[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023027122A1 - Method for producing ceramic plate, ceramic plate, composite sheet and multilayer substrate - Google Patents

Method for producing ceramic plate, ceramic plate, composite sheet and multilayer substrate Download PDF

Info

Publication number
WO2023027122A1
WO2023027122A1 PCT/JP2022/031927 JP2022031927W WO2023027122A1 WO 2023027122 A1 WO2023027122 A1 WO 2023027122A1 JP 2022031927 W JP2022031927 W JP 2022031927W WO 2023027122 A1 WO2023027122 A1 WO 2023027122A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
ceramic plate
boron nitride
composite sheet
resin
Prior art date
Application number
PCT/JP2022/031927
Other languages
French (fr)
Japanese (ja)
Inventor
仁孝 南方
政秀 金子
亮 吉松
真也 坂口
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to JP2023514411A priority Critical patent/JP7319482B2/en
Publication of WO2023027122A1 publication Critical patent/WO2023027122A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/53After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone involving the removal of at least part of the materials of the treated article, e.g. etching, drying of hardened concrete
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/82Coating or impregnation with organic materials
    • C04B41/83Macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate

Definitions

  • the present disclosure relates to a method for manufacturing a ceramic plate, a ceramic plate, a composite sheet, and a laminated substrate.
  • Components such as power devices, transistors, thyristors, and CPUs are required to efficiently dissipate the heat generated during use.
  • a composite sheet composed of a resin and a ceramic such as boron nitride is used as a heat dissipation member for such an insulating layer and thermal interface material.
  • a composite sheet in which a porous ceramic plate (for example, a boron nitride sintered plate) is impregnated with a resin is being studied (for example, see Patent Document 1).
  • a porous ceramic plate for example, a boron nitride sintered plate
  • a resin-impregnated boron nitride sintered body in which the primary particles constituting the boron nitride sintered body are brought into direct contact with the circuit board to reduce the thermal resistance of the laminate and improve heat dissipation. is also being studied (see Patent Document 2, for example).
  • a ceramic plate is generally manufactured by sintering a block-shaped molded body containing boron nitride and a sintering aid to obtain a sintered body, which is then cut into a predetermined thickness.
  • a method of directly preparing a ceramic plate by forming a thin compact containing boron nitride and a sintering aid and firing it has been adopted.
  • the pores of the ceramic plate have a large pore diameter. Therefore, it is conceivable to increase the content of the sintering aid contained in the sheet-shaped compact. According to the studies of the present inventors, when a plurality of sheet-shaped compacts are stacked and fired in a state where the content of the sintering aid is large, the resulting ceramic plates tend to adhere to each other. It has been found that the ceramic plate may be damaged during the peeling process.
  • a release layer with low crystallinity and low strength is formed by providing a coating film of a slurry containing boron nitride between the sheet-shaped molded bodies and baking it. Attempts have been made to form it between ceramic plates to facilitate peeling. However, when a composite sheet is prepared by impregnating a ceramic plate obtained by such a method with a resin, the resulting composite sheet may not exhibit sufficient adhesion to an adherend.
  • the present disclosure provides the following [1] to [9].
  • the removing step is a step of polishing the thickness of the boron nitride-containing layer or more from the release layer side of the fired plate to reduce the height.
  • a method for manufacturing a ceramic plate [5] Composed of a sintered body containing primary particles of boron nitride, A ceramic plate having a polished surface.
  • the ceramic plate according to [5] which has a median pore size of 1.5 to 4.0 ⁇ m.
  • the ceramic plate according to [5] or [6] which has a thickness of less than 2.0 mm.
  • a laminated substrate comprising the composite sheet according to [8] and a metal layer provided on the composite sheet.
  • the release layer formed by firing has a scaly shape. It has been found that the primary particles of boron nitride tend to be oriented parallel to the main surface of the ceramic plate, which is one of the factors that reduce adhesion. The present disclosure is made based on this finding.
  • One aspect of the present disclosure is a fired plate by firing a sheet having a molded plate containing boron nitride and a sintering aid, and a boron nitride-containing layer provided on at least part of the main surface of the molded plate and a removing step of removing at least part of the release layer derived from the boron nitride-containing layer of the fired plate.
  • the method for producing a ceramic plate includes a removing step of removing a part of the release layer after preparing the fired plate by the firing step, thereby reducing the release layer that may reduce the adhesion to the adherend.
  • a ceramic plate can be prepared. Therefore, a composite sheet with a resin prepared using the obtained ceramic plate can exhibit excellent adhesion to adherends.
  • the above-described method for manufacturing a ceramic plate further includes a step of stacking a plurality of the sheets to obtain a laminate, and the firing step is a step of firing the laminate to obtain a plurality of the fired plates. It's okay. Since the method for manufacturing a ceramic plate according to the present disclosure has a step of removing at least part of the release layer, even when the sheets are laminated and fired, the decrease in adhesiveness is suppressed Ceramics A board can be manufactured and productivity can be improved more.
  • the removing step may be a step of polishing the fired plate from the release layer side. By performing the removal step by polishing, the intended thickness can be removed more reliably.
  • the removal step may be a step of polishing a thickness of the boron nitride-containing layer or more from the release layer side of the fired plate to reduce the height.
  • One aspect of the present disclosure provides a ceramic plate composed of a sintered body containing primary particles of boron nitride and having a polished surface.
  • the ceramic plate By having a polished surface, the ceramic plate can exhibit excellent adhesiveness by removing surface portions that may reduce adhesiveness.
  • the median pore diameter may be 1.5-4.0 ⁇ m.
  • the thickness of the ceramic plate may be less than 2.0 mm.
  • One aspect of the present disclosure provides a composite sheet comprising a nitride sintered plate having pores and a resin filled in the pores, wherein the nitride sintered plate is the ceramic plate described above. do.
  • the composite sheet is composed of the ceramic plate described above, it can exhibit excellent adhesiveness when adhered to an adherend (for example, a metal sheet, etc.).
  • One aspect of the present disclosure provides a laminated substrate comprising the composite sheet described above and a metal layer provided on the composite sheet.
  • the laminated substrate includes the above-described composite sheet, it can exhibit excellent performance, for example, in terms of heat cycle characteristics.
  • the present disclosure it is possible to provide a ceramic plate excellent in adhesiveness to adherends and capable of preparing a composite sheet with a resin, and a method for manufacturing the same. According to the present disclosure, it is also possible to provide a composite sheet having the ceramic plate described above and having excellent adhesion to an adherend.
  • FIG. 1 is a schematic diagram for explaining an example of a method for manufacturing a ceramic plate.
  • FIG. 2 is a perspective view showing an example of a ceramic plate.
  • FIG. 3 is a schematic cross-sectional view showing an example of a laminated substrate.
  • FIG. 4 is a SEM image of the cross section of the ceramic plate in the example.
  • FIG. 5 is a SEM image of a cross section of a ceramic plate in Comparative Example.
  • each component in the composition means the total amount of the multiple substances present in the composition unless otherwise specified when there are multiple substances corresponding to each component in the composition. .
  • One embodiment of the method for producing a ceramic plate includes firing a sheet having a molded plate containing boron nitride and a sintering aid, and a boron nitride-containing layer provided on at least part of the main surface of the molded plate. and a removing step of removing at least part of the release layer derived from the boron nitride-containing layer of the fired plate.
  • FIG. 1 is a schematic diagram for explaining an example of a method for manufacturing a ceramic plate.
  • FIG. 1(a) shows a step of preparing a sheet 10 having a molded plate 2 and boron nitride-containing layers 3 provided on both main surfaces of the molded plate 2 and firing it (firing step). be.
  • FIG. 1(b) is a step (removal step) of removing at least part of the surface layers of both main surfaces of the fired plate 20 obtained by the firing step.
  • the fired plate 20 includes a sintered body 4 (nitride sintered body) obtained by firing the molded plate 2, and the boron nitride-containing material provided on both main surfaces of the sintered body 4. and a release layer 5 obtained by firing the layer 3 .
  • FIG. 1(a) shows a step of preparing a sheet 10 having a molded plate 2 and boron nitride-containing layers 3 provided on both main surfaces of the molded plate 2 and firing it (firing step). be.
  • FIG. 1(c) shows a ceramic plate 100 obtained by removing the release layer 5 by the removal step described above.
  • FIG. 1 shows an example in which the boron nitride-containing layer 3 is provided on both main surfaces of the molded plate 2, it may be formed on one main surface.
  • FIG. 1 shows an example in which the release layer 5 is completely removed, it may be partially removed.
  • the molded plate used in the firing process may be prepared by, for example, the following method. That is, it may be formed by forming a raw material powder containing boron nitride and a sintering aid into a plate shape.
  • the raw material powder may further contain, for example, boron carbonitride, etc., in addition to the boron nitride and the sintering aid.
  • the boron nitride may be amorphous boron nitride or hexagonal boron nitride.
  • amorphous boron nitride powder having an average particle size of 0.5 to 10.0 ⁇ m or hexagonal boron nitride powder having an average particle size of 3.0 to 40.0 ⁇ m can be used.
  • sintering aids include alkali metal carbonates such as lithium carbonate and sodium carbonate, calcium carbonate, and boric acid.
  • a molded plate can be prepared by molding the raw material powder into a plate shape.
  • the molding may be carried out by uniaxial pressing, cold isostatic pressing (CIP), or doctor blade.
  • the molding method is not particularly limited, and press molding may be performed using a mold to form a molded plate.
  • the molding pressure may be, for example, 5-350 MPa.
  • the thickness of the shaped plate may be, for example, less than 2.0 mm.
  • the content of the sintering aid may be adjusted.
  • the lower limit of the content of the sintering aid is, for example, 12% by mass or more, 13% by mass or more, 14% by mass or more, 15% by mass or more, 16% by mass or more, or 17% by mass, based on the total amount of the molded plate. Above, 20% by mass or more, or 23% by mass or more.
  • the content of the sintering aid is within the above range, when a plurality of molded plates are directly laminated, the sintered bodies after sintering may adhere to each other, but the present disclosure In the method for manufacturing a ceramic plate according to No. 1, since the release layer is provided, adhesion between the sintered bodies can be suppressed.
  • the upper limit of the content of the sintering aid is, for example, 35% by mass or less, 32% by mass or less, 30% by mass or less, 27% by mass or less, or 25% by mass or less, based on the total amount of the molded plate. good.
  • the density of the sintered body can be kept within an appropriate range, and high thermal conductivity can be ensured.
  • the content of the sintering aid may be adjusted within the above range, and may be, for example, 12 to 35% by weight, 15 to 27% by weight, or 15 to 25% by weight, based on the total amount of the molded plate. .
  • FIG. 1(a) shows an example in which the boron nitride-containing layer 3 is uniformly provided on both main surfaces of the molding plate 2, but it is formed only on one main surface. may have been Further, in the process described later, it is sufficient that the sintered bodies 4 can be separated from each other as the release layer 5, and the boron nitride-containing layer 3 is provided not on the entire surface of the main surface of the molding plate 2 but partially. may be Further, a boron nitride-containing layer 3 may be further provided on the side surface of the molded plate 2 .
  • the boron nitride-containing layer 3 may be uniformly provided on at least one major surface of the molded plate 2 for ease of preparation of the sheet.
  • the boron nitride-containing layer may be provided, for example, by preparing a slurry containing boron nitride and depositing the slurry on the main surface of the molding plate.
  • the method of attaching the slurry to the molded plate is not particularly limited, and may be, for example, a method of coating the slurry or a method of immersing the molded plate in the slurry.
  • the slurry can be prepared by dispersing boron nitride in a mixture of terpineol, a high-boiling organic solvent such as toluene, and an organic paste that functions as a binder for the BN powder.
  • the organic sizing agent include cellulose-based sizing agents such as methyl cellulose and ethyl cellulose, and acrylic resins such as polyisobutyl methacrylate.
  • the boron nitride for forming the slurry may be amorphous boron nitride or hexagonal boron nitride. From the point of view, it is desirable to contain amorphous boron nitride with low crystallinity and to consist only of amorphous boron nitride.
  • the slurry preferably does not contain sintering aids.
  • the sheet is fired to obtain a fired board.
  • the lower limit of the firing temperature in the firing step may be, for example, 1600° C. or higher, 1650° C. or higher, 1700° C. or higher, or 1800° C. or higher.
  • the upper limit of the firing temperature in the firing step may be, for example, 2200° C. or less, 2100° C. or less, or 2000° C. or less.
  • the firing temperature may be adjusted within the ranges mentioned above, and may be, for example, 1600-2200°C, 1700-2100°C, or 1800-2100°C. Firing times may be, for example, 1-30 hours, 2-20 hours, 3-15 hours, or 4-10 hours.
  • the firing process may be performed under an inert gas atmosphere such as nitrogen, helium, and argon.
  • a batch type furnace or a continuous type furnace can be used.
  • Batch type furnaces include, for example, muffle furnaces, tubular furnaces, atmosphere furnaces, and the like.
  • continuous furnaces include rotary kilns, screw conveyor furnaces, tunnel furnaces, belt furnaces, pusher furnaces, and large continuous furnaces.
  • a sintered board can be obtained.
  • the removing step is a step of removing at least part of the release layer that constitutes the fired plate prepared as described above.
  • FIG. 1(c) shows an example assuming that the release layer 5 is completely removed, but from the above point of view, the release layer 5 may be partially removed.
  • the surface layer of the release layer 5 on the side opposite to the sintered body 4 side may be removed to reduce the height (reduce the thickness), and the release layer 5 is removed in a pattern. You may divide into a location and a location to maintain.
  • the means for removing the release layer 5 in the removing step may be, for example, polishing.
  • polishing for example, sandpaper, a grinder, and the like can be used.
  • the removing step may be a step of polishing the fired plate from the release layer side.
  • the removing step may be a step of polishing the fired plate 20 from the release layer 5 side by a thickness equal to or greater than the thickness of the boron nitride-containing layer 3 to reduce the height.
  • the explanation is given on the assumption that one sheet is fired, but the above-described method for manufacturing the ceramic plate further includes a step of stacking a plurality of the sheets to obtain a laminate, and the firing step is the same as the above. It may be a step of sintering the laminate to obtain a plurality of the sintered plates.
  • a plurality of molded plates forming a laminate are laminated with boron nitride-containing layers interposed therebetween.
  • FIG. 2 is a perspective view showing an example of a ceramic plate.
  • the ceramic plate 100 has a pair of main surfaces 100a and 100b, at least one of which is a polished surface.
  • One embodiment of the ceramic plate is composed of a sintered body containing primary particles of boron nitride and has a polished surface. At least one principal surface of the ceramic plate may be a polished surface, but both principal surfaces are preferably polished surfaces.
  • the main surface of the ceramic plate is preferably not a cut surface (for example, a cut surface with a wire saw).
  • the ceramic plate can be manufactured, for example, by the method for manufacturing a ceramic plate described above.
  • the polished surface is a surface having polishing marks, which are fine grooves formed by polishing.
  • the maximum value of the groove depth of the groove group varies depending on the polishing conditions, it may be, for example, 20 ⁇ m or less, or 10 ⁇ m or less.
  • the depth of the grooves can be determined by measurement with an optical microscope. In the case of adopting the polishing condition to obtain a polished surface with high smoothness, polishing marks can be confirmed with a microscope. Further, polishing may be performed until the polished surface becomes a mirror surface. Since a mirror surface cannot be obtained without polishing, the fact that the main surface of the ceramic plate is a mirror surface means that the main surface of the ceramic plate is a polished surface.
  • a mirror surface in this specification means a surface having an arithmetic mean roughness Ra of 0.00 described in JIS B 0601: 1994 "Product Geometric Characteristic Specifications (GPS) - Surface Texture: Contour Method - Terms, Definitions and Surface Texture Parameters". It means less than 2 ⁇ m.
  • the arithmetic mean roughness Ra can be measured by a line contact type measuring instrument.
  • the line-contact type measuring instrument for example, Mitutoyo Corporation's "Surface Roughness Measuring Instrument Surftest SJ-301" (product name) can be used.
  • the pore diameter of the ceramic plate may be adjusted from the viewpoint of maintaining the mechanical strength of the ceramic plate itself and improving the filling property of the resin.
  • the lower limit of the median pore size of the ceramic plate may be, for example, 1.5 ⁇ m or more, 1.8 ⁇ m or more, or 2.0 ⁇ m or more.
  • the upper limit of the median pore diameter of the ceramic plate may be, for example, 4.0 ⁇ m or less, 3.5 ⁇ m or less, or 3.0 ⁇ m or less.
  • the upper limit of the median pore diameter is within the above range, it is possible to suppress deterioration of the mechanical strength of the ceramic plate and to make the ceramic plate excellent in handleability.
  • the upper limit of the median pore diameter is within the above range, when a composite sheet with a resin is prepared, the contact area between the ceramic particles constituting the ceramic plate can be improved, and the thermal conductivity can be increased. can.
  • the median pore size of the ceramic plate may be adjusted within the range described above, and may be, for example, 1.5-4.0 ⁇ m, 1.8-3.0 ⁇ m, or 2.0-3.0 ⁇ m.
  • the median pore diameter of the ceramic plate can be measured by the following procedure. First, using a mercury porosimeter, the pore size distribution is obtained when the ceramic plate is pressurized while increasing the pressure from 0.0042 MPa to 206.8 MPa. Next, when the horizontal axis is the pore diameter and the vertical axis is the cumulative pore volume, the pore diameter when the cumulative pore volume reaches 50% of the total pore volume is the median pore diameter.
  • the mercury porosimeter for example, "Autopore IV9500" (trade name) manufactured by Shimadzu Corporation can be used.
  • the porosity of the ceramic plate that is, the ratio of the pore volume (V1) in the ceramic plate may be, for example, 30 to 65% by volume, or 40 to 60% by volume. If the porosity is too large, the strength of the ceramic plate tends to decrease. On the other hand, if the porosity is too small, the amount of resin that exudes when the composite sheet is adhered to the adherend tends to be small.
  • the porosity of the ceramic plate is obtained by calculating the bulk density [B (kg/m 3 )] from the volume and mass of the ceramic plate, and calculating the bulk density and the theoretical density [A (kg/m 3 )] of the nitride. , can be obtained by the following formula (1).
  • the theoretical density A of boron nitride is 2280 kg/m 3 .
  • Porosity (% by volume) [1-(B/A)] x 100 (1)
  • the thickness of the ceramic plate may be, for example, less than 2.0 mm, less than 1.8 mm, or less than 1.6 mm.
  • a ceramic plate having such a thickness for example, it becomes easier to fill the pores of the ceramic plate with a resin, and a composite sheet having an excellent resin filling rate can be more easily prepared. can.
  • the thickness of the ceramic plate may be, for example, 0.1 mm or more, or 0.2 mm or more.
  • the thickness of the ceramic plate may be adjusted within the range described above, and may be, for example, 0.1 mm or more and less than 2.0 mm, or 0.2 mm or more and less than 1.6 mm.
  • the thickness of the ceramic plate means a value measured along the direction perpendicular to the main surfaces 100a and 100b. If the thickness of the ceramic plate is not constant, the thickness is measured at 10 arbitrary locations, and the arithmetic mean value is taken as the thickness of the ceramic plate.
  • the ceramic plate described above can be suitably used, for example, for manufacturing a composite sheet prepared by impregnating and semi-curing a resin composition.
  • One embodiment of the composite sheet comprises a nitride sintered plate having pores and a resin filling the pores.
  • the nitride sintered plate in the composite sheet is the ceramic plate described above.
  • the resin includes, for example, a semi-cured product (B stage) of a resin composition containing a main agent and a curing agent.
  • the semi-cured product is obtained by partially progressing the curing reaction of the resin composition.
  • the semi-cured product can be further cured by a subsequent curing treatment.
  • the resin may contain a cured product (C stage) of the resin composition.
  • the resin composition may be a thermosetting resin composition.
  • the semi-cured product may contain monomers such as a main agent and a curing agent in addition to the resin as a resin component. It can be confirmed by, for example, a differential scanning calorimeter that the resin contained in the composite sheet is a semi-cured product (B stage) before becoming a cured product (C stage).
  • the lower limit of the curing rate of the resin contained in the composite sheet may be, for example, 10% or more, 15% or more, 20% or more, 25% or more, or 30% or more.
  • the upper limit of the curing rate of the resin may be, for example, 55% or less, 50% or less, or 45% or less.
  • the resin melts moderately during adhesion to the adherend, and the resin spreads over the adhesion interface, thereby exhibiting better adhesiveness.
  • the curing rate of the resin contained in the composite sheet may be adjusted within the range described above, and may be, for example, 10-55%, 25-50%, or 30-50%.
  • the resin filling rate may be adjusted from the viewpoint of further increasing the adhesiveness of the composite sheet, and may be, for example, 90% by volume or more, 92% by volume or more, 94% by volume or more, or 96% by volume or more.
  • the upper limit of the resin filling rate is not particularly limited, but may be, for example, 100% by mass or less, or 98% by volume or less.
  • the resin filling rate may be adjusted within the range described above, and may be, for example, 90 to 100% by volume, or 94 to 100% by volume.
  • Resins include, for example, epoxy resins, silicone resins, cyanate resins, silicone rubbers, acrylic resins, phenolic resins, melamine resins, urea resins, bismaleimide resins, unsaturated polyesters, fluororesins, polyimides, polyamideimides, polyetherimides, poly Butylene terephthalate, polyethylene terephthalate, polyphenylene ether, polyphenylene sulfide, wholly aromatic polyester, polysulfone, liquid crystal polymer, polyethersulfone, polycarbonate, maleimide resin, maleimide-modified resin, ABS (acrylonitrile-butadiene-styrene) resin, AAS (acrylonitrile-acrylic rubber/styrene) resin, AES (acrylonitrile/ethylene/propylene/diene rubber-styrene) resin, polyglycolic acid resin, polyphthalamide, and polyacetal.
  • epoxy resins silicone resins, cyanate resins,
  • FIG. 3 is a cross-sectional view of an example of a laminated substrate cut in the thickness direction.
  • Laminated substrate 300 includes composite sheet 200 , metal layer 30 adhered to main surface 200 a of composite sheet 200 , and metal layer 40 adhered to main surface 200 b of composite sheet 200 .
  • the metal layers 30 and 40 are not particularly limited as long as they are made of metal.
  • the metal layer may be, for example, a metal plate or a metal foil.
  • the metal layers 30 and 40 may also have patterns such as circuits, for example.
  • Materials for the metal layers 30 and 40 include, for example, aluminum and copper.
  • the thickness of the metal layers 30, 40 may be, independently of each other, for example 0.035 mm or more or 10 mm or less. The material, thickness, presence/absence of patterns, etc. of the metal layers 30 and 40 may be the same or different.
  • the laminated substrate 300 may have a resin layer between the composite sheet 200 and the metal layers 30 and 40 within the scope of the present disclosure.
  • This resin layer may be formed by curing the resin exuded from the composite sheet 200 .
  • the composite sheet 200 and the metal layers 30 and 40 in the laminated substrate 300 are sufficiently firmly adhered by the exuded resin, and thus have excellent adhesiveness. Since such a laminated substrate is thin and has excellent adhesion and heat dissipation properties, it can be suitably used as a heat dissipation member for semiconductor devices and the like.
  • Example 1 100 parts by mass of orthoboric acid manufactured by Shin Nippon Denko Co., Ltd. and 35 parts by mass of acetylene black (trade name: HS100) manufactured by Denka Co., Ltd. were mixed using a Henschel mixer. The obtained mixture was filled in a graphite crucible and heated at 2200° C. for 5 hours in an argon atmosphere in an arc furnace to obtain massive boron carbide (B 4 C). The resulting mass was coarsely pulverized with a jaw crusher to obtain coarse powder. This coarse powder was further pulverized by a ball mill having silicon carbide balls ( ⁇ 10 mm) to obtain pulverized powder.
  • HS100 acetylene black
  • the prepared pulverized powder was filled in a crucible made of boron nitride. After that, using a resistance heating furnace, heating was performed for 10 hours under conditions of 2000° C. and 0.85 MPa in a nitrogen gas atmosphere. Thus, a fired product containing boron carbonitride (B 4 CN 4 ) and boron nitride (BN) was obtained.
  • a sintering aid was prepared by blending powdered boric acid and calcium carbonate. In preparation, 50.0 parts by mass of calcium carbonate was blended with 100 parts by mass of boric acid. At this time, the atomic ratio of boron to calcium was 17.5 atomic % of calcium to 100 atomic % of boron. In this way, 20 parts by mass of the sintering aid was added to 100 parts by mass of the fired product, and mixed using a Henschel mixer to prepare powdery raw material powder.
  • Three molded plates were prepared by the same operation. The content of sintering aid in each molded plate was 16.6% by weight.
  • amorphous boron nitride manufactured by Denka Co., Ltd., trade name: GP
  • a release agent slurry consisting of a mixture of 60 parts by weight of terpineol, 30 parts by weight of toluene, and 10 parts by weight of polyisobutyl methacrylate. Dispersed to prepare a slurry.
  • the resulting slurry was used to form a coating film (boron nitride-containing layer) having a thickness of 0.03 mm on one main surface of the molded plate by a doctor blade method.
  • the molded plates provided with the coating film were laminated with each other with the coating film interposed therebetween to obtain a laminate.
  • the obtained laminate was placed in a boron nitride container and introduced into a batch-type high-frequency furnace. In a batch-type high-frequency furnace, it was heated for 5 hours under the conditions of atmospheric pressure, nitrogen flow rate of 5 L/min, and 2000° C. (firing step). After that, a laminate in which the boron nitride sintered plates (sintered bodies) and the release layers were alternately laminated was taken out from the boron nitride container. The boron nitride sintered plate constituting the laminate was peeled off using a thickness gauge leaf to obtain three fired plates with a release layer remaining on the surface layer. The thickness of the fired plate was 0.39 mm.
  • Both main surfaces of the fired plate were polished with sandpaper by 0.05 mm from the surface layer to remove the release layer remaining on the surface layer (removal step).
  • a ceramic plate which is a sintered body of boron nitride, was obtained.
  • the thickness of the obtained ceramic plate was 0.29 mm.
  • a cross-sectional SEM image of the ceramic plate is shown in FIG. As shown in FIG. 4, in the vicinity of the surface layer of the ceramic plate (the position indicated by the dotted line in FIG. 4), the primary particles of boron nitride that are oriented in a direction parallel to the main surface of the ceramic plate are removed. I was able to confirm that.
  • groove groups were formed by polishing.
  • the maximum depth of the grooves in the groove group was 10 ⁇ m.
  • the polishing was performed so that the arithmetic mean roughness Ra was within the range of 1.0 to 2.0 ⁇ m.
  • Example 1 A sintered plate was prepared in the same manner as in Example 1 before the polishing step. This sintered plate was used as a ceramic plate of Comparative Example 1. The thickness of the ceramic plate was 0.40 mm. A cross-sectional SEM image of the ceramic plate is shown in FIG. As shown in FIG. 5, in the vicinity of the surface layer of the ceramic plate (the position indicated by the dotted line in FIG. 5), it was confirmed that the primary particles of boron nitride were oriented in a direction parallel to the main surface of the ceramic plate.
  • a resin composition having a curing rate of 13% was dropped onto the main surface of a ceramic plate heated to 160° C. while maintaining the temperature. Under atmospheric pressure, the resin composition dropped on the main surface of the ceramic plate is spread using a silicone rubber spatula, and while spreading the resin composition over the entire main surface, the pores of the ceramic plate are impregnated with the resin. A composition-impregnated body was obtained.
  • the resin composition-impregnated body was heated at 160°C for 5 minutes under atmospheric pressure to semi-cure the resin composition.
  • the curing rate of the resin composition contained in the semi-cured product was determined by measurement using a differential scanning calorimeter.
  • the curing rate of the impregnated resin composition was 45%.
  • the bulk density of the boron nitride sintered plate and composite sheet conforms to JIS Z 8807:2012 "Method for measuring density and specific gravity by geometric measurement", and the length of each side of the boron nitride sintered plate or composite sheet (measured with a vernier caliper) and the mass of the boron nitride sintered plate or composite sheet measured with an electronic balance (see JIS Z 8807:2012, item 9).
  • the theoretical density of the composite sheet was determined by the following formula (4).
  • Theoretical density of composite sheet bulk density of boron nitride sintered plate + true density of resin x (1 - bulk density of boron nitride sintered plate / true density of boron nitride) ... (4)
  • the true density of the boron nitride sintered plate and resin is measured using a dry automatic densitometer in accordance with JIS Z 8807:2012 "Method for measuring density and specific gravity by gas replacement method". (See formulas (14) to (17) in item 11 of JIS Z 8807:2012).
  • the present disclosure it is possible to provide a ceramic plate excellent in adhesiveness to adherends and capable of preparing a composite sheet with a resin, and a method for manufacturing the same. According to the present disclosure, it is also possible to provide a composite sheet having the ceramic plate described above and having excellent adhesion to an adherend.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)

Abstract

One aspect of the present disclosure provides a method for producing a ceramic plate, the method comprising: a firing step in which a fired plate is obtained by firing a sheet that comprises a shaped plate containing boron nitride and a sintering assistant, and a boron nitride-containing layer that is provided on at least a part of a main surface of the shaped plate; and a removal step in which at least a part of a mold release layer that is derived from the boron nitride-containing layer of the fired plate is removed.

Description

セラミックス板の製造方法、セラミックス板、複合シート、及び積層基板Ceramic plate manufacturing method, ceramic plate, composite sheet, and laminated substrate
 本開示は、セラミックス板の製造方法、セラミックス板、複合シート、及び積層基板に関する。 The present disclosure relates to a method for manufacturing a ceramic plate, a ceramic plate, a composite sheet, and a laminated substrate.
 パワーデバイス、トランジスタ、サイリスタ、及びCPU等の部品においては、使用時に発生する熱を効率的に放熱することが求められる。このような要請から、従来、電子部品を実装するプリント配線板の絶縁層の高熱伝導化を図ったり、電子部品又はプリント配線板を、電気絶縁性を有する熱インターフェース材(Thermal Interface Materials)を介してヒートシンクに取り付けたりすることが行われてきた。このような絶縁層及び熱インターフェース材には、放熱部材として、樹脂と窒化ホウ素等のセラミックとで構成される複合シートが用いられる。 Components such as power devices, transistors, thyristors, and CPUs are required to efficiently dissipate the heat generated during use. In response to such demands, it has been conventional practice to increase the thermal conductivity of the insulating layer of the printed wiring board on which electronic components are mounted, or to place the electronic components or the printed wiring board through a thermal interface material having electrical insulation. It has been practiced to attach it to a heat sink. A composite sheet composed of a resin and a ceramic such as boron nitride is used as a heat dissipation member for such an insulating layer and thermal interface material.
 このような複合シートとして、多孔性のセラミックス板(例えば、窒化ホウ素焼結板)に樹脂を含浸させた複合シートが検討されている(例えば、特許文献1参照)。また、回路基板と樹脂含浸窒化ホウ素焼結体とを有する積層体において、窒化ホウ素焼結体を構成する一次粒子と回路基板とを直接接触させて、積層体の熱抵抗を低減し、放熱性を改善することも検討されている(例えば、特許文献2参照)。 As such a composite sheet, a composite sheet in which a porous ceramic plate (for example, a boron nitride sintered plate) is impregnated with a resin is being studied (for example, see Patent Document 1). In addition, in a laminate having a circuit board and a resin-impregnated boron nitride sintered body, the primary particles constituting the boron nitride sintered body are brought into direct contact with the circuit board to reduce the thermal resistance of the laminate and improve heat dissipation. is also being studied (see Patent Document 2, for example).
国際公開第2014/196496号WO2014/196496 特開2016-103611号公報JP 2016-103611 A
 セラミックス板は一般に窒化ホウ素及び焼結助剤を含むブロック状の成形体を焼成し焼結体を得て、これを所定の厚みに切り出すことで製造されている。これに対して、近年、歩留まりを向上させる観点から、窒化ホウ素及び焼結助剤を含む成形体を薄く成形し、これを焼成することによって、直接、セラミックス板を調製する方法が採用されている。 A ceramic plate is generally manufactured by sintering a block-shaped molded body containing boron nitride and a sintering aid to obtain a sintered body, which is then cut into a predetermined thickness. On the other hand, in recent years, from the viewpoint of improving the yield, a method of directly preparing a ceramic plate by forming a thin compact containing boron nitride and a sintering aid and firing it has been adopted. .
 また、複合シートにおける樹脂の充填率を十分なものとするために、セラミックス板の有する細孔の細孔径を大きなものとすることが求められる。そのために、シート状に成形された上記成形体に含まれる焼結助剤の含有量の増加が考えられる。本発明者らの検討によれば、焼結助剤の含有量が多い状態でシート状の成形体を複数枚積層して焼成を行った場合、得られるセラミックス板同士が接着しやすく、これをはく離する際にセラミックス板の破損等を招き得ることが判明した。そこで、シート状の成形体を積層させる際には、シート状の成形体の間に窒化ホウ素を含むスラリーの塗膜を設けて焼成することによって、結晶性が低く、低強度の離型層をセラミックス板の間に形成し、はく離を容易にする方法が試みられている。しかし、このような方法で得られるセラミックス板に対して樹脂を含浸させ、複合シートを調製した場合、得られる複合シートの被着体への接着性が十分発揮されない場合が生じ得る。 In addition, in order to achieve a sufficient resin filling rate in the composite sheet, it is required that the pores of the ceramic plate have a large pore diameter. Therefore, it is conceivable to increase the content of the sintering aid contained in the sheet-shaped compact. According to the studies of the present inventors, when a plurality of sheet-shaped compacts are stacked and fired in a state where the content of the sintering aid is large, the resulting ceramic plates tend to adhere to each other. It has been found that the ceramic plate may be damaged during the peeling process. Therefore, when stacking sheet-shaped molded bodies, a release layer with low crystallinity and low strength is formed by providing a coating film of a slurry containing boron nitride between the sheet-shaped molded bodies and baking it. Attempts have been made to form it between ceramic plates to facilitate peeling. However, when a composite sheet is prepared by impregnating a ceramic plate obtained by such a method with a resin, the resulting composite sheet may not exhibit sufficient adhesion to an adherend.
 本開示は、被着体への接着性に優れる、樹脂との複合シートを調製可能なセラミックス板、及びその製造方法を提供することを目的とする。本開示はまた、上述のセラミックス板を備える、被着体への接着性に優れる複合シートを提供することを目的とする。 An object of the present disclosure is to provide a ceramic plate capable of preparing a composite sheet with a resin, which has excellent adhesion to an adherend, and a method for manufacturing the same. Another object of the present disclosure is to provide a composite sheet having the ceramic plate described above and having excellent adhesion to an adherend.
 本開示は、以下の[1]~[9]を提供する。 The present disclosure provides the following [1] to [9].
[1]
 窒化ホウ素及び焼結助剤を含む成形板と、前記成形板の主面の少なくとも一部上に設けられた、窒化ホウ素含有層とを有するシートを焼成して焼成板を得る焼成工程と、
 前記焼成板の前記窒化ホウ素含有層に由来する離型層の少なくとも一部を除去する除去工程と、を有する、セラミックス板の製造方法。
[2]
 前記シートを複数枚積層して積層体を得る工程を更に有し、
 前記焼成工程は、前記積層体を焼成して、複数枚の前記焼成板を得る工程である、[1]に記載の製造方法。
[3]
 前記除去工程は、前記焼成板を前記離型層側から研磨する工程である、[1]又は[2]に記載の製造方法。
[4]
 前記除去工程は、前記焼成板の前記離型層側から、前記窒化ホウ素含有層の厚さ以上を研磨し、低背化する工程である、[1]~[3]のいずれかに記載のセラミックス板の製造方法。
[5]
 窒化ホウ素の一次粒子を含む焼結体で構成され、
 研磨面を有する、セラミックス板。
[6]
 メジアン細孔径が1.5~4.0μmである、[5]に記載のセラミックス板。
[7]
 厚さが2.0mm未満である、[5]又は[6]に記載のセラミックス板。
[8]
 細孔を有する窒化物焼結板と、前記細孔に充填された樹脂と、を備え、
 前記窒化物焼結板が、[5]~[7]のいずれかに記載のセラミックス板である、複合シート。
[9]
 [8]に記載の複合シートと、前記複合シート上に設けられた金属層と、を備える、積層基板。
[1]
A firing step of obtaining a fired plate by firing a sheet having a molded plate containing boron nitride and a sintering aid and a boron nitride-containing layer provided on at least part of the main surface of the molded plate;
and a removing step of removing at least part of a release layer derived from the boron nitride-containing layer of the fired plate.
[2]
further comprising a step of laminating a plurality of the sheets to obtain a laminate,
The manufacturing method according to [1], wherein the firing step is a step of firing the laminate to obtain a plurality of fired plates.
[3]
The manufacturing method according to [1] or [2], wherein the removing step is a step of polishing the fired plate from the release layer side.
[4]
The removing step is a step of polishing the thickness of the boron nitride-containing layer or more from the release layer side of the fired plate to reduce the height. A method for manufacturing a ceramic plate.
[5]
Composed of a sintered body containing primary particles of boron nitride,
A ceramic plate having a polished surface.
[6]
The ceramic plate according to [5], which has a median pore size of 1.5 to 4.0 μm.
[7]
The ceramic plate according to [5] or [6], which has a thickness of less than 2.0 mm.
[8]
A nitride sintered plate having pores and a resin filled in the pores,
A composite sheet, wherein the nitride sintered plate is the ceramic plate according to any one of [5] to [7].
[9]
A laminated substrate comprising the composite sheet according to [8] and a metal layer provided on the composite sheet.
 上述のような複合シートの被着体への接着性が十分に発揮されない場合があることについて、本発明者らが詳細に検討したところ、焼成によって形成される離型層において、鱗片形状を有する窒化ホウ素の一次粒子が、セラミックス板の主面と平行に配向する傾向にあり、接着性を低下させる一因となっていることを見い出した。本開示は、当該知見に基づいてなされたものである。 As a result of detailed studies by the present inventors on the fact that the composite sheet as described above may not exhibit sufficient adhesion to the adherend, it was found that the release layer formed by firing has a scaly shape. It has been found that the primary particles of boron nitride tend to be oriented parallel to the main surface of the ceramic plate, which is one of the factors that reduce adhesion. The present disclosure is made based on this finding.
 本開示の一側面は、窒化ホウ素及び焼結助剤を含む成形板と、上記成形板の主面の少なくとも一部上に設けられた、窒化ホウ素含有層とを有するシートを焼成して焼成板を得る焼成工程と、上記焼成板の上記窒化ホウ素含有層に由来する離型層の少なくとも一部を除去する除去工程と、を有する、セラミックス板の製造方法を提供する。 One aspect of the present disclosure is a fired plate by firing a sheet having a molded plate containing boron nitride and a sintering aid, and a boron nitride-containing layer provided on at least part of the main surface of the molded plate and a removing step of removing at least part of the release layer derived from the boron nitride-containing layer of the fired plate.
 上記セラミックス板の製造方法は、焼成工程によって焼成板を調製した後に、離型層の一部を除去する除去工程を有することによって、被着体との接着性を低下させ得る離型層を低減したセラミックス板を調製することができる。そのため、得られるセラミックス板を用いて調製される、樹脂との複合シートは被着体への優れた接着性を発揮し得る。 The method for producing a ceramic plate includes a removing step of removing a part of the release layer after preparing the fired plate by the firing step, thereby reducing the release layer that may reduce the adhesion to the adherend. A ceramic plate can be prepared. Therefore, a composite sheet with a resin prepared using the obtained ceramic plate can exhibit excellent adhesion to adherends.
 上述のセラミックス板の製造方法は、上記シートを複数枚積層して積層体を得る工程を更に有し、上記焼成工程は、上記積層体を焼成して、複数枚の上記焼成板を得る工程であってよい。本開示に係るセラミックス板の製造方法は、離型層の少なくとも一部を除去する工程を有することから、上記シートを積層して焼成した場合であっても、接着性の低下が抑制されたセラミックス板を製造することができ、生産性をより向上させることができる。 The above-described method for manufacturing a ceramic plate further includes a step of stacking a plurality of the sheets to obtain a laminate, and the firing step is a step of firing the laminate to obtain a plurality of the fired plates. It's okay. Since the method for manufacturing a ceramic plate according to the present disclosure has a step of removing at least part of the release layer, even when the sheets are laminated and fired, the decrease in adhesiveness is suppressed Ceramics A board can be manufactured and productivity can be improved more.
 上記除去工程は、上記焼成板を上記離型層側から研磨する工程であってよい。上記除去工程を研磨によって行うことで、目的としている厚み分をより確実に除去できる。 The removing step may be a step of polishing the fired plate from the release layer side. By performing the removal step by polishing, the intended thickness can be removed more reliably.
 上記除去工程は、上記焼成板の上記離型層側から、上記窒化ホウ素含有層の厚さ以上を研磨し、低背化する工程であってよい。上記除去工程における研磨量を上述のような範囲とすることで、離型層の全体をより確実に除去することが可能であり、接着性により優れるセラミックス板を製造できる。 The removal step may be a step of polishing a thickness of the boron nitride-containing layer or more from the release layer side of the fired plate to reduce the height. By setting the amount of polishing in the removal step to the range described above, the entire release layer can be removed more reliably, and a ceramic plate with better adhesion can be produced.
 本開示の一側面は、窒化ホウ素の一次粒子を含む焼結体で構成され、研磨面を有する、セラミックス板を提供する。 One aspect of the present disclosure provides a ceramic plate composed of a sintered body containing primary particles of boron nitride and having a polished surface.
 上記セラミックス板は、研磨面を有することによって、接着性を低下させ得る表面部分が除去されていることで、優れた接着性を発揮し得る。 By having a polished surface, the ceramic plate can exhibit excellent adhesiveness by removing surface portions that may reduce adhesiveness.
 メジアン細孔径が1.5~4.0μmであってよい。 The median pore diameter may be 1.5-4.0 μm.
 上記セラミックス板は、厚さが2.0mm未満であってよい。 The thickness of the ceramic plate may be less than 2.0 mm.
 本開示の一側面は、細孔を有する窒化物焼結板と、上記細孔に充填された樹脂と、を備え、上記窒化物焼結板が、上述のセラミックス板である、複合シートを提供する。 One aspect of the present disclosure provides a composite sheet comprising a nitride sintered plate having pores and a resin filled in the pores, wherein the nitride sintered plate is the ceramic plate described above. do.
 上記複合シートは、上述のセラミックス板によって構成されることから、被着体(例えば、金属シート等)との接着の際に優れた接着性を発揮し得る。 Since the composite sheet is composed of the ceramic plate described above, it can exhibit excellent adhesiveness when adhered to an adherend (for example, a metal sheet, etc.).
 本開示の一側面は、上述の複合シートと、上記複合シート上に設けられた金属層と、を備える、積層基板を提供する。 One aspect of the present disclosure provides a laminated substrate comprising the composite sheet described above and a metal layer provided on the composite sheet.
 上記積層基板は、上述の複合シートを備えることから、例えば、ヒートサイクル特性等において優れた性能を発揮し得る。 Since the laminated substrate includes the above-described composite sheet, it can exhibit excellent performance, for example, in terms of heat cycle characteristics.
 本開示によれば、被着体への接着性に優れる、樹脂との複合シートを調製可能なセラミックス板、及びその製造方法を提供できる。本開示によればまた、上述のセラミックス板を備える、被着体への接着性に優れる複合シートを提供できる。 According to the present disclosure, it is possible to provide a ceramic plate excellent in adhesiveness to adherends and capable of preparing a composite sheet with a resin, and a method for manufacturing the same. According to the present disclosure, it is also possible to provide a composite sheet having the ceramic plate described above and having excellent adhesion to an adherend.
図1は、セラミックス板の製造方法の一例を説明するための模式図である。FIG. 1 is a schematic diagram for explaining an example of a method for manufacturing a ceramic plate. 図2は、セラミックス板の一例を示す斜視図である。FIG. 2 is a perspective view showing an example of a ceramic plate. 図3は、積層基板の一例を示す模式断面図である。FIG. 3 is a schematic cross-sectional view showing an example of a laminated substrate. 図4は、実施例におけるセラミックス板の断面のSEM画像である。FIG. 4 is a SEM image of the cross section of the ceramic plate in the example. 図5は、比較例におけるセラミックス板の断面のSEM画像である。FIG. 5 is a SEM image of a cross section of a ceramic plate in Comparative Example.
 以下、場合により図面を参照して、本開示の実施形態を説明する。ただし、以下の実施形態は、本開示を説明するための例示であり、本開示を以下の内容に限定する趣旨ではない。説明において、同一要素又は同一機能を有する要素には同一符号を用い、場合により重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。更に、各要素の寸法比率は図示の比率に限られるものではない。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings as the case may be. However, the following embodiments are examples for explaining the present disclosure, and are not intended to limit the present disclosure to the following contents. In the description, the same reference numerals are used for the same elements or elements having the same function, and overlapping descriptions are omitted in some cases. In addition, unless otherwise specified, positional relationships such as up, down, left, and right are based on the positional relationships shown in the drawings. Furthermore, the dimensional ratio of each element is not limited to the illustrated ratio.
 本明細書において例示する材料は特に断らない限り、1種を単独で又は2種以上を組み合わせて用いることができる。組成物中の各成分の含有量は、組成物中の各成分に該当する物質が複数存在する場合には、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。 The materials exemplified in this specification can be used singly or in combination of two or more unless otherwise specified. The content of each component in the composition means the total amount of the multiple substances present in the composition unless otherwise specified when there are multiple substances corresponding to each component in the composition. .
 セラミックス板の製造方法の一実施形態は、窒化ホウ素及び焼結助剤を含む成形板と、上記成形板の主面の少なくとも一部上に設けられた、窒化ホウ素含有層とを有するシートを焼成して焼成板を得る焼成工程と、上記焼成板の上記窒化ホウ素含有層に由来する離型層の少なくとも一部を除去する除去工程と、を有する。 One embodiment of the method for producing a ceramic plate includes firing a sheet having a molded plate containing boron nitride and a sintering aid, and a boron nitride-containing layer provided on at least part of the main surface of the molded plate. and a removing step of removing at least part of the release layer derived from the boron nitride-containing layer of the fired plate.
 図1は、セラミックス板の製造方法の一例を説明するための模式図である。図1の(a)は、成形板2と、成形板2の両主面上に設けられた窒化ホウ素含有層3と、を有するシート10を用意し、これを焼成する工程(焼成工程)である。図1の(b)は、焼成工程によって得られる焼成板20の両主面の表層を少なくとも一部除去する工程(除去工程)である。上記焼成板20は、上記成形板2を焼成することで得られる焼結体4(窒化物焼結体)と、上記焼結体4の両主面上に設けられている、上記窒化ホウ素含有層3を焼成することによって得られる離型層5とを有する。図1の(c)は、上記除去工程によって、離型層5を除去して得られるセラミックス板100を示す。図1では、窒化ホウ素含有層3を成形板2の両主面上に設ける例で示したが、一方の主面上に形成されるものであってよい。図1では、離型層5を完全に除去する例で示したが、部分的に除去するような態様であってもよい。 FIG. 1 is a schematic diagram for explaining an example of a method for manufacturing a ceramic plate. FIG. 1(a) shows a step of preparing a sheet 10 having a molded plate 2 and boron nitride-containing layers 3 provided on both main surfaces of the molded plate 2 and firing it (firing step). be. FIG. 1(b) is a step (removal step) of removing at least part of the surface layers of both main surfaces of the fired plate 20 obtained by the firing step. The fired plate 20 includes a sintered body 4 (nitride sintered body) obtained by firing the molded plate 2, and the boron nitride-containing material provided on both main surfaces of the sintered body 4. and a release layer 5 obtained by firing the layer 3 . FIG. 1(c) shows a ceramic plate 100 obtained by removing the release layer 5 by the removal step described above. Although FIG. 1 shows an example in which the boron nitride-containing layer 3 is provided on both main surfaces of the molded plate 2, it may be formed on one main surface. Although FIG. 1 shows an example in which the release layer 5 is completely removed, it may be partially removed.
 焼成工程で使用する成形板は、例えば、以下のような方法で調製したものであってよい。すなわち、窒化ホウ素及び焼結助剤を含む原料粉末を板状に成形したものであってよい。上記原料粉末は、窒化ホウ素及び焼結助剤の他に、例えば、炭窒化ホウ素等を更に含んでもよい。 The molded plate used in the firing process may be prepared by, for example, the following method. That is, it may be formed by forming a raw material powder containing boron nitride and a sintering aid into a plate shape. The raw material powder may further contain, for example, boron carbonitride, etc., in addition to the boron nitride and the sintering aid.
 窒化ホウ素は、アモルファス状の窒化ホウ素であってよく、六方晶状の窒化ホウ素であってもよい。窒化ホウ素は、例えば、平均粒径が0.5~10.0μmであるアモルファス窒化ホウ素粉末、又は、平均粒径が3.0~40.0μmである六方晶窒化ホウ素粉末を用いることができる。 The boron nitride may be amorphous boron nitride or hexagonal boron nitride. For boron nitride, for example, amorphous boron nitride powder having an average particle size of 0.5 to 10.0 μm or hexagonal boron nitride powder having an average particle size of 3.0 to 40.0 μm can be used.
 焼結助剤は、例えば、炭酸リチウム及び炭酸ナトリウム等のアルカリ金属の炭酸塩、炭酸カルシウム、並びにホウ酸等が挙げられる。 Examples of sintering aids include alkali metal carbonates such as lithium carbonate and sodium carbonate, calcium carbonate, and boric acid.
 成形板は、上記原料粉末を板状に成形することで調製できる。成形は、一軸加圧で行ってよく、冷間等方加圧(CIP)法で行ってもよく、ドクターブレード法で行ってもよい。成形方法は特に限定されず、金型を用いてプレス成形を行って成形板としてもよい。成形圧力は、例えば、5~350MPaであってよい。成形板の厚さは、例えば、2.0mm未満であってよい。ブロック状の窒化物焼結体を調製後に、例えば、ワイヤーソー等によって切断してシート状とする場合に比べて、焼成前の段階からシート状に成形することによって、加工による材料ロスを低減することができる。したがって、高い歩留まりでセラミックス板を製造することができる。 A molded plate can be prepared by molding the raw material powder into a plate shape. The molding may be carried out by uniaxial pressing, cold isostatic pressing (CIP), or doctor blade. The molding method is not particularly limited, and press molding may be performed using a mold to form a molded plate. The molding pressure may be, for example, 5-350 MPa. The thickness of the shaped plate may be, for example, less than 2.0 mm. After preparing a block-shaped nitride sintered body, for example, compared to cutting it with a wire saw or the like to form a sheet, by forming it into a sheet from the stage before firing, material loss due to processing is reduced. be able to. Therefore, the ceramic plate can be manufactured with a high yield.
 比較的大きなメジアン細孔径を有するセラミックス板を調製する観点から、焼結助剤の含有量を調整してよい。焼結助剤の含有量の下限値は、成形板の全量を基準として、例えば、12質量%以上、13質量%以上、14質量%以上、15質量%以上、16質量%以上、17質量%以上、20質量%以上、又は23質量%以上であってよい。焼結助剤の含有量の下限値が上記範囲内であることで、得られるセラミックス板のメジアン細孔径を大きなものとすることができ、樹脂の充填をより容易なものとすることができる。一方、焼結助剤の含有量が上記範囲内となることで、複数枚の成形板を直接積層した場合には、焼結後の焼結体同士が接着する可能性があるが、本開示に係るセラミックス板の製造方法では、離型層を設けることから、焼結体同士の接着を抑制できる。焼結助剤の含有量の上限値は、成形板の全量を基準として、例えば、35質量%以下、32質量%以下、30質量%以下、27質量%以下、又は25質量%以下であってよい。焼結助剤の含有量の上限値が上記範囲内であることで、焼結体の密度を適度な範囲とすることができ、高い熱伝導性を確保することができる。焼結助剤の含有量の上述の範囲内で調整してよく、成形板の全量を基準として、例えば、12~35質量%、15~27質量%、又は15~25質量%であってよい。 From the viewpoint of preparing a ceramic plate having a relatively large median pore size, the content of the sintering aid may be adjusted. The lower limit of the content of the sintering aid is, for example, 12% by mass or more, 13% by mass or more, 14% by mass or more, 15% by mass or more, 16% by mass or more, or 17% by mass, based on the total amount of the molded plate. Above, 20% by mass or more, or 23% by mass or more. By setting the lower limit of the content of the sintering aid within the above range, the median pore diameter of the obtained ceramic plate can be increased, and the filling of the resin can be made easier. On the other hand, when the content of the sintering aid is within the above range, when a plurality of molded plates are directly laminated, the sintered bodies after sintering may adhere to each other, but the present disclosure In the method for manufacturing a ceramic plate according to No. 1, since the release layer is provided, adhesion between the sintered bodies can be suppressed. The upper limit of the content of the sintering aid is, for example, 35% by mass or less, 32% by mass or less, 30% by mass or less, 27% by mass or less, or 25% by mass or less, based on the total amount of the molded plate. good. By setting the upper limit of the content of the sintering aid within the above range, the density of the sintered body can be kept within an appropriate range, and high thermal conductivity can be ensured. The content of the sintering aid may be adjusted within the above range, and may be, for example, 12 to 35% by weight, 15 to 27% by weight, or 15 to 25% by weight, based on the total amount of the molded plate. .
 上記成形板上に窒化ホウ素含有層を設けて、焼成にかけるシートを調製する。図1の(a)では、窒化ホウ素含有層3が成形板2の両主面上に一様に窒化ホウ素含有層3が設けられている例で示したが、一方の主面上にのみ形成されていてもよい。また、後述する工程において、離型層5となり、焼結体4同士をはく離できるようであればよく、成形板2の主面上の全面ではなく、部分的に窒化ホウ素含有層3が設けられていてもよい。また、成形板2の側面に窒化ホウ素含有層3が更に設けられていても構わない。上記シートの調製の容易性から、窒化ホウ素含有層3は、成形板2の少なくとも一方の主面上に一様に設けられてよい。 A boron nitride-containing layer is provided on the molded plate to prepare a sheet to be fired. FIG. 1(a) shows an example in which the boron nitride-containing layer 3 is uniformly provided on both main surfaces of the molding plate 2, but it is formed only on one main surface. may have been Further, in the process described later, it is sufficient that the sintered bodies 4 can be separated from each other as the release layer 5, and the boron nitride-containing layer 3 is provided not on the entire surface of the main surface of the molding plate 2 but partially. may be Further, a boron nitride-containing layer 3 may be further provided on the side surface of the molded plate 2 . The boron nitride-containing layer 3 may be uniformly provided on at least one major surface of the molded plate 2 for ease of preparation of the sheet.
 窒化ホウ素含有層は、例えば、窒化ホウ素を含むスラリーを調製し、当該スラリーを上記成形板の主面上に付着させることによって、設けてよい。スラリーを成形板に付着させる方法は特に限定されるものではなく、例えば、スラリーを塗布する方法であってもよく、成形板をスラリーに浸漬させる方法であってもい。 The boron nitride-containing layer may be provided, for example, by preparing a slurry containing boron nitride and depositing the slurry on the main surface of the molding plate. The method of attaching the slurry to the molded plate is not particularly limited, and may be, for example, a method of coating the slurry or a method of immersing the molded plate in the slurry.
 上記スラリーは、窒化ホウ素を、テルピネオール、及びトルエン等の高沸点有機溶剤と、BN粉の結合剤として機能する有機糊剤と、の混合物に分散させることで調製することができる。上記有機糊剤は、例えば、メチルセルロース、及びエチルセルロース等のセルロース系糊剤、並びに、ポリイソブチルメタクリレート等のアクリル系樹脂などが挙げられる。スラリーを形成するための窒化ホウ素としては、アモルファス状の窒化ホウ素であってよく、六方晶状の窒化ホウ素であってもよいが、後に離型性の結晶性を低く抑え、はく離を容易にする観点からは、結晶性の低いアモルファス状の窒化ホウ素を含み、アモルファス状の窒化ホウ素のみからなることが望ましい。スラリーは、好ましくは焼結助剤を含有しない。 The slurry can be prepared by dispersing boron nitride in a mixture of terpineol, a high-boiling organic solvent such as toluene, and an organic paste that functions as a binder for the BN powder. Examples of the organic sizing agent include cellulose-based sizing agents such as methyl cellulose and ethyl cellulose, and acrylic resins such as polyisobutyl methacrylate. The boron nitride for forming the slurry may be amorphous boron nitride or hexagonal boron nitride. From the point of view, it is desirable to contain amorphous boron nitride with low crystallinity and to consist only of amorphous boron nitride. The slurry preferably does not contain sintering aids.
 焼成工程では、上記シートを焼成して焼成板を得る。焼成工程の焼成温度の下限値は、例えば、1600℃以上、1650℃以上、1700℃以上、又は1800℃以上であってよい。焼成工程の焼成温度の上限値は、例えば、2200℃以下、2100℃以下、又は2000℃以下であってよい。焼成温度は上述の範囲内で調整してよく、例えば、1600~2200℃、1700~2100℃、又は1800~2100℃であってよい。焼成時間は、例えば、1~30時間、2~20時間、3~15時間、又は4~10時間であってよい。 In the firing process, the sheet is fired to obtain a fired board. The lower limit of the firing temperature in the firing step may be, for example, 1600° C. or higher, 1650° C. or higher, 1700° C. or higher, or 1800° C. or higher. The upper limit of the firing temperature in the firing step may be, for example, 2200° C. or less, 2100° C. or less, or 2000° C. or less. The firing temperature may be adjusted within the ranges mentioned above, and may be, for example, 1600-2200°C, 1700-2100°C, or 1800-2100°C. Firing times may be, for example, 1-30 hours, 2-20 hours, 3-15 hours, or 4-10 hours.
 焼成工程は、例えば、窒素、ヘリウム、及びアルゴン等の不活性ガス雰囲気下であってよい。 The firing process may be performed under an inert gas atmosphere such as nitrogen, helium, and argon.
 焼成には、例えば、バッチ式炉及び連続式炉等を用いることができる。バッチ式炉としては、例えば、マッフル炉、管状炉、及び雰囲気炉等を挙げることができる。連続式炉としては、例えば、ロータリーキルン、スクリューコンベア炉、トンネル炉、ベルト炉、プッシャー炉、及び大形連続炉等を挙げることができる。このようにして、焼成板を得ることができる。 For firing, for example, a batch type furnace or a continuous type furnace can be used. Batch type furnaces include, for example, muffle furnaces, tubular furnaces, atmosphere furnaces, and the like. Examples of continuous furnaces include rotary kilns, screw conveyor furnaces, tunnel furnaces, belt furnaces, pusher furnaces, and large continuous furnaces. Thus, a sintered board can be obtained.
 除去工程は、上述のようにして調製した焼成板を構成する上記離型層の少なくとも一部を除去する工程である。離型層における窒化ホウ素の一次粒子のうち、セラミックス板の主面と平行に配向するようなものを減らすことによって、セラミックス板を用いて調製される複合シートの接着性を向上させることができる。離型層5のうち焼結体4側の領域は、焼成時に成形板2中の焼結助剤の影響を受け得ることから、焼結体4を構成する窒化ホウ素粒子の配向に影響を受けるため、接着性を低下させるような影響は大きくない。一方で、離型層5のうち焼結体4側とは反対側の領域は、セラミックス板100の主面と平行な方向に窒化ホウ素の一次粒子が成長しやすく、接着性を低下させ得ることから、この領域を除去することで、効果的に接着性を向上し得る。図1の(c)では、離型層5を完全に除去することを想定した例で示したが、上述の観点から、離型層5を部分的に除去する態様であってもよい。除去工程では、例えば、離型層5の焼結体4側とは反対側の表層を除去し、低背化して(厚みを低減して)もよく、離型層5をパターン状に除去する箇所と、維持する箇所とに分けてもよい。 The removing step is a step of removing at least part of the release layer that constitutes the fired plate prepared as described above. By reducing the primary particles of boron nitride in the release layer that are oriented parallel to the main surface of the ceramic plate, the adhesion of the composite sheet prepared using the ceramic plate can be improved. The region of the release layer 5 on the side of the sintered body 4 can be affected by the sintering aid in the molding plate 2 during firing, so it is affected by the orientation of the boron nitride particles that make up the sintered body 4. Therefore, the effect of lowering the adhesiveness is not large. On the other hand, in the region of the release layer 5 on the side opposite to the sintered body 4 side, the primary particles of boron nitride tend to grow in the direction parallel to the main surface of the ceramic plate 100, which may reduce the adhesiveness. Therefore, by removing this region, the adhesion can be effectively improved. FIG. 1(c) shows an example assuming that the release layer 5 is completely removed, but from the above point of view, the release layer 5 may be partially removed. In the removing step, for example, the surface layer of the release layer 5 on the side opposite to the sintered body 4 side may be removed to reduce the height (reduce the thickness), and the release layer 5 is removed in a pattern. You may divide into a location and a location to maintain.
 除去工程における離型層5の除去の手段は、例えば、研磨等であってよい。研磨には、例えば、サンドペーパー、及びグラインダー等を使用することができる。セラミックス板のメジアン細孔径が大きな場合(例えば、1.5μm以上)、セラミックス板の破損等をより十分に抑制する観点から、研磨は、サンドペーパー等を使用して行うことが望ましい。上記除去工程は、上記焼成板を上記離型層側から研磨する工程であってよい。 The means for removing the release layer 5 in the removing step may be, for example, polishing. For polishing, for example, sandpaper, a grinder, and the like can be used. When the median pore diameter of the ceramic plate is large (for example, 1.5 μm or more), it is desirable to use sandpaper or the like for polishing from the viewpoint of sufficiently suppressing breakage of the ceramic plate. The removing step may be a step of polishing the fired plate from the release layer side.
 上記除去工程は、上記焼成板20の上記離型層5側から、上記窒化ホウ素含有層3の厚さ以上研磨し、低背化する工程であってよい。上記除去工程における研磨量を上述のような範囲とすることで、離型層の全体をより確実に除去することが可能であり、接着性により優れるセラミックス板を製造できる。 The removing step may be a step of polishing the fired plate 20 from the release layer 5 side by a thickness equal to or greater than the thickness of the boron nitride-containing layer 3 to reduce the height. By setting the amount of polishing in the removal step to the range described above, the entire release layer can be removed more reliably, and a ceramic plate with better adhesion can be produced.
 図1では、シート一枚を焼成する想定で説明したが、上述のセラミックス板の製造方法としては、上記シートを複数枚積層して積層体を得る工程を更に有し、上記焼成工程は、上記積層体を焼成して、複数枚の上記焼成板を得る工程であってよい。この場合、積層体を構成する複数枚の成形板は互いに窒化ホウ素含有層を介して積層されている。このようにして、積層体を焼成することによって、セラミックス板は互いに離型層を挟んで配置されることになり、セラミックス板同士をはく離して取り出すことが容易となる。 In FIG. 1, the explanation is given on the assumption that one sheet is fired, but the above-described method for manufacturing the ceramic plate further includes a step of stacking a plurality of the sheets to obtain a laminate, and the firing step is the same as the above. It may be a step of sintering the laminate to obtain a plurality of the sintered plates. In this case, a plurality of molded plates forming a laminate are laminated with boron nitride-containing layers interposed therebetween. By firing the laminate in this manner, the ceramic plates are arranged with the release layer interposed therebetween, and the ceramic plates can be easily separated and taken out.
 図2は、セラミックス板の一例を示す斜視図である。セラミックス板100は、一対の主面100a、及び100bを有し、少なくとも一方が研磨面となっている。セラミックス板の一実施形態は、窒化ホウ素の一次粒子を含む焼結体で構成され、研磨面を有する。セラミックス板の少なくとも一方の主面が研磨面であればよいが、両主面が研磨面であることが好ましい。セラミックス板の主面は、切断面(例えば、ワイヤーカットソーによる切断面等)でないことが好ましい。当該セラミックス板は、例えば、上述のセラミックス板の製造方法によって製造することができる。なお、研磨面とは、研磨加工によって形成される微細な溝群である研磨痕を有する面である。溝群の溝の深さの最大値は研磨条件によって異なるが、例えば、20μm以下、又は10μm以下であってよい。上記溝の深さは、光学顕微鏡による測定によって決定することができる。平滑性の高い研磨面とする研磨条件を採用した場合には、研磨痕は顕微鏡で確認することができる。さらに、研磨面が鏡面になるまで研磨してもよい。研磨しなければ鏡面にはならないことから、セラミックス板の主面が鏡面となっていることは、セラミックス板の主面が研磨面であることを意味する。本明細書における鏡面とは、JIS B 0601:1994「製品の幾何特性仕様(GPS)-表面性状:輪郭曲線方式-用語,定義及び表面性状パラメータ」に記載された算術平均粗さRaが0.2μm未満であることをいう。算術平均粗さRaはライン接触式の測定器によって測定することができる。ライン接触式の測定器としては、例えば、株式会社ミツトヨ製の「表面粗さ測定機サーフテストSJ-301」(製品名)等を使用できる。 FIG. 2 is a perspective view showing an example of a ceramic plate. The ceramic plate 100 has a pair of main surfaces 100a and 100b, at least one of which is a polished surface. One embodiment of the ceramic plate is composed of a sintered body containing primary particles of boron nitride and has a polished surface. At least one principal surface of the ceramic plate may be a polished surface, but both principal surfaces are preferably polished surfaces. The main surface of the ceramic plate is preferably not a cut surface (for example, a cut surface with a wire saw). The ceramic plate can be manufactured, for example, by the method for manufacturing a ceramic plate described above. The polished surface is a surface having polishing marks, which are fine grooves formed by polishing. Although the maximum value of the groove depth of the groove group varies depending on the polishing conditions, it may be, for example, 20 μm or less, or 10 μm or less. The depth of the grooves can be determined by measurement with an optical microscope. In the case of adopting the polishing condition to obtain a polished surface with high smoothness, polishing marks can be confirmed with a microscope. Further, polishing may be performed until the polished surface becomes a mirror surface. Since a mirror surface cannot be obtained without polishing, the fact that the main surface of the ceramic plate is a mirror surface means that the main surface of the ceramic plate is a polished surface. A mirror surface in this specification means a surface having an arithmetic mean roughness Ra of 0.00 described in JIS B 0601: 1994 "Product Geometric Characteristic Specifications (GPS) - Surface Texture: Contour Method - Terms, Definitions and Surface Texture Parameters". It means less than 2 μm. The arithmetic mean roughness Ra can be measured by a line contact type measuring instrument. As the line-contact type measuring instrument, for example, Mitutoyo Corporation's "Surface Roughness Measuring Instrument Surftest SJ-301" (product name) can be used.
 セラミックス板の細孔径は、セラミックス板自体の機械的強度を維持し、樹脂の充填性を向上させる観点から調整してよい。セラミックス板のメジアン細孔径の下限値は、例えば、1.5μm以上、1.8μm以上、又は2.0μm以上であってよい。上記メジアン細孔径の下限値が上記範囲内であることで、樹脂の充填率をより向上させることができ、樹脂との複合シートを調製した際の被着体への接着性をより向上させることができる。セラミックス板のメジアン細孔径の上限値は、例えば、4.0μm以下、3.5μm以下、又は3.0μm以下であってよい。上記メジアン細孔径の上限値が上記範囲内であることで、セラミックス板の機械的強度の低下を抑制し、取扱い性に優れたものとすることができる。また、上記メジアン細孔径の上限値が上記範囲内であることで、樹脂との複合シートを調製した際、セラミックス板を構成するセラミック粒子間の接触面積を向上させ、熱伝導率を高めることができる。セラミックス板のメジアン細孔径は上述の範囲内で調整してよく、例えば、1.5~4.0μm、1.8~3.0μm、又は2.0~3.0μmであってよい。 The pore diameter of the ceramic plate may be adjusted from the viewpoint of maintaining the mechanical strength of the ceramic plate itself and improving the filling property of the resin. The lower limit of the median pore size of the ceramic plate may be, for example, 1.5 μm or more, 1.8 μm or more, or 2.0 μm or more. When the lower limit of the median pore diameter is within the above range, the filling rate of the resin can be further improved, and the adhesiveness to the adherend when preparing a composite sheet with the resin can be further improved. can be done. The upper limit of the median pore diameter of the ceramic plate may be, for example, 4.0 μm or less, 3.5 μm or less, or 3.0 μm or less. When the upper limit of the median pore diameter is within the above range, it is possible to suppress deterioration of the mechanical strength of the ceramic plate and to make the ceramic plate excellent in handleability. In addition, since the upper limit of the median pore diameter is within the above range, when a composite sheet with a resin is prepared, the contact area between the ceramic particles constituting the ceramic plate can be improved, and the thermal conductivity can be increased. can. The median pore size of the ceramic plate may be adjusted within the range described above, and may be, for example, 1.5-4.0 μm, 1.8-3.0 μm, or 2.0-3.0 μm.
 セラミックス板のメジアン細孔径は、以下の手順で測定することができる。まず、水銀ポロシメーターを用い、0.0042MPaから206.8MPaまで圧力を増やしながらセラミックス板を加圧したときの細孔径分布を求める。次に、横軸を細孔径、縦軸を累積細孔容積としたときに、累積細孔容積が全細孔容積の50%に達するときの細孔径がメジアン細孔径である。水銀ポロシメーターとしては、例えば、株式会社島津製作所製の「オートポアIV9500」(商品名)を用いることができる。 The median pore diameter of the ceramic plate can be measured by the following procedure. First, using a mercury porosimeter, the pore size distribution is obtained when the ceramic plate is pressurized while increasing the pressure from 0.0042 MPa to 206.8 MPa. Next, when the horizontal axis is the pore diameter and the vertical axis is the cumulative pore volume, the pore diameter when the cumulative pore volume reaches 50% of the total pore volume is the median pore diameter. As the mercury porosimeter, for example, "Autopore IV9500" (trade name) manufactured by Shimadzu Corporation can be used.
 セラミックス板の気孔率、すなわち、セラミックス板における気孔の体積(V1)の比率は、例えば、30~65体積%、又は40~60体積%であってよい。気孔率が大きくなり過ぎるとセラミックス板の強度が低下する傾向にある。一方、気孔率が小さくなり過ぎると複合シートを調製した際の、被着体と接着される際にしみ出す樹脂量が少なくなる傾向にある。 The porosity of the ceramic plate, that is, the ratio of the pore volume (V1) in the ceramic plate may be, for example, 30 to 65% by volume, or 40 to 60% by volume. If the porosity is too large, the strength of the ceramic plate tends to decrease. On the other hand, if the porosity is too small, the amount of resin that exudes when the composite sheet is adhered to the adherend tends to be small.
 セラミックス板の気孔率は、セラミックス板の体積及び質量から、かさ密度[B(kg/m)]を算出し、このかさ密度と窒化物の理論密度[A(kg/m)]とから、下記式(1)によって求めることができる。窒化ホウ素の理論密度Aは2280kg/mである。
 気孔率(体積%)=[1-(B/A)]×100 … (1)
The porosity of the ceramic plate is obtained by calculating the bulk density [B (kg/m 3 )] from the volume and mass of the ceramic plate, and calculating the bulk density and the theoretical density [A (kg/m 3 )] of the nitride. , can be obtained by the following formula (1). The theoretical density A of boron nitride is 2280 kg/m 3 .
Porosity (% by volume) = [1-(B/A)] x 100 (1)
 セラミックス板の厚さは、例えば、2.0mm未満、1.8mm未満、又は1.6mm未満であってよい。このような厚さを有するセラミックス板であることで、例えば、セラミックス板の有する細孔への樹脂の充填がより容易なものとなり、樹脂の充填率に優れる複合シートをより容易に調製することができる。セラミックス板の製造の容易性の観点から、セラミックス板の厚さは、例えば、0.1mm以上、又は0.2mm以上であってよい。セラミックス板の厚さは上述の範囲内で調整してよく、例えば、0.1mm以上2.0mm未満、又は0.2mm以上1.6mm未満であってよい。セラミックス板の厚さは、主面100a,100bに直交する方向に沿って測定される値を意味する。なお、セラミックス板の厚さが一定でない場合には、任意の10箇所を選択して厚みの測定を行い、その算術平均値をセラミックス板の厚さとする。 The thickness of the ceramic plate may be, for example, less than 2.0 mm, less than 1.8 mm, or less than 1.6 mm. By using a ceramic plate having such a thickness, for example, it becomes easier to fill the pores of the ceramic plate with a resin, and a composite sheet having an excellent resin filling rate can be more easily prepared. can. From the viewpoint of ease of manufacturing the ceramic plate, the thickness of the ceramic plate may be, for example, 0.1 mm or more, or 0.2 mm or more. The thickness of the ceramic plate may be adjusted within the range described above, and may be, for example, 0.1 mm or more and less than 2.0 mm, or 0.2 mm or more and less than 1.6 mm. The thickness of the ceramic plate means a value measured along the direction perpendicular to the main surfaces 100a and 100b. If the thickness of the ceramic plate is not constant, the thickness is measured at 10 arbitrary locations, and the arithmetic mean value is taken as the thickness of the ceramic plate.
 上述のセラミックス板は、例えば、樹脂組成物を含浸、半硬化させて調製される複合シートの製造に好適に使用できる。複合シートの一実施形態は、細孔を有する窒化物焼結板と、上記細孔に充填された樹脂と、を備える。上記複合シートにおける上記窒化物焼結板は、上述のセラミックス板である。 The ceramic plate described above can be suitably used, for example, for manufacturing a composite sheet prepared by impregnating and semi-curing a resin composition. One embodiment of the composite sheet comprises a nitride sintered plate having pores and a resin filling the pores. The nitride sintered plate in the composite sheet is the ceramic plate described above.
 樹脂は、例えば、主剤及び硬化剤を含む樹脂組成物の半硬化物(Bステージ)を含む。半硬化物は、樹脂組成物の硬化反応が一部進行したものである。半硬化物は、その後の硬化処理によって、更に硬化させることができる。樹脂は、樹脂組成物の硬化物(Cステージ)を含んでもよい。上記樹脂組成物は、熱硬化性樹脂組成物であってよい。 The resin includes, for example, a semi-cured product (B stage) of a resin composition containing a main agent and a curing agent. The semi-cured product is obtained by partially progressing the curing reaction of the resin composition. The semi-cured product can be further cured by a subsequent curing treatment. The resin may contain a cured product (C stage) of the resin composition. The resin composition may be a thermosetting resin composition.
 上記半硬化物は、樹脂成分として、樹脂に加えて主剤及び硬化剤等のモノマーを含んでもよい。複合シートに含まれる樹脂が硬化物(Cステージ)となる前の半硬化物(Bステージ)であることは、例えば、示差走査熱量計によって確認することができる。 The semi-cured product may contain monomers such as a main agent and a curing agent in addition to the resin as a resin component. It can be confirmed by, for example, a differential scanning calorimeter that the resin contained in the composite sheet is a semi-cured product (B stage) before becoming a cured product (C stage).
 複合シートに含まれる樹脂の硬化率の下限値は、例えば、10%以上、15%以上、20%以上、25%以上、又は30%以上であってよい。樹脂の硬化率が上記範囲内であると、被着体との接着時における樹脂の過剰な流れ出しを抑制し、接着性が低下することを抑制することができる。樹脂の硬化率の上限値は、例えば、55%以下、50%以下、又は45%以下であってよい。樹脂の硬化率の上限値が上記範囲内であることによって、被着体との接着時において、適度に溶融し、接着界面に樹脂が行き渡ることによって、より優れた接着性を発揮し得る。複合シートに含まれる樹脂の硬化率は上述の範囲内で調整してよく、例えば、10~55%、25~50%、又は30~50%であってよい。 The lower limit of the curing rate of the resin contained in the composite sheet may be, for example, 10% or more, 15% or more, 20% or more, 25% or more, or 30% or more. When the curing rate of the resin is within the above range, excessive outflow of the resin during adhesion to the adherend can be suppressed, and deterioration of adhesiveness can be suppressed. The upper limit of the curing rate of the resin may be, for example, 55% or less, 50% or less, or 45% or less. When the upper limit of the curing rate of the resin is within the above range, the resin melts moderately during adhesion to the adherend, and the resin spreads over the adhesion interface, thereby exhibiting better adhesiveness. The curing rate of the resin contained in the composite sheet may be adjusted within the range described above, and may be, for example, 10-55%, 25-50%, or 30-50%.
 樹脂の硬化率は、示差走査熱量計を用いた測定によって決定することができる。まず、未硬化の状態の樹脂組成物2mgを完全に硬化させた際に生じる単位質量当たりの発熱量Qを測定する。そして、複合シートが備える樹脂から採取したサンプル10mgを同様に昇温させて、完全に硬化させた際に生じる単位質量当たりの発熱量Rを求める。このとき、示差走査熱量計による測定に使用するサンプルの質量は、発熱量Qの測定に用いた樹脂組成物と同一とする。樹脂中に熱硬化性を有する成分がc(質量%)含有されているとすると、下記式(2)によって複合シートに含浸している樹脂組成物の硬化率が求められる。なお、樹脂が完全に硬化したか否かは、示差走査熱量測定によって得られる発熱曲線において、発熱が終了することで確認することができる。
  含浸されている樹脂組成物の硬化率(%)={1-[(R/c)×100]/Q}×100 … (2)
The cure rate of the resin can be determined by measurement using a differential scanning calorimeter. First, the calorific value Q per unit mass generated when 2 mg of the uncured resin composition is completely cured is measured. Then, a 10 mg sample taken from the resin included in the composite sheet is heated in the same manner, and the calorific value R per unit mass generated when the sample is completely cured is determined. At this time, the mass of the sample used for the measurement with the differential scanning calorimeter is the same as that of the resin composition used for the measurement of the calorific value Q. Assuming that c (% by mass) of a thermosetting component is contained in the resin, the curing rate of the resin composition impregnated in the composite sheet is obtained by the following formula (2). Whether or not the resin is completely cured can be confirmed by the end of heat generation in the heat generation curve obtained by differential scanning calorimetry.
Curing rate (%) of impregnated resin composition={1-[(R/c)×100]/Q}×100 (2)
 樹脂の充填率は、複合シートの接着性を一層高くする観点から調整してよく、例えば、90体積%以上、92体積%以上、94体積%以上、又は96体積%以上であってよい。樹脂の充填率の上限値は、特に限定されるものではないが、例えば、100質量%以下、又は98体積%以下であってよい。樹脂の充填率は上述の範囲内で調整してよく、例えば、90~100体積%、又は94~100体積%であってよい。 The resin filling rate may be adjusted from the viewpoint of further increasing the adhesiveness of the composite sheet, and may be, for example, 90% by volume or more, 92% by volume or more, 94% by volume or more, or 96% by volume or more. The upper limit of the resin filling rate is not particularly limited, but may be, for example, 100% by mass or less, or 98% by volume or less. The resin filling rate may be adjusted within the range described above, and may be, for example, 90 to 100% by volume, or 94 to 100% by volume.
 樹脂は、例えば、エポキシ樹脂、シリコーン樹脂、シアネート樹脂、シリコーンゴム、アクリル樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、ビスマレイミド樹脂、不飽和ポリエステル、フッ素樹脂、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリフェニレンエーテル、ポリフェニレンサルファイド、全芳香族ポリエステル、ポリスルホン、液晶ポリマー、ポリエーテルスルホン、ポリカーボネート、マレイミド樹脂、マレイミド変性樹脂、ABS(アクリロニトリル-ブタジエン-スチレン)樹脂、AAS(アクリロニトリル-アクリルゴム・スチレン)樹脂、AES(アクリロニトリル・エチレン・プロピレン・ジエンゴム-スチレン)樹脂、ポリグリコール酸樹脂、ポリフタルアミド、及びポリアセタールからなる群より選ばれる少なくとも一種を含んでいてよい。 Resins include, for example, epoxy resins, silicone resins, cyanate resins, silicone rubbers, acrylic resins, phenolic resins, melamine resins, urea resins, bismaleimide resins, unsaturated polyesters, fluororesins, polyimides, polyamideimides, polyetherimides, poly Butylene terephthalate, polyethylene terephthalate, polyphenylene ether, polyphenylene sulfide, wholly aromatic polyester, polysulfone, liquid crystal polymer, polyethersulfone, polycarbonate, maleimide resin, maleimide-modified resin, ABS (acrylonitrile-butadiene-styrene) resin, AAS (acrylonitrile-acrylic rubber/styrene) resin, AES (acrylonitrile/ethylene/propylene/diene rubber-styrene) resin, polyglycolic acid resin, polyphthalamide, and polyacetal.
 上述の複合シートは、被着体との接着性に優れることから、金属シート等と接着し積層基板を調製するために好適に使用できる。積層基板の一実施形態は、上記複合シートと、上記複合シート上に設けられた金属層と、を有する。上記複合シートと、金属層とは複合シートを構成する樹脂の硬化によって接合されていてもよい。図3は、積層基板の一例を厚さ方向に切断したときの断面図である。積層基板300は、複合シート200と、複合シート200の主面200aに接着されている金属層30と、複合シート200の主面200bに接着されている金属層40とを備える。積層基板の変形例では、金属層30,40の両方備えることは必須ではなく、積層基板300の変形例では、金属層30,40の一方のみを備えていてもよい。 The composite sheet described above has excellent adhesion to adherends, so it can be suitably used to prepare a laminated substrate by adhering it to a metal sheet or the like. One embodiment of a laminated substrate has the composite sheet and a metal layer provided on the composite sheet. The composite sheet and the metal layer may be bonded together by curing the resin forming the composite sheet. FIG. 3 is a cross-sectional view of an example of a laminated substrate cut in the thickness direction. Laminated substrate 300 includes composite sheet 200 , metal layer 30 adhered to main surface 200 a of composite sheet 200 , and metal layer 40 adhered to main surface 200 b of composite sheet 200 . In the modified example of the laminated substrate, it is not essential to provide both of the metal layers 30 and 40, and in the modified example of the laminated substrate 300, only one of the metal layers 30 and 40 may be provided.
 金属層30,40は、金属製のものであれば特に制限されない。金属層は、例えば、金属板であってよく、金属箔であってもよい。また金属層30,40は、例えば、回路等のパターンを有してもよい。金属層30,40の材質は、例えば、アルミニウム、及び銅等が挙げられる。金属層30,40の厚さは、互いに独立に、例えば、0.035mm以上、又は10mm以下であってよい。金属層30,40の材質、厚み、及びパターンの有無等は互いに同じであってよく、異なっていてもよい。 The metal layers 30 and 40 are not particularly limited as long as they are made of metal. The metal layer may be, for example, a metal plate or a metal foil. The metal layers 30 and 40 may also have patterns such as circuits, for example. Materials for the metal layers 30 and 40 include, for example, aluminum and copper. The thickness of the metal layers 30, 40 may be, independently of each other, for example 0.035 mm or more or 10 mm or less. The material, thickness, presence/absence of patterns, etc. of the metal layers 30 and 40 may be the same or different.
 積層基板300は、本開示の趣旨に反しない範囲で、複合シート200と金属層30,40の間に樹脂層を有していてもよい。この樹脂層は、複合シート200からしみ出した樹脂が硬化して形成されたものであってよい。積層基板300における複合シート200と金属層30,40とは、しみ出した樹脂によって十分強固に接着されていることから接着性に優れる。このような積層基板は、薄型であるうえに接着性及び放熱性に優れるため、例えば、放熱部材として、半導体装置等に好適に用いることができる。 The laminated substrate 300 may have a resin layer between the composite sheet 200 and the metal layers 30 and 40 within the scope of the present disclosure. This resin layer may be formed by curing the resin exuded from the composite sheet 200 . The composite sheet 200 and the metal layers 30 and 40 in the laminated substrate 300 are sufficiently firmly adhered by the exuded resin, and thus have excellent adhesiveness. Since such a laminated substrate is thin and has excellent adhesion and heat dissipation properties, it can be suitably used as a heat dissipation member for semiconductor devices and the like.
 以上、本開示の幾つかの実施形態について説明したが、本開示は上記実施形態に何ら限定されるものではない。また、上述した実施形態についての説明内容は、互いに適用することができる。 Although several embodiments of the present disclosure have been described above, the present disclosure is not limited to the above embodiments. Also, the descriptions of the above-described embodiments can be applied to each other.
 以下、本開示について、実施例及び比較例を用いてより詳細に説明する。なお、本開示は以下の実施例に限定されるものではない。 Hereinafter, the present disclosure will be described in more detail using examples and comparative examples. It should be noted that the present disclosure is not limited to the following examples.
(実施例1)
 新日本電工株式会社製のオルトホウ酸100質量部と、デンカ株式会社製のアセチレンブラック(商品名:HS100)35質量部とをヘンシェルミキサーを用いて混合した。得られた混合物を、黒鉛製のルツボ中に充填し、アーク炉にて、アルゴン雰囲気で、2200℃にて5時間加熱し、塊状の炭化ホウ素(BC)を得た。得られた塊状物を、ジョークラッシャーで粗粉砕して粗粉を得た。この粗粉を、炭化珪素製のボール(φ10mm)を有するボールミルによってさらに粉砕して粉砕粉を得た。
(Example 1)
100 parts by mass of orthoboric acid manufactured by Shin Nippon Denko Co., Ltd. and 35 parts by mass of acetylene black (trade name: HS100) manufactured by Denka Co., Ltd. were mixed using a Henschel mixer. The obtained mixture was filled in a graphite crucible and heated at 2200° C. for 5 hours in an argon atmosphere in an arc furnace to obtain massive boron carbide (B 4 C). The resulting mass was coarsely pulverized with a jaw crusher to obtain coarse powder. This coarse powder was further pulverized by a ball mill having silicon carbide balls (φ10 mm) to obtain pulverized powder.
 調製した粉砕粉を、窒化ホウ素製のルツボに充填した。その後、抵抗加熱炉を用い、窒素ガス雰囲気下で、2000℃、0.85MPaの条件で10時間加熱した。このようにして炭窒化ホウ素(BCN)及び窒化ホウ素(BN)を含む焼成物を得た。 The prepared pulverized powder was filled in a crucible made of boron nitride. After that, using a resistance heating furnace, heating was performed for 10 hours under conditions of 2000° C. and 0.85 MPa in a nitrogen gas atmosphere. Thus, a fired product containing boron carbonitride (B 4 CN 4 ) and boron nitride (BN) was obtained.
 粉末状のホウ酸と炭酸カルシウムを配合して焼結助剤を調製した。調製にあたっては、100質量部のホウ酸に対して、炭酸カルシウムを50.0質量部配合した。このときのホウ素とカルシウムの原子比率は、ホウ素100原子%に対してカルシウムが17.5原子%であった。こうして、焼成物100質量部に対して焼結助剤を20質量部配合し、ヘンシェルミキサーを用いて混合して粉末状の原料粉末を調製した。 A sintering aid was prepared by blending powdered boric acid and calcium carbonate. In preparation, 50.0 parts by mass of calcium carbonate was blended with 100 parts by mass of boric acid. At this time, the atomic ratio of boron to calcium was 17.5 atomic % of calcium to 100 atomic % of boron. In this way, 20 parts by mass of the sintering aid was added to 100 parts by mass of the fired product, and mixed using a Henschel mixer to prepare powdery raw material powder.
 原料粉末を、粉末プレス機を用いて、150MPaで30秒間加圧して、シート状(縦×横×厚さ=50mm×50mm×0.35mm)の成形板を得た。同様の操作によって、成形板を3枚調製した。個々の成形板における焼結助剤の含有量は16.6質量%であった。 Using a powder press, the raw material powder was pressed at 150 MPa for 30 seconds to obtain a sheet-like molded plate (length x width x thickness = 50 mm x 50 mm x 0.35 mm). Three molded plates were prepared by the same operation. The content of sintering aid in each molded plate was 16.6% by weight.
 次に、アモルファス状の窒化ホウ素(デンカ株式会社製、商品名:GP)30質量部を、テルピネオール60重量部、トルエン30重量部、及びポリイソブチルメタクリレート10重量部の混合物からなる離型剤スラリーに分散させ、スラリーを調製した。得られたスラリーを、上記成形板の一方の主面上にドクターブレード法によって、厚さが0.03mmの塗膜(窒化ホウ素含有層)を設けた。塗膜を設けた成形板を、成形板同士が互いに塗膜を介するようにして積層し、積層体を得た。 Next, 30 parts by weight of amorphous boron nitride (manufactured by Denka Co., Ltd., trade name: GP) was added to a release agent slurry consisting of a mixture of 60 parts by weight of terpineol, 30 parts by weight of toluene, and 10 parts by weight of polyisobutyl methacrylate. Dispersed to prepare a slurry. The resulting slurry was used to form a coating film (boron nitride-containing layer) having a thickness of 0.03 mm on one main surface of the molded plate by a doctor blade method. The molded plates provided with the coating film were laminated with each other with the coating film interposed therebetween to obtain a laminate.
 得られた積層体を窒化ホウ素製容器に入れ、バッチ式高周波炉に導入した。バッチ式高周波炉において、常圧、窒素流量5L/分、2000℃の条件で5時間加熱した(焼成工程)。その後、窒化ホウ素製容器から窒化ホウ素焼結板(焼結体)と離型層とが交互に重なる積層物を取り出した。積層物を構成する窒化ホウ素焼結板を、シクネスゲージリーフを用いて、はく離し、表層に離型層が残る焼成板を3枚得た。焼成板の厚さは0.39mmであった。 The obtained laminate was placed in a boron nitride container and introduced into a batch-type high-frequency furnace. In a batch-type high-frequency furnace, it was heated for 5 hours under the conditions of atmospheric pressure, nitrogen flow rate of 5 L/min, and 2000° C. (firing step). After that, a laminate in which the boron nitride sintered plates (sintered bodies) and the release layers were alternately laminated was taken out from the boron nitride container. The boron nitride sintered plate constituting the laminate was peeled off using a thickness gauge leaf to obtain three fired plates with a release layer remaining on the surface layer. The thickness of the fired plate was 0.39 mm.
 焼成板の両主面を、サンドペーパーによって表層から0.05mmずつ研磨し、表層に残存した離型層を除去した(除去工程)。このようにして、窒化ホウ素の焼結体であるセラミックス板を得た。得られたセラミックス板の厚さは0.29mmであった。セラミックス板の断面SEM画像を図4に示す。図4に示すとおり、セラミックス板の表層付近(図4中、点線で示す位置)においては、セラミックス板の主面に平行な方向に配向しているような窒化ホウ素の一次粒子が除去されていることが確認できた。また得られたセラミックス板の主面に対する光学顕微鏡観察によって、研磨による溝群が形成されていることを確認した。溝群における溝の深さの最大値は、10μmであった。また、研磨は、算術平均粗さRaが1.0~2.0μmの範囲内となるように行った。 Both main surfaces of the fired plate were polished with sandpaper by 0.05 mm from the surface layer to remove the release layer remaining on the surface layer (removal step). Thus, a ceramic plate, which is a sintered body of boron nitride, was obtained. The thickness of the obtained ceramic plate was 0.29 mm. A cross-sectional SEM image of the ceramic plate is shown in FIG. As shown in FIG. 4, in the vicinity of the surface layer of the ceramic plate (the position indicated by the dotted line in FIG. 4), the primary particles of boron nitride that are oriented in a direction parallel to the main surface of the ceramic plate are removed. I was able to confirm that. Further, by observing the main surface of the obtained ceramic plate with an optical microscope, it was confirmed that groove groups were formed by polishing. The maximum depth of the grooves in the groove group was 10 μm. Also, the polishing was performed so that the arithmetic mean roughness Ra was within the range of 1.0 to 2.0 μm.
(比較例1)
 実施例1と同様にして、研磨工程を実施する前の焼成板を調製した。そして、この焼成板を比較例1のセラミックス板とした。セラミックス板の厚さは0.40mmであった。セラミックス板の断面SEM画像を図5に示す。図5に示すとおり、セラミックス板の表層付近(図5中、点線で示す位置)においては、窒化ホウ素の一次粒子がセラミックス板の主面に平行な方向に配向していることが確認できた。
(Comparative example 1)
A sintered plate was prepared in the same manner as in Example 1 before the polishing step. This sintered plate was used as a ceramic plate of Comparative Example 1. The thickness of the ceramic plate was 0.40 mm. A cross-sectional SEM image of the ceramic plate is shown in FIG. As shown in FIG. 5, in the vicinity of the surface layer of the ceramic plate (the position indicated by the dotted line in FIG. 5), it was confirmed that the primary particles of boron nitride were oriented in a direction parallel to the main surface of the ceramic plate.
<樹脂(半硬化物)の充填率の測定、及び接着性の評価>
 実施例1及び比較例1で得られたセラミックス板を用いて、それぞれ、樹脂との複合シートを調製し、以下に示す方法によって、樹脂(半硬化物)の充填率、及び被着体である金属シートとの接着性を評価した。結果を表1に示す。
<Measurement of filling rate of resin (semi-cured product) and evaluation of adhesion>
Using the ceramic plates obtained in Example 1 and Comparative Example 1, each composite sheet with a resin was prepared, and the filling rate of the resin (semi-cured product) and the adherend were determined by the methods described below. Adhesion to metal sheets was evaluated. Table 1 shows the results.
[複合シートの作製]
 市販のビスマレイミド(ケイ・アイ化成株式会社製、商品名:BMI-80)10質量部エポキシ樹脂(三菱ケミカル株式会社製、商品名:エピコート807)29.5質量部、及び市販のシアネート樹脂(三菱ガス化学株式会社製、商品名:TACN)60質量部に対し、市販の硬化剤(日本合成化学工業株式会社製、商品名:アクメックスH-84B)を0.5質量部配合して、樹脂組成物を調製した。調製した樹脂組成物を120℃で11時間加熱し、硬化率を13%に調整した。硬化率13%の樹脂組成物を、その温度を維持したまま、160℃に加熱されたセラミックス板の主面に滴下した。大気圧下、セラミックス板の主面に滴下した樹脂組成物をシリコーンゴム製のヘラを用いて塗り伸ばし、主面全体に樹脂組成物を塗り広げながら、セラミックス板の有する細孔に含浸させて樹脂組成物含浸体を得た。
[Production of composite sheet]
Commercially available bismaleimide (K-I Kasei Co., Ltd., trade name: BMI-80) 10 parts by mass epoxy resin (Mitsubishi Chemical Co., Ltd., trade name: Epicoat 807) 29.5 parts by mass, and commercially available cyanate resin ( 0.5 parts by mass of a commercially available curing agent (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name: Akmex H-84B) is blended with 60 parts by mass of Mitsubishi Gas Chemical Co., Ltd., trade name: TACN). A resin composition was prepared. The prepared resin composition was heated at 120° C. for 11 hours to adjust the curing rate to 13%. A resin composition having a curing rate of 13% was dropped onto the main surface of a ceramic plate heated to 160° C. while maintaining the temperature. Under atmospheric pressure, the resin composition dropped on the main surface of the ceramic plate is spread using a silicone rubber spatula, and while spreading the resin composition over the entire main surface, the pores of the ceramic plate are impregnated with the resin. A composition-impregnated body was obtained.
 樹脂組成物含浸体を、大気圧下、160℃で5分間加熱して樹脂組成物を半硬化させた。このようにして、四角柱状の複合シート(縦×横=50mm×50mm、厚さは、0.29mm又は0.40mm)を作製した。 The resin composition-impregnated body was heated at 160°C for 5 minutes under atmospheric pressure to semi-cure the resin composition. Thus, a quadrangular prism-shaped composite sheet (length x width = 50 mm x 50 mm, thickness: 0.29 mm or 0.40 mm) was produced.
 上記半硬化物に含まれている樹脂組成物の硬化率は、示差走査熱量計を用いた測定によって決定した。実施例1及び比較例1のいずれのセラミックス板を用いて作成した複合シートにおいても、含浸されている樹脂組成物の硬化率は45%であった。これらの複合シートをピール強度の評価用サンプルとした。 The curing rate of the resin composition contained in the semi-cured product was determined by measurement using a differential scanning calorimeter. In each of the composite sheets prepared using the ceramic plates of Example 1 and Comparative Example 1, the curing rate of the impregnated resin composition was 45%. These composite sheets were used as samples for evaluation of peel strength.
[樹脂(半硬化物)の充填率の測定]
 複合シートに含まれる樹脂の充填率を、以下の式(3)によって求めた。結果は表1に示すとおりであった。以下の充填率の説明については、セラミックス板は窒化ホウ素焼結板とも表記する。
[Measurement of filling rate of resin (semi-cured product)]
The filling rate of the resin contained in the composite sheet was obtained by the following formula (3). The results were as shown in Table 1. In the following description of the filling rate, the ceramic plate is also referred to as a boron nitride sintered plate.
 複合シートにおける樹脂の充填率(体積%)={(複合シートのかさ密度-窒化ホウ素焼結板のかさ密度)/(複合シートの理論密度-窒化ホウ素焼結板のかさ密度)}×100 … (3) Filling rate of resin in composite sheet (volume %) = {(bulk density of composite sheet - bulk density of boron nitride sintered plate) / (theoretical density of composite sheet - bulk density of boron nitride sintered plate)} x 100... (3)
 窒化ホウ素焼結板及び複合シートのかさ密度は、JIS Z 8807:2012の「幾何学的測定による密度及び比重の測定方法」に準拠し、窒化ホウ素焼結板又は複合シートの各辺の長さ(ノギスによって測定)から計算した体積と、電子天秤によって測定した窒化ホウ素焼結板又は複合シートの質量に基づいて求めた(JIS Z 8807:2012の9項参照)。複合シートの理論密度は、下記式(4)によって求めた。 The bulk density of the boron nitride sintered plate and composite sheet conforms to JIS Z 8807:2012 "Method for measuring density and specific gravity by geometric measurement", and the length of each side of the boron nitride sintered plate or composite sheet (measured with a vernier caliper) and the mass of the boron nitride sintered plate or composite sheet measured with an electronic balance (see JIS Z 8807:2012, item 9). The theoretical density of the composite sheet was determined by the following formula (4).
 複合シートの理論密度=窒化ホウ素焼結板のかさ密度+樹脂の真密度×(1-窒化ホウ素焼結板のかさ密度/窒化ホウ素の真密度) … (4) Theoretical density of composite sheet = bulk density of boron nitride sintered plate + true density of resin x (1 - bulk density of boron nitride sintered plate / true density of boron nitride) … (4)
 窒化ホウ素焼結板及び樹脂の真密度は、JIS Z 8807:2012の「気体置換法による密度及び比重の測定方法」に準拠し、乾式自動密度計を用いて測定した窒化ホウ素焼結板及び樹脂の体積及び質量よって求めた(JIS Z 8807:2012の11項の式(14)~(17)参照)。 The true density of the boron nitride sintered plate and resin is measured using a dry automatic densitometer in accordance with JIS Z 8807:2012 "Method for measuring density and specific gravity by gas replacement method". (See formulas (14) to (17) in item 11 of JIS Z 8807:2012).
[ピール強度の測定]
 上述のようにして得られた複合シートのそれぞれを、2枚の銅板(厚さ:0.035mmの銅板と、厚さ:1.0mmの銅板の2枚)間に上記複合シートを配置し、200℃及び5MPaの条件下で5分間加熱及び加圧して、更に200℃及び大気圧の条件下で2時間加熱して得られる積層シートを調製し、これを測定対象とした。測定は、JIS K 6854-1:1999「接着剤-はく離接着強さ試験方法」にしたがって、90°はく離試験を行い、20℃における複合体のピール強度を、万能試験機(株式会社エーアンドディ製、商品名:RTG-1310)を用いて求めた。なお、厚さ:0.035mmの銅板をはく離することで上記試験を行った。試験速度:50mm/分、ロードセル:5kN、測定温度:室温(20℃)の条件で測定を行った。
[Measurement of peel strength]
Each of the composite sheets obtained as described above is placed between two copper plates (a copper plate with a thickness of 0.035 mm and a copper plate with a thickness of 1.0 mm). A laminated sheet obtained by heating and pressing for 5 minutes under conditions of 200° C. and 5 MPa and then heating for 2 hours under conditions of 200° C. and atmospheric pressure was prepared and used as a measurement target. The measurement was carried out according to JIS K 6854-1: 1999 "Adhesive-Peeling adhesive strength test method", a 90 ° peel test was performed, and the peel strength of the composite at 20 ° C was measured using a universal testing machine (A&D Co., Ltd. (trade name: RTG-1310). The test was conducted by peeling off a copper plate having a thickness of 0.035 mm. Measurement was performed under conditions of test speed: 50 mm/min, load cell: 5 kN, and measurement temperature: room temperature (20°C).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本開示によれば、被着体への接着性に優れる、樹脂との複合シートを調製可能なセラミックス板、及びその製造方法を提供できる。本開示によればまた、上述のセラミックス板を備える、被着体への接着性に優れる複合シートを提供できる。 According to the present disclosure, it is possible to provide a ceramic plate excellent in adhesiveness to adherends and capable of preparing a composite sheet with a resin, and a method for manufacturing the same. According to the present disclosure, it is also possible to provide a composite sheet having the ceramic plate described above and having excellent adhesion to an adherend.
 2…成形板、3…窒化ホウ素含有層、4…焼結体、5…離型層、10…シート、20…焼成板、30,40…金属層、100…セラミックス板、200…複合シート、300…積層基板。

 
2 Molded plate 3 Boron nitride-containing layer 4 Sintered body 5 Release layer 10 Sheet 20 Fired plate 30, 40 Metal layer 100 Ceramic plate 200 Composite sheet 300... Laminated substrate.

Claims (9)

  1.  窒化ホウ素及び焼結助剤を含む成形板と、前記成形板の主面の少なくとも一部上に設けられた、窒化ホウ素含有層とを有するシートを焼成して焼成板を得る焼成工程と、
     前記焼成板の前記窒化ホウ素含有層に由来する離型層の少なくとも一部を除去する除去工程と、を有する、セラミックス板の製造方法。
    A firing step of obtaining a fired plate by firing a sheet having a molded plate containing boron nitride and a sintering aid and a boron nitride-containing layer provided on at least part of the main surface of the molded plate;
    and a removing step of removing at least part of a release layer derived from the boron nitride-containing layer of the fired plate.
  2.  前記シートを複数枚積層して積層体を得る工程を更に有し、
     前記焼成工程は、前記積層体を焼成して、複数枚の前記焼成板を得る工程である、請求項1に記載の製造方法。
    further comprising a step of laminating a plurality of the sheets to obtain a laminate,
    The manufacturing method according to claim 1, wherein the firing step is a step of firing the laminate to obtain a plurality of the fired plates.
  3.  前記除去工程は、前記焼成板を前記離型層側から研磨する工程である、請求項1又は2に記載の製造方法。 The manufacturing method according to claim 1 or 2, wherein the removing step is a step of polishing the fired plate from the release layer side.
  4.  前記除去工程は、前記焼成板の前記離型層側から、前記窒化ホウ素含有層の厚さ以上を研磨し、低背化する工程である、請求項1又は2に記載のセラミックス板の製造方法。 3. The method for manufacturing a ceramic plate according to claim 1, wherein the removal step is a step of polishing the thickness of the boron nitride-containing layer or more from the release layer side of the fired plate to reduce the height. .
  5.  窒化ホウ素の一次粒子を含む焼結体で構成され、
     研磨面を有する、セラミックス板。
    Composed of a sintered body containing primary particles of boron nitride,
    A ceramic plate having a polished surface.
  6.  メジアン細孔径が1.5~4.0μmである、請求項5に記載のセラミックス板。 The ceramic plate according to claim 5, which has a median pore size of 1.5 to 4.0 μm.
  7.  厚さが2.0mm未満である、請求項5又は6に記載のセラミックス板。 The ceramic plate according to claim 5 or 6, having a thickness of less than 2.0 mm.
  8.  細孔を有する窒化物焼結板と、前記細孔に充填された樹脂と、を備え、
     前記窒化物焼結板が、請求項5又は6に記載のセラミックス板である、複合シート。
    A nitride sintered plate having pores and a resin filled in the pores,
    A composite sheet, wherein the nitride sintered plate is the ceramic plate according to claim 5 or 6.
  9.  請求項8に記載の複合シートと、前記複合シート上に設けられた金属層と、を備える、積層基板。

     
    A laminated substrate comprising the composite sheet according to claim 8 and a metal layer provided on the composite sheet.

PCT/JP2022/031927 2021-08-26 2022-08-24 Method for producing ceramic plate, ceramic plate, composite sheet and multilayer substrate WO2023027122A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023514411A JP7319482B2 (en) 2021-08-26 2022-08-24 Ceramic plate manufacturing method, ceramic plate, composite sheet, and laminated substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-138221 2021-08-26
JP2021138221 2021-08-26

Publications (1)

Publication Number Publication Date
WO2023027122A1 true WO2023027122A1 (en) 2023-03-02

Family

ID=85322880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/031927 WO2023027122A1 (en) 2021-08-26 2022-08-24 Method for producing ceramic plate, ceramic plate, composite sheet and multilayer substrate

Country Status (2)

Country Link
JP (1) JP7319482B2 (en)
WO (1) WO2023027122A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5433510A (en) * 1977-07-01 1979-03-12 Gen Electric Cubic boronnnitride compressed body and method of making same
JPH02164775A (en) * 1988-12-19 1990-06-25 Denki Kagaku Kogyo Kk Production of cubic boron nitride sintered body
JPH09278526A (en) * 1996-04-10 1997-10-28 Denki Kagaku Kogyo Kk Setter for ceramic firing
JP2002275571A (en) * 2001-03-13 2002-09-25 Toshiba Tungaloy Co Ltd cBN-BASE SINTERED COMPACT, AND COATED TOOL CONSISTING THEREOF
JP2011178598A (en) * 2010-03-01 2011-09-15 Hitachi Metals Ltd Method for manufacturing silicon nitride substrate and silicon nitride substrate
WO2013054852A1 (en) * 2011-10-11 2013-04-18 日立金属株式会社 Silicon nitride substrate and method for manufacturing silicon nitride substrate
WO2020203692A1 (en) * 2019-03-29 2020-10-08 デンカ株式会社 Composite body

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6256158B2 (en) 2014-03-31 2018-01-10 三菱ケミカル株式会社 Heat dissipation sheet and heat dissipation sheet manufacturing method, slurry for heat dissipation sheet, and power device device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5433510A (en) * 1977-07-01 1979-03-12 Gen Electric Cubic boronnnitride compressed body and method of making same
JPH02164775A (en) * 1988-12-19 1990-06-25 Denki Kagaku Kogyo Kk Production of cubic boron nitride sintered body
JPH09278526A (en) * 1996-04-10 1997-10-28 Denki Kagaku Kogyo Kk Setter for ceramic firing
JP2002275571A (en) * 2001-03-13 2002-09-25 Toshiba Tungaloy Co Ltd cBN-BASE SINTERED COMPACT, AND COATED TOOL CONSISTING THEREOF
JP2011178598A (en) * 2010-03-01 2011-09-15 Hitachi Metals Ltd Method for manufacturing silicon nitride substrate and silicon nitride substrate
WO2013054852A1 (en) * 2011-10-11 2013-04-18 日立金属株式会社 Silicon nitride substrate and method for manufacturing silicon nitride substrate
WO2020203692A1 (en) * 2019-03-29 2020-10-08 デンカ株式会社 Composite body

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Handbook of the latest technologies for smartphones and touch panel materials", 28 June 2013, TECHNICAL INFORMATION INSTITUTE, JP, ISBN: 978-4-86104-484-7, article NOBORU FUJIMOTO PLANNING AND EDITING: "Section 7 Boron Nitride Filler and Heat Dissipating Sheet", pages: 461 - 468, XP009543911 *

Also Published As

Publication number Publication date
JP7319482B2 (en) 2023-08-01
JPWO2023027122A1 (en) 2023-03-02

Similar Documents

Publication Publication Date Title
US10751912B2 (en) Aluminum-diamond-based composite and method for producing same
JP2000058631A (en) Holder for manufacturing semiconductor and manufacture thereof
WO2017158993A1 (en) Aluminum-diamond-based composite and heat dissipation component
JP7550869B2 (en) Composite and manufacturing method thereof, and laminate and manufacturing method thereof
WO2022209325A1 (en) Composite, method for manufacturing same, resin-filled plate, laminate, and method for manufacturing same
JP7566883B2 (en) Boron nitride sintered body, composite body, their manufacturing method, and heat dissipation member
JP7319482B2 (en) Ceramic plate manufacturing method, ceramic plate, composite sheet, and laminated substrate
WO2021200724A1 (en) Boron nitride sintered body, composite body, method for producing said boron nitride sintered body, method for producing said composite body, and heat dissipation member
WO2021200973A1 (en) Method for producing composite body
JP7381806B2 (en) Laminated parts and methods for manufacturing the same, laminates and methods for manufacturing the same
US20230271888A1 (en) Composite and production method for composite
JP7165844B2 (en) Composite sheet and its manufacturing method, and laminate and its manufacturing method
JP7374391B1 (en) Composite sheets and laminates
JP7196367B2 (en) Composite sheet and its manufacturing method, laminate and its manufacturing method, and power device
WO2022071247A1 (en) Composite sheet and manufacturing method thereof, and laminate and manufacturing method thereof
JP7510497B2 (en) Method for producing the composite
WO2022209335A1 (en) Composite sheet and manufacturing method thereof, and laminate and manufacturing method thereof
WO2021200719A1 (en) Boron nitride sintered body, composite body, and manufacturing methods therefor, and heat dissipation member
WO2021200971A1 (en) Boron nitride sintered body, complex, method for manufacturing these, and heat dissipation member
JP7080427B1 (en) Evaluation method for estimating the adhesiveness of composite sheets, laminated bodies, and composite sheets
WO2023027123A1 (en) Composite sheet and composite sheet manufacturing method, and laminated substrate
WO2023038150A1 (en) Boron nitride sintered body and composite body
JP2024033151A (en) Composite substrate manufacturing method and composite substrate

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023514411

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22861410

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22861410

Country of ref document: EP

Kind code of ref document: A1