WO2023027464A1 - 이차전지, 그의 제조방법 및 전지팩 - Google Patents
이차전지, 그의 제조방법 및 전지팩 Download PDFInfo
- Publication number
- WO2023027464A1 WO2023027464A1 PCT/KR2022/012539 KR2022012539W WO2023027464A1 WO 2023027464 A1 WO2023027464 A1 WO 2023027464A1 KR 2022012539 W KR2022012539 W KR 2022012539W WO 2023027464 A1 WO2023027464 A1 WO 2023027464A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cover
- electrode assembly
- pouch
- covers
- sealing
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 42
- 238000007789 sealing Methods 0.000 claims abstract description 77
- 239000010410 layer Substances 0.000 claims description 57
- 239000002184 metal Substances 0.000 claims description 39
- 229910052751 metal Inorganic materials 0.000 claims description 39
- 238000001816 cooling Methods 0.000 claims description 27
- 238000000034 method Methods 0.000 claims description 20
- 238000005452 bending Methods 0.000 claims description 13
- 239000010949 copper Substances 0.000 claims description 12
- 239000011241 protective layer Substances 0.000 claims description 10
- 239000012790 adhesive layer Substances 0.000 claims description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 239000007769 metal material Substances 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 5
- 230000017525 heat dissipation Effects 0.000 claims description 5
- 239000011347 resin Substances 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 239000000463 material Substances 0.000 description 3
- 230000004308 accommodation Effects 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/655—Solid structures for heat exchange or heat conduction
- H01M10/6554—Rods or plates
- H01M10/6555—Rods or plates arranged between the cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/04—Construction or manufacture in general
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/61—Types of temperature control
- H01M10/613—Cooling or keeping cold
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/64—Heating or cooling; Temperature control characterised by the shape of the cells
- H01M10/647—Prismatic or flat cells, e.g. pouch cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/653—Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/655—Solid structures for heat exchange or heat conduction
- H01M10/6551—Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/102—Primary casings; Jackets or wrappings characterised by their shape or physical structure
- H01M50/105—Pouches or flexible bags
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/116—Primary casings; Jackets or wrappings characterised by the material
- H01M50/124—Primary casings; Jackets or wrappings characterised by the material having a layered structure
- H01M50/126—Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/147—Lids or covers
- H01M50/155—Lids or covers characterised by the material
- H01M50/157—Inorganic material
- H01M50/159—Metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/147—Lids or covers
- H01M50/155—Lids or covers characterised by the material
- H01M50/164—Lids or covers characterised by the material having a layered structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/147—Lids or covers
- H01M50/166—Lids or covers characterised by the methods of assembling casings with lids
- H01M50/171—Lids or covers characterised by the methods of assembling casings with lids using adhesives or sealing agents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/183—Sealing members
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/204—Racks, modules or packs for multiple batteries or multiple cells
- H01M50/207—Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
- H01M50/211—Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- a secondary battery refers to a battery that can be charged and discharged, unlike a primary battery that cannot be charged, and such a secondary battery is widely used in phones, notebook computers, camcorders, and electric vehicles.
- the secondary battery is classified into a cylindrical secondary battery in which the electrode assembly is embedded in a metal can and a pouch-type secondary battery in which the electrode assembly is embedded in a pouch.
- the electrode includes an anode and a cathode.
- the pouch-type secondary battery described above has electrode assemblies in which electrodes and separators are alternately arranged, it can be manufactured in various shapes, can be easily changed in size and capacity, and can efficiently utilize space, thereby improving energy density. It is advantageous.
- the pouch is provided with a double side folding (DSF) unit for sealing an end portion of the sealing unit in a folded state twice in order to increase sealing force.
- DSF double side folding
- the battery pack described above has a problem in that the sealing part of the pouch is provided as the DSF part, so that the cold air of the cooling member is not effectively transmitted to the receiving part of the pouch. That is, since the DSF unit is located between the cooling member and the receiving unit of the pouch, the cooling member and the receiving unit cannot be closely attached to each other, and thus, the cold air of the cooling member cannot be directly transferred to the receiving unit, so there is a limit to improving the efficiency of cold air transfer.
