WO2023027499A1 - 양극활물질, 이의 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지 - Google Patents
양극활물질, 이의 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지 Download PDFInfo
- Publication number
- WO2023027499A1 WO2023027499A1 PCT/KR2022/012638 KR2022012638W WO2023027499A1 WO 2023027499 A1 WO2023027499 A1 WO 2023027499A1 KR 2022012638 W KR2022012638 W KR 2022012638W WO 2023027499 A1 WO2023027499 A1 WO 2023027499A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- active material
- transition metal
- metal oxide
- lithium transition
- positive electrode
- Prior art date
Links
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 48
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 45
- 239000007774 positive electrode material Substances 0.000 title claims abstract description 26
- 238000000034 method Methods 0.000 title abstract description 12
- 239000011734 sodium Substances 0.000 claims abstract description 84
- 229910021437 lithium-transition metal oxide Inorganic materials 0.000 claims abstract description 69
- 229910052708 sodium Inorganic materials 0.000 claims abstract description 17
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 17
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims abstract description 6
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000011593 sulfur Substances 0.000 claims abstract description 6
- 239000006182 cathode active material Substances 0.000 claims description 56
- 239000002245 particle Substances 0.000 claims description 56
- 239000013078 crystal Substances 0.000 claims description 29
- 238000002156 mixing Methods 0.000 claims description 19
- 239000012702 metal oxide precursor Substances 0.000 claims description 15
- 238000004519 manufacturing process Methods 0.000 claims description 14
- 239000002243 precursor Substances 0.000 claims description 13
- 239000003792 electrolyte Substances 0.000 claims description 12
- 239000011163 secondary particle Substances 0.000 claims description 10
- 229910052782 aluminium Inorganic materials 0.000 claims description 9
- 238000010304 firing Methods 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 9
- 229910052719 titanium Inorganic materials 0.000 claims description 9
- 229910052796 boron Inorganic materials 0.000 claims description 8
- 229910052749 magnesium Inorganic materials 0.000 claims description 8
- 229910052712 strontium Inorganic materials 0.000 claims description 8
- 229910052727 yttrium Inorganic materials 0.000 claims description 8
- 229910052726 zirconium Inorganic materials 0.000 claims description 8
- 239000007784 solid electrolyte Substances 0.000 claims description 7
- 229910000314 transition metal oxide Inorganic materials 0.000 claims description 7
- 238000002441 X-ray diffraction Methods 0.000 claims description 5
- 239000011247 coating layer Substances 0.000 claims description 4
- 238000001228 spectrum Methods 0.000 claims description 4
- 239000011244 liquid electrolyte Substances 0.000 claims description 3
- 238000005245 sintering Methods 0.000 claims description 3
- 230000002776 aggregation Effects 0.000 claims description 2
- 238000004220 aggregation Methods 0.000 claims description 2
- 239000007790 solid phase Substances 0.000 claims 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 70
- 239000011572 manganese Substances 0.000 description 63
- 230000000052 comparative effect Effects 0.000 description 62
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 42
- 150000001875 compounds Chemical class 0.000 description 24
- 239000000203 mixture Substances 0.000 description 19
- 238000001354 calcination Methods 0.000 description 17
- 239000011812 mixed powder Substances 0.000 description 17
- 239000011230 binding agent Substances 0.000 description 13
- 239000002904 solvent Substances 0.000 description 12
- 239000004020 conductor Substances 0.000 description 11
- 239000010410 layer Substances 0.000 description 10
- 229910052760 oxygen Inorganic materials 0.000 description 10
- -1 polytetrafluoroethylene Polymers 0.000 description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 239000001301 oxygen Substances 0.000 description 9
- 238000011156 evaluation Methods 0.000 description 8
- 239000002033 PVDF binder Substances 0.000 description 7
- 239000011149 active material Substances 0.000 description 7
- 239000010408 film Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 239000010936 titanium Substances 0.000 description 7
- 239000004698 Polyethylene Substances 0.000 description 6
- 239000004743 Polypropylene Substances 0.000 description 6
- 229910001416 lithium ion Inorganic materials 0.000 description 6
- 229920000573 polyethylene Polymers 0.000 description 6
- 229920001155 polypropylene Polymers 0.000 description 6
- 230000002441 reversible effect Effects 0.000 description 6
- 229910052723 transition metal Inorganic materials 0.000 description 6
- 150000003624 transition metals Chemical group 0.000 description 6
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 238000007599 discharging Methods 0.000 description 5
- 229910003002 lithium salt Inorganic materials 0.000 description 5
- 159000000002 lithium salts Chemical class 0.000 description 5
- 239000007773 negative electrode material Substances 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- 239000005486 organic electrolyte Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 3
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical compound FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 3
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 3
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 230000004931 aggregating effect Effects 0.000 description 3
- 239000006183 anode active material Substances 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000002041 carbon nanotube Substances 0.000 description 3
- 229910021393 carbon nanotube Inorganic materials 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 3
- 238000009616 inductively coupled plasma Methods 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 229920002239 polyacrylonitrile Polymers 0.000 description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 description 3
- 239000011164 primary particle Substances 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- 229910002982 Li2MnO3 phase Inorganic materials 0.000 description 2
- 229910015118 LiMO Inorganic materials 0.000 description 2
- 229910013716 LiNi Inorganic materials 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- KLARSDUHONHPRF-UHFFFAOYSA-N [Li].[Mn] Chemical compound [Li].[Mn] KLARSDUHONHPRF-UHFFFAOYSA-N 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 229910003481 amorphous carbon Inorganic materials 0.000 description 2
- 229910021383 artificial graphite Inorganic materials 0.000 description 2
- 229910052795 boron group element Inorganic materials 0.000 description 2
- 229910052800 carbon group element Inorganic materials 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 239000010406 cathode material Substances 0.000 description 2
- 150000005678 chain carbonates Chemical class 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 150000005676 cyclic carbonates Chemical class 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- FKRCODPIKNYEAC-UHFFFAOYSA-N ethyl propionate Chemical compound CCOC(=O)CC FKRCODPIKNYEAC-UHFFFAOYSA-N 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 229910052745 lead Inorganic materials 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 229910021382 natural graphite Inorganic materials 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 239000005518 polymer electrolyte Substances 0.000 description 2
- 239000002952 polymeric resin Substances 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000000844 transformation Methods 0.000 description 2
- 229920005609 vinylidenefluoride/hexafluoropropylene copolymer Polymers 0.000 description 2
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 1
- LZDKZFUFMNSQCJ-UHFFFAOYSA-N 1,2-diethoxyethane Chemical compound CCOCCOCC LZDKZFUFMNSQCJ-UHFFFAOYSA-N 0.000 description 1
- OIXUJRCCNNHWFI-UHFFFAOYSA-N 1,2-dioxane Chemical compound C1CCOOC1 OIXUJRCCNNHWFI-UHFFFAOYSA-N 0.000 description 1
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 1
- 229910002483 Cu Ka Inorganic materials 0.000 description 1
- 229910010238 LiAlCl 4 Inorganic materials 0.000 description 1
- 229910010093 LiAlO Inorganic materials 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013372 LiC 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910012513 LiSbF 6 Inorganic materials 0.000 description 1
- RJUFJBKOKNCXHH-UHFFFAOYSA-N Methyl propionate Chemical compound CCC(=O)OC RJUFJBKOKNCXHH-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 229910017796 Sb Si—Y Inorganic materials 0.000 description 1
- 229910020997 Sn-Y Inorganic materials 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 229910008859 Sn—Y Inorganic materials 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- RLTFLELMPUMVEH-UHFFFAOYSA-N [Li+].[O--].[O--].[O--].[V+5] Chemical compound [Li+].[O--].[O--].[O--].[V+5] RLTFLELMPUMVEH-UHFFFAOYSA-N 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- FDLZQPXZHIFURF-UHFFFAOYSA-N [O-2].[Ti+4].[Li+] Chemical compound [O-2].[Ti+4].[Li+] FDLZQPXZHIFURF-UHFFFAOYSA-N 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000003868 ammonium compounds Chemical class 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 229910021475 bohrium Inorganic materials 0.000 description 1
- 229910052810 boron oxide Inorganic materials 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 239000011329 calcined coke Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- CREMABGTGYGIQB-UHFFFAOYSA-N carbon carbon Chemical compound C.C CREMABGTGYGIQB-UHFFFAOYSA-N 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 1
- QLVWOKQMDLQXNN-UHFFFAOYSA-N dibutyl carbonate Chemical compound CCCCOC(=O)OCCCC QLVWOKQMDLQXNN-UHFFFAOYSA-N 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 1
- VUPKGFBOKBGHFZ-UHFFFAOYSA-N dipropyl carbonate Chemical compound CCCOC(=O)OCCC VUPKGFBOKBGHFZ-UHFFFAOYSA-N 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 229940093499 ethyl acetate Drugs 0.000 description 1
- CYEDOLFRAIXARV-UHFFFAOYSA-N ethyl propyl carbonate Chemical compound CCCOC(=O)OCC CYEDOLFRAIXARV-UHFFFAOYSA-N 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 229910021385 hard carbon Inorganic materials 0.000 description 1
- 229910021473 hassium Inorganic materials 0.000 description 1
- 239000012073 inactive phase Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 229910003480 inorganic solid Inorganic materials 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 1
- 229910001947 lithium oxide Inorganic materials 0.000 description 1
- 229910000686 lithium vanadium oxide Inorganic materials 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000006051 mesophase pitch carbide Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- RCIJMMSZBQEWKW-UHFFFAOYSA-N methyl propan-2-yl carbonate Chemical compound COC(=O)OC(C)C RCIJMMSZBQEWKW-UHFFFAOYSA-N 0.000 description 1
- 229940017219 methyl propionate Drugs 0.000 description 1
- KKQAVHGECIBFRQ-UHFFFAOYSA-N methyl propyl carbonate Chemical compound CCCOC(=O)OC KKQAVHGECIBFRQ-UHFFFAOYSA-N 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- YKYONYBAUNKHLG-UHFFFAOYSA-N n-Propyl acetate Natural products CCCOC(C)=O YKYONYBAUNKHLG-UHFFFAOYSA-N 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 229940090181 propyl acetate Drugs 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229910021481 rutherfordium Inorganic materials 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 229910021477 seaborgium Inorganic materials 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- RPACBEVZENYWOL-XFULWGLBSA-M sodium;(2r)-2-[6-(4-chlorophenoxy)hexyl]oxirane-2-carboxylate Chemical compound [Na+].C=1C=C(Cl)C=CC=1OCCCCCC[C@]1(C(=O)[O-])CO1 RPACBEVZENYWOL-XFULWGLBSA-M 0.000 description 1
- 229910021384 soft carbon Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 229910052713 technetium Inorganic materials 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- BHZCMUVGYXEBMY-UHFFFAOYSA-N trilithium;azanide Chemical compound [Li+].[Li+].[Li+].[NH2-] BHZCMUVGYXEBMY-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Nickelates
- C01G53/42—Nickelates containing alkali metals, e.g. LiNiO2
- C01G53/44—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
- C01G53/50—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
- C01P2002/52—Solid solutions containing elements as dopants
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/60—Compounds characterised by their crystallite size
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/76—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/50—Agglomerated particles
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- It relates to a lithium secondary battery having a positive electrode active material of a novel composition, a manufacturing method thereof, and a positive electrode including the same.
- Ni-based cathode materials such as LiNi x Co y Mn z O 2 (NCM) and LiNi x Co y Al z O 2 (NCA), which have the same structure as LCO, are being applied as cathode active materials for medium and large-sized secondary batteries.
- NCM LiNi x Co y Mn z O 2
- NCA LiNi x Co y Al z O 2
- the Ni-based cathode active material has a maximum reversible capacity of about 240 mAh/g, so there is a limit to an increase in reversible capacity according to an increase in Ni content, and a high residual lithium content may cause a problem of deterioration in stability.
- Residual lithium in the cathode active material is electrochemically decomposed during continuous charge/discharge processes to generate gas, and a resistance layer is formed on the surface of the cathode active material through a reaction with the electrolyte, thereby reducing lifespan characteristics. That is, it is essential to develop a next-generation cathode active material capable of implementing a higher reversible capacity than Ni-based cathode active material and implementing a low residual lithium content in order to increase the energy density of a lithium secondary battery.
- Li-based cathode active material since lithium exists only in the lithium layer in the layered structure and also in the transition metal layer, a higher reversible capacity than the Ni-based cathode active material can be realized.
- due to the decrease in the Ni content in the cathode active material it has a lower residual lithium content compared to the Ni-based cathode active material, resulting in improved stability of the lithium secondary battery.
- LMR cathode active materials in the form of secondary particles have a porous morphology compared to Ni-based cathode active materials in the form of secondary particles, so it is difficult to realize high electrode density, and there are still limitations in increasing the energy density per volume of lithium secondary batteries. do.
- the LMR cathode active material has a low electrical conductivity compared to the Ni-based cathode active material and has low output characteristics, and thus has a limitation in that it is disadvantageous to high-speed charging and discharging.
- LMR lithium manganese-rich
- the molar ratio of the Mn element is 0.5 or more, and the sum of the molar ratios of sodium (Na) and sulfur (S) elements (Na + S) is 0 ⁇ Na + S ⁇ 0.025
- a positive electrode including a lithium transition metal oxide An active material is provided.
- preparing a lithium transition metal oxide precursor compound having a molar ratio of Mn element of 0.5 or more obtaining a lithium transition metal oxide precursor by mixing the transition metal oxide precursor with a Li precursor compound, a Na precursor compound, and an S precursor compound; and obtaining lithium transition metal oxide particles by sintering the lithium transition metal oxide precursor.
- a positive electrode including the positive electrode active material; cathode; And a lithium secondary battery including an electrolyte is provided.
- the positive electrode active material according to one aspect of the present invention has a single particle shape composed of single particles having a size of several microns, rather than a secondary particle shape in which small primary particles having a size of hundreds of nanometers are aggregated, and the electrode density of the LMR positive electrode active material is improved through shape change. possible. Furthermore, the output characteristics are improved by substituting the Na element in the lithium position and the S element in the oxygen position in the LMR cathode active material.
- FIG. 1a is a scanning electron microscope (SEM) image of the cathode active materials of Examples 1 to 6, and FIG. 1b is a scanning electron microscope (SEM) image of the cathode active materials of Comparative Examples 1 to 11.
- Example 2 is an XRD graph of lithium transition metal oxide particles of Example 1 and Comparative Examples 1, 3 and 7.
- FIG. 4 is a schematic diagram of a lithium battery according to an exemplary embodiment.
- lithium battery 2 negative electrode
- lithium secondary battery including a positive electrode active material according to exemplary embodiments, a manufacturing method thereof, and a positive electrode including the same will be described in more detail.
- the cathode active material may include a lithium transition metal oxide in which the molar ratio of Mn is 0.5 or more and the sum of molar ratios of sodium (Na) and sulfur (S) is 0 ⁇ Na+S ⁇ 0.025.
- An LMR cathode active material is generally composed of an R-3m crystal structure LiMO 2 compound and a monoclinic crystal structure Li 2 MnO 3 compound.
- the Li 2 MnO 3 structure is conducive to high capacity through activation in the first cycle.
- the positive electrode active material according to one aspect of the present invention has a single particle shape rather than a secondary particle shape formed by aggregation of conventional LMR positive electrode active material primary particles, so that there is no particle breakage due to rolling during the electrode formation process, and a high-density active material layer It is possible to form, it is possible to achieve a high electrode density. Furthermore, by substituting Na element in the lithium position and S element in the oxygen position in the LMR cathode active material, unstable Mn ions inside the particles are stabilized, thereby increasing capacity per unit volume and improving output characteristics. Specifically, when the sum of the molar ratios of sodium (Na) and sulfur (S) elements is 0 ⁇ Na+S ⁇ 0.025, the stability of the crystal is improved during the charging and discharging process of the secondary battery, thereby improving cycle characteristics.
- the X-ray diffraction spectrum of the lithium transition metal oxide may satisfy Equation 1 below:
- the crystal grain 110 means the crystal grain size on the crystal plane 110
- the crystal grain 020 means the crystal grain size on the crystal plane 020.
- the grain size was calculated through quantitative analysis using the Scherrer equation. Specifically, the analysis of the grain size was performed using full width at half maximum (FWHM).
- FWHM K ⁇ / Lcos ⁇
- K is a shape factor constant
- ⁇ is the wavelength used for X-ray diffraction analysis
- ⁇ is the peak position expressed in radians. It is a number.
- the lithium transition metal oxide according to one embodiment of the present invention satisfies the above-described Equation 1, and the value of the crystal grains (020) / grains (110) of the above Equation 1 has a low value of less than 10 in polycrystalline or amorphous particles, , It is thought to be due to the high grain size of the crystal face 020 peak as the Li 2 MnO 3 crystal phase grows with structural stability while Na and S are doped into the structure in a specific content range, such as the lithium transition metal oxide of the present invention.
- the lithium transition metal oxide of the present invention including a relatively stable Li 2 MnO 3 phase is electrochemically stable during charging and discharging, resulting in improved lifespan characteristics.
- the molar ratio of Co element in the lithium transition metal oxide may be 0.01 or less.
- the lithium transition metal oxide may have a molar ratio of Co element of 0.009 or less, 0.008 or less, 0.007 or less, 0.006 or less, 0.005 or less, 0.004 or less, 0.003 or less, 0.002 or less, 0.001 or less, or 0.
- the molar ratio of element Co when the molar ratio of element Co is 0, it means that the lithium transition metal oxide does not contain element Co.
- the molar ratio of the Mn element in the lithium transition metal oxide may be greater than 0.5.
- the lithium transition metal oxide may have a molar ratio of Mn of 0.55 or more, 0.6 or more, or 0.65 or more.
- the molar ratio of element Mn in the lithium transition metal oxide satisfies the above range, it can be used for fabricating a structurally stable and high-capacity secondary battery.
- the lithium transition metal oxide may further include a Ni element.
- the lithium transition metal oxide may include Ni at a molar ratio of less than 0.5, less than 0.45, less than 0.4, or less than 0.35.
- the lithium transition metal oxide may further include a Li element, and the molar ratio of the Li element may be greater than 1.
- the lithium transition metal oxide may include Li at a molar ratio of 1.1 or more, 1.2 or more, 1.3 or more, or 1.4 or more.
- the lithium transition metal oxide may include a Li element in a molar ratio of greater than 1 and less than 1.5, greater than 1.1 and less than 1.5, greater than 1.2 and less than 1.5, greater than 1.3 and less than 1.5, or greater than 1.4 and less than 1.5.
- the lithium transition metal oxide may be represented by Formula 1 below:
- M is one or more elements selected from B, Zr, Sr, Y, Ba, W, Ti, Mg, Al and Co;
- M may be B, Zr, Sr, Y, Ba, W, Ti, Mg, Al or Co.
- x may be 1.35 ⁇ x ⁇ 1.5 or 1.35 ⁇ x ⁇ 1.49.
- y may be 0.001 ⁇ y ⁇ 0.015.
- the a may be 0.55 ⁇ a ⁇ 1, 0.6 ⁇ a ⁇ 1, or 0.65 ⁇ a ⁇ 1.
- the ⁇ may be 0 ⁇ 0.49, 0 ⁇ 0.48, or 0 ⁇ 0.47.
- Chemical Formula 1 may be represented by any one of the following Chemical Formulas 1-1 to 1-10:
- the lithium transition metal oxide may be represented by Formula 2 below:
- M is one or more elements selected from B, Zr, Sr, Y, Ba, W, Ti, Mg, Al and Co;
- the lithium transition metal oxide may be a single particle.
- a single particle is a concept different from secondary particles formed by aggregating a plurality of particles or particles formed by aggregating a plurality of particles and coating the periphery of the agglomerate. Since the lithium transition metal oxide has a single particle shape, particle breakage can be prevented even at a high electrode density. Therefore, it is possible to implement a high energy density of the cathode active material including the lithium transition metal oxide. In addition, compared to secondary particles in which a plurality of single particles are agglomerated, breakage during rolling is suppressed, so that high energy density can be implemented, and lifetime deterioration due to breakage of particles can be prevented.
- the lithium transition metal oxide may include an R-3m crystal and a monoclinic crystal.
- the lithium transition metal oxide may have a layered crystal structure.
- the cathode active material may include a single-particle lithium transition metal oxide particle and a secondary particle formed by aggregating a plurality of the single-particle lithium transition metal oxide particles.
- the surface of the lithium transition metal oxide particles or the interface of the plurality of lithium transition metal oxide particles among the secondary particles may include a Na element, an S element, or a coating layer containing Na and S elements.
- the interface where the plurality of primary particles come into contact may include a Na element, an S element, or a coating layer containing Na and S elements.
- the coating layer may be crystalline, quasi-crystalline, or amorphous.
- the average particle diameter (D 50 ) of the lithium transition metal oxide may be 0.1 ⁇ m to 20 ⁇ m.
- the average particle diameter (D 50 ) is 0.1 ⁇ m to 20 ⁇ m, 1.5 ⁇ m to 15 ⁇ m, 2 ⁇ m to 15 ⁇ m, 2.5 ⁇ m to 15 ⁇ m, 2.5 ⁇ m to 10 ⁇ m, 3 ⁇ m to 10 ⁇ m, 3.5 ⁇ m to 10 ⁇ m, or 4 ⁇ m to 10 ⁇ m.
- the average particle diameter of the lithium transition metal oxide falls within the above range, a desired energy density per volume may be realized.
- the average particle diameter of the lithium transition metal oxide exceeds 20 ⁇ m, a rapid decrease in charge/discharge capacity occurs, and when it is less than 0.1 ⁇ m, it is difficult to obtain a desired energy density per volume.
- a method for producing a cathode active material includes preparing a lithium transition metal oxide precursor compound having a molar ratio of Mn element of 0.5 or more;
- obtaining a lithium transition metal oxide precursor by mixing the transition metal oxide precursor compound with a Li precursor compound, a Na precursor compound, and an S precursor compound;
- lithium transition metal oxide precursor and sintering the lithium transition metal oxide precursor to obtain lithium transition metal oxide particles.
- the lithium transition metal oxide particle may be a compound represented by any one selected from Formulas 1, 1-1 to 1-10, and 2 described above.
- the mixing step includes mechanically mixing the specific element-containing compounds.
- the mechanical mixing is carried out in a dry manner.
- the mechanical mixing is to form a uniform mixture by applying mechanical force to pulverize and mix the materials to be mixed.
- Mechanical mixing is, for example, a mixing device such as a ball mill, planetary mill, stirred ball mill, vibrating mill, etc. using chemically inert beads. can be performed using At this time, in order to maximize the mixing effect, a small amount of an alcohol such as ethanol or a higher fatty acid such as stearic acid may be selectively added.
- the mechanical mixing is performed in an oxidizing atmosphere, which prevents reduction of the transition metal in the transition metal source (eg, Ni compound) to realize structural stability of the active material.
- the transition metal source eg, Ni compound
- the Li (lithium) precursor compound may include a hydrate of lithium hydroxide, lithium hydroxide, lithium oxide, lithium nitride, lithium carbonate, or a combination thereof, but is not limited thereto.
- the lithium precursor compound may be LiOH ⁇ H 2 O or Li 2 CO 3 .
- the Na precursor compound may include a hydroxide, oxide, nitride, carbonate, or a combination thereof of Na, but is not limited thereto.
- it may be NaOH, Na 2 CO 3 or a combination thereof.
- the S precursor compound may include ammonium sulfate, a hydroxide, an oxide, a nitride, a carbonate, an ammonium compound of S, or a combination thereof, but is not limited thereto.
- it may be (NH 4 ) 2 SO 4 .
- the lithium transition metal oxide precursor compound may include a hydroxide, oxide, nitride, carbonate, or a combination thereof containing Ni and Mn elements, but is not limited thereto.
- the lithium transition metal oxide precursor compound may be provided from a compound containing Ni, Mn, and M elements obtained by pre-mixing the Ni element, Mn element, and M element.
- the lithium transition metal oxide precursor compound is provided from a compound containing Ni and Mn elements obtained by premixing the Ni element and Mn element, and the M element may be provided from a separate M element-containing compound. there is.
- the firing step may be performed by heat treatment at 900 ° C to 1100 ° C for 8 to 12 hours.
- the firing temperature is 910 ° C to 1090 ° C, 920 ° C to 1080 ° C, 930 ° C to 1070 ° C, 940 ° C to 1060 ° C, 950 ° C to 1050 ° C, 960 ° C to 1040 ° C or 970 ° C to 1030 ° C It may be performed, but is not limited thereto, and includes all ranges configured by selecting two arbitrary points within the range.
- the firing time may be performed for 9 hours to 11 hours, or 10 hours.
- a separate heat treatment step may be further included after the firing step.
- the heat treatment step may be performed in the same chamber as the firing step or in different chambers.
- the heat treatment step may be performed at a temperature lower than the firing temperature, for example, 700 °C to 800 °C.
- the heat treatment temperature is 710 °C to 800 °C, 720 °C to 800 °C, 730 °C to 800 °C, 740 °C to 800 °C, 750 °C to 800 °C, 700 °C to 780 °C, 700 °C to 760 °C, 700 °C to 750 °C ° C, or 700 ° C to 730 ° C, but is not limited thereto, and includes all ranges formed by selecting two arbitrary points within the above range.
- the heat treatment time may be longer than the firing time.
- the heat treatment time may be 10 hours to 20 hours or 10 hours to 15 hours, but is not limited thereto, and includes all ranges formed by selecting two arbitrary points within the above range.
- the firing step By the firing step, the crystal structure of the lithium transition metal oxide particles is formed and the growth of the particles is induced at the same time, so that a single particle shape can be achieved. Subsequently, additional heat treatment is performed as necessary to increase the crystallinity, thereby obtaining lithium transition metal oxide particles having improved particle stability.
- the lithium transition metal oxide particles prepared by the manufacturing method may be single particles.
- the average particle diameter of the lithium transition metal oxide may be 0.1 ⁇ m to 20 ⁇ m.
- the lithium transition metal oxide particles produced by the method of manufacturing the cathode active material have a single particle shape, there is no particle breakage due to rolling during the electrode formation process, and a high-density active material layer can be formed, so that the electrode density can be improved. Not only possible, but also has an effect of improving cycle characteristics through substitution of Na element in the lithium site and S element substitution in the oxygen site in the LMR cathode active material.
- a positive electrode including the positive electrode active material described above is provided.
- the electrolyte may be a liquid electrolyte, a semi-solid electrolyte or a solid electrolyte.
- the electrolyte refer to the bar described below.
- the positive electrode and the lithium secondary battery including the same may be manufactured in the following manner.
- an anode is prepared.
- a cathode active material composition in which the aforementioned cathode active material, conductive material, binder, and solvent are mixed is prepared.
- the positive electrode active material composition is directly coated on a metal current collector to prepare a positive electrode plate.
- the positive electrode active material composition may be cast on a separate support, and then the film separated from the support may be laminated on a metal current collector to manufacture a positive electrode plate.
- the anode is not limited to the forms listed above and may have forms other than the above forms.
- Examples of the conductive material include graphite such as natural graphite and artificial graphite; carbon black; conductive tubes such as carbon nanotubes; conductive whiskers such as fluorocarbon, zinc oxide, and potassium titanate; conductive metal oxides such as titanium oxide; and the like may be used, but are not limited thereto, and any that can be used as a conductive material in the art may be used.
- binder vinylidene fluoride/hexafluoropropylene copolymer, polyvinylidene fluoride (PVDF), polyacrylonitrile, polymethyl methacrylate, polytetrafluoroethylene, a mixture thereof, a metal salt, or styrene butadiene Rubber-based polymers and the like may be used, but are not limited thereto, and any material that can be used as a binder in the art may be used.
- VDF polyvinylidene fluoride
- polyacrylonitrile polymethyl methacrylate
- polytetrafluoroethylene a mixture thereof
- metal salt styrene butadiene Rubber-based polymers and the like
- lithium salt, sodium salt, calcium salt, or Na salt of the aforementioned polymer may be used.
- N-methylpyrrolidone, acetone, or water may be used as the solvent, but it is not limited thereto, and any solvent that can be used in the art may be used.
- the content of the cathode active material, conductive material, binder, and solvent is at a level commonly used in a lithium battery. At least one of the conductive material, the binder, and the solvent may be omitted depending on the use and configuration of the lithium battery.
- a negative electrode active material composition is prepared by mixing a negative electrode active material, a conductive material, a binder, and a solvent.
- a negative electrode plate is prepared by directly coating and drying the negative active material composition on a metal current collector having a thickness of 3 ⁇ m to 500 ⁇ m.
- a film separated from the support is laminated on a metal current collector to manufacture a negative electrode plate.
- the anode current collector is not particularly limited as long as it does not cause chemical change in the battery and has conductivity.
- copper, nickel, or copper surface-treated with carbon may be used.
- the anode active material may be any material that can be used as an anode active material for a lithium battery in the art.
- it may include at least one selected from the group consisting of lithium metal, a metal alloyable with lithium, a transition metal oxide, a non-transition metal oxide, and a carbon-based material.
- the metal alloyable with lithium is Si, Sn, Al, Ge, Pb, Bi, Sb Si-Y alloy (wherein Y is an alkali metal, an alkaline earth metal, a group 13 element, a group 14 element, a transition metal, a rare earth element or a combination thereof, but not Si), a Sn-Y alloy (wherein Y is an alkali metal, an alkaline earth metal, a Group 13 element, a Group 14 element, a transition metal, a rare earth element, or a combination thereof, but not Sn) ) and the like.
- the element Y is Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ti, Ge, P, As, Sb, Bi, S, It may be Se or Te.
- the transition metal oxide may be lithium titanium oxide, vanadium oxide, or lithium vanadium oxide.
- the non-transition metal oxide may be SnO 2 , SiO x (0 ⁇ x ⁇ 2), or the like.
- the carbon-based material may be crystalline carbon, amorphous carbon, or a mixture thereof.
- the crystalline carbon may be graphite such as amorphous, plate, flake, spherical or fibrous natural graphite or artificial graphite, and the amorphous carbon may be soft carbon (low-temperature calcined carbon) or hard carbon carbon), mesophase pitch carbide, calcined coke, and the like.
- the same conductive material, binder, and solvent as in the case of the positive electrode active material composition may be used.
- the content of the anode active material, conductive material, binder, and solvent is at a level commonly used in a lithium battery. At least one of the conductive material, the binder, and the solvent may be omitted depending on the use and configuration of the lithium battery.
- the separator may be a single film or a multilayer film, for example, one selected from glass fiber, polyester, Teflon, polyethylene, polypropylene, polyvinylidene fluoride, polytetrafluoroethylene (PTFE), or a combination thereof. , may be in the form of non-woven fabric or woven fabric.
- a mixed multilayer film such as a polyethylene/polypropylene two-layer separator, a polyethylene/polypropylene/polyethylene three-layer separator, a polypropylene/polyethylene/polypropylene three-layer separator, or the like can be used.
- a rollable separator such as polyethylene or polypropylene may be used in a lithium ion battery, and a separator having excellent organic electrolyte impregnating ability may be used in a lithium ion polymer battery.
- the separator may be manufactured according to the following method.
- a separator composition is prepared by mixing a polymer resin, a filler, and a solvent.
- a separator may be formed by directly coating and drying the separator composition on an electrode. Alternatively, after the separator composition is cast and dried on a support, a separator film separated from the support may be laminated on an electrode to form a separator.
- the polymer resin used to manufacture the separator is not particularly limited, and all materials used for the binder of the electrode plate may be used.
- vinylidene fluoride/hexafluoropropylene copolymer polyvinylidene fluoride (PVDF), polyacrylonitrile, polymethyl methacrylate, or mixtures thereof may be used.
- PVDF polyvinylidene fluoride
- the electrolyte may be an organic electrolyte.
- the electrolyte may be solid.
- it may be boron oxide, lithium oxynitride, etc., but is not limited thereto, and any solid electrolyte that can be used in the art can be used.
- the solid electrolyte may be formed on the negative electrode by a method such as sputtering.
- the organic electrolyte may be prepared by dissolving a lithium salt in an organic solvent.
- the organic solvent may be used as long as it can be used as an organic solvent in the art.
- cyclic carbonates such as propylene carbonate, ethylene carbonate, fluoroethylene carbonate, butylene carbonate, and vinylene carbonate
- chain carbonates such as dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, methyl propyl carbonate, ethyl propyl carbonate, methyl isopropyl carbonate, dipropyl carbonate and dibutyl carbonate
- esters such as methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, and ⁇ -butyrolactone
- ethers such as 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 1,2-dioxane, and 2-methyltetrahydrofuran
- nitriles such as acetonitrile
- the lithium salt may also be used as long as it can be used as a lithium salt in the art.
- the lithium battery 1 includes a positive electrode 3 , a negative electrode 2 and a separator 4 .
- the positive electrode 3 , the negative electrode 2 and the separator 4 are wound or folded and accommodated in the battery case 5 .
- an organic electrolyte solution is injected into the battery case 5 and sealed with a cap assembly 6 to complete the lithium battery 1 .
- the battery case 5 may be cylindrical, prismatic, pouch, coin, or thin film.
- the lithium battery 1 may be a thin film battery.
- the lithium battery 1 may be a lithium ion battery.
- a battery structure may be formed by placing a separator between the positive electrode and the negative electrode. After the battery structure is stacked in a bi-cell structure, impregnated with an organic electrolyte, and the result obtained is accommodated in a pouch and sealed, a lithium ion polymer battery is completed.
- a plurality of the battery structures are stacked to form a battery pack, and such a battery pack can be used in all devices requiring high capacity and high output. For example, it can be used for laptops, smartphones, electric vehicles, and the like.
- the lithium battery since the lithium battery has excellent lifespan characteristics and high rate characteristics, it can be used in electric vehicles (EVs). For example, it can be used for hybrid vehicles such as plug-in hybrid electric vehicles (PHEVs). In addition, it can be used in fields requiring large amounts of power storage. For example, it can be used for electric bicycles, power tools, power storage systems, and the like.
- EVs electric vehicles
- PHEVs plug-in hybrid electric vehicles
- PHEVs plug-in hybrid electric vehicles
- power storage For example, it can be used for electric bicycles, power tools, power storage systems, and the like.
- a slurry was prepared by mixing the cathode active material:conductive material:binder obtained in Example 1 in a weight ratio of 97:1:2.
- carbon nanotubes CNT
- PVdF polyvinylidene fluoride
- the slurry was uniformly applied to an Al current collector and dried at 110° C. for 2 hours to prepare a positive electrode.
- the loading level of the electrode plate was 11.0 mg/cm 2 and the electrode density was 3.20 g/cc.
- a half-cell was manufactured in the same manner as in Example 7, except that the positive electrode active material obtained in Examples 2 to 6 was used instead of the positive electrode active material obtained in Example 1.
- a half-cell was manufactured in the same manner as in Example 7, except that the positive electrode active material obtained in Comparative Examples 1 to 11 was used instead of the positive electrode active material obtained in Example 1.
- Evaluation Example 1 Composition Evaluation of Cathode Active Material
- ICP inductively coupled plasma
- Evaluation Example 2 Evaluation of Appearance of Cathode Active Material
- SEM pictures were taken, and the results are shown in FIGS. 1A and 1B. Referring to FIG. 1A, it was confirmed that the active materials of Examples 1 to 6 had a single particle shape, and there was no significant difference in sample surface or size even when Na and S doping materials were introduced.
- Comparative Examples 1, 3, and 7 show a low value of L (crystallite size of 020 peak) /L (crystallite size of 110 peak) of less than 10, whereas Example 1 shows a high value of 11.58. This is due to the high crystal grain size of 020peak, and it seems that Na and S are doped into the structure to contribute to the structural stability of the Li 2 MnO 3 phase. It has a positive effect on chemical performance.
- the cells of Examples 7 to 12 were confirmed to have higher initial efficiency and higher discharge capacity than Comparative Examples 12 to 17 lacking S doping.
- the cells of Examples 7 to 12 doped with Na and S at a molar ratio of less than 0.025 had higher initial charge capacity, higher initial discharge capacity, and higher capacity than Comparative Examples 18 to 22 doped with Na and S at a molar ratio of 0.025 or more. It was found to have a retention rate. Therefore, LMR-based lithium transition metal oxides have increased initial charge/discharge capacity and improved lifespan characteristics when Na and S are introduced in an appropriate amount (molar ratio less than 0.025).
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
Description
조성 | |
비교예 1 | Li1.40Na0.005Ni0.35Mn0.65O2.369 |
비교예 2 | Li1.45Na0.005Ni0.35Mn0.65O2.369 |
비교예 3 | Li1.40Na0.01Ni0.35Mn0.65O2.383 |
비교예 4 | Li1.40Na0.02Ni0.35Mn0.65O2.387 |
비교예 5 | Li1.40Na0.05Ni0.35Mn0.65O2.362 |
비교예 6 | Li1.40Na0.1Ni0.35Mn0.65O2.362 |
비교예 7 | Li1.40Na0.015Ni0.35Mn0.65O2.379S0.01 |
비교예 8 | Li1.40Na0.05Ni0.35Mn0.65O2.382S0.01 |
비교예 9 | Li1.40Na0.1Ni0.35Mn0.65O2.388S0.005 |
비교예 10 | Li1.40Na0.1Ni0.35Mn0.65O2.392S0.01 |
비교예 11 | Li1.45Na0.2Ni0.35Mn0.65O2.387S0.01 |
실시예 1 | Li1.40Na0.005Ni0.35Mn0.65O2.388S0.005 |
실시예 2 | Li1.40Na0.005Ni0.35Mn0.65O2.392S0.01 |
실시예 3 | Li1.40Na0.01Ni0.35Mn0.65O2.374S0.005 |
실시예 4 | Li1.40Na0.01Ni0.35Mn0.65O2.362S0.01 |
실시예 5 | Li1.45Na0.005Ni0.35Mn0.65O2.468S0.005 |
실시예 6 | Li1.45Na0.01Ni0.35Mn0.65O2.379S0.005 |
Li (mol%) |
Na (mol%) |
Ni (mol%) |
Mn (mol.%) |
S (mol%) |
|
비교예 1 | 140 | 0.5 | 35 | 65 | - |
비교예 2 | 145 | 0.5 | 35 | 65 | - |
비교예 3 | 140 | 1 | 35 | 65 | - |
비교예 4 | 140 | 2 | 35 | 65 | - |
비교예 5 | 140 | 5 | 35 | 65 | - |
비교예 6 | 140 | 10 | 35 | 65 | - |
비교예 7 | 140 | 1.5 | 35 | 65 | 1 |
비교예 8 | 140 | 5 | 35 | 65 | 1 |
비교예 9 | 140 | 10 | 35 | 65 | 0.5 |
비교예 10 | 140 | 10 | 35 | 65 | 1 |
비교예 11 | 140 | 20 | 35 | 65 | 1 |
실시예 1 | 140 | 0.5 | 35 | 65 | 0.5 |
실시예 2 | 140 | 0.5 | 35 | 65 | 1 |
실시예 3 | 140 | 1 | 35 | 65 | 0.5 |
실시예 4 | 140 | 1 | 35 | 65 | 1 |
실시예 5 | 145 | 0.5 | 35 | 65 | 0.5 |
실시예 6 | 145 | 1 | 35 | 65 | 0.5 |
Crystallite size (nm) | |||
(020) peak | (110) peak | (020) peak / (110) peak | |
비교예 1 | 34.12 | 5.87 | 5.81 |
비교예 3 | 33.78 | 3.97 | 8.51 |
비교예 7 | 32.89 | 4.62 | 7.12 |
실시예 1 | 41.01 | 3.54 | 11.58 |
초기 충전 용량 (mAh/g) |
초기 방전 용량 (mAh/g) |
초기 효율 (%) |
50회 용량유지율 (%) |
|
비교예 12 | 318.7 | 260.8 | 81.8 | 94.7 |
비교예 13 | 319.2 | 266.1 | 83.4 | 95.8 |
비교예 14 | 309.7 | 262.9 | 84.9 | 96.2 |
비교예 15 | 307.8 | 261.4 | 84.9 | 94.9 |
비교예 16 | 304.9 | 259.6 | 85.1 | 95.2 |
비교예 17 | 301.2 | 256.8 | 85.3 | 96.2 |
비교예 18 | 306.7 | 261.7 | 85.3 | 94.9 |
비교예 19 | 304.7 | 260.1 | 85.4 | 95.3 |
비교예 20 | 301.8 | 258.1 | 85.5 | 95.1 |
비교예 21 | 302.1 | 259.8 | 86.0 | 95.8 |
비교예 22 | 298.6 | 258.2 | 86.5 | 96.1 |
실시예 7 | 317.1 | 270.2 | 85.2 | 97.8 |
실시예 8 | 317.5 | 271.6 | 85.5 | 97.9 |
실시예 9 | 316.6 | 271.7 | 85.8 | 96.7 |
실시예 10 | 318.4 | 271.7 | 85.3 | 97.3 |
실시예 11 | 320.1 | 271.3 | 84.8 | 97.4 |
실시예 12 | 320.7 | 270.6 | 84.7 | 97.8 |
Claims (20)
- Mn 원소의 몰비가 0.5 이상이고, 나트륨(Na) 및 황(S) 원소의 몰비의 합이 0<Na+S<0.025인 리튬 전이금속 산화물을 포함하는 양극활물질.
- 제1항에 있어서,상기 리튬 전이금속 산화물의 X-선 회절 스펙트럼이 하기 식 1을 만족하는, 양극활물질:<식 1>10 ≤ 결정립(020)/결정립(110) ≤ 15여기서, 결정립(110)은 결정면 110에서의 결정립 사이즈를 의미하고, 결정립(020)는 결정면 020에서의 결정립 사이즈를 의미한다.
- 제1항에 있어서,상기 리튬 전이금속 산화물은 Co 원소의 몰비가 0.01 이하인, 양극활물질.
- 제1항에 있어서,Mn 원소의 몰비가 0.5 초과인, 양극활물질.
- 제1항에 있어서,Ni 원소를 더 포함하는, 양극활물질.
- 제1항에 있어서,Li 원소를 더 포함하고,상기 Li 원소의 몰비가 1 초과인, 양극활물질.
- 제1항에 있어서,상기 리튬 전이금속 산화물은 하기 화학식 1로 표시되는, 양극활물질:<화학식 1>LixNayNi1-a-bMnaMbO2+α-βSβ상기 화학식 1에서,M은 B, Zr, Sr, Y, Ba, W, Ti, Mg, Al 및 Co 중에서 선택된 1종 이상의 원소이고,1.3<x<1.5, 0<y<0.015, 0.5≤a<1, 0≤b<0.1, 0<α<0.5, 0<β≤0.01이다.
- 제7항에 있어서,상기 화학식 1 중, M은 B, Zr, Sr, Y, Ba, W, Ti, Mg, Al 또는 Co인, 양극활물질.
- 제1항에 있어서,상기 리튬 전이금속 산화물은 하기 화학식 2로 표시되는, 양극활물질:<화학식 2>TLi2MnO3·(1-T)LiNayNi1-a-bMnaMbO2-βSβ상기 화학식 2에서,M은 B, Zr, Sr, Y, Ba, W, Ti, Mg, Al 및 Co 중에서 선택된 1종 이상의 원소이고,0.3<T<0.6, 0<x<0.015, 0.3<a<1, 0<b≤0.25, 0<β≤0.025
- 제1항에 있어서,상기 리튬 전이금속 산화물은 단일 입자인, 양극활물질.
- 제1항에 있어서,상기 리튬 전이금속 산화물은 R-3m 결정 및 단사정계 결정을 포함한, 양극활물질.
- 제1항에 있어서,상기 리튬 전이금속 산화물은 층상형 결정 구조를 갖는, 양극활물질.
- 제1항에 있어서,상기 양극활물질은 단일 입자의 리튬 전이금속 산화물 입자와 상기 단일 입자의 리튬 전이금속 산화물 입자 복수개가 응집되어 형성된 이차입자를 포함하는, 양극활물질.
- 제13항에 있어서,상기 이차입자 중 리튬 전이금속 산화물 입자의 표면 또는 복수의 리튬 전이금속 산화물 입자의 계면은 Na 원소, S 원소 또는 Na과 S 원소를 함유하는 코팅층을 포함하는, 양극활물질.
- 제1항에 있어서,상기 양극활물질의 평균 입경은 0.1㎛ 내지 20 ㎛인, 양극활물질.
- Mn 원소의 몰비가 0.5 이상이고, 나트륨(Na) 및 황(S) 원소의 몰비의 합이 0<Na+S<0.025인 리튬 전이금속 산화물을 포함하는 양극활물질Mn 원소의 몰비가 0.5 이상인 리튬 전이금속 산화물 전구체를 준비하는 단계;상기 전이금속 산화물 전구체를 Li 전구체, Na 전구체 및 S 전구체와 혼합하여 리튬 전이금속 산화물 전구체를 얻는 단계; 및상기 리튬 전이금속 산화물 전구체를 소성하여 리튬 전이금속 산화물 입자를 얻는 단계;를 포함하는, 양극활물질의 제조방법.
- 제16항에 있어서,상기 혼합은 고상에서 기계적 혼합인, 양극활물질의 제조방법.
- 제16항에 있어서,상기 소성은 900℃ 내지 1100℃에서 8 내지 12시간의 열처리인, 양극활물질의 제조방법.
- 제1항 내지 제14항 중 어느 한 항에 따른 양극활물질을 포함하는 양극;음극; 및전해질;을 포함하는 리튬 이차전지.
- 제19항에 있어서,상기 전해질은 액체 전해질, 반고체 전해질 또는 고체 전해질인, 리튬이차전지.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22861708.0A EP4318667A1 (en) | 2021-08-25 | 2022-08-24 | Positive electrode active material, method for preparing same, and lithium secondary battery including positive electrode comprising same |
JP2023565164A JP2024516811A (ja) | 2021-08-25 | 2022-08-24 | 正極活物質、その製造方法、及びそれを含む正極を含むリチウム二次電池 |
US18/559,133 US20240234707A1 (en) | 2021-08-25 | 2022-08-24 | Positive electrode active material, method for preparing same, and lithium secondary battery including positive electrode comprising same |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20210112479 | 2021-08-25 | ||
KR10-2021-0112479 | 2021-08-25 | ||
KR1020220105070A KR20230030539A (ko) | 2021-08-25 | 2022-08-22 | 양극활물질, 이의 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지 |
KR10-2022-0105070 | 2022-08-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023027499A1 true WO2023027499A1 (ko) | 2023-03-02 |
Family
ID=85321924
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2022/012638 WO2023027499A1 (ko) | 2021-08-25 | 2022-08-24 | 양극활물질, 이의 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20240234707A1 (ko) |
EP (1) | EP4318667A1 (ko) |
JP (1) | JP2024516811A (ko) |
WO (1) | WO2023027499A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116525817A (zh) * | 2023-07-04 | 2023-08-01 | 宁波容百新能源科技股份有限公司 | 正极活性材料及其制备方法、正极片和二次电池 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114175303B (zh) * | 2021-03-26 | 2024-09-06 | 宁德新能源科技有限公司 | 一种正极极片、包含该正极极片的电化学装置和电子装置 |
JP7432608B2 (ja) * | 2021-03-26 | 2024-02-16 | 寧徳新能源科技有限公司 | 正極片、当該正極片を含む電気化学装置及び電子装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150083363A (ko) * | 2014-01-09 | 2015-07-17 | 주식회사 엘지화학 | 비수 전해액 및 이를 갖는 리튬 이차전지 |
JP2015522921A (ja) * | 2012-08-02 | 2015-08-06 | エルジー・ケム・リミテッド | 出力特性と安全性が向上した混合正極活物質及びこれを含むリチウム二次電池 |
KR20170065635A (ko) * | 2014-10-08 | 2017-06-13 | 우미코르 | 바람직한 모폴로지를 갖는 불순물 함유 캐소드 재료 및 불순물 함유 금속 탄산염으로부터의 제조 방법 |
KR101812269B1 (ko) * | 2015-01-30 | 2018-01-25 | 주식회사 엘지화학 | 고용량 고전압 리튬 이차전지용 표면 코팅된 Mn-rich 양극 활물질 및 이를 포함하는 고용량 고전압 리튬 이차전지 |
KR20200105391A (ko) * | 2019-02-28 | 2020-09-07 | 주식회사 에스엠랩 | 양극활물질, 이의 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2485305B1 (en) * | 2009-09-30 | 2018-04-18 | Toda Kogyo Corp. | Positive electrode active material powder, method for producing same, and nonaqueous electrolyte secondary battery |
KR102144057B1 (ko) * | 2019-12-24 | 2020-08-12 | 주식회사 에스엠랩 | 양극활물질, 이의 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지 |
-
2022
- 2022-08-24 WO PCT/KR2022/012638 patent/WO2023027499A1/ko active Application Filing
- 2022-08-24 US US18/559,133 patent/US20240234707A1/en active Pending
- 2022-08-24 EP EP22861708.0A patent/EP4318667A1/en active Pending
- 2022-08-24 JP JP2023565164A patent/JP2024516811A/ja active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015522921A (ja) * | 2012-08-02 | 2015-08-06 | エルジー・ケム・リミテッド | 出力特性と安全性が向上した混合正極活物質及びこれを含むリチウム二次電池 |
KR20150083363A (ko) * | 2014-01-09 | 2015-07-17 | 주식회사 엘지화학 | 비수 전해액 및 이를 갖는 리튬 이차전지 |
KR20170065635A (ko) * | 2014-10-08 | 2017-06-13 | 우미코르 | 바람직한 모폴로지를 갖는 불순물 함유 캐소드 재료 및 불순물 함유 금속 탄산염으로부터의 제조 방법 |
KR101812269B1 (ko) * | 2015-01-30 | 2018-01-25 | 주식회사 엘지화학 | 고용량 고전압 리튬 이차전지용 표면 코팅된 Mn-rich 양극 활물질 및 이를 포함하는 고용량 고전압 리튬 이차전지 |
KR20200105391A (ko) * | 2019-02-28 | 2020-09-07 | 주식회사 에스엠랩 | 양극활물질, 이의 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116525817A (zh) * | 2023-07-04 | 2023-08-01 | 宁波容百新能源科技股份有限公司 | 正极活性材料及其制备方法、正极片和二次电池 |
CN116525817B (zh) * | 2023-07-04 | 2023-11-28 | 宁波容百新能源科技股份有限公司 | 正极活性材料及其制备方法、正极片和二次电池 |
Also Published As
Publication number | Publication date |
---|---|
EP4318667A1 (en) | 2024-02-07 |
US20240234707A1 (en) | 2024-07-11 |
JP2024516811A (ja) | 2024-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021132761A1 (ko) | 양극활물질, 이의 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지 | |
WO2019088340A1 (ko) | 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지 | |
WO2021132762A1 (ko) | 양극활물질, 이의 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지 | |
WO2021112323A1 (ko) | 양극활물질, 이의 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지 | |
WO2019078399A1 (ko) | 리튬 이차전지용 양극 활물질, 이의 제조 방법, 이를 포함하는 전극, 및 상기 전극을 포함하는 리튬 이차 전지 | |
WO2023027499A1 (ko) | 양극활물질, 이의 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지 | |
WO2021221480A1 (ko) | 리튬 이차전지용 양극활물질, 그의 제조방법 및 이를 포함하는 리튬이차전지 | |
WO2021132763A1 (ko) | 양극활물질, 이의 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지 | |
WO2021034020A1 (ko) | 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지 | |
WO2019078503A1 (ko) | 리튬 이차전지용 양극재, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지 | |
WO2020111543A1 (ko) | 팔면체 구조의 리튬 망간계 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지 | |
WO2020171367A1 (ko) | 양극활물질, 이의 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지 | |
WO2019059647A2 (ko) | 리튬 이차전지용 양극재, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지 | |
WO2020085731A1 (ko) | 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지 | |
WO2017095153A1 (ko) | 이차전지용 양극활물질 및 이를 포함하는 이차전지 | |
WO2019045399A2 (ko) | 리튬 이차전지 | |
WO2022255665A1 (ko) | 양극활물질과 비가역 첨가제를 포함하는 마스터 배치 및 이를 함유하는 리튬 이차전지용 양극 슬러리 | |
WO2022092477A1 (ko) | 리튬 이차전지용 양극 활물질의 제조 방법 | |
WO2020180160A1 (ko) | 리튬 이차전지 | |
WO2020171366A1 (ko) | 양극활물질, 이의 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지 | |
WO2024096295A1 (ko) | 양극활물질, 이의 제조방법, 및 상기 양극활물질을 포함하는 리튬이차전지 | |
WO2020180125A1 (ko) | 리튬 이차전지 | |
WO2022169271A1 (ko) | 양극 활물질 및 이의 제조방법 | |
WO2022119157A1 (ko) | 양극 활물질 및 이를 포함하는 리튬 이차전지 | |
WO2021033852A1 (ko) | 양극활물질, 이의 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22861708 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023565164 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022861708 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18559133 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2022861708 Country of ref document: EP Effective date: 20231103 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |