[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023029008A1 - 信息传输方法、设备及存储介质 - Google Patents

信息传输方法、设备及存储介质 Download PDF

Info

Publication number
WO2023029008A1
WO2023029008A1 PCT/CN2021/116546 CN2021116546W WO2023029008A1 WO 2023029008 A1 WO2023029008 A1 WO 2023029008A1 CN 2021116546 W CN2021116546 W CN 2021116546W WO 2023029008 A1 WO2023029008 A1 WO 2023029008A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
reference signal
spatial
psfch
signal resource
Prior art date
Application number
PCT/CN2021/116546
Other languages
English (en)
French (fr)
Inventor
赵振山
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2021/116546 priority Critical patent/WO2023029008A1/zh
Priority to CN202180098595.7A priority patent/CN117397173A/zh
Publication of WO2023029008A1 publication Critical patent/WO2023029008A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas

Definitions

  • the embodiments of the present application relate to the field of wireless communication technologies, and in particular, to an information transmission method, device, and storage medium.
  • the millimeter wave frequency band is used in the sidelink transmission system.
  • the spatial transmission filter including the spatial transmission filter and the spatial reception filter
  • Embodiments of the present application provide an information transmission method, device, and storage medium, so as to improve the transmission quality of side communication.
  • the first aspect of the embodiment of the present application provides an information transmission method applied to the first device, the method comprising: determining a first airspace transmission filter for sidewalk communication, and using the first airspace transmission filter to transmit information to the second device Send the first side channel.
  • the second aspect of the embodiment of the present application provides an information transmission method, which is applied to the second device, and the method includes: determining a first spatial receiving filter for side communication, using the first spatial receiving filter to receive information from the first The device's first sidestream channel.
  • a third aspect of the embodiments of the present application provides a first device, including: a processing module and a sending module.
  • a processing module configured to determine a first airspace transmit filter for sidelink communication; a sending module, configured to use the first airspace transmit filter to transmit a first sidelink channel to the second device.
  • a fourth aspect of the embodiments of the present application provides a second device, including: a processing module and a receiving module.
  • a processing module configured to determine a first spatial domain receiving filter for sidelink communication; a receiving module, configured to use the first spatial domain receiving filter to receive a first sidelink channel from the first device.
  • a fifth aspect of the embodiments of the present application provides an electronic device, including: a memory and a processor, the memory is used to store a computer program, and the processor is used to call and run the computer program from the memory, so that the The processor executes the computer program to execute the method as described in the first aspect.
  • the sixth aspect of the embodiments of the present application provides an electronic device, including: a memory and a processor, the memory is used to store a computer program, and the processor is used to call and run the computer program from the memory, so that the The processor executes the computer program to execute the method according to the second aspect.
  • a seventh aspect of the embodiments of the present application provides a computer storage medium for storing a computer program, and when the computer program runs on a computer, the computer executes the method described in the first aspect.
  • An eighth aspect of the embodiments of the present application provides a computer storage medium for storing a computer program, and when the computer program runs on a computer, the computer executes the method described in the second aspect.
  • a ninth aspect of the embodiments of the present application provides a computer program product, which causes the computer to execute the method described in the first aspect when the computer program product is run on a computer.
  • a tenth aspect of the embodiments of the present application provides a computer program product.
  • the computer program product When the computer program product is run on a computer, the computer is made to execute the method described in the second aspect.
  • Embodiments of the present application provide an information transmission method, device, and storage medium, which are used to improve the transmission quality of side communication.
  • the method includes: the terminal device in the sidelink communication determines the airspace transmit filter used for the sidelink communication, and uses the airspace transmit filter to transmit the sidelink channel to the opposite side device.
  • the terminal device of the sidewalk communication determines the spatial domain reception filter used for the sidelink communication, and uses the spatial domain reception filter to receive the side channel from the opposite device.
  • the sidelink channel includes any one of a physical sidelink control channel PSCCH, a physical sidelink shared channel PSSCH, a physical sidelink feedback channel PSFCH or a physical sidelink broadcast channel PSBCH.
  • FIG. 1 is a schematic diagram of an application scenario 1 provided by an embodiment of the present application.
  • FIG. 2 is a second schematic diagram of the application scenario provided by the embodiment of the present application.
  • FIG. 3 is a schematic diagram of the third application scenario provided by the embodiment of the present application.
  • FIG. 4 is a schematic diagram 4 of an application scenario provided by an embodiment of the present application.
  • FIG. 5 is a first schematic diagram of a time slot structure provided by an embodiment of the present application.
  • FIG. 6 is a second schematic diagram of the time slot structure provided by the embodiment of the present application.
  • FIG. 7 is a schematic diagram of PSFCH resources provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a system without beamforming
  • FIG. 9 is a schematic diagram of a system using beamforming
  • FIG. 10 is a schematic diagram of determining an optimal transmission beam by a UE at a transmitting end provided in an embodiment of the present application
  • FIG. 11 is a schematic diagram of determining an optimal receiving beam by a UE at a receiving end provided in an embodiment of the present application
  • FIG. 12 is an interactive schematic diagram 1 of the information transmission method provided by the embodiment of the present application.
  • FIG. 13 is the second interactive schematic diagram of the information transmission method provided by the embodiment of the present application.
  • FIG. 14 is a third interactive schematic diagram of the information transmission method provided by the embodiment of the present application.
  • FIG. 15 is a schematic diagram of a time slot/scenario of an information transmission method provided by an embodiment of the present application.
  • FIG. 16 is a fourth interactive schematic diagram of the information transmission method provided by the embodiment of the present application.
  • FIG. 17 is a fifth interactive schematic diagram of the information transmission method provided by the embodiment of the present application.
  • FIG. 18 is a sixth interactive schematic diagram of the information transmission method provided by the embodiment of the present application.
  • Fig. 19 is a schematic structural diagram of the first device provided by the embodiment of the present application.
  • FIG. 20 is a schematic structural diagram of a second device provided by an embodiment of the present application.
  • FIG. 21 is a first schematic diagram of the hardware structure of the electronic device provided by the embodiment of the present application.
  • FIG. 22 is a second schematic diagram of the hardware structure of the electronic device provided by the embodiment of the present application.
  • the information transmission method provided by this application can be applied to various communication systems, such as: Long Term Evolution (Long Term Evolution, LTE) system, LTE frequency division duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex) , TDD), Universal Mobile Telecommunications System (UMTS), Worldwide Interoperability for Microwave Access (WiMAX) Communication System, Fifth Generation (5th Generation, 5G) Mobile Communication System or New Wireless Access Access technology (new radio access technology, NR).
  • LTE Long Term Evolution
  • FDD frequency division duplex
  • TDD Time division duplex
  • UMTS Universal Mobile Telecommunications System
  • WiMAX Worldwide Interoperability for Microwave Access
  • 5G mobile communication system may include non-standalone networking (non-standalone, NSA) and/or standalone networking (standalone, SA).
  • the information transmission method provided by this application can also be applied to machine type communication (machine type communication, MTC), inter-machine communication long-term evolution technology (Long Term Evolution-machine, LTE-M), device to device (device to device, D2D) A network, a machine to machine (M2M) network, an Internet of things (IoT) network, or other networks.
  • MTC machine type communication
  • LTE-M inter-machine communication long-term evolution technology
  • D2D device to device
  • a network a machine to machine (M2M) network
  • M2M machine to machine
  • IoT Internet of things
  • the IoT network may include, for example, the Internet of Vehicles.
  • the communication methods in the Internet of Vehicles system are collectively referred to as vehicle to other devices (vehicle to X, V2X, X can represent anything), for example, the V2X can include: vehicle to vehicle (vehicle to vehicle, V2V) communication, vehicle and Infrastructure (vehicle to infrastructure, V2I) communication, vehicle to pedestrian (vehicle to pedestrian, V2P) or vehicle to network (vehicle to network, V2N) communication, etc.
  • vehicle to vehicle vehicle to vehicle
  • V2V vehicle to vehicle
  • V2I vehicle to infrastructure
  • V2P vehicle to pedestrian
  • V2N vehicle to network
  • the information transmission method provided in this application can also be applied to future communication systems, such as the sixth generation mobile communication system and the like. This application is not limited to this.
  • the terminal equipment may also be referred to as user equipment (user equipment, UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal , wireless communication device, user agent, or user device.
  • user equipment user equipment
  • UE user equipment
  • access terminal subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal , wireless communication device, user agent, or user device.
  • a terminal device may be a device that provides voice/data connectivity to users, for example, a handheld device with a wireless connection function, a vehicle-mounted device, and the like.
  • some terminals can be: mobile phone (mobile phone), tablet computer (pad), computer with wireless transceiver function (such as notebook computer, palmtop computer, etc.), mobile internet device (mobile internet device, MID), virtual reality (virtual reality, VR) equipment, augmented reality (augmented reality, AR) equipment, wireless terminals in industrial control (industrial control), wireless terminals in self driving (self driving), wireless in remote medical (remote medical) Terminals, wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home, cellular phones, cordless Telephones, session initiation protocol (SIP) phones, wireless local loop (WLL) stations, personal digital assistants (PDAs), handheld devices with wireless communication capabilities, computing devices, or connected Other processing devices to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in the 5G network or
  • wearable devices can also be called wearable smart devices, which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories.
  • Wearable device is not only a hardware device, but also realizes powerful functions through software support, data interaction and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • the terminal device may also be a terminal device in an Internet of Things (Internet of things, IoT) system.
  • IoT Internet of things
  • Its main technical feature is to connect objects to the network through communication technology, so as to realize the intelligent network of human-machine interconnection and object interconnection.
  • IoT technology can achieve massive connections, deep coverage, and terminal power saving through, for example, narrow band (NB) technology.
  • NB narrow band
  • terminal equipment can also include sensors such as smart printers, train detectors, and gas stations.
  • the main functions include collecting data (partial terminal equipment), receiving control information and downlink data from network equipment, and sending electromagnetic waves to transmit uplink data to network equipment. .
  • the network device may be any device with a wireless transceiver function.
  • Network equipment includes but not limited to: evolved Node B (evolved Node B, eNB), radio network controller (radio network controller, RNC), Node B (Node B, NB), base station controller (base station controller, BSC) , base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (baseband unit, BBU), wireless fidelity (wireless fidelity, WiFi) system Access point (access point, AP), wireless relay node, wireless backhaul node, transmission point (transmission point, TP) or transmission and reception point (transmission and reception point, TRP), etc., can also be 5G, such as NR , a gNB in the system, or, a transmission point (TRP or TP), one or a group (including multiple antenna panels) antenna panels of a base station in a 5G system
  • 5G such
  • a gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include an active antenna unit (AAU).
  • the CU implements some functions of the gNB, and the DU implements some functions of the gNB.
  • the CU can be responsible for processing non-real-time protocols and services, for example, it can implement the radio resource control (radio resource control, RRC) layer, service data adaptive protocol (service data) Adaptation protocol (SDAP) layer and/or packet data convergence protocol (packet data convergence protocol, PDCP) layer functions.
  • DU can be responsible for handling physical layer protocols and real-time services.
  • a DU can be connected to only one CU or to multiple CUs, and a CU can be connected to multiple DUs, and CUs and DUs can communicate through the F1 interface.
  • the AAU can realize some physical layer processing functions, radio frequency processing and related functions of active antennas.
  • high-level signaling such as RRC layer signaling, also It can be considered as sent by the DU, or sent by the DU+AAU.
  • the network device may be a device including one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network devices in an access network (radio access network, RAN), and the CU can also be divided into network devices in a core network (core network, CN), which is not limited in this application.
  • RAN radio access network
  • CN core network
  • the network device provides services for the cell, and the terminal device communicates with the cell through the transmission resources (for example, frequency domain resources, or spectrum resources) allocated by the network device.
  • the cell may belong to a macro base station (for example, a macro eNB or a macro gNB, etc.) , can also belong to the base station corresponding to a small cell, where the small cell can include: a metro cell, a micro cell, a pico cell, a femto cell, etc. , these small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • system and “network” are often used interchangeably herein.
  • the term “and/or” is only an association relationship describing associated objects, indicating that there may be three types of relationships, for example, A and/or B may indicate: A exists alone, A and B exist simultaneously, and B exists independently. situation.
  • the character "/" in this article generally indicates that the contextual objects are an "or” relationship.
  • the "instruction" mentioned in the embodiment of the present application may be a direct indication, may also be an indirect indication, and may also mean that there is an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • the term "corresponding" may indicate that there is a direct or indirect correspondence between the two, or that there is an association between the two, or that there is a relationship between indicating and being instructed, configuring and being configured, etc. .
  • predefined or “preconfigured” can be realized by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in devices (for example, including terminal devices and network devices).
  • the application does not limit its specific implementation.
  • pre-defined may refer to defined in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, for example, may include the LTE protocol, the NR protocol, and related protocols applied to future communication systems, which is not limited in the present application.
  • FIG. 1 is a first schematic diagram of an application scenario provided by an embodiment of the present application.
  • the scenario shown in FIG. 1 includes a network device 101 and two terminal devices, which are terminal devices 102 and 103 respectively. Both the terminal device 102 and the terminal device 103 are within the coverage of the network device 101 .
  • the network device 101 is connected in communication with the terminal device 102 and the terminal device 103 respectively, and the terminal device 102 is connected in communication with the terminal device 103 .
  • the terminal device 102 may send a communication message to the terminal device 103 through the network device 101 , and the terminal device 102 may also directly send the communication message to the terminal device 103 .
  • the direct communication link between the terminal device 102 and the terminal device 103 is called a D2D link, and may also be called a proximity service (proximity service, ProSe) link, a side link, and the like.
  • the transmission resource on the D2D link may be allocated by a network device.
  • FIG. 2 is a second schematic diagram of an application scenario provided by the embodiment of the present application.
  • the scenario shown in FIG. 2 also includes a network device 101 and two terminal devices.
  • the difference from FIG. 1 is that the terminal device 103 is within the coverage of the network device 101 and the terminal device 104 is outside the coverage of the network device 101 .
  • the network device 101 is connected in communication with the terminal device 103
  • the terminal device 103 is connected in communication with the terminal device 104 .
  • the terminal device 103 may receive configuration information sent by the network device 101, and perform sidelink communication according to the configuration information. Since the terminal device 104 cannot receive the configuration information sent by the network device 101, the terminal device 104 can perform sidelink communication according to the pre-configuration information and the information carried in the Physical Sidelink Broadcast Channel (PSBCH) sent by the terminal device 103.
  • PSBCH Physical Sidelink Broadcast Channel
  • FIG. 3 is a third schematic diagram of an application scenario provided by the embodiment of the present application.
  • both the terminal device 104 and the terminal device 105 are outside the coverage of the network device 101 .
  • Both the terminal device 104 and the terminal device 105 can determine the sidelink configuration according to the pre-configuration information, and perform sidelink communication.
  • FIG. 4 is a fourth schematic diagram of an application scenario provided by an embodiment of the present application.
  • multiple terminal devices form a communication group, for example, terminal devices 106, 107, and 108 form a communication group.
  • a central control node in the communication group which may also be called a cluster header terminal (cluster header, CH), such as the terminal device 106 .
  • the central control node has one of the following functions: responsible for the establishment of communication groups; joining and leaving of group members; performing resource coordination, allocating side transmission resources for other terminals, and receiving side transmission feedback information from other terminals; communicating with other communication groups Resource coordination and other functions.
  • D2D communication has higher frequency efficiency and lower transmission delay.
  • the Internet of Vehicles system adopts the method of terminal-to-terminal direct communication, and two transmission modes are defined in the 3rd Generation Partnership Project (3GPP): the first transmission mode and the second transmission mode.
  • 3GPP 3rd Generation Partnership Project
  • the first transmission mode the transmission resource of the terminal device is allocated by the base station, and the terminal device performs data transmission on the sidelink according to the resource allocated by the base station.
  • the base station can allocate resources for a single transmission to the terminal equipment, and can also allocate resources for semi-static transmission to the terminal equipment.
  • the terminal device 102 shown in FIG. 1 is located within the coverage of the network device 101 , and the network device 101 allocates transmission resources for sidelink transmission to the terminal device 102 .
  • the second transmission mode the terminal device selects a resource from the resource pool to transmit data.
  • the terminal device 102 shown in FIG. 1 may autonomously select transmission resources from a resource pool configured by the network for sidelink transmission.
  • Both the terminal devices 104 and 105 shown in FIG. 3 are located outside the coverage of the network device 101, and the terminal devices 104 and 105 can autonomously select transmission resources from a pre-configured resource pool for sidelink transmission.
  • NR-V2X is a communication scenario based on sidelink links.
  • X can generally refer to any device with wireless receiving and transmitting capabilities, including but not limited to slow-moving wireless devices, fast Mobile vehicle equipment, network control nodes with wireless transmission and reception capabilities, etc.
  • NR-V2X communication supports unicast, multicast, and broadcast transmission methods.
  • unicast transmission the sending terminal sends data, and there is only one receiving terminal.
  • multicast transmission the sending terminal sends data, and the receiving terminal is all terminals in a communication group, or all terminals within a certain transmission distance.
  • broadcast transmission the sending terminal sends data, and the receiving terminal is any terminal around the sending terminal.
  • NR-V2X communication needs to support autonomous driving, so it puts forward higher requirements for data interaction between vehicles, such as higher throughput, lower latency, higher reliability, larger coverage, and more flexibility resource allocation, etc.
  • PSFCH physical sidelink deadback channel
  • the sending terminal For unicast transmission, the sending terminal sends sidelink data (including PSCCH and PSSCH) to the receiving terminal, and the receiving terminal sends feedback information of Hybrid Automatic Repeat reQuest (HARQ) to the sending terminal, and the sending terminal sends the feedback information of the hybrid automatic repeat request (HARQ) according to the receiving terminal's
  • HARQ Hybrid Automatic Repeat reQuest
  • the feedback information determines whether data retransmission is required.
  • the HARQ feedback information is carried in the PSFCH.
  • Method 1 Terminals within a certain distance receive sidelink data from the sending terminal. If the detection result is NACK, sidelink feedback needs to be sent; if the detection result is ACK , there is no need to send lateral feedback. Terminals outside the distance range do not need to send sidetrack feedback no matter what the detection result is.
  • Mode 2 For a communication group, all receiving terminals need to send sideline feedback. For example, a communication group includes P terminals, and when one terminal serves as a sending terminal to send sidelink data, the other P ⁇ 1 terminals all need to send sidelink feedback information.
  • the terminal device can activate or deactivate sideline feedback through pre-configuration information or network configuration information. If the sidelink feedback is activated, the receiving terminal receives the sidelink data sent by the sending terminal, and needs to feed back HARQ ACK/NACK (confirmation/non-confirmation) to the sending terminal according to the detection result, and the sending terminal decides to send retransmission data according to the feedback information of the receiving terminal or new data. If the sidelink feedback is deactivated, the receiving terminal does not need to send feedback information, and the sending terminal usually sends data in a blind retransmission manner, for example, the sending terminal repeatedly sends a preset number of retransmissions for each sidelink data.
  • PSFCH only carries 1-bit HARQ ACK information, and occupies 2 time-domain symbols in the time domain (wherein, the second symbol carries sideline feedback information, and the data on the first symbol is Replication of data on the second symbol), occupying 1 PRB in the frequency domain.
  • FIG. 5 is a first schematic diagram of a time slot structure provided by an embodiment of the present application.
  • the time slot shown in Figure 5 does not include PSFCH symbols.
  • the first side row symbol of this time slot is usually used for automatic gain control (Automatic Gain Control, AGC).
  • AGC Automatic Gain Control
  • the terminal equipment replicates the second symbol
  • the data transmitted, the data on the AGC symbols are usually not used for data demodulation.
  • the last side symbol of this time slot is guard period (guard period, GP), which is used for transceiver switching, and is used for terminal equipment to switch from sending (or receiving) state to receiving (or sending) state.
  • guard period guard period
  • the physical sidelink control channel (physical sidelink control channel, PSCCH) can occupy two or three OFDM symbols starting from the second sidelink symbol, and the PSCCH can occupy ⁇ 10,12 15,20,25 ⁇ physical resource blocks (physical resource block, PRB).
  • PSCCH physical sidelink control channel
  • PRB physical resource block
  • the sub-channel is the minimum granularity of physical sidelink shared channel (PSSCH) resource allocation in NR-V2X
  • the number of PRBs occupied by PSCCH must be less than or equal to the number of PRBs contained in a sub-channel in the resource pool , so as not to impose additional restrictions on PSSCH resource selection or allocation.
  • the physical sidelink shared channel PSSCH can occupy symbols from the second sidelink symbol of the time slot to the symbol before the last GP symbol of the time slot.
  • the PSSCH occupies K sub-channels in the frequency domain, and each sub-channel includes M consecutive PRBs. Wherein, K is a positive integer, and the value of M includes ⁇ 10, 12, 15, 20, 25, 50, 75, 100 ⁇ .
  • FIG. 6 is a second schematic diagram of a time slot structure provided by an embodiment of the present application.
  • the last symbol is used as GP
  • the penultimate symbol is used for PSFCH transmission
  • the penultimate symbol data is the same as the PSFCH symbol data, and is used as AGC
  • the penultimate symbol is also Used as GP
  • the first symbol in the slot is used as AGC
  • the data on this symbol is the same as the data on the second time domain symbol in the slot
  • PSCCH occupies 3 time domain symbols
  • the remaining symbols can be used for PSSCH transmission.
  • the period of the sidelink feedback resource can be defined, for example, the period is N slots, and N is 1, 2, 4, etc.
  • the parameter N can be pre-configured or configured by the network.
  • FIG. 7 is a schematic diagram of PSFCH resources provided by the embodiment of the present application.
  • the period of PSFCH is 4 time slots.
  • the feedback information of the PSSCH transmitted in time slots 2, 3, 4, and 5 is transmitted in time slot 7, so time slots 2, 3, 4, and 5 can be regarded as a set of time slots, and the set of time slots For the PSSCH transmitted in , the corresponding PSFCH is in the same slot (slot 7).
  • NR-V2X communication supports terminals to simultaneously transmit multiple PSFCHs in one time slot.
  • NR/5G systems include large-bandwidth communications in high-frequency bands (eg, frequency bands above 6 GHz). When the operating frequency becomes higher, the path loss in the transmission process will increase, thereby affecting the coverage capability of the high-frequency system.
  • a large-scale antenna array can be used to form a shaped beam with greater gain, overcome propagation loss, and ensure system coverage.
  • the millimeter-wave antenna array due to the shorter wavelength, smaller antenna element spacing and smaller aperture, allows more physical antenna elements to be integrated in a limited-sized two-dimensional antenna array.
  • digital beamforming due to the limited size of the millimeter-wave antenna array, considering factors such as hardware complexity, cost overhead, and power consumption, digital beamforming cannot be used. Analog beamforming is usually used to enhance network coverage and reduce The implementation complexity of the device.
  • a cell uses a wider beam (beam) to cover the entire cell. Therefore, at each moment, terminals within the coverage of the cell have the opportunity to obtain transmission resources allocated by the system.
  • the multi-beam (multi-beam) system of NR/5G covers the entire cell through different beams, that is, each beam covers a small range, and the effect of multiple beams covering the entire cell is achieved through beam sweeping.
  • FIG. 8 is a schematic diagram of a system without beamforming.
  • the system shown in Figure 8 is a conventional LTE/NR system that does not use beamforming.
  • the network side of the LTE/NR system uses a wide beam to cover the entire cell, and UE1 to UE5 can receive network signals at any time.
  • FIG. 9 is a schematic diagram of a system using beamforming.
  • the system shown in Figure 9 is an NR system using beamforming, where the network side of the system uses narrower beams, such as beams 1 to 4 in Figure 9, and uses different beams at different times to cover different areas in the cell .
  • the network side of the system uses narrower beams, such as beams 1 to 4 in Figure 9, and uses different beams at different times to cover different areas in the cell .
  • the NR network side covers the area where UE1 is located through beam 1
  • the NR network side covers the area where UE2 is located through beam 2
  • the NR network side covers the area where UE3 and UE4 are located through beam 3
  • the NR network side uses beam 4 to cover the area where UE5 is located.
  • Analog beamforming can be used not only for network-side devices, but also for terminals. At the same time, analog beamforming can not only be used for signal transmission (called transmit beam), but also can be used for signal reception (called receive beam).
  • beams can be identified by the signal they carry. For example, different synchronization signal broadcast channel blocks (SS/PBCH block, SSB) are transmitted on different beams, and the terminal can identify different beams through different SSBs. For another example, different channel state information reference signals (channel state information reference signals, CSI-RS) are transmitted on different beams, and the terminal identifies different beams through the CSI-RS signals or CSI-RS resources. Therefore, later on, the beam can be identified based on the visible signal, and the beam actually corresponds to a certain signal.
  • SS/PBCH block SSB
  • CSI-RS channel state information reference signals
  • a physical downlink control channel (physical downlink control channel, PDCCH) and a physical downlink shared channel (physical downlink shared channel, PDSCH) can be transmitted through different downlink transmission beams.
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • omnidirectional antennas or near-omnidirectional antennas are used to receive signals sent by different downlink transmission beams of the base station.
  • corresponding beam indication information (beam indication) is needed to assist the UE to determine the related information of the transmitting beam on the network side, or the corresponding receiving beam related information on the terminal side.
  • the beam indication information does not directly indicate the beam itself, but indicates it through Quasi Co-Location (QCL) ('QCL-TypeD' type) between signals.
  • QCL Quasi Co-Location
  • determining to receive the corresponding channel/signal is also based on the QCL quasi-co-location assumption.
  • the characteristics of the transmission environment corresponding to the data transmission can be used to improve the reception algorithm.
  • the statistical properties of the channel can be exploited to optimize the design and parameters of the channel estimator.
  • these characteristics corresponding to data transmission are represented by QCL status (QCL-Info).
  • the characteristics of the transmission environment corresponding to the data transmission may also change, so in the NR system , when the network side is transmitting the downlink control channel or data channel, it will indicate the corresponding QCL status information to the terminal through the transmission configuration indicator (TCI) status.
  • a TCI state can contain the following configurations:
  • TCI state identifier used to identify a TCI state; QCL information 1; QCL information 2 (optional).
  • a QCL information contains the following information:
  • QCL type configuration which can be one of QCL type A, QCL typeB, QCL typeC or QCL typeD
  • QCL reference signal configuration including the cell ID where the reference signal is located, the BWP ID and the identification of the reference signal (which can be the CSI-RS resource ID or SSB index).
  • the QCL type of at least one QCL information must be one of typeA, typeB, and typeC, and the QCL type of the other QCL information (if configured) must be QCL type D.
  • 'QCL-TypeA' ⁇ Doppler shift Doppler shift, Doppler spread Doppler spread, average delay average delay, delay spread delay spread ⁇ ;
  • the network side can indicate the corresponding TCI state for the downlink signal or downlink channel.
  • the terminal can assume that the target downlink signal is the same as the reference SSB or reference CSI-RS resource, and the QCL type is configured as typeA, typeB or typeC.
  • the large-scale parameters of the reference CSI-RS resources are the same, and the large-scale parameters are determined by QCL type configuration.
  • the large-scale parameters include the above-mentioned Doppler shift, Doppler spread, average delay, delay spread, space receiver parameters, average gain, and the like.
  • the terminal can use the same resource as the reference SSB or reference CSI-RS resource.
  • the receiving beam (that is, the Spatial Rx parameter) is used to receive the target downlink signal.
  • the target downlink channel (or downlink signal) and its reference SSB or reference CSI-RS resource are sent by the same TRP or the same panel or the same beam at the network side. If the transmission TRP or transmission panel or transmission beam of two downlink signals or downlink channels are different, different TCI states are usually configured.
  • RRC signaling or RRC signaling+MAC signaling may be used to indicate the TCI state of the corresponding control resource set (control-resource set, CORESET).
  • the available TCI state set is indicated by RRC signaling, and some of the TCI states are activated by MAC layer signaling, and finally activated by the TCI state indication field in the downlink control information (DCI)
  • DCI downlink control information
  • the embodiment of the present application proposes an information transmission method, which can be used to solve the problem of how a terminal device transmits a side channel in side communication. Since the sidelink communication introduces multi-beam transmission and reception, the terminal device needs to determine a suitable beam when transmitting the sidelink channel, so as to improve the transmission quality of the sidelink communication.
  • the overall idea of the technical solution of this application is as follows:
  • the beam for sending the side channel can be determined by any of the following methods:
  • the aforementioned side channel includes PSFCH, PSCCH, PSBCH or PSSCH.
  • UE1 can determine the beam for sending PSFCH in any of the following ways:
  • the PSFCH is a sidelink feedback channel associated with the first PSCCH/PSSCH, that is, the sidelink feedback information carried in the PSFCH is for the first PSCCH/PSSCH.
  • the beam on which UE1 sends the PSFCH According to the indication information reported by UE1 to UE2 on the opposite side, determine the beam on which UE1 sends the PSFCH.
  • the indication information indicates a certain reference signal, UE1 learns the optimal receiving beam of UE1 corresponding to the reference signal according to the indication information, and determines the beam on which UE1 sends PSFCH to UE2 according to the optimal receiving beam.
  • the indication information According to receiving the indication information from UE2, determine the beam that UE1 sends PSFCH to UE2.
  • the indication information indicates a certain reference signal, UE1 learns the receiving beam used when receiving the reference signal according to the indication information, and determines the beam for sending the PSFCH according to the receiving beam.
  • the beam for receiving the side channel can be determined by any of the following methods:
  • the aforementioned side channel includes PSFCH, PSCCH, PSBCH or PSSCH.
  • UE2 can determine the beam receiving PSFCH by any of the following methods:
  • the PSFCH is a sidelink feedback channel associated with the first PSCCH/PSSCH, that is, the sidelink feedback information carried in the PSFCH is for the first PSCCH/PSSCH.
  • the indication information from UE1 determines the beam for receiving the PSFCH from UE1.
  • the indication information indicates a certain reference signal
  • UE2 learns from the indication information that the transmission beam corresponding to the reference signal is the optimal transmission beam for UE1, and determines the beam on which UE2 receives the PSFCH from UE1 according to the optimal transmission beam.
  • UE2 According to the instruction information sent by UE2 to UE1, it is determined that UE2 receives the PSFCH beam from UE1.
  • the indication information indicates a certain reference signal, UE2 learns the transmission beam used for sending the reference signal according to the indication information, and determines the beam for receiving the PSFCH according to the transmission beam.
  • FIG. 10 is a schematic diagram of determining an optimal transmission beam by a UE at a transmitting end provided by an embodiment of the present application. As shown in Figure 10, the optimal transmission beam of the UE at the transmitting end is usually determined in the following manner:
  • the UE at the sending end uses different beams (for example, beam 0 to beam 3 at the sending end in FIG. 10 ) to send the CSI-RS resources in turn.
  • the UE at the receiving end uses the same receiving beam (for example, beam 2 at the receiving end in Figure 10) to respectively receive multiple CSI-RS resources sent by the UE at the transmitting end, measure the detected CSI-RS resources, and select the optimal CSI-RS resource -
  • the RS resource feeds back its corresponding resource information (such as CSI-RS resource index) to the UE at the transmitting end, and the transmit beam corresponding to the optimal CSI-RS resource is the optimal transmit beam for the UE at the receiving end.
  • the UE at the receiving end reports or feeds back N CSI-RS resource information and the corresponding measurement results to the UE at the transmitting end, and the UE at the transmitting end selects a CSI-RS from the N CSI-RS resources, and uses the selected CSI-RS -
  • the transmission beam corresponding to the RS performs side transmission.
  • FIG. 11 is a schematic diagram of determining an optimal receiving beam by a receiving end UE according to an embodiment of the present application. As shown in Figure 11, the optimal transmit beam of the UE at the receiving end is usually determined in the following manner:
  • the UE at the sending end uses the same beam (for example, beam 2 at the sending end in FIG. 11 ) to send the CSI-RS resources.
  • the UE at the sending end sends the CSI-RS resource using the optimal sending beam for the UE at the receiving end.
  • the UE at the receiving end uses different receiving beams in turn (for example, beam 0 to beam 3 at the receiving end in Figure 11) to receive the CSI-RS resources sent by the UE at the transmitting end, and perform measurements, and select the receiving beam with the best measurement result as the receiving beam.
  • the optimal receiving beam of the terminal UE uses the same beam (for example, beam 2 at the sending end in FIG. 11 ) to send the CSI-RS resources.
  • the UE at the sending end sends the CSI-RS resource using the optimal sending beam for the UE at the receiving end.
  • the UE at the receiving end uses different receiving beams in turn (for example, beam 0 to beam 3 at the receiving end in Figure 11) to receive the CSI-RS resources sent by
  • the UE at the transmitting end uses the optimal transmitting beam to perform sidelink transmission
  • the UE at the receiving end may use the optimal receiving beam corresponding to the optimal transmitting beam to perform corresponding reception.
  • the receiving beam with the best measurement result refers to the receiving beam with the best receiving quality of the reference signal.
  • the UE at the sending end adopts the above process for different sending beams respectively, and may respectively determine the optimal receiving beam corresponding to each sending beam. Therefore, when the UE at the transmitting end is performing sidelink transmission, the UE at the transmitting end can indicate the transmission beam used for the sidelink transmission, and the UE at the receiving end can determine the optimal receiving beam corresponding to the transmitting beam used by the transmitting end, and use The optimal receiving beam performs side-track receiving.
  • the optimal transmission beam of UE1 and UE2 can be respectively determined based on the above process
  • the optimal receiving beam of UE2 (or the optimal transmitting beam of UE2 and the optimal receiving beam of UE1).
  • the spatial domain transmission filter in the embodiment of the present application is the transmission beam
  • the spatial domain receive filter is the reception beam
  • first device communicates directly with the second device.
  • the first device corresponds to UE1 above
  • the second device corresponds to UE2 above.
  • FIG. 12 is a first interactive schematic diagram of the information transmission method provided by the embodiment of the present application. As shown in FIG. 12, the information transmission method provided by this embodiment is applied to the first device of the lateral communication system, and includes the following steps:
  • Step 201 the first device determines a first airspace transmit filter for sidelink communication.
  • Step 202 the first device sends the first side channel to the second device by using the first spatial domain sending filter.
  • the first device determines that the first device transmits the first side channel to the second device according to the spatial domain reception filter used when the first device receives the second side channel from the second device.
  • the first spatial domain transmit filter for the row channel includes the following two application scenarios:
  • the first side channel includes the first PSFCH
  • the second side channel includes the first PSCCH or the first PSSCH.
  • the first device determines the first spatial transmission filter for the first device to send the first PSFCH to the second device according to the spatial reception filter used when the first device receives the first PSCCH or the first PSSCH from the second device device.
  • the first PSFCH is a sidelink feedback channel associated with the first PSCCH or the first PSSCH, that is, the sidelink feedback information carried in the first PSFCH is specific to the first PSCCH or the first PSSCH.
  • the first side channel includes the second PSCCH or the second PSSCH
  • the second side channel includes the second PSFCH.
  • the first device determines the first spatial transmission filter for the first device to transmit the second PSCCH or the second PSSCH to the second device according to the spatial reception filter used when the first device receives the second PSFCH from the second device device.
  • the second PSCCH or the second PSSCH is a side channel associated with the second PSFCH.
  • the second PSCCH or the second PSSCH may be a retransmission for the second PSFCH, that is, the second PSFCH carries NACK, and the second PSCCH or the second PSSCH is the retransmission performed by the first device according to the second PSFCH from the second device .
  • the first device uses the spatial receive filter used when receiving the second side channel from the second device as the first spatial transmit filter.
  • the first device determines, according to the second spatial domain transmission filter, a first spatial domain transmission filter for the first device to transmit the first side channel to the second device.
  • the second airspace transmission filter is an airspace transmission filter used when the first device sends the third side channel to the second device.
  • the first side channel includes a third PSFCH
  • the third side channel includes a third PSCCH or a third PSSCH.
  • the first device determines a first spatial transmission filter for the first device to transmit the third PSFCH to the second device according to the spatial transmission filter used when the first device transmits the third PSCCH or the third PSSCH to the second device .
  • the first side channel includes the fourth PSCCH or the fourth PSSCH
  • the third side channel includes the fourth PSFCH.
  • the first device determines the first spatial transmission filter for the first device to transmit the fourth PSCCH or the fourth PSSCH to the second device according to the spatial transmission filter used when the first device transmits the fourth PSFCH to the second device .
  • the first device uses the spatial domain transmission filter used when the first device transmits the third side channel to the second device as the first spatial domain transmission filter.
  • the first device determines, according to the first reference signal resource indication information reported by the first device to the second device, that the first device sends the first information of the first side channel channel to the second device. Spatial send filter.
  • the first reference signal resource indication information is used by the second device to determine a spatial domain transmission filter.
  • the second device transmits multiple CSI-RSs to the first device through different spatial domain transmit filters.
  • the first device uses the same beam (such as the first receiving beam) to receive the CSI-RS sent by the second device, and according to the measurement result of the received CSI-RS, selects the CSI-RS with the best measurement result and reports it to the second device.
  • the second device for example, the first device reports CSI-RS resource indicator information (CSI-RS resource indicator, CRI), that is, the above-mentioned first reference signal resource indicator information, to the second device.
  • CSI-RS resource indicator information CSI-RS resource indicator, CRI
  • the second device determines that the transmit beam associated with the CSI-RS corresponding to the CRI is the optimal transmit beam, and the first device determines that the first receive beam receiving the CSI-RS corresponding to the CRI corresponds to the optimal transmit beam the optimal receiving beam. Therefore, when determining the first spatial domain transmission filter for transmitting the first side channel to the second device, the first device may determine the first spatial domain transmission filter based on the first receive beam. In some implementations, the first device uses the first receive beam as a first spatial transmit filter.
  • the first reference signal resource indication information is carried in sidelink control information SCI, medium access layer control element MAC CE, PC5 radio resource control RRC signaling or PSFCH.
  • the first sidelink channel includes PSFCH, PSCCH, PSBCH or PSSCH.
  • the first device uses the spatial domain receive filter corresponding to the reference signal resource indicated by the first reference signal resource indication information as the first spatial domain transmit filter.
  • the first device determines, according to the second reference signal resource indication information from the second device, the first airspace transmission filter for the first device to transmit the first side channel to the second device .
  • the second reference signal resource indication information is used by the first device to determine a spatial domain reception filter.
  • the second device sends a TCI status indication to the first device, which is used to indicate the airspace receiver parameters of the first device, and the reference signal information included in the TCI status is the above-mentioned first Two reference signal resource indication information.
  • the second reference signal resource indication information is used, for example, to indicate a CSI-RS resource.
  • the first device can determine the optimal spatial receiving filter associated with the CSI-RS, and determine the first device sending the first side channel to the second device according to the optimal spatial receiving filter. Spatial send filter.
  • the first device uses the optimal spatial domain receive filter as the first spatial domain transmit filter.
  • the second reference signal resource indication information is carried in the TCI state.
  • the second reference signal resource indication information is carried in SCI, MAC CE, PC5-RRC signaling or PSFCH.
  • the first sidelink channel includes PSFCH, PSCCH, PSBCH or PSSCH.
  • the first device uses the spatial receiving filter corresponding to the reference signal resource indicated by the second reference signal resource indication information as the first spatial transmitting filter.
  • This embodiment shows an information transmission method.
  • the first device can receive the side channel through the first device's air domain receiving filter, or the first device can send the side channel through the air domain transmitting filter, or the first device can report to the second
  • the first reference signal resource indication information from the second device, or the second reference signal resource indication information from the second device determines the spatial domain transmission filter for the first device to transmit the current side channel.
  • a suitable airspace transmission filter of the first device can be determined by any of the above methods, so as to improve the transmission capability of the first device for sidelink communication.
  • FIG. 13 is a second schematic diagram of interaction of the information transmission method provided by the embodiment of the present application. As shown in Figure 13, the information transmission method provided by this embodiment is applied to the second device of the lateral communication system, including the following steps:
  • Step 301 the second device determines a first spatial receiving filter for sidelink communication.
  • Step 302 the second device receives the first side channel sent by the first device by using the first spatial receiving filter.
  • the second device determines that the second device receives the first side channel transmitted by the first device according to the spatial domain transmission filter used when the second device transmits the second side channel to the first device.
  • the first spatial domain receive filter for the row channel includes the following two application scenarios:
  • the first side channel includes the first PSFCH
  • the second side channel includes the first PSCCH or the first PSSCH.
  • the second device determines the first spatial reception filter for the second device to receive the first PSFCH sent by the first device according to the spatial transmission filter used when the second device sends the first PSCCH or the first PSSCH to the first device device.
  • the first PSFCH is a sidelink feedback channel associated with the first PSCCH or the first PSSCH, that is, the sidelink feedback information carried in the first PSFCH is specific to the first PSCCH or the first PSSCH.
  • the first side channel includes the second PSCCH or the second PSSCH
  • the second side channel includes the second PSFCH.
  • the second device determines the first spatial reception filter for the second device to receive the second PSCCH or the second PSSCH sent by the first device according to the spatial transmission filter used when the second device sends the second PSFCH to the first device device.
  • the second PSCCH or the second PSSCH is a side channel associated with the second PSFCH.
  • the second PSCCH or the second PSSCH may be a retransmission for the second PSFCH, that is, the second PSFCH carries NACK, and the second PSCCH or the second PSSCH is the retransmission performed by the first device according to the second PSFCH from the second device .
  • the second device uses the spatial domain transmit filter used when the second device transmits the second sidelink channel to the first device as the first spatial domain receive filter.
  • the second device determines, according to the second spatial domain reception filter, a first spatial domain reception filter for the second device to receive the first side channel sent by the first device.
  • the second spatial domain receiving filter is a spatial domain receiving filter used when the second device receives the third side channel from the first device.
  • the first side channel includes a third PSFCH
  • the third side channel includes a third PSCCH or a third PSSCH.
  • the second device determines that the second device receives the first spatial reception of the third PSFCH sent by the first device according to the spatial reception filter used when the second device receives the third PSCCH or the third PSSCH from the first device. filter.
  • the first side channel includes the fourth PSCCH or the fourth PSSCH
  • the third side channel includes the fourth PSFCH.
  • the second device determines that the second device receives the fourth PSCCH or the fourth PSSCH sent by the first device according to the spatial reception filter used when the second device receives the fourth PSFCH from the first device. filter.
  • the second device uses the spatial domain reception filter used when it receives the third side channel from the first device as the first spatial domain reception filter.
  • the second device determines, according to the first reference signal resource indication information from the first device, that the second device receives the first spatial reception filter of the first side channel sent by the first device. device.
  • the first reference signal resource indication information is used to indicate the first target reference signal resource.
  • the first reference signal resource indication information is used by the second device to determine a spatial domain transmission filter.
  • the second device transmits multiple CSI-RSs to the first device through different spatial domain transmit filters.
  • the first device uses the same beam (such as the first receiving beam) to receive the CSI-RS sent by the second device, and according to the measurement result of the received CSI-RS, selects the CSI-RS with the best measurement result and reports it to the second device.
  • the second device for example, the first device reports CSI-RS resource indicator information (CSI-RS resource indicator, CRI), that is, the above-mentioned first reference signal resource indicator information, to the second device.
  • CSI-RS resource indicator information CSI-RS resource indicator, CRI
  • the second device determines that the transmission beam associated with the CSI-RS corresponding to the CRI is the optimal transmission beam, and the second device determines according to the optimal transmission beam that the second device receives the first side channel from the first device.
  • a spatial domain receive filter In some implementations, the second device uses the optimal transmit beam as the first spatial domain receive filter.
  • the first reference signal resource indication information is carried in SCI, MAC CE, PC5-RRC signaling or PSFCH.
  • the first sidelink channel includes PSFCH, PSCCH, PSBCH or PSSCH.
  • the second device uses the spatial domain transmit filter corresponding to the reference signal resource indicated by the first reference signal resource indication information as the first spatial domain receive filter.
  • the second device determines, according to the second reference signal resource indication information, the first spatial receiving filter for the second device to receive the first side channel sent by the first device.
  • the second reference signal resource indication information is used to indicate the second target reference signal resource.
  • the second reference signal resource indication information is used by the first device to determine a spatial domain reception filter.
  • the second device sends a TCI status to the first device, where the TCI status includes the second reference signal resource indication information.
  • the second device sends a TCI status indication to the first device, which is used to indicate the airspace receiver parameters of the first device, and the reference signal information included in the TCI status is the second reference signal.
  • Signal resource indication information is used, for example, to indicate a CSI-RS resource.
  • the first device may determine the optimal spatial domain receiving filter associated with the CSI-RS according to the TCI state indication.
  • the transmission beam corresponding to the reference signal indicated by the TCI state is the optimal transmission beam of the second device, and the second device determines the first airspace where the second device receives the first side channel sent by the first device according to the optimal transmission beam. receive filter.
  • the second device uses the optimal transmit beam as the first spatial domain receive filter.
  • the second reference signal resource indication information is carried in SCI, MAC CE, PC5-RRC signaling or PSFCH.
  • the first sidelink channel includes PSFCH, PSCCH, PSBCH or PSSCH.
  • the second device uses the spatial domain transmit filter corresponding to the reference signal resource indicated by the second reference signal resource indication information as the first spatial domain receive filter.
  • the second device can send the side channel through the second device's spatial domain transmission filter, or the second device receives the side channel through the spatial domain receiving filter, or the second device from the first device
  • the reference signal resource indication information, or the second reference signal resource indication information sent by the second device to the first device determines the spatial receiving filter for the second device to receive the current side channel.
  • a suitable spatial receiving filter of the second device can be determined through any of the above methods, so as to improve the receiving capability of the second device for side communication.
  • the second device sends the second side channel to the first device
  • the first device sends the first side channel to the second device
  • the first side channel includes the first side channel
  • One PSFCH the second side channel includes the first PSCCH or the first PSSCH
  • the first PSFCH is a side channel feedback channel associated with the first PSCCH or the first PSSCH
  • the interaction between the first device and the second device is as follows in conjunction with Figure 14 The process is described.
  • FIG. 14 is a third schematic diagram of interaction of the information transmission method provided by the embodiment of the present application. As shown in Figure 14, the information transmission method of this embodiment includes the following steps:
  • Step 401 the second device sends the first PSCCH or the first PSSCH to the first device.
  • Step 402 the first device determines a first spatial domain transmission filter for transmitting the first PSFCH to the second device.
  • the first device determines the first spatial domain transmission filter according to the spatial domain reception filter used for the first PSCCH or the first PSSCH from the second device.
  • the first device uses the spatial domain reception filter used when the first device receives the first PSCCH or the first PSSCH from the second device as the first spatial domain transmission filter. That is, the first device sends the first PSFCH to the second device by using the spatial receiving filter that receives the first PSCCH or the first PSSCH.
  • Step 403 the first device transmits the first PSFCH to the second device by using the first airspace transmission filter.
  • Step 404 the second device determines a first spatial receiving filter for receiving the first PSFCH.
  • the second device determines the first spatial domain reception filter according to the spatial domain transmission filter used when the second device transmits the first PSCCH or the first PSSCH.
  • the second device uses the spatial domain transmission filter used when the second device transmits the first PSCCH or the first PSSCH to the first device as the first spatial domain reception filter. That is, the second device receives the first PSFCH by using the spatial domain transmission filter for transmitting the first PSCCH or the first PSSCH.
  • Step 405 the second device receives the first PSFCH by using the first spatial domain receiving filter.
  • the first device determines the spatial domain transmission filter for the first device to send the first PSFCH by determining its spatial domain reception filter for receiving the first PSCCH or the first PSSCH from the second device.
  • the second device determines a spatial receive filter for receiving the first PSFCH by the second device through its spatial transmit filter for transmitting the first PSCCH or the first PSSCH to the first device.
  • UE2 uses the first sending beam when sending the first PSCCH or the first PSSCH to UE1, and UE1 uses the first receiving beam to receive the first PSCCH or the first PSSCH, then when UE1 sends the first PSCCH or the first PSSCH to UE2, the associated When using the first PSFCH, UE1 determines a second transmission beam according to the first reception beam, and UE1 uses the second transmission beam to transmit the first PSFCH to UE2. UE2 determines a second receiving beam according to the first sending beam, and UE2 uses the second receiving beam to receive the first PSFCH.
  • the terminal equipment of the sidelink communication system usually works in the time division duplex (TDD) frequency band, that is, the sidelink transmission and sidelink reception are both in the TDD frequency band, and this frequency band has channel reciprocity, that is, UE1 can be considered as
  • TDD time division duplex
  • UE1 can be considered as
  • the channel when sending sidelink data to UE2 has spatial correlation with the channel when UE2 sends sidelink data to UE1. Therefore, the second transmit beam may be determined based on the first receive beam of UE1.
  • the first receiving beam is used as the second sending beam to send the first PSFCH; similarly, the second receiving beam can be determined based on the first sending beam of UE2, for example, the first sending beam is used as the second receiving beam to receive UE1
  • the first PSFCH sent sent.
  • FIG. 15 is a schematic diagram of a time slot/scenario of an information transmission method provided by an embodiment of the present application.
  • UE2 uses beam 2 (ie, the first transmit beam) to transmit the first PSCCH/first PSSCH in time slot 2
  • UE1 uses beam 1 (ie, the first receive beam) to receive the first PSCCH/first PSSCH
  • UE1 determines to send the first PSFCH for the first PSCCH/first PSSCH in time slot 5, and uses beam 1 (ie, the second transmit beam) to transmit the first PSFCH
  • UE2 uses beam 2 (ie, the second receive beam) to receive The first PSFCH.
  • the first device sends the first side channel/third side channel to the second device, the first side channel includes the third PSFCH, and the third side channel Including the third PSCCH or the third PSSCH, the interaction process between the first device and the second device will be described below with reference to FIG. 16 .
  • FIG. 16 is a fourth interactive schematic diagram of the information transmission method provided by the embodiment of the present application. As shown in Figure 16, the information transmission method of this embodiment includes the following steps:
  • Step 501 the first device sends the third PSCCH or the third PSSCH to the second device.
  • Step 502 the first device determines a first spatial domain transmission filter for transmitting the third PSFCH to the second device.
  • the first device determines the first spatial domain transmission filter according to the spatial domain transmission filter used when the first device transmits the third PSCCH or the third PSSCH to the second device.
  • the first device uses the spatial domain transmission filter used when the first device transmits the third PSCCH or the third PSSCH to the second device as the first spatial domain transmission filter. That is, the first device sends the third PSFCH to the second device by using the spatial domain transmission filter for sending the third PSCCH or the third PSSCH.
  • Step 503 the first device transmits the third PSFCH to the second device by using the first airspace transmission filter.
  • Step 504 the second device determines the first spatial receiving filter for receiving the third PSFCH.
  • the second device determines the first spatial domain reception filter according to the spatial domain reception filter used when the second device receives the third PSCCH or the third PSSCH from the first device.
  • the second device uses the spatial domain receiving filter used when the second device receives the third PSCCH or the third PSSCH from the first device as the first spatial domain receiving filter. That is, the second device receives the third PSFCH by using the spatial domain reception filter for receiving the third PSCCH or the third PSSCH.
  • Step 505 the second device receives the third PSFCH by using the first spatial domain receiving filter.
  • the first device determines the spatial domain transmission filter for the first device to transmit the third PSFCH through the spatial domain transmission filter for transmitting the third PSCCH or the third PSSCH to the second device.
  • the second device determines a spatial domain reception filter for the second device to receive the third PSFCH from the first device by determining its spatial domain reception filter for receiving the third PSCCH or the third PSSCH from the first device.
  • UE1 uses the third sending beam when sending the third PSCCH or the third PSSCH to UE2, UE1 uses the same sending beam to transmit the third PSFCH. If UE2 uses the third receiving beam to receive the third PSCCH or the third PSSCH, then UE2 uses the same receiving beam to receive the third PSFCH.
  • the third transmission beam used by UE1 is to determine the optimal transmission beam of UE1 through the beam selection process shown in Figure 10, which is suitable for sidelink transmission between UE1 and UE2 beam, when UE1 sends the third PSFCH to UE2, it may use the same sending beam (ie, the third sending beam) as sending the third PSCCH or the third PSSCH.
  • UE2 can know the transmission beam used by UE1 (ie, the third transmission beam), and UE2 can select the reception beam corresponding to the third transmission beam (ie, the third reception beam) for reception.
  • UE2 may receive the third PSFCH by using the same beam as that for receiving the third PSCCH or the third PSSCH (that is, the third receiving beam).
  • the first device in the embodiment in FIG. 12 determines the first spatial domain transmit filter according to the first reference signal resource indication information
  • how the second device in the embodiment in FIG. 13 determines according to the first reference signal resource indication information The first spatial domain receive filter will be described.
  • FIG. 17 is a fifth interactive schematic diagram of the information transmission method provided by the embodiment of the present application. As shown in Figure 17, the information transmission method of this embodiment includes the following steps:
  • Step 601 the first device determines first reference signal resource indication information.
  • the first reference signal resource indication information is used to indicate the first target reference signal resource.
  • the first target reference signal resource is selected by the first device by measuring multiple reference signals from the second device and according to the measurement results.
  • the multiple reference signals include a reference signal corresponding to the first target reference signal resource
  • the first device may determine the first reference signal resource indication information through the following steps:
  • Step 6011 the first device receives multiple reference signals from the second device.
  • Step 6012 the first device measures multiple reference signals.
  • Step 6013 the first device selects a first target reference signal with an optimal measurement result from multiple reference signals.
  • Step 6014 the first device generates first reference signal resource indication information according to the selected first target reference signal.
  • the second device sends multiple reference signals in different ways:
  • the second device uses the same beam to send multiple reference signals, and the first device uses different beams to respectively receive and measure multiple reference signals, and the first device can select a The receiving beam corresponding to the first target reference signal of the optimal measurement result is used as the optimal receiving beam of the first device.
  • the second device uses different beams to send multiple reference signals, and the first device uses the same beam to respectively receive and measure multiple reference signals, and the first device can select a The first target reference signal for optimal measurement results.
  • the second device may use the sending beam corresponding to the first target reference signal selected by the first device as the optimal sending beam of the second device.
  • the first device uses the receiving beam corresponding to the optimal transmitting beam as the optimal receiving beam corresponding to the optimal transmitting beam, and further, the first device uses the optimal receiving beam as the first spatial domain transmitting filter .
  • the first reference signal resource indicator information includes channel state information reference signal resource indicator (CSI-RS resource indicator, CRI) information.
  • the first reference signal resource indication information is used to indicate the first target reference signal resource, including: CRI information is used to indicate the target CSI-RS resource, and the target CSI-RS resource is the first device to measure multiple CSI-RS from the second device And selected according to the measurement results.
  • CRI channel state information reference signal resource indicator
  • the second device uses different transmit beams to transmit multiple CSI-RSs to the first device, and the first device uses the same receive beam (such as receive beam 1) to receive Multiple CSI-RSs are measured and the target CSI-RS with the best measurement result is selected.
  • the first device reports CRI information to the second device, and the CRI information is used to indicate the target CSI-RS resource, and the second device determines the transmission beam associated with the target CSI-RS as its optimal transmission beam according to the CRI information.
  • the first device determines that receiving beam 1 associated with the target CSI-RS is an optimal receiving beam corresponding to the optimal transmitting beam.
  • the first reference signal resource indication information is carried in SCI, MAC CE, PC5-RRC signaling or PSFCH.
  • the reference signal includes any one of the following: CSI-RS, PSCCH DMRS, PSSCH DMRS.
  • Step 602 the first device sends first reference signal resource indication information to the second device.
  • Step 603 the first device determines a first spatial domain transmission filter according to the first reference signal resource indication information.
  • the first device determines, according to the spatial domain receiving filter corresponding to the first target reference signal resource indicated by the first reference signal resource indication information, that the first device transmits the first spatial transmission of the first side channel to the second device.
  • the first side channel includes PSCCH, PSSCH, PSBCH or PSFCH.
  • the first device uses the spatial domain receiving filter corresponding to the first target reference signal resource as the first spatial domain transmitting filter. That is, the first device uses the spatial domain receiving filter corresponding to the first target reference signal resource to send the first side channel to the second device.
  • the first device obtains the optimal spatial receiving filter (optimal receiving beam) of the first device corresponding to the first target reference signal according to the first reference signal resource indication information, and uses the optimal spatial receiving filter as the second A device transmits a first spatial domain transmit filter of a first side channel.
  • Step 604 the first device sends the first side channel to the second device by using the first spatial domain sending filter.
  • Step 605 the second device determines the first spatial domain reception filter according to the first reference signal resource indication information.
  • the second device determines, according to the spatial domain transmission filter corresponding to the first target reference signal resource indicated by the first reference signal resource indication information, that the second device receives the first spatial domain of the first side channel from the first device. receive filter.
  • the second device uses the spatial domain transmit filter corresponding to the first target reference signal resource as the first spatial domain receive filter. That is, the second device uses the spatial domain transmit filter corresponding to the first target reference signal resource to receive the first side channel from the first device.
  • the second device obtains the optimal spatial receiving filter of the first device corresponding to the first target reference signal according to the first reference signal resource indication information, and the optimal spatial receiving filter of the second device associated with the optimal spatial receiving filter