- the problem to be solved by the present invention can increase the simplification of the process by implementing a pouch with a new structure, and in particular, the cooling member and the accommodating part of the pouch can be brought into close contact, and thus the cold air of the cooling member is directly transmitted to the accommodating part of the pouch. It is to provide a secondary battery, a manufacturing method thereof, and a battery pack capable of increasing cold air transfer efficiency while being
- An adhesive layer for adhering the first sealing part to the surface of the first cover may be further included.
- the second sealing part is formed by sealing the two first cover end faces, and the two second cover end faces may be inserted between the two first cover end faces and sealed together with the first cover end faces.
- the first cover has a structure in which a protective layer, a first metal layer, and an insulating layer are sequentially disposed from the inside to the outside
- the second cover has a protective layer, a second metal layer, and an insulating layer sequentially from the inside to the outside.
- the second metal layer may be made of a metal material having higher thermal conductivity than the first metal layer.
- the first metal layer may be made of copper (Cu), and the second metal layer may be made of aluminum (Al).
- the secondary battery manufacturing method of the present invention is a disposition step of disposing each of two first covers covering both sides of the electrode assembly in the thickness direction and disposing each of the two second covers covering both sides of the electrode assembly in the full width direction of the electrode assembly. ; a first manufacturing step of manufacturing a semi-assembled pouch by forming a first sealing part sealing edge surfaces of the first cover and the second cover facing each other; an accommodating step of accommodating an electrode assembly in the semi-assembled pouch; and a second manufacturing step of manufacturing a fully assembled pouch by forming a second sealing portion for sealing end faces of the first cover and the second cover provided in the semi-assembled pouch in the same direction,
- the two second covers may be provided in close contact with both side surfaces of the electrode assembly in the entire width direction.
- the first sealing part may be formed by sealing the facing edge surfaces of the first cover and the second cover in a state of being in close contact with each other.
- a bending step of bending the first sealing portion and bringing it into close contact with the surface of the first cover may be further included.
- the bending step may further include a step of adhering the first sealing part to the surface of the first cover through an adhesive layer.
- the first cover has a structure in which a protective layer, a first metal layer, and an insulating layer are sequentially disposed from the inside to the outside
- the second cover has a protective layer, a second metal layer, and a protective layer from the inside to the outside. It has a structure in which insulating layers are sequentially disposed, and the second metal layer may be made of a metal material having higher thermal conductivity than the first metal layer.
- the battery pack of the present invention may include a battery module in which a plurality of secondary batteries are provided, and the plurality of secondary batteries may be provided in a battery module in which a first cover of a pouch is arranged to correspond to each other.
- a cooling member for cooling the battery module may be included, and the cooling member may be provided in close contact with the second cover of the pouch.
- a heat dissipation pad may be further provided between the plurality of secondary batteries.
- the secondary battery of the present invention includes a pouch provided with two first covers and a second second cover, wherein edge surfaces of the first cover and the second cover facing each other are sealed by a first sealing part, End faces of the first cover and the second cover facing the same direction are sealed by a second seal. Due to these characteristics, a pouch having a new structure can be manufactured. In particular, by forming the sealing part at the corner of the pouch, the cooling member and the second cover of the pouch can be brought into close contact, and as a result, coolness can be improved.
- FIG. 1 is a perspective view showing a secondary battery according to a first embodiment of the present invention
- FIG. 2 is an exploded perspective view illustrating a pouch of a secondary battery according to a first embodiment of the present invention
- FIG 3 is a cross-sectional view of a secondary battery according to a first embodiment of the present invention.
- Figure 4 is an enlarged view of part A shown in Figure 3;
- FIG. 5 is a front view of the secondary battery according to the first embodiment of the present invention.
- Figure 6 is a cross-sectional view showing a laminated structure for the first cover of the present invention.
- FIG. 8 is a flowchart illustrating a secondary battery manufacturing method according to the first embodiment of the present invention.
- FIG. 10 is a perspective view illustrating a first manufacturing step of a secondary battery manufacturing method according to a first embodiment of the present invention.
- FIG. 11 is a front view showing an accommodation step of a secondary battery manufacturing method according to a first embodiment of the present invention.
- FIG. 12 is a perspective view showing a secondary manufacturing step of the secondary battery manufacturing method according to the first embodiment of the present invention.
- FIG. 13 is a perspective view illustrating a bending step of the secondary battery manufacturing method according to the first embodiment of the present invention.
- FIG. 14 is a side view illustrating a battery pack according to a second embodiment of the present invention.
- the pouch 120 is for sealingly accommodating the electrode assembly 110, and both sides in the thickness direction of the electrode assembly 110 (electrode assembly when viewed in FIG. 1) two first covers 121 respectively provided on the upper and lower surfaces of the electrode assembly 110, and two covers respectively provided on both side surfaces (the left side and the right side of the electrode assembly as seen in FIG. 1) in the full width direction of the electrode assembly 110 A second cover 122 is included.
- the first cover 121 is disposed horizontally on both sides of the electrode assembly 110 in the vertical direction when viewed from FIG. 1 .
- the first cover 121 has first edge surfaces 121a formed on both sides of the electrode assembly 110 toward the full width direction as seen in FIG. 2, and the entire length of the electrode assembly 110 as seen in FIG.
- First end faces 121b are formed at both ends facing the direction.
- the second cover 122 is vertically disposed on both side surfaces of the electrode assembly 110 in the left and right directions when viewed from FIG. 1 .
- the second cover 122 has second corner surfaces 122a formed on both sides of the electrode assembly 110 in the vertical direction when viewed from FIG. 2, and the entire length of the electrode assembly 110 when viewed from FIG. Second end faces 122b are formed at both ends facing the direction.
- edge surfaces of the first cover 121 and the second cover 122 facing each other have the same length for ease of sealing.
- the first cover 121 has a structure in which a resin layer 1211, a first metal layer 1212, and an insulating layer 1213 are laminated from the inside to the outside of the pouch.
- the second cover 122 has a structure in which a resin layer 1221, a second metal layer 1222, and an insulating layer 1223 are stacked from the inside to the outside of the pouch.
- the first cover 121 and the second cover 122 have a rectangular film shape.
- the resin layer of the first cover and the resin layer of the second cover are made of the same material, and the insulating layer of the first cover and the insulating layer of the second cover are made of the same material.
- the first metal layer of the first cover and the metal layer of the second cover are made of different materials.
- the first cover may be provided with two or more pouch films. That is, the first cover may be manufactured by connecting two or more pouch films according to the area of the electrode assembly.
- the second cover may be provided with two or more pouch films. That is, the second cover may be manufactured by connecting two or more pouch films according to the thickness of the electrode assembly.
- the first sealing part 123 is formed by sealing the first edge of the first cover 121 and the second edge of the second cover 122 facing each other in a state of being in close contact with each other.
- an insulating material may be coated on the first sealing part to increase insulating properties.
- the second sealing portion 124 is formed while sealing the two first end surfaces 121b, and the second end surfaces 122b formed on the two second covers 122 are formed by the two first covers 121 While being inserted between the first end surface (121b) formed in the first cover 121 is formed by sealing together with the end surface. That is, the second sealing portion 124 is formed by sealing the two first end surfaces 121b and the two second end surfaces 122b together.
- the pouch 120 having the electrode assembly accommodating space is formed.
- the two second covers 122 may be provided in close contact with both side surfaces of the electrode assembly in the full width direction. Accordingly, the second cover can quickly dissipate heat generated from the electrode assembly to the outside, and as a result, a temperature rise of the electrode assembly can be greatly suppressed.
- the second metal layer 1222 of the second cover may be made of a metal material having higher thermal conductivity than the first metal layer 1212 of the first cover.
- the first metal layer is made of copper (Cu)
- the second metal layer is made of aluminum (Al), which has higher thermal conductivity than copper (Cu). That is, the present application is characterized in that the second metal layer of the second cover can be applied with a metal having higher thermal conductivity than the first metal layer of the first cover, and due to this feature, heat generated from the electrode assembly It can be quickly released to the outside while being delivered to the cover.
- the first sealing part 123 of the pouch 120 is bent in the direction of the first cover 121 and adheres to the surface of the first cover 121, and thus the electrode assembly 110 It is possible to reduce the volume of, and it is possible to secure a larger outer peripheral exposure area of the second cover 122. This makes it possible to bring the cooling member into close contact with the surface of the second cover 122, thereby securing a large contact area, and accordingly, the cold air of the cooling member can be directly transferred to the surface of the pouch 120, thereby increasing the cold air transfer efficiency. there is.
- the pouch 120 further includes an adhesive layer 125, and the adhesive layer 125 is provided between the first sealing portion 123 and the first cover 121, and the first sealing portion 123 ) is attached to the surface of the first cover 121. Accordingly, the first sealing part 123 can be attached to the surface of the first cover 121 without separation.
- the pouch 120 having such a configuration is composed of two first covers 121 and two second covers 122, so there is no need to perform a separate forming process, and accordingly, the pouch 120 having a new structure can be implemented In particular, the simplification of the process can be increased, and as a result, workability and efficiency can be improved. Moreover, the pouch 120 can increase the externally exposed area of the second cover 122, which is a side portion of the pouch, so that adhesion to the cooling member can be increased, and as a result, cool air transfer efficiency can be increased.
- the secondary battery 100 can manufacture a pouch 120 having a new structure including a first cover, a second cover, a first sealing part, and a second sealing part, and accordingly, the process It is possible to increase the simplification, and in particular, it is possible to increase the cold air transfer efficiency by increasing the adhesion with the cooling device.
- the method for manufacturing a secondary battery according to the first embodiment of the present invention includes a disposing step, a first manufacturing step, an accommodating step, a second manufacturing step, and a bending step.
- the first cover 121 has first edge surfaces 121a formed on both sides of the electrode assembly 110 toward the full width direction as seen in FIG. 2, and the entire length of the electrode assembly 110 as seen in FIG. First end faces 121b are formed at both ends facing the direction.
- the second cover 122 has second edge surfaces 122a formed on both sides of the electrode assembly 110 in the vertical direction when viewed from FIG. A second end surface 122b is formed at both ends facing toward the .
- edge surfaces of the first cover 121 and the second cover 122 facing each other have the same length.
- the first cover 121 has a structure in which a resin layer 1211, a first metal layer 1212, and an insulating layer 1213 are stacked from the inside to the outside of the pouch.
- the second cover 122 has a structure in which a resin layer 1221, a second metal layer 1222, and an insulating layer 1223 are stacked from the inside to the outside of the pouch.
- the second metal layer 1222 of the second cover may be made of a metal material having higher thermal conductivity than the first metal layer 1212 of the first cover.
- the first metal layer is made of copper (Cu)
- the second metal layer is made of aluminum (Al), which has higher thermal conductivity than copper (Cu).
- the two second covers 122 are in close contact with both side surfaces of the electrode assembly 110 in the overall width direction. Accordingly, heat generated in the electrode assembly due to close contact between the second cover and the electrode assembly can be rapidly absorbed by the second cover and then released to the outside, and as a result, a temperature rise of the electrode assembly can be greatly suppressed.
- the second metal layer included in the second cover is made of aluminum, thermal conductivity can be increased, and as a result, the temperature rise of the electrode assembly can be greatly suppressed.
- the secondary manufacturing step is the second sealing for sealing the end surfaces of the first cover 121 and the second cover 122 provided in the semi-assembled pouch 120A facing the same direction.
- a fully assembled pouch 120 (hereinafter referred to as a pouch) is manufactured by forming the portion 124.
- the first sealing part 123 is bent toward the first cover 121 and brought into close contact with the surface of the first cover 121 .
- the bending step may further include a process of adhering the first sealing part 123 to the surface of the first cover 121 through the adhesive layer 125 to increase the fixing force of the first sealing part 123 .
- the battery pack according to the second embodiment of the present invention includes a plurality of secondary batteries 100 .
- the secondary battery 100 includes an electrode assembly 110 and a pouch 120, and the pouch 120 has two first covers 121 respectively provided on both sides of the electrode assembly 110 in the thickness direction. ), and two second covers 122 provided on both side surfaces of the electrode assembly 110 in the full width direction.
- the secondary battery 100 has the same configuration and function as the secondary battery described in the first embodiment, and therefore, overlapping descriptions are omitted.
- the battery pack according to the second embodiment of the present invention includes the pouch 120 having a novel structure, thereby simplifying manufacturing and processes and increasing productivity.
- the battery pack according to the second embodiment of the present invention includes a cooling member 200 for cooling the battery module, and the cooling member 200 adheres to the second cover 122 of the pouch 120. arranged to be
- the battery pack according to the second embodiment of the present invention further includes a heat dissipation pad 300 provided between the plurality of secondary batteries 100, and the heat dissipation pad 300 heats generated from the secondary battery 100. By releasing it, the cooling efficiency can be increased.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Sealing Battery Cases Or Jackets (AREA)
- Secondary Cells (AREA)
- Battery Mounting, Suspending (AREA)
Abstract
Description
Claims (15)
- 전극조립체; 및상기 전극조립체를 수용하는 파우치를 포함하며,상기 파우치는,상기 전극조립체의 두께방향으로 양쪽면에 각각 구비되는 2개의 제1 커버, 및 상기 전극조립체의 전폭방향으로 양측면에 각각 구비되는 2개의 제2 커버를 포함하고,상기 제1 커버와 상기 제2 커버의 서로 마주보는 모서리면은 제1 밀봉부에 의해 밀봉되고,상기 제1 커버와 상기 제2 커버의 동일한 방향을 향하는 단부면은 제2 밀봉부에 의해 밀봉되며,2개의 제2 커버는, 상기 전극조립체의 전폭방향으로 양측면에 각각 밀착되게 마련되는 이차전지.
- 청구항 1에 있어서,상기 제1 밀봉부는, 상기 제1 커버와 상기 제2 커버의 서로 마주보는 모서리면이 실링되면서 형성되고,상기 제1 밀봉부는, 절곡되면서 상기 제1 커버의 표면에 밀착되는 이차전지.
- 청구항 2에 있어서,상기 제1 밀봉부를 상기 제1 커버의 표면에 접착하는 접착층이 더 포함되는 이차전지.
- 청구항 1에 있어서,상기 제2 밀봉부는, 2개의 제1 커버 단부면이 실링되면서 형성되되, 2개의 제2 커버 단부면은 2개의 제1 커버 단부면 사이에 삽입되면서 제1 커버 단부면과 함께 실링되는 이차전지.
- 청구항 1에 있어서,상기 제1 커버는, 안쪽에서 바깥쪽으로 보호층, 제1 금속층, 및 절연층이 순차적으로 배치되는 구조를 가지고,상기 제2 커버는, 안족에서 바깥쪽으로 보호층, 제2 금속층 및 절연층이 순차적으로 배치되는 구조를 가지며,상기 제2 금속층은, 상기 제1 금속층 보다 열 전도성이 높은 금속소재로 마련되는 이차전지.
- 청구항 5에 있어서상기 제1 금속층은 구리(Cu)로 마련되고,상기 제2 금속층은, 알루미늄(Al)으로 마련되는 이차전지.
- 전극조립체의 두께방향으로 양쪽면을 커버하는 2개의 제1 커버를 각각 배치하고, 전극조립체의 전폭방향으로 양측면을 커버하는 2개의 제2 커버를 각각 배치하는 배치단계;상기 제1 커버와 상기 제2 커버의 서로 마주보는 모서리면을 밀봉하는 제1 밀봉부를 형성하여 반조립 파우치를 제조하는 1차 제조단계;상기 반조립 파우치의 내부에 전극조립체를 수용하는 수용단계; 및상기 반조립 파우치에 구비된 제1 커버와 제2 커버의 동일한 방향을 향하는 단부면을 밀봉하는 제2 밀봉부를 형성하여 완조립 파우치를 제조하는 2차 제조단계를 포함하며,상기 수용단계에서 반조립 파우치에 전극조립체를 수용하면, 2개의 제2 커버는, 상기 전극조립체의 전폭방향으로 양측면에 각각 밀착되는 이차전지 제조방법.
- 청구항 7에 있어서,상기 1차 제조단계에서 제1 밀봉부는, 상기 제1 커버와 상기 제2 커버의 서로 마주보는 모서리면을 밀착시킨 상태로 실링함에 따라 형성되는 이차전지 제조방법.
- 청구항 7에 있어서,상기 2차 제조단계에서 제2 밀봉부는, 2개의 제2 커버 단부면를 접어서 2개의 제1 커버 단부면 사이에 삽입한 다음, 2개의 제1 커버 단부면을 열융착하여 2개의 제2 커버 단부면과 함께 실링함에 따라 형성되는 이차전지 제조방법.
- 청구항 7에 있어서,상기 2차 제조단계 후, 제1 밀봉부를 절곡시켜서 상기 제1 커버의 표면에 밀착시키는 절곡단계를 더 포함하는 이차전지 제조방법.
- 청구항 10에 있어서,상기 절곡단계는 접착층을 통해 상기 제1 밀봉부를 제1 커버의 표면에 접착시키는 공정을 더 포함하는 이차전지 제조방법.
- 청구항 7에 있어서,상기 배치단계에서 상기 제1 커버는, 안쪽에서 바깥쪽으로 보호층, 제1 금속층, 및 절연층이 순차적으로 배치되는 구조를 가지고, 상기 제2 커버는, 안족에서 바깥쪽으로 보호층, 제2 금속층 및 절연층이 순차적으로 배치되는 구조를 가지며,상기 제2 금속층은, 상기 제1 금속층 보다 열 전도성이 높은 금속소재로 마련되는 이차전지 제조방법.
- 청구항 1에 따른 이차전지가 복수개로 마련되는 전지모듈을 포함되고,상기 복수개의 이차전지는 파우치의 제1 커버가 서로 대응되도록 배열되는 전지모듈로 마련되는 전지팩.
- 청구항 13에 있어서,상기 전지모듈을 냉각하는 냉각부재를 포함하며,상기 냉각부재는, 파우치의 제2 커버에 밀착되게 마련되는 전지팩.
- 청구항 13에 있어서,복수개의 이차전지 사이에는 방열패드가 더 구비되는 전지팩.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280008166.0A CN116711138A (zh) | 2021-08-24 | 2022-08-22 | 二次电池及其制造方法、和电池组 |
EP22861673.6A EP4246673A1 (en) | 2021-08-24 | 2022-08-22 | Secondary battery, manufacturing method thereof, and battery pack |
US18/269,710 US20240063477A1 (en) | 2021-08-24 | 2022-08-22 | Secondary Battery, Method for Manufacturing the Same and Battery Pack |
JP2023537373A JP7542911B2 (ja) | 2021-08-24 | 2022-08-22 | 二次電池、その製造方法及び電池パック |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20210111973 | 2021-08-24 | ||
KR10-2021-0111973 | 2021-08-24 | ||
KR10-2022-0104340 | 2022-08-19 | ||
KR1020220104340A KR20230029539A (ko) | 2021-08-24 | 2022-08-19 | 이차전지, 그의 제조방법 및 전지팩 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023027464A1 true WO2023027464A1 (ko) | 2023-03-02 |
Family
ID=85323327
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2022/012539 WO2023027464A1 (ko) | 2021-08-24 | 2022-08-22 | 이차전지, 그의 제조방법 및 전지팩 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20240063477A1 (ko) |
EP (1) | EP4246673A1 (ko) |
JP (1) | JP7542911B2 (ko) |
WO (1) | WO2023027464A1 (ko) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100227216A1 (en) * | 2005-12-02 | 2010-09-09 | Yuki Tominaga | Lithium ion rechargeable cell |
KR20120060707A (ko) * | 2010-12-02 | 2012-06-12 | 주식회사 엘지화학 | 전지셀의 제조방법 및 이를 이용하여 생산되는 전지셀 |
KR20160032929A (ko) * | 2014-09-17 | 2016-03-25 | 삼성에스디아이 주식회사 | 이차 전지 |
KR20160036495A (ko) * | 2014-09-25 | 2016-04-04 | 주식회사 엘지화학 | 둘 이상의 케이스 부재들을 포함하는 각형 전지셀 |
US9401501B2 (en) * | 2012-05-18 | 2016-07-26 | 24M Technologies, Inc. | Electrochemical cells and methods of manufacturing the same |
KR20210111973A (ko) | 2020-03-04 | 2021-09-14 | 정현준 | 인테리어 o2o 서비스 시스템 |
KR20220104340A (ko) | 2021-01-18 | 2022-07-26 | 주식회사 우리기술 | 묘삼 재배용 정식판 및 이를 이용한 묘삼의 재배방법 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001250515A (ja) | 2000-03-06 | 2001-09-14 | Mitsubishi Chemicals Corp | 電 池 |
JP2002260602A (ja) | 2001-02-28 | 2002-09-13 | Sanyo Electric Co Ltd | 薄型電池 |
JP2006286214A (ja) | 2005-03-31 | 2006-10-19 | Ngk Spark Plug Co Ltd | 薄型電池 |
KR101094024B1 (ko) | 2009-11-18 | 2011-12-19 | 삼성에스디아이 주식회사 | 이차전지 |
-
2022
- 2022-08-22 JP JP2023537373A patent/JP7542911B2/ja active Active
- 2022-08-22 EP EP22861673.6A patent/EP4246673A1/en active Pending
