[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023026688A1 - Vehicle control device and vehicle control method - Google Patents

Vehicle control device and vehicle control method Download PDF

Info

Publication number
WO2023026688A1
WO2023026688A1 PCT/JP2022/026057 JP2022026057W WO2023026688A1 WO 2023026688 A1 WO2023026688 A1 WO 2023026688A1 JP 2022026057 W JP2022026057 W JP 2022026057W WO 2023026688 A1 WO2023026688 A1 WO 2023026688A1
Authority
WO
WIPO (PCT)
Prior art keywords
motion
vehicle
vehicle control
control device
predictor
Prior art date
Application number
PCT/JP2022/026057
Other languages
French (fr)
Japanese (ja)
Inventor
京士朗 伊多倉
満 松原
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2023026688A1 publication Critical patent/WO2023026688A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion

Definitions

  • the present invention relates to the configuration and control of a vehicle control device, and particularly to technology effective in improving ride comfort.
  • Patent Document 1 describes "a roll angular acceleration detection device that detects the roll angular acceleration of the vehicle body, an actuator that generates a roll moment applied to the vehicle body, and a control unit that controls the actuator, and the control unit is the vehicle.
  • a vehicle roll vibration damping control device that stores a roll moment of inertia, a roll damping coefficient, and an equivalent roll stiffness.
  • Patent Document 2 describes "predicting the behavior of the vehicle when it travels according to the travel plan of the own vehicle, calculating an evaluation value for the predicted behavior of the vehicle based on the travel plan, and controlling the vehicle based on the evaluation value.
  • Driving Support Method for Calculating Control Amounts of Actuators to be Controlled is disclosed.
  • JP 2020-59477 A Japanese Patent Application Laid-Open No. 2020-26189
  • Patent Document 1 it is possible to effectively damp the roll vibration of the vehicle body without changing the dynamic characteristics of the roll motion of the vehicle.
  • Patent Document 2 it is possible to reduce delays in vehicle control even when the behavior of the vehicle changes dynamically.
  • Patent Document 2 mentions a control technique that improves route followability by optimally controlling a plurality of actuators by predicting the vehicle motion with a state predictor, but it may affect ride comfort. There is no description of a specific control method for the known acceleration or jerk that is a change in acceleration.
  • an object of the present invention is to provide a vehicle control system that can control different types of actuators in an integrated manner, and that is capable of controlling acceleration and jerk, which affect ride comfort, to desired movements while improving track followability.
  • An object of the present invention is to provide a vehicle control device and a vehicle control method.
  • the present invention provides a vehicle control apparatus that operates a plurality of actuators to control the motion of a vehicle, and predicts the future motion of the vehicle based on a motion prediction model of the vehicle and actuator command values.
  • a predictor a predictor
  • an optimizer that calculates, by iterative calculation, the actuator command value that minimizes the difference between an arbitrary motion target value and the value predicted by the predictor, wherein the predictor calculates dynamics of the vehicle. It is characterized by having a first motion predictor that calculates a first motion prediction state obtained by differentiating one or more orders.
  • the present invention also provides a vehicle control method for controlling the motion of a vehicle by operating a plurality of actuators, comprising: (a) a step of predicting future vehicle motion based on a vehicle motion prediction model and actuator command values; (b) calculating by iterative calculation an actuator command value that minimizes the difference between an arbitrary motion target value and the predicted value predicted in step (a); is characterized by calculating a first motion prediction state obtained by differentiating the dynamics of the first order or more.
  • high-performance vehicle control can control acceleration and jerk, which affect ride comfort, to desired movements while improving route followability.
  • An apparatus and vehicle control method can be implemented.
  • FIG. 1 is a diagram showing a schematic configuration of a vehicle according to Embodiment 1 of the present invention
  • FIG. 2 is a block diagram showing a schematic configuration of a control system that controls the vehicle of FIG. 1
  • FIG. 1 is a block diagram showing general model predictive control
  • FIG. 1 is a block diagram showing a control configuration of a vehicle control device according to Embodiment 1 of the present invention
  • FIG. FIG. 5 is a waveform diagram showing the effect of the vehicle control device of FIG. 4
  • FIG. 5 is a block diagram showing a control configuration of a vehicle control device according to Embodiment 2 of the present invention
  • FIG. 5 is a block diagram showing a control configuration of a vehicle control device according to Embodiment 3 of the present invention
  • FIG. 1 is a diagram showing a schematic configuration of a vehicle according to Embodiment 1 of the present invention
  • FIG. 2 is a block diagram showing a schematic configuration of a control system that controls the vehicle of FIG. 1
  • FIG. 1 is
  • FIG. 1 is a diagram showing a schematic configuration of a vehicle according to this embodiment.
  • the vehicle 1 of this embodiment has wheels 11, a motor 12, a suspension 13, a steering wheel 14, a brake 15, and a stabilizer 16 mounted on a vehicle body 10.
  • the longitudinal direction of the vehicle 1 is the x-axis (the forward direction is positive), the left-right direction is the y-axis (leftward is positive), and the vertical direction is the z-axis (upward is the positive direction).
  • the wheels 11 support the vehicle body 10 and exert a gripping force in contact with the road surface.
  • the four wheels are a left front wheel 11FL, a right front wheel 11FR, a left rear wheel 11RL, and a right rear wheel 11RR. ing.
  • reference numerals for structures corresponding to the left front wheel 11FL are denoted by FL
  • reference numerals for structures corresponding to the right front wheel 11FR are denoted by FR
  • components corresponding to the left rear wheel 11RL are denoted by RL.
  • RR is added to the reference numeral of the configuration corresponding to the right rear wheel 11RR.
  • reference numerals corresponding to both the left front wheel 11FL and right front wheel 11FR are denoted by F
  • reference numerals corresponding to both the left rear wheel 11RL and right rear wheel 11RR are denoted by R.
  • An in-wheel motor 12 (12FL, 12FR, 12RL, 12RR) is attached to each of the wheels 11, and each of the wheels 11 is independently rotated (forward and reverse) by these motors 12. can be done.
  • Suspensions 13 (13FL, 13FR, 13RL, 13RR) are provided between each of the motors 12 and the vehicle body 10. These suspensions 13 absorb vibrations and shocks generated in the respective wheels 11, 10's stability and ride comfort are improved.
  • suspensions 13 are, for example, a semi-active suspension that combines a damper and a coil spring that can change the viscosity, a full active suspension that combines an actuator that can adjust the stroke, a damper, and a coil spring, a linear motor, There is an electric type that uses a combination of a rotary motor and a rotary direct acting mechanism.
  • the steering 14 is a device for steering the wheels 11 and determining the traveling direction of the vehicle 1.
  • the steering 14FL for steering the front left wheel 11FL
  • the steering 14FR for steering the front right wheel 11FR
  • the steering 14FR for steering the left front wheel 11FR. It has three steering wheels 14R for steering the rear wheel 11RL and the right rear wheel 11RR.
  • the brake 15 is a device for braking the rotation of the wheel 11.
  • the stabilizer 16 is a device that works in conjunction with the vertical motion of the left and right wheels to suppress the amount of rolling of the vehicle, and the stabilizer of this embodiment is a control stabilizer that can electrically adjust its torsion angle. It is a device for tilting the vehicle body 10 in the roll direction, which is a rotational movement around the x-axis, when the vehicle 1 turns, and adjusting the roll amount. It has two of 16R.
  • FIG. 2 is a block diagram showing a schematic configuration of a control system that controls the vehicle 1 of FIG.
  • a vehicle control device 2 mounted on the vehicle 1 receives map information, self-location information, and a vehicle motion command value calculated by a host computer based on a target ride comfort index.
  • the vehicle control device 2 calculates a plurality of actuator commands so as to reduce the error between the received motion command value and the current motion information obtained from an acceleration sensor or the like, and transmits an operation command value to each actuator. It has functions.
  • model predictive control as a means of optimally controlling the error between the target motion and the current value shown in FIG.
  • FIG. 3 shows a schematic configuration diagram of general model predictive control technology that is incorporated in the vehicle control device 2 and performs optimal actuator control based on vehicle motion prediction.
  • the motion predictor 21 is equipped with a vehicle dynamics model to simulate vehicle motion, and the vehicle motion is predicted based on the operation commands of multiple actuators. Also, the optimizer 22 compares the motion command value received from the host computer 41 with the motion prediction value obtained from the motion predictor 21, and the error of the future motion prediction value for the motion command value is within a certain interval. The operation command value of the actuator 42 is optimized by iterative calculation so as to be minimized.
  • the evaluation weight setting unit 23 can adjust the weight of the evaluation function when optimizing so that arbitrary movement can be controlled among a plurality of vehicle movements. For example, it is possible to adjust the control such that suppression of change in the attitude angle of the vehicle 1 is prioritized over the route following error of the vehicle 1 .
  • the constraint condition setting unit 24 performs the optimization calculation after restricting an arbitrary motion state or actuator operation command so that it does not exceed preset upper and lower limit values in the optimization calculation of the optimizer 22. enable. For example, it is possible to travel while restricting the route following error to always be 10 m or less.
  • FIG. 4 shows a control block diagram of the vehicle control device 2 in this embodiment.
  • This embodiment also includes an optimizer 22, an evaluation weight setting section 23, and a constraint condition setting section 24, as in FIG.
  • the motion predictor 21 includes a first motion predictor 31 and a second motion predictor 32 .
  • the first motion predictor 31 has a vehicle motion model obtained by second-order differentiation of a general vehicle motion model for calculating changes in acceleration of vehicle motion.
  • the motion model of pitch ⁇ which is the rotational motion around the longitudinal x, vertical z, and y axes of a general vehicle motion model for calculating changes in acceleration of vehicle motion, is expressed by, for example, formulas (1) to (3). is a motion model shown in .
  • Equation (4) is the input of various actuators.
  • X and U are the state and input, respectively
  • a and B are the coefficient matrix of the state vector and the coefficient matrix of the input vector, respectively.
  • the state includes the position and velocity of the vehicle or the angle and angular velocity of the vehicle attitude.
  • Equation (5) obtained by second-order differentiation of Equation (4) is provided as a vehicle motion prediction model.
  • equations of motion shown in equations (1) to (3) are differentiated second-order in equation (5), acceleration and jerk as well as attitude angular acceleration and angular jerk are added to that state. state is included.
  • the input handled by the state equation gives the change rate of the actuator command change (the second order differential value of U) as an input.
  • the second motion prediction state is obtained by second-order integration of the state predicted by Equation (5).
  • the state obtained here is of the same kind as state X in equation (4).
  • the prediction state combiner 33 simultaneously converts the first motion prediction model, the second motion prediction model, and the actuator input U into an optimizable format. Specifically, an expansion system of the formula (6) is constructed.
  • Equation (7) in which U is included in the state vector is defined as a new extended system.
  • Equation (8) obtained in this manner includes position, velocity, acceleration, jerk, angle, angular velocity, angular acceleration, angular jerk, various actuator commands, etc. in the state at the same time. It is possible to predict and optimally control them at the same time with the optimizer 22 .
  • the value calculated as a result of optimization is the second-order differential value of the actuator command, so the signal actually transmitted to the actuator 42 is the second-order integrated value (actuator command value).
  • the weight setting value Q by the evaluation weight setting unit 23 and the optimization function equation (10) based on the error E between the desired motion and the motion prediction value shown in equation (9) are defined, Constrained optimization calculations are performed based on equations (11) and (12), which are formulated as inequality constraints regarding the state and input of the augmented system expressed by equation (8).
  • Hp is the prediction interval
  • Gx and Gu are coefficient matrices related to state and input constraints, respectively.
  • the motion state of acceleration and jerk which affect the ride comfort of the driver and passengers, can be controlled at the same time so as not to exceed the operation limit of the actuator. It becomes possible.
  • FIG. 5 shows waveforms of vehicle speed, in-wheel motor drive torque, front-rear jerk, pitch angular acceleration, and pitch angular velocity from the top.
  • the dashed line indicates the speed command value
  • the dotted line indicates the control waveform of the conventional technology
  • the solid line indicates the control waveform of the present invention.
  • the vehicle control system 2 of the present embodiment includes the motion predictor 21 for predicting the future vehicle motion based on the motion prediction model of the vehicle 1 and the actuator command value, and an arbitrary motion target value and the motion predictor
  • the motion predictor 21 is provided with an optimizer 22 that calculates by iterative calculation an actuator command value that minimizes the difference from the predicted value by the motion predictor 21.
  • the motion predictor 21 is a first It has a first motion predictor 31 for calculating the motion prediction state of.
  • the motion predictor 21 also has a second motion predictor 32 that calculates a second motion prediction state obtained by integrating the first motion prediction state by one or more orders.
  • the vehicle control device 2 also includes a prediction state combiner 33 that combines the first motion prediction state and the second motion prediction state.
  • the prediction state combiner 33 further combines the actuator command prediction value predicted based on the integration of the amount of change in the actuator command value.
  • the optimizer 22 calculates the optimization result based on the amount of change in the actuator command value obtained by differentiating the dynamics of the vehicle 1 by one or more orders.
  • the first motion predictor 31 and the second motion predictor 32 have a total of six degrees of freedom of roll, pitch, and yaw, which are translational motions of the vehicle 1 in the longitudinal, vertical, and lateral directions, and rotational motions around respective axes. predicts one or more of the movements of
  • the first motion predictor 31 predicts one or more of the acceleration or jerk of the translational motion of the vehicle 1 and the angular acceleration or angular jerk of the rotational motion of the vehicle 1 .
  • the second motion predictor 32 predicts one or more of the position or speed of translational motion and the angle or angular velocity of rotational motion of the vehicle 1 .
  • the optimizer 22 has one or more predicted values consisting of the first motion prediction state, the second motion prediction state, and the actuator command prediction value predicted based on the integration of the change amount of the actuator command value. not exceed any limits.
  • FIG. 6 is a block diagram showing the control configuration of the vehicle control device 2 of this embodiment.
  • the vehicle control device 2 of the present embodiment converts the first motion prediction model and the second motion prediction model into a format that can be optimized by the prediction state coupler 33, when the actuator command This differs from the first embodiment (FIG. 4) in that no value is used.
  • Other configurations are the same as those of the first embodiment (FIG. 4).
  • Computational cost is often an issue in model predictive control. Then, the computation cost can be reduced by reducing the dimension of the state vector.
  • the number of dimensions required for optimization calculation can be reduced by the number of actuators to be handled, so the calculation cost can be expected to be reduced, and the cost of the computer installed in the vehicle can be reduced.
  • FIG. 7 is a block diagram showing the control configuration of the vehicle control device 2 of this embodiment.
  • the vehicle control device 2 of this embodiment does not use the second motion predictor 32 when the motion predictor 21 predicts the vehicle motion, This differs from Example 1 (FIG. 4) in that the format of one motion prediction model is not converted. Other configurations are the same as those of the first embodiment (FIG. 4).
  • This embodiment is a control configuration focusing only on the control of ride comfort.
  • only acceleration, angular acceleration of jerk and posture, and angular addition acceleration can be controlled as states.
  • the present invention is not limited to the above-described embodiments, and includes various modifications.
  • the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations.
  • it is possible to replace part of the configuration of one embodiment with the configuration of another embodiment and it is also possible to add the configuration of another embodiment to the configuration of one embodiment.
  • Reference Signs List 1 vehicle 2 vehicle control device 10 vehicle body 11 wheel 12 motor 13 suspension 14 steering 15 brake 16 stabilizer 21 motion predictor 22 optimizer 23...Evaluation weight setting unit, 24...Constraint condition setting unit, 31...First motion predictor, 32...Second motion predictor, 33...Predicted state combiner, 41...Higher-level computer, 42...Actuator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mathematical Physics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

Provided is a high-performance vehicle control device that integrally controls different types of actuators, and that improves path following characteristics while making it possible to control acceleration and jerk affecting riding comfort to a desired movement. This vehicle control device for operating a plurality of actuators to control the motion of a vehicle is characterized by comprising a predictor that predicts a future vehicle motion on the basis of a vehicle motion prediction model and an actuator command value, and an optimizer that calculates, by iterative computation, the actuator command value that will minimize the difference between an arbitrary motion target value and a prediction value predicted by the predictor, the predictor having a first motion predictor that calculates a first motion prediction state obtained by differentiating the dynamics of the vehicle by one or more stages.

Description

車両制御装置、車両制御方法VEHICLE CONTROL DEVICE, VEHICLE CONTROL METHOD
 本発明は、車両制御装置の構成とその制御に係り、特に、乗り心地の向上に有効な技術に関する。 The present invention relates to the configuration and control of a vehicle control device, and particularly to technology effective in improving ride comfort.
 自動車の自動運転技術開発において、従来は、経路追従など自動運転に必要不可欠な技術の開発に主眼が置かれていたが、自動運転技術の発展に伴い、移動空間に求める価値が多様化し、乗り心地向上の要求が高まっている。 Conventionally, the development of autonomous driving technology for automobiles focused on the development of technologies essential for autonomous driving, such as route tracking. Demand for improved comfort is increasing.
 そこで、近年、複数かつ異種のアクチュエータを最適に統合制御することで、ドライバーや乗員の快適性を向上する車両制御技術の開発が進められている。 Therefore, in recent years, vehicle control technology has been developed to improve the comfort of drivers and passengers by optimally controlling multiple and different types of actuators.
 本技術分野の背景技術として、例えば、特許文献1のような技術がある。特許文献1には「車体のロール角加速度を検出するロール角加速度検出装置と、車体に付与するロールモーメントを発生するアクチュエータと、アクチュエータを制御する制御ユニットと、を有し、制御ユニットは車両のロール慣性モーメント、ロール減衰係数及び等価ロール剛性を記憶する車両用ロール振動制振制御装置」が開示されている。 As a background technology in this technical field, there is a technology such as Patent Document 1, for example. Patent Document 1 describes "a roll angular acceleration detection device that detects the roll angular acceleration of the vehicle body, an actuator that generates a roll moment applied to the vehicle body, and a control unit that controls the actuator, and the control unit is the vehicle. A vehicle roll vibration damping control device that stores a roll moment of inertia, a roll damping coefficient, and an equivalent roll stiffness.
 また、特許文献2には「自車両の走行計画に従って走行する時の車両の挙動を予測し、走行計画に基づき、予測された車両の挙動に対する評価値を算出し、評価値に基づき、車両を制御するアクチュエータの制御量を算出する走行支援方法」が開示されている。 In addition, Patent Document 2 describes "predicting the behavior of the vehicle when it travels according to the travel plan of the own vehicle, calculating an evaluation value for the predicted behavior of the vehicle based on the travel plan, and controlling the vehicle based on the evaluation value. Driving Support Method for Calculating Control Amounts of Actuators to be Controlled” is disclosed.
特開2020-59477号公報JP 2020-59477 A 特開2020-26189号公報Japanese Patent Application Laid-Open No. 2020-26189
 上記特許文献1によれば、車両のロール運動の動特性の変化を来すことなく車体のロール振動を効果的に制振することができるとしている。 According to the above Patent Document 1, it is possible to effectively damp the roll vibration of the vehicle body without changing the dynamic characteristics of the roll motion of the vehicle.
 しかしながら、特許文献1では、各実施形態で説明されているように、同種のアクチュエータを制御してロール振動を抑制するものでしかなく、異種のアクチュエータを併用する場合に、各種アクチュエータをどのように制御してロール振動を抑制するかについては具体的に説明されていない。 However, in Patent Document 1, as described in each embodiment, the roll vibration is only suppressed by controlling the same type of actuators. There is no specific explanation as to whether to control and suppress the roll vibration.
 また、上記特許文献2によれば、車両の挙動が動的に変化する場合でも、車両の制御の遅れを軽減することができるとしている。 In addition, according to Patent Document 2, it is possible to reduce delays in vehicle control even when the behavior of the vehicle changes dynamically.
 しかしながら、特許文献2では、状態予測器で車両運動を予測することによって、複数のアクチュエータを最適に制御して経路追従性を向上する制御技術について言及しているが、乗り心地に影響することが知られている加速度や加速度変化であるジャークに関する具体的な制御手法については説明がない。 However, Patent Document 2 mentions a control technique that improves route followability by optimally controlling a plurality of actuators by predicting the vehicle motion with a state predictor, but it may affect ride comfort. There is no description of a specific control method for the known acceleration or jerk that is a change in acceleration.
 そこで、本発明の目的は、異種のアクチュエータを統合的に制御する車両制御装置において、経路の追従性を向上しつつ、乗り心地に影響する加速度およびジャークを所望の動きに制御可能な高性能な車両制御装置及び車両制御方法を提供することにある。 SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a vehicle control system that can control different types of actuators in an integrated manner, and that is capable of controlling acceleration and jerk, which affect ride comfort, to desired movements while improving track followability. An object of the present invention is to provide a vehicle control device and a vehicle control method.
 上記課題を解決するために、本発明は、複数のアクチュエータを操作して車両の運動を制御する車両制御装置であって、車両の運動予測モデルとアクチュエータ指令値に基づき未来の車両運動を予測する予測器と、任意の運動目標値と前記予測器による予測値との差を最小化する前記アクチュエータ指令値を反復演算により算出する最適化器と、を備え、前記予測器は、車両のダイナミクスを1階以上微分して得られる第一の運動予測状態を算出する第一の運動予測器を有することを特徴とする。 In order to solve the above problems, the present invention provides a vehicle control apparatus that operates a plurality of actuators to control the motion of a vehicle, and predicts the future motion of the vehicle based on a motion prediction model of the vehicle and actuator command values. a predictor; and an optimizer that calculates, by iterative calculation, the actuator command value that minimizes the difference between an arbitrary motion target value and the value predicted by the predictor, wherein the predictor calculates dynamics of the vehicle. It is characterized by having a first motion predictor that calculates a first motion prediction state obtained by differentiating one or more orders.
 また、本発明は、複数のアクチュエータを操作して車両の運動を制御する車両制御方法であって、(a)車両の運動予測モデルとアクチュエータ指令値に基づき未来の車両運動を予測するステップと、(b)任意の運動目標値と前記(a)ステップで予測した予測値との差を最小化するアクチュエータ指令値を反復演算により算出するステップと、を有し、前記(a)ステップにおいて、車両のダイナミクスを1階以上微分して得られる第一の運動予測状態を算出することを特徴とする。 The present invention also provides a vehicle control method for controlling the motion of a vehicle by operating a plurality of actuators, comprising: (a) a step of predicting future vehicle motion based on a vehicle motion prediction model and actuator command values; (b) calculating by iterative calculation an actuator command value that minimizes the difference between an arbitrary motion target value and the predicted value predicted in step (a); is characterized by calculating a first motion prediction state obtained by differentiating the dynamics of the first order or more.
 本発明によれば、異種のアクチュエータを統合的に制御する車両制御装置において、経路の追従性を向上しつつ、乗り心地に影響する加速度およびジャークを所望の動きに制御可能な高性能な車両制御装置及び車両制御方法を実現することができる。 According to the present invention, in a vehicle control device that integrally controls different types of actuators, high-performance vehicle control can control acceleration and jerk, which affect ride comfort, to desired movements while improving route followability. An apparatus and vehicle control method can be implemented.
 これにより、自動車の自動運転に必要な経路追従性を担保しつつ、ドライバーや乗員の乗り心地向上が図れる。 As a result, it is possible to improve the comfort of the driver and passengers while ensuring the route-following performance required for autonomous driving.
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiment.
本発明の実施例1に係る車両の概略構成を示す図である。1 is a diagram showing a schematic configuration of a vehicle according to Embodiment 1 of the present invention; FIG. 図1の車両を制御する制御システムの概略構成を示すブロック図である。2 is a block diagram showing a schematic configuration of a control system that controls the vehicle of FIG. 1; FIG. 一般的なモデル予測制御を示すブロック図である。1 is a block diagram showing general model predictive control; FIG. 本発明の実施例1に係る車両制御装置の制御構成を示すブロック図である。1 is a block diagram showing a control configuration of a vehicle control device according to Embodiment 1 of the present invention; FIG. 図4の車両制御装置の効果を示す波形図である。FIG. 5 is a waveform diagram showing the effect of the vehicle control device of FIG. 4; 本発明の実施例2に係る車両制御装置の制御構成を示すブロック図である。FIG. 5 is a block diagram showing a control configuration of a vehicle control device according to Embodiment 2 of the present invention; 本発明の実施例3に係る車両制御装置の制御構成を示すブロック図である。FIG. 5 is a block diagram showing a control configuration of a vehicle control device according to Embodiment 3 of the present invention;
 以下、本発明の実施例について添付の図面を参照しつつ説明する。同様の構成要素には同様の符号を付し、同様の説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described with reference to the attached drawings. Similar components are denoted by similar reference numerals, and similar descriptions are not repeated.
 図1から図5を参照して、本発明の実施例1に係る車両制御装置及び車両制御方法について説明する。図1は、本実施例の車両の概略構成を示す図である。 A vehicle control device and a vehicle control method according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 5. FIG. FIG. 1 is a diagram showing a schematic configuration of a vehicle according to this embodiment.
 本実施例の車両1は、図1に示すように、車体10に、車輪11、モータ12、サスペンション13、ステアリング14、ブレーキ15、及び、スタビライザ16を搭載したものである。 As shown in FIG. 1, the vehicle 1 of this embodiment has wheels 11, a motor 12, a suspension 13, a steering wheel 14, a brake 15, and a stabilizer 16 mounted on a vehicle body 10.
 なお、以下では、車両1の前後方向をx軸(前方向を正)、左右方向をy軸(左方向を正)、上下方向をz軸(上方向を正)とする。 In the following description, the longitudinal direction of the vehicle 1 is the x-axis (the forward direction is positive), the left-right direction is the y-axis (leftward is positive), and the vertical direction is the z-axis (upward is the positive direction).
 車輪11は、車体10を支持し、路面に接してグリップ力を発揮するものであり、本実施例では、左前輪11FL、右前輪11FR、左後輪11RL、右後輪11RRの4輪を備えている。 The wheels 11 support the vehicle body 10 and exert a gripping force in contact with the road surface. In this embodiment, the four wheels are a left front wheel 11FL, a right front wheel 11FR, a left rear wheel 11RL, and a right rear wheel 11RR. ing.
 なお、以下では、左前輪11FLに対応する構成の符号にはFLを付し、右前輪11FRに対応する構成の符号にはFRを付し、左後輪11RLに対応する構成の符号にはRLを付し、右後輪11RRに対応する構成の符号にはRRを付すこととする。また、左前輪11FLと右前輪11FRの双方に対応する構成の符号にはFを付し、左後輪11RLと右後輪11RRの双方に対応する構成の符号にはRを付すこととする。 In the following description, reference numerals for structures corresponding to the left front wheel 11FL are denoted by FL, reference numerals for structures corresponding to the right front wheel 11FR are denoted by FR, and components corresponding to the left rear wheel 11RL are denoted by RL. , and RR is added to the reference numeral of the configuration corresponding to the right rear wheel 11RR. In addition, reference numerals corresponding to both the left front wheel 11FL and right front wheel 11FR are denoted by F, and reference numerals corresponding to both the left rear wheel 11RL and right rear wheel 11RR are denoted by R.
 車輪11の各々には、インホイール型のモータ12(12FL,12FR,12RL,12RR)が取り付けられており、これらのモータ12によって車輪11の各々が独立して回転(正転,逆転)することができる。 An in-wheel motor 12 (12FL, 12FR, 12RL, 12RR) is attached to each of the wheels 11, and each of the wheels 11 is independently rotated (forward and reverse) by these motors 12. can be done.
 モータ12の各々と車体10の間には、サスペンション13(13FL,13FR,13RL,13RR)が設けられており、これらのサスペンション13により、車輪11の各々に発生する振動や衝撃を吸収し、車体10の安定性、乗り心地を良くしている。 Suspensions 13 (13FL, 13FR, 13RL, 13RR) are provided between each of the motors 12 and the vehicle body 10. These suspensions 13 absorb vibrations and shocks generated in the respective wheels 11, 10's stability and ride comfort are improved.
 なお、これらのサスペンション13は、例えば、粘性を変更可能なダンパとコイルスプリングを組み合わせたセミアクティブサスペンションや、ストロークを調節可能なアクチュエータとダンパとコイルスプリングを組み合わせたフルアクティブサスペンション、また、リニアモータや回転モータと回転直動機構の組み合わせを用いた電気式のものなどがある。 These suspensions 13 are, for example, a semi-active suspension that combines a damper and a coil spring that can change the viscosity, a full active suspension that combines an actuator that can adjust the stroke, a damper, and a coil spring, a linear motor, There is an electric type that uses a combination of a rotary motor and a rotary direct acting mechanism.
 ステアリング14は、車輪11を操舵し、車両1の進行方向を決定するための装置であり、本実施例では、左前輪11FLを操舵するステアリング14FLと、右前輪11FRを操舵するステアリング14FRと、左後輪11RLおよび右後輪11RRを操舵するステアリング14Rの3つを備えている。 The steering 14 is a device for steering the wheels 11 and determining the traveling direction of the vehicle 1. In this embodiment, the steering 14FL for steering the front left wheel 11FL, the steering 14FR for steering the front right wheel 11FR, and the steering 14FR for steering the left front wheel 11FR. It has three steering wheels 14R for steering the rear wheel 11RL and the right rear wheel 11RR.
 ブレーキ15は、車輪11の回転を制動するための装置であり、本実施例では、左前輪11FL用のブレーキ15FLと、右前輪11FR用のブレーキ15FRと、左後輪11RL用のブレーキ15RLと、右後輪11RR用のブレーキ15RRの4つを備えている。 The brake 15 is a device for braking the rotation of the wheel 11. In this embodiment, the brake 15FL for the front left wheel 11FL, the brake 15FR for the front right wheel 11FR, the brake 15RL for the rear left wheel 11RL, It has four brakes 15RR for the right rear wheel 11RR.
 スタビライザ16は、左右の車輪の上下運動と連動して動き、車両のロール量を抑える装置であり、本実施例のスタビライザは、そのねじれ角を電気式で調整できる制御スタビライザである。車両1の旋回時等に車体10をx軸周りの回転運動であるロール方向に傾け、ロール量を調節するための装置であり、本実施例では、前方用のスタビライザ16Fと、後方用のスタビライザ16Rの2つを備えている。 The stabilizer 16 is a device that works in conjunction with the vertical motion of the left and right wheels to suppress the amount of rolling of the vehicle, and the stabilizer of this embodiment is a control stabilizer that can electrically adjust its torsion angle. It is a device for tilting the vehicle body 10 in the roll direction, which is a rotational movement around the x-axis, when the vehicle 1 turns, and adjusting the roll amount. It has two of 16R.
 図2は、図1の車両1を制御する制御システムの概略構成を示すブロック図である。 FIG. 2 is a block diagram showing a schematic configuration of a control system that controls the vehicle 1 of FIG.
 車両1に搭載される車両制御装置2は、マップ情報や自己位置の情報と、目標とする乗り心地の指標に基づいて上位のコンピュータで演算された車両の運動指令値を受信する。
また、車両制御装置2は、受信した運動指令値と、加速度センサなどから得られる現在の運動情報との誤差を低減するように複数のアクチュエータ指令を演算し、各アクチュエータに操作指令値を送信する機能を備える。
A vehicle control device 2 mounted on the vehicle 1 receives map information, self-location information, and a vehicle motion command value calculated by a host computer based on a target ride comfort index.
In addition, the vehicle control device 2 calculates a plurality of actuator commands so as to reduce the error between the received motion command value and the current motion information obtained from an acceleration sensor or the like, and transmits an operation command value to each actuator. It has functions.
 図2では、運動指令値として、前後指令値,左右指令値,上下指令値,ロール指令値,ピッチ指令値,ヨー指令値を車両制御装置2に入力し、駆動用アクチュエータ,ブレーキ用アクチュエータ,アクティブサスペンション用アクチュエータ,ステアリング用アクチュエータ等の操作指令値を出力する例を示している。 In FIG. 2, as motion command values, a longitudinal command value, a lateral command value, a vertical command value, a roll command value, a pitch command value, and a yaw command value are inputted to the vehicle control device 2, and the driving actuator, the braking actuator, the active An example of outputting an operation command value for a suspension actuator, a steering actuator, etc. is shown.
 ここで、図2に示す目標運動と現在値の誤差を最適に制御する手段としてモデル予測制御と呼ばれる技術がある。 Here, there is a technique called model predictive control as a means of optimally controlling the error between the target motion and the current value shown in FIG.
 図3に、車両制御装置2に組み込まれ、車両の運動予測に基づき最適なアクチュエータ制御を行う一般的なモデル予測制御技術に関する概略構成図を示す。 FIG. 3 shows a schematic configuration diagram of general model predictive control technology that is incorporated in the vehicle control device 2 and performs optimal actuator control based on vehicle motion prediction.
 モデル予測制御では、運動予測器21に車両運動を模擬するため車両ダイナミクスのモデルを備え、複数のアクチュエータの操作指令に基づいて車両運動の予測を行う。また、最適化器22は、上位コンピュータ41から受信した運動指令値と、運動予測器21から得られる運動予測値を比較し、運動指令値に対して一定区間だけ未来の運動予測値の誤差が最小となるように、アクチュータ42の操作指令値を反復演算により最適化する。 In model predictive control, the motion predictor 21 is equipped with a vehicle dynamics model to simulate vehicle motion, and the vehicle motion is predicted based on the operation commands of multiple actuators. Also, the optimizer 22 compares the motion command value received from the host computer 41 with the motion prediction value obtained from the motion predictor 21, and the error of the future motion prediction value for the motion command value is within a certain interval. The operation command value of the actuator 42 is optimized by iterative calculation so as to be minimized.
 この時、複数の車両運動において、任意の運動を制御可能とするように、評価重み設定部23で最適化する際の評価関数の重みが調整可能である。例えば、車両1の経路追従誤差よりも、車両1の姿勢角変化の抑制を優先するなどの制御の調整が可能である。 At this time, the evaluation weight setting unit 23 can adjust the weight of the evaluation function when optimizing so that arbitrary movement can be controlled among a plurality of vehicle movements. For example, it is possible to adjust the control such that suppression of change in the attitude angle of the vehicle 1 is prioritized over the route following error of the vehicle 1 .
 また、制約条件設定部24は、最適化器22の最適化演算において、任意の運動状態またはアクチュエータの操作指令が、予め設定された上下限値を超過しないように制約したうえで最適化演算を可能にする。例えば、経路追従誤差が常に10m以下となるように制約しながら走行させることが可能である。 In addition, the constraint condition setting unit 24 performs the optimization calculation after restricting an arbitrary motion state or actuator operation command so that it does not exceed preset upper and lower limit values in the optimization calculation of the optimizer 22. enable. For example, it is possible to travel while restricting the route following error to always be 10 m or less.
 このようにして、一般的なモデル予測制御では、車両ダイナミクスの予測に基づいて、目標値との誤差を最小化するように、かつ種々の制約を超えないように最適化して、好適にアクチュエータを動作させる操作指令値を演算し、アクチュエータ42に送信する。 In this way, in general model predictive control, based on predictions of vehicle dynamics, optimization is performed so as to minimize the error from the target value and not to exceed various constraints, and the actuators are preferably operated. An operation command value to operate is calculated and transmitted to the actuator 42 .
 図4に、本実施例における車両制御装置2の制御ブロック図を示す。本実施例においても、図3と同様に、最適化器22、評価重み設定部23、制約条件設定部24を備える。
そして、運動予測器21には、第一の運動予測器31及び第二の運動予測器32を備える。第一の運動予測器31では、車両運動の加速度変化を計算する一般的な車両運動モデルを二階微分した車両運動モデルを備える。
FIG. 4 shows a control block diagram of the vehicle control device 2 in this embodiment. This embodiment also includes an optimizer 22, an evaluation weight setting section 23, and a constraint condition setting section 24, as in FIG.
The motion predictor 21 includes a first motion predictor 31 and a second motion predictor 32 . The first motion predictor 31 has a vehicle motion model obtained by second-order differentiation of a general vehicle motion model for calculating changes in acceleration of vehicle motion.
 ここで、車両運動の加速度変化を計算する一般的な車両運動モデルの前後x、上下z、及びy軸周りの回転運動であるピッチθの運動モデルは、例えば式(1)~式(3)に示す運動モデルである。 Here, the motion model of pitch θ, which is the rotational motion around the longitudinal x, vertical z, and y axes of a general vehicle motion model for calculating changes in acceleration of vehicle motion, is expressed by, for example, formulas (1) to (3). is a motion model shown in .
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 ここで、mは車両全体の質量、msはばね上の質量、hpはピッチセンターと車両重心位置の偏差、ρは各種運動の影響を表す係数、fは各種アクチュエータ入力であり、最適制御するためには、これらの運動方程式に従えば、式(4)で示す線形状態方程式として表現される。 Here, m is the mass of the entire vehicle, ms is the mass on the sprung mass, hp is the deviation between the pitch center and the position of the center of gravity of the vehicle, ρ is the coefficient representing the influence of various motions, and f is the input of various actuators. is expressed as a linear state equation shown in Equation (4) according to these equations of motion.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 但し、XとUはそれぞれ状態と入力であり、AとBはそれぞれ状態ベクトルの係数行列及び入力ベクトルの係数行列である。式(4)には、例えば、状態に車両の位置と速度または車両姿勢の角度と角速度を含む。 However, X and U are the state and input, respectively, and A and B are the coefficient matrix of the state vector and the coefficient matrix of the input vector, respectively. In equation (4), for example, the state includes the position and velocity of the vehicle or the angle and angular velocity of the vehicle attitude.
 ここで、本実施例の第一の運動予測器31では、式(4)を二階微分した式(5)を車両運動予測モデルとして備える。 Here, in the first motion predictor 31 of this embodiment, Equation (5) obtained by second-order differentiation of Equation (4) is provided as a vehicle motion prediction model.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 このとき、式(5)には、式(1)~式(3)で示したような運動方程式を二階微分しているため、その状態に加速度とジャーク、及び姿勢の角加速度、角加加速度の状態が含まれている。 At this time, since equations of motion shown in equations (1) to (3) are differentiated second-order in equation (5), acceleration and jerk as well as attitude angular acceleration and angular jerk are added to that state. state is included.
 また、二階微分により、状態方程式が扱う入力は、アクチュエータ指令変化の変化率(Uの二階微分値)を入力として与える。 Also, by the second order differentiation, the input handled by the state equation gives the change rate of the actuator command change (the second order differential value of U) as an input.
 次に、式(5)によって予測された状態を二階積分することにより、第二の運動予測状態を得る。ここで得られる状態は、式(4)の状態Xと同種である。 Next, the second motion prediction state is obtained by second-order integration of the state predicted by Equation (5). The state obtained here is of the same kind as state X in equation (4).
 さらに、予測状態結合器33によって、第一の運動予測モデルと第二の運動予測モデル、及びアクチュエータの入力Uを同時に最適化可能な形式に変換する。具体的には、式(6)の拡大系を構成する。 Furthermore, the prediction state combiner 33 simultaneously converts the first motion prediction model, the second motion prediction model, and the actuator input U into an optimizable format. Specifically, an expansion system of the formula (6) is constructed.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 但し、実際には、入力ベクトルに含まれるUは、式(5)のUの二階微分の入力の積分により一意に決まるものであるため、独立した制御入力として扱うことは適切ではない。
そこで、Uを状態ベクトルに包含させた式(7)を新たな拡大系として定義する。
However, in reality, U included in the input vector is uniquely determined by the integral of the input of the second derivative of U in Equation (5), so it is not appropriate to treat it as an independent control input.
Therefore, equation (7) in which U is included in the state vector is defined as a new extended system.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 このようにして得られる式(8)には、状態に位置、速度、加速度、ジャーク、角度、角速度、角加速度、角加加速度、種々のアクチュエータ指令などを同時に含んでいるため、これらの変化を予測し、最適化器22で、それらを同時に最適に制御することが可能となる。 Equation (8) obtained in this manner includes position, velocity, acceleration, jerk, angle, angular velocity, angular acceleration, angular jerk, various actuator commands, etc. in the state at the same time. It is possible to predict and optimally control them at the same time with the optimizer 22 .
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 このとき、最適化の結果として算出される値は、アクチュエータ指令の二階微分値となるため、実際にアクチュエータ42に送信する信号は、その二階積分した値(アクチュエータ指令値)となる。 At this time, the value calculated as a result of optimization is the second-order differential value of the actuator command, so the signal actually transmitted to the actuator 42 is the second-order integrated value (actuator command value).
 なお、最適化器22では、評価重み設定部23による重み設定値Qと、式(9)に示す目標運動と運動予測値の誤差Eに基づく最適化関数である式(10)が定義され、式(8)で表した拡大系の状態と入力に関する制約条件を不等式制約条件として定式化した式(11)及び式(12)に基づいて制約付き最適化演算が実行される。 In the optimizer 22, the weight setting value Q by the evaluation weight setting unit 23 and the optimization function equation (10) based on the error E between the desired motion and the motion prediction value shown in equation (9) are defined, Constrained optimization calculations are performed based on equations (11) and (12), which are formulated as inequality constraints regarding the state and input of the augmented system expressed by equation (8).
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 ここで、Hpは予測区間、GxとGuはそれぞれ状態、入力の制約に関する係数行列である。 Here, Hp is the prediction interval, Gx and Gu are coefficient matrices related to state and input constraints, respectively.
 以上の構成によって、本実施例では、車両1の経路追従制御と同時に、アクチュエータの作動限界を超えないように、ドライバーや乗員の乗り心地に影響する加速度、ジャークの運動状態も同時に制御することが可能となる。 With the above configuration, in this embodiment, along with the route following control of the vehicle 1, the motion state of acceleration and jerk, which affect the ride comfort of the driver and passengers, can be controlled at the same time so as not to exceed the operation limit of the actuator. It becomes possible.
 図5を用いて、本実施例の効果を説明する。図5には、上から車速、インホイールモータの駆動トルク、前後ジャーク、ピッチ角加速度、ピッチ角速度の波形を示している。車速の波形には、破線で速度指令値を示し、従来技術の制御波形を点線、本発明の制御波形を実線で示している。 The effect of this embodiment will be explained using FIG. FIG. 5 shows waveforms of vehicle speed, in-wheel motor drive torque, front-rear jerk, pitch angular acceleration, and pitch angular velocity from the top. In the vehicle speed waveform, the dashed line indicates the speed command value, the dotted line indicates the control waveform of the conventional technology, and the solid line indicates the control waveform of the present invention.
 従来技術では、速度追従制御と同時に、前後ジャークやピッチ角加速度を抑制するように制御することはできず、乗り心地の観点で設定される前後ジャークやピッチ角加速度の許容値(破線)を超過してしまう。一方で、本発明によると、速度追従制御を行いながら、駆動トルクの限界を考慮しつつ、さらに前後ジャークやピッチ角加速度を同時に抑制した走りを実現できるため、乗り心地が向上した車両運転制御が可能となる。 With the conventional technology, it is not possible to control the longitudinal jerk and pitch angular acceleration at the same time as the speed follow-up control. Resulting in. On the other hand, according to the present invention, while performing speed follow-up control, it is possible to realize driving while considering the limit of drive torque and suppressing longitudinal jerk and pitch angular acceleration at the same time. It becomes possible.
 以上説明したように、本実施例の車両制御装置2は、車両1の運動予測モデルとアクチュエータ指令値に基づき未来の車両運動を予測する運動予測器21と、任意の運動目標値と運動予測器21による予測値との差を最小化するアクチュエータ指令値を反復演算により算出する最適化器22を備えており、運動予測器21は、車両1のダイナミクスを1階以上微分して得られる第一の運動予測状態を算出する第一の運動予測器31を有している。 As described above, the vehicle control system 2 of the present embodiment includes the motion predictor 21 for predicting the future vehicle motion based on the motion prediction model of the vehicle 1 and the actuator command value, and an arbitrary motion target value and the motion predictor The motion predictor 21 is provided with an optimizer 22 that calculates by iterative calculation an actuator command value that minimizes the difference from the predicted value by the motion predictor 21. The motion predictor 21 is a first It has a first motion predictor 31 for calculating the motion prediction state of.
 また、運動予測器21は、第一の運動予測状態を1階以上積分して得られる第二の運動予測状態を算出する第二の運動予測器32を有している。 The motion predictor 21 also has a second motion predictor 32 that calculates a second motion prediction state obtained by integrating the first motion prediction state by one or more orders.
 また、車両制御装置2は、第一の運動予測状態および第二の運動予測状態を結合する予測状態結合器33を備えている。 The vehicle control device 2 also includes a prediction state combiner 33 that combines the first motion prediction state and the second motion prediction state.
 予測状態結合器33は、アクチュエータ指令値の変化量の積分に基づき予測されるアクチュエータ指令予測値をさらに結合する。 The prediction state combiner 33 further combines the actuator command prediction value predicted based on the integration of the amount of change in the actuator command value.
 最適化器22は、車両1のダイナミクスを1階以上微分して得られるアクチュエータ指令値の変化量に基づき最適化結果を算出する。 The optimizer 22 calculates the optimization result based on the amount of change in the actuator command value obtained by differentiating the dynamics of the vehicle 1 by one or more orders.
 そして、第一の運動予測器31および第二の運動予測器32は、車両1の前後、上下、左右の並進運動、および各軸周りの回転運動であるロール、ピッチ、ヨーの計6自由度の運動のうち1つ以上を予測する。 The first motion predictor 31 and the second motion predictor 32 have a total of six degrees of freedom of roll, pitch, and yaw, which are translational motions of the vehicle 1 in the longitudinal, vertical, and lateral directions, and rotational motions around respective axes. predicts one or more of the movements of
 また、第一の運動予測器31は、車両1の並進運動の加速度またはジャーク、車両1の回転運動の角加速度または角加加速度のうち1つ以上を予測する。 Also, the first motion predictor 31 predicts one or more of the acceleration or jerk of the translational motion of the vehicle 1 and the angular acceleration or angular jerk of the rotational motion of the vehicle 1 .
 また、第二の運動予測器32は、車両1の並進運動の位置または速度、回転運動の角度または角速度のうち1つ以上を予測する。 Also, the second motion predictor 32 predicts one or more of the position or speed of translational motion and the angle or angular velocity of rotational motion of the vehicle 1 .
 また、最適化器22は、第一の運動予測状態および第二の運動予測状態と、アクチュエータ指令値の変化量の積分に基づき予測されるアクチュエータ指令予測値と、からなる1つ以上の予測値が任意の制限値を超えないように制限する。 Also, the optimizer 22 has one or more predicted values consisting of the first motion prediction state, the second motion prediction state, and the actuator command prediction value predicted based on the integration of the change amount of the actuator command value. not exceed any limits.
 これにより、自動車の自動運転に必要な経路追従制御と同時に、ドライバーや乗員の乗り心地に影響する加速度、ジャークの運動状態を許容値以下に制限して好適に制御できる。 As a result, it is possible to appropriately control the acceleration and jerk motion conditions, which affect the comfort of the driver and passengers, to below the allowable value, at the same time as the route following control required for automatic driving of the car.
 図6を参照して、本発明の実施例2に係る車両制御装置及び車両制御方法について説明する。図6は、本実施例の車両制御装置2の制御構成を示すブロック図である。 A vehicle control device and a vehicle control method according to Embodiment 2 of the present invention will be described with reference to FIG. FIG. 6 is a block diagram showing the control configuration of the vehicle control device 2 of this embodiment.
 本実施例の車両制御装置2は、図6に示すように、予測状態結合器33によって、第一の運動予測モデルと第二の運動予測モデルを最適化可能な形式に変換する際、アクチュエータ指令値を用いない点において、実施例1(図4)とは異なっている。その他の構成は、実施例1(図4)と同様である。 As shown in FIG. 6, the vehicle control device 2 of the present embodiment converts the first motion prediction model and the second motion prediction model into a format that can be optimized by the prediction state coupler 33, when the actuator command This differs from the first embodiment (FIG. 4) in that no value is used. Other configurations are the same as those of the first embodiment (FIG. 4).
 モデル予測制御では、しばしば演算コストが課題となる。そして、演算コストは、状態ベクトルの次元を削減することで低減できる。  Computational cost is often an issue in model predictive control. Then, the computation cost can be reduced by reducing the dimension of the state vector.
 そこで、乗り心地の向上という制御目的においては、アクチュエータの限界性能まで使うことは無いことを想定し、アクチュエータ指令値を予測状態結合器33に含めない構成が考えられる。 Therefore, for the control purpose of improving ride comfort, it is assumed that the performance limit of the actuator will not be used, and a configuration that does not include the actuator command value in the predictive state coupler 33 is conceivable.
 このようにすることで、取り扱うアクチュエータの数だけ最適化演算に掛かる次元を削減することができるため、演算コストの低減効果が見込め、車両に搭載するコンピュータのコストを下げることができる。 By doing so, the number of dimensions required for optimization calculation can be reduced by the number of actuators to be handled, so the calculation cost can be expected to be reduced, and the cost of the computer installed in the vehicle can be reduced.
 図7を参照して、本発明の実施例3に係る車両制御装置及び車両制御方法について説明する。図7は、本実施例の車両制御装置2の制御構成を示すブロック図である。 A vehicle control device and a vehicle control method according to Embodiment 3 of the present invention will be described with reference to FIG. FIG. 7 is a block diagram showing the control configuration of the vehicle control device 2 of this embodiment.
 本実施例の車両制御装置2は、図7に示すように、運動予測器21によって車両運動の予測を行う際、第二の運動予測器32を用いず、さらに、予測状態結合器33による第一の運動予測モデルの形式の変換も行わない点において、実施例1(図4)とは異なっている。その他の構成は、実施例1(図4)と同様である。 As shown in FIG. 7, the vehicle control device 2 of this embodiment does not use the second motion predictor 32 when the motion predictor 21 predicts the vehicle motion, This differs from Example 1 (FIG. 4) in that the format of one motion prediction model is not converted. Other configurations are the same as those of the first embodiment (FIG. 4).
 本実施例は、さらに乗り心地の制御のみに着目した制御構成である。本実施例では、状態として加速度、ジャークおよび姿勢の角加速度、角加加速度のみを制御可能とする。 This embodiment is a control configuration focusing only on the control of ride comfort. In this embodiment, only acceleration, angular acceleration of jerk and posture, and angular addition acceleration can be controlled as states.
 このようにすることで、更なる演算コストの低減が可能となる。 By doing so, it is possible to further reduce the calculation cost.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 It should be noted that the present invention is not limited to the above-described embodiments, and includes various modifications. For example, the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations. In addition, it is possible to replace part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Moreover, it is possible to add, delete, or replace a part of the configuration of each embodiment with another configuration.
 1…車両、2…車両制御装置、10…車体、11…車輪、12…モータ、13…サスペンション、14…ステアリング、15…ブレーキ、16…スタビライザ、21…運動予測器、22…最適化器、23…評価重み設定部、24…制約条件設定部、31…第一の運動予測器、32…第二の運動予測器、33…予測状態結合器、41…上位コンピュータ、42…アクチュータ。 Reference Signs List 1 vehicle 2 vehicle control device 10 vehicle body 11 wheel 12 motor 13 suspension 14 steering 15 brake 16 stabilizer 21 motion predictor 22 optimizer 23...Evaluation weight setting unit, 24...Constraint condition setting unit, 31...First motion predictor, 32...Second motion predictor, 33...Predicted state combiner, 41...Higher-level computer, 42...Actuator.

Claims (15)

  1.  複数のアクチュエータを操作して車両の運動を制御する車両制御装置であって、
     車両の運動予測モデルとアクチュエータ指令値に基づき未来の車両運動を予測する予測器と、
     任意の運動目標値と前記予測器による予測値との差を最小化する前記アクチュエータ指令値を反復演算により算出する最適化器と、を備え、
     前記予測器は、車両のダイナミクスを1階以上微分して得られる第一の運動予測状態を算出する第一の運動予測器を有する車両制御装置。
    A vehicle control device that controls motion of a vehicle by operating a plurality of actuators,
    a predictor for predicting future vehicle motion based on the vehicle motion prediction model and the actuator command value;
    an optimizer that calculates by iterative calculation the actuator command value that minimizes the difference between an arbitrary motion target value and the predicted value by the predictor,
    The vehicle control device, wherein the predictor includes a first motion predictor that calculates a first motion prediction state obtained by differentiating vehicle dynamics by one or more orders.
  2.  請求項1に記載の車両制御装置であって、
     前記予測器は、前記第一の運動予測状態を1階以上積分して得られる第二の運動予測状態を算出する第二の運動予測器を有する車両制御装置。
    The vehicle control device according to claim 1,
    The vehicle control device, wherein the predictor has a second motion predictor that calculates a second motion prediction state obtained by integrating the first motion prediction state by one or more orders.
  3.  請求項2に記載の車両制御装置であって、
     前記第一の運動予測状態および前記第二の運動予測状態を結合する予測状態結合器を備える車両制御装置。
    The vehicle control device according to claim 2,
    A vehicle control device comprising a prediction state combiner that combines the first motion prediction state and the second motion prediction state.
  4.  請求項3に記載の車両制御装置であって、
     前記予測状態結合器は、前記アクチュエータ指令値の変化量の積分に基づき予測されるアクチュエータ指令予測値をさらに結合する車両制御装置。
    The vehicle control device according to claim 3,
    The vehicle control device, wherein the prediction state combiner further combines the actuator command prediction value predicted based on the integration of the change amount of the actuator command value.
  5.  請求項3に記載の車両制御装置であって、
     前記最適化器は、車両のダイナミクスを1階以上微分して得られるアクチュエータ指令値の変化量に基づき最適化結果を算出する車両制御装置。
    The vehicle control device according to claim 3,
    The optimizer is a vehicle control device that calculates an optimization result based on a change amount of an actuator command value obtained by differentiating vehicle dynamics by one or more orders.
  6.  請求項3に記載の車両制御装置であって、
     前記第一の運動予測器および前記第二の運動予測器は、車両の前後、上下、左右の並進運動、および各軸周りの回転運動であるロール、ピッチ、ヨーの計6自由度の運動のうち1つ以上を予測する車両制御装置。
    The vehicle control device according to claim 3,
    The first motion predictor and the second motion predictor are used for motion of a total of six degrees of freedom, namely roll, pitch, and yaw, which are longitudinal, vertical, horizontal translational motion of the vehicle, and rotational motion around each axis. A vehicle controller that predicts one or more of them.
  7.  請求項3に記載の車両制御装置であって、
     前記第一の運動予測器は、車両の並進運動の加速度またはジャーク、車両の回転運動の角加速度または角加加速度のうち1つ以上を予測する車両制御装置。
    The vehicle control device according to claim 3,
    The first motion predictor predicts one or more of acceleration or jerk of translational motion of the vehicle and angular acceleration or angular jerk of rotational motion of the vehicle.
  8.  請求項3に記載の車両制御装置であって、
     前記第二の運動予測器は、車両の並進運動の位置または速度、回転運動の角度または角速度のうち1つ以上を予測する車両制御装置。
    The vehicle control device according to claim 3,
    The second motion predictor predicts one or more of position or velocity of translational motion, angle or angular velocity of rotational motion of the vehicle.
  9.  請求項8に記載の車両制御装置であって、
     前記最適化器は、前記第一の運動予測状態および前記第二の運動予測状態と、前記アクチュエータ指令値の変化量の積分に基づき予測されるアクチュエータ指令予測値と、からなる1つ以上の予測値が任意の制限値を超えないように制限する車両制御装置。
    The vehicle control device according to claim 8,
    The optimizer performs one or more predictions including the first motion prediction state and the second motion prediction state, and an actuator command prediction value predicted based on the integration of the change amount of the actuator command value. A vehicle controller that limits values from exceeding arbitrary limits.
  10.  複数のアクチュエータを操作して車両の運動を制御する車両制御方法であって、
     (a)車両の運動予測モデルとアクチュエータ指令値に基づき未来の車両運動を予測するステップと、
     (b)任意の運動目標値と前記(a)ステップで予測した予測値との差を最小化するアクチュエータ指令値を反復演算により算出するステップと、
     を有し、
     前記(a)ステップにおいて、車両のダイナミクスを1階以上微分して得られる第一の運動予測状態を算出する車両制御方法。
    A vehicle control method for controlling motion of a vehicle by operating a plurality of actuators,
    (a) predicting future vehicle motion based on a vehicle motion prediction model and actuator command values;
    (b) calculating by iterative calculation an actuator command value that minimizes the difference between an arbitrary motion target value and the predicted value predicted in step (a);
    has
    A vehicle control method in which, in step (a), a first motion prediction state obtained by differentiating vehicle dynamics by one or more orders is calculated.
  11.  請求項10に記載の車両制御方法であって、
     前記(a)ステップと前記(b)ステップの間に、(c)前記第一の運動予測状態を1階以上積分して得られる第二の運動予測状態を算出するステップ、
     を有する車両制御方法。
    A vehicle control method according to claim 10,
    Between the (a) step and the (b) step, (c) a step of calculating a second motion prediction state obtained by integrating the first motion prediction state by one or more orders;
    A vehicle control method comprising:
  12.  請求項11に記載の車両制御方法であって、
     前記(c)ステップと前記(b)ステップの間に、(d)前記第一の運動予測状態および前記第二の運動予測状態を結合するステップ、
     を有する車両制御方法。
    A vehicle control method according to claim 11,
    (d) combining said first motion prediction state and said second motion prediction state, between said step (c) and said step (b);
    A vehicle control method comprising:
  13.  請求項12に記載の車両制御方法であって、
     前記(d)ステップにおいて、前記アクチュエータ指令値の変化量の積分に基づき予測されるアクチュエータ指令予測値をさらに結合する車両制御方法。
    A vehicle control method according to claim 12,
    In the vehicle control method, in step (d), the predicted actuator command value predicted based on the integration of the amount of change in the actuator command value is further combined.
  14.  請求項12に記載の車両制御方法であって、
     前記(b)ステップにおいて、車両のダイナミクスを1階以上微分して得られるアクチュエータ指令値の変化量に基づき最適化結果を算出する車両制御装置。
    A vehicle control method according to claim 12,
    In the step (b), the vehicle control device calculates the optimization result based on the amount of change in the actuator command value obtained by differentiating the dynamics of the vehicle by one or more orders.
  15.  請求項12に記載の車両制御方法であって、
     前記第一の運動予測状態および前記第二の運動予測状態は、車両の前後、上下、左右の並進運動、および各軸周りの回転運動であるロール、ピッチ、ヨーの計6自由度の運動のうち1つ以上を予測する車両制御方法。
    A vehicle control method according to claim 12,
    The first motion prediction state and the second motion prediction state are motions with a total of six degrees of freedom of roll, pitch, and yaw, which are longitudinal, vertical, horizontal translational motions of the vehicle, and rotational motions around respective axes. A vehicle control method that predicts one or more of them.
PCT/JP2022/026057 2021-08-25 2022-06-29 Vehicle control device and vehicle control method WO2023026688A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-137095 2021-08-25
JP2021137095A JP2023031547A (en) 2021-08-25 2021-08-25 Vehicle control device and vehicle control method

Publications (1)

Publication Number Publication Date
WO2023026688A1 true WO2023026688A1 (en) 2023-03-02

Family

ID=85322986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026057 WO2023026688A1 (en) 2021-08-25 2022-06-29 Vehicle control device and vehicle control method

Country Status (2)

Country Link
JP (1) JP2023031547A (en)
WO (1) WO2023026688A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62149560A (en) * 1985-12-24 1987-07-03 Nissan Motor Co Ltd Steering angle control device for vehicle
JPH0245802A (en) * 1988-08-08 1990-02-15 Nissan Motor Co Ltd Estimating device for vehicle state quantity
JP2010012889A (en) * 2008-07-02 2010-01-21 Honda Motor Co Ltd Driving force controller for vehicle
JP2020026189A (en) * 2018-08-10 2020-02-20 日産自動車株式会社 Travel support method and travel support device
JP2020059477A (en) * 2018-10-12 2020-04-16 トヨタ自動車株式会社 Roll vibration damping control device for vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62149560A (en) * 1985-12-24 1987-07-03 Nissan Motor Co Ltd Steering angle control device for vehicle
JPH0245802A (en) * 1988-08-08 1990-02-15 Nissan Motor Co Ltd Estimating device for vehicle state quantity
JP2010012889A (en) * 2008-07-02 2010-01-21 Honda Motor Co Ltd Driving force controller for vehicle
JP2020026189A (en) * 2018-08-10 2020-02-20 日産自動車株式会社 Travel support method and travel support device
JP2020059477A (en) * 2018-10-12 2020-04-16 トヨタ自動車株式会社 Roll vibration damping control device for vehicle

Also Published As

Publication number Publication date
JP2023031547A (en) 2023-03-09

Similar Documents

Publication Publication Date Title
US8880293B2 (en) Vehicle motion control apparatus and suspension control apparatus
US8718872B2 (en) Vehicle attitude controller
US10442475B2 (en) Method and device for performing open-loop control of a driver's cab mount
CN113752772B (en) Vibration damping control device and vibration damping control method
JP2015058914A (en) Suspension device
JP2012046172A (en) Vehicle body posture control apparatus
JP7180638B2 (en) VEHICLE RUNNING STATE CONTROL DEVICE AND METHOD
CN113752773A (en) Vibration reduction control device and vibration reduction control method
JP7538957B2 (en) Vehicle control device, vehicle control method, and vehicle control system
JP2022072373A (en) Vehicle control method and control device
CN112689569A (en) Suspension control method, suspension control device and vehicle
US11938779B2 (en) Behavior control device for vehicle
US12017497B2 (en) Vehicle control device
WO2023026688A1 (en) Vehicle control device and vehicle control method
JP4821766B2 (en) Vehicle suspension system
WO2022181468A1 (en) Vehicle motion control device, vehicle motion control system, and vehicle
Krid et al. Design of an active device for controlling lateral stability of fast mobile robot
JP2022065602A (en) Vehicle attitude control device and vehicle
JP2023037113A (en) Vehicle and control method of vehicular suspension
Gáspár et al. An integrated vehicle control with actuator reconfiguration
JP7095970B2 (en) Vehicle control unit
JP7460513B2 (en) Vehicle motion control device and vehicle motion control method
JP7600944B2 (en) Vehicle suspension control device and vehicle suspension control method
CN114859733B (en) Differential steering unmanned vehicle trajectory tracking and attitude control method
Yu et al. Model-based pitch control for distributed drive electric vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22860980

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22860980

Country of ref document: EP

Kind code of ref document: A1