  • the spatial domain transmit filter serves as the first spatial domain receive filter of the second device.
  • the second device obtains the optimal spatial domain transmission filter of the second device corresponding to the first target reference signal according to the first reference signal resource indication information, and uses the optimal spatial domain transmission filter as the optimal spatial domain transmission filter of the second device.
  • a first spatial domain receive filter A first spatial domain receive filter.
  • Step 606 the second device receives the first side channel by using the first spatial receiving filter.
  • the first device determines the airspace transmission filter for the first device to transmit the first sidelink channel (including PSCCH, PSSCH, PSBCH or PSFCH) through the first reference signal resource indication information reported to the second device.
  • the second device determines the spatial receiving filter for receiving the first side channel by the second device.
  • UE2 uses the same beam (such as beam 1) to send CSI-RS in turn, UE1 uses different beams to receive and measure CSI-RS respectively, and UE1 selects the CSI-RS with the best measurement result.
  • the receiving beam corresponding to the RS is used as the optimal receiving beam of UE1.
  • UE1 reports the CSI-RS resource indication information (CRI) corresponding to the optimal receiving beam to UE2.
  • CRI CSI-RS resource indication information
  • the TCI indication information indicates that the PSSCH sent by UE2 and the CSI-RS corresponding to the above-mentioned optimal receiving beam have a quasi-co-location relationship of QCL-TypeD type, which means that UE2 uses beam 1 to send the PSSCH, At this time, UE1 may use the optimal receiving beam corresponding to the beam 1 to receive the PSSCH.
  • UE1 may determine a corresponding transmission beam based on the optimal reception beam, for example, UE1 uses the optimal reception beam as a transmission beam to send the PSFCH.
  • UE2 may determine a corresponding receiving beam based on the transmitting beam associated with the optimal receiving beam (ie, beam 1), for example, UE2 may use beam 1 as a receiving beam to receive PSFCH from UE1.
  • UE2 uses different beams to send CSI-RS in turn, UE1 uses the same beam (such as beam 2) to receive and measure CSI-RS respectively, and UE1 selects the CSI-RS with the best measurement result.
  • the RS reports the CSI-RS resource indication information (CRI) corresponding to the CSI-RS to UE2.
  • UE2 determines, according to the CRI reported by UE1, the transmit beam associated with the CSI-RS corresponding to the CRI as the optimal transmit beam (such as beam 3).
  • the TCI indication information indicates that the PSSCH sent by UE2 has a QCL-TypeD quasi-co-location relationship with the above CSI-RS, which means that UE2 uses beam 3 to send the PSSCH.
  • UE1 can use the same The optimal receiving beam (ie, beam 2) corresponding to the beam 3 performs PSSCH reception.
  • UE1 may determine a corresponding transmission beam based on the optimal receiving beam (ie, beam 2 ), for example, UE1 uses the optimal receiving beam as a transmitting beam to transmit PSFCH.
  • UE2 may determine a corresponding receiving beam based on the optimal transmitting beam (ie, beam 3), for example, UE2 may use beam 3 as a receiving beam to receive PSFCH from UE1.
  • FIG. 18 is a sixth schematic diagram of interaction of the information transmission method provided by the embodiment of the present application. As shown in Figure 18, the information transmission method of this embodiment includes the following steps:
  • Step 701 the second device determines second reference signal resource indication information.
  • the second reference signal resource indication information is used to indicate the second target reference signal resource.
  • the second target reference signal resource is selected by the second device according to the measurement results of multiple reference signals reported by the first device.
  • the multiple reference signals include reference signals corresponding to the second target reference signal resource.
  • the second device may determine the second reference signal resource indication information through the following steps:
  • Step 7011 the second device sends multiple reference signals to the first device.
  • Step 7012 the second device receives the measurement results of the first device's measurement of multiple reference signals.
  • Step 7013 the second device selects a second target reference signal with an optimal measurement result from multiple reference signals.
  • Step 7014 the second device generates second reference signal resource indication information according to the selected second target reference signal.
  • the second reference signal resource indication information includes transmission configuration indicator (transmission configuration indicator, TCI) state information
  • TCI transmission configuration indicator
  • the TCI state information also includes a QCL type, and the QCL type is QCL-TypeD.
  • the second reference signal resource indication information is carried in SCI, MAC CE, PC5-RRC signaling or PSFCH.
  • the reference signal includes any one of the following: CSI-RS, PSCCH DMRS, PSSCH DMRS.
  • Step 702 the second device sends second reference signal resource indication information to the first device.
  • Step 703 the first device determines the first spatial domain transmission filter according to the second reference signal resource indication information.
  • the first device determines, according to the spatial domain receiving filter corresponding to the second target reference signal resource indicated by the second reference signal resource indication information, that the first device transmits the first spatial domain transmission of the first sidelink channel to the second device.
  • the first side channel includes PSCCH, PSSCH, PSBCH or PSFCH.
  • the first device uses the spatial domain receiving filter corresponding to the second target reference signal resource as the first spatial domain transmitting filter. That is, the first device uses the spatial domain receiving filter corresponding to the second target reference signal resource to send the first side channel to the second device.
  • the first device obtains the optimal spatial receiving filter (optimal receiving beam) of the first device corresponding to the second target reference signal according to the indication information of the second target reference signal, and uses the optimal spatial receiving filter as the first A device transmits a first spatial domain transmit filter of a first side channel.
  • Step 704 the first device sends the first side channel to the second device by using the first airspace sending filter.
  • Step 705 the second device determines the first spatial receiving filter according to the second reference signal resource indication information.
  • the second device determines, according to the spatial domain transmission filter corresponding to the second target reference signal resource indicated by the second reference signal resource indication information, that the second device receives the first spatial domain of the first side channel from the first device. receive filter.
  • the second device uses the spatial domain transmit filter corresponding to the second target reference signal resource as the first spatial domain receive filter. That is, the second device uses the spatial domain transmit filter corresponding to the second target reference signal resource to receive the first side channel from the first device.
  • the second device obtains the optimal spatial reception filter of the first device corresponding to the second target reference signal according to the second reference signal resource indication information, and the optimal spatial reception filter of the second device associated with the optimal spatial reception filter
  • the spatial domain transmit filter serves as the first spatial domain receive filter of the second device.
  • the second device obtains the optimal spatial domain transmission filter of the second device corresponding to the second target reference signal according to the second reference signal resource indication information, and uses the optimal spatial domain transmission filter as the second device's A first spatial domain receive filter.
  • Step 706 the second device receives the first side channel by using the first spatial receiving filter.
  • the first device determines the airspace transmission filter for the first device to transmit the first sidelink channel (including PSCCH, PSSCH, PSBCH or PSFCH) through the second reference signal resource indication information from the second device.
  • the second device determines a spatial receive filter for the second device to receive the first side channel.
  • UE2 sends indication information to UE1, and UE1 determines a beam for sending the PSFCH according to the indication information.
  • the indication information includes TCI status information
  • the TCI status information includes a reference signal.
  • the reference signal indicates a certain CSI-RS resource
  • the optimal receiving beam is used for side-track reception. Further, UE1 uses the receiving beam used when receiving the CSI-RS resource to perform PSFCH transmission.
  • UE2 sends the first PSCCH/PSSCH to UE1, including the CSI-RS resource identifier in its SCI or MAC CE, UE1 obtains the CSI-RS resource identifier, when UE1 is sending PSFCH for the first PSCCH/PSSCH , transmit with the receiving beam used when receiving the CSI-RS resource.
  • UE2 sends the first PSCCH/PSSCH to UE1, and its SCI or MAC CE includes spatial correlation information.
  • the reference signal included in the spatial correlation information is PSCCH DMRS, and UE1 acquires the spatial correlation information.
  • UE1 is in When sending the PSFCH for the first PSCCH/PSSCH, send with the receiving beam used when receiving the PSCCH DMRS.
  • the PSCCH DMRS corresponds to the DMRS of the first PSCCH.
  • UE2 sends CSI-RS resource indication information (CRI) to UE1 to indicate the transmit beam used by UE1, UE2 uses the transmit beam associated with the CSI-RS resource as the receive beam to receive the sidelink data sent by UE1, such as PSFCH .
  • CRI CSI-RS resource indication information
  • the first device uses the first spatial transmission filter to transmit the fifth PSFCH to the second device.
  • this embodiment shows an information transmission method.
  • the first device can determine whether to send and how to send the fifth PSFCH according to the priorities of multiple PSFCHs to be sent (including the fifth PSFCH).
  • the first device sends the fifth PSFCH to the second device by using the first spatial domain transmission filter.
  • the first device determines the sixth PSFCH with the highest priority from the multiple PSFCHs to be sent, and determines The third spatial domain transmission filter is used for transmitting the sixth PSFCH, and according to the relationship between the third spatial domain transmission filter and the first spatial domain transmission filter, it is determined whether to transmit the fifth PSFCH to the second device.
  • the third spatial domain transmission filter is the same as the first spatial domain transmission filter, use the first spatial domain transmission filter (that is, the third spatial domain transmission filter) to transmit the fifth PSFCH to the second device. Or, if the third airspace transmission filter is different from the first airspace transmission filter, giving up sending the fifth PSFCH to the second device. Or, if the third spatial domain transmission filter is different from the first spatial domain transmission filter, use the third spatial domain transmission filter to transmit the fifth PSFCH to the second device.
  • the implementation principle of the first device determining the third spatial transmission filter used to transmit the sixth PSFCH is similar to that of the first device determining the first spatial transmission filter in the above embodiment, and may refer to the above embodiment .
  • the first device when the first device transmits the fifth PSFCH, there are multiple PSFCHs to be transmitted, and the first device can use the spatial transmission filter corresponding to the PSFCH with the highest priority among the multiple PSFCHs to transmit the fifth PSFCH. PSFCH, to ensure the sending quality of the fifth PSFCH sent by the first device.
  • this embodiment shows an information transmission method, in which the second device can receive the fifth PSFCH according to the highest priority spatial domain receiving filter among the multiple PSFCHs to be received.
  • the second device receives the fifth PSFCH by using the first spatial reception filter.
  • the second device determines the sixth PSFCH with the highest priority from the multiple PSFCHs to be received, and determines The third spatial domain reception filter is used to receive the sixth PSFCH, and the second device receives the fifth PSFCH by using the third spatial domain reception filter.
  • the implementation principle of the second device determining the third spatial domain transmit filter for receiving the sixth PSFCH is similar to that of the second device determining the first spatial domain receive filter in the above embodiment, which can be referred to the above embodiment .
  • the second device when the second device receives multiple PSFCHs, the second device determines the spatial receiving filter of the PSFCH with the highest priority among the multiple PSFCHs, and receives multiple PSFCHs based on the spatial receiving filter, Ensure the reception quality of high priority PSFCH.
  • the first device uses the first spatial transmission filter to transmit the seventh PSFCH to the second device.
  • the first device has multiple PSFCHs to be sent in the time unit of the seventh PSFCH, and the first device supports simultaneous sending of multiple PSFCHs, how the first device sends multiple PSFCHs is an urgent problem to be solved.
  • this embodiment shows an information transmission method, the first device can transmit multiple PSFCH.
  • the first device determines the spatial domain transmission filters corresponding to the multiple PSFCHs to be transmitted, and the spatial domain transmission filter corresponding to the PSFCH with the highest priority among the multiple PSFCHs to be transmitted is the fourth spatial domain transmission filter.
  • the PSFCHs to be transmitted include N1 PSFCHs using the fourth spatial domain transmission filter.
  • the first device uses the fourth airspace transmission filter to transmit N1 PSFCHs, where N1 and M1 are positive integers. or
  • the first device selects M1 PSFCHs according to the priority of multiple PSFCHs using the fourth airspace transmission filter from high to low, and the first device uses the fourth airspace
  • the transmit filter transmits the selected M1 PSFCHs.
  • N1 and M1 are both positive integers.
  • M1 PSFCHs with priority from high to low can be sent preferentially. Since the first device can only use one spatial transmission filter at the same time, the first device uses the PSFCH with the highest priority to correspond to Send M1 PSFCHs using the spatial domain sending filter, and ensure the sending of high-priority PSFCHs first.
  • UE1 when UE1 has multiple PSFCHs to be transmitted in the time slot for transmitting PSFCH1, UE1 transmits PSFCH1 according to the transmission beam of the highest priority PSFCH (such as PSFCH2) among the multiple PSFCHs.
  • PSFCH2 the highest priority PSFCH
  • UE1 may transmit multiple PSFCHs at the same time, and when transmitting multiple PSFCHs, select the transmission beam corresponding to the PSFCH with the highest priority to transmit all PSFCHs, including PSFCH1.
  • UE1 determines to transmit the first PSFCH to UE2 in time slot 5 (the transmission beam of the first PSFCH is the first transmission beam), and at the same time, in this time slot, UE1 also needs to transmit to other UEs
  • To transmit the second PSFCH (the transmission beam of the second PSFCH is the second transmission beam), and the priority of the second PSFCH is higher than that of the first PSFCH, UE1 needs to prioritize the transmission of the high priority PSFCH, therefore, UE1 uses the second transmission beam
  • the beam transmits the first PSFCH and the second PSFCH.
  • the sending beam set includes at least one sending beam.
  • UE1 determines to transmit the first PSFCH to UE2 in time slot 5 (the set of transmission beams of the first PSFCH includes the first transmission beam or the third transmission beam), and at the same time, in this time slot, UE1 also needs to send the second PSFCH to other UEs (the set of transmission beams of the second PSFCH includes the second transmission beam or the third transmission beam). Since both PSFCHs can use the third transmission beam, UE1 uses the third transmission beam. Sending the first PSFCH and the second PSFCH by beams can ensure that UE1 and other terminals can receive the first PSFCH and the second PSFCH.
  • the device for side communication provided by the embodiment of the present application will be described in detail below with reference to FIG. 19 to FIG. 22 .
  • FIG. 19 is a schematic structural diagram of a first device provided by an embodiment of the present application.
  • the first device 800 provided in this embodiment includes: a processing module 801 , a sending module 802 and a receiving module 803 .
  • a processing module 801 configured to determine a first airspace transmit filter for sidelink communication
  • a sending module 802 configured to send the first side channel to the second device by using the first airspace sending filter.
  • the processing module 801 is configured to determine according to the spatial domain receiving filter used when the receiving module 803 of the first device receives the second side channel from the second device The first spatial domain transmit filter.
  • the second side channel includes a first PSCCH or a first PSSCH
  • the first side channel includes a first PSFCH
  • the first PSFCH is connected to the first The PSCCH or a sidelink feedback channel associated with the first PSSCH; or, the second sidechannel includes a second PSFCH, and the first sidechannel includes a second PSCCH or a second PSSCH.
  • processing module 801 is configured to:
  • the spatial domain receiving filter used when the receiving module 803 receives the second side channel from the second device is used as the first spatial domain transmitting filter.
  • the processing module 801 is configured to determine the first spatial transmission filter according to the second spatial transmission filter; the second spatial transmission filter is the transmission module 802 A spatial domain transmit filter used when transmitting a third side channel to the second device.
  • the third side channel includes a third PSCCH or a third PSSCH, and the first side channel includes a third PSFCH; or, the third side channel includes a third Four PSFCHs, the first side channel includes a fourth PSCCH or a fourth PSSCH.
  • the processing module 801 is configured to use the second spatial domain transmission filter as the first spatial domain transmission filter.
  • the processing module 801 is configured to determine the first spatial domain transmit filter according to the first reference signal resource indication information, where the first reference signal resource indication information is used for Indicates a first target reference signal resource, where the first target reference signal resource is selected by the first device by measuring multiple reference signals from the second device and according to the measurement result.
  • the sending module 802 is configured to report the first reference signal resource indication information to the second device.
  • the processing module 801 is configured to determine the first spatial domain transmit filter according to the spatial domain receive filter corresponding to the first target reference signal resource.
  • the processing module 801 is configured to use a spatial domain receiving filter corresponding to the first target reference signal resource as the first spatial domain transmitting filter.
  • the first reference signal resource indicator information includes channel state information reference signal resource indicator (CSI-RS resource indicator, CRI) information;
  • CSI-RS resource indicator, CRI channel state information reference signal resource indicator
  • the first reference signal resource indication information is used to indicate the first target reference signal resource, including:
  • the CRI information is used to indicate a target CSI-RS resource, and the target CSI-RS resource is selected by the first device by measuring multiple CSI-RSs from the second device and according to the measurement result.
  • the first reference signal resource indication information is carried in sidelink control information SCI, media access layer control element MAC CE, PC5 radio resource control RRC signaling or PSFCH.
  • the processing module 801 is configured to determine the first spatial domain transmission filter according to the second reference signal resource indication information from the second device, and the second reference signal The resource indication information is used to indicate the second target reference signal resource.
  • the processing module 801 is configured to use the spatial domain receiving filter corresponding to the second target reference signal resource as the first spatial domain transmitting filter.
  • the second reference signal resource indication information includes transmission configuration indicator (transmission configuration indicator, TCI) status information; the reference signal included in the TCI status information is the second target reference The reference signal corresponding to the signal resource.
  • transmission configuration indicator transmission configuration indicator
  • the TCI state information further includes a QCL type, and the QCL type is QCL-TypeD.
  • the second reference signal resource indication information is carried in SCI, MAC CE, PC5-RRC signaling or PSFCH.
  • the first side channel includes a fifth PSFCH, if the first device has multiple PSFCHs to be sent in time units of the first side channel, and
  • the fifth PSFCH is a PSFCH with the highest priority among the plurality of PSFCHs to be sent, and the sending module 802 is configured to use the first spatial domain sending filter to send the first side line channel.
  • the processing module 801 is configured to:
  • the transmitting module 802 uses the first spatial domain transmit filter to send The device transmits the first side channel.
  • the sending module 802 gives up sending the first lateral line to the second device. channel, or transmit the first side channel to the second device using the third spatial transmit filter.
  • the first side channel includes a seventh PSFCH, and if the first device has multiple PSFCHs to be sent in the time unit of the first side channel, the The processing module 801 determines the spatial domain transmission filters respectively corresponding to the plurality of PSFCHs to be transmitted;
  • the spatial domain transmission filter corresponding to the PSFCH with the highest priority among the plurality of PSFCHs to be transmitted is a fourth spatial domain transmission filter, and the plurality of PSFCHs to be transmitted include N1 using the fourth spatial domain transmission filter PSFCHs, and the N1 is less than or equal to the maximum number M1 of simultaneously transmitting PSFCHs supported by the first device, the sending module 802 uses the fourth spatial domain sending filter to send the N1 PSFCHs, where N1 and M1 is a positive integer.
  • the first device provided in the embodiment of the present application is used to implement the technical solution performed by the first device in any of the foregoing method embodiments, and its implementation principle and technical effect are similar, and details are not repeated here.
  • FIG. 20 is a schematic structural diagram of a second device provided by an embodiment of the present application.
  • the second device 900 provided in this embodiment includes: a processing module 901 , a receiving module 902 and a sending module 903 .
  • a processing module 901 configured to determine a first spatial receiving filter for sidewalk communication
  • the receiving module 902 is configured to use the first spatial domain receiving filter to receive the first side channel from the first device.
  • the processing module 901 is configured to determine the required channel according to the spatial domain sending filter used when the sending module 903 of the second device sends the second side channel to the first device.
  • the first spatial domain receiving filter is described.
  • the second side channel includes a first PSCCH or a first PSSCH
  • the first side channel includes a first PSFCH
  • the first PSFCH is connected to the first The PSCCH or a sidelink feedback channel associated with the first PSSCH; or, the second sidechannel includes a second PSFCH, and the first sidechannel includes a second PSCCH or a second PSSCH.
  • the processing module 901 is configured to use the airspace transmission filter used when the sending module 903 sends the second side channel to the first device as the first airspace receive filter.
  • the processing module 901 is configured to determine the first spatial reception filter according to the second spatial reception filter; the second spatial reception filter is the receiving module 902 a spatial receive filter for use in receiving a third side channel from said first device.
  • the third side channel includes a third PSCCH or a third PSSCH, and the first side channel includes a third PSFCH; or, the third side channel includes a third Four PSFCHs, the first side channel includes a fourth PSCCH or a fourth PSSCH.
  • the processing module 901 is configured to use the second spatial domain receiving filter as the first spatial domain receiving filter.
  • the processing module 901 is configured to determine the first spatial domain reception filter according to the first reference signal resource indication information from the first device, and the first reference signal The resource indication information is used to indicate the first target reference signal resource.
  • the sending module 903 is configured to send multiple reference signals to the first device, where the multiple reference signals include a reference signal corresponding to the first target reference signal resource .
  • the processing module 901 is configured to determine the first spatial domain receiving filter according to the spatial domain transmitting filter corresponding to the first target reference signal resource.
  • the processing module 901 is configured to use a spatial domain transmit filter corresponding to the first target reference signal resource as the first spatial domain receive filter.
  • the first reference signal resource indicator information includes channel state information reference signal resource indicator (CSI-RS resource indicator, CRI) information;
  • CSI-RS resource indicator, CRI channel state information reference signal resource indicator
  • the first reference signal resource indication information is used to indicate the first target reference signal resource, including: the CRI information is used to indicate the target CSI-RS resource, and the target CSI-RS resource is measured by the first device from the The multiple CSI-RSs of the second device are selected according to the measurement results.
  • the first reference signal resource indication information is carried in sidelink control information SCI, media access layer control element MAC CE, PC5 radio resource control RRC signaling or PSFCH.
  • the processing module 901 is configured to determine the first spatial receiving filter according to the second reference signal resource indication information, and the second reference signal resource indication information is used to indicate the first Two target reference signal resources.
  • the sending module 903 is configured to send the second reference signal resource indication information to the first device, and the second reference signal resource indication information is used for the first device.
  • a device determines a spatial receive filter.
  • the processing module 901 is configured to determine the first spatial receiving filter according to the spatial transmitting filter corresponding to the second target reference signal resource.
  • the processing module 901 is configured to use a spatial domain transmit filter corresponding to the second target reference signal resource as the first spatial domain receive filter.
  • the second reference signal resource indication information includes transmission configuration indicator (transmission configuration indicator, TCI) status information; the reference signal included in the TCI status information is the second target reference The reference signal corresponding to the signal resource.
  • transmission configuration indicator transmission configuration indicator
  • the TCI state information further includes a QCL type, and the QCL type is QCL-TypeD.
  • the second reference signal resource indication information is carried in SCI, MAC CE, PC5-RRC signaling or PSFCH.
  • the first side channel includes a fifth PSFCH, if the second device has multiple PSFCHs to be received in the time unit of receiving the first side channel;
  • the receiving module 902 uses the first spatial reception filter to receive the first side channel;
  • the processing module 901 determines the sixth PSFCH with the highest priority from the plurality of PSFCHs to be received, and the determination uses The third spatial receiving filter for receiving the sixth PSFCH; the receiving module 902 uses the third spatial receiving filter to receive the first side channel.
  • the second device provided in the embodiment of the present application is used to implement the technical solution performed by the second device in any of the foregoing method embodiments, and its implementation principle and technical effect are similar, so details are not repeated here.
  • FIG. 21 is a first schematic diagram of a hardware structure of an electronic device provided by an embodiment of the present application. As shown in FIG. 21, the electronic device 1000 provided in this embodiment may include:
  • Processor 1001 memory 1002 and communication interface 1003 .
  • the memory 1002 is used to store a computer program;
  • the processor 1001 is used to execute the computer program stored in the memory 1002, so as to implement the method performed by the first device in any of the foregoing method embodiments.
  • the communication interface 1003 is used for data communication or signal communication with other devices.
  • the memory 1002 can be independent or integrated with the processor 1001.
  • the electronic device 1000 may further include: a bus 1004 for connecting the memory 1002 and the processor 1001 .
  • the processing module 801 in FIG. 19 may be integrated and implemented in the processor 1001
  • the sending module 802 and the receiving module 803 in FIG. 19 may be integrated and implemented in the communication interface 1003 .
  • the electronic device provided in this embodiment can be used to execute the method performed by the first device in any of the foregoing method embodiments, and its implementation principle and technical effect are similar, and will not be repeated here.
  • FIG. 22 is a second schematic diagram of the hardware structure of the electronic device provided by the embodiment of the present application. As shown in FIG. 22, the electronic device 1100 provided in this embodiment may include:
  • Processor 1101 memory 1102 and communication interface 1103 .
  • the memory 1102 is used to store a computer program;
  • the processor 1101 is used to execute the computer program stored in the memory 1102, so as to implement the method performed by the second device in any of the foregoing method embodiments.
  • the communication interface 1103 is used for data communication or signal communication with other devices.
  • the memory 1102 can be independent or integrated with the processor 1101 .
  • the electronic device 1100 may further include: a bus 1104 , configured to connect the memory 1102 and the processor 1101 .
  • the processing module 901 in FIG. 20 may be integrated and implemented in the processor 1101
  • the sending module 903 and the receiving module 902 in FIG. 20 may be integrated and implemented in the communication interface 1103 .
  • the electronic device provided in this embodiment can be used to execute the method performed by the second device in any of the foregoing method embodiments, and its implementation principles and technical effects are similar, and will not be repeated here.
  • the embodiment of the present application also provides a computer-readable storage medium, where computer-executable instructions are stored in the computer-readable storage medium, and when the computer-executable instructions are executed by a processor, they are used to implement the first step in any of the foregoing method embodiments. 1.
  • the embodiment of the present application also provides a computer-readable storage medium, where computer-executable instructions are stored in the computer-readable storage medium, and when the computer-executable instructions are executed by a processor, they are used to implement the first step in any of the foregoing method embodiments. 2.
  • An embodiment of the present application further provides a computer program, which is used to execute the technical solution of the first device in any one of the foregoing method embodiments when the computer program is executed by a processor.
  • An embodiment of the present application further provides a computer program, which is used to execute the technical solution of the second device in any one of the foregoing method embodiments when the computer program is executed by a processor.
  • An embodiment of the present application further provides a computer program product, including program instructions, and the program instructions are used to realize the technical solution of the first device in any one of the foregoing method embodiments.
  • An embodiment of the present application further provides a computer program product, including program instructions, and the program instructions are used to implement the technical solution of the second device in any of the foregoing method embodiments.
  • the embodiment of the present application also provides a chip, including: a processing module and a communication interface, where the processing module can execute the technical solution of the first device in the foregoing method embodiment.
  • the chip also includes a storage module (such as a memory), the storage module is used to store instructions, and the processing module is used to execute the instructions stored in the storage module, and the execution of the instructions stored in the storage module makes the processing module perform any of the foregoing.
  • a storage module such as a memory
  • the embodiment of the present application also provides a chip, including: a processing module and a communication interface, where the processing module can execute the technical solution of the second device in the foregoing method embodiment.
  • the chip also includes a storage module (such as a memory), the storage module is used to store instructions, and the processing module is used to execute the instructions stored in the storage module, and the execution of the instructions stored in the storage module makes the processing module perform any of the foregoing.
  • a storage module such as a memory
  • the embodiment of the present application further provides a communication system
  • the communication system may include the foregoing first device and the second device, and the first device and the second device communicate directly.
  • the above division of the various modules of the first device 800 and the second device 900 is only a division of logical functions, which may be fully or partially integrated into one physical entity during actual implementation, or physically separated .
  • these modules can all be implemented in the form of calling software through processing elements; they can also be implemented in the form of hardware; some modules can also be implemented in the form of calling software through processing elements, and some modules can be implemented in the form of hardware.
  • the processing module may be a separate processing element, or it may be integrated into a certain chip of the above-mentioned device.
  • each step of the above method or each module above can be completed by an integrated logic circuit of hardware in the processor element or an instruction in the form of software.
  • the above modules may be one or more integrated circuits configured to implement the above method, for example: one or more specific integrated circuits (application specific integrated circuit, ASIC), or, one or more microprocessors (digital signal processor, DSP), or, one or more field programmable gate arrays (field programmable gate array, FPGA), etc.
  • the processing element may be a general-purpose processor, such as a central processing unit (central processing unit, CPU) or other processors that can call program codes.
  • these modules can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server, or data center by wired (eg, coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (such as a floppy disk, a hard disk, or a magnetic tape), an optical medium (such as a DVD), or a semiconductor medium (such as a solid state disk (SSD)), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种信息传输方法、设备及存储介质,用于提高侧行通信的传输质量。该方法包括:侧行通信的终端设备通过确定用于侧行通信的空域发送滤波器,使用该空域发送滤波器向对侧设备发送侧行信道。侧行通信的终端设备通过确定用于侧行通信的空域接收滤波器,使用该空域接收滤波器接收来自对侧设备的侧行信道。其中,侧行信道包括物理侧行控制信道PSCCH,物理侧行共享信道PSSCH,物理侧行反馈信道PSFCH或物理侧行广播信道PSBCH的任意一种。通过上述方案终端设备选择合适的空域发送/接收滤波器,提高终端设备的发送/接收能力,从而提升侧行通信整体的传输质量。

Description

信息传输方法、设备及存储介质 技术领域
本申请实施例涉及无线通信技术领域,尤其涉及一种信息传输方法、设备及存储介质。
背景技术
为了提高侧行通信系统的传输速率,在侧行传输系统中使用毫米波频段。在侧行毫米波传输系统中,如何确定终端设备用于侧行通信的空域传输滤波器(包括空域发送滤波器和空域接收滤波器)是目前亟待解决的问题。
发明内容
本申请实施例提供一种信息传输方法、设备及存储介质,提高侧行通信的传输质量。
本申请实施例的第一方面提供一种信息传输方法,应用于第一设备,该方法包括:确定用于侧行通信的第一空域发送滤波器,使用第一空域发送滤波器向第二设备发送第一侧行信道。
本申请实施例的第二方面提供一种信息传输方法,应用于第二设备,该方法包括:确定用于侧行通信的第一空域接收滤波器,使用第一空域接收滤波器接收来自第一设备的第一侧行信道。
本申请实施例的第三方面提供一种第一设备,包括:处理模块和发送模块。处理模块,用于确定用于侧行通信的第一空域发送滤波器;发送模块,用于使用所述第一空域发送滤波器向第二设备发送第一侧行信道。
本申请实施例的第四方面提供一种第二设备,包括:处理模块和接收模块。处理模块,用于确定用于侧行通信的第一空域接收滤波器;接收模块,用于使用所述第一空域接收滤波器接收来自第一设备的第一侧行信道。
本申请实施例的第五方面提供一种电子设备,包括:存储器和处理器,所述存储器用于存储计算机程序,所述处理器用于从所述存储器中调用并运行所述计算机程序,使得所述处理器运行所述计算机程序执行如第一方面所述的方法。
本申请实施例的第六方面提供一种电子设备,包括:存储器和处理器,所述存储器用于存储计算机程序,所述处理器用于从所述存储器中调用并运行所述计算机程序,使得所述处理器运行所述计算机程序执行如第二方面所述的方法。
本申请实施例的第七方面提供一种计算机存储介质,用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如第一方面所述的方法。
本申请实施例的第八方面提供一种计算机存储介质,用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如第二方面所述的方法。
本申请实施例的第九方面提供一种计算机程序产品,当所述计算机程序产品在计算机上运行时,使得所述计算机执行如第一方面所述的方法。
本申请实施例的第十方面提供一种计算机程序产品,当所述计算机程序产品在计算机上运行时,使得所述计算机执行如第二方面所述的方法。
本申请实施例提供一种信息传输方法、设备及存储介质,用于提高侧行通信的传输质量。该方法包括:侧行通信的终端设备通过确定用于侧行通信的空域发送滤波器,使用该空域发送滤波器向对侧设备发送侧行信道。侧行通信的终端设备通过确定用于侧行通信的空域接收滤波器,使用该空域接收滤波器接收来自对侧设备的侧行信道。其中,侧行信道包括物理侧行控制信道PSCCH,物理侧行共享信道PSSCH,物理侧行反馈信道PSFCH或物理侧行广播信道PSBCH的任意一种。通过上述方案终端设备选择合适的空域发送/接收滤波器,提高终端设备的发送/接收能力,从而提升侧行通信整体的传输质量。
附图说明
图1为本申请实施例提供的应用场景示意图一;
图2为本申请实施例提供的应用场景示意图二;
图3为本申请实施例提供的应用场景示意图三;
图4为本申请实施例提供的应用场景示意图四;
图5为本申请实施例提供的时隙结构的示意图一;
图6为本申请实施例提供的时隙结构的示意图二;
图7为本申请实施例提供的PSFCH资源的示意图;
图8为不使用波束赋形的系统示意图;
图9为使用波束赋形的系统示意图;
图10为本申请实施例提供的发送端UE确定最优发送波束的示意图;
图11为本申请实施例提供的接收端UE确定最优接收波束的示意图;
图12为本申请实施例提供的信息传输方法的交互示意图一;
图13为本申请实施例提供的信息传输方法的交互示意图二;
图14为本申请实施例提供的信息传输方法的交互示意图三;
图15为本申请实施例提供的信息传输方法的时隙/场景示意图;
图16为本申请实施例提供的信息传输方法的交互示意图四;
图17为本申请实施例提供的信息传输方法的交互示意图五;
图18为本申请实施例提供的信息传输方法的交互示意图六;
图19为本申请实施例提供的第一设备的结构示意图;
图20为本申请实施例提供的第二设备的结构示意图;
图21为本申请实施例提供的电子设备的硬件结构示意图一;
图22为本申请实施例提供的电子设备的硬件结构示意图二。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请提供的信息传输方法可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th Generation,5G)移动通信系统或新无线接入技术(new radio access technology,NR)。其中,5G移动通信系统可以包括非独立组网(non-standalone,NSA)和/或独立组网(standalone,SA)。
本申请提供的信息传输方法还可以应用于机器类通信(machine type communication,MTC)、机器间通信长期演进技术(Long Term Evolution-machine,LTE-M)、设备到设备(device to device,D2D)网络、机器到机器(machine to machine,M2M)网络、物联网(internet of things,IoT)网络或者其他网络。其中,IoT网络例如可以包括车联网。其中,车联网系统中的通信方式统称为车到其他设备(vehicle to X,V2X,X可以代表任何事物),例如,该V2X可以包括:车辆到车辆(vehicle to vehicle,V2V)通信,车辆与基础设施(vehicle to infrastructure,V2I)通信、车辆与行人之间的通信(vehicle to pedestrian,V2P)或车辆与网络(vehicle to network,V2N)通信等。
本申请提供的信息传输方法还可以应用于未来的通信系统,如第六代移动通信系统等。本申请对此不作限定。
本申请实施例中,终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。
终端设备可以是一种向用户提供语音/数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例可以为:手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑(如笔记本电脑、掌上电脑等)、移动互联网设备(mobile internet device,MID)、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等。
其中,可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更 是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,终端设备还可以是物联网(Internet of things,IoT)系统中的终端设备。IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。IoT技术可以通过例如窄带(narrow band,NB)技术,做到海量连接,深度覆盖,终端省电。
此外,终端设备还可以包括智能打印机、火车探测器、加油站等传感器,主要功能包括收集数据(部分终端设备)、接收网络设备的控制信息与下行数据,并发送电磁波,向网络设备传输上行数据。
本申请实施例中,网络设备可以是任意一种具有无线收发功能的设备。网络设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WiFi)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU可以负责处理非实时协议和服务,如,可以实现无线资源控制(radio resource control,RRC)层、业务数据自适应协议(service data adaptation protocol,SDAP)层和/或分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU可以负责可以处理物理层协议和实时服务。例如可以实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。一个DU可以仅连接到一个CU或者连接到多个CU,而一个CU可以连接到多个DU,CU与DU之间可以通过F1接口进行通信。AAU可以实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会被递交至PHY层从而变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。
可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
网络设备为小区提供服务,终端设备通过网络设备分配的传输资源(例如,频域资源,或者说,频谱资源)与小区进行通信,该小区可以属于宏基站(例如,宏eNB或宏gNB等),也可以属于小小区(small cell)对应的基站,这里的小小区可以包括:城市小区(metro cell)、微小区(micro cell)、微微小区(pico cell)、毫微微小区(femto cell)等,这些小小区具有覆盖范围小、发射功率低等特点,适用于提供高速率的数据传输服务。
为便于理解本申请实施例,做出如下几点说明。
本申请实施例中,术语“系统”和“网络”在本文中常被可互换使用。术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。
本申请实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
本申请实施例中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表 示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例中,“预定义”或“预配置”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。
本申请实施例中,所述“协议”可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
为了便于理解本申请实施例,首先对本申请实施例的应用场景进行说明。
图1为本申请实施例提供的应用场景示意图一。图1所示场景包括一个网络设备101以及两个终端设备,分别为终端设备102和103,终端设备102和终端设备103均处于网络设备101的覆盖范围内。网络设备101分别与终端设备102、终端设备103通信连接,终端设备102与终端设备103通信连接。示例性的,终端设备102可以通过网络设备101向终端设备103发送通信消息,终端设备102还可以直接向终端设备103发送通信消息。其中,终端设备102与终端设备103之间直接通信的链路称为D2D链路,也可以称为临近服务(proximity service,ProSe)链路、侧行链路等。D2D链路上的传输资源可以由网络设备分配。
图2为本申请实施例提供的应用场景示意图二。图2所示场景同样包括一个网络设备101以两个终端设备,与图1不同的是,终端设备103处于网络设备101的覆盖范围内,终端设备104在网络设备101的覆盖范围之外。网络设备101与终端设备103通信连接,终端设备103与终端设备104通信连接。示例性的,终端设备103可以接收网络设备101发送的配置信息,根据配置信息进行侧行通信。由于终端设备104无法接收网络设备101发送的配置信息,终端设备104可以根据预配置信息以及终端设备103发送的侧行广播信道(Physical Sidelink Broadcast Channel,PSBCH)中携带的信息,进行侧行通信。
图3为本申请实施例提供的应用场景示意图三。图3所示场景中,终端设备104和终端设备105均在网络设备101的覆盖范围之外。终端设备104与终端设备105均可以根据预配置信息确定侧行配置,进行侧行通信。
图4为本申请实施例提供的应用场景示意图四。图4所示场景中,多个终端设备构成一个通信组,例如终端设备106、107和108组成一个通信组。通信组内具有中央控制节点,又可以称为组头终端(cluster header,CH),例如终端设备106。其中中央控制节点具有以下功能之一:负责通信组的建立;组成员的加入、离开;进行资源协调,为其他终端分配侧行传输资源,接收其他终端的侧行反馈信息;与其他通信组进行资源协调等功能。
需要说明的是,本申请实施例描述的系统架构以及应用场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的问题,同样适用。
与传统的蜂窝系统中通信数据通过基站接收或发送的方式不同,D2D通信具有更高的频率效率以及更低的传输时延。车联网系统采用终端到终端直接通信的方式,在第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)定义了两种传输模式:第一传输模式和第二传输模式。
第一传输模式:终端设备的传输资源是由基站分配的,终端设备根据基站分配的资源在侧行链路上进行数据传输。基站可以为终端设备分配单次传输的资源,也可以为终端设备分配半静态传输的资源。
示例性的,图1所示的终端设备102位于网络设备101覆盖范围内,网络设备101为终端设备102分配侧行传输使用的传输资源。
第二传输模式:终端设备在资源池中选取一个资源进行数据的传输。
示例性的,图1所示的终端设备102可以在网络配置的资源池中自主选取传输资源进行侧行传输。图3所示的终端设备104和105均位于网络设备101覆盖范围外,终端设备104和105可以在预配置的资源池中自主选取传输资源进行侧行传输。
NR-V2X是基于侧行链路进行通信的一种通信场景,在NR-V2X通信中,X可以泛指任意具有无线接收和发送能力的设备,包括但不限于慢速移动的无线装置,快速移动的车载设备,具有无线发射接收能力的网络控制节点等。NR-V2X通信支持单播、组播、广播的传输方式。对于单播传输,发送终端发送数据,接收终端只有一个。对于组播传输,发送终端发送数据,接收终端是一个通信组内的所有终端,或者是在一定传输距离内的所有终端。对于广播传输,发送终端发送数据,接收终端是发送终端周围的任意一个终端。
NR-V2X通信需要支持自动驾驶,因此对车辆之间数据交互提出了更高的要求,如更高的吞吐量、更低的时延、更高的可靠性、更大的覆盖范围、更灵活的资源分配等。为了提高通信的可靠性,在NR-V2X中引入了物理侧行反馈信道(physical sidelink deedback channel,PSFCH)。
对于单播传输,发送终端向接收终端发送侧行数据(包括PSCCH和PSSCH),接收终端向发送终端发送混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)的反馈信息,发送终端根据接收终端的反馈信息判断是否需要进行数据重传。其中,HARQ的反馈信息承载在PSFCH中。
对于组播传输,支持如下两种侧行反馈方式:方式1:在一定距离范围内的终端接收发送终端的侧行数据,如果检测结果是NACK,则需要发送侧行反馈;如果检测结果是ACK,则不需要发送侧行反馈。在该距离范围外的终端,无论检测结果是什么都不需要发送侧行反馈。方式2:对于一个通信组,所有的接收终端都需要发送侧行反馈。例如,一个通信组包括P个终端,当一个终端作为发送终端发送侧行数据时,其他的P-1个终端都需要发送侧行反馈信息。
终端设备可以通过预配置信息或网络配置信息激活或去激活侧行反馈。如果侧行反馈被激活,接收终端接收发送终端发送的侧行数据,需要根据检测结果向发送终端反馈HARQ ACK/NACK(确认/不确认),发送终端根据接收终端的反馈信息决定发送重传数据或新数据。如果侧行反馈被去激活,接收终端不需要发送反馈信息,发送终端通常采用盲重传的方式发送数据,例如发送终端对每个侧行数据重复发送预设的重传次数。
目前,在NR-V2X通信中,PSFCH只承载1比特的HARQ ACK信息,在时域上占据2个时域符号(其中,第二个符号承载侧行反馈信息,第一个符号上的数据是第二个符号上数据的复制),在频域上占据1个PRB。
下面对NR-V2X通信中的时隙结构进行说明。
图5为本申请实施例提供的时隙结构的示意图一。图5所示的时隙不包括PSFCH的符号,该时隙的第一个侧行符号通常用作自动增益控制(Automatic Gain Control,AGC),在AGC符号上,终端设备复制第二个符号上发送的数据,AGC符号上的数据通常不用于数据解调。该时隙的最后一个侧行符号为保护间隔(guard period,GP),用于收发转换,用于终端设备从发送(或接收)状态转换到接收(或发送)状态。在该时隙的剩余侧行符号中,物理侧行控制信道(physical sidelink control channel,PSCCH)可以占用从第二个侧行符号开始的两个或三个OFDM符号,在频域上PSCCH可占用{10,12 15,20,25}个物理资源块(physical resource block,PRB)。为了降低终端设备对PSCCH的盲检测的复杂度,在一个资源池内只允许配置一个PSCCH符号个数和PRB个数。另外,因为子信道为NR-V2X中物理侧行共享信道(physical sidelink shared channel,PSSCH)资源分配的最小粒度,PSCCH占用的PRB个数必须小于或等于资源池内一个子信道中包含的PRB个数,以免对PSSCH资源选择或分配造成额外的限制。物理侧行共享信道PSSCH可占用从该时隙的第二个侧行符号开始,直至该时隙最后一个GP符号之前的符号。PSSCH在频域上占据K个子信道,每个子信道包括M个连续的PRB。其中,K是正整数,M的取值包括{10,12,15,20,25,50,75,100}。
图6为本申请实施例提供的时隙结构的示意图二。图6所示的时隙结构中,最后一个符号用作GP,倒数第二个符号用于PSFCH传输,倒数第三个符号数据和PSFCH符号的数据相同,用作AGC,倒数第四个符号也用作GP,时隙中的第一个符号用作AGC,该符号上的数据和该时隙中第二个时域符号上的数据相同,PSCCH占据3个时域符号,剩余的符号可用于PSSCH传输。
为了降低PSFCH信道的开销,可定义侧行反馈资源的周期,例如周期为N个时隙slot,N取1、2、4等,参数N可以是预配置或网络配置的。
图7为本申请实施例提供的PSFCH资源的示意图。如图7所示,PSFCH的周期为4个时隙。其中时隙2、3、4、5中传输的PSSCH,其反馈信息都是在时隙7中传输,因此可以把时隙2、3、4、5看作一个时隙集合,该时隙集合中传输的PSSCH,其对应的PSFCH是在相同的时隙(时隙7)中。
需要说明的是,NR-V2X通信支持终端在一个时隙中同时传输多个PSFCH。
下面对通信系统的多波束系统进行简要介绍。
NR/5G系统的设计目标包括高频段(例如6GHz以上的频段)的大带宽通信。当工作频率变高时,传输过程中的路径损耗会增大,从而影响高频系统的覆盖能力。为了能够有效地保证高频段NR系统的覆盖,可采用大规模天线阵列(massive MIMO),以形成增益更大的赋形波束,克服传播损耗,确保系统覆盖。
毫米波天线阵列,由于波长更短,天线阵子间距以及孔径更小,可以让更多的物理天线阵子集成在一个有限大小的二维天线阵列中。同时,由于毫米波天线阵列的尺寸有限,从硬件复杂度、成本开销以及功耗等因素考虑,无法采用数字波束赋形方式,通常采用模拟波束赋形方式,在增强网络覆盖同时,也可以降低设备的实现复杂度。
现有的2/3/4G典型系统中,一个小区(扇区)使用一个较宽的波束(beam)来覆盖整个小区。因此在每个时刻,小区覆盖范围内终端都有机会获得系统分配的传输资源。
NR/5G的多波束(multi-beam)系统通过不同的波束来覆盖整个小区,即每个波束覆盖一个较小的范围,通过波束扫描(beam sweeping)来实现多个波束覆盖整个小区的效果。
图8为不使用波束赋形的系统示意图。图8所示的系统是传统的、不使用波束赋形的LTE/NR系统。LTE/NR系统的网络侧使用一个宽的波束来覆盖整个小区,UE1至UE5在任何时刻都可以接收到网络信号。
图9为使用波束赋形的系统示意图。图9所示的系统是使用波束赋形的NR系统,该系统的网络侧使用较窄的波束,例如图9中的波束1至4,在不同的时刻使用不同波束来覆盖小区中的不同区域。例如在时刻1,NR网络侧通过波束1覆盖UE1所在的区域;在时刻2,NR网络侧通过波束2覆盖UE2所在的区域;在时刻3,NR网络侧通过波束3覆盖UE3和UE4所在的区域;在时刻4,NR网络侧通过波束4覆盖UE5所在的区域。
图9中,由于网络使用较窄的波束,发射能量可以更集中,因此可以覆盖更远的距离;同时由于波束较窄,每个波束只能覆盖小区中的部分区域,因此模拟波束赋形是“以时间换空间”。
模拟波束赋形不仅可以用于网络侧设备,也同样可以用于终端。同时,模拟波束赋形不仅可以用于信号的发送(称为发送波束),同样也可以用于信号的接收(称为接收波束)。
目前,可通过波束承载的信号来识别波束。例如,不同波束上传输不同的同步信号广播信道块(SS/PBCH block,SSB),终端可以通过不同的SSB来识别不同的波束。又例如,不同的波束上传输不同的信道状态信息参考信号(channel state information reference signal,CSI-RS),终端通过CSI-RS信号或者CSI-RS资源来识别不同的波束。因此,后文可基于可见的信号来识别波束,实际上波束是与某个信号对应。
在多波束系统中,物理下行控制信道(physical downlink control channel,PDCCH)和物理下行共享信道(physical downlink shared channel,PDSCH)可以通过不同的下行发送波束来传输。
对于6G以下系统,终端侧一般没有模拟波束,因此采用全向天线(或者接近全向的天线)来接收基站不同下行发送波束发送的信号。
对于毫米波系统,终端侧可能会有模拟波束,需要使用对应的下行接收波束去接收对应的下行发送波束发送的信号。此时,需要相应的波束指示信息(beam indication)来协助UE确定网络侧的发送波束相关信息,或者终端侧对应的接收波束相关信息。
在NR协议中,波束指示信息不是直接指示波束本身,而是通过信号之间的准共址(Quasi Co-Location,QCL)('QCL-TypeD'类型)来进行指示。在终端侧,确定接收相应的信道/信号,也是基于QCL准共址假设。
终端在进行信号接收时,为了提高接收性能,可以利用数据传输所对应的传输环境的特性来改进接收算法。例如,可以利用信道的统计特性来优化信道估计器的设计和参数。在NR系统中,数据传输所对应的这些特性通过QCL状态(QCL-Info)来表示。
下行传输如果来自不同的传输接收点(transmission reception point,TRP)/天线阵列块(panel)/波束(beam),则数据传输所对应的传输环境的特性可能也会有变化,因此在NR系统中,网络侧在传输下行控制信道或数据信道,会通过传输配置指示(transmission configuration indicator,TCI)状态将对应的QCL状态信息指示给终端。
一个TCI状态可以包含如下配置:
TCI状态标识(identity,ID),用于标识一个TCI状态;QCL信息1;QCL信息2(可选)。
其中,一个QCL信息又包含如下信息:
QCL类型配置,可以是QCL type A,QCL typeB,QCL typeC或QCL typeD中的一个;QCL参考信号配置,包括参考信号所在的小区ID,BWP ID以及参考信号的标识(可以是CSI-RS资源ID或SSB索引)。
如果QCL信息1和QCL信息2都配置了,至少一个QCL信息的QCL类型必须为typeA,typeB,typeC中的一个,另一个QCL信息(如果配置)的QCL类型必须为QCL type D。
其中,不同QCL类型配置的定义如下:
'QCL-TypeA':{多普勒偏移Doppler shift,多普勒扩展Doppler spread,平均时延average delay,时延扩展delay spread};
'QCL-TypeB':{多普勒偏移,多普勒扩展};
'QCL-TypeC':{多普勒偏移,平均时延};
'QCL-TypeD':{空间接收机参数Spatial Rx parameter}。
在NR系统中,网络侧可以为下行信号或下行信道指示相应的TCI状态。
如果网络侧通过TCI状态配置目标下行信道或目标下行信号的QCL参考信号为参考SSB或 参考CSI-RS资源,且QCL类型配置为typeA,typeB或typeC,则终端可以假设目标下行信号与参考SSB或参考CSI-RS资源的大尺度参数是相同的,大尺度参数通过QCL类型配置来确定。其中,大尺度参数包括上述的多普勒偏移,多普勒扩展,平均时延,时延扩展,空间接收机参数,平均增益等。
如果网络侧通过TCI状态配置目标下行信道或下行信号的QCL参考信号为参考SSB或参考CSI-RS资源,且QCL类型配置为typeD,则终端可以采用与接收参考SSB或参考CSI-RS资源相同的接收波束(即Spatial Rx parameter),来接收目标下行信号。通常的,目标下行信道(或下行信号)与它的参考SSB或参考CSI-RS资源在网络侧由同一个TRP或者同一个panel或者相同的波束来发送。如果两个下行信号或下行信道的传输TRP或传输panel或发送波束不同,通常会配置不同的TCI状态。
对于下行控制信道,可以通过RRC信令,或者,RRC信令+MAC信令的方式来指示对应控制资源集合(control-resource set,CORESET)的TCI状态。
对于下行数据信道,可用的TCI状态集合通过RRC信令来指示,并通过MAC层信令来激活其中部分TCI状态,最后通过下行控制信息(downlink control information,DCI)中的TCI状态指示域从激活的TCI状态中指示一个或两个TCI状态,用于DCI调度的PDSCH。
基于上述多波束系统,为了提升侧行通信系统的传输速率,考虑在侧行通信系统中使用毫米波频段。而在侧行毫米波通信系统中,如何确定终端设备的侧行传输波束是目前亟待解决的问题,例如如何确定终端设备发送侧行信道(包括PSFCH、PSCCH、PSBCH或PSSCH)的波束,如何确定终端设备接收侧行信道的波束。
本申请实施例提出一种信息传输方法,可用于解决侧行通信中终端设备如何传输侧行信道的问题。由于侧行通信引入多波束发送和接收,终端设备在传输侧行信道时需要确定合适的波束,以提高侧行通信的传输质量。本申请技术方案的整体思路如下:
针对终端设备如何发送侧行信道,可通过如下任一方式确定发送侧行信道的波束:
1)根据终端设备使用过的侧行信道接收波束,确定其发送当前侧行信道的波束。
2)根据终端设备使用过的侧行信道发送波束,确定其发送当前侧行信道的波束。
3)根据终端设备上报给对侧设备的指示信息,确定其发送当前侧行信道的波束。
4)根据终端设备的对侧设备的指示信息,确定其发送当前侧行信道的波束。
上述的侧行信道包括PSFCH、PSCCH、PSBCH或PSSCH。
以终端设备UE1向UE2发送PSFCH为例,UE1可通过如下任一方式确定发送PSFCH的波束:
1)确定UE1如何接收来自UE2的第一PSCCH/PSSCH(即确定UE1使用过的接收第一PSCCH/PSSCH的接收波束),从而确定UE1向UE2发送PSFCH的波束。其中,PSFCH是与第一PSCCH/PSSCH关联的侧行反馈信道,即PSFCH中承载的侧行反馈信息是针对该第一PSCCH/PSSCH的。
2)确定UE1如何向UE2发送的第二PSCCH/PSSCH(即确定UE1使用过的发送第二PSCCH/PSSCH的发送波束),从而确定UE1向UE2发送PSFCH的波束。
3)根据UE1上报给对侧设备UE2的指示信息,确定UE1发送PSFCH的波束。该指示信息指示某一参考信号,UE1根据指示信息获知该参考信号对应的UE1的最优接收波束,根据该最优接收波束确定UE1向UE2发送PSFCH的波束。
4)根据接收来自UE2的指示信息,确定UE1向UE2发送PSFCH的波束。该指示信息指示某一参考信号,UE1根据指示信息获知接收该参考信号时使用的接收波束,根据该接收波束确定发送PSFCH的波束。
针对终端设备如何接收侧行信道,可通过如下任一方式确定接收侧行信道的波束:
1)根据终端设备使用过的侧行信道发送波束,确定接收当前侧行信道的波束。
2)根据终端设备使用过的侧行信道接收波束,确定接收当前侧行信道的波束。
3)根据终端设备的对侧设备的指示信息,确定接收当前侧行信道的波束。
4)根据终端设备发送给对侧设备的指示信息,确定接收当前侧行信道的波束。
上述的侧行信道包括PSFCH、PSCCH、PSBCH或PSSCH。
以终端设备UE2接收来自UE1的PSFCH为例,UE2可通过如下任一方式确定接收PSFCH的波束:
1)确定UE2如何向UE1发送第一PSCCH/PSSCH(即确定UE2使用过的第一PSCCH/PSSCH的发送波束),从而确定接收来自UE1的PSFCH的波束。其中,PSFCH是与第一PSCCH/PSSCH 关联的侧行反馈信道,即PSFCH中承载的侧行反馈信息是针对该第一PSCCH/PSSCH的。
2)确定UE2如何接收来自UE1的第二PSCCH/PSSCH(即确定UE2使用过的接收第二PSCCH/PSSCH的接收波束),从而确定接收来自UE1的PSFCH的波束。
3)根据接收来自UE1的指示信息,确定接收来自UE1的PSFCH的波束。该指示信息指示某一参考信号,UE2根据指示信息获知该参考信号对应的发送波束是针对UE1的最优发送波束,并根据该最优发送波束确定UE2接收来自UE1的PSFCH的波束。
4)根据UE2发送给UE1的指示信息,确定UE2接收来自UE1的PSFCH的波束。该指示信息指示某一参考信号,UE2根据指示信息获知发送该参考信号时使用的发送波束,根据该发送波束确定接收PSFCH的波束。
在介绍本申请技术方案之前,首先对侧行通信中终端设备如何确定其最优发送波束和最优接收波束的过程进行说明。
图10为本申请实施例提供的发送端UE确定最优发送波束的示意图。如图10所示,通常采用如下方式确定发送端UE的最优发送波束:
发送端UE使用不同的波束(例如图10中的发送端的波束0至波束3)轮流发送CSI-RS资源。接收端UE使用相同的接收波束(例如图10中的接收端的波束2)分别接收发送端UE发送的多个CSI-RS资源,并且对检测到的CSI-RS资源进行测量,选取最优的CSI-RS资源将其对应的资源信息(如CSI-RS资源索引)反馈给发送端UE,该最优的CSI-RS资源对应的发送波束即是对接收端UE最优的发送波束。
可选的,接收端UE向发送端UE上报或反馈N个CSI-RS资源信息及其对应的测量结果,发送端UE在该N个CSI-RS资源中选取一个CSI-RS,并用选取的CSI-RS对应的发送波束进行侧行发送。
图11为本申请实施例提供的接收端UE确定最优接收波束的示意图。如图11所示,通常采用如下方式确定接收端UE的最优发送波束:
发送端UE使用相同的波束(例如图11中的发送端的波束2)发送CSI-RS资源。可选的,发送端UE使用对接收端UE最优的发送波束发送CSI-RS资源。接收端UE轮流使用不同的接收波束(例如图11中的接收端的波束0至波束3)接收该发送端UE发送的CSI-RS资源,并进行测量,选取具有最优测量结果的接收波束为接收端UE的最优接收波束。当发送端UE使用最优发送波束进行侧行发送时,接收端UE可以使用与该最优发送波束对应的最优接收波束进行相应的接收。其中,具有最优测量结果的接收波束是指参考信号接收质量最好的接收波束。
可选的,发送端UE针对不同的发送波束分别采用上述过程,可以分别确定与各个发送波束相对应的最优的接收波束。因此,当发送端UE在进行侧行发送时,发送端UE可以指示该侧行发送使用的发送波束,接收端UE即可确定与发送端使用的发送波束对应的最优的接收波束,并利用该最优接收波束进行侧行接收。
对于进行侧行通信的两个终端设备UE1和UE2,当UE1向UE2发送PSCCH/PSSCH时(或UE2向UE1发送PSCCH/PSSCH时),可以基于上述的过程分别确定UE1的最优发送波束和UE2的最优接收波束(或UE2的最优发送波束和UE1的最优接收波束)。
下面通过具体实施例对本申请实施例提供的技术方案进行详细说明。需要说明的是,本申请实施例提供的技术方案可以包括以下内容中的部分或全部,下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。
需要说明的是,本申请实施例的空域发送滤波器(spatial domain transmission filter)即发送波束,空域接收滤波器(spatial domain receive filter)即接收波束。
下面结合图12和图13,首先分别从侧行通信系统的第一设备和第二设备的角度出发,描述本申请实施例提供的技术方案的几种应用场景。其中第一设备和第二设备之间直接通信。第一设备对应上文的UE1,第二设备对应上文的UE2。
图12为本申请实施例提供的信息传输方法的交互示意图一。如图12所示,本实施例提供的信息传输方法应用于侧行通信系统的第一设备,包括如下几个步骤:
步骤201、第一设备确定用于侧行通信的第一空域发送滤波器。
步骤202、第一设备使用第一空域发送滤波器向第二设备发送第一侧行信道。
在本实施例的一个可选实施例中,第一设备根据第一设备接收来自第二设备的第二侧行信道时使用的空域接收滤波器,确定第一设备向第二设备发送第一侧行信道的第一空域发送滤波器。本实施例包括如下两种应用场景:
一种应用场景中,第一侧行信道包括第一PSFCH,第二侧行信道包括第一PSCCH或第一 PSSCH。基于该场景,第一设备根据第一设备接收来自第二设备的第一PSCCH或第一PSSCH时使用的空域接收滤波器,确定第一设备向第二设备发送第一PSFCH的第一空域发送滤波器。
可选的,第一PSFCH是与第一PSCCH或第一PSSCH关联的侧行反馈信道,即第一PSFCH中承载的侧行反馈信息是针对该第一PSCCH或第一PSSCH的。
一种应用场景中,第一侧行信道包括第二PSCCH或第二PSSCH,第二侧行信道包括第二PSFCH。基于该场景,第一设备根据第一设备接收来自第二设备的第二PSFCH时使用的空域接收滤波器,确定第一设备向第二设备发送第二PSCCH或第二PSSCH的第一空域发送滤波器。
可选的,第二PSCCH或第二PSSCH是与第二PSFCH关联的侧行信道。例如,第二PSCCH或第二PSSCH可以是针对第二PSFCH的重传,即第二PSFCH承载NACK,第二PSCCH或第二PSSCH是第一设备根据来自第二设备的第二PSFCH进行的重传。
在一些实施方式中,第一设备将接收来自第二设备的第二侧行信道时使用的空域接收滤波器作为第一空域发送滤波器。
在本实施例的一个可选实施例中,第一设备根据第二空域发送滤波器,确定第一设备向第二设备发送第一侧行信道的第一空域发送滤波器。其中第二空域发送滤波器是第一设备向第二设备发送第三侧行信道时使用的空域发送滤波器。本实施例包括如下两种应用场景:
一种应用场景中,第一侧行信道包括第三PSFCH,第三侧行信道包括第三PSCCH或第三PSSCH。基于该场景,第一设备根据第一设备向第二设备发送第三PSCCH或第三PSSCH时使用的空域发送滤波器,确定第一设备向第二设备发送第三PSFCH的第一空域发送滤波器。
一种应用场景中,第一侧行信道包括第四PSCCH或第四PSSCH,第三侧行信道包括第四PSFCH。基于该场景,第一设备根据第一设备向第二设备发送第四PSFCH时使用的空域发送滤波器,确定第一设备向第二设备发送第四PSCCH或第四PSSCH的第一空域发送滤波器。
在一些实施方式中,第一设备将第一设备向第二设备发送第三侧行信道时使用的空域发送滤波器作为第一空域发送滤波器。
在本实施例的一个可选实施例中,第一设备根据第一设备上报给第二设备的第一参考信号资源指示信息,确定第一设备向第二设备发送第一侧行信道的第一空域发送滤波器。
在一些实施方式中,该第一参考信号资源指示信息用于第二设备确定空域发送滤波器。
例如,在确定第二设备的最优发送波束的过程中,第二设备通过不同的空域发送滤波器向第一设备发送多个CSI-RS。第一设备利用相同的波束(如第一接收波束)接收第二设备发送的CSI-RS,根据接收的CSI-RS的测量结果,选取具有最优测量结果的CSI-RS并将其上报给第二设备,例如第一设备向第二设备上报CSI-RS资源指示信息(CSI-RS resource indicator,CRI),即上述的第一参考信号资源指示信息。第二设备根据CRI确定与该CRI对应的CSI-RS关联的发送波束为最优发送波束,第一设备确定接收该CRI对应的CSI-RS的第一接收波束为与该最优发送波束相对应的最优接收波束。因此,第一设备在确定向第二设备发送第一侧行信道的第一空域发送滤波器时,可以基于该第一接收波束确定第一空域发送滤波器。在一些实施方式中,第一设备将该第一接收波束作为第一空域发送滤波器。
在一些实施方式中,第一参考信号资源指示信息承载在侧行控制信息SCI、媒体接入层控制单元MAC CE、PC5无线资源控制RRC信令或PSFCH中。第一侧行信道包括PSFCH、PSCCH、PSBCH或PSSCH。
在一些实施方式中,第一设备将第一参考信号资源指示信息指示的参考信号资源对应的空域接收滤波器作为第一空域发送滤波器。
在本实施例的一个可选实施例中,第一设备根据来自第二设备的第二参考信号资源指示信息,确定第一设备向第二设备发送第一侧行信道的第一空域发送滤波器。
在一些实施方式中,该第二参考信号资源指示信息用于第一设备确定空域接收滤波器。
例如,第二设备选取了最优发送波束后,第二设备向第一设备发送TCI状态指示,用于指示第一设备的空域接收机参数,该TCI状态中包括的参考信号信息即上述的第二参考信号资源指示信息。该第二参考信号资源指示信息例如用于指示CSI-RS资源。第一设备根据该TCI状态指示可以确定与该CSI-RS关联的最优空域接收滤波器,并根据该最优空域接收滤波器确定第一设备向第二设备发送第一侧行信道的第一空域发送滤波器。
在一些实施方式中,第一设备将该最优空域接收滤波器作为第一空域发送滤波器。
在一些实施方式中,第二参考信号资源指示信息承载于TCI状态中。
在一些实施方式中,第二参考信号资源指示信息承载在SCI、MAC CE、PC5-RRC信令或PSFCH中。第一侧行信道包括PSFCH、PSCCH、PSBCH或PSSCH。
在一些实施方式中,第一设备将第二参考信号资源指示信息指示的参考信号资源对应的空域接收滤波器作为第一空域发送滤波器。
本实施例示出了一种信息传输方法,第一设备可通过第一设备接收侧行信道的空域接收滤波器,或者第一设备发送侧行信道的空域发送滤波器,或者第一设备上报给第二设备的第一参考信号资源指示信息,或者来自第二设备的第二参考信号资源指示信息,确定第一设备发送当前的侧行信道的空域发送滤波器。通过上述任一方法可确定合适第一设备的空域发送滤波器,以提高第一设备侧行通信的发送能力。
图13为本申请实施例提供的信息传输方法的交互示意图二。如图13所示,本实施例提供的信息传输方法应用于侧行通信系统的第二设备,包括如下几个步骤:
步骤301、第二设备确定用于侧行通信的第一空域接收滤波器。
步骤302、第二设备使用第一空域接收滤波器接收第一设备发送的第一侧行信道。
在本实施例的一个可选实施例中,第二设备根据第二设备向第一设备发送第二侧行信道时使用的空域发送滤波器,确定第二设备接收第一设备发送的第一侧行信道的第一空域接收滤波器。本实施例包括如下两种应用场景:
一种应用场景中,第一侧行信道包括第一PSFCH,第二侧行信道包括第一PSCCH或第一PSSCH。基于该场景,第二设备根据第二设备向第一设备发送第一PSCCH或第一PSSCH时使用的空域发送滤波器,确定第二设备接收第一设备发送的第一PSFCH的第一空域接收滤波器。
可选的,第一PSFCH是与第一PSCCH或第一PSSCH关联的侧行反馈信道,即第一PSFCH中承载的侧行反馈信息是针对该第一PSCCH或第一PSSCH的。
一种应用场景中,第一侧行信道包括第二PSCCH或第二PSSCH,第二侧行信道包括第二PSFCH。基于该场景,第二设备根据第二设备向第一设备发送第二PSFCH时使用的空域发送滤波器,确定第二设备接收第一设备发送的第二PSCCH或第二PSSCH的第一空域接收滤波器。
可选的,第二PSCCH或第二PSSCH是与第二PSFCH关联的侧行信道。例如,第二PSCCH或第二PSSCH可以是针对第二PSFCH的重传,即第二PSFCH承载NACK,第二PSCCH或第二PSSCH是第一设备根据来自第二设备的第二PSFCH进行的重传。
在一些实施方式中,第二设备将第二设备向第一设备发送第二侧行信道时使用的空域发送滤波器作为第一空域接收滤波器。
在本实施例的一个可选实施例中,第二设备根据第二空域接收滤波器,确定第二设备接收第一设备发送的第一侧行信道的第一空域接收滤波器。其中第二空域接收滤波器是第二设备接收来自第一设备的第三侧行信道时使用的空域接收滤波器。本实施例包括如下两种应用场景:
一种应用场景中,第一侧行信道包括第三PSFCH,第三侧行信道包括第三PSCCH或第三PSSCH。基于该场景,第二设备根据第二设备接收来自第一设备的第三PSCCH或第三PSSCH时使用的空域接收滤波器,确定第二设备接收第一设备发送的第三PSFCH的第一空域接收滤波器。
一种应用场景中,第一侧行信道包括第四PSCCH或第四PSSCH,第三侧行信道包括第四PSFCH。基于该场景,第二设备根据第二设备接收来自第一设备的第四PSFCH时使用的空域接收滤波器,确定第二设备接收第一设备发送的第四PSCCH或第四PSSCH的第一空域接收滤波器。
在一些实施方式中,第二设备将其接收来自第一设备的第三侧行信道时使用的空域接收滤波器作为第一空域接收滤波器。
在本实施例的一个可选实施例中,第二设备根据来自第一设备的第一参考信号资源指示信息,确定第二设备接收第一设备发送的第一侧行信道的第一空域接收滤波器。第一参考信号资源指示信息用于指示第一目标参考信号资源。
在一些实施方式中,该第一参考信号资源指示信息用于第二设备确定空域发送滤波器。
例如,在确定第二设备的最优发送波束的过程中,第二设备通过不同的空域发送滤波器向第一设备发送多个CSI-RS。第一设备利用相同的波束(如第一接收波束)接收第二设备发送的CSI-RS,根据接收的CSI-RS的测量结果,选取具有最优测量结果的CSI-RS并将其上报给第二设备,例如第一设备向第二设备上报CSI-RS资源指示信息(CSI-RS resource indicator,CRI),即上述的第一参考信号资源指示信息。第二设备根据CRI确定与该CRI对应的CSI-RS关联的发送波束为最优发送波束,第二设备根据该最优发送波束确定第二设备接收来自第一设备的第一侧行信道的第一空域接收滤波器。在一些实施方式中,第二设备将该最优发送波束作为第一空域接收滤波器。
在一些实施方式中,第一参考信号资源指示信息承载在SCI、MAC CE、PC5-RRC信令或PSFCH中。第一侧行信道包括PSFCH、PSCCH、PSBCH或PSSCH。
在一些实施方式中,第二设备将第一参考信号资源指示信息指示的参考信号资源对应的空域 发送滤波器作为第一空域接收滤波器。
在本实施例的一个可选实施例中,第二设备根据第二参考信号资源指示信息,确定第二设备接收第一设备发送的第一侧行信道的第一空域接收滤波器。其中第二参考信号资源指示信息用于指示第二目标参考信号资源。
在一些实施方式中,该第二参考信号资源指示信息用于第一设备确定空域接收滤波器。
在一些实施方式中,第二设备向第一设备发送TCI状态,该TCI状态中包括该第二参考信号资源指示信息。
例如,第二设备选取了最优发送波束后,第二设备向第一设备发送TCI状态指示,用于指示第一设备的空域接收机参数,该TCI状态中包括的参考信号信息即第二参考信号资源指示信息。该第二参考信号资源指示信息例如用于指示CSI-RS资源。第一设备根据该TCI状态指示可以确定与该CSI-RS关联的最优空域接收滤波器。该TCI状态指示的参考信号所对应的发送波束即第二设备的最优发送波束,第二设备根据该最优发送波束确定第二设备接收第一设备发送的第一侧行信道的第一空域接收滤波器。在一些实施方式中,第二设备将该最优发送波束作为第一空域接收滤波器。
本实施例中,第二参考信号资源指示信息承载在SCI、MAC CE、PC5-RRC信令或PSFCH中。第一侧行信道包括PSFCH、PSCCH、PSBCH或PSSCH。
在一些实施方式中,第二设备将第二参考信号资源指示信息指示的参考信号资源对应的空域发送滤波器作为第一空域接收滤波器。
本实施例示出了一种信息传输方法,第二设备可通过第二设备发送侧行信道的空域发送滤波器,或者第二设备接收侧行信道的空域接收滤波器,或者来自第一设备的第一参考信号资源指示信息,或者第二设备发送给第一设备的第二参考信号资源指示信息,确定第二设备接收当前的侧行信道的空域接收滤波器。通过上述任一方法可确定合适第二设备的空域接收滤波器,以提高第二设备侧行通信的接收能力。
基于上述实施例的其中一种应用场景:该场景中,第二设备向第一设备发送第二侧行信道,第一设备向第二设备发送第一侧行信道,第一侧行信道包括第一PSFCH,第二侧行信道包括第一PSCCH或第一PSSCH,第一PSFCH是与第一PSCCH或第一PSSCH关联的侧行反馈信道,下面结合图14对第一设备和第二设备的交互过程进行说明。
图14为本申请实施例提供的信息传输方法的交互示意图三。如图14所示,本实施例的信息传输方法包括如下步骤:
步骤401、第二设备向第一设备发送第一PSCCH或第一PSSCH。
步骤402、第一设备确定向第二设备发送第一PSFCH的第一空域发送滤波器。
本实施例中,第一设备根据来自第二设备的第一PSCCH或第一PSSCH时使用的空域接收滤波器,确定第一空域发送滤波器。
可选的,第一设备将第一设备接收来自第二设备的第一PSCCH或第一PSSCH时使用的空域接收滤波器作为第一空域发送滤波器。即第一设备使用接收第一PSCCH或第一PSSCH的空域接收滤波器,向第二设备发送第一PSFCH。
步骤403、第一设备使用第一空域发送滤波器向第二设备发送第一PSFCH。
步骤404、第二设备确定接收第一PSFCH的第一空域接收滤波器。
本实施例中,第二设备根据第二设备发送第一PSCCH或第一PSSCH时使用的空域发送滤波器确定第一空域接收滤波器。
可选的,第二设备将第二设备向第一设备发送第一PSCCH或第一PSSCH时使用的空域发送滤波器作为第一空域接收滤波器。即第二设备使用发送第一PSCCH或第一PSSCH的空域发送滤波器,接收第一PSFCH。
步骤405、第二设备使用第一空域接收滤波器接收第一PSFCH。
需要说明的是,本实施例中各个步骤的执行顺序仅作为示例,不应对本申请构成任何限定。
上述实施例中,第一设备通过确定其接收来自第二设备的第一PSCCH或第一PSSCH的空域接收滤波器,确定第一设备发送第一PSFCH的空域发送滤波器。第二设备通过其向第一设备发送第一PSCCH或第一PSSCH的空域发送滤波器,确定第二设备接收第一PSFCH的空域接收滤波器。上述实施例可提高侧行通信的传输质量。
下面以第一设备为UE1以及第二设备为UE2,描述上述实施例的技术方案。
若UE2向UE1发送第一PSCCH或第一PSSCH时使用第一发送波束,UE1使用第一接收波束接收该第一PSCCH或第一PSSCH,则当UE1向UE2发送该第一PSCCH或第一PSSCH关联 的第一PSFCH时,UE1根据该第一接收波束确定第二发送波束,UE1使用第二发送波束向UE2发送第一PSFCH。UE2根据该第一发送波束确定第二接收波束,UE2使用第二接收波束接收第一PSFCH。
侧行通信系统的终端设备通常工作在时分双工(time division duplex,TDD)频段上,即侧行发送和侧行接收都在该TDD频段上,该频段具有信道互易性,即可以认为UE1向UE2发送侧行数据时的信道与UE2向UE1发送侧行数据时的信道具有空间相关性。因此,可以基于UE1的第一接收波束确定第二发送波束。例如,将该第一接收波束作为第二发送波束发送第一PSFCH;同理,可以基于UE2的第一发送波束确定第二接收波束,例如,将该第一发送波束作为第二接收波束接收UE1发送的第一PSFCH。
图15为本申请实施例提供的信息传输方法的时隙/场景示意图。如图15所示,UE2在时隙2使用波束2(即第一发送波束)发送第一PSCCH/第一PSSCH,UE1使用波束1(即第一接收波束)接收该第一PSCCH/第一PSSCH;UE1确定在时隙5发送针对该第一PSCCH/第一PSSCH的第一PSFCH,并且使用波束1(即第二发送波束)发送第一PSFCH,UE2使用波束2(即第二接收波束)接收该第一PSFCH。
基于上述实施例的其中一种应用场景:该场景中,第一设备向第二设备发送第一侧行信道/第三侧行信道,第一侧行信道包括第三PSFCH,第三侧行信道包括第三PSCCH或第三PSSCH,下面结合图16对第一设备和第二设备的交互过程进行说明。
图16为本申请实施例提供的信息传输方法的交互示意图四。如图16所示,本实施例的信息传输方法包括如下步骤:
步骤501、第一设备向第二设备发送第三PSCCH或第三PSSCH。
步骤502、第一设备确定向第二设备发送第三PSFCH的第一空域发送滤波器。
本实施例中,第一设备根据第一设备向第二设备发送第三PSCCH或第三PSSCH时使用的空域发送滤波器,确定第一空域发送滤波器。
可选的,第一设备将第一设备向第二设备发送第三PSCCH或第三PSSCH时使用的空域发送滤波器作为第一空域发送滤波器。即第一设备使用发送第三PSCCH或第三PSSCH的空域发送滤波器,向第二设备发送第三PSFCH。
步骤503、第一设备使用第一空域发送滤波器向第二设备发送第三PSFCH。
步骤504、第二设备确定接收第三PSFCH的第一空域接收滤波器。
本实施例中,第二设备根据第二设备接收来自第一设备的第三PSCCH或第三PSSCH时使用的空域接收滤波器,确定第一空域接收滤波器。
可选的,第二设备将第二设备接收来自第一设备的第三PSCCH或第三PSSCH时使用的空域接收滤波器作为第一空域接收滤波器。即第二设备使用接收第三PSCCH或第三PSSCH的空域接收滤波器,接收第三PSFCH。
步骤505、第二设备使用第一空域接收滤波器接收第三PSFCH。
需要说明的是,本实施例中各个步骤的执行顺序仅作为示例,不应对本申请构成任何限定。
上述实施例中,第一设备通过其向第二设备发送第三PSCCH或第三PSSCH的空域发送滤波器,确定第一设备发送第三PSFCH的空域发送滤波器。第二设备通过确定其接收来自第一设备的第三PSCCH或第三PSSCH的空域接收滤波器,确定第二设备接收来自第一设备的第三PSFCH的空域接收滤波器。上述实施例可提高侧行通信的传输质量。
下面以第一设备为UE1以及第二设备为UE2,描述上述实施例的技术方案。
若UE1向UE2发送第三PSCCH或第三PSSCH时使用第三发送波束,则UE1使用相同的发送波束传输第三PSFCH。若UE2使用第三接收波束接收第三PSCCH或第三PSSCH,则UE2使用相同的接收波束接收该第三PSFCH。
当UE1向UE2发送第三PSCCH或第三PSSCH时,UE1使用的第三发送波束是通过图10所示波束选取过程确定UE1的最优发送波束,即适用于UE1和UE2之间进行侧行传输的波束,当UE1向UE2发送第三PSFCH时,可以使用和发送第三PSCCH或第三PSSCH相同的发送波束(即第三发送波束)。
另外,对于第三PSCCH或第三PSSCH传输,UE2可获知UE1使用的发送波束(即第三发送波束),UE2可以选取第三发送波束对应的接收波束(即第三接收波束)进行接收。UE2可以使用与接收第三PSCCH或第三PSSCH相同的波束(即第三接收波束)接收第三PSFCH。
下面结合图17,对图12实施例的第一设备如何根据第一参考信号资源指示信息确定第一空域发送滤波器,以及图13实施例的第二设备如何根据第一参考信号资源指示信息确定第一空域接 收滤波器进行说明。
图17为本申请实施例提供的信息传输方法的交互示意图五。如图17所示,本实施例的信息传输方法包括如下步骤:
步骤601、第一设备确定第一参考信号资源指示信息。
其中第一参考信号资源指示信息用于指示第一目标参考信号资源。第一目标参考信号资源是第一设备测量来自第二设备的多个参考信号并根据测量结果选取的。多个参考信号包括第一目标参考信号资源对应的参考信号
具体的,第一设备可通过如下步骤确定第一参考信号资源指示信息:
步骤6011、第一设备接收来自第二设备的多个参考信号。
步骤6012、第一设备对多个参考信号进行测量。
步骤6013、第一设备从多个参考信号中选取具有最优测量结果的第一目标参考信号。
步骤6014、第一设备根据选取的第一目标参考信号生成第一参考信号资源指示信息。
需要说明的是,对于第二设备向第一设备发送的多个参考信号,基于不同的测量目的,第二设备发送多个参考信号的方式不同:
在确定第一设备的最优接收波束的过程中,第二设备使用相同的波束发送多个参考信号,第一设备使用不同的波束分别接收多个参考信号并进行测量,第一设备可选取具有最优测量结果的第一目标参考信号对应的接收波束作为第一设备的最优接收波束。
在确定第二设备的最优发送波束的过程中,第二设备使用不同的波束发送多个参考信号,第一设备使用相同的波束分别接收多个参考信号并进行测量,第一设备可选取具有最优测量结果的第一目标参考信号。第二设备可将第一设备选取的第一目标参考信号对应的发送波束作为第二设备的最优发送波束。相应的,第一设备将与该最优发送波束对应的接收波束作为与该最优发送波束对应的最优接收波束,进一步的,第一设备将该最优接收波束作为第一空域发送滤波器。
可选的,第一参考信号资源指示信息包括信道状态信息参考信号资源指示(CSI-RS resource indicator,CRI)信息。第一参考信号资源指示信息用于指示第一目标参考信号资源,包括:CRI信息用于指示目标CSI-RS资源,目标CSI-RS资源是第一设备测量来自第二设备的多个CSI-RS并根据测量结果选取的。
例如,在确定第二设备的最优发送波束的过程中,第二设备使用不同的发送波束向第一设备发送多个CSI-RS,第一设备使用相同的接收波束(如接收波束1)接收多个CSI-RS并进行测量,选取具有最优测量结果的目标CSI-RS。第一设备向第二设备上报CRI信息,CRI信息用于指示该目标CSI-RS资源,第二设备根据CRI信息确定目标CSI-RS关联的发送波束为其最优发送波束。第一设备确定与该目标CSI-RS关联的接收波束1为与该最优发送波束相对应的最优接收波束。
可选的,第一参考信号资源指示信息承载在SCI、MAC CE、PC5-RRC信令或PSFCH中。
可选的,参考信号包括以下的任意一种:CSI-RS,PSCCH DMRS,PSSCH DMRS。
步骤602、第一设备向第二设备发送第一参考信号资源指示信息。
步骤603、第一设备根据第一参考信号资源指示信息确定第一空域发送滤波器。
本实施例中,第一设备根据第一参考信号资源指示信息指示的第一目标参考信号资源对应的空域接收滤波器,确定第一设备向第二设备发送第一侧行信道的第一空域发送滤波器。其中,第一侧行信道包括PSCCH、PSSCH、PSBCH或PSFCH。
可选的,第一设备将第一目标参考信号资源对应的空域接收滤波器作为第一空域发送滤波器。即第一设备使用第一目标参考信号资源对应的空域接收滤波器,向第二设备发送第一侧行信道。
本步骤中,第一设备根据第一参考信号资源指示信息获知第一目标参考信号对应的第一设备的最优空域接收滤波器(最优接收波束),将该最优空域接收滤波器作为第一设备发送第一侧行信道的第一空域发送滤波器。
步骤604、第一设备使用第一空域发送滤波器向第二设备发送第一侧行信道。
步骤605、第二设备根据第一参考信号资源指示信息确定第一空域接收滤波器。
本实施例中,第二设备根据第一参考信号资源指示信息指示的第一目标参考信号资源对应的空域发送滤波器,确定第二设备接收来自第一设备的第一侧行信道的第一空域接收滤波器。
可选的,第二设备将第一目标参考信号资源对应的空域发送滤波器作为第一空域接收滤波器。即第二设备使用第一目标参考信号资源对应的空域发送滤波器,接收来自第一设备的第一侧行信道。
在一些实施方式中,第二设备根据第一参考信号资源指示信息获知第一目标参考信号对应的第一设备的最优空域接收滤波器,将该最优空域接收滤波器关联的第二设备的空域发送滤波器作 为第二设备的第一空域接收滤波器。
在另一些实施方式中,第二设备根据第一参考信号资源指示信息获知第一目标参考信号对应的第二设备的最优空域发送滤波器,将该最优空域发送滤波器作为第二设备的第一空域接收滤波器。
步骤606、第二设备使用第一空域接收滤波器接收第一侧行信道。
需要说明的是,本实施例中各个步骤的执行顺序仅作为示例,不应对本申请构成任何限定。
上述实施例中,第一设备通过上报给第二设备的第一参考信号资源指示信息,确定第一设备发送第一侧行信道(包括PSCCH、PSSCH、PSBCH或PSFCH)的空域发送滤波器。第二设备通过接收来自第一设备的第一参考信号资源指示信息,确定第二设备接收第一侧行信道的空域接收滤波器。上述实施例可提高侧行通信的传输质量。
下面以第一设备为UE1、第二设备为UE2,描述上述实施例的技术方案。
实施方式1:
在确定UE1的最优接收波束时,UE2使用相同的波束(如波束1)轮流发送CSI-RS,UE1使用不同的波束分别接收CSI-RS并进行测量,UE1选取具有最优测量结果的CSI-RS对应的接收波束作为UE1的最优接收波束。UE1将该最优接收波束对应的CSI-RS资源指示信息(CRI)上报给UE2。
当UE2在进行侧行传输时,通过TCI指示信息指示UE2发送的PSSCH与上述最优接收波束对应的CSI-RS是QCL-TypeD类型的准共址关系,即表示UE2使用波束1发送该PSSCH,此时UE1可以使用与该波束1对应的最优接收波束进行PSSCH接收。
当UE1发送PSFCH时,UE1可以基于该最优接收波束确定相应的发送波束,例如,UE1将该最优接收波束作为发送波束发送PSFCH。同理,UE2可以基于与该最优接收波束相关联的发送波束(即波束1)确定相应的接收波束,例如UE2可以将该波束1作为接收波束,接收来自UE1的PSFCH。
实施方式2:
在确定UE2的最优发送波束时,UE2使用不同的波束轮流发送CSI-RS,UE1使用相同的波束(如波束2)分别接收CSI-RS并进行测量,UE1选取具有最优测量结果的CSI-RS,将该CSI-RS对应的CSI-RS资源指示信息(CRI)上报给UE2。UE2根据UE1上报的CRI确定与该CRI对应的CSI-RS关联的发送波束作为最优发送波束(如波束3)。
当UE2在进行侧行传输时,通过TCI指示信息指示UE2发送的PSSCH与上述CSI-RS是QCL-TypeD类型的准共址关系,即表示UE2使用波束3发送该PSSCH,此时UE1可以使用与该波束3对应的最优接收波束(即波束2)进行PSSCH接收。
当UE1发送PSFCH时,UE1可以基于该最优接收波束(即波束2)确定相应的发送波束,例如,UE1将该最优接收波束作为发送波束发送PSFCH。同理,UE2可以基于最优发送波束(即波束3)确定相应的接收波束,例如UE2可以将该波束3作为接收波束,接收来自UE1的PSFCH。
下面结合图18,对图12实施例的第一设备如何根据第二参考信号资源指示信息确定第一空域发送滤波器,以及图13实施例的第二设备如何根据第二参考信号资源指示信息确定第一空域接收滤波器进行说明。
图18为本申请实施例提供的信息传输方法的交互示意图六。如图18所示,本实施例的信息传输方法包括如下步骤:
步骤701、第二设备确定第二参考信号资源指示信息。
其中第二参考信号资源指示信息用于指示第二目标参考信号资源。第二目标参考信号资源是第二设备根据第一设备上报的多个参考信号的测量结果选取的。多个参考信号包括第二目标参考信号资源对应的参考信号。
具体的,第二设备可通过如下步骤确定第二参考信号资源指示信息:
步骤7011、第二设备向第一设备发送多个参考信号。
步骤7012、第二设备接收第一设备对多个参考信号进行测量的测量结果。
步骤7013、第二设备从多个参考信号中选取具有最优测量结果的第二目标参考信号。
步骤7014、第二设备根据选取的第二目标参考信号生成第二参考信号资源指示信息。
上述几个步骤与图17实施例的步骤6011至步骤6014的实现原理类似,只是选取目标参考信号的执行主体不同,具体可参见上述实施例,此处不再赘述。
可选的,第二参考信号资源指示信息包括传输配置指示(transmission configuration indicator,TCI)状态信息,TCI状态信息包括的参考信号为第二目标参考信号资源对应的参考信号。
可选的,TCI状态信息还包括QCL类型,QCL类型为QCL-TypeD。
可选的,第二参考信号资源指示信息承载在SCI、MAC CE、PC5-RRC信令或PSFCH中。
可选的,参考信号包括以下的任意一种:CSI-RS,PSCCH DMRS,PSSCH DMRS。
步骤702、第二设备向第一设备发送第二参考信号资源指示信息。
步骤703、第一设备根据第二参考信号资源指示信息确定第一空域发送滤波器。
本实施例中,第一设备根据第二参考信号资源指示信息指示的第二目标参考信号资源对应的空域接收滤波器,确定第一设备向第二设备发送第一侧行信道的第一空域发送滤波器。其中,第一侧行信道包括PSCCH、PSSCH、PSBCH或PSFCH。
可选的,第一设备将第二目标参考信号资源对应的空域接收滤波器作为第一空域发送滤波器。即第一设备使用第二目标参考信号资源对应的空域接收滤波器,向第二设备发送第一侧行信道。
本步骤中,第一设备根据第二目标参考信号指示信息获知第二目标参考信号对应的第一设备的最优空域接收滤波器(最优接收波束),将该最优空域接收滤波器作为第一设备发送第一侧行信道的第一空域发送滤波器。
步骤704、第一设备使用第一空域发送滤波器向第二设备发送第一侧行信道。
步骤705、第二设备根据第二参考信号资源指示信息确定第一空域接收滤波器。
本实施例中,第二设备根据第二参考信号资源指示信息指示的第二目标参考信号资源对应的空域发送滤波器,确定第二设备接收来自第一设备的第一侧行信道的第一空域接收滤波器。
可选的,第二设备将第二目标参考信号资源对应的空域发送滤波器作为第一空域接收滤波器。即第二设备使用第二目标参考信号资源对应的空域发送滤波器,接收来自第一设备的第一侧行信道。
在一些实现方式中,第二设备根据第二参考信号资源指示信息获知第二目标参考信号对应的第一设备的最优空域接收滤波器,将该最优空域接收滤波器关联的第二设备的空域发送滤波器作为第二设备的第一空域接收滤波器。
在另一些实现方式中,第二设备根据第二参考信号资源指示信息获知第二目标参考信号对应的第二设备的最优空域发送滤波器,将该最优空域发送滤波器作为第二设备的第一空域接收滤波器。
步骤706、第二设备使用第一空域接收滤波器接收第一侧行信道。
需要说明的是,本实施例中各个步骤的执行顺序仅作为示例,不应对本申请构成任何限定。
上述实施例中,第一设备通过来自第二设备的第二参考信号资源指示信息,确定第一设备发送第一侧行信道(包括PSCCH、PSSCH、PSBCH或PSFCH)的空域发送滤波器。第二设备确定第二设备接收第一侧行信道的空域接收滤波器。上述实施例可提高侧行通信的传输质量。
下面以第一设备为UE1、第二设备为UE2,描述上述实施例的技术方案。
UE2向UE1发送指示信息,UE1根据该指示信息确定发送PSFCH的波束。
例如,该指示信息包括TCI状态信息,在该TCI状态信息中包括参考信号,当该参考信号指示某一CSI-RS资源时,即表示UE1使用接收该CSI-RS资源时使用的接收波束为UE1的最优接收波束进行侧行接收。进一步的,UE1使用接收该CSI-RS资源时使用的接收波束进行PSFCH发送。
又例如,UE2向UE1发送第一PSCCH/PSSCH,在其SCI或MAC CE中包括CSI-RS资源标识,UE1获取该CSI-RS资源标识,当UE1在发送针对该第一PSCCH/PSSCH的PSFCH时,用接收该CSI-RS资源时使用的接收波束进行发送。
又例如,UE2向UE1发送第一PSCCH/PSSCH,在其SCI或MAC CE中包括空间相关性信息,该空间相关性信息包括的参考信号为PSCCH DMRS,UE1获取该空间相关性信息,当UE1在发送针对该第一PSCCH/PSSCH的PSFCH时,用接收该PSCCH DMRS时使用的接收波束进行发送。其中,该PSCCH DMRS即对应该第一PSCCH的DMRS。当UE2向UE1发送CSI-RS资源指示信息(CRI)用于指示UE1使用的发送波束时,UE2使用与该CSI-RS资源相关联的发送波束作为接收波束接收UE1发送的侧行数据,如PSFCH。
基于上文实施例,若第一侧行信道包括第五PSFCH,第一设备确定第一空域发送滤波器后,第一设备使用该第一空域发送滤波器向第二设备发送该第五PSFCH。
对于第一设备,若第一设备在该第五PSFCH的时间单元上有多个待发送的PSFCH,那么第一设备是否发送以及如何发送该第五PSFCH是亟待解决的问题。针对该问题,本实施例示出一种信息传输方法,第一设备可根据多个待发送的PSFCH(包括第五PSFCH)的优先级确定是否发送以及如何发送发送第五PSFCH。
在一种可能的实施方式中,若第五PSFCH是多个待发送的PSFCH中具有最高优先级的PSFCH,第一设备使用第一空域发送滤波器向第二设备发送第五PSFCH。
在一种可能的实施方式中,若第五PSFCH不是多个待发送的PSFCH中具有最高优先级的PSFCH,第一设备从多个待发送的PSFCH中确定具有最高优先级的第六PSFCH,确定用于发送第六PSFCH的第三空域发送滤波器,并根据第三空域发送滤波器和第一空域发送滤波器的关系,确定是否向第二设备发送第五PSFCH。
可选的,若第三空域发送滤波器与第一空域发送滤波器相同,使用第一空域发送滤波器(也就是第三空域发送滤波器)向第二设备发送第五PSFCH。或者,若第三空域发送滤波器与第一空域发送滤波器不同,放弃向第二设备发送第五PSFCH。或者,若第三空域发送滤波器与第一空域发送滤波器不同,使用第三空域发送滤波器向第二设备发送第五PSFCH。
本实施方式中,第一设备确定用于发送第六PSFCH的第三空域发送滤波器的实现原理,与上文实施例中第一设备确定第一空域发送滤波器类似,可参见上文实施例。
本实施例示出的信息传输方法,第一设备在发送第五PSFCH时有多个待发送的PSFCH,第一设备可使用多个PSFCH中优先级最高的PSFCH对应的空域发送滤波器,发送第五PSFCH,确保第一设备发送第五PSFCH的发送质量。
对于第二设备,若第二设备在接收第五PSFCH的时间单元上有多个待接收的PSFCH,那么第二设备如何接收第五PSFCH是亟待解决的问题。针对该问题,本实施例示出一种信息传输方法,第二设备可根据多个待接收的PSFCH中最高优先级的空域接收滤波器,接收第五PSFCH。
在一种可能的实施方式中,若第五PSFCH是多个待接收的PSFCH中具有最高优先级的PSFCH,第二设备使用第一空域接收滤波器接收第五PSFCH。
在一种可能的实施方式中,若第五PSFCH不是多个待接收的PSFCH中具有最高优先级的PSFCH,第二设备从多个待接收的PSFCH中确定具有最高优先级的第六PSFCH,确定用于接收第六PSFCH的第三空域接收滤波器,第二设备使用第三空域接收滤波器接收第五PSFCH。
本实施方式中,第二设备确定用于接收第六PSFCH的第三空域发送滤波器的实现原理,与上文实施例中第二设备确定第一空域接收滤波器类似,可参见上文实施例。
本实施例示出的信息传输方法,第二设备有多个PSFCH接收时,第二设备通过确定多个PSFCH中优先级最高的PSFCH的空域接收滤波器,基于该空域接收滤波器接收多个PSFCH,确保高优先级的PSFCH的接收质量。
基于上文实施例,若第一侧行信道包括第七PSFCH,第一设备确定第一空域发送滤波器后,第一设备使用该第一空域发送滤波器向第二设备发送该第七PSFCH。
若第一设备在该第七PSFCH的时间单元上有多个待发送的PSFCH,且第一设备支持同时发送多个PSFCH,那么第一设备如何发送多个PSFCH是亟待解决的问题。
针对该问题,本实施例示出一种信息传输方法,第一设备可根据多个PSFCH的优先级、每个PSFCH对应的空域发送滤波器以及第一支持的同时发送PSFCH的最大个数,发送多个PSFCH。
具体的,第一设备确定多个待发送的PSFCH分别对应的空域发送滤波器,多个待发送的PSFCH中具有最高优先级的PSFCH对应的空域发送滤波器为第四空域发送滤波器,多个待发送的PSFCH中包括N1个使用第四空域发送滤波器的PSFCH。
若N1小于或等于第一设备支持的同时发送PSFCH的最大个数M1,第一设备使用第四空域发送滤波器发送N1个PSFCH,其中N1和M1为正整数。或者
若N1大于第一设备支持的同时发送PSFCH的M1,第一设备按照使用第四空域发送滤波器的多个PSFCH的优先级从高到低的顺序选取M1个PSFCH,第一设备使用第四空域发送滤波器发送选取的M1个PSFCH。
其中N1和M1均为正整数。
通过本实施例的信息传输方法,可优先发送优先级从高到低的M1个PSFCH,由于第一设备在同一时刻仅能使用一个空域发送滤波器,因此第一设备使用最高优先级的PSFCH对应的空域发送滤波器来发送M1个PSFCH,优先保证高优先级PSFCH的发送。
下面以第一设备为UE1为例,对UE1如何发送PSFCH的几种情况进行说明。
示例性的,当UE1在发送PSFCH1的时隙有多个PSFCH需要发送时,UE1按照多个PSFCH中优先级最高的PSFCH(如PSFCH2)的发送波束发送PSFCH1。
示例性的,UE1可以同时发送多个PSFCH,当发送多个PSFCH时,选取优先级最高的PSFCH所对应的发送波束发送所有的PSFCH,包括PSFCH1。
示例性的,如图15所示,UE1确定在时隙5向UE2发送第一PSFCH(第一PSFCH的发送 波束为第一发送波束),同时,在该时隙中,UE1还需要向其他UE发送第二PSFCH(第二PSFCH的发送波束为第二发送波束),并且第二PSFCH的优先级高于第一PSFCH,UE1需要优先保证高优先级的PSFCH的发送,因此,UE1使用第二发送波束发送第一PSFCH和第二PSFCH。可选的,若根据最高优先级的PSFCH确定的发送波束集合与第一PSFCH确定的发送波束集合之间有重叠的波束,则优先使用重叠的波束。其中,发送波束集合包括至少一个发送波束。
示例性的,如图15所示,UE1确定在时隙5向UE2发送第一PSFCH(第一PSFCH的发送波束集合包括第一发送波束或第三发送波束),同时,在该时隙中,UE1还需要向其他UE发送第二PSFCH(第二PSFCH的发送波束集合包括第二发送波束或第三发送波束),由于这两个PSFCH都可以使用第三发送波束,因此,UE1使用第三发送波束发送第一PSFCH和第二PSFCH,可以保证UE1和其他的终端能够接收第一PSFCH和第二PSFCH。
下面结合图19至图22详细说明本申请实施例提供的侧行通信的设备。
图19为本申请实施例提供的第一设备的结构示意图。如图20所示,本实施例提供的第一设备800,包括:处理模块801,发送模块802以及接收模块803。
处理模块801,用于确定用于侧行通信的第一空域发送滤波器;
发送模块802,用于使用所述第一空域发送滤波器向第二设备发送第一侧行信道。
本实施例的一个可选实施例中,所述处理模块801,用于根据所述第一设备的接收模块803接收来自所述第二设备的第二侧行信道时使用的空域接收滤波器确定所述第一空域发送滤波器。
本实施例的一个可选实施例中,所述第二侧行信道包括第一PSCCH或第一PSSCH,所述第一侧行信道包括第一PSFCH,所述第一PSFCH是与所述第一PSCCH或所述第一PSSCH关联的侧行反馈信道;或者,所述第二侧行信道包括第二PSFCH,所述第一侧行信道包括第二PSCCH或第二PSSCH。
本实施例的一个可选实施例中,所述处理模块801,用于:
将所述接收模块803接收来自所述第二设备的第二侧行信道时使用的空域接收滤波器作为所述第一空域发送滤波器。
本实施例的一个可选实施例中,所述处理模块801,用于根据第二空域发送滤波器确定所述第一空域发送滤波器;所述第二空域发送滤波器是所述发送模块802向所述第二设备发送第三侧行信道时使用的空域发送滤波器。
本实施例的一个可选实施例中,所述第三侧行信道包括第三PSCCH或第三PSSCH,所述第一侧行信道包括第三PSFCH;或者,所述第三侧行信道包括第四PSFCH,所述第一侧行信道包括第四PSCCH或第四PSSCH。
本实施例的一个可选实施例中,所述处理模块801,用于将所述第二空域发送滤波器作为所述第一空域发送滤波器。
本实施例的一个可选实施例中,所述处理模块801,用于根据第一参考信号资源指示信息确定所述第一空域发送滤波器,其中,所述第一参考信号资源指示信息用于指示第一目标参考信号资源,所述第一目标参考信号资源是所述第一设备测量来自所述第二设备的多个参考信号并根据测量结果选取的。
本实施例的一个可选实施例中,所述发送模块802,用于将所述第一参考信号资源指示信息上报给所述第二设备。
本实施例的一个可选实施例中,所述处理模块801,用于根据所述第一目标参考信号资源对应的空域接收滤波器确定所述第一空域发送滤波器。
本实施例的一个可选实施例中,所述处理模块801,用于将所述第一目标参考信号资源对应的空域接收滤波器作为所述第一空域发送滤波器。
本实施例的一个可选实施例中,所述第一参考信号资源指示信息包括信道状态信息参考信号资源指示(CSI-RS resource indicator,CRI)信息;
所述第一参考信号资源指示信息用于指示所述第一目标参考信号资源,包括:
所述CRI信息用于指示目标CSI-RS资源,所述目标CSI-RS资源是所述第一设备测量来自所述第二设备的多个CSI-RS并根据测量结果选取的。
本实施例的一个可选实施例中,所述第一参考信号资源指示信息承载在侧行控制信息SCI、媒体接入层控制单元MAC CE、PC5无线资源控制RRC信令或PSFCH中。
本实施例的一个可选实施例中,所述处理模块801,用于根据来自所述第二设备的第二参考信号资源指示信息确定所述第一空域发送滤波器,所述第二参考信号资源指示信息用于指示第二目标参考信号资源。
本实施例的一个可选实施例中,所述处理模块801,用于将所述第二目标参考信号资源对应的空域接收滤波器作为所述第一空域发送滤波器。
本实施例的一个可选实施例中,所述第二参考信号资源指示信息包括传输配置指示(transmission configuration indicator,TCI)状态信息;所述TCI状态信息包括的参考信号为所述第二目标参考信号资源对应的参考信号。
本实施例的一个可选实施例中,所述TCI状态信息还包括QCL类型,所述QCL类型为QCL-TypeD。
本实施例的一个可选实施例中,所述第二参考信号资源指示信息承载在SCI、MAC CE、PC5-RRC信令或PSFCH中。
本实施例的一个可选实施例中,所述第一侧行信道包括第五PSFCH,若所述第一设备在所述第一侧行信道的时间单元上有多个待发送的PSFCH,且所述第五PSFCH是所述多个待发送的PSFCH中具有最高优先级的PSFCH,所述发送模块802用于使用所述第一空域发送滤波器向所述第二设备发送所述第一侧行信道。
本实施例的一个可选实施例中,若所述第五PSFCH不是所述多个待发送的PSFCH中具有最高优先级的PSFCH,所述处理模块801,用于:
从所述多个待发送的PSFCH中确定具有最高优先级的第六PSFCH,确定用于发送所述第六PSFCH的第三空域发送滤波器;根据所述第三空域发送滤波器和所述第一空域发送滤波器的关系,确定是否向所述第二设备发送所述第一侧行信道。
本实施例的一个可选实施例中,若所述第三空域发送滤波器与所述第一空域发送滤波器相同,所述发送模块802使用所述第一空域发送滤波器向所述第二设备发送所述第一侧行信道。
本实施例的一个可选实施例中,若所述第三空域发送滤波器与所述第一空域发送滤波器不同,所述发送模块802放弃向所述第二设备发送所述第一侧行信道,或者,使用所述第三空域发送滤波器向所述第二设备发送所述第一侧行信道。
本实施例的一个可选实施例中,所述第一侧行信道包括第七PSFCH,若所述第一设备在所述第一侧行信道的时间单元上有多个待发送的PSFCH,所述处理模块801确定所述多个待发送的PSFCH分别对应的空域发送滤波器;
所述多个待发送的PSFCH中具有最高优先级的PSFCH对应的空域发送滤波器为第四空域发送滤波器,所述多个待发送的PSFCH中包括N1个使用所述第四空域发送滤波器的PSFCH,且所述N1小于或等于所述第一设备支持的同时发送PSFCH的最大个数M1,所述发送模块802使用所述第四空域发送滤波器发送所述N1个PSFCH,其中N1和M1为正整数。
本申请实施例提供的第一设备,用于执行前述任一方法实施例中第一设备执行的技术方案,其实现原理和技术效果类似,在此不再赘述。
图20为本申请实施例提供的第二设备的结构示意图。如图20所示,本实施例提供的第二设备900,包括:处理模块901,接收模块902以及发送模块903。
处理模块901,用于确定用于侧行通信的第一空域接收滤波器;
接收模块902,用于使用所述第一空域接收滤波器接收来自第一设备的第一侧行信道。
本实施例的一个可选实施例中,所述处理模块901,用于根据所述第二设备的发送模块903向所述第一设备发送第二侧行信道时使用的空域发送滤波器确定所述第一空域接收滤波器。
本实施例的一个可选实施例中,所述第二侧行信道包括第一PSCCH或第一PSSCH,所述第一侧行信道包括第一PSFCH,所述第一PSFCH是与所述第一PSCCH或所述第一PSSCH关联的侧行反馈信道;或者,所述第二侧行信道包括第二PSFCH,所述第一侧行信道包括第二PSCCH或第二PSSCH。
本实施例的一个可选实施例中,所述处理模块901,用于将所述发送模块903向所述第一设备发送第二侧行信道时使用的空域发送滤波器作为所述第一空域接收滤波器。
本实施例的一个可选实施例中,所述处理模块901,用于根据第二空域接收滤波器确定所述第一空域接收滤波器;所述第二空域接收滤波器是所述接收模块902接收来自所述第一设备的第三侧行信道时使用的空域接收滤波器。
本实施例的一个可选实施例中,所述第三侧行信道包括第三PSCCH或第三PSSCH,所述第一侧行信道包括第三PSFCH;或者,所述第三侧行信道包括第四PSFCH,所述第一侧行信道包括第四PSCCH或第四PSSCH。
本实施例的一个可选实施例中,所述处理模块901,用于将所述第二空域接收滤波器作为所述第一空域接收滤波器。
本实施例的一个可选实施例中,所述处理模块901,用于根据来自所述第一设备的第一参考信号资源指示信息确定所述第一空域接收滤波器,所述第一参考信号资源指示信息用于指示第一目标参考信号资源。
本实施例的一个可选实施例中,所述发送模块903,用于向所述第一设备发送多个参考信号,所述多个参考信号包括所述第一目标参考信号资源对应的参考信号。
本实施例的一个可选实施例中,所述处理模块901,用于根据所述第一目标参考信号资源对应的空域发送滤波器,确定所述第一空域接收滤波器。
本实施例的一个可选实施例中,所述处理模块901,用于将所述第一目标参考信号资源对应的空域发送滤波器作为所述第一空域接收滤波器。
本实施例的一个可选实施例中,所述第一参考信号资源指示信息包括信道状态信息参考信号资源指示(CSI-RS resource indicator,CRI)信息;
所述第一参考信号资源指示信息用于指示第一目标参考信号资源,包括:所述CRI信息用于指示目标CSI-RS资源,所述目标CSI-RS资源是所述第一设备测量来自所述第二设备的多个CSI-RS并根据测量结果选取的。
本实施例的一个可选实施例中,所述第一参考信号资源指示信息承载在侧行控制信息SCI、媒体接入层控制单元MAC CE、PC5无线资源控制RRC信令或PSFCH中。
本实施例的一个可选实施例中,所述处理模块901,用于根据第二参考信号资源指示信息确定所述第一空域接收滤波器,所述第二参考信号资源指示信息用于指示第二目标参考信号资源。
本实施例的一个可选实施例中,所述发送模块903,用于向所述第一设备发送所述第二参考信号资源指示信息,所述第二参考信号资源指示信息用于所述第一设备确定空域接收滤波器。
本实施例的一个可选实施例中,所述处理模块901,用于根据所述第二目标参考信号资源对应的空域发送滤波器确定所述第一空域接收滤波器。
本实施例的一个可选实施例中,所述处理模块901,用于将所述第二目标参考信号资源对应的空域发送滤波器作为所述第一空域接收滤波器。
本实施例的一个可选实施例中,所述第二参考信号资源指示信息包括传输配置指示(transmission configuration indicator,TCI)状态信息;所述TCI状态信息包括的参考信号为所述第二目标参考信号资源对应的参考信号。
本实施例的一个可选实施例中,所述TCI状态信息还包括QCL类型,所述QCL类型为QCL-TypeD。
本实施例的一个可选实施例中,所述第二参考信号资源指示信息承载在SCI、MAC CE、PC5-RRC信令或PSFCH中。
本实施例的一个可选实施例中,所述第一侧行信道包括第五PSFCH,若所述第二设备在接收所述第一侧行信道的时间单元上有多个待接收的PSFCH;
若所述第五PSFCH是所述多个待接收的PSFCH中具有最高优先级的PSFCH,所述接收模块902使用所述第一空域接收滤波器接收所述第一侧行信道;或者
若所述第五PSFCH不是所述多个待接收的PSFCH中具有最高优先级的PSFCH,所述处理模块901从所述多个待接收的PSFCH中确定具有最高优先级的第六PSFCH,确定用于接收所述第六PSFCH的第三空域接收滤波器;所述接收模块902使用所述第三空域接收滤波器接收所述第一侧行信道。
本申请实施例提供的第二设备,用于执行前述任一方法实施例中第二设备执行的技术方案,其实现原理和技术效果类似,在此不再赘述。
图21为本申请实施例提供的电子设备的硬件结构示意图一。如图21所示,本实施例提供的电子设备1000,可以包括:
处理器1001、存储器1002和通信接口1003。其中,存储器1002,用于存储计算机程序;处理器1001,用于执行存储器1002存储的计算机程序,以实现前述任一方法实施例中第一设备所执行的方法。通信接口1003,用于与其他设备进行数据通信或者信号通信。
可选的,存储器1002既可以是独立的,也可以跟处理器1001集成在一起。当所述存储器1002是独立于处理器1001之外的器件时,所述电子设备1000还可以包括:总线1004,用于连接所述存储器1002和处理器1001。
在一种可能的实施方式中,图19中的处理模块801可以集成在处理器1001中实现,图19中的发送模块802和接收模块803可以集成在通信接口1003中实现。
本实施例提供的电子设备,可用于执行前述任一方法实施例中第一设备所执行的方法,其实 现原理和技术效果类似,此处不再赘述。
图22为本申请实施例提供的电子设备的硬件结构示意图二。如图22所示,本实施例提供的电子设备1100,可以包括:
处理器1101、存储器1102和通信接口1103。其中,存储器1102,用于存储计算机程序;处理器1101,用于执行存储器1102存储的计算机程序,以实现前述任一方法实施例中第二设备所执行的方法。通信接口1103,用于与其他设备进行数据通信或者信号通信。
可选的,存储器1102既可以是独立的,也可以跟处理器1101集成在一起。当所述存储器1102是独立于处理器1101之外的器件时,所述电子设备1100还可以包括:总线1104,用于连接所述存储器1102和处理器1101。
在一种可能的实施方式中,图20中的处理模块901可以集成在处理器1101中实现,图20中的发送模块903和接收模块902可以集成在通信接口1103中实现。
本实施例提供的电子设备,可用于执行前述任一方法实施例中第二设备所执行的方法,其实现原理和技术效果类似,此处不再赘述。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现前述任一方法实施例中第一设备的技术方案。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现前述任一方法实施例中第二设备的技术方案。
本申请实施例还提供一种计算机程序,当该计算机程序被处理器执行时,用于执行前述任一方法实施例中第一设备的技术方案。
本申请实施例还提供一种计算机程序,当该计算机程序被处理器执行时,用于执行前述任一方法实施例中第二设备的技术方案。
本申请实施例还提供一种计算机程序产品,包括程序指令,程序指令用于实现前述任一方法实施例中第一设备的技术方案。
本申请实施例还提供一种计算机程序产品,包括程序指令,程序指令用于实现前述任一方法实施例中第二设备的技术方案。
本申请实施例还提供了一种芯片,包括:处理模块与通信接口,该处理模块能执行前述方法实施例中第一设备的技术方案。进一步地,该芯片还包括存储模块(如,存储器),存储模块用于存储指令,处理模块用于执行存储模块存储的指令,并且对存储模块中存储的指令的执行使得处理模块执行前述任一方法实施例中第一设备的技术方案。
本申请实施例还提供了一种芯片,包括:处理模块与通信接口,该处理模块能执行前述方法实施例中第二设备的技术方案。进一步地,该芯片还包括存储模块(如,存储器),存储模块用于存储指令,处理模块用于执行存储模块存储的指令,并且对存储模块中存储的指令的执行使得处理模块执行前述任一方法实施例中第二设备的技术方案。
根据本申请实施例提供的方法,本申请实施例还提供一种通信系统,该通信系统可以包括前述的第一设备和第二设备,第一设备和第二设备直接通信。
需要说明的是,应理解以上第一设备800和第二设备900的各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,处理模块可以为单独设立的处理元件,也可以集成在上述设备的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述设备的存储器中,由上述设备的某一个处理元件调用并执行以上确定模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(application specific integrated circuit,ASIC),或,一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(central processing unit,CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘solid state disk(SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (92)

  1. 一种信息传输方法,其特征在于,应用于第一设备,所述方法包括:
    确定用于侧行通信的第一空域发送滤波器;
    使用所述第一空域发送滤波器向第二设备发送第一侧行信道。
  2. 根据权利要求1所述的方法,其特征在于,
    所述确定用于侧行通信的第一空域发送滤波器,包括:
    根据所述第一设备接收来自所述第二设备的第二侧行信道时使用的空域接收滤波器确定所述第一空域发送滤波器。
  3. 根据权利要求2所述的方法,其特征在于,
    所述第二侧行信道包括第一PSCCH或第一PSSCH,所述第一侧行信道包括第一PSFCH,所述第一PSFCH是与所述第一PSCCH或所述第一PSSCH关联的侧行反馈信道;或者
    所述第二侧行信道包括第二PSFCH,所述第一侧行信道包括第二PSCCH或第二PSSCH。
  4. 根据权利要求2或3所述的方法,其特征在于,
    所述根据所述第一设备接收来自所述第二设备的第二侧行信道时使用的空域接收滤波器确定所述第一空域发送滤波器,包括:
    将所述第一设备接收来自所述第二设备的第二侧行信道时使用的空域接收滤波器作为所述第一空域发送滤波器。
  5. 根据权利要求1所述的方法,其特征在于,
    所述确定用于侧行通信的第一空域发送滤波器,包括:
    根据第二空域发送滤波器确定所述第一空域发送滤波器;
    所述第二空域发送滤波器是所述第一设备向所述第二设备发送第三侧行信道时使用的空域发送滤波器。
  6. 根据权利要求5所述的方法,其特征在于,
    所述第三侧行信道包括第三PSCCH或第三PSSCH,所述第一侧行信道包括第三PSFCH;或者,所述第三侧行信道包括第四PSFCH,所述第一侧行信道包括第四PSCCH或第四PSSCH。
  7. 根据权利要求5或6所述的方法,其特征在于,
    所述根据第二空域发送滤波器确定所述第一空域发送滤波器,包括:
    将所述第二空域发送滤波器作为所述第一空域发送滤波器。
  8. 根据权利要求1所述的方法,其特征在于,
    所述确定用于侧行通信的第一空域发送滤波器,包括:
    根据第一参考信号资源指示信息确定所述第一空域发送滤波器,其中,所述第一参考信号资源指示信息用于指示第一目标参考信号资源,所述第一目标参考信号资源是所述第一设备测量来自所述第二设备的多个参考信号并根据测量结果选取的。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    将所述第一参考信号资源指示信息上报给所述第二设备。
  10. 根据权利要求8或9所述的方法,其特征在于,
    所述根据第一参考信号资源指示信息确定所述第一空域发送滤波器,包括:
    根据所述第一目标参考信号资源对应的空域接收滤波器确定所述第一空域发送滤波器。
  11. 根据权利要求10所述的方法,其特征在于,所述根据所述第一目标参考信号资源对应的空域接收滤波器确定所述第一空域发送滤波器,包括:
    将所述第一目标参考信号资源对应的空域接收滤波器作为所述第一空域发送滤波器。
  12. 根据权利要求8-11任一项所述的方法,其特征在于,所述第一参考信号资源指示信息包括信道状态信息参考信号资源指示(CSI-RS resource indicator,CRI)信息;
    所述第一参考信号资源指示信息用于指示所述第一目标参考信号资源,包括:
    所述CRI信息用于指示目标CSI-RS资源,所述目标CSI-RS资源是所述第一设备测量来自所述第二设备的多个CSI-RS并根据测量结果选取的。
  13. 根据权利要求8-12任一项所述的方法,其特征在于,所述第一参考信号资源指示信息承载在侧行控制信息SCI、媒体接入层控制单元MAC CE、PC5无线资源控制RRC信令或PSFCH中。
  14. 根据权利要求1所述的方法,其特征在于,
    所述确定用于侧行通信的第一空域发送滤波器,包括:
    根据来自所述第二设备的第二参考信号资源指示信息确定所述第一空域发送滤波器,所述第 二参考信号资源指示信息用于指示第二目标参考信号资源。
  15. 根据权利要求14所述的方法,其特征在于,所述根据来自所述第二设备的第二参考信号资源指示信息确定所述第一空域发送滤波器,包括:
    将所述第二目标参考信号资源对应的空域接收滤波器作为所述第一空域发送滤波器。
  16. 根据权利要求14或15所述的方法,其特征在于,所述第二参考信号资源指示信息包括传输配置指示(transmission configuration indicator,TCI)状态信息;所述TCI状态信息包括的参考信号为所述第二目标参考信号资源对应的参考信号。
  17. 根据权利要求16所述的方法,其特征在于,所述TCI状态信息还包括QCL类型,所述QCL类型为QCL-TypeD。
  18. 根据权利要求14-17任一项所述的方法,其特征在于,所述第二参考信号资源指示信息承载在SCI、MAC CE、PC5-RRC信令或PSFCH中。
  19. 根据权利要求1-18任一项所述的方法,其特征在于,所述第一侧行信道包括第五PSFCH,若所述第一设备在所述第一侧行信道的时间单元上有多个待发送的PSFCH,所述方法还包括:
    若所述第五PSFCH是所述多个待发送的PSFCH中具有最高优先级的PSFCH,使用所述第一空域发送滤波器向所述第二设备发送所述第一侧行信道。
  20. 根据权利要求19所述的方法,其特征在于,若所述第五PSFCH不是所述多个待发送的PSFCH中具有最高优先级的PSFCH,所述方法还包括:
    从所述多个待发送的PSFCH中确定具有最高优先级的第六PSFCH,确定用于发送所述第六PSFCH的第三空域发送滤波器;根据所述第三空域发送滤波器和所述第一空域发送滤波器的关系,确定是否向所述第二设备发送所述第一侧行信道。
  21. 根据权利要求20所述的方法,其特征在于,所述根据所述第三空域发送滤波器和所述第一空域发送滤波器的关系,确定是否向所述第二设备发送所述第一侧行信道,包括:
    若所述第三空域发送滤波器与所述第一空域发送滤波器相同,使用所述第一空域发送滤波器向所述第二设备发送所述第一侧行信道;或者
    若所述第三空域发送滤波器与所述第一空域发送滤波器不同,放弃向所述第二设备发送所述第一侧行信道,或者,使用所述第三空域发送滤波器向所述第二设备发送所述第一侧行信道。
  22. 根据权利要求1-18任一项所述的方法,其特征在于,所述第一侧行信道包括第七PSFCH,若所述第一设备在所述第一侧行信道的时间单元上有多个待发送的PSFCH,所述方法还包括:
    确定所述多个待发送的PSFCH分别对应的空域发送滤波器,所述多个待发送的PSFCH中具有最高优先级的PSFCH对应的空域发送滤波器为第四空域发送滤波器,所述多个待发送的PSFCH中包括N1个使用所述第四空域发送滤波器的PSFCH,且所述N1小于或等于所述第一设备支持的同时发送PSFCH的最大个数M1,使用所述第四空域发送滤波器发送所述N1个PSFCH,其中N1和M1为正整数。
  23. 一种信息传输方法,其特征在于,应用于第二设备,所述方法包括:
    确定用于侧行通信的第一空域接收滤波器;
    使用所述第一空域接收滤波器接收来自第一设备的第一侧行信道。
  24. 根据权利要求23所述的方法,其特征在于,所述确定用于侧行通信的第一空域接收滤波器,包括:
    根据所述第二设备向所述第一设备发送第二侧行信道时使用的空域发送滤波器确定所述第一空域接收滤波器。
  25. 根据权利要求24所述的方法,其特征在于,
    所述第二侧行信道包括第一PSCCH或第一PSSCH,所述第一侧行信道包括第一PSFCH,所述第一PSFCH是与所述第一PSCCH或所述第一PSSCH关联的侧行反馈信道;或者
    所述第二侧行信道包括第二PSFCH,所述第一侧行信道包括第二PSCCH或第二PSSCH。
  26. 根据权利要求24或25所述的方法,其特征在于,所述根据所述第二设备向所述第一设备发送第二侧行信道时使用的空域发送滤波器确定所述第一空域接收滤波器,包括:
    将所述第二设备向所述第一设备发送第二侧行信道时使用的空域发送滤波器作为所述第一空域接收滤波器。
  27. 根据权利要求23所述的方法,其特征在于,
    所述确定用于侧行通信的第一空域接收滤波器,包括:
    根据第二空域接收滤波器确定所述第一空域接收滤波器;
    所述第二空域接收滤波器是所述第二设备接收来自所述第一设备的第三侧行信道时使用的空 域接收滤波器。
  28. 根据权利要求27所述的方法,其特征在于,
    所述第三侧行信道包括第三PSCCH或第三PSSCH,所述第一侧行信道包括第三PSFCH;或者,所述第三侧行信道包括第四PSFCH,所述第一侧行信道包括第四PSCCH或第四PSSCH。
  29. 根据权利要求27或28所述的方法,其特征在于,
    所述根据第二空域接收滤波器确定所述第一空域接收滤波器,包括:
    将所述第二空域接收滤波器作为所述第一空域接收滤波器。
  30. 根据权利要求23所述的方法,其特征在于,所述确定用于侧行通信的第一空域接收滤波器,包括:
    根据来自所述第一设备的第一参考信号资源指示信息确定所述第一空域接收滤波器,所述第一参考信号资源指示信息用于指示第一目标参考信号资源。
  31. 根据权利要求30所述的方法,其特征在于,所述方法还包括:
    向所述第一设备发送多个参考信号,所述多个参考信号包括所述第一目标参考信号资源对应的参考信号。
  32. 根据权利要求30或31所述的方法,其特征在于,所述根据来自所述第一设备的第一参考信号资源指示信息确定所述第一空域接收滤波器,包括:
    根据所述第一目标参考信号资源对应的空域发送滤波器,确定所述第一空域接收滤波器。
  33. 根据权利要求32所述的方法,其特征在于,所述根据所述第一目标参考信号资源对应的空域发送滤波器,确定所述第一空域接收滤波器,包括:
    将所述第一目标参考信号资源对应的空域发送滤波器作为所述第一空域接收滤波器。
  34. 根据权利要求30-33任一项所述的方法,其特征在于,所述第一参考信号资源指示信息包括信道状态信息参考信号资源指示(CSI-RS resource indicator,CRI)信息;
    所述第一参考信号资源指示信息用于指示第一目标参考信号资源,包括:
    所述CRI信息用于指示目标CSI-RS资源,所述目标CSI-RS资源是所述第一设备测量来自所述第二设备的多个CSI-RS并根据测量结果选取的。
  35. 根据权利要求30-34任一项所述的方法,其特征在于,所述第一参考信号资源指示信息承载在侧行控制信息SCI、媒体接入层控制单元MAC CE、PC5无线资源控制RRC信令或PSFCH中。
  36. 根据权利要求23所述的方法,其特征在于,所述确定用于侧行通信的第一空域接收滤波器,包括:
    根据第二参考信号资源指示信息确定所述第一空域接收滤波器,所述第二参考信号资源指示信息用于指示第二目标参考信号资源。
  37. 根据权利要求36所述的方法,其特征在于,所述方法还包括:
    向所述第一设备发送所述第二参考信号资源指示信息,所述第二参考信号资源指示信息用于所述第一设备确定空域接收滤波器。
  38. 根据权利要求36或37所述的方法,其特征在于,所述根据第二参考信号资源指示信息确定所述第一空域接收滤波器,包括:
    根据所述第二目标参考信号资源对应的空域发送滤波器确定所述第一空域接收滤波器。
  39. 根据权利要求38所述的方法,其特征在于,所述根据所述第二目标参考信号资源对应的空域发送滤波器确定所述第一空域接收滤波器,包括:
    将所述第二目标参考信号资源对应的空域发送滤波器作为所述第一空域接收滤波器。
  40. 根据权利要求36-39任一项所述的方法,其特征在于,所述第二参考信号资源指示信息包括传输配置指示(transmission configuration indicator,TCI)状态信息;
    所述TCI状态信息包括的参考信号为所述第二目标参考信号资源对应的参考信号。
  41. 根据权利要求40所述的方法,其特征在于,所述TCI状态信息还包括QCL类型,所述QCL类型为QCL-TypeD。
  42. 根据权利要求36-41任一项所述的方法,其特征在于,所述第二参考信号资源指示信息承载在SCI、MAC CE、PC5-RRC信令或PSFCH中。
  43. 根据权利要求23-42任一项所述的方法,其特征在于,所述第一侧行信道包括第五PSFCH,若所述第二设备在接收所述第一侧行信道的时间单元上有多个待接收的PSFCH,所述方法还包括:
    若所述第五PSFCH是所述多个待接收的PSFCH中具有最高优先级的PSFCH,使用所述第一空域接收滤波器接收所述第一侧行信道;或者
    若所述第五PSFCH不是所述多个待接收的PSFCH中具有最高优先级的PSFCH,从所述多个待接收的PSFCH中确定具有最高优先级的第六PSFCH,确定用于接收所述第六PSFCH的第三空域接收滤波器;使用所述第三空域接收滤波器接收所述第一侧行信道。
  44. 一种第一设备,其特征在于,包括:
    处理模块,用于确定用于侧行通信的第一空域发送滤波器;
    发送模块,用于使用所述第一空域发送滤波器向第二设备发送第一侧行信道。
  45. 根据权利要求44所述的设备,其特征在于,所述处理模块,用于根据所述第一设备的接收模块接收来自所述第二设备的第二侧行信道时使用的空域接收滤波器确定所述第一空域发送滤波器。
  46. 根据权利要求45所述的设备,其特征在于,
    所述第二侧行信道包括第一PSCCH或第一PSSCH,所述第一侧行信道包括第一PSFCH,所述第一PSFCH是与所述第一PSCCH或所述第一PSSCH关联的侧行反馈信道;或者
    所述第二侧行信道包括第二PSFCH,所述第一侧行信道包括第二PSCCH或第二PSSCH。
  47. 根据权利要求45或46所述的设备,其特征在于,所述处理模块,用于:
    将所述接收模块接收来自所述第二设备的第二侧行信道时使用的空域接收滤波器作为所述第一空域发送滤波器。
  48. 根据权利要求44所述的设备,其特征在于,所述处理模块,用于根据第二空域发送滤波器确定所述第一空域发送滤波器;所述第二空域发送滤波器是所述发送模块向所述第二设备发送第三侧行信道时使用的空域发送滤波器。
  49. 根据权利要求48所述的设备,其特征在于,
    所述第三侧行信道包括第三PSCCH或第三PSSCH,所述第一侧行信道包括第三PSFCH;或者,所述第三侧行信道包括第四PSFCH,所述第一侧行信道包括第四PSCCH或第四PSSCH。
  50. 根据权利要求48或49所述的设备,其特征在于,所述处理模块,用于将所述第二空域发送滤波器作为所述第一空域发送滤波器。
  51. 根据权利要求44所述的设备,其特征在于,所述处理模块,用于根据第一参考信号资源指示信息确定所述第一空域发送滤波器,其中,所述第一参考信号资源指示信息用于指示第一目标参考信号资源,所述第一目标参考信号资源是所述第一设备测量来自所述第二设备的多个参考信号并根据测量结果选取的。
  52. 根据权利要求51所述的设备,其特征在于,所述发送模块,用于将所述第一参考信号资源指示信息上报给所述第二设备。
  53. 根据权利要求51或52所述的设备,其特征在于,所述处理模块,用于根据所述第一目标参考信号资源对应的空域接收滤波器确定所述第一空域发送滤波器。
  54. 根据权利要求53所述的设备,其特征在于,所述处理模块,用于将所述第一目标参考信号资源对应的空域接收滤波器作为所述第一空域发送滤波器。
  55. 根据权利要求51-54任一项所述的设备,其特征在于,所述第一参考信号资源指示信息包括信道状态信息参考信号资源指示(CSI-RS resource indicator,CRI)信息;
    所述第一参考信号资源指示信息用于指示所述第一目标参考信号资源,包括:
    所述CRI信息用于指示目标CSI-RS资源,所述目标CSI-RS资源是所述第一设备测量来自所述第二设备的多个CSI-RS并根据测量结果选取的。
  56. 根据权利要求51-55任一项所述的设备,其特征在于,所述第一参考信号资源指示信息承载在侧行控制信息SCI、媒体接入层控制单元MAC CE、PC5无线资源控制RRC信令或PSFCH中。
  57. 根据权利要求44所述的设备,其特征在于,所述处理模块,用于根据来自所述第二设备的第二参考信号资源指示信息确定所述第一空域发送滤波器,所述第二参考信号资源指示信息用于指示第二目标参考信号资源。
  58. 根据权利要求57所述的设备,其特征在于,所述处理模块,用于将所述第二目标参考信号资源对应的空域接收滤波器作为所述第一空域发送滤波器。
  59. 根据权利要求57或58所述的设备,其特征在于,所述第二参考信号资源指示信息包括传输配置指示(transmission configuration indicator,TCI)状态信息;所述TCI状态信息包括的参考信号为所述第二目标参考信号资源对应的参考信号。
  60. 根据权利要求59所述的设备,其特征在于,所述TCI状态信息还包括QCL类型,所述QCL类型为QCL-TypeD。
  61. 根据权利要求57-60任一项所述的设备,其特征在于,所述第二参考信号资源指示信息承载在SCI、MAC CE、PC5-RRC信令或PSFCH中。
  62. 根据权利要求44-61任一项所述的设备,其特征在于,所述第一侧行信道包括第五PSFCH,若所述第一设备在所述第一侧行信道的时间单元上有多个待发送的PSFCH,且所述第五PSFCH是所述多个待发送的PSFCH中具有最高优先级的PSFCH,所述发送模块用于使用所述第一空域发送滤波器向所述第二设备发送所述第一侧行信道。
  63. 根据权利要求62所述的设备,其特征在于,若所述第五PSFCH不是所述多个待发送的PSFCH中具有最高优先级的PSFCH,所述处理模块,用于:
    从所述多个待发送的PSFCH中确定具有最高优先级的第六PSFCH,确定用于发送所述第六PSFCH的第三空域发送滤波器;根据所述第三空域发送滤波器和所述第一空域发送滤波器的关系,确定是否向所述第二设备发送所述第一侧行信道。
  64. 根据权利要求63所述的设备,其特征在于,
    若所述第三空域发送滤波器与所述第一空域发送滤波器相同,所述发送模块使用所述第一空域发送滤波器向所述第二设备发送所述第一侧行信道;或者
    若所述第三空域发送滤波器与所述第一空域发送滤波器不同,所述发送模块放弃向所述第二设备发送所述第一侧行信道,或者,使用所述第三空域发送滤波器向所述第二设备发送所述第一侧行信道。
  65. 根据权利要求44-61任一项所述的设备,其特征在于,所述第一侧行信道包括第七PSFCH,若所述第一设备在所述第一侧行信道的时间单元上有多个待发送的PSFCH,所述处理模块确定所述多个待发送的PSFCH分别对应的空域发送滤波器;所述多个待发送的PSFCH中具有最高优先级的PSFCH对应的空域发送滤波器为第四空域发送滤波器,所述多个待发送的PSFCH中包括N1个使用所述第四空域发送滤波器的PSFCH,且所述N1小于或等于所述第一设备支持的同时发送PSFCH的最大个数M1,所述发送模块使用所述第四空域发送滤波器发送所述N1个PSFCH,其中N1和M1为正整数。
  66. 一种第二设备,其特征在于,包括:
    处理模块,用于确定用于侧行通信的第一空域接收滤波器;
    接收模块,用于使用所述第一空域接收滤波器接收来自第一设备的第一侧行信道。
  67. 根据权利要求66所述的设备,其特征在于,所述处理模块,用于根据所述第二设备的发送模块向所述第一设备发送第二侧行信道时使用的空域发送滤波器确定所述第一空域接收滤波器。
  68. 根据权利要求67所述的设备,其特征在于,
    所述第二侧行信道包括第一PSCCH或第一PSSCH,所述第一侧行信道包括第一PSFCH,所述第一PSFCH是与所述第一PSCCH或所述第一PSSCH关联的侧行反馈信道;或者
    所述第二侧行信道包括第二PSFCH,所述第一侧行信道包括第二PSCCH或第二PSSCH。
  69. 根据权利要求67或68所述的设备,其特征在于,所述处理模块,用于将所述发送模块向所述第一设备发送第二侧行信道时使用的空域发送滤波器作为所述第一空域接收滤波器。
  70. 根据权利要求66所述的设备,其特征在于,所述处理模块,用于根据第二空域接收滤波器确定所述第一空域接收滤波器;所述第二空域接收滤波器是所述接收模块接收来自所述第一设备的第三侧行信道时使用的空域接收滤波器。
  71. 根据权利要求70所述的设备,其特征在于,
    所述第三侧行信道包括第三PSCCH或第三PSSCH,所述第一侧行信道包括第三PSFCH;或者,所述第三侧行信道包括第四PSFCH,所述第一侧行信道包括第四PSCCH或第四PSSCH。
  72. 根据权利要求70或71所述的设备,其特征在于,所述处理模块,用于将所述第二空域接收滤波器作为所述第一空域接收滤波器。
  73. 根据权利要求66所述的设备,其特征在于,所述处理模块,用于根据来自所述第一设备的第一参考信号资源指示信息确定所述第一空域接收滤波器,所述第一参考信号资源指示信息用于指示第一目标参考信号资源。
  74. 根据权利要求73所述的设备,其特征在于,所述第二设备还包括:发送模块;
    所述发送模块,用于向所述第一设备发送多个参考信号,所述多个参考信号包括所述第一目标参考信号资源对应的参考信号。
  75. 根据权利要求73或74所述的设备,其特征在于,所述处理模块,用于根据所述第一目标参考信号资源对应的空域发送滤波器,确定所述第一空域接收滤波器。
  76. 根据权利要求75所述的设备,其特征在于,所述处理模块,用于将所述第一目标参考信 号资源对应的空域发送滤波器作为所述第一空域接收滤波器。
  77. 根据权利要求73-76任一项所述的设备,其特征在于,所述第一参考信号资源指示信息包括信道状态信息参考信号资源指示(CSI-RS resource indicator,CRI)信息;
    所述第一参考信号资源指示信息用于指示第一目标参考信号资源,包括:
    所述CRI信息用于指示目标CSI-RS资源,所述目标CSI-RS资源是所述第一设备测量来自所述第二设备的多个CSI-RS并根据测量结果选取的。
  78. 根据权利要求73-77任一项所述的设备,其特征在于,所述第一参考信号资源指示信息承载在侧行控制信息SCI、媒体接入层控制单元MAC CE、PC5无线资源控制RRC信令或PSFCH中。
  79. 根据权利要求66所述的设备,其特征在于,所述处理模块,用于根据第二参考信号资源指示信息确定所述第一空域接收滤波器,所述第二参考信号资源指示信息用于指示第二目标参考信号资源。
  80. 根据权利要求79所述的设备,其特征在于,所述第二设备还包括:发送模块;
    所述发送模块,用于向所述第一设备发送所述第二参考信号资源指示信息,所述第二参考信号资源指示信息用于所述第一设备确定空域接收滤波器。
  81. 根据权利要求79或80所述的设备,其特征在于,所述处理模块,用于根据所述第二目标参考信号资源对应的空域发送滤波器确定所述第一空域接收滤波器。
  82. 根据权利要求81所述的设备,其特征在于,所述处理模块,用于将所述第二目标参考信号资源对应的空域发送滤波器作为所述第一空域接收滤波器。
  83. 根据权利要求79-82任一项所述的设备,其特征在于,所述第二参考信号资源指示信息包括传输配置指示(transmission configuration indicator,TCI)状态信息;
    所述TCI状态信息包括的参考信号为所述第二目标参考信号资源对应的参考信号。
  84. 根据权利要求83所述的设备,其特征在于,所述TCI状态信息还包括QCL类型,所述QCL类型为QCL-TypeD。
  85. 根据权利要求79-84任一项所述的设备,其特征在于,所述第二参考信号资源指示信息承载在SCI、MAC CE、PC5-RRC信令或PSFCH中。
  86. 根据权利要求任一项所述的设备,其特征在于,所述第一侧行信道包括第五PSFCH,若所述第二设备在接收所述第一侧行信道的时间单元上有多个待接收的PSFCH;
    若所述第五PSFCH是所述多个待接收的PSFCH中具有最高优先级的PSFCH,所述接收模块使用所述第一空域接收滤波器接收所述第一侧行信道;或者
    若所述第五PSFCH不是所述多个待接收的PSFCH中具有最高优先级的PSFCH,所述处理模块从所述多个待接收的PSFCH中确定具有最高优先级的第六PSFCH,确定用于接收所述第六PSFCH的第三空域接收滤波器;所述接收模块使用所述第三空域接收滤波器接收所述第一侧行信道。
  87. 一种电子设备,其特征在于,包括:存储器和处理器,所述存储器用于存储计算机程序,所述处理器用于从所述存储器中调用并运行所述计算机程序,使得所述处理器运行所述计算机程序执行如权利要求1-22中任一项所述的方法。
  88. 一种电子设备,其特征在于,包括:存储器和处理器,所述存储器用于存储计算机程序,所述处理器用于从所述存储器中调用并运行所述计算机程序,使得所述处理器运行所述计算机程序执行如权利要求23-43中任一项所述的方法。
  89. 一种计算机存储介质,其特征在于,用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1-22中任一项所述的方法。
  90. 一种计算机存储介质,其特征在于,用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求23-43中任一项所述的方法。
  91. 一种计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得所述计算机执行如权利要求1-22中任一项所述的方法。
  92. 一种计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得所述计算机执行如权利要求23-43中任一项所述的方法。
PCT/CN2021/116546 2021-09-03 2021-09-03 信息传输方法、设备及存储介质 WO2023029008A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/116546 WO2023029008A1 (zh) 2021-09-03 2021-09-03 信息传输方法、设备及存储介质
CN202180098595.7A CN117397173A (zh) 2021-09-03 2021-09-03 信息传输方法、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/116546 WO2023029008A1 (zh) 2021-09-03 2021-09-03 信息传输方法、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023029008A1 true WO2023029008A1 (zh) 2023-03-09

Family

ID=85411868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/116546 WO2023029008A1 (zh) 2021-09-03 2021-09-03 信息传输方法、设备及存储介质

Country Status (2)

Country Link
CN (1) CN117397173A (zh)
WO (1) WO2023029008A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024093108A1 (en) * 2023-03-28 2024-05-10 Lenovo (Beijing) Limited Terminal device and method for sidelink communications
WO2024208042A1 (zh) * 2023-04-04 2024-10-10 华为技术有限公司 侧行信息传输方法、装置、终端及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021101196A1 (ko) * 2019-11-22 2021-05-27 삼성전자 주식회사 무선 통신 시스템에서 사이드링크의 빔 운용을 위한 장치 및 방법
CN113169830A (zh) * 2019-04-18 2021-07-23 三星电子株式会社 用于配置nr v2x资源分配中的资源感测的方法和设备
CN113207163A (zh) * 2020-01-31 2021-08-03 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113169830A (zh) * 2019-04-18 2021-07-23 三星电子株式会社 用于配置nr v2x资源分配中的资源感测的方法和设备
WO2021101196A1 (ko) * 2019-11-22 2021-05-27 삼성전자 주식회사 무선 통신 시스템에서 사이드링크의 빔 운용을 위한 장치 및 방법
CN113207163A (zh) * 2020-01-31 2021-08-03 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024093108A1 (en) * 2023-03-28 2024-05-10 Lenovo (Beijing) Limited Terminal device and method for sidelink communications
WO2024208042A1 (zh) * 2023-04-04 2024-10-10 华为技术有限公司 侧行信息传输方法、装置、终端及存储介质

Also Published As

Publication number Publication date
CN117397173A (zh) 2024-01-12

Similar Documents

Publication Publication Date Title
CN112335196B (zh) 基于传输配置状态的上行链路传输自适应
WO2020143692A1 (zh) 通信方法和通信装置
US10313890B2 (en) Method and device for receiving service through different wireless communication systems
WO2021190271A1 (zh) 信号传输方法及装置
WO2023050472A1 (zh) 用于寻呼的方法和装置
WO2023011195A1 (zh) 一种通信方法及通信装置
US20240251438A1 (en) Channel access method, and device and storage medium
WO2023023946A1 (zh) 无线通信的方法和终端设备
WO2023029008A1 (zh) 信息传输方法、设备及存储介质
WO2021062689A1 (zh) 一种上行传输的方法及装置
US20240244449A1 (en) Wireless communication method and device
US11503645B2 (en) Method and apparatus for performing communication in wireless communication system
TWI741070B (zh) 用於與新無線電中的被中斷訊務流程有關的互補傳輸的技術和裝置
WO2023102925A1 (zh) 功率分配方法、装置、设备及存储介质
WO2019178790A1 (zh) 用于信号传输的方法和设备
WO2023019464A1 (zh) 无线通信方法、第一终端设备和第二终端设备
US20230276411A1 (en) Method and device for transmitting or receiving data by using dual connectivity of iab node in wireless communication system
WO2022141582A1 (zh) 无线通信的方法和装置
WO2023019860A1 (zh) 无线通信的方法和终端设备
WO2024093646A1 (zh) 一种资源配置的方法和装置
WO2023065362A1 (zh) 功率控制方法、设备及存储介质
WO2023115296A1 (zh) 无线通信方法、第一终端设备和第二终端设备
WO2023019465A1 (zh) 无线通信的方法和终端设备
WO2024192640A1 (zh) 用于侧行通信的方法及终端设备
WO2023024982A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21955541

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180098595.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21955541

Country of ref document: EP

Kind code of ref document: A1