- 2022-08-22 US US18/269,710 patent/US20240063477A1/en active Pending
- 2022-08-22 WO PCT/KR2022/012539 patent/WO2023027464A1/ko active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100227216A1 (en) * | 2005-12-02 | 2010-09-09 | Yuki Tominaga | Lithium ion rechargeable cell |
KR20120060707A (ko) * | 2010-12-02 | 2012-06-12 | 주식회사 엘지화학 | 전지셀의 제조방법 및 이를 이용하여 생산되는 전지셀 |
US9401501B2 (en) * | 2012-05-18 | 2016-07-26 | 24M Technologies, Inc. | Electrochemical cells and methods of manufacturing the same |
KR20160032929A (ko) * | 2014-09-17 | 2016-03-25 | 삼성에스디아이 주식회사 | 이차 전지 |
KR20160036495A (ko) * | 2014-09-25 | 2016-04-04 | 주식회사 엘지화학 | 둘 이상의 케이스 부재들을 포함하는 각형 전지셀 |
KR20210111973A (ko) | 2020-03-04 | 2021-09-14 | 정현준 | 인테리어 o2o 서비스 시스템 |
KR20220104340A (ko) | 2021-01-18 | 2022-07-26 | 주식회사 우리기술 | 묘삼 재배용 정식판 및 이를 이용한 묘삼의 재배방법 |
Also Published As
Publication number | Publication date |
---|---|
EP4246673A1 (en) | 2023-09-20 |
JP7542911B2 (ja) | 2024-09-02 |
JP2024500142A (ja) | 2024-01-04 |
US20240063477A1 (en) | 2024-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018106026A1 (ko) | 이차 전지 모듈 | |
WO2020009484A1 (ko) | 열수축성 튜브를 포함하는 배터리 모듈 | |
WO2019245214A1 (ko) | 이차 전지 및 버스바를 포함한 배터리 모듈 | |
WO2016017983A1 (ko) | 배터리 모듈 | |
WO2017104878A1 (ko) | 배터리 팩 | |
WO2019078453A1 (ko) | 균열 방지 구조를 포함하는 파우치형 전지케이스 및 이의 제조방법 | |
WO2019045329A1 (ko) | 2단계의 실링 과정을 포함하는 파우치형 전지의 사이드부 실링 방법 | |
WO2019045256A1 (ko) | 벤팅 유도 장치를 포함하는 파우치형 이차전지 | |
WO2022039399A1 (ko) | 전지 모듈, 이를 포함하는 전지 팩 및 전지 팩 제조 방법 | |
WO2021206514A1 (ko) | 전지 모듈 및 이를 포함하는 전지팩 | |
WO2018221836A1 (ko) | 배터리 팩 및 이의 제조방법 | |
WO2022149897A1 (ko) | 전지 모듈, 이를 포함하는 전지팩 및 이의 제조 방법 | |
WO2022270777A1 (ko) | 전지 모듈 및 이를 포함하는 전지 팩 | |
WO2022149884A1 (ko) | 전지 모듈 및 이를 포함하는 전지팩 | |
WO2022005233A1 (ko) | 전지 모듈, 이를 포함하는 전지팩 및 이의 제조 방법 | |
WO2023027464A1 (ko) | 이차전지, 그의 제조방법 및 전지팩 | |
WO2022240021A1 (ko) | 전지 모듈 및 이를 포함하는 전지 팩 | |
WO2022158792A1 (ko) | 전지 모듈 및 이를 포함하는 전지 팩 | |
WO2022270778A1 (ko) | 전지 모듈 및 이를 포함하는 전지 팩 | |
WO2023282604A1 (ko) | 전지 모듈 및 이를 포함하는 전지팩 | |
WO2022005234A1 (ko) | 전지 모듈, 이를 포함하는 전지팩 및 이의 제조 방법 | |
WO2021251623A1 (ko) | 배터리 모듈 및 그의 제조방법 | |
WO2022203232A1 (ko) | 전지 모듈 및 이를 포함하는 전지팩 | |
WO2022059936A1 (ko) | 냉각성능이 향상된 전지 모듈 및 이를 포함하는 전지 팩 | |
WO2021235724A1 (ko) | 이차전지 및 그의 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22861673 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280008166.0 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023537373 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 2022861673 Country of ref document: EP Effective date: 20230613 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18269710 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |