • the second rotor system includes a second rotating shaft 700, a second turbine 600 and a second motor 800. As shown in FIG. The exhaust end of the turbine 400 is connected to the intake end of the second turbine 600 , and the exhaust end of the second turbine 600 is connected to the intake end of the steam generator 2 .
  • the first rotating shaft 100 and the second rotating shaft 700 are coaxially arranged, and the first rotating shaft 100 is arranged before the second rotating shaft 700, decoupling between the first rotating shaft 100 and the second rotating shaft 700 (the speed does not have to be the same, which is convenient for flexible matching of turbines aerodynamic design); the exhaust end of the first turbine 400 is connected to the intake end of the second turbine 600, and the tail gas discharged from the first turbine 400 can push the second turbine 600 to rotate to do work, and the tail gas is discharged through the exhaust end after doing work .
  • the first motor 200 is an inspired integrated motor.
  • the inspired integrated motor first acts as a motor to drive the first compressor 300 to rotate. After being accelerated to the point where it can operate independently, it is disengaged and used as a generator.
  • the rotation of the first turbine 400 drives the first rotating shaft 100 and further drives the first motor 200 to generate electricity.
  • the junction of the first compressor 300 and the first combustion chamber 500 may also be provided with a diffuser 106, that is, the outlet end of the first compressor 300 communicates with the diffuser 106, and the exhaust end of the diffuser 106 It communicates with the intake end of the first combustion chamber 500 ; the working fluid enters the first combustion chamber 500 after being compressed by the first compressor 300 and diffused by the diffuser 106 .
  • the first combustion chamber 500 can be an annular recirculation combustion chamber or an axial flow combustion chamber or a single cylinder combustion chamber or a baffle combustion chamber. Set and located on the periphery of the first compressor 300 and/or the first turbine 400 .
  • Thrust bearings and thrust discs may be provided on the first rotating shaft 100 and/or the second rotating shaft 700 .
  • At least one radial bearing may be provided on the first rotating shaft 100 and/or the second rotating shaft 700 .
  • the radial bearing can be arranged at the front end of the first rotating shaft 100 to solve the problem that the cantilever at the front end of the first rotating shaft 100 is too long and the shaft is offset due to the magnetic force of the motor;
  • the bearing can also be arranged on one side or both sides of the first motor 200 , or between the first compressor 300 and the first turbine 400 .
  • the number of the first turbine 400 can be set as one, two or more, and when two or more are set, they are arranged side by side in series at the tail end of the first rotating shaft 100 . Radial bearings may be provided between adjacent first turbines 400 .
  • the high-temperature gas discharged from the first combustion chamber 500 sequentially pushes each first turbine 400 to rotate and perform work.
  • the connection position between the steam outlet end of the steam generator and the gas turbine is located at the front end of the first turbine 400, the steam of the steam generator pushes each first turbine 400 to rotate and perform work in turn.
  • the second turbine 600 can be provided as one, two or more, and when there are two or more, they are arranged side by side in series at the tail end of the second rotating shaft 700 . Radial bearings may be provided between adjacent second turbines 600 . The gas discharged from the first turbine 400 pushes each of the second turbines 600 to rotate and perform work in turn.
  • more than two first turbines 400 and/or second turbines 600 can be set to make full use of the pressure difference generated by the first compressor 300 to obtain higher power generation efficiency .
  • the power of the first motor 200 is 20-30KW
  • the power of the second motor 800 is 120-130KW
  • the overall power of the gas turbine is 140-160KW.
  • the first compressor 300 inhales the working medium 8 (generally air) from the outside, and the working medium 8 enters the first combustion chamber 500 after being compressed and boosted by the first compressor 300 and mixed with the injected fuel Combustion generates high-temperature and high-pressure gas.
  • the high-temperature gas enters the first turbine 400 from the outlet end of the first combustion chamber 500 and drives the first turbine 400 to do work.
  • the first turbine 400 drives the coaxial first motor 200 to generate electricity and drives the first
  • a compressor 300 works to realize the partial conversion of the chemical energy of the gas or liquid fuel into mechanical energy and output electric energy; after the high-temperature gas does work on the first turbine 400, it continues to do work on the second turbine 600, and the second turbine 600 drives the coaxial
  • the second motor 800 generates power; the gas after working on the second turbine 600 is discharged from the exhaust end as tail gas 5 and enters the steam generator 2. After heat exchange, part of the steam 6 discharged from the steam generator 2 is injected back into the gas turbine 1.
  • Both the first rotating shaft 100 and the second rotating shaft 700 can rotate to perform work, both are generating shafts, and the two generating shafts are decoupled, and the rotational speed does not have to be the same, which facilitates flexible matching of the aerodynamic design of the turbine.
  • connection position where the steam outlet of the steam generator 2 is connected to the gas turbine 1 is one, two, three or four of the following three places:
  • connection position is located at the intake end of the first combustion chamber 500 of the gas turbine 1 (specifically, the rear end of the diffuser 106 in this embodiment), the steam 6 is injected from the rear end of the diffuser 106, and enters the first combustion chamber Premixing is realized before the chamber 500, and the working medium 8 and steam 6 are evenly distributed. As a new combustion working medium, the flow rate is larger than that of pure air, and the efficiency of the gas turbine is higher;
  • connection position is located in the first combustion chamber 500 of the gas turbine 1 , the steam 6 is injected into the first combustion chamber 500 , and the wet combustion is carried out directly in the first combustion chamber 500 .
  • the steam outlet end of the steam generator 2 can be connected to the first combustion chamber 500 through a pipeline, and the steam 6 can be connected to the first combustion chamber 500 through a pipeline, and a steam nozzle or a straight-through pipe can also be arranged at the end of the pipeline, and the steam 6 into the first combustion chamber 500 through a steam nozzle or a straight pipe.
  • a steam nozzle or a straight-through pipe can also be arranged at the end of the pipeline, and the steam 6 into the first combustion chamber 500 through a steam nozzle or a straight pipe.
  • pressurizer at pipeline or steam nozzle place, steam 6 is pressurized before steam 6 enters first combustion chamber 500, to increase the pressure of the steam 6 that enters first combustion chamber 500, is more conducive to fuel of full combustion.
  • connection position is located at the front end of the first turbine 400 of the gas turbine 1 , and the steam 6 is injected from the front end of the first turbine 400 to further push the first turbine 400 to perform work.
  • connection position is between the first turbine 400 and the second turbine 600 of the gas turbine 1 .
  • the rotor system of the gas turbine includes, but is not limited to, the forms shown in Examples 3 and 4 below.
  • Embodiment 3 rotor system
  • the first rotor system, the first compressor 300, the first motor 200, and the first turbine 400 are sequentially arranged on the first rotating shaft 100, and the first rotating shaft 100 is located on the first compressor 300
  • a radial bearing is arranged between the first motor 200, and a first thrust disk is arranged on the first rotating shaft 100 between the first motor 200 and the first turbine 400, and surrounds the first rotating shaft 100 and the stator of the first motor 200 108 is provided with a pair of first pair of side thrust disks, the first thrust disk is located between the pair of first pair of side thrust disks, and a thrust bearing is arranged between the pair of first pair of side thrust disks, and the first pair of side thrust disks is provided with a thrust bearing.
  • a radial bearing is arranged on the rotating shaft 100 on the intake side of the first turbine 400;
  • the second turbine 600 and the second motor 800 are sequentially arranged on the second rotating shaft 700, radial bearings are arranged at both ends of the second rotating shaft 700, and the second rotating shaft 700 is located on the second turbine 600 and A second thrust plate is arranged between the second motor 800, and a pair of second pair of side thrust plates is arranged on the stator surrounding the second rotating shaft 700 and the second motor 800, and the second thrust plate is located on a pair of second pair of side thrust plates. Thrust bearings are arranged between them, and between them and the second pair of side thrust disks.
  • Embodiment 4 rotor system
  • the first compressor 300, the first motor 200, and the first turbine 400 are sequentially arranged on the first rotating shaft 100, the back air surface of the first compressor 300 and the first Thrust bearings are provided on the intake surface of the turbine 400, and radial bearings are provided on the first rotating shaft 100 and at both ends of the first motor 200;
  • the second turbine 600 and the second motor 800 are sequentially arranged on the second rotating shaft 700, radial bearings are arranged at both ends of the second rotating shaft 700, and the second rotating shaft 700 is located on the second turbine 600 and the second motor 800.
  • a second thrust plate is arranged between the two motors 800, and a pair of second opposite side thrust plates are arranged on the stator surrounding the second rotating shaft 700 and the second motor 800, and the second thrust plates are located between the pair of second opposite side thrust plates.
  • Thrust bearings are arranged between the second pair of side thrust disks and the second pair of side thrust disks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

一种内外混燃机,包括燃气轮机(1)和蒸汽发生器(2),燃气轮机的排气端与蒸汽发生器的进气端连接,蒸汽发生器的出汽端与燃气轮机连接;燃气轮机为多转子燃气轮机,包括第一转子系统和第二转子系统;第一转子系统包括第一转轴(100)、第一电机(200)、第一压气机(300)、第一涡轮(400)和第一燃烧室(500);第二转子系统包括第二转轴(700)、第二涡轮(600)和第二电机(800);蒸汽发生器的出汽回注入燃气轮机。

Description

内外混燃机 技术领域
本发明涉及一种内外混燃机,属于发动机技术领域。
背景技术
燃气轮机以连续流动的气体为工质带动叶轮高速旋转,将燃料的能量转变为有用功,是一种旋转叶轮式热力发动机。其主要包括压气机、燃烧室、透平三大部件:压气机从外界大气环境吸入空气,并逐级压缩使之增压,同时空气温度也相应提高;压缩空气被压送到燃烧室与喷入的燃料混合燃烧生成高温高压的气体;然后再进入到透平中膨胀做功,推动透平带动压气机和外负荷转子高速旋转,可实现气体或液体燃料的化学能部分转化为机械功和热能,并可通过连接发电机输出电能。
燃气轮机具有结构紧凑、功率高、易安装等优点,已经成为一种广泛使用的动力机械。然而单独的燃气轮机具有有限的效率,并且尾气排到周围环境中时浪费了大量有用的能量,造成能源浪费,且其尾气中的余热会对环境产生一定的影响。
发明内容
针对上述现有技术,本发明提供了一种内外混燃机,可对尾气的余热进行有效回收,实现燃气轮机的燃气、蒸汽联合利用,提高燃气轮机效率,减少能源浪费。
本发明是通过以下技术方案实现的:
一种内外混燃机,包括燃气轮机和蒸汽发生器,燃气轮机的排气端与蒸汽发生器的进气端连接,蒸汽发生器的出汽端与燃气轮机连接;
所述燃气轮机为多转子燃气轮机,包括第一转子系统和第二转子系统;
所述第一转子系统,包括第一转轴、第一电机、第一压气机、第一涡轮和第一燃烧室,第一电机、第一压气机、第一涡轮依次套设在第一转轴上;第一压气机的出气端与第一燃烧室的进气端连接;第一燃烧室的排气端与第一涡轮的进气端连接;
所述第二转子系统,包括第二转轴、第二涡轮和第二电机,第二涡轮和第二电机均套设在第二转轴上,第一涡轮的排气端与第二涡轮的进气端连接,第二涡轮的排气端与蒸汽发生器的进气端连接;
所述第一转轴和第二转轴同轴设置,且第一转轴设置在第二转轴之前,第一转轴和第二转轴之间解耦(转速不必相同,便于灵活匹配涡轮的气动设计);所述第一涡轮的排气端与第二涡轮的进气端连接,第一涡轮排出的尾气可推动第二涡轮旋转做功,做功后尾气通过排气 端排出。
所述蒸汽发生器的出汽端与燃气轮机连接的连接位置,包括以下四处中的任意一处或两处或三处或四处:
(1)连接位置位于燃气轮机的第一燃烧室的进气端,蒸汽在工质进入燃烧室之前与工质实现预混,工质与蒸汽分布均匀,作为新的燃烧工质。
(2)连接位置位于燃气轮机的第一燃烧室内,蒸汽注入第一燃烧室内,直接在第一燃烧室内进行湿式燃烧。
进一步地,蒸汽发生器的出汽端可通过管道与第一燃烧室连接,蒸汽通过管道接入第一燃烧室内,还可在管道末端设置蒸汽喷嘴或直通管,蒸汽通过蒸汽喷嘴或直通管加入第一燃烧室内。
进一步地,还可在管道或蒸汽喷嘴处设有加压器,在蒸汽进入第一燃烧室前对蒸汽进行加压,以增大进入第一燃烧室的蒸汽的压力,更有利于燃料的充分燃烧。
以上两种连接位置,蒸汽最终都是进入第一燃烧室内参与燃烧,工作原理为:水蒸汽喷射于正在高温燃烧中的燃料时,水蒸汽与在高温燃烧中的燃料的碳元素发生化学反应生成一氧化碳和氢气,一氧化碳和氢气均是可燃性气体,可以起到明显的助燃作用,使燃烧更加充分,减少了因燃烧不完全而产生的有毒、有害气体的排放,从而大大提高了燃料燃烧的热能利用率。
(3)连接位置位于燃气轮机的第一涡轮的前端,蒸汽从第一涡轮前端注入,进一步推动第一涡轮做功。
(4)连接位置位于燃气轮机的第一涡轮和第二涡轮之间。
进一步地,所述第一电机为启发一体式电机,第一压气机启动时,启发一体式电机先作为电动机带动第一压气机旋转,待加速到能独立运行后脱开,作为发电机,由第一涡轮转动带动第一转轴进而带动第一电机发电。
进一步地,所述第一压气机与第一燃烧室的连接处还可设有扩压器;工质经第一压气机压缩并经扩压器扩压后,进入第一燃烧室。
进一步地,所述第一燃烧室可为环形的回流燃烧室或轴流燃烧室或单筒燃烧室或折流燃烧室,第一燃烧室轴心与第一转轴同轴,环绕第一转轴设置且位于第一压气机和/或第一涡轮外围。
进一步地,所述第一转轴和/或第二转轴上可设置有推力轴承及推力盘。
进一步地,所述第一转轴和/或第二转轴上可设置至少一个径向轴承。具体地,对于第一 转子系统,径向轴承可以设置在第一转轴的前端,以解决第一转轴前端悬臂过长、且由于电机的磁力而引起转轴偏移的问题;此外,径向轴承还可以设置在第一电机的一侧或两侧,也可以设置在第一压气机和第一涡轮之间。
进一步地,所述第一涡轮可以设置为一个、两个或多个,设置为两个或多个时,依次并列串联在第一转轴尾端。相邻的第一涡轮之间可设置径向轴承。第一燃烧室排出的高温气体依次推动各个第一涡轮转动做功。当蒸汽发生器的出汽端与燃气轮机连接的连接位置位于第一涡轮前端时,蒸汽发生器的蒸汽依次推动各个第一涡轮转动做功。
进一步地,所述第二涡轮可以设置为一个、两个或多个,设置为两个或多个时,依次并列串联在第二转轴尾端。相邻的第二涡轮之间可设置径向轴承。第一涡轮排出的气体依次推动各个第二涡轮转动做功。
进一步地,当第一压气机的落压比较高时,第一涡轮和/或第二涡轮可设置为两个以上,以充分利用第一压气机产生的压差,获得较高的发电效率。
进一步,所述内外混燃机还包括冷凝器,蒸汽发生器的出汽端与冷凝器的进汽端连接,冷凝器的出水端通过泵与蒸汽发生器的进水端连接。
进一步地,所述第一转子系统,第一转轴上依次设置第一压气机、第一电机、第一涡轮,所述第一转轴上、位于第一压气机和第一电机之间设置径向轴承,所述第一转轴上、位于第一电机和第一涡轮之间设置第一推力盘,环绕第一转轴及第一电机的定子上设置一对第一对侧推力盘,所述第一推力盘位于一对第一对侧推力盘之间、且其与所述第一对侧推力盘之间设置推力轴承,所述第一转轴上、位于第一涡轮进气侧设置径向轴承;
所述第二转子系统,第二转轴上依次设置第二涡轮、第二电机,所述第二转轴两头设置径向轴承,所述第二转轴上、位于第二涡轮和第二电机之间设置第二推力盘,环绕第二转轴及第二电机的定子上设置一对第二对侧推力盘,所述第二推力盘位于一对第二对侧推力盘之间、且其与所述第二对侧推力盘之间设置推力轴承。
进一步地,所述第一转子系统,第一转轴上依次设置第一压气机、第一电机、第一涡轮,所述第一压气机的背气面及第一涡轮的进气面设置推力轴承,所述第一转轴上、位于第一电机两头设置径向轴承;
所述第二转子系统,第二转轴上依次设置第二涡轮、第二电机,所述第二转轴两头设置径向轴承,所述第二转轴上、位于第二涡轮和第二电机之间设置第二推力盘,环绕第二转轴及第二电机的定子上设置一对第二对侧推力盘,所述第二推力盘位于一对第二对侧推力盘之间、且其与所述第二对侧推力盘之间设置推力轴承。
本发明的内外混燃机,工作时,燃气轮机通过排气端将尾气排入蒸汽发生器,尾气在蒸汽发生器内与水换热,生产蒸汽;生成的蒸汽,一部分回注入燃气轮机,实际应用时,可控制回注入燃气轮机的蒸汽的流量,比如控制蒸汽与进入燃气轮机的工质的流量比为2~3:1;一部分注入冷凝器,蒸汽在冷凝器内形成冷凝水,冷凝水通过泵加入蒸汽发生器以补充蒸发为蒸汽的水。
本发明的内外混燃机,可对燃气轮机的尾气的余热进行有效回收(尾气中的蒸汽冷凝后重新回到水箱中再次被蒸发为蒸汽注入燃气轮机燃烧室内),实现了燃气轮机的燃气、蒸汽联合利用,提高了燃气轮机效率,减少了能源浪费。同时燃烧的污染物会被蒸汽清洗,避免排放入大气,可以显著提高排放清洁度。燃气轮机采用多转子燃气轮机,发电效率更高(第一转轴和第二转轴均可转动做功,均为发电轴,且两根发电轴之间解耦,转速不必相同,便于灵活匹配涡轮的气动设计)。多转子燃气轮机转轴上的轴承数量越少,转轴长度越短,设备的整体长度越短,集成化越高,且容易保障同轴度,设计及加工更容易。本发明的内外混燃机,具有供电效率高、投资少、建设周期短、用地用水少、运行自动化程度高、污染物排放少等优点。
本发明使用的各种术语和短语具有本领域技术人员公知的一般含义。
附图说明
图1:内外混燃机的结构示意图。
图2:燃气轮机的结构示意图。
图3:燃气轮机转子系统的结构示意图(实施例3)。
图4:燃气轮机转子系统的结构示意图示意图(实施例4)。
其中,1、燃气轮机;2、蒸汽发生器;3、冷凝器;4、泵;5、尾气;6、蒸汽;7、冷凝水;106、扩压器;107、气道;108、定子;100、第一转轴;200、第一电机200;300、第一压气机;400、第一涡轮;500、第一燃烧室;600、第二涡轮;700、第二转轴;800、第二电机。
具体实施方式
下面结合实施例对本发明作进一步的说明。然而,本发明的范围并不限于下述实施例。本领域的专业人员能够理解,在不背离本发明的精神和范围的前提下,可以对本发明进行各种变化和修饰。
实施例1内外混燃机
一种内外混燃机,包括燃气轮机1、蒸汽发生器2和冷凝器3,如图1所示,燃气轮机1 的排气端与蒸汽发生器2的进气端连接,蒸汽发生器2的出汽端与燃气轮机1连接,蒸汽发生器2的出汽端与冷凝器3的进汽端连接,冷凝器3的出水端通过泵4与蒸汽发生器2的进水端连接。
工作时,燃气轮机1通过排气端将尾气5排入蒸汽发生器2,尾气5在蒸汽发生器2内与水换热,生产蒸汽6;生成的蒸汽6,一部分回注入燃气轮机1,实际应用时,可控制回注入燃气轮机1的蒸汽6的流量,比如控制蒸汽6与进入燃气轮机1的工质8的流量比为2~3:1;一部分注入冷凝器3,蒸汽6在冷凝器3内形成冷凝水7,冷凝水7通过泵4加入蒸汽发生器2以补充蒸发为蒸汽的水。
所述燃气轮机1为多转子燃气轮机,包括第一转子系统和第二转子系统。
所述第一转子系统,包括第一转轴100、第一电机200、第一压气机300、第一涡轮400和第一燃烧室500,如图2所示,第一电机200、第一压气机300、第一涡轮400依次套设在第一转轴100上;第一压气机300的出气端与第一燃烧室500的进气端连接;第一燃烧室500的排气端与第一涡轮400的进气端连接。
所述第二转子系统,包括第二转轴700、第二涡轮600和第二电机800,如图2所示,第二涡轮600和第二电机800均套设在第二转轴700上,第一涡轮400的排气端与第二涡轮600的进气端连接,第二涡轮600的排气端与蒸汽发生器2的进气端连接。
所述第一转轴100和第二转轴700同轴设置,且第一转轴100设置在第二转轴700之前,第一转轴100和第二转轴700之间解耦(转速不必相同,便于灵活匹配涡轮的气动设计);所述第一涡轮400的排气端与第二涡轮600的进气端连接,第一涡轮400排出的尾气可推动第二涡轮600旋转做功,做功后尾气通过排气端排出。
所述第一电机200为启发一体式电机,第一压气机300启动时,启发一体式电机先作为电动机带动第一压气机300旋转,待加速到能独立运行后脱开,作为发电机,由第一涡轮400转动带动第一转轴100进而带动第一电机200发电。
所述第一压气机300与第一燃烧室500的连接处还可设有扩压器106,即:第一压气机300的出气端与扩压器106连通,扩压器106的排气端与第一燃烧室500的进气端连通;工质经第一压气机300压缩并经扩压器106扩压后,进入第一燃烧室500。
所述第一燃烧室500可为环形的回流燃烧室或轴流燃烧室或单筒燃烧室或折流燃烧室,第一燃烧室500轴心与第一转轴100同轴,环绕第一转轴100设置且位于第一压气机300和/或第一涡轮400外围。
所述第一转轴100和/或第二转轴700上可设置有推力轴承及推力盘。
所述第一转轴100和/或第二转轴700上可设置至少一个径向轴承。具体地,对于第一转子系统,径向轴承可以设置在第一转轴100的前端,以解决第一转轴100前端悬臂过长、且由于电机的磁力而引起转轴偏移的问题;此外,径向轴承还可以设置在第一电机200的一侧或两侧,也可以设置在第一压气机300和第一涡轮400之间。转轴上的轴承数量越少,转轴长度越短,设备的整体长度越短,集成化越高,且容易保障同轴度,设计及加工更容易。
所述第一涡轮400可以设置为一个、两个或多个,设置为两个或多个时,依次并列串联在第一转轴100尾端。相邻的第一涡轮400之间可设置径向轴承。第一燃烧室500排出的高温气体依次推动各个第一涡轮400转动做功。当蒸汽发生器的出汽端与燃气轮机连接的连接位置位于第一涡轮400前端时,蒸汽发生器的蒸汽依次推动各个第一涡轮400转动做功。
所述第二涡轮600可以设置为一个、两个或多个,设置为两个或多个时,依次并列串联在第二转轴700尾端。相邻的第二涡轮600之间可设置径向轴承。第一涡轮400排出的气体依次推动各个第二涡轮600转动做功。
当第一压气机300的落压比较高时,第一涡轮400和/或第二涡轮600可设置为两个以上,以充分利用第一压气机300产生的压差,获得较高的发电效率。
所述第一电机200的功率为20~30KW,第二电机800的功率为120~130KW,燃气轮机总体功率为140~160KW。
燃气轮机工作时,第一压气机300从外界吸入工质8(一般为空气),工质8经第一压气机300压缩增压后,进入到第一燃烧室500内并与喷入的燃料混合燃烧生成高温高压的气体,高温气体从第一燃烧室500的出气端进入到第一涡轮400中并推动第一涡轮400做功,第一涡轮400带动同轴的第一电机200发电,并带动第一压气机300工作,实现了气体或液体燃料的化学能部分转化为机械能,并输出电能;高温气体对第一涡轮400做功后,继续对第二涡轮600做功,第二涡轮600带动同轴的第二电机800发电;对第二涡轮600做功后的气体作为尾气5从排气端排出,进入蒸汽发生器2,经热交换后,蒸汽发生器2排出的部分蒸汽6回注入燃气轮机1。第一转轴100和第二转轴700均可转动做功,均为发电轴,且两根发电轴之间解耦,转速不必相同,便于灵活匹配涡轮的气动设计。
所述蒸汽发生器2的出汽端与燃气轮机1连接的连接位置为以下三处中的一处、两处、三处或四处:
(1)连接位置位于燃气轮机1的第一燃烧室500的进气端(本实施例中具体为扩压器106的后端),蒸汽6从扩压器106后端注入,在进入第一燃烧室500之前实现预混,工质8与蒸汽6分布均匀,作为新的燃烧工质,流量比单纯的空气大,燃机效率更高;
(2)连接位置位于燃气轮机1的第一燃烧室500内,蒸汽6注入第一燃烧室500内,直接在第一燃烧室500内进行湿式燃烧。
具体应用时,蒸汽发生器2的出汽端可通过管道与第一燃烧室500连接,蒸汽6通过管道接入第一燃烧室500内,还可在管道末端设置蒸汽喷嘴或直通管,蒸汽6通过蒸汽喷嘴或直通管加入第一燃烧室500内。还可在管道或蒸汽喷嘴处设有加压器,在蒸汽6进入第一燃烧室500前对蒸汽6进行加压,以增大进入第一燃烧室500的蒸汽6的压力,更有利于燃料的充分燃烧。
(3)连接位置位于燃气轮机1的第一涡轮400的前端,蒸汽6从第一涡轮400前端注入,进一步推动第一涡轮400做功。
(4)连接位置位于燃气轮机1的第一涡轮400和第二涡轮600之间。
所述燃气轮机的转子系统包括但不限于以下实施例3、4所示的形式。
实施例3转子系统
如图3所示,所述第一转子系统,第一转轴100上依次设置第一压气机300、第一电机200、第一涡轮400,所述第一转轴100上、位于第一压气机300和第一电机200之间设置径向轴承,所述第一转轴100上、位于第一电机200和第一涡轮400之间设置第一推力盘,环绕第一转轴100及第一电机200的定子108上设置一对第一对侧推力盘,所述第一推力盘位于一对第一对侧推力盘之间、且其与所述第一对侧推力盘之间设置推力轴承,所述第一转轴100上、位于第一涡轮400进气侧设置径向轴承;
所述第二转子系统,第二转轴700上依次设置第二涡轮600、第二电机800,所述第二转轴700两头设置径向轴承,所述第二转轴700上、位于第二涡轮600和第二电机800之间设置第二推力盘,环绕第二转轴700及第二电机800的定子上设置一对第二对侧推力盘,所述第二推力盘位于一对第二对侧推力盘之间、且其与所述第二对侧推力盘之间设置推力轴承。
实施例4转子系统
如图4所示,所述第一转子系统,第一转轴100上依次设置第一压气机300、第一电机200、第一涡轮400,所述第一压气机300的背气面及第一涡轮400的进气面设置推力轴承,所述第一转轴100上、位于第一电机200两头设置径向轴承;
所述第二转子系统,第二转轴700上依次设置第二涡轮600、第二电机800,所述第二转轴700两头设置径向轴承,所述第二转轴700上位于第二涡轮600和第二电机800之间设置第二推力盘,环绕第二转轴700及第二电机800的定子上设置一对第二对侧推力盘,所述第二推力盘位于一对第二对侧推力盘之间、且其与所述第二对侧推力盘之间设置推力轴承。
上述虽然结合实施例对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。

Claims (10)

  1. 一种内外混燃机,其特征在于:包括燃气轮机和蒸汽发生器,燃气轮机的排气端与蒸汽发生器的进气端连接,蒸汽发生器的出汽端与燃气轮机连接;
    所述燃气轮机为多转子燃气轮机,包括第一转子系统和第二转子系统;
    所述第一转子系统,包括第一转轴、第一电机、第一压气机、第一涡轮和第一燃烧室,第一电机、第一压气机、第一涡轮依次套设在第一转轴上;第一压气机的出气端与第一燃烧室的进气端连接;第一燃烧室的排气端与第一涡轮的进气端连接;
    所述第二转子系统,包括第二转轴、第二涡轮和第二电机,第二涡轮和第二电机均套设在第二转轴上,第一涡轮的排气端与第二涡轮的进气端连接,第二涡轮的排气端与蒸汽发生器的进气端连接;
    所述第一转轴和第二转轴同轴设置;
    所述蒸汽发生器的出汽端与燃气轮机连接的连接位置,包括以下四处中的任意一处或两处或三处或四处:
    (1)连接位置位于燃气轮机的第一燃烧室的进气端;
    (2)连接位置位于燃气轮机的第一燃烧室内;
    (3)连接位置位于燃气轮机的第一涡轮的前端;
    (4)连接位置位于燃气轮机的第一涡轮和第二涡轮之间。
  2. 根据权利要求1所述的内外混燃机,其特征在于:所述(2)连接位置位于燃气轮机的第一燃烧室内时,蒸汽发生器的出汽端通过管道与第一燃烧室连接;或:蒸汽发生器的出汽端通过管道与第一燃烧室连接,在管道末端设置蒸汽喷嘴或直通管;
    和/或:在所述管道或蒸汽喷嘴处设有加压器,在蒸汽进入第一燃烧室前对蒸汽进行加压。
  3. 根据权利要求1所述的内外混燃机,其特征在于:所述第一电机为启发一体式电机。
  4. 根据权利要求1所述的内外混燃机,其特征在于:所述第一燃烧室为环形的回流燃烧室或轴流燃烧室或单筒燃烧室或折流燃烧室,第一燃烧室轴心与第一转轴同轴,环绕第一转轴设置且位于第一压气机和/或第一涡轮外围。
  5. 根据权利要求1所述的内外混燃机,其特征在于:所述第一转轴和/或第二转轴上设置有推力轴承及推力盘。
  6. 根据权利要求1所述的内外混燃机,其特征在于:所述第一转轴和/或第二转轴上设置至少一个径向轴承;
    对于第一转子系统,径向轴承设置在第一转轴的前端,第一电机的一侧或两侧,或第一压气机和第一涡轮之间。
  7. 根据权利要求1所述的内外混燃机,其特征在于:所述第一涡轮设置为一个、两个或多个,设置为两个或多个时,依次并列串联在第一转轴尾端;
    和/或:所述第二涡轮设置为一个、两个或多个,设置为两个或多个时,依次并列串联在第二转轴尾端;
    和/或:相邻的第一涡轮之间设置径向轴承;
    和/或:相邻的第二涡轮之间设置径向轴承。
  8. 根据权利要求1所述的内外混燃机,其特征在于:所述内外混燃机还包括冷凝器,蒸汽发生器的出汽端与冷凝器的进汽端连接,冷凝器的出水端通过泵与蒸汽发生器的进水端连接。
  9. 根据权利要求1所述的内外混燃机,其特征在于:
    所述第一转子系统,第一转轴上依次设置第一压气机、第一电机、第一涡轮,所述第一转轴上、位于第一压气机和第一电机之间设置径向轴承,所述第一转轴上、位于第一电机和第一涡轮之间设置第一推力盘,环绕第一转轴及第一电机的定子上设置一对第一对侧推力盘,所述第一推力盘位于一对第一对侧推力盘之间、且其与所述第一对侧推力盘之间设置推力轴承,所述第一转轴上、位于第一涡轮进气侧设置径向轴承;
    所述第二转子系统,第二转轴上依次设置第二涡轮、第二电机,所述第二转轴两头设置径向轴承,所述第二转轴上、位于第二涡轮和第二电机之间设置第二推力盘,环绕第二转轴及第二电机的定子上设置一对第二对侧推力盘,所述第二推力盘位于一对第二对侧推力盘之间、且其与所述第二对侧推力盘之间设置推力轴承。
  10. 根据权利要求1所述的内外混燃机,其特征在于:
    所述第一转子系统,第一转轴上依次设置第一压气机、第一电机、第一涡轮,所述第一压气机的背气面及第一涡轮的进气面设置推力轴承,所述第一转轴上、位于第一电机两头设置径向轴承;
    所述第二转子系统,第二转轴上依次设置第二涡轮、第二电机,所述第二转轴两头设置径向轴承,所述第二转轴上、位于第二涡轮和第二电机之间设置第二推力盘,环绕第二转轴及第二电机的定子上设置一对第二对侧推力盘,所述第二推力盘位于一对第二对侧推力盘之间、且其与所述第二对侧推力盘之间设置推力轴承。
PCT/CN2022/116643 2021-09-03 2022-09-01 内外混燃机 WO2023030468A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111034470.6 2021-09-03
CN202111034470.6A CN113756900A (zh) 2021-09-03 2021-09-03 内外混燃机

Publications (1)

Publication Number Publication Date
WO2023030468A1 true WO2023030468A1 (zh) 2023-03-09

Family

ID=78793073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/116643 WO2023030468A1 (zh) 2021-09-03 2022-09-01 内外混燃机

Country Status (2)

Country Link
CN (1) CN113756900A (zh)
WO (1) WO2023030468A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113756900A (zh) * 2021-09-03 2021-12-07 靳普科技(北京)有限公司 内外混燃机
CN114320604A (zh) * 2022-01-11 2022-04-12 永旭腾风新能源动力科技(北京)有限公司 燃气轮机供氢系统及移动供氢站

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101078367A (zh) * 2007-07-04 2007-11-28 中国船舶重工集团公司第七○三研究所 提高pg6531燃气轮机功率的方法
CN102434282A (zh) * 2011-12-23 2012-05-02 中国船舶重工集团公司第七○三研究所 中间喷水冷却与蒸汽回注燃气轮机循环装置
DE102012223818A1 (de) * 2012-12-19 2014-06-26 Siemens Aktiengesellschaft Einsatz eines Hilfsaggregates zur Bereitstellung von Abgaswärme für den Abhitzedampferzeuger eines GuD-Kraftwerks
CN105804872A (zh) * 2016-04-15 2016-07-27 浙江大学 基于太阳能和余热回收的蒸汽回注式燃气轮机发电方法和装置
DE102015116063A1 (de) * 2015-09-23 2017-03-23 LL Consulio d.o.o. Verbrennungskraftmaschine
CN112502833A (zh) * 2020-11-18 2021-03-16 靳新中 双轴发电燃气轮机
CN113756900A (zh) * 2021-09-03 2021-12-07 靳普科技(北京)有限公司 内外混燃机
CN113756901A (zh) * 2021-09-03 2021-12-07 靳普科技(北京)有限公司 内外混燃机
CN215979532U (zh) * 2021-09-03 2022-03-08 靳普科技(北京)有限公司 内外混燃机
CN215979531U (zh) * 2021-09-03 2022-03-08 靳普科技(北京)有限公司 内外混燃机

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3668347D1 (de) * 1985-09-02 1990-02-22 Siemens Ag Kombiniertes gas- und dampfturbinenkraftwerk.
JP3530243B2 (ja) * 1995-01-11 2004-05-24 三菱重工業株式会社 再生式ガスタービンコンバインド・サイクル発電方法
CN102251818B (zh) * 2011-06-02 2015-04-08 安徽科达洁能股份有限公司 燃气和蒸汽轮机系统
CN205663516U (zh) * 2016-05-31 2016-10-26 深圳智慧能源技术有限公司 回热循环燃气轮机系统及冷热电联供系统
CN206113001U (zh) * 2016-09-27 2017-04-19 华南理工大学 一种燃气轮机燃烧室低氮燃烧装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101078367A (zh) * 2007-07-04 2007-11-28 中国船舶重工集团公司第七○三研究所 提高pg6531燃气轮机功率的方法
CN102434282A (zh) * 2011-12-23 2012-05-02 中国船舶重工集团公司第七○三研究所 中间喷水冷却与蒸汽回注燃气轮机循环装置
DE102012223818A1 (de) * 2012-12-19 2014-06-26 Siemens Aktiengesellschaft Einsatz eines Hilfsaggregates zur Bereitstellung von Abgaswärme für den Abhitzedampferzeuger eines GuD-Kraftwerks
DE102015116063A1 (de) * 2015-09-23 2017-03-23 LL Consulio d.o.o. Verbrennungskraftmaschine
CN105804872A (zh) * 2016-04-15 2016-07-27 浙江大学 基于太阳能和余热回收的蒸汽回注式燃气轮机发电方法和装置
CN112502833A (zh) * 2020-11-18 2021-03-16 靳新中 双轴发电燃气轮机
CN113756900A (zh) * 2021-09-03 2021-12-07 靳普科技(北京)有限公司 内外混燃机
CN113756901A (zh) * 2021-09-03 2021-12-07 靳普科技(北京)有限公司 内外混燃机
CN215979532U (zh) * 2021-09-03 2022-03-08 靳普科技(北京)有限公司 内外混燃机
CN215979531U (zh) * 2021-09-03 2022-03-08 靳普科技(北京)有限公司 内外混燃机

Also Published As

Publication number Publication date
CN113756900A (zh) 2021-12-07

Similar Documents

Publication Publication Date Title
WO2023030468A1 (zh) 内外混燃机
JP2009185809A (ja) 複合サイクル作動流体改質及びその燃焼を促進する方法及びシステム
EP1872002A1 (en) Energy recovery system
WO2022105213A1 (zh) 多转子微型燃气轮机及其启动方法
JP2004214193A5 (zh)
CN215979532U (zh) 内外混燃机
CN207647562U (zh) 一种冷热、电、蒸汽联供系统
CN218064968U (zh) 一种燃烧喷嘴及内外混燃机
CN115355106A (zh) 燃烧室抽气循环液体火箭发动机
CN215979531U (zh) 内外混燃机
WO2012162923A1 (zh) 燃气和蒸汽轮机系统
CN213360253U (zh) 分布式多轴燃气轮机及复合动力系统
CN107476996B (zh) 发电机组
CN113756901A (zh) 内外混燃机
WO2012162922A1 (zh) 燃气和蒸汽轮机系统
US20030014960A1 (en) Impulse turbine for rotary ramjet engine
CN216950580U (zh) 设有燃烧喷嘴的内外混燃机
CN216198489U (zh) 一种燃气轮机
CN216950579U (zh) 一种设有燃烧喷嘴的内外混燃机
CN203702343U (zh) 一种低温混合动力燃气轮机
CN109869241B (zh) 超重力燃气发动机装置及方法
CN113047919A (zh) 一种多背压燃气-蒸汽联合循环发电系统
CN112901345A (zh) 分体式燃气轮机燃料电池混合发电系统
RU2095634C1 (ru) Комбинированный газоперекачивающий агрегат
CN211448781U (zh) 一种燃料参与涡轮叶片冷却的系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863602

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17.07.2024)