[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023022107A1 - Power conversion apparatus - Google Patents

Power conversion apparatus Download PDF

Info

Publication number
WO2023022107A1
WO2023022107A1 PCT/JP2022/030750 JP2022030750W WO2023022107A1 WO 2023022107 A1 WO2023022107 A1 WO 2023022107A1 JP 2022030750 W JP2022030750 W JP 2022030750W WO 2023022107 A1 WO2023022107 A1 WO 2023022107A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
switching element
feedback
inductance component
circuit
Prior art date
Application number
PCT/JP2022/030750
Other languages
French (fr)
Japanese (ja)
Inventor
セルゲイ モイセエフ
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2023022107A1 publication Critical patent/WO2023022107A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/42Conversion of DC power input into AC power output without possibility of reversal
    • H02M7/44Conversion of DC power input into AC power output without possibility of reversal by static converters
    • H02M7/48Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present disclosure relates to power converters.
  • Patent Document 1 discloses a driver circuit that drives an IGBT (Insulated Gate Bipolar Transistor), which is a switching element.
  • the driver circuit disclosed in Patent Document 1 performs active gate control that feeds back the back electromotive voltage generated by the inductance component of the emitter wiring in order to achieve both reduction of switching loss and reduction of surge voltage or surge current. ing.
  • the inductance component when performing active gate control, the inductance component must have an inductance value that can generate at least a level of reverse voltage that can be used for active gate control.
  • a power conversion device having a plurality of switching elements connected in series with each other, if an inductance component having an inductance value capable of generating a reverse voltage of a level that can be used for active gate control is provided for each switching element, the wiring inductance As a result, the surge voltage and surge current may increase, and the device may become larger.
  • a power conversion device is a power conversion device having an inductance component, a first switching element through which a first applied current flows, and a first switching element connected in series to each other, and a second application a second switching element through which a current flows; and configured to convert back electromotive force generated in the inductance component in accordance with a change in the first applied current or a change in the second applied current into a first feedback voltage.
  • a first feedback circuit a second feedback circuit configured to convert an input voltage to a second feedback voltage; and the first applied current and the second applied current flowing through the second feedback circuit.
  • the first driver circuit obtains an added voltage by adding the first external command voltage and the first feedback voltage, and converts the added voltage to the
  • the second driver circuit obtains an added voltage by adding the second external command voltage and the second feedback voltage, and outputs the added voltage to the second external command voltage.
  • the first driver circuit When the inductance component generates the back electromotive force by a change in the second applied current, the first driver circuit outputs the first external command voltage and the second and a feedback voltage to obtain an added voltage and output the added voltage to the first switching element, wherein the second driver circuit includes the second external command voltage and the first A feedback voltage is added to obtain an added voltage, and the added voltage is output to the second switching element.
  • FIG. 10 is a diagram showing another example of various connections; It is a figure which shows an example of a differential amplifier circuit.
  • FIG. 10 is a diagram showing another example of a differential amplifier circuit;
  • the power conversion device 10 of the present embodiment is mounted on, for example, a vehicle 200 and used to drive an electric motor 201 provided on the vehicle 200 .
  • the electric motor 201 of this embodiment is a running motor for rotating the wheels of the vehicle 200 .
  • the electric motor 201 of this embodiment has three-phase coils 202u, 202v, and 202w.
  • the three-phase coils 202u, 202v, and 202w are Y-connected, for example.
  • the electric motor 201 rotates by energizing the three-phase coils 202u, 202v, and 202w in a predetermined pattern.
  • the connection mode of the three-phase coils 202u, 202v, and 202w is not limited to Y-connection, and may be delta-connection, for example.
  • vehicle 200 has power storage device 203 .
  • the power conversion device 10 of this embodiment is an inverter device that converts the DC power of the power storage device 203 into AC power that can drive the electric motor 201 .
  • the power conversion device 10 can also be said to be a drive device that drives the electric motor 201 using the power storage device 203 .
  • the power converter 10 of the present embodiment has configurations related to the three-phase coils 202u, 202v, and 202w of the electric motor 201, respectively.
  • the reference numerals for the configurations related to the upper arm are appended with "a”
  • the reference numerals for the configuration concerning the lower arm are appended with "b”.
  • "u” is added to the end of the reference numerals for the u-phase
  • "v” is added to the end of the reference numerals for the v-phase
  • "v” is attached to the end of the reference numerals for the w-phase.
  • the power converter 10 of this embodiment has a plurality of switching elements 11 .
  • the power converter 10 includes an upper arm switching element 11au and a lower arm switching element 11bu corresponding to the u-phase coil 202u, an upper arm switching element 11av and a lower arm switching element 11bv corresponding to the v-phase coil 202v. , an upper arm switching element 11aw and a lower arm switching element 11bw corresponding to the w-phase coil 202w.
  • upper arm switching element 11au when the upper arm switching element 11au, upper arm switching element 11av, and upper arm switching element 11aw are not distinguished from each other, they are simply referred to as "upper arm switching element 11a".
  • lower arm switching element 11bu When the lower arm switching element 11bu, the lower arm switching element 11bv, and the lower arm switching element 11bw are not distinguished from each other, they are simply referred to as “lower arm switching element 11b".
  • the upper arm switching element 11a is an example of a "first switching element”.
  • the lower arm switching element 11b is an example of a "second switching element”.
  • Each switching element 11 is, for example, a power switching element, and one example is a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor).
  • the switching element 11 has a free wheel diode D.
  • the upper arm switching element 11au has a freewheeling diode Dau
  • the upper arm switching element 11av has a freewheeling diode Dav
  • the upper arm switching element 11aw has a freewheeling diode Daw.
  • the lower arm switching element 11bu has a freewheeling diode Dbu
  • the lower arm switching element 11bv has a freewheeling diode Dbv
  • the lower arm switching element 11bw has a freewheeling diode Dbw.
  • the anode of the freewheeling diode D is connected to the source terminal of the switching element 11 .
  • a cathode of the freewheeling diode D is connected to a drain terminal of the switching element 11 .
  • the upper arm switching element 11a and the lower arm switching element 11b are connected in series with each other. Specifically, the source terminal of the upper arm switching element 11au and the drain terminal of the lower arm switching element 11bu are connected via intermediate wirings LC1u and LC2u.
  • the intermediate wiring LC1u and the intermediate wiring LC2u each have a first end and a second end. A first end of the intermediate wiring LC1u is connected to the source terminal of the upper arm switching element 11au. A second end of the intermediate wiring LC2u is connected to the drain terminal of the lower arm switching element 11bu.
  • Intermediate wiring LC3u connected to u-phase coil 202u is connected to intermediate wiring LC2u.
  • a source terminal of the upper arm switching element 11av and a drain terminal of the lower arm switching element 11bv are connected via intermediate wirings LC1v and LC2v.
  • the intermediate line LC1v and the intermediate line LC2v each have a first end and a second end.
  • a first end of the intermediate wiring LC1v is connected to the source terminal of the upper arm switching element 11av.
  • a second end of the intermediate line LC1v and a first end of the intermediate line LC2v are connected.
  • a second end of the intermediate wiring LC2v is connected to the drain terminal of the lower arm switching element 11bv.
  • a connection point between the intermediate wires LC1v and LC2v and the v-phase coil 202v are connected by an intermediate wire LC3v.
  • a source terminal of the upper arm switching element 11aw and a drain terminal of the lower arm switching element 11bw are connected via intermediate wirings LC1w and LC2w.
  • the intermediate wiring LC1w and the intermediate wiring LC2w each have a first end and a second end.
  • a first end of the intermediate wiring LC1w is connected to the source terminal of the upper arm switching element 11aw.
  • a second end of the intermediate wiring LC1w and a first end of the intermediate wiring LC2w are connected.
  • a second end of the intermediate wiring LC2w and a drain terminal of the lower arm switching element 11bw are connected.
  • a connection point between the intermediate wires LC1w and LC2w and the w-phase coil 202w are connected by an intermediate wire LC3w.
  • the intermediate wiring LC1u, the intermediate wiring LC1v, and the intermediate wiring LC1w are not distinguished from each other, they are simply referred to as "the intermediate wiring LC1.”
  • the intermediate wiring LC2u, the intermediate wiring LC2v, and the intermediate wiring LC2w are not distinguished from each other, they are simply referred to as "the intermediate wiring LC2.”
  • the intermediate wiring LC3u, the intermediate wiring LC3v, and the intermediate wiring LC3w are not distinguished from each other, they are simply referred to as "the intermediate wiring LC3.”
  • the drain terminal of the upper arm switching element 11a is connected to the positive electrode bus LN1.
  • a source terminal of the lower arm switching element 11b is connected to the negative bus line LN2.
  • Positive electrode bus LN1 is connected to a positive electrode terminal (+terminal), which is a high-voltage side terminal of power storage device 203 .
  • Negative bus line LN2 is connected to a negative terminal ( ⁇ terminal), which is a low-voltage terminal of power storage device 203 .
  • the DC voltage Vdc of power storage device 203 is applied to the series connection body including upper arm switching element 11a and lower arm switching element 11b.
  • the power converter 10 includes a driver circuit 12 that drives the switching element 11 .
  • the driver circuit 12 of this embodiment is a so-called gate driver circuit.
  • the power converter 10 of this embodiment has a plurality of driver circuits 12 corresponding to the plurality of switching elements 11 respectively.
  • the power converter 10 has a driver circuit 12au corresponding to the upper arm switching element 11au.
  • the power converter 10 has a driver circuit 12bu corresponding to the lower arm switching element 11bu.
  • the power converter 10 has a driver circuit 12av corresponding to the upper arm switching element 11av.
  • the power converter 10 has a driver circuit 12bv corresponding to the lower arm switching element 11bv.
  • the power converter 10 has a driver circuit 12aw corresponding to the upper arm switching element 11aw.
  • the power converter 10 has a driver circuit 12bw corresponding to the lower arm switching element 11bw.
  • driver circuits 12au, 12av, and 12aw are not distinguished from each other, they are simply described as “upper arm driver circuit 12a.”
  • driver circuits 12bu, 12bv, and 12bw are not distinguished from each other, they are simply referred to as "lower arm driver circuit 12b".
  • the upper arm driver circuit 12a is an example of a "first driver circuit”
  • the lower arm driver circuit 12b is an example of a "second driver circuit”.
  • the power conversion device 10 includes a conversion control device 14 that controls each driver circuit 12 .
  • the conversion control device 14 of this embodiment is an inverter control device.
  • the conversion control device 14 determines a target current to flow through the electric motor 201 based on an external command (for example, a required rotation speed), and derives an external command voltage for the target current to flow.
  • the conversion control device 14 then outputs the external command voltage to the driver circuit 12 .
  • the conversion control device 14 derives an external command voltage for each driver circuit 12 and outputs the external command voltage to each driver circuit 12 .
  • the switching elements 11 are individually controlled.
  • the external command voltage output by the conversion control device 14 to the upper arm driver circuit 12a is also referred to as “first external command voltage”
  • the external command voltage output by the conversion control device 14 to the lower arm driver circuit 12b. is also referred to as “second external command voltage”.
  • the power conversion device 10 includes a first feedback circuit 15 that feedback-controls the upper arm switching element 11a and an inductance component 16 for each phase.
  • the power converter 10 includes first feedback circuits 15u, 15v, 15w and inductance components 16u, 16v, 16w.
  • first feedback circuit 15 when the first feedback circuits 15u, 15v, and 15w are not distinguished from each other, they are simply referred to as "first feedback circuit 15," and when the inductance components 16u, 16v, and 16w are not distinguished from each other, they are simply referred to as “inductance component 16.” ”.
  • the inductance component 16 generates a back electromotive voltage in response to changes in the applied current flowing through the switching element 11, and has an inductance value that can generate at least a level of reverse voltage that can be used for feedback control. ing.
  • the inductance component 16 is an inductance component of an inductor.
  • the power conversion device 10 also includes a current suppressor 17 and a second feedback circuit 18 that feedback-controls the lower arm switching element 11b for each phase.
  • the current suppression unit 17 includes, for example, an inductor 19 magnetically coupled to the inductance component 16 and connection lines LJ3 and LJ4 that connect the inductor 19 to the second feedback circuit 18 .
  • an electromotive voltage Vd′ is generated by a back electromotive voltage Vd generated by a change in the applied current flowing through the inductance component 16 .
  • An electromotive voltage Vd' generated in the inductor 19 is output to the second feedback circuit 18 via the connection lines LJ3 and LJ4. Details of the connection lines LJ3 and LJ4 that connect the inductor 19 to the second feedback circuit 18 will be described later.
  • the electromotive voltage Vd' generated in the inductor 19 is input to the second feedback circuit 18.
  • the second feedback circuit 18 converts the input electromotive voltage Vd' into a second feedback voltage and outputs the second feedback voltage to the lower arm driver circuit 12b.
  • the power converter 10 includes current suppression units 17u, 17v, and 17w.
  • the current suppressor 17u includes an inductor 19u.
  • the current suppressor 17v includes an inductor 19v.
  • the current suppressor 17w includes an inductor 19w.
  • the power converter 10 also includes second feedback circuits 18u, 18v, and 18w. In the following description, when the current suppressing units 17u, 17v, and 17w are not distinguished from each other, they are simply referred to as "current suppressing unit 17".
  • the second feedback circuits 18u, 18v, and 18w are not distinguished from each other, they are simply referred to as "the second feedback circuit 18".
  • the inductors 19u, 19v, and 19w are not distinguished from each other, they are simply referred to as "inductor 19".
  • the upper arm switching element 11a is a switching element through which the first drain current Id1 flows when in the ON state.
  • the first drain current Id1 is a current flowing between the source and drain of the upper arm switching element 11a.
  • the upper arm switching element 11a includes a gate terminal to which a gate voltage is input, and a drain terminal and a source terminal through which a first drain current Id1 flows when in the ON state.
  • the lower arm switching element 11b is a switching element through which the second drain current Id2 flows when it is in the ON state.
  • the second drain current Id2 is a current flowing between the source and drain of the lower arm switching element 11b.
  • the lower arm switching element 11b has a gate terminal to which a gate voltage is input, and a drain terminal and a source terminal through which the second drain current Id2 flows when in the ON state.
  • the upper arm driver circuit 12a and the gate terminal of the upper arm switching element 11a are connected.
  • the upper arm driver circuit 12a outputs a gate voltage to the upper arm switching element 11a based on the first external command voltage to control the upper arm switching element 11a to the ON state or the OFF state.
  • the lower arm driver circuit 12b and the gate terminal of the lower arm switching element 11b are connected.
  • the lower arm driver circuit 12b outputs a gate voltage to the lower arm switching element 11b based on the second external command voltage to control the lower arm switching element 11b to the ON state or the OFF state.
  • the first feedback circuit 15 and the inductance component 16 are connected.
  • the first feedback circuit 15 has a pair of input terminals and the inductance component 16 has a pair of connection terminals.
  • the first feedback circuit 15 has a first input terminal tc1 and a second input terminal tc2.
  • the inductance component 16 has a first connection terminal t1 and a second connection terminal t2.
  • the first input terminal tc1 and the first connection terminal t1 are connected by a connection line LJ1.
  • the second input terminal tc2 and the second connection terminal t2 are connected by a connection line LJ2.
  • the inductance component 16 is provided between the upper arm switching element 11a and the lower arm switching element 11b so that the first drain current Id1 flows through the inductance component 16.
  • the first connection terminal t1 of the inductance component 16 is connected to the source terminal of the upper arm switching element 11a via the first intermediate wiring LC1
  • the second connection terminal t2 of the inductance component 16 is connected to the second intermediate wiring LC2. to the drain terminal of the lower arm switching element 11b.
  • the third intermediate wiring LC3 connected to any one of the three-phase coils 202u, 202v, and 202w is connected to the second intermediate wiring LC2.
  • the inductance component 16 of this embodiment generates a back electromotive voltage Vd across the connection terminals t1 and t2 according to the change in the first drain current Id1.
  • the change in the first drain current Id1 includes the case where the first drain current Id1 starts flowing through the inductance component 16 and the case where the first drain current Id1 flowing through the inductance component 16 stops.
  • the back electromotive voltage Vd is generated in a direction in which the potential of the first connection terminal t1 becomes higher than the potential of the second connection terminal t2.
  • the first drain current Id1 is an example of the "first applied current".
  • the input terminals tc1 and tc2 of the first feedback circuit 15 receive the back electromotive voltage Vd generated by the inductance component 16 due to the change in the first drain current Id1.
  • the first feedback circuit 15 and the upper arm driver circuit 12a are connected.
  • the first feedback circuit 15 converts the back electromotive voltage Vd into a first feedback voltage and outputs it to the upper arm driver circuit 12a.
  • the first feedback circuit 15 may be composed only of wiring. In this case, the first feedback circuit 15 converts the back electromotive voltage Vd into a voltage slightly lower than the back electromotive voltage Vd due to wiring resistance or the like, and outputs the voltage to the upper arm driver circuit 12a.
  • the upper arm driver circuit 12a of the present embodiment obtains an added voltage by adding the first external command voltage and the first feedback voltage, and outputs the added voltage as a gate voltage to the upper arm switching element 11a. .
  • the second feedback circuit 18 and the inductor 19 are connected.
  • the second feedback circuit 18 has a pair of input terminals and the inductor 19 has a pair of connection terminals.
  • the second feedback circuit 18 has a first input terminal td1 and a second input terminal td2.
  • the inductor 19 also has a first connection terminal t3 and a second connection terminal t4.
  • the first input terminal td1 and the first connection terminal t3 are connected by a connection line LJ3.
  • the second input terminal td2 and the second connection terminal t4 are connected by a connection line LJ4.
  • the inductor 19 of the current suppressing section 17 is magnetically coupled with the inductance component 16 as described above.
  • the inductance component 16 and inductor 19 function as an isolation transformer. Therefore, the first drain current Id1 flowing through the inductance component 16 does not flow into the second feedback circuit 18.
  • the inductor 19 generates an electromotive voltage Vd' by the back electromotive voltage Vd generated by the inductance component 16 .
  • the electromotive voltage Vd' is output to the second feedback circuit 18 through connection lines LJ3 and LJ4.
  • the current suppression unit 17 outputs a voltage based on the back electromotive force (electromotive voltage Vd′ in the present embodiment) to the second feedback circuit 18 .
  • the electromotive voltage Vd' is generated, for example, in a direction in which the potential of the first connection terminal t3 becomes higher than the potential of the second connection terminal t4.
  • the number of turns of the inductor 19 in this embodiment is set so that the inductor 19 outputs to the second feedback circuit 18 an electromotive voltage Vd' having a voltage value different from the counter electromotive voltage Vd. can't
  • the number of turns of the inductor 19 may be set such that the inductor 19 outputs to the second feedback circuit 18 an electromotive voltage having the same voltage value as the counter electromotive voltage Vd.
  • the input terminals tc1 and tc2 of the second feedback circuit 18 receive the electromotive voltage Vd'.
  • the second feedback circuit 18 and the lower arm driver circuit 12b are connected.
  • the second feedback circuit 18 converts the input electromotive voltage Vd' into a second feedback voltage and outputs the second feedback voltage to the lower arm driver circuit 12b.
  • the second feedback voltage may have the same voltage value as the first feedback voltage, or may have a different voltage value.
  • the second feedback circuit 18 may be composed only of wiring.
  • the inductor 19 converts the counter electromotive voltage Vd into a voltage slightly higher than the second feedback voltage and outputs it to the second feedback circuit 18 .
  • the second feedback circuit 18 converts a voltage slightly higher than the input second feedback voltage into a second feedback voltage by wiring resistance or the like, and outputs the second feedback voltage to the lower arm driver circuit 12b.
  • the lower arm driver circuit 12b of this embodiment adds the second external command voltage and the second feedback voltage, and outputs the added voltage as the gate voltage to the lower arm switching element 11b.
  • the first feedback circuit 15 converts the back electromotive voltage Vd generated by the inductance component 16 into a first feedback voltage.
  • the current suppressing unit 17 suppresses (more specifically, cuts off) the first drain current Id1 from flowing to the second feedback circuit 18, and suppresses the voltage based on the counter electromotive voltage Vd (electromotive voltage Vd′ in the present embodiment). is output to the second feedback circuit 18 .
  • the second feedback circuit 18 converts the input electromotive voltage Vd' into a second feedback voltage.
  • the upper arm driver circuit 12a obtains an added voltage by adding the first external command voltage and the first feedback voltage, and outputs the added voltage to the upper arm switching element 11a.
  • the lower arm driver circuit 12b obtains an added voltage by adding the second external command voltage and the second feedback voltage, and outputs the added voltage to the lower arm driver circuit 12b.
  • the feedback control of the first feedback circuit 15 and the feedback control of the second feedback circuit 18 are synchronized.
  • the first feedback circuit 15 may perform feedback control to lower the gate voltage of the upper arm switching element 11a by a predetermined voltage for a predetermined period.
  • the second feedback circuit 18 preferably lowers the gate voltage of the lower arm switching element 11b by a predetermined voltage for a predetermined period at the same timing as the first feedback circuit 15 as feedback control.
  • the first feedback circuit 15 may perform feedback control such that the gate voltage of the upper arm switching element 11a is increased by a predetermined voltage for a predetermined period.
  • the second feedback circuit 18 raises the gate voltage of the lower arm switching element 11b by a predetermined voltage for a predetermined period at the same timing as the first feedback circuit 15 as feedback control.
  • the first feedback circuit 15 converts the back electromotive voltage Vd generated by the inductance component 16 into a first feedback voltage. Further, the current suppressing unit 17 outputs the electromotive voltage Vd' generated in the inductor 19 magnetically coupled with the inductance component 16 to the second feedback circuit 18, and the second feedback circuit 18 outputs the input electromotive voltage Vd'. Convert to a second feedback voltage.
  • the power converter 10 uses the common inductance component 16 to synchronize the upper arm switching element 11a and the lower arm switching element 11b that are connected in series with each other based on changes in the back electromotive force Vd. feedback control can be performed.
  • the upper arm switching element 11a has an inductance component having an inductance value that generates a reverse voltage level that can be used for feedback control
  • the lower arm switching element 11b has an inductance value that generates a reverse voltage level that can be used for feedback control.
  • the wiring inductance of the power conversion device 10 can be reduced as compared with the case where the power conversion device 10 includes an inductance component and an inductance component. Therefore, the power conversion device 10 can achieve both reduction of switching loss and reduction of surge voltage or surge current as compared with the case where each switching element 11 has an inductance component.
  • the first connection terminal t1 of the inductance component 16 is connected to the source terminal of the lower arm switching element 11b.
  • a second connection terminal t2 of the inductance component 16 is connected to the negative electrode bus LN2.
  • the inductance component 16 generates a back electromotive voltage Vd across the connection terminals t1 and t2 according to the change in the second drain current Id2.
  • the change in the second drain current Id2 includes the case where the second drain current Id2 starts flowing through the inductance component 16 and the case where the second drain current Id2 flowing through the inductance component 16 stops.
  • the second drain current Id2 is an example of the "second applied current".
  • the lower arm driver circuit 12 b is connected to the first feedback circuit 15 .
  • the upper arm driver circuit 12 a is connected to the second feedback circuit 18 and the current suppressing section 17 .
  • the upper arm driver circuit 12a obtains an added voltage by adding the first external command voltage and the second feedback voltage, and outputs the added voltage as a gate voltage to the upper arm switching element 11a.
  • the lower arm driver circuit 12b obtains an added voltage by adding the second external command voltage and the first feedback voltage, and outputs the added voltage to the lower arm driver circuit 12b.
  • the power converter 10 can obtain the same effects as (1) and (2).
  • the current suppressor 17 may include a differential amplifier circuit 20 .
  • the differential amplifier circuit 20 has a pair of input terminals. Specifically, the differential amplifier circuit 20 has a first input terminal te1 and a second input terminal te2. The first input terminal te1 is connected to the first connection terminal t1. The second input terminal te2 is connected to the second connection terminal t2.
  • the differential amplifier circuit 20 includes voltage dividing resistors 21 , 22 , 23 and 24 and an operational amplifier 25 .
  • the voltage dividing resistors 21 and 22 are connected in series with each other.
  • the voltage dividing resistors 23 and 24 are connected in series with each other.
  • the voltage dividing resistor 23 has a first end connected to the voltage dividing resistor 24 and a second end connected to the first input terminal te1. Also, the voltage dividing resistor 21 has a first end connected to the voltage dividing resistor 22 and a second end connected to the second input terminal te2. Voltage dividing resistor 22 has a first end connected to voltage dividing resistor 21 and a second end connected to voltage dividing resistor 24 . Voltage dividing resistor 24 has a first end connected to voltage dividing resistor 23 and a second end connected to voltage dividing resistor 22 . A connection point between the voltage dividing resistor 22 and the voltage dividing resistor 24 is connected to the second input terminal td2.
  • the back electromotive voltage Vd is input to the pair of input terminals te1 and te2 of the differential amplifier circuit 20, and the differential amplifier circuit 20 amplifies the voltage Vd between the pair of input terminals te1 and te2.
  • '' is output from the output terminal.
  • the resistance values of the voltage dividing resistors 21 and 23 match, and the resistance values of the voltage dividing resistors 22 and 24 match. That is, the voltage dividing ratio of the voltage dividing resistors 21 and 22 and the voltage dividing ratio of the voltage dividing resistors 23 and 24 match.
  • the voltage dividing ratio of the voltage dividing resistors 21 and 22, the voltage dividing ratio of the voltage dividing resistors 23 and 24, and the operational amplifier 25 amplification factor are the voltage Vd which is the potential difference between the output terminal of the operational amplifier 25 and the second input terminal td2.
  • '' may be set to a voltage division ratio and amplification factor that match the back electromotive voltage Vd, or the potential Vd'' is set to a voltage division ratio and amplification factor that are different from the back electromotive voltage Vd. may have been
  • the inductance component 16 may generate the back electromotive voltage Vd by, for example, changing the second drain current Id2.
  • the first connection terminal t1 of the inductance component 16 is connected to the source terminal of the lower arm switching element 11b.
  • a second connection terminal t2 of the inductance component 16 is connected to the negative electrode bus LN2.
  • the upper arm driver circuit 12 a is connected to a current suppressor 17 a having a second feedback circuit 18 and a differential amplifier circuit 20 .
  • the lower arm driver circuit 12b is connected to the first feedback circuit 15a. Since the operation of the power conversion device 10 in this configuration is the same as that of the above-described embodiment and modification, description thereof will be omitted.
  • the output terminal of the operational amplifier 26 is connected to the - terminal of the operational amplifier 30 .
  • the output terminal of operational amplifier 27 is connected to the first end of voltage dividing resistor 28 .
  • a second end of voltage dividing resistor 28 is connected to a first end of voltage dividing resistor 29 .
  • a second end of the voltage dividing resistor 29 is connected to the second input terminal td2. That is, the voltage dividing resistor 28 and the voltage dividing resistor 29 are connected in series between the output terminal of the operational amplifier 27 and the second input terminal td2.
  • a connection point between the voltage dividing resistors 28 and 29 is connected to the + terminal of the operational amplifier 30 .
  • An output terminal of the operational amplifier 30 is connected to the first input terminal td1.
  • the back electromotive voltage Vd is input to the pair of input terminals te1 and te2 of the differential amplifier circuit 20a, and the differential amplifier circuit 20a amplifies the voltage Vd between the pair of input terminals te1 and te2. ' is output from the output terminal.
  • the voltage dividing ratio of the voltage dividing resistors 21 and 22, the voltage dividing ratio of the voltage dividing resistors 23 and 24, the voltage dividing ratio of the voltage dividing resistors 28 and 29, and the amplification factor of the operational amplifier 30 are determined by the output terminal of the operational amplifier 30 and the second input.
  • the voltage division ratio and the amplification factor may be set so that the voltage Vd', which is the potential difference from the terminal td2, matches the back electromotive voltage Vd, or the voltage Vd' may be set to a voltage dividing ratio different from the back electromotive voltage Vd. It may be set to a pressure ratio and an amplification factor.
  • the operational amplifiers 26 and 27 operate as voltage follower circuits. Therefore, no input bias voltage flows to the input terminals of the operational amplifiers 26, 27 and 30. FIG. Therefore, the voltages input to the input terminals of the operational amplifiers 26, 27 and 30 do not have an offset voltage drop due to the input bias current. Therefore, the differential amplifier circuit 20a can detect the back electromotive force Vd with higher accuracy than the differential amplifier circuit 20 can.
  • the differential amplifier circuit 20a can propagate the back electromotive voltage Vd to the operational amplifier 30 with higher accuracy. Thereby, the power converter 10 can obtain the same effect as (1).
  • the inductance component 16 may generate the back electromotive voltage Vd by, for example, a change in the second drain current Id2.
  • the first connection terminal t1 of the inductance component 16 is connected to the source terminal of the lower arm switching element 11b.
  • a second connection terminal t2 of the inductance component 16 is connected to the negative electrode bus LN2.
  • the upper arm driver circuit 12a is connected to a current suppression section 17b having a second feedback circuit 18 and a differential amplifier circuit 20a.
  • the lower arm driver circuit 12b is connected to the first feedback circuit 15a. Since the operation of the power conversion device 10 in this configuration is the same as that of the above-described embodiment and modification, description thereof will be omitted.
  • the switching element 11 is not limited to a MOSFET, and may be an IGBT, for example.
  • the gate terminal of the switching element 11 corresponds to the "control terminal”.
  • the collector current flowing between the collector and the emitter of the upper arm switching element 11a corresponds to the "first applied current”.
  • the collector current flowing between the collector and the emitter of the lower arm switching element 11b corresponds to the "second applied current”.
  • the intermediate wiring LC3 is , to the portion between the ends of the inductance component 16 .
  • the inductance component 16 is an inductor having the first connection terminal t1 and the second connection terminal t2 as in the above-described embodiment
  • the intermediate wiring LC3 has the first connection terminal t1 and the second connection terminal t2.
  • the intermediate wiring LC3 has a first end connected to the upper arm switching element 11a in the intermediate wiring LC1 and a second end connected to the lower arm switching element 11b in the intermediate wiring LC2. connected to the part between the ends.
  • the intermediate wiring LC Since it is necessary to connect the intermediate wiring LC to one of the three-phase coils 202u, 202v, and 202w, it is necessary to separate the upper arm switching element 11a and the lower arm switching element 11b sufficiently apart. Therefore, the length of the intermediate wiring LC provided between the upper arm switching element 11a and the lower arm switching element 11b also increases. Therefore, by connecting the wiring connected to any one of the three-phase coils 202u, 202v, and 202w among the intermediate wirings LC to the portion between both ends of the inductance component 16, the upper arm switching element 11a and the lower arm switching element 11a are connected. It is possible to suppress lengthening of the intermediate wiring LC provided between the element 11b.
  • the inductor 19 may generate an electromotive voltage Vd' having a polarity opposite to the back electromotive voltage Vd.
  • the second feedback circuit 18 inverts and amplifies the electromotive voltage Vd′ and outputs it to the driver circuit 12 .
  • the combination of the voltage dividing resistors 21, 22, 23, 24, 28, 29, the amplification factor of the operational amplifier 25, and the amplification factor of the operational amplifier 30 is the driver circuit 12, the second feedback circuit 18, the operational amplifiers 25, 26, 27. , 30 may be an amplification factor for amplifying the back electromotive force Vd' so as to recover the voltage drop or the like.
  • Each switching element 11 constitutes an inverter, but it is not limited to this, and is optional. That is, the power conversion device 10 is not limited to an inverter, and may be any DC/DC converter, AC/AC converter, AC/DC inverter, or the like. In other words, the power converter 10 may convert DC power or AC power into DC power or AC power.
  • the load is not limited to the electric motor 201, but is arbitrary. (circle) the power converter device 10 may be mounted in other than the vehicle 200. FIG. That is, the power conversion device 10 may drive a load other than the load provided on the vehicle 200 .
  • the inductance component 16 may be realized by the parasitic inductance of the wiring on which the inductance component 16 is provided. That is, the inductance component 16 may be a parasitic inductance component present in the wiring. In this case, the inductance component 16 has no connection terminals. According to such a configuration, the power conversion device 10 can be made smaller by using the parasitic inductance compared to the case where the inductance is provided separately.
  • the first feedback circuit 15 and the second feedback circuit 18 may have the same configuration or different configurations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Power Conversion In General (AREA)
  • Inverter Devices (AREA)

Abstract

According to the present invention, when a reverse voltage (Vd) is to be generated by a change in a first applied electric current (Id1), a first driver circuit (12a) outputs an added voltage obtained by adding a first external commanded voltage and a first feedback voltage to a first switching element (11a), and a second driver circuit (12b) outputs an added voltage obtained by adding a second external commanded voltage and a second feedback voltage to a second switching element (11b). When a reverse voltage (Vd) is to be generated by a change in a second applied electric current (Id2), the first driver circuit (12a) outputs an added voltage obtained by adding the first external commanded voltage and the second feedback voltage to the first switching element (11a), and the second driver circuit (12b) outputs an added voltage obtained by adding the second external commanded voltage and the first feedback voltage to the second switching element (11b).

Description

電力変換装置power converter
 本開示は、電力変換装置に関する。 The present disclosure relates to power converters.
 特許文献1には、スイッチング素子であるIGBT(Insulated Gate Bipolar Transistor)を駆動させるドライバ回路が開示されている。特許文献1に開示のドライバ回路は、スイッチング損失の低減とサージ電圧又はサージ電流の低減との両立を図るために、エミッタ配線のインダクタンス成分にて発生する逆起電圧をフィードバックさせるアクティブゲート制御を行っている。 Patent Document 1 discloses a driver circuit that drives an IGBT (Insulated Gate Bipolar Transistor), which is a switching element. The driver circuit disclosed in Patent Document 1 performs active gate control that feeds back the back electromotive voltage generated by the inductance component of the emitter wiring in order to achieve both reduction of switching loss and reduction of surge voltage or surge current. ing.
特開2004-48843号公報JP-A-2004-48843
 ここで、アクティブゲート制御を行う場合、インダクタンス成分は、少なくともアクティブゲート制御に使用できるレベルの逆電圧を発生させることができるインダクタンス値を有する必要がある。 Here, when performing active gate control, the inductance component must have an inductance value that can generate at least a level of reverse voltage that can be used for active gate control.
 互いに直列に接続される複数のスイッチング素子を有する電力変換装置では、スイッチング素子毎に、アクティブゲート制御に使用できるレベルの逆電圧を発生させることができるインダクタンス値を有するインダクタンス成分を設けると、配線インダクタンスの増加に伴うサージ電圧やサージ電流が増加してしまったり、装置が大型化してしまったりする場合があった。 In a power conversion device having a plurality of switching elements connected in series with each other, if an inductance component having an inductance value capable of generating a reverse voltage of a level that can be used for active gate control is provided for each switching element, the wiring inductance As a result, the surge voltage and surge current may increase, and the device may become larger.
 本開示の一態様に係る電力変換装置は、インダクタンス成分を有する電力変換装置であって、第1印加電流が流れる第1スイッチング素子と、前記第1スイッチング素子と互いに直列に接続され、第2印加電流が流れる第2スイッチング素子と、前記第1印加電流の変化、又は前記第2印加電流の変化に応じて前記インダクタンス成分で発生する逆起電圧を第1フィードバック電圧に変換するように構成される第1フィードバック回路と、入力された電圧を、第2フィードバック電圧に変換するように構成される第2フィードバック回路と、前記第1印加電流及び前記第2印加電流が前記第2フィードバック回路に流れることを抑制するとともに、前記逆起電圧に基づく電圧を前記第2フィードバック回路に出力するように構成される電流抑制部と、第1外部指令電圧に基づいて、前記第1スイッチング素子を駆動させるように構成される第1ドライバ回路と、第2外部指令電圧に基づいて、前記第2スイッチング素子を駆動させるように構成される第2ドライバ回路と、を備え、前記インダクタンス成分が前記第1印加電流の変化によって前記逆起電圧を発生させる場合、前記第1ドライバ回路は、前記第1外部指令電圧と、前記第1フィードバック電圧とを加算することによって加算電圧を得て、その加算電圧を、前記第1スイッチング素子に出力するように構成され、前記第2ドライバ回路は、前記第2外部指令電圧と、前記第2フィードバック電圧とを加算することによって加算電圧を得て、その加算電圧を、前記第2スイッチング素子に出力するように構成され、前記インダクタンス成分が前記第2印加電流の変化によって前記逆起電圧を発生させる場合、前記第1ドライバ回路は、前記第1外部指令電圧と、前記第2フィードバック電圧とを加算することによって加算電圧を得て、その加算電圧を、前記第1スイッチング素子に出力するように構成され、前記第2ドライバ回路は、前記第2外部指令電圧と、前記第1フィードバック電圧とを加算することによって加算電圧を得て、その加算電圧を、前記第2スイッチング素子に出力するように構成されることを特徴とする。 A power conversion device according to an aspect of the present disclosure is a power conversion device having an inductance component, a first switching element through which a first applied current flows, and a first switching element connected in series to each other, and a second application a second switching element through which a current flows; and configured to convert back electromotive force generated in the inductance component in accordance with a change in the first applied current or a change in the second applied current into a first feedback voltage. a first feedback circuit; a second feedback circuit configured to convert an input voltage to a second feedback voltage; and the first applied current and the second applied current flowing through the second feedback circuit. and a current suppression unit configured to output a voltage based on the back electromotive voltage to the second feedback circuit; and a first external command voltage to drive the first switching element. and a second driver circuit configured to drive the second switching element on the basis of a second external command voltage, wherein the inductance component is the value of the first applied current. When the back electromotive voltage is generated by a change, the first driver circuit obtains an added voltage by adding the first external command voltage and the first feedback voltage, and converts the added voltage to the The second driver circuit obtains an added voltage by adding the second external command voltage and the second feedback voltage, and outputs the added voltage to the second external command voltage. When the inductance component generates the back electromotive force by a change in the second applied current, the first driver circuit outputs the first external command voltage and the second and a feedback voltage to obtain an added voltage and output the added voltage to the first switching element, wherein the second driver circuit includes the second external command voltage and the first A feedback voltage is added to obtain an added voltage, and the added voltage is output to the second switching element.
電力変換装置の構成の一例を示す図である。It is a figure which shows an example of a structure of a power converter device. 図1の電力変換装置の各種接続の詳細を示す図である。2 is a diagram showing details of various connections of the power converter of FIG. 1; FIG. 各種接続の他の例を示す図である。FIG. 10 is a diagram showing another example of various connections; 差動増幅回路の一例を示す図である。It is a figure which shows an example of a differential amplifier circuit. 差動増幅回路の他の例を示す図である。FIG. 10 is a diagram showing another example of a differential amplifier circuit;
 <実施形態>
 [電力変換装置10の構成]
 以下、電力変換装置の一実施形態について説明する。本実施形態の電力変換装置10は、例えば、車両200に搭載されており、車両200に設けられている電動モータ201を駆動するのに用いられる。
<Embodiment>
[Configuration of power converter 10]
An embodiment of the power converter will be described below. The power conversion device 10 of the present embodiment is mounted on, for example, a vehicle 200 and used to drive an electric motor 201 provided on the vehicle 200 .
 詳細には、本実施形態の電動モータ201は、車両200の車輪を回転させるための走行用モータである。本実施形態の電動モータ201は、3相コイル202u,202v,202wを有している。3相コイル202u,202v,202wは、例えば、Y結線されている。3相コイル202u,202v,202wが所定のパターンで通電されることにより、電動モータ201が回転する。なお、3相コイル202u,202v,202wの結線態様は、Y結線に限られず任意であり、例えばデルタ結線でもよい。 Specifically, the electric motor 201 of this embodiment is a running motor for rotating the wheels of the vehicle 200 . The electric motor 201 of this embodiment has three- phase coils 202u, 202v, and 202w. The three- phase coils 202u, 202v, and 202w are Y-connected, for example. The electric motor 201 rotates by energizing the three- phase coils 202u, 202v, and 202w in a predetermined pattern. The connection mode of the three- phase coils 202u, 202v, and 202w is not limited to Y-connection, and may be delta-connection, for example.
 図1に示すように、車両200は、蓄電装置203を有している。本実施形態の電力変換装置10は、蓄電装置203の直流電力を電動モータ201が駆動可能な交流電力に変換するインバータ装置である。電力変換装置10は、蓄電装置203を用いて電動モータ201を駆動させる駆動装置とも言える。 As shown in FIG. 1, vehicle 200 has power storage device 203 . The power conversion device 10 of this embodiment is an inverter device that converts the DC power of the power storage device 203 into AC power that can drive the electric motor 201 . The power conversion device 10 can also be said to be a drive device that drives the electric motor 201 using the power storage device 203 .
 本実施形態の電力変換装置10は、電動モータ201の3相コイル202u,202v,202wに係る構成をそれぞれ有する。以降の説明において、電力変換装置10が備える各種構成のうち、上アームに係る構成の符号に「a」を付し、下アームに係る構成の符号の末尾に「b」を付して説明する。また、電力変換装置10が備える各種構成のうち、u相に係る構成の符号の末尾に「u」を付し、v相に係る符号の末尾に「v」を付し、w相に係る構成の符号の末尾に「w」を付して説明する。 The power converter 10 of the present embodiment has configurations related to the three- phase coils 202u, 202v, and 202w of the electric motor 201, respectively. In the following description, among the various configurations included in the power conversion device 10, the reference numerals for the configurations related to the upper arm are appended with "a", and the reference numerals for the configuration concerning the lower arm are appended with "b". . Further, among the various configurations provided in the power conversion device 10, "u" is added to the end of the reference numerals for the u-phase, "v" is added to the end of the reference numerals for the v-phase, and "v" is attached to the end of the reference numerals for the w-phase. will be described by adding "w" to the end of the reference numerals.
 本実施形態の電力変換装置10は、複数のスイッチング素子11を有している。詳細には、電力変換装置10は、u相コイル202uに対応する上アームスイッチング素子11au、及び下アームスイッチング素子11buと、v相コイル202vに対応する上アームスイッチング素子11av、及び下アームスイッチング素子11bvと、w相コイル202wに対応する上アームスイッチング素子11aw、及び下アームスイッチング素子11bwとを備える。 The power converter 10 of this embodiment has a plurality of switching elements 11 . Specifically, the power converter 10 includes an upper arm switching element 11au and a lower arm switching element 11bu corresponding to the u-phase coil 202u, an upper arm switching element 11av and a lower arm switching element 11bv corresponding to the v-phase coil 202v. , an upper arm switching element 11aw and a lower arm switching element 11bw corresponding to the w-phase coil 202w.
 以降の説明において、上アームスイッチング素子11au、上アームスイッチング素子11av、及び上アームスイッチング素子11awを互いに区別しない場合には、単に「上アームスイッチング素子11a」と記載する。また、下アームスイッチング素子11bu、下アームスイッチング素子11bv、及び下アームスイッチング素子11bwを互いに区別しない場合には、単に「下アームスイッチング素子11b」と記載する。上アームスイッチング素子11aは、「第1スイッチング素子」の一例である。下アームスイッチング素子11bは、「第2スイッチング素子」の一例である。 In the following description, when the upper arm switching element 11au, upper arm switching element 11av, and upper arm switching element 11aw are not distinguished from each other, they are simply referred to as "upper arm switching element 11a". When the lower arm switching element 11bu, the lower arm switching element 11bv, and the lower arm switching element 11bw are not distinguished from each other, they are simply referred to as "lower arm switching element 11b". The upper arm switching element 11a is an example of a "first switching element". The lower arm switching element 11b is an example of a "second switching element".
 各スイッチング素子11は、例えば、パワースイッチング素子であり、一例としては、MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)である。スイッチング素子11は、還流ダイオードDを有する。詳しくは、上アームスイッチング素子11auは、還流ダイオードDauを有し、上アームスイッチング素子11avは、還流ダイオードDavを有し、上アームスイッチング素子11awは、還流ダイオードDawを有する。下アームスイッチング素子11buは、還流ダイオードDbuを有し、下アームスイッチング素子11bvは、還流ダイオードDbvを有し、下アームスイッチング素子11bwは、還流ダイオードDbwを有する。還流ダイオードDのアノードは、スイッチング素子11のソース端子に接続される。還流ダイオードDのカソードは、スイッチング素子11のドレイン端子に接続される。 Each switching element 11 is, for example, a power switching element, and one example is a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor). The switching element 11 has a free wheel diode D. Specifically, the upper arm switching element 11au has a freewheeling diode Dau, the upper arm switching element 11av has a freewheeling diode Dav, and the upper arm switching element 11aw has a freewheeling diode Daw. The lower arm switching element 11bu has a freewheeling diode Dbu, the lower arm switching element 11bv has a freewheeling diode Dbv, and the lower arm switching element 11bw has a freewheeling diode Dbw. The anode of the freewheeling diode D is connected to the source terminal of the switching element 11 . A cathode of the freewheeling diode D is connected to a drain terminal of the switching element 11 .
 上アームスイッチング素子11a、及び下アームスイッチング素子11bは、互いに直列に接続されている。詳細には、上アームスイッチング素子11auのソース端子と、下アームスイッチング素子11buのドレイン端子とが、中間配線LC1u,LC2uを介して接続されている。中間配線LC1uと、中間配線LC2uとは、それぞれ第1端と、第2端とを有する。中間配線LC1uの第1端が、上アームスイッチング素子11auのソース端子に接続されている。中間配線LC2uの第2端は、下アームスイッチング素子11buのドレイン端子と接続されている。u相コイル202uと接続される中間配線LC3uは、中間配線LC2uに接続されている。上アームスイッチング素子11avのソース端子と、下アームスイッチング素子11bvのドレイン端子とが、中間配線LC1v,LC2vを介して接続されている。中間配線LC1vと、中間配線LC2vとは、それぞれ第1端と、第2端とを有する。中間配線LC1vの第1端が、上アームスイッチング素子11avのソース端子に接続されている。中間配線LC1vの第2端と、中間配線LC2vの第1端とが、接続されている。中間配線LC2vの第2端と、下アームスイッチング素子11bvのドレイン端子とが接続されている。中間配線LC1v,LC2vの接続点と、v相コイル202vとは、中間配線LC3vにより接続されている。上アームスイッチング素子11awのソース端子と、下アームスイッチング素子11bwのドレイン端子とが、中間配線LC1w,LC2wを介して接続されている。中間配線LC1wと、中間配線LC2wとは、それぞれ第1端と、第2端とを有する。中間配線LC1wの第1端が、上アームスイッチング素子11awのソース端子に接続されている。中間配線LC1wの第2端と、中間配線LC2wの第1端とが、接続されている。中間配線LC2wの第2端と、下アームスイッチング素子11bwのドレイン端子とが接続されている。中間配線LC1w,LC2wの接続点と、w相コイル202wとは、中間配線LC3wにより接続されている。 The upper arm switching element 11a and the lower arm switching element 11b are connected in series with each other. Specifically, the source terminal of the upper arm switching element 11au and the drain terminal of the lower arm switching element 11bu are connected via intermediate wirings LC1u and LC2u. The intermediate wiring LC1u and the intermediate wiring LC2u each have a first end and a second end. A first end of the intermediate wiring LC1u is connected to the source terminal of the upper arm switching element 11au. A second end of the intermediate wiring LC2u is connected to the drain terminal of the lower arm switching element 11bu. Intermediate wiring LC3u connected to u-phase coil 202u is connected to intermediate wiring LC2u. A source terminal of the upper arm switching element 11av and a drain terminal of the lower arm switching element 11bv are connected via intermediate wirings LC1v and LC2v. The intermediate line LC1v and the intermediate line LC2v each have a first end and a second end. A first end of the intermediate wiring LC1v is connected to the source terminal of the upper arm switching element 11av. A second end of the intermediate line LC1v and a first end of the intermediate line LC2v are connected. A second end of the intermediate wiring LC2v is connected to the drain terminal of the lower arm switching element 11bv. A connection point between the intermediate wires LC1v and LC2v and the v-phase coil 202v are connected by an intermediate wire LC3v. A source terminal of the upper arm switching element 11aw and a drain terminal of the lower arm switching element 11bw are connected via intermediate wirings LC1w and LC2w. The intermediate wiring LC1w and the intermediate wiring LC2w each have a first end and a second end. A first end of the intermediate wiring LC1w is connected to the source terminal of the upper arm switching element 11aw. A second end of the intermediate wiring LC1w and a first end of the intermediate wiring LC2w are connected. A second end of the intermediate wiring LC2w and a drain terminal of the lower arm switching element 11bw are connected. A connection point between the intermediate wires LC1w and LC2w and the w-phase coil 202w are connected by an intermediate wire LC3w.
 以降の説明において、中間配線LC1u、中間配線LC1v、及び中間配線LC1wを互いに区別しない場合には、単に「中間配線LC1」と記載する。また、中間配線LC2u、中間配線LC2v、及び中間配線LC2wを互いに区別しない場合には、単に「中間配線LC2」と記載する。また、中間配線LC3u、中間配線LC3v、及び中間配線LC3wを互いに区別しない場合には、単に「中間配線LC3」と記載する。 In the following description, when the intermediate wiring LC1u, the intermediate wiring LC1v, and the intermediate wiring LC1w are not distinguished from each other, they are simply referred to as "the intermediate wiring LC1." Further, when the intermediate wiring LC2u, the intermediate wiring LC2v, and the intermediate wiring LC2w are not distinguished from each other, they are simply referred to as "the intermediate wiring LC2." Further, when the intermediate wiring LC3u, the intermediate wiring LC3v, and the intermediate wiring LC3w are not distinguished from each other, they are simply referred to as "the intermediate wiring LC3."
 上アームスイッチング素子11aのドレイン端子は、正極母線LN1に接続されている。下アームスイッチング素子11bのソース端子は、負極母線LN2に接続されている。正極母線LN1は、蓄電装置203の高圧側端子である正極端子(+端子)に接続されている。負極母線LN2は、蓄電装置203の低圧側端子である負極端子(-端子)に接続されている。これにより、上アームスイッチング素子11a及び下アームスイッチング素子11bを含む直列接続体に対して蓄電装置203の直流電圧Vdcが印加される。 The drain terminal of the upper arm switching element 11a is connected to the positive electrode bus LN1. A source terminal of the lower arm switching element 11b is connected to the negative bus line LN2. Positive electrode bus LN1 is connected to a positive electrode terminal (+terminal), which is a high-voltage side terminal of power storage device 203 . Negative bus line LN2 is connected to a negative terminal (− terminal), which is a low-voltage terminal of power storage device 203 . As a result, the DC voltage Vdc of power storage device 203 is applied to the series connection body including upper arm switching element 11a and lower arm switching element 11b.
 電力変換装置10は、スイッチング素子11を駆動させるドライバ回路12を備える。本実施形態のドライバ回路12は、所謂ゲートドライバ回路である。本実施形態の電力変換装置10は、複数のスイッチング素子11にそれぞれ対応する複数のドライバ回路12を有している。詳しくは、電力変換装置10は、上アームスイッチング素子11auに対応するドライバ回路12auを有する。電力変換装置10は、下アームスイッチング素子11buに対応するドライバ回路12buを有する。電力変換装置10は、上アームスイッチング素子11avに対応するドライバ回路12avを有する。電力変換装置10は、下アームスイッチング素子11bvに対応するドライバ回路12bvを有する。電力変換装置10は、上アームスイッチング素子11awに対応するドライバ回路12awを有する。電力変換装置10は、下アームスイッチング素子11bwに対応するドライバ回路12bwを有する。以降の説明において、ドライバ回路12au,12av,12awを互いに区別しない場合、単に「上アームドライバ回路12a」と記載する。また、ドライバ回路12bu,12bv,12bwを互いに区別しない場合、単に「下アームドライバ回路12b」と記載する。上アームドライバ回路12aは、「第1ドライバ回路」の一例であり、下アームドライバ回路12bは、「第2ドライバ回路」の一例である。 The power converter 10 includes a driver circuit 12 that drives the switching element 11 . The driver circuit 12 of this embodiment is a so-called gate driver circuit. The power converter 10 of this embodiment has a plurality of driver circuits 12 corresponding to the plurality of switching elements 11 respectively. Specifically, the power converter 10 has a driver circuit 12au corresponding to the upper arm switching element 11au. The power converter 10 has a driver circuit 12bu corresponding to the lower arm switching element 11bu. The power converter 10 has a driver circuit 12av corresponding to the upper arm switching element 11av. The power converter 10 has a driver circuit 12bv corresponding to the lower arm switching element 11bv. The power converter 10 has a driver circuit 12aw corresponding to the upper arm switching element 11aw. The power converter 10 has a driver circuit 12bw corresponding to the lower arm switching element 11bw. In the following description, when the driver circuits 12au, 12av, and 12aw are not distinguished from each other, they are simply described as "upper arm driver circuit 12a." Further, when the driver circuits 12bu, 12bv, and 12bw are not distinguished from each other, they are simply referred to as "lower arm driver circuit 12b". The upper arm driver circuit 12a is an example of a "first driver circuit", and the lower arm driver circuit 12b is an example of a "second driver circuit".
 電力変換装置10は、各ドライバ回路12を制御する変換制御装置14を備える。本実施形態の変換制御装置14はインバータ制御装置である。変換制御装置14は、外部からの指令(例えば要求回転速度)に基づいて、電動モータ201に流れる目標電流を決定し、その目標電流が流れるための外部指令電圧を導出する。そして、変換制御装置14は、外部指令電圧をドライバ回路12に向けて出力する。 The power conversion device 10 includes a conversion control device 14 that controls each driver circuit 12 . The conversion control device 14 of this embodiment is an inverter control device. The conversion control device 14 determines a target current to flow through the electric motor 201 based on an external command (for example, a required rotation speed), and derives an external command voltage for the target current to flow. The conversion control device 14 then outputs the external command voltage to the driver circuit 12 .
 本実施形態では、変換制御装置14は、ドライバ回路12毎に外部指令電圧を導出し、各ドライバ回路12に外部指令電圧を出力する。これにより、スイッチング素子11が個別に制御される。以降の説明において、変換制御装置14が上アームドライバ回路12aに出力する外部指令電圧を、「第1外部指令電圧」とも記載し、変換制御装置14が下アームドライバ回路12bに出力する外部指令電圧を、「第2外部指令電圧」とも記載する。 In this embodiment, the conversion control device 14 derives an external command voltage for each driver circuit 12 and outputs the external command voltage to each driver circuit 12 . Thereby, the switching elements 11 are individually controlled. In the following description, the external command voltage output by the conversion control device 14 to the upper arm driver circuit 12a is also referred to as "first external command voltage", and the external command voltage output by the conversion control device 14 to the lower arm driver circuit 12b. is also referred to as "second external command voltage".
 電力変換装置10は、上アームスイッチング素子11aをフィードバック制御する第1フィードバック回路15と、インダクタンス成分16とを、各相に備える。詳しくは、電力変換装置10は、第1フィードバック回路15u,15v,15wと、インダクタンス成分16u,16v,16wとを備える。以降の説明において、第1フィードバック回路15u,15v,15wを互いに区別しない場合、単に「第1フィードバック回路15」と記載し、インダクタンス成分16u,16v,16wを互いに区別しない場合、単に「インダクタンス成分16」と記載する。 The power conversion device 10 includes a first feedback circuit 15 that feedback-controls the upper arm switching element 11a and an inductance component 16 for each phase. Specifically, the power converter 10 includes first feedback circuits 15u, 15v, 15w and inductance components 16u, 16v, 16w. In the following description, when the first feedback circuits 15u, 15v, and 15w are not distinguished from each other, they are simply referred to as "first feedback circuit 15," and when the inductance components 16u, 16v, and 16w are not distinguished from each other, they are simply referred to as "inductance component 16." ”.
 なお、インダクタンス成分16は、スイッチング素子11を流れる印加電流の変化に応じて逆起電圧を発生させるものであり、少なくともフィードバック制御に使用できるレベルの逆電圧を発生させることができるインダクタンス値を有している。本実施形態では、インダクタンス成分16は、インダクタの有するインダクタンス成分である。 The inductance component 16 generates a back electromotive voltage in response to changes in the applied current flowing through the switching element 11, and has an inductance value that can generate at least a level of reverse voltage that can be used for feedback control. ing. In this embodiment, the inductance component 16 is an inductance component of an inductor.
 また、電力変換装置10は、電流抑制部17と、下アームスイッチング素子11bをフィードバック制御する第2フィードバック回路18と、を各相に備える。電流抑制部17は、例えば、インダクタンス成分16と磁気結合されたインダクタ19と、インダクタ19を第2フィードバック回路18に接続する接続線LJ3,LJ4と、を備える。インダクタ19では、インダクタンス成分16に流れる印加電流が変化することによって発生した逆起電圧Vdにより、起電圧Vd´が発生する。インダクタ19に発生した起電圧Vd´は、接続線LJ3,LJ4を介して第2フィードバック回路18に出力される。第2フィードバック回路18にインダクタ19を接続する接続線LJ3,LJ4の詳細は、後述する。 The power conversion device 10 also includes a current suppressor 17 and a second feedback circuit 18 that feedback-controls the lower arm switching element 11b for each phase. The current suppression unit 17 includes, for example, an inductor 19 magnetically coupled to the inductance component 16 and connection lines LJ3 and LJ4 that connect the inductor 19 to the second feedback circuit 18 . In the inductor 19 , an electromotive voltage Vd′ is generated by a back electromotive voltage Vd generated by a change in the applied current flowing through the inductance component 16 . An electromotive voltage Vd' generated in the inductor 19 is output to the second feedback circuit 18 via the connection lines LJ3 and LJ4. Details of the connection lines LJ3 and LJ4 that connect the inductor 19 to the second feedback circuit 18 will be described later.
 インダクタ19に発生した起電圧Vd´は、第2フィードバック回路18に入力される。第2フィードバック回路18は、入力された起電圧Vd´を第2フィードバック電圧に変換して下アームドライバ回路12bに出力する。詳しくは、電力変換装置10は、電流抑制部17u,17v,17wを備える。電流抑制部17uは、インダクタ19uを備える。電流抑制部17vは、インダクタ19vを備える。電流抑制部17wは、インダクタ19wを備える。また、電力変換装置10は、第2フィードバック回路18u,18v,18wを備える。以降の説明において、電流抑制部17u,17v,17wを互いに区別しない場合、単に「電流抑制部17」と記載する。また、第2フィードバック回路18u,18v,18wを互いに区別しない場合、単に「第2フィードバック回路18」と記載する。また、インダクタ19u,19v,19wを互いに区別しない場合、単に「インダクタ19」と記載する。 The electromotive voltage Vd' generated in the inductor 19 is input to the second feedback circuit 18. The second feedback circuit 18 converts the input electromotive voltage Vd' into a second feedback voltage and outputs the second feedback voltage to the lower arm driver circuit 12b. Specifically, the power converter 10 includes current suppression units 17u, 17v, and 17w. The current suppressor 17u includes an inductor 19u. The current suppressor 17v includes an inductor 19v. The current suppressor 17w includes an inductor 19w. The power converter 10 also includes second feedback circuits 18u, 18v, and 18w. In the following description, when the current suppressing units 17u, 17v, and 17w are not distinguished from each other, they are simply referred to as "current suppressing unit 17". Moreover, when the second feedback circuits 18u, 18v, and 18w are not distinguished from each other, they are simply referred to as "the second feedback circuit 18". Moreover, when the inductors 19u, 19v, and 19w are not distinguished from each other, they are simply referred to as "inductor 19".
 [各種接続の詳細]
 以下、図2を用いて上アームドライバ回路12a、下アームドライバ回路12b、第1フィードバック回路15、インダクタンス成分16、電流抑制部17、及び第2フィードバック回路18の接続の詳細について説明する。これらの接続は、各相において同様であるため、以降の説明では、各相に対応する末尾の符号を省略して説明する。
[Details of various connections]
Details of connection of the upper arm driver circuit 12a, the lower arm driver circuit 12b, the first feedback circuit 15, the inductance component 16, the current suppressor 17, and the second feedback circuit 18 will be described below with reference to FIG. Since these connections are the same for each phase, the following description will omit the reference numerals at the end corresponding to each phase.
 図2に示すように、上アームスイッチング素子11aは、ON状態である場合に第1ドレイン電流Id1が流れるスイッチング素子である。第1ドレイン電流Id1は、上アームスイッチング素子11aのソース-ドレイン間を流れる電流である。上アームスイッチング素子11aは、ゲート電圧が入力されるゲート端子と、ON状態である場合に第1ドレイン電流Id1が流れるドレイン端子及びソース端子とを備える。 As shown in FIG. 2, the upper arm switching element 11a is a switching element through which the first drain current Id1 flows when in the ON state. The first drain current Id1 is a current flowing between the source and drain of the upper arm switching element 11a. The upper arm switching element 11a includes a gate terminal to which a gate voltage is input, and a drain terminal and a source terminal through which a first drain current Id1 flows when in the ON state.
 また、下アームスイッチング素子11bは、ON状態である場合に第2ドレイン電流Id2が流れるスイッチング素子である。第2ドレイン電流Id2は、下アームスイッチング素子11bのソース-ドレイン間を流れる電流である。下アームスイッチング素子11bは、ゲート電圧が入力されるゲート端子と、ON状態である場合に第2ドレイン電流Id2が流れるドレイン端子及びソース端子とを備える。 Also, the lower arm switching element 11b is a switching element through which the second drain current Id2 flows when it is in the ON state. The second drain current Id2 is a current flowing between the source and drain of the lower arm switching element 11b. The lower arm switching element 11b has a gate terminal to which a gate voltage is input, and a drain terminal and a source terminal through which the second drain current Id2 flows when in the ON state.
 上アームドライバ回路12aと、上アームスイッチング素子11aのゲート端子とは、接続されている。上アームドライバ回路12aは、第1外部指令電圧に基づいて、上アームスイッチング素子11aにゲート電圧を出力し、上アームスイッチング素子11aをON状態、又はOFF状態に制御する。また、下アームドライバ回路12bと、下アームスイッチング素子11bのゲート端子とは、接続されている。下アームドライバ回路12bは、第2外部指令電圧に基づいて、下アームスイッチング素子11bにゲート電圧を出力し、下アームスイッチング素子11bをON状態、又はOFF状態に制御する。 The upper arm driver circuit 12a and the gate terminal of the upper arm switching element 11a are connected. The upper arm driver circuit 12a outputs a gate voltage to the upper arm switching element 11a based on the first external command voltage to control the upper arm switching element 11a to the ON state or the OFF state. Also, the lower arm driver circuit 12b and the gate terminal of the lower arm switching element 11b are connected. The lower arm driver circuit 12b outputs a gate voltage to the lower arm switching element 11b based on the second external command voltage to control the lower arm switching element 11b to the ON state or the OFF state.
 第1フィードバック回路15と、インダクタンス成分16とは、接続されている。第1フィードバック回路15は、一対の入力端子を備え、インダクタンス成分16は、一対の接続端子を備える。詳しくは、第1フィードバック回路15は、第1入力端子tc1と、第2入力端子tc2とを備える。また、インダクタンス成分16は、第1接続端子t1と、第2接続端子t2とを備える。第1入力端子tc1と、第1接続端子t1とは、接続線LJ1により接続される。また、第2入力端子tc2と、第2接続端子t2とは、接続線LJ2により接続される。 The first feedback circuit 15 and the inductance component 16 are connected. The first feedback circuit 15 has a pair of input terminals and the inductance component 16 has a pair of connection terminals. Specifically, the first feedback circuit 15 has a first input terminal tc1 and a second input terminal tc2. Also, the inductance component 16 has a first connection terminal t1 and a second connection terminal t2. The first input terminal tc1 and the first connection terminal t1 are connected by a connection line LJ1. Also, the second input terminal tc2 and the second connection terminal t2 are connected by a connection line LJ2.
 インダクタンス成分16は、第1ドレイン電流Id1がインダクタンス成分16に流れるように、上アームスイッチング素子11aと下アームスイッチング素子11bとの間に設けられている。詳しくは、インダクタンス成分16の第1接続端子t1は、第1中間配線LC1を介して上アームスイッチング素子11aのソース端子に接続され、インダクタンス成分16の第2接続端子t2は、第2中間配線LC2を介して下アームスイッチング素子11bのドレイン端子に接続される。なお、3相コイル202u,202v,202wのいずれかに接続される第3中間配線LC3は、第2中間配線LC2に接続されている。 The inductance component 16 is provided between the upper arm switching element 11a and the lower arm switching element 11b so that the first drain current Id1 flows through the inductance component 16. Specifically, the first connection terminal t1 of the inductance component 16 is connected to the source terminal of the upper arm switching element 11a via the first intermediate wiring LC1, and the second connection terminal t2 of the inductance component 16 is connected to the second intermediate wiring LC2. to the drain terminal of the lower arm switching element 11b. The third intermediate wiring LC3 connected to any one of the three- phase coils 202u, 202v, and 202w is connected to the second intermediate wiring LC2.
 本実施形態のインダクタンス成分16は、第1ドレイン電流Id1の変化に応じて接続端子t1,t2の両端に逆起電圧Vdを発生させる。第1ドレイン電流Id1の変化とは、インダクタンス成分16に第1ドレイン電流Id1が流れ始める場合と、インダクタンス成分16に流れていた第1ドレイン電流Id1が停止する場合とを含む。逆起電圧Vdは、第2接続端子t2の電位よりも第1接続端子t1の電位が高くなる方向に発生する。第1ドレイン電流Id1は、「第1印加電流」の一例である。 The inductance component 16 of this embodiment generates a back electromotive voltage Vd across the connection terminals t1 and t2 according to the change in the first drain current Id1. The change in the first drain current Id1 includes the case where the first drain current Id1 starts flowing through the inductance component 16 and the case where the first drain current Id1 flowing through the inductance component 16 stops. The back electromotive voltage Vd is generated in a direction in which the potential of the first connection terminal t1 becomes higher than the potential of the second connection terminal t2. The first drain current Id1 is an example of the "first applied current".
 第1フィードバック回路15の入力端子tc1,tc2には、インダクタンス成分16が第1ドレイン電流Id1の変化によって発生させた逆起電圧Vdが入力される。第1フィードバック回路15と、上アームドライバ回路12aとは、接続されている。第1フィードバック回路15は、逆起電圧Vdを第1フィードバック電圧に変換して上アームドライバ回路12aに出力する。 The input terminals tc1 and tc2 of the first feedback circuit 15 receive the back electromotive voltage Vd generated by the inductance component 16 due to the change in the first drain current Id1. The first feedback circuit 15 and the upper arm driver circuit 12a are connected. The first feedback circuit 15 converts the back electromotive voltage Vd into a first feedback voltage and outputs it to the upper arm driver circuit 12a.
 なお、第1フィードバック回路15は、配線のみで構成されていてもよい。この場合、第1フィードバック回路15は、逆起電圧Vdを、配線抵抗等によって逆起電圧Vdから若干下がった電圧に変換して上アームドライバ回路12aに出力する。 Note that the first feedback circuit 15 may be composed only of wiring. In this case, the first feedback circuit 15 converts the back electromotive voltage Vd into a voltage slightly lower than the back electromotive voltage Vd due to wiring resistance or the like, and outputs the voltage to the upper arm driver circuit 12a.
 本実施形態の上アームドライバ回路12aは、第1外部指令電圧と、第1フィードバック電圧とを加算することによって加算電圧を得て、その加算電圧を、ゲート電圧として上アームスイッチング素子11aに出力する。 The upper arm driver circuit 12a of the present embodiment obtains an added voltage by adding the first external command voltage and the first feedback voltage, and outputs the added voltage as a gate voltage to the upper arm switching element 11a. .
 また、第2フィードバック回路18と、インダクタ19とは、接続されている。第2フィードバック回路18は、一対の入力端子を備え、インダクタ19は、一対の接続端子を備える。詳しくは、第2フィードバック回路18は、第1入力端子td1と、第2入力端子td2とを備える。また、インダクタ19は、第1接続端子t3と、第2接続端子t4とを備える。第1入力端子td1と、第1接続端子t3とは、接続線LJ3により接続されている。また、第2入力端子td2と、第2接続端子t4とは、接続線LJ4により接続されている。 Also, the second feedback circuit 18 and the inductor 19 are connected. The second feedback circuit 18 has a pair of input terminals and the inductor 19 has a pair of connection terminals. Specifically, the second feedback circuit 18 has a first input terminal td1 and a second input terminal td2. The inductor 19 also has a first connection terminal t3 and a second connection terminal t4. The first input terminal td1 and the first connection terminal t3 are connected by a connection line LJ3. Also, the second input terminal td2 and the second connection terminal t4 are connected by a connection line LJ4.
 本実施形態では、上述したように、電流抑制部17のインダクタ19は、インダクタンス成分16と磁気結合されている。インダクタンス成分16と、インダクタ19とは、絶縁トランスとしての機能を有する。したがって、インダクタンス成分16を流れる第1ドレイン電流Id1が、第2フィードバック回路18に流れ込むことはない。すなわち、電流抑制部17は、第2フィードバック回路18に第1ドレイン電流Id1が流れることを遮断しており、第2フィードバック回路18に第1ドレイン電流Id1が流れることを抑制しているといえる。また、インダクタ19は、インダクタンス成分16が発生させる逆起電圧Vdにより、起電圧Vd´を発生させる。起電圧Vd´は、接続線LJ3,LJ4を介して第2フィードバック回路18に出力される。すなわち、電流抑制部17は、逆起電圧に基づく電圧(本実施の形態では起電圧Vd´)を第2フィードバック回路18に出力しているといえる。なお、起電圧Vd´は、例えば、第2接続端子t4の電位よりも第1接続端子t3の電位が高くなる方向に発生する。 In this embodiment, the inductor 19 of the current suppressing section 17 is magnetically coupled with the inductance component 16 as described above. The inductance component 16 and inductor 19 function as an isolation transformer. Therefore, the first drain current Id1 flowing through the inductance component 16 does not flow into the second feedback circuit 18. FIG. That is, it can be said that the current suppression unit 17 blocks the flow of the first drain current Id1 to the second feedback circuit 18 and suppresses the flow of the first drain current Id1 to the second feedback circuit 18 . Also, the inductor 19 generates an electromotive voltage Vd' by the back electromotive voltage Vd generated by the inductance component 16 . The electromotive voltage Vd' is output to the second feedback circuit 18 through connection lines LJ3 and LJ4. That is, it can be said that the current suppression unit 17 outputs a voltage based on the back electromotive force (electromotive voltage Vd′ in the present embodiment) to the second feedback circuit 18 . Note that the electromotive voltage Vd' is generated, for example, in a direction in which the potential of the first connection terminal t3 becomes higher than the potential of the second connection terminal t4.
 また、本実施形態のインダクタ19の巻数は、インダクタ19が逆起電圧Vdとは異なる電圧値を有する起電圧Vd´を第2フィードバック回路18に出力するように設定されているが、これに限られない。インダクタ19の巻数は、インダクタ19が逆起電圧Vdと同じ電圧値を有する起電圧を第2フィードバック回路18に出力するように設定されていてもよい。 The number of turns of the inductor 19 in this embodiment is set so that the inductor 19 outputs to the second feedback circuit 18 an electromotive voltage Vd' having a voltage value different from the counter electromotive voltage Vd. can't The number of turns of the inductor 19 may be set such that the inductor 19 outputs to the second feedback circuit 18 an electromotive voltage having the same voltage value as the counter electromotive voltage Vd.
 第2フィードバック回路18の入力端子tc1,tc2には、起電圧Vd´が入力される。第2フィードバック回路18と、下アームドライバ回路12bとは、接続されている。第2フィードバック回路18は、入力された起電圧Vd´を第2フィードバック電圧に変換して下アームドライバ回路12bに出力する。ここで、第2フィードバック電圧は、第1フィードバック電圧と同じ電圧値であっても、異なる電圧値であってもよい。 The input terminals tc1 and tc2 of the second feedback circuit 18 receive the electromotive voltage Vd'. The second feedback circuit 18 and the lower arm driver circuit 12b are connected. The second feedback circuit 18 converts the input electromotive voltage Vd' into a second feedback voltage and outputs the second feedback voltage to the lower arm driver circuit 12b. Here, the second feedback voltage may have the same voltage value as the first feedback voltage, or may have a different voltage value.
 なお、第2フィードバック回路18は、配線のみで構成されていてもよい。この場合、インダクタ19が、逆起電圧Vdを第2フィードバック電圧よりも若干高い電圧に変換して第2フィードバック回路18に出力する。第2フィードバック回路18は、入力された第2フィードバック電圧よりも若干高い電圧を、配線抵抗等によって第2フィードバック電圧に変換して下アームドライバ回路12bに出力する。 It should be noted that the second feedback circuit 18 may be composed only of wiring. In this case, the inductor 19 converts the counter electromotive voltage Vd into a voltage slightly higher than the second feedback voltage and outputs it to the second feedback circuit 18 . The second feedback circuit 18 converts a voltage slightly higher than the input second feedback voltage into a second feedback voltage by wiring resistance or the like, and outputs the second feedback voltage to the lower arm driver circuit 12b.
 本実施形態の下アームドライバ回路12bは、第2外部指令電圧と、第2フィードバック電圧とを加算し、その加算された加算電圧を、ゲート電圧として下アームスイッチング素子11bに出力する。 The lower arm driver circuit 12b of this embodiment adds the second external command voltage and the second feedback voltage, and outputs the added voltage as the gate voltage to the lower arm switching element 11b.
 [電力変換装置10の効果]
 (1)電力変換装置10において、第1フィードバック回路15は、インダクタンス成分16が発生させた逆起電圧Vdを第1フィードバック電圧に変換する。電流抑制部17は、第1ドレイン電流Id1が第2フィードバック回路18に流れることを抑制(詳述すると、遮断)するとともに、逆起電圧Vdに基づく電圧(本実施の形態では起電圧Vd´)を、第2フィードバック回路18に出力する。第2フィードバック回路18は、入力された起電圧Vd´を第2フィードバック電圧に変換する。上アームドライバ回路12aは、第1外部指令電圧と、第1フィードバック電圧とを加算することによって加算電圧を得て、その加算電圧を、上アームスイッチング素子11aに出力する。下アームドライバ回路12bは、第2外部指令電圧と、第2フィードバック電圧とを加算することによって加算電圧を得て、その加算電圧を、下アームドライバ回路12bに出力する。
[Effect of power conversion device 10]
(1) In the power converter 10, the first feedback circuit 15 converts the back electromotive voltage Vd generated by the inductance component 16 into a first feedback voltage. The current suppressing unit 17 suppresses (more specifically, cuts off) the first drain current Id1 from flowing to the second feedback circuit 18, and suppresses the voltage based on the counter electromotive voltage Vd (electromotive voltage Vd′ in the present embodiment). is output to the second feedback circuit 18 . The second feedback circuit 18 converts the input electromotive voltage Vd' into a second feedback voltage. The upper arm driver circuit 12a obtains an added voltage by adding the first external command voltage and the first feedback voltage, and outputs the added voltage to the upper arm switching element 11a. The lower arm driver circuit 12b obtains an added voltage by adding the second external command voltage and the second feedback voltage, and outputs the added voltage to the lower arm driver circuit 12b.
 第1フィードバック回路15のフィードバック制御と、第2フィードバック回路18のフィードバック制御とは、同期する。例えば、第1ドレイン電流Id1の変化に伴い、第1フィードバック回路15は、フィードバック制御として上アームスイッチング素子11aのゲート電圧を所定の期間、所定の電圧だけ下げる制御を行う場合がある。この場合、第2フィードバック回路18は、フィードバック制御として下アームスイッチング素子11bのゲート電圧を、第1フィードバック回路15と同一のタイミングで、所定の期間、所定の電圧だけ下げる制御を行うことが好ましい。また、第1フィードバック回路15は、フィードバック制御として上アームスイッチング素子11aのゲート電圧を所定の期間、所定の電圧だけ上げる制御を行う場合がある。この場合、第2フィードバック回路18は、フィードバック制御として下アームスイッチング素子11bのゲート電圧を、第1フィードバック回路15と同一のタイミングで、所定の期間、所定の電圧だけ上げる制御を行うことが好ましい。 The feedback control of the first feedback circuit 15 and the feedback control of the second feedback circuit 18 are synchronized. For example, as the first drain current Id1 changes, the first feedback circuit 15 may perform feedback control to lower the gate voltage of the upper arm switching element 11a by a predetermined voltage for a predetermined period. In this case, the second feedback circuit 18 preferably lowers the gate voltage of the lower arm switching element 11b by a predetermined voltage for a predetermined period at the same timing as the first feedback circuit 15 as feedback control. Further, the first feedback circuit 15 may perform feedback control such that the gate voltage of the upper arm switching element 11a is increased by a predetermined voltage for a predetermined period. In this case, it is preferable that the second feedback circuit 18 raises the gate voltage of the lower arm switching element 11b by a predetermined voltage for a predetermined period at the same timing as the first feedback circuit 15 as feedback control.
 一方で、第1ドレイン電流Id1が、抑制されることなく、第2フィードバック回路18に入力されると第2フィードバック回路18が破損するおそれがある。本実施形態の電力変換装置10において、第1フィードバック回路15は、インダクタンス成分16が発生させる逆起電圧Vdを第1フィードバック電圧に変換する。また、電流抑制部17は、インダクタンス成分16と磁気結合されたインダクタ19に発生した起電圧Vd´を第2フィードバック回路18に出力し、第2フィードバック回路18は、入力された起電圧Vd´を第2フィードバック電圧に変換する。これにより、電力変換装置10は、互いに直列に接続されている上アームスイッチング素子11a、及び下アームスイッチング素子11bに対して、共通のインダクタンス成分16を用いて、逆起電圧Vdの変化に基づく同期したフィードバック制御を行うことができる。 On the other hand, if the first drain current Id1 is input to the second feedback circuit 18 without being suppressed, the second feedback circuit 18 may be damaged. In the power conversion device 10 of this embodiment, the first feedback circuit 15 converts the back electromotive voltage Vd generated by the inductance component 16 into a first feedback voltage. Further, the current suppressing unit 17 outputs the electromotive voltage Vd' generated in the inductor 19 magnetically coupled with the inductance component 16 to the second feedback circuit 18, and the second feedback circuit 18 outputs the input electromotive voltage Vd'. Convert to a second feedback voltage. As a result, the power converter 10 uses the common inductance component 16 to synchronize the upper arm switching element 11a and the lower arm switching element 11b that are connected in series with each other based on changes in the back electromotive force Vd. feedback control can be performed.
 また、上アームスイッチング素子11aにフィードバック制御に使用できるレベルの逆電圧を発生させるインダクタンス値を有するインダクタンス成分と、下アームスイッチング素子11bにフィードバック制御に使用できるレベルの逆電圧を発生させるインダクタンス値を有するインダクタンス成分とを電力変換装置10がそれぞれ備える場合に比して、電力変換装置10の配線インダクタンスを低減することができる。したがって、電力変換装置10は、スイッチング素子11毎にインダクタンス成分を備える場合に比して、スイッチング損失の低減とサージ電圧又はサージ電流の低減との両立を図ることができる。 In addition, the upper arm switching element 11a has an inductance component having an inductance value that generates a reverse voltage level that can be used for feedback control, and the lower arm switching element 11b has an inductance value that generates a reverse voltage level that can be used for feedback control. The wiring inductance of the power conversion device 10 can be reduced as compared with the case where the power conversion device 10 includes an inductance component and an inductance component. Therefore, the power conversion device 10 can achieve both reduction of switching loss and reduction of surge voltage or surge current as compared with the case where each switching element 11 has an inductance component.
 (2)上アームスイッチング素子11aにフィードバック制御に使用できるレベルの逆電圧を発生させるインダクタンス値を有するインダクタンス成分と、下アームスイッチング素子11bにフィードバック制御に使用できるレベルの逆電圧を発生させるインダクタンス値を有するインダクタンス成分とを電力変換装置10がそれぞれ備える場合に比して、電力変換装置10を小型化することができる。 (2) An inductance component having an inductance value that generates a reverse voltage level that can be used for feedback control in the upper arm switching element 11a, and an inductance value that generates a reverse voltage level that can be used for feedback control in the lower arm switching element 11b. The power conversion device 10 can be downsized as compared with the case where the power conversion device 10 includes each of the inductance components.
 上記各実施形態は以下のように変更してもよい。なお、上記実施形態及び以下の各別例は、技術的に矛盾しない範囲で互いに組み合わせてもよい。
 ○上記実施形態では、インダクタンス成分16が第1ドレイン電流Id1の変化によって逆起電圧Vdを発生させる場合について説明したが、これに限られない。インダクタンス成分16は、例えば、第2ドレイン電流Id2の変化によって逆起電圧Vdを発生させてもよい。
Each of the above embodiments may be modified as follows. Note that the above embodiment and each of the following examples may be combined with each other within a technically consistent range.
○In the above-described embodiment, the case where the inductance component 16 generates the back electromotive voltage Vd due to the change in the first drain current Id1 has been described, but the present invention is not limited to this. The inductance component 16 may, for example, generate a back electromotive force Vd by changing the second drain current Id2.
 図3に示すように、この場合、インダクタンス成分16の第1接続端子t1は、下アームスイッチング素子11bのソース端子に接続されている。インダクタンス成分16の第2接続端子t2は、負極母線LN2に接続されている。インダクタンス成分16は、第2ドレイン電流Id2の変化によって接続端子t1,t2の両端に逆起電圧Vdを発生させる。第2ドレイン電流Id2の変化とは、インダクタンス成分16に第2ドレイン電流Id2が流れ始める場合と、インダクタンス成分16に流れていた第2ドレイン電流Id2が停止する場合とを含む。第2ドレイン電流Id2は、「第2印加電流」の一例である。 As shown in FIG. 3, in this case, the first connection terminal t1 of the inductance component 16 is connected to the source terminal of the lower arm switching element 11b. A second connection terminal t2 of the inductance component 16 is connected to the negative electrode bus LN2. The inductance component 16 generates a back electromotive voltage Vd across the connection terminals t1 and t2 according to the change in the second drain current Id2. The change in the second drain current Id2 includes the case where the second drain current Id2 starts flowing through the inductance component 16 and the case where the second drain current Id2 flowing through the inductance component 16 stops. The second drain current Id2 is an example of the "second applied current".
 また、この場合、下アームドライバ回路12bは、第1フィードバック回路15と接続される。上アームドライバ回路12aは、第2フィードバック回路18及び電流抑制部17と接続される。上アームドライバ回路12aは、第1外部指令電圧と、第2フィードバック電圧とを加算することによって加算電圧を得て、その加算電圧を、ゲート電圧として上アームスイッチング素子11aに出力する。また、下アームドライバ回路12bは、第2外部指令電圧と、第1フィードバック電圧とを加算することによって加算電圧を得て、その加算された加算電圧を、下アームドライバ回路12bに出力する。かかる構成によれば、電力変換装置10は、(1)及び(2)と同様の効果を得ることができる。 Also, in this case, the lower arm driver circuit 12 b is connected to the first feedback circuit 15 . The upper arm driver circuit 12 a is connected to the second feedback circuit 18 and the current suppressing section 17 . The upper arm driver circuit 12a obtains an added voltage by adding the first external command voltage and the second feedback voltage, and outputs the added voltage as a gate voltage to the upper arm switching element 11a. Further, the lower arm driver circuit 12b obtains an added voltage by adding the second external command voltage and the first feedback voltage, and outputs the added voltage to the lower arm driver circuit 12b. According to such a configuration, the power converter 10 can obtain the same effects as (1) and (2).
 ○上記実施形態では、電流抑制部17が、インダクタ19を備える場合について説明したが、これに限られない。電流抑制部17は、差動増幅回路20を備えてもよい。
 図4に示すように、差動増幅回路20は、一対の入力端子を備える。詳しくは、差動増幅回路20は、第1入力端子te1と、第2入力端子te2とを備える。第1入力端子te1は、第1接続端子t1に接続される。第2入力端子te2は、第2接続端子t2に接続される。差動増幅回路20は、分圧抵抗21,22,23,24と、オペアンプ25とを備える。分圧抵抗21と、分圧抵抗22とは、互いに直列に接続されている。分圧抵抗23と、分圧抵抗24とは、互いに直列に接続されている。分圧抵抗23は、分圧抵抗24に接続される第1端と、第1入力端子te1に接続される第2端とを有している。また、分圧抵抗21は、分圧抵抗22に接続される第1端と、第2入力端子te2に接続される第2端とを有している。分圧抵抗22は、分圧抵抗21に接続される第1端と、分圧抵抗24に接続される第2端とを有している。分圧抵抗24は、分圧抵抗23に接続される第1端と、分圧抵抗22に接続される第2端とを有している。分圧抵抗22と分圧抵抗24との接続点は、第2入力端子td2に接続されている。
O Although the said embodiment demonstrated the case where the current suppression part 17 was equipped with the inductor 19, it is not restricted to this. The current suppressor 17 may include a differential amplifier circuit 20 .
As shown in FIG. 4, the differential amplifier circuit 20 has a pair of input terminals. Specifically, the differential amplifier circuit 20 has a first input terminal te1 and a second input terminal te2. The first input terminal te1 is connected to the first connection terminal t1. The second input terminal te2 is connected to the second connection terminal t2. The differential amplifier circuit 20 includes voltage dividing resistors 21 , 22 , 23 and 24 and an operational amplifier 25 . The voltage dividing resistors 21 and 22 are connected in series with each other. The voltage dividing resistors 23 and 24 are connected in series with each other. The voltage dividing resistor 23 has a first end connected to the voltage dividing resistor 24 and a second end connected to the first input terminal te1. Also, the voltage dividing resistor 21 has a first end connected to the voltage dividing resistor 22 and a second end connected to the second input terminal te2. Voltage dividing resistor 22 has a first end connected to voltage dividing resistor 21 and a second end connected to voltage dividing resistor 24 . Voltage dividing resistor 24 has a first end connected to voltage dividing resistor 23 and a second end connected to voltage dividing resistor 22 . A connection point between the voltage dividing resistor 22 and the voltage dividing resistor 24 is connected to the second input terminal td2.
 オペアンプ25の+端子には、分圧抵抗21と、分圧抵抗22との接続点が接続されている。オペアンプ25の-端子には、分圧抵抗23と、分圧抵抗24との接続点が接続されている。オペアンプ25の出力端子は、第1入力端子td1に接続されている。 A connection point between the voltage dividing resistor 21 and the voltage dividing resistor 22 is connected to the + terminal of the operational amplifier 25 . A connection point between the voltage dividing resistors 23 and 24 is connected to the negative terminal of the operational amplifier 25 . An output terminal of the operational amplifier 25 is connected to the first input terminal td1.
 この構成により、差動増幅回路20の一対の入力端子te1,te2には、逆起電圧Vdが入力され、差動増幅回路20は、一対の入力端子te1,te2間の電位差を増幅した電圧Vd´´を、出力端子から出力する。ここで、分圧抵抗21と、分圧抵抗23との抵抗値は、一致し、分圧抵抗22と、分圧抵抗24との抵抗値は、一致する。つまり、分圧抵抗21,22の分圧比と、分圧抵抗23,24の分圧比とは、一致する。 With this configuration, the back electromotive voltage Vd is input to the pair of input terminals te1 and te2 of the differential amplifier circuit 20, and the differential amplifier circuit 20 amplifies the voltage Vd between the pair of input terminals te1 and te2. '' is output from the output terminal. Here, the resistance values of the voltage dividing resistors 21 and 23 match, and the resistance values of the voltage dividing resistors 22 and 24 match. That is, the voltage dividing ratio of the voltage dividing resistors 21 and 22 and the voltage dividing ratio of the voltage dividing resistors 23 and 24 match.
 なお、分圧抵抗21,22の分圧比、分圧抵抗23,24の分圧比、及びオペアンプ25増幅率は、オペアンプ25の出力端子と、第2入力端子td2との間の電位差である電圧Vd´´が、逆起電圧Vdと一致するような分圧比、及び増幅率に設定されていてもよいし、電位Vd´´が、逆起電圧Vdと異なるような分圧比、及び増幅率に設定されていてもよい。 The voltage dividing ratio of the voltage dividing resistors 21 and 22, the voltage dividing ratio of the voltage dividing resistors 23 and 24, and the operational amplifier 25 amplification factor are the voltage Vd which is the potential difference between the output terminal of the operational amplifier 25 and the second input terminal td2. '' may be set to a voltage division ratio and amplification factor that match the back electromotive voltage Vd, or the potential Vd'' is set to a voltage division ratio and amplification factor that are different from the back electromotive voltage Vd. may have been
 かかる構成によれば、電流抑制部17aは、第1ドレイン電流Id1が第2フィードバック回路18に流れることを抑制するとともに、インダクタンス成分16が発生させる逆起電圧Vdに基づく電圧(本実施形態では電位差Vd´´)を第2フィードバック回路18に出力する。これにより、電力変換装置10は、(1)と同様の効果を得ることができる。 According to this configuration, the current suppressing section 17a suppresses the first drain current Id1 from flowing to the second feedback circuit 18, and suppresses the voltage based on the counter electromotive voltage Vd generated by the inductance component 16 (in this embodiment, the potential difference Vd″) to the second feedback circuit 18 . Thereby, the power converter 10 can obtain the same effect as (1).
 なお、図4に示す一例において、インダクタンス成分16は、例えば、第2ドレイン電流Id2の変化によって逆起電圧Vdを発生させてもよい。この場合、インダクタンス成分16の第1接続端子t1は、下アームスイッチング素子11bのソース端子に接続されている。インダクタンス成分16の第2接続端子t2は、負極母線LN2に接続されている。また、上アームドライバ回路12aは、第2フィードバック回路18及び差動増幅回路20を有する電流抑制部17aと接続されている。下アームドライバ回路12bは、第1フィードバック回路15aに接続されている。この構成における電力変換装置10の動作は、上述した実施形態、及び変形例と同様であるため、説明を省略する。 In the example shown in FIG. 4, the inductance component 16 may generate the back electromotive voltage Vd by, for example, changing the second drain current Id2. In this case, the first connection terminal t1 of the inductance component 16 is connected to the source terminal of the lower arm switching element 11b. A second connection terminal t2 of the inductance component 16 is connected to the negative electrode bus LN2. Also, the upper arm driver circuit 12 a is connected to a current suppressor 17 a having a second feedback circuit 18 and a differential amplifier circuit 20 . The lower arm driver circuit 12b is connected to the first feedback circuit 15a. Since the operation of the power conversion device 10 in this configuration is the same as that of the above-described embodiment and modification, description thereof will be omitted.
 ○また、差動増幅回路20は、逆起電圧Vdをより精度よく検出する差動増幅回路20aに置き換えられてもよい。
 図5に示すように、差動増幅回路20aは、分圧抵抗21,22,23,24、28,29と、オペアンプ26,27,30とを備える。分圧抵抗21,22,23,24の接続は、上述した図4の場合と同様であるため、説明を省略する。
(circle) the differential amplifier circuit 20 may be replaced with the differential amplifier circuit 20a which detects the back electromotive force Vd more accurately.
As shown in FIG. 5 , the differential amplifier circuit 20 a includes voltage dividing resistors 21 , 22 , 23 , 24 , 28 and 29 and operational amplifiers 26 , 27 and 30 . The connection of the voltage dividing resistors 21, 22, 23, and 24 is the same as in the case of FIG. 4 described above, so the description is omitted.
 オペアンプ27の+端子には、分圧抵抗21と、分圧抵抗22との接続点が接続されている。オペアンプ27の-端子には、オペアンプ27の出力端子が接続されている。オペアンプ26の+端子には、分圧抵抗23と、分圧抵抗24との接続点が接続されている。オペアンプ26の-端子には、オペアンプ26の出力端子が接続されている。これにより、オペアンプ26,27は、ボルテージ・フォロワ回路として動作する。 A connection point between the voltage dividing resistor 21 and the voltage dividing resistor 22 is connected to the + terminal of the operational amplifier 27 . The - terminal of the operational amplifier 27 is connected to the output terminal of the operational amplifier 27 . A connection point between the voltage dividing resistors 23 and 24 is connected to the + terminal of the operational amplifier 26 . The - terminal of the operational amplifier 26 is connected to the output terminal of the operational amplifier 26 . Thereby, the operational amplifiers 26 and 27 operate as voltage follower circuits.
 また、オペアンプ26の出力端子は、オペアンプ30の-端子に接続されている。オペアンプ27の出力端子は、分圧抵抗28の第1端に接続されている。分圧抵抗28の第2端は、分圧抵抗29の第1端に接続されている。分圧抵抗29の第2端は、第2入力端子td2に接続されている。つまり、分圧抵抗28と、分圧抵抗29とは、オペアンプ27の出力端子と、第2入力端子td2との間に、互いに直列に接続されている。オペアンプ30の+端子には、分圧抵抗28と、分圧抵抗29との接続点が接続されている。オペアンプ30の出力端子は、第1入力端子td1に接続されている。 Also, the output terminal of the operational amplifier 26 is connected to the - terminal of the operational amplifier 30 . The output terminal of operational amplifier 27 is connected to the first end of voltage dividing resistor 28 . A second end of voltage dividing resistor 28 is connected to a first end of voltage dividing resistor 29 . A second end of the voltage dividing resistor 29 is connected to the second input terminal td2. That is, the voltage dividing resistor 28 and the voltage dividing resistor 29 are connected in series between the output terminal of the operational amplifier 27 and the second input terminal td2. A connection point between the voltage dividing resistors 28 and 29 is connected to the + terminal of the operational amplifier 30 . An output terminal of the operational amplifier 30 is connected to the first input terminal td1.
 この構成により、差動増幅回路20aの一対の入力端子te1,te2には、逆起電圧Vdが入力され、差動増幅回路20aは、一対の入力端子te1,te2間の電位差を増幅した電圧Vd´を、出力端子から出力する。 With this configuration, the back electromotive voltage Vd is input to the pair of input terminals te1 and te2 of the differential amplifier circuit 20a, and the differential amplifier circuit 20a amplifies the voltage Vd between the pair of input terminals te1 and te2. ' is output from the output terminal.
 なお、分圧抵抗21,22の分圧比、分圧抵抗23,24の分圧比、分圧抵抗28,29の分圧比、及びオペアンプ30の増幅率は、オペアンプ30の出力端子と、第2入力端子td2との電位差である電圧Vd´が、逆起電圧Vdと一致するような分圧比、及び増幅率に設定されていてもよいし、電圧Vd´が、逆起電圧Vdと異なるような分圧比、及び増幅率に設定されていてもよい。 The voltage dividing ratio of the voltage dividing resistors 21 and 22, the voltage dividing ratio of the voltage dividing resistors 23 and 24, the voltage dividing ratio of the voltage dividing resistors 28 and 29, and the amplification factor of the operational amplifier 30 are determined by the output terminal of the operational amplifier 30 and the second input. The voltage division ratio and the amplification factor may be set so that the voltage Vd', which is the potential difference from the terminal td2, matches the back electromotive voltage Vd, or the voltage Vd' may be set to a voltage dividing ratio different from the back electromotive voltage Vd. It may be set to a pressure ratio and an amplification factor.
 上述したように、オペアンプ26,27は、ボルテージ・フォロワ回路として動作する。このため、オペアンプ26,27,30の入力端子には、入力バイアス電圧が流れない。したがって、オペアンプ26,27,30の入力端子に入力される電圧には、入力バイアス電流に伴うオフセット電圧降下が生じない。このため、差動増幅回路20aは、差動増幅回路20に比して、より高精度に逆起電圧Vdを検出することができる。 As described above, the operational amplifiers 26 and 27 operate as voltage follower circuits. Therefore, no input bias voltage flows to the input terminals of the operational amplifiers 26, 27 and 30. FIG. Therefore, the voltages input to the input terminals of the operational amplifiers 26, 27 and 30 do not have an offset voltage drop due to the input bias current. Therefore, the differential amplifier circuit 20a can detect the back electromotive force Vd with higher accuracy than the differential amplifier circuit 20 can.
 かかる構成によれば、差動増幅回路20aは、より精度よくオペアンプ30に逆起電圧Vdを伝搬できる。これにより、電力変換装置10は、(1)と同様の効果を得ることができる。 With this configuration, the differential amplifier circuit 20a can propagate the back electromotive voltage Vd to the operational amplifier 30 with higher accuracy. Thereby, the power converter 10 can obtain the same effect as (1).
 なお、図5に示す一例において、インダクタンス成分16は、例えば、第2ドレイン電流Id2の変化によって逆起電圧Vdを発生させてもよい。この場合、インダクタンス成分16の第1接続端子t1は、下アームスイッチング素子11bのソース端子に接続されている。インダクタンス成分16の第2接続端子t2は、負極母線LN2に接続されている。また、上アームドライバ回路12aは、第2フィードバック回路18及び差動増幅回路20aを有する電流抑制部17bと接続されている。下アームドライバ回路12bは、第1フィードバック回路15aと接続されている。この構成における電力変換装置10の動作は、上述した実施形態、及び変形例と同様であるため、説明を省略する。 Note that in the example shown in FIG. 5, the inductance component 16 may generate the back electromotive voltage Vd by, for example, a change in the second drain current Id2. In this case, the first connection terminal t1 of the inductance component 16 is connected to the source terminal of the lower arm switching element 11b. A second connection terminal t2 of the inductance component 16 is connected to the negative electrode bus LN2. Also, the upper arm driver circuit 12a is connected to a current suppression section 17b having a second feedback circuit 18 and a differential amplifier circuit 20a. The lower arm driver circuit 12b is connected to the first feedback circuit 15a. Since the operation of the power conversion device 10 in this configuration is the same as that of the above-described embodiment and modification, description thereof will be omitted.
 ○スイッチング素子11は、MOSFETに限られず任意であり、例えばIGBTでもよい。この場合、スイッチング素子11のゲート端子が「制御端子」に対応する。また、上アームスイッチング素子11aのコレクタ-エミッタ間を流れるコレクタ電流が「第1印加電流」に対応する。また、下アームスイッチング素子11bのコレクタ-エミッタ間を流れるコレクタ電流が「第2印加電流」に対応する。 ○ The switching element 11 is not limited to a MOSFET, and may be an IGBT, for example. In this case, the gate terminal of the switching element 11 corresponds to the "control terminal". Also, the collector current flowing between the collector and the emitter of the upper arm switching element 11a corresponds to the "first applied current". Also, the collector current flowing between the collector and the emitter of the lower arm switching element 11b corresponds to the "second applied current".
 〇上アームスイッチング素子11aと下アームスイッチング素子11bとの間にインダクタンス成分16を設ける場合、すなわち、上アームスイッチング素子11aに流れる第1ドレイン電流Id1が、インダクタンス成分16に流れる場合、中間配線LC3は、インダクタンス成分16の両端の間の部分に接続するとよい。詳しくは、インダクタンス成分16が、上述の実施形態のように、第1接続端子t1と第2接続端子t2とを有するインダクタの場合、中間配線LC3は、第1接続端子t1と第2接続端子t2との間の部分に接続される。また、インダクタンス成分16が寄生インダクタンスの場合、中間配線LC3は、中間配線LC1における上アームスイッチング素子11aと接続される第1端部と、中間配線LC2における下アームスイッチング素子11bと接続される第2端部との間の部分に接続される。 When the inductance component 16 is provided between the upper arm switching element 11a and the lower arm switching element 11b, that is, when the first drain current Id1 flowing through the upper arm switching element 11a flows through the inductance component 16, the intermediate wiring LC3 is , to the portion between the ends of the inductance component 16 . Specifically, when the inductance component 16 is an inductor having the first connection terminal t1 and the second connection terminal t2 as in the above-described embodiment, the intermediate wiring LC3 has the first connection terminal t1 and the second connection terminal t2. connected to the part between When the inductance component 16 is a parasitic inductance, the intermediate wiring LC3 has a first end connected to the upper arm switching element 11a in the intermediate wiring LC1 and a second end connected to the lower arm switching element 11b in the intermediate wiring LC2. connected to the part between the ends.
 中間配線LCは、3相コイル202u,202v,202wのいずれかに接続する必要があるため、上アームスイッチング素子11aと下アームスイッチング素子11bとを十分に離して配置させる必要がある。したがって、上アームスイッチング素子11aと下アームスイッチング素子11bとの間に設けられる中間配線LCの長さも長くなる。そこで、中間配線LCのうち、3相コイル202u,202v,202wのいずれかに接続される配線を、インダクタンス成分16における両端の間の部分に接続することで、上アームスイッチング素子11aと下アームスイッチング素子11bとの間に設けられる中間配線LCが長くなることを抑制することができる。 Since it is necessary to connect the intermediate wiring LC to one of the three- phase coils 202u, 202v, and 202w, it is necessary to separate the upper arm switching element 11a and the lower arm switching element 11b sufficiently apart. Therefore, the length of the intermediate wiring LC provided between the upper arm switching element 11a and the lower arm switching element 11b also increases. Therefore, by connecting the wiring connected to any one of the three- phase coils 202u, 202v, and 202w among the intermediate wirings LC to the portion between both ends of the inductance component 16, the upper arm switching element 11a and the lower arm switching element 11a are connected. It is possible to suppress lengthening of the intermediate wiring LC provided between the element 11b.
 ○インダクタ19は、逆起電圧Vdと逆極性の起電圧Vd´を発生させるものであってもよい。この場合、第2フィードバック回路18は、起電圧Vd´を反転増幅し、ドライバ回路12に出力する。 ○ The inductor 19 may generate an electromotive voltage Vd' having a polarity opposite to the back electromotive voltage Vd. In this case, the second feedback circuit 18 inverts and amplifies the electromotive voltage Vd′ and outputs it to the driver circuit 12 .
 ○分圧抵抗21,22,23,24,28.29、オペアンプ25の増幅率、及びオペアンプ30の増幅率の組み合わせは、変換損失やドライバ回路12、第2フィードバック回路18、オペアンプ25,26,27,30の電圧降下等を考慮した増幅率であってもよい。詳しくは、分圧抵抗21,22,23,24,28.29、オペアンプ25の増幅率、及びオペアンプ30の増幅率の組み合わせは、ドライバ回路12、第2フィードバック回路18、オペアンプ25,26,27,30の電圧降下等が回復するように、逆起電圧Vd´を増幅する増幅率であってもよい。 ○The combination of the voltage dividing resistors 21, 22, 23, 24, 28, 29, the amplification factor of the operational amplifier 25, and the amplification factor of the operational amplifier 30 affects the conversion loss, the driver circuit 12, the second feedback circuit 18, the operational amplifiers 25, 26, 27, 30, etc., may be taken into account. Specifically, the combination of the voltage dividing resistors 21, 22, 23, 24, 28, 29, the amplification factor of the operational amplifier 25, and the amplification factor of the operational amplifier 30 is the driver circuit 12, the second feedback circuit 18, the operational amplifiers 25, 26, 27. , 30 may be an amplification factor for amplifying the back electromotive force Vd' so as to recover the voltage drop or the like.
 ○各スイッチング素子11はインバータを構成していたが、これに限られず、任意であり、例えば蓄電装置203の直流電力を異なる電圧の直流電力に変換するDC/DCコンバータを構成してもよい。すなわち、電力変換装置10は、インバータに限られず、DC/DCコンバータ、AC/ACコンバータ、AC/DCインバータ等任意である。換言すれば、電力変換装置10は、直流電力又は交流電力を直流電力又は交流電力に変換するものでもよい。 ○ Each switching element 11 constitutes an inverter, but it is not limited to this, and is optional. That is, the power conversion device 10 is not limited to an inverter, and may be any DC/DC converter, AC/AC converter, AC/DC inverter, or the like. In other words, the power converter 10 may convert DC power or AC power into DC power or AC power.
 ○負荷は電動モータ201に限られず任意である。
 ○電力変換装置10は、車両200以外に搭載されてもよい。すなわち、電力変換装置10は、車両200に設けられた負荷以外の負荷を駆動させるものでもよい。
○ The load is not limited to the electric motor 201, but is arbitrary.
(circle) the power converter device 10 may be mounted in other than the vehicle 200. FIG. That is, the power conversion device 10 may drive a load other than the load provided on the vehicle 200 .
 ○インダクタンス成分16は、インダクタンス成分16が設けられる配線の寄生インダクタンスにより実現されてもよい。つまり、インダクタンス成分16は、配線に存在する寄生インダクタンス成分であってもよい。この場合、インダクタンス成分16は、接続端子を有していない。かかる構成によれば、電力変換装置10は、寄生インダクタンスを用いることにより、別途インダクタンスを備える場合に比して、小型化することができる。 ○ The inductance component 16 may be realized by the parasitic inductance of the wiring on which the inductance component 16 is provided. That is, the inductance component 16 may be a parasitic inductance component present in the wiring. In this case, the inductance component 16 has no connection terminals. According to such a configuration, the power conversion device 10 can be made smaller by using the parasitic inductance compared to the case where the inductance is provided separately.
 〇第1フィードバック回路15と第2フィードバック回路18とは、同じ構成であっても違う構成であってもよい。 o The first feedback circuit 15 and the second feedback circuit 18 may have the same configuration or different configurations.

Claims (4)

  1.  インダクタンス成分を有する電力変換装置であって、
     第1印加電流が流れる第1スイッチング素子と、
     前記第1スイッチング素子と互いに直列に接続され、第2印加電流が流れる第2スイッチング素子と、
     前記第1印加電流の変化、又は前記第2印加電流の変化に応じて前記インダクタンス成分で発生する逆起電圧を第1フィードバック電圧に変換するように構成される第1フィードバック回路と、
     入力された電圧を第2フィードバック電圧に変換するように構成される第2フィードバック回路と、
     前記第1印加電流及び前記第2印加電流が前記第2フィードバック回路に流れることを抑制するとともに、前記逆起電圧に基づく電圧を前記第2フィードバック回路に出力するように構成される電流抑制部と、
     第1外部指令電圧に基づいて、前記第1スイッチング素子を駆動させるように構成される第1ドライバ回路と、
     第2外部指令電圧に基づいて、前記第2スイッチング素子を駆動させるように構成される第2ドライバ回路と、を備え、
     前記インダクタンス成分が前記第1印加電流の変化によって前記逆起電圧を発生させる場合、
      前記第1ドライバ回路は、前記第1外部指令電圧と、前記第1フィードバック電圧とを加算することによって加算電圧を得て、その加算電圧を、前記第1スイッチング素子に出力するように構成され、
      前記第2ドライバ回路は、前記第2外部指令電圧と、前記第2フィードバック電圧とを加算することによって加算電圧を得て、その加算電圧を、前記第2スイッチング素子に出力するように構成され、
     前記インダクタンス成分が前記第2印加電流の変化によって前記逆起電圧を発生させる場合、
      前記第1ドライバ回路は、前記第1外部指令電圧と、前記第2フィードバック電圧とを加算することによって加算電圧を得て、その加算電圧を、前記第1スイッチング素子に出力するように構成され、
      前記第2ドライバ回路は、前記第2外部指令電圧と、前記第1フィードバック電圧とを加算することによって加算電圧を得て、その加算電圧を、前記第2スイッチング素子に出力するように構成される、
     電力変換装置。
    A power conversion device having an inductance component,
    a first switching element through which the first applied current flows;
    a second switching element connected in series with the first switching element and through which a second applied current flows;
    a first feedback circuit configured to convert back electromotive force generated in the inductance component into a first feedback voltage in accordance with a change in the first applied current or a change in the second applied current;
    a second feedback circuit configured to convert the input voltage to a second feedback voltage;
    a current suppressing unit configured to suppress the first applied current and the second applied current from flowing to the second feedback circuit, and to output a voltage based on the back electromotive force to the second feedback circuit; ,
    a first driver circuit configured to drive the first switching element based on a first external command voltage;
    a second driver circuit configured to drive the second switching element based on a second external command voltage;
    When the inductance component generates the counter-electromotive voltage due to a change in the first applied current,
    The first driver circuit is configured to obtain an added voltage by adding the first external command voltage and the first feedback voltage, and output the added voltage to the first switching element,
    The second driver circuit is configured to obtain an added voltage by adding the second external command voltage and the second feedback voltage, and output the added voltage to the second switching element,
    When the inductance component generates the counter-electromotive force due to a change in the second applied current,
    The first driver circuit is configured to obtain an added voltage by adding the first external command voltage and the second feedback voltage, and output the added voltage to the first switching element,
    The second driver circuit is configured to obtain an added voltage by adding the second external command voltage and the first feedback voltage, and output the added voltage to the second switching element. ,
    Power converter.
  2.  前記インダクタンス成分は、前記第1スイッチング素子又は/及び前記第2スイッチング素子と接続される配線の寄生インダクタンスにより実現される、
     請求項1に記載の電力変換装置。
    The inductance component is realized by a parasitic inductance of wiring connected to the first switching element and/or the second switching element,
    The power converter according to claim 1.
  3.  前記電流抑制部は、前記インダクタンス成分と磁気結合されたインダクタを備え、
     前記インダクタは、前記インダクタンス成分が発生させる前記逆起電圧により、起電圧を発生させ、
     前記第2フィードバック回路は、前記インダクタが発生させた前記起電圧を前記第2フィードバック電圧に変換するように構成される、
     請求項1又は2に記載の電力変換装置。
    The current suppression unit includes an inductor magnetically coupled with the inductance component,
    The inductor generates an electromotive voltage by the back electromotive voltage generated by the inductance component,
    The second feedback circuit is configured to convert the electromotive voltage generated by the inductor into the second feedback voltage.
    The power converter according to claim 1 or 2.
  4.  前記電流抑制部は、前記逆起電圧が入力される一対の入力端子を有する差動増幅回路を備え、
     前記差動増幅回路は、前記逆起電圧が前記一対の入力端子に入力されたとき、前記一対の入力端子間の電位差を増幅して出力するように構成され、
     前記第2フィードバック回路は、前記差動増幅回路が出力した電圧を前記第2フィードバック電圧に変換するように構成される、
     請求項1又は2に記載の電力変換装置。
    The current suppression unit includes a differential amplifier circuit having a pair of input terminals to which the back electromotive force is input,
    The differential amplifier circuit is configured to amplify and output a potential difference between the pair of input terminals when the back electromotive voltage is input to the pair of input terminals,
    The second feedback circuit is configured to convert the voltage output by the differential amplifier circuit into the second feedback voltage.
    The power converter according to claim 1 or 2.
PCT/JP2022/030750 2021-08-20 2022-08-12 Power conversion apparatus WO2023022107A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-135218 2021-08-20
JP2021135218A JP7563334B2 (en) 2021-08-20 2021-08-20 Power Conversion Equipment

Publications (1)

Publication Number Publication Date
WO2023022107A1 true WO2023022107A1 (en) 2023-02-23

Family

ID=85240763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/030750 WO2023022107A1 (en) 2021-08-20 2022-08-12 Power conversion apparatus

Country Status (2)

Country Link
JP (1) JP7563334B2 (en)
WO (1) WO2023022107A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000324846A (en) * 1999-05-14 2000-11-24 Hitachi Ltd Power converter
WO2008099959A1 (en) * 2007-02-14 2008-08-21 Toyota Jidosha Kabushiki Kaisha Semiconductor power conversion device
JP2016519921A (en) * 2013-04-04 2016-07-07 ティーエム4・インコーポレーテッド Rectification cell and compensation circuit therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000324846A (en) * 1999-05-14 2000-11-24 Hitachi Ltd Power converter
WO2008099959A1 (en) * 2007-02-14 2008-08-21 Toyota Jidosha Kabushiki Kaisha Semiconductor power conversion device
JP2016519921A (en) * 2013-04-04 2016-07-07 ティーエム4・インコーポレーテッド Rectification cell and compensation circuit therefor

Also Published As

Publication number Publication date
JP7563334B2 (en) 2024-10-08
JP2023029109A (en) 2023-03-03

Similar Documents

Publication Publication Date Title
US12267005B2 (en) Active voltage bus system and method
JP3752225B2 (en) Active common mode filter connected in the AC line
JP4236634B2 (en) Active common mode EMI filter
JP6712096B2 (en) Electric power converter and electric power steering device
JP2010284029A (en) Power supply circuit for driving inverter
WO2019098217A1 (en) Inverter control board
US10483967B2 (en) Switching element driving circuit
JP2013021837A (en) Power conversion device
WO2023022107A1 (en) Power conversion apparatus
WO1994003966A1 (en) Power regeneration system
JP4371774B2 (en) Inverter control device
JP7405056B2 (en) power converter
JPH11113257A (en) Series type power system compensator using AC bidirectional switch type circuit
JP7359298B2 (en) power converter
WO2021187059A1 (en) Driver circuit and power converter
CN111264024A (en) Inverter device, its control circuit, and motor drive system
JP7413980B2 (en) power converter
JP7264095B2 (en) power converter
JP2020178512A (en) Motor drive circuit, motor control circuit, motor unit, motor drive unit, blower, and motor control method
JP2010093881A (en) Converter with improved three-phase power factor
JP7031484B2 (en) Motor control device
JP5334014B2 (en) Noise reduction device for power converter
JP2020005436A (en) Semiconductor device for electric power and electric power conversion device
KR20150061126A (en) Hybrid regenerative inverter
JP2011223789A (en) Power amplifier device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22858428

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22858428

Country of ref document: EP

Kind code of ref document: A1