[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023013197A1 - Motor and method for manufacturing motor - Google Patents

Motor and method for manufacturing motor Download PDF

Info

Publication number
WO2023013197A1
WO2023013197A1 PCT/JP2022/019743 JP2022019743W WO2023013197A1 WO 2023013197 A1 WO2023013197 A1 WO 2023013197A1 JP 2022019743 W JP2022019743 W JP 2022019743W WO 2023013197 A1 WO2023013197 A1 WO 2023013197A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
resin portion
motor
resin
coil end
Prior art date
Application number
PCT/JP2022/019743
Other languages
French (fr)
Japanese (ja)
Inventor
公亮 竹田
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to CN202290000300.8U priority Critical patent/CN220605696U/en
Priority to JP2023539655A priority patent/JPWO2023013197A1/ja
Publication of WO2023013197A1 publication Critical patent/WO2023013197A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/08Insulating casings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/203Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium specially adapted for liquids, e.g. cooling jackets

Definitions

  • the present invention relates to motors and motor manufacturing methods.
  • Patent Literature 1 discloses a rotating electric machine having a case through which a first coolant flows.
  • the case includes a water jacket through which cooling water flows as the first coolant. By providing the water jacket, the rotating electric machine can be cooled by water cooling.
  • the water jacket is positioned in the case that houses the stator.
  • it is necessary to bring the inner surface of the case into contact with the outer peripheral surface of the stator.
  • a gap may occur between the case and the stator. Therefore, it is difficult to efficiently transfer the heat of the stator to the water jacket.
  • the cooling efficiency is not so good in the configuration in which the stator is cooled by the water jacket as in Patent Document 1.
  • An object of the present invention is to provide a motor that can efficiently cool the stator.
  • a motor includes a stator having a cylindrical stator core extending along an axis and a stator coil wound around the stator core; and a resin portion covering at least a portion of the radially outer side of the stator core.
  • the resin portion has a cooling portion that cools the stator on the radially outer side.
  • a motor manufacturing method is a method for manufacturing a motor having the above configuration.
  • the method of manufacturing the motor includes a stator forming step of forming a stator, and a resin molding step of forming a resin portion having a cooling portion on the radially outer side by molding at least a part of the radially outer side of the stator with a resin. and a casing housing step of housing the stator molded with the resin in a casing.
  • FIG. 1 is a diagram schematically showing a schematic configuration of a motor according to Embodiment 1.
  • FIG. 2 is a diagram illustrating a method of manufacturing a motor.
  • FIG. 3 is a view equivalent to FIG. 1 according to a modification of the first embodiment.
  • FIG. 4 is a view corresponding to FIG. 1 of the motor according to the second embodiment.
  • the direction parallel to the central axis P is defined as the "axial direction”
  • the direction perpendicular to the central axis P is defined as the "radial direction”
  • the direction along an arc centered on the central axis P is defined as the “axis direction.” Circumferential direction”, respectively.
  • this definition is not intended to limit the orientation of the motor 1 when in use.
  • FIG. 1 is a diagram showing a schematic configuration of a motor 1 according to Embodiment 1 of the present invention.
  • a motor 1 includes a rotor 2 , a stator 3 , a resin portion 4 and a casing 5 .
  • the rotor 2 rotates around the central axis P with respect to the stator 3 .
  • the motor 1 is a so-called inner rotor type motor in which a rotor 2 is rotatably positioned about a central axis P within a cylindrical stator 3 .
  • the rotor 2 includes a shaft 20 , a rotor core 21 and rotor magnets 22 .
  • the rotor 2 is positioned radially inward of the stator 3 and is rotatable with respect to the stator 3 . Since the configuration of the rotor 2 is the same as that of the conventional configuration, detailed description of the rotor 2 is omitted.
  • the stator 3 is cylindrical.
  • the rotor 2 is positioned radially inward of the stator 3 . That is, the stator 3 is positioned facing the rotor 2 in the radial direction.
  • the rotor 2 is rotatably positioned about the central axis P radially inward of the stator 3 .
  • the stator 3 includes a stator core 31 and stator coils 32 .
  • the stator coil 32 is wound around the stator core 31 .
  • the stator core 31 is cylindrical.
  • the stator core 31 has a plurality of slots arranged in the circumferential direction on its inner peripheral surface. Each slot extends axially with respect to the stator 3 . Each slot accommodates an axially extending stator coil 32 . Illustration of the slots is omitted.
  • stator coil 32 accommodated in each slot of the stator core 31 protrudes outward from the axial end of the stator core 31 .
  • Coil ends 33 are portions of the stator coil 32 that protrude from both ends of the stator core 31 in the axial direction.
  • the coil ends 33 are positioned axially outward from both ends of the stator core 31 in the axial direction.
  • the resin portion 4 covers the stator 3. Specifically, the resin portion 4 covers the radially outer side of the stator core 31 of the stator 3 , the radially outer side and the radially inner side of the coil ends 33 of the stator 3 , and the axial ends of the coil ends 33 . .
  • the coil ends 33 of the stator 3 and the rotor 2 are electrically insulated by the resin portion 4 .
  • the resin portion 4 has a cooling portion 46 for cooling the stator 3 on the radially outer side.
  • the stator 3 is cooled by the cooling portion 46 of the resin portion 4 .
  • the casing 5 is cylindrical.
  • a casing 5 houses the rotor 2 and the stator 3 .
  • the radially outer side of the resin portion 4 is in contact with the inner surface of the casing 5 .
  • the stator core 31 whose radial outside is covered with the resin portion 4 can be held with respect to the casing 5 .
  • the configuration of the resin portion 4 will be described with reference to FIG.
  • the resin portion 4 is formed by molding the stator 3 with resin. That is, the resin portion 4 is in close contact with the radially outer side of the stator core 31 . In addition, the resin portion 4 is in close contact with the coil end 33 as a whole. That is, the stator 3 and the resin portion 4 are integrated.
  • the resin portion 4 contains an epoxy resin.
  • the resin portion 4 includes a stator core radially outer resin portion 41 , a coil end radially outer resin portion 42 , a coil end axial resin portion 43 , and a coil end radially inner resin portion 44 .
  • the stator core radially outer resin portion 41, the coil end radially outer resin portion 42, the coil end axial resin portion 43, and the coil end radially inner resin portion 44 are integrated.
  • the stator core radially outer resin portion 41 is a portion of the resin portion 4 located radially outward of the stator core 31 of the stator 3 .
  • the coil end radially outer resin portion 42 is a portion of the resin portion 4 located radially outward of the coil end 33 .
  • the coil end axial resin portion 43 is a portion of the resin portion 4 located axially outward of the coil end 33 .
  • the coil end radially inner resin portion 44 is a portion of the resin portion 4 located radially inward of the coil end 33 .
  • the resin portion 4 has a stator core radially outer resin portion 41 that covers the radially outer side of the stator core 31 of the stator 3 .
  • the resin portion 4 has a coil end radially outer resin portion 42 that covers the radially outer side of the coil end 33 of the stator 3 .
  • the resin portion 4 has a coil end axial resin portion 43 that covers the axial ends of the coil ends 33 of the stator 3 .
  • the resin portion 4 has a coil end radially inner resin portion 44 that covers the radially inner side of the coil end 33 of the stator 3 .
  • the resin portion 4 has the cooling portion 46 that cools the stator 3 on the radially outer side.
  • the cooling section 46 has a stator core cooling section 46a and a coil end cooling section 46b.
  • the stator core cooling portion 46 a is positioned radially outward of the stator core radially outer resin portion 41 .
  • the coil end cooling portion 46 b is located radially outside the coil end radially outer resin portion 42 .
  • the cooling portion 46 has a concave portion 48 on the radially outer side of the resin portion 4 .
  • the recesses 48 are positioned radially outward of the stator core 31 and radially outward of the coil ends 33 in the resin portion 4 . That is, the stator core cooling portion 46a positioned radially outward of the stator core radially outer resin portion 41 and the coil end cooling portion 46b positioned radially outwardly of the coil end radially outer resin portion 42 each have a recess 48.
  • the recess 48 is a groove that extends radially outward of the stator core radially outer resin portion 41 and the coil end radially outer resin portion 42 in the circumferential direction.
  • the concave portion 48 of the cooling portion 46 can increase the radially outer surface area of the resin portion 4 . Also, the resin portion 4 is in close contact with the stator 3 . That is, heat of the stator 3 can be cooled by the cooling portion 46 of the resin portion 4 having the concave portion 48 on the radially outer side.
  • a passage R is formed between the casing 5 and the recessed portion 48 of the cooling portion 46 positioned radially outwardly of the resin portion 4 .
  • the passage R is positioned radially outwardly of the stator core 31 and the coil ends 33 and extends in the circumferential direction.
  • the passage R spirally extends from one axial direction of the motor 1 to the other axial direction.
  • the depth of the concave portion 48 is the same in the circumferential direction. Further, the intervals in the axial direction of the concave portions 48 are uniform.
  • the opening width of the concave portion 48 is the same width in the circumferential direction. That is, the cross-sectional shape of the passage R is the same from one axial direction to the other axial direction of the motor 1 .
  • cold water for cooling is made to flow in the passage R. As shown in FIG.
  • the resin portion 4 contains an epoxy resin. Therefore, the resin can be brought into close contact with the radially outer side of the stator core 31 and the coil ends 33, and the strength of the resin covering the radially outer side of the stator core 31 can be ensured. In addition, since the resin portion 4 contains epoxy resin, the heat of the stator 3 can be efficiently transmitted to the cooling portion 46 . Therefore, the stator 3 can be efficiently cooled.
  • the coil end axial resin portion 43 covers the axial end of the coil end 33 of the stator 3 . Thereby, electrical insulation between the axial ends of the coil ends 33 and components located in the vicinity thereof can be ensured.
  • the coil end radially inner resin portion 44 covers the radially inner side of the coil end 33 of the stator 3 .
  • the coil ends 33 of the stator 3 and the rotor 2 can be electrically insulated by the resin portion 4 . Therefore, the distance between the coil end 33 and the rotor 2 can be made closer. Therefore, a compact and high-output motor 1 can be realized.
  • the motor 1 includes the stator 3, the rotor 2, and the resin portion 4.
  • the stator 3 has a cylindrical stator core 31 extending along its axis and a stator coil 32 wound around the stator core 31 .
  • the rotor 2 is positioned radially inside the stator core 31 and rotates with respect to the stator 3 .
  • the resin portion 4 covers at least a portion of the radially outer side of the stator core 31 .
  • the resin portion 4 has a cooling portion that cools the stator 3 on the radially outer side.
  • the resin portion 4 covering the radially outer side of the stator core 31 has the function of cooling the stator 3 . Therefore, the heat of the stator 3 can be efficiently transmitted from the stator core 31 to the cooling portion 46 of the resin portion 4 by bringing the resin portion 4 into close contact with the radially outer side of the stator core 31 . Therefore, the stator 3 can be efficiently cooled by the cooling portion 46 of the resin portion 4 .
  • the resin portion 4 has a coil end radially outer resin portion 42 that covers the radially outer side of the coil end 33 of the stator 3 .
  • the cooling portion 46 has a coil end cooling portion 46 b located radially outside the coil end radially outer resin portion 42 . Thereby, the coil ends 33 of the stator 3 can be cooled by the coil end cooling portions 46 b of the resin portion 4 .
  • the cooling portion 46 has a concave portion 48 on the radially outer side of the resin portion 4 .
  • the heat of the stator 3 can be efficiently cooled by the recesses 48 .
  • the stator 3 can be cooled more efficiently by flowing cold water for cooling through the recesses 48 .
  • the recess 48 is a groove extending in the circumferential direction.
  • the stator 3 can be cooled in the circumferential direction.
  • the stator 3 can be cooled more efficiently by flowing cold water for cooling inside the recess 48 .
  • the method for manufacturing the motor 1 includes a stator forming process, a resin molding process, and a casing accommodating process.
  • stator coil 32 is wound around the stator core 31 .
  • stator 3 having the coil ends 33 axially outside the axial end portions of the stator core 31 is formed.
  • the radially outer side of the stator 3 is molded with resin.
  • the stator 3 is positioned within the mold M.
  • the molding die M has a convex portion Ma for forming the concave portion 48 of the cooling portion 46 on the radially outer side of the resin portion 4 .
  • Resin is injected into the molding die M with the stator 3 positioned therein.
  • the stator 3 is molded with resin, and the recessed portion 48 of the cooling portion 46 is formed radially outside the resin portion 4 . That is, the resin part 4 having the cooling part 46 on the radially outer side is formed by the resin molding process.
  • the resin-molded stator 3 is housed in the casing 5 .
  • the radially outer side of the resin portion 4 contacts the inner surface of the casing 5 . Therefore, the passage R is formed by the recess located radially outside of the resin portion 4 and the inner surface of the casing 5 .
  • the method for manufacturing the motor 1 according to the present embodiment includes a stator forming step for forming the stator 3, and molding of at least a part of the radially outer side of the stator 3 with a resin to form the cooling portion 46 on the radially outer side. a resin molding step of forming the resin portion 4 having the resin portion 4; and a casing housing step of housing the stator 3 molded with the resin in the casing.
  • FIG. 3 is a diagram showing the motor 101 according to a modification of the first embodiment.
  • a motor 101 according to this modification differs in the configuration of a recess 148 from the configuration of the recess 48 in the motor 1 of the first embodiment.
  • Other configurations are the same as those of the first embodiment.
  • symbol is attached
  • the motor 101 includes a rotor 2, a stator 3, a resin portion 104, and a casing 5.
  • the resin portion 104 includes a stator core radially outer resin portion 141, a coil end radially outer resin portion 142, a coil end axial resin portion 43, and a coil end radially inner resin portion 44.
  • the stator core radially outer resin portion 141 covers the radially outer side of the stator core 31 of the stator 3 .
  • the coil end radially outer resin portion 142 covers the radially outer side of the coil end 33 of the stator 3 .
  • the resin portion 104 has a cooling portion 146 on the radially outer side.
  • the cooling section 146 has a stator core cooling section 146a and a coil end cooling section 146b.
  • the stator core cooling portion 146 a is positioned radially outward of the stator core radially outer resin portion 141 .
  • the coil end cooling portion 146 b is located radially outside the coil end radially outer resin portion 142 .
  • the cooling portion 146 has a concave portion 148 on the radially outer side of the resin portion 104 .
  • the recessed portions 148 are composed of a first recessed portion 148 a located radially outward of the stator core 31 in the resin portion 104 and a second recessed portion located radially outward of the coil end 33 of the stator 3 in the resin portion 104 . 148b and .
  • the depth of the second recess 148b is greater than the depth of the first recess 148a. That is, in the present embodiment, the position of the bottom surface of the second recess 148b of the cooling portion 146 is closer to the coil end 33 than the position of the bottom surface of the radially outer recess 48 of the coil end 33 of the first embodiment. As a result, the coil ends 33 can be cooled more efficiently than when the recesses located outside the stator core 31 and the recesses located outside the coil ends 33 have the same depth.
  • FIG. 4 is a diagram showing the motor 201 according to the second embodiment.
  • Motor 201 includes rotor 2 , stator 3 , resin portion 204 , casing 5 and metal member 206 .
  • the motor 201 includes a metal member 206 inside or radially outside the resin portion 204 .
  • Other configurations are the same as those of the first embodiment.
  • symbol is attached
  • the resin portion 204 has a cooling portion 46 on the radially outer side.
  • the metal member 206 is a metal member.
  • the metal member 206 has a cylindrical shape extending in the axial direction of the motor 201 .
  • Metal member 206 is positioned inside resin portion 204 . Specifically, in the radial direction of the stator 3, the metal member 206 is positioned radially outward of the stator core 31 in the resin portion 204 and inward of the bottom surface of the recess 48, and extends in the axial direction. That is, the metal member 206 surrounds the stator 3 radially outward.
  • the metal member 206 can be embedded inside the resin portion 204 in the process of molding the stator 3, for example. By positioning the metal member 206 inside the resin portion 204, the strength of the resin portion 204 can be improved, and the heat transfer rate of the resin portion 204 can be improved, so that the stator 3 can be cooled more efficiently by the resin portion 204. can.
  • the resin portions 4, 104, 204 are composed of the stator core radial direction outer resin portions 41, 141, the coil end radial direction outer resin portions 42, 142, the coil end axial direction resin portion 43, the coil end diameter and a direction inner resin portion 44 .
  • the resin portion may not have the coil end radially outer resin portion.
  • the resin portion may not have the coil end axial resin portion.
  • the resin portion may not have the coil end radially inner resin portion.
  • the resin portion may cover at least a portion of the radially outer side of the stator core 31 .
  • stator core radially outer resin portions 41, 141, the coil end radially outer resin portions 42, 142, the coil end axial direction resin portion 43, and the coil end radially inner resin portions of the resin portions 4, 104, 204 44 is integral.
  • stator core radially outer resin portion, the coil end radially outer resin portion, the coil end axial resin portion, and the coil end radially inner resin portion may not be integrated.
  • the recesses 48, 148 of the cooling portions 46, 146 are grooves extending in the circumferential direction.
  • the recess need not extend circumferentially.
  • the recess may be a plurality of holes positioned radially outwardly of the resin portion.
  • the radially outer surface of the resin portion may have an uneven shape. Thereby, the surface area of the radially outer side of the resin portion can be increased. Therefore, the heat of the stator can be efficiently cooled.
  • cold water for cooling is made to flow in the concave portions 48 and 148 of the cooling portions 46 and 146 .
  • other liquids such as oil for cooling may be flowed into the recess.
  • a gas may be flowed into the recess.
  • the axial intervals of the recesses 48, 148 in the cooling portions 46, 146 are uniform. Also, the opening widths of the recesses 48 and 148 are the same in the circumferential direction. However, the axial spacing of the recesses may not be uniform. The opening width of the recess may not be the same width in the circumferential direction.
  • the cooling portion 46 includes the stator core cooling portion 46 a located radially outside the stator core radially outer resin portion 41 and the coil end cooling portion 46 a located radially outside the coil end radially outside resin portion 42 . and a cooling portion 46b.
  • the cooling section may not have the coil end cooling section.
  • the entire radially outer side of the resin portions 4 , 104 , 204 is in contact with the inner surface of the casing 5 .
  • a part of the radially outer side of the resin portion may be in contact with the inner surface of the casing.
  • the stator core 31 having at least a portion of the radially outer side covered with the resin portion can be held with respect to the casing.
  • the metal member 206 has a cylindrical shape extending in the axial direction of the motor 201 and surrounds the stator core 31 radially outward.
  • the metal member may have a shape surrounding part of the stator core.
  • the metal member may be a plurality of metal pieces extending in the axial direction of the motor.
  • the present invention can be used for motors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Frames (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

This motor comprises: a stator having a cylindrical stator core extending along an axis and a stator coil wound around the stator core; a rotor that is positioned radially inward of the stator core and rotates with respect to the stator; and a resin part covering at least a radially outward portion of the stator core. The resin part has, on radially outward side, a cooling portion that cools the stator.

Description

モータ及びモータの製造方法Motor and motor manufacturing method
 本発明は、モータ及びモータの製造方法に関する。 The present invention relates to motors and motor manufacturing methods.
 ステータを冷却するための構成を備えるモータが知られている。例えば、特許文献1には、第一冷媒が通流されるケースを有する回転電機が開示されている。前記ケースは、前記第一冷媒として冷却水が通流されるウォータージャケットを備えている。前記ウォータージャケットを備えることによって、水冷により回転電機を冷却することができる。 A motor with a configuration for cooling the stator is known. For example, Patent Literature 1 discloses a rotating electric machine having a case through which a first coolant flows. The case includes a water jacket through which cooling water flows as the first coolant. By providing the water jacket, the rotating electric machine can be cooled by water cooling.
特開2019-161899JP 2019-161899
 特許文献1の構成では、前記ウォータージャケットは、ステータを収容するケースに位置している。前記ステータから前記ウォータージャケットに熱を効率良く伝達させるためには、前記ケースの内面を前記ステータの外周面に接触させる必要がある。しかしながら、前記ケース内に前記ステータを収納する際に、前記ケースと前記ステータとの間に隙間が生じる可能性がある。したがって、前記ステータの熱を前記ウォータージャケットに効率良く伝達することは難しい。すなわち、特許文献1のように、ウォータージャケットによってステータを冷却する構成では、冷却効率はあまり良くない。 In the configuration of Patent Document 1, the water jacket is positioned in the case that houses the stator. In order to efficiently transfer heat from the stator to the water jacket, it is necessary to bring the inner surface of the case into contact with the outer peripheral surface of the stator. However, when housing the stator in the case, a gap may occur between the case and the stator. Therefore, it is difficult to efficiently transfer the heat of the stator to the water jacket. In other words, the cooling efficiency is not so good in the configuration in which the stator is cooled by the water jacket as in Patent Document 1.
 本発明の目的は、ステータを効率良く冷却可能なモータを提供することである。 An object of the present invention is to provide a motor that can efficiently cool the stator.
 本発明の一実施形態に係るモータは、軸線に沿って延びる円筒状のステータコア及び前記ステータコアに巻線されたステータコイルを有するステータと、前記ステータコアの径方向内方に位置し、且つ、前記ステータに対して回転するロータと、少なくとも前記ステータコアの径方向外側の一部を覆う樹脂部と、を備える。前記樹脂部は、径方向外側に、前記ステータを冷却する冷却部を有する。 A motor according to an embodiment of the present invention includes a stator having a cylindrical stator core extending along an axis and a stator coil wound around the stator core; and a resin portion covering at least a portion of the radially outer side of the stator core. The resin portion has a cooling portion that cools the stator on the radially outer side.
 本発明の一実施形態に係るモータの製造方法は、上記の構成を有するモータを製造する方法である。前記モータの製造方法は、ステータを形成するステータ形成工程と、前記ステータの径方向外側の少なくとも一部を樹脂によってモールドすることにより、径方向外側に冷却部を有する樹脂部を形成する樹脂モールド工程と、前記樹脂によってモールドされた前記ステータをケーシング内に収容するケーシング収容工程と、を有する。 A motor manufacturing method according to an embodiment of the present invention is a method for manufacturing a motor having the above configuration. The method of manufacturing the motor includes a stator forming step of forming a stator, and a resin molding step of forming a resin portion having a cooling portion on the radially outer side by molding at least a part of the radially outer side of the stator with a resin. and a casing housing step of housing the stator molded with the resin in a casing.
 本発明の一実施形態によれば、ステータを効率良く冷却可能なモータを提供することができる。 According to one embodiment of the present invention, it is possible to provide a motor capable of efficiently cooling the stator.
図1は、実施形態1に係るモータの概略構成を模式的に示す図である。FIG. 1 is a diagram schematically showing a schematic configuration of a motor according to Embodiment 1. FIG. 図2は、モータを製造する方法を説明する図である。FIG. 2 is a diagram illustrating a method of manufacturing a motor. 図3は、実施形態1の変形例に係る図1相当図である。FIG. 3 is a view equivalent to FIG. 1 according to a modification of the first embodiment. 図4は、実施形態2に係るモータの図1相当図である。FIG. 4 is a view corresponding to FIG. 1 of the motor according to the second embodiment.
 以下、図面を参照し、本発明の例示的な実施の形態を詳しく説明する。なお、図中の同一または相当部分については同一の符号を付してその説明は繰り返さない。また、各図中の構成部材の寸法は、実際の構成部材の寸法及び各構成部材の寸法比率等を忠実に表しているわけではない。 Exemplary embodiments of the present invention will be described in detail below with reference to the drawings. The same or corresponding parts in the drawings are denoted by the same reference numerals, and the description thereof will not be repeated. Also, the dimensions of the constituent members in each drawing do not faithfully represent the actual dimensions of the constituent members, the dimensional ratios of the respective constituent members, and the like.
 なお、以下では、モータ1の説明において、中心軸Pと平行な方向を「軸方向」、中心軸Pに直交する方向を「径方向」、中心軸Pを中心とする円弧に沿う方向を「周方向」とそれぞれ称する。ただし、この定義により、モータ1の使用時の向きを限定する意図はない。 In the description of the motor 1 below, the direction parallel to the central axis P is defined as the "axial direction," the direction perpendicular to the central axis P is defined as the "radial direction," and the direction along an arc centered on the central axis P is defined as the "axis direction." Circumferential direction”, respectively. However, this definition is not intended to limit the orientation of the motor 1 when in use.
 また、以下の説明において、“固定”、“接続”及び“取り付ける”等(以下、固定等)の表現は、部材同士が直接、固定等されている場合だけでなく、他の部材を介して固定等されている場合も含む。すなわち、以下の説明において、固定等の表現には、部材同士の直接的及び間接的な固定等の意味が含まれる。 In addition, in the following description, expressions such as “fixed”, “connected” and “attached” (hereinafter referred to as “fixed”) are used not only when members are directly fixed to each other, but also when they are fixed via other members. It also includes cases where it is fixed. That is, in the following description, expressions such as fixing include meanings such as direct and indirect fixing between members.
 (実施形態1)
 (モータの構成)
 図1は、本発明の実施形態1に係るモータ1の概略構成を示す図である。モータ1は、ロータ2と、ステータ3と、樹脂部4と、ケーシング5とを備える。ロータ2は、ステータ3に対して、中心軸Pを中心として回転する。本実施形態では、モータ1は、円筒状のステータ3内に、ロータ2が中心軸Pを中心として回転可能に位置する、いわゆるインナーロータ型のモータである。
(Embodiment 1)
(Motor configuration)
FIG. 1 is a diagram showing a schematic configuration of a motor 1 according to Embodiment 1 of the present invention. A motor 1 includes a rotor 2 , a stator 3 , a resin portion 4 and a casing 5 . The rotor 2 rotates around the central axis P with respect to the stator 3 . In this embodiment, the motor 1 is a so-called inner rotor type motor in which a rotor 2 is rotatably positioned about a central axis P within a cylindrical stator 3 .
 ロータ2は、シャフト20と、ロータコア21と、ロータ磁石22とを備える。ロータ2は、ステータ3の径方向内方に位置し、ステータ3に対して回転可能である。ロータ2の構成は、従来の構成と同様であるため、ロータ2についての詳しい説明を省略する。 The rotor 2 includes a shaft 20 , a rotor core 21 and rotor magnets 22 . The rotor 2 is positioned radially inward of the stator 3 and is rotatable with respect to the stator 3 . Since the configuration of the rotor 2 is the same as that of the conventional configuration, detailed description of the rotor 2 is omitted.
 ステータ3は、円筒状である。ステータ3の径方向内方には、ロータ2が位置する。すなわち、ステータ3は、径方向にロータ2に対向して位置する。ロータ2は、ステータ3の径方向内方に、中心軸Pを中心として回転可能に位置する。 The stator 3 is cylindrical. The rotor 2 is positioned radially inward of the stator 3 . That is, the stator 3 is positioned facing the rotor 2 in the radial direction. The rotor 2 is rotatably positioned about the central axis P radially inward of the stator 3 .
 ステータ3は、ステータコア31と、ステータコイル32とを備える。ステータコイル32は、ステータコア31に巻回されている。 The stator 3 includes a stator core 31 and stator coils 32 . The stator coil 32 is wound around the stator core 31 .
 ステータコア31は、円筒状である。ステータコア31は、内周面に周方向に並んだ複数のスロットを有する。各スロットは、ステータ3に対して軸方向に延びている。各スロット内には、軸方向に延びるステータコイル32が収容されている。スロットの図示は省略する。 The stator core 31 is cylindrical. The stator core 31 has a plurality of slots arranged in the circumferential direction on its inner peripheral surface. Each slot extends axially with respect to the stator 3 . Each slot accommodates an axially extending stator coil 32 . Illustration of the slots is omitted.
 ステータコア31の各スロット内に収容されたステータコイル32は、ステータコア31の軸方向端部から外方に突出している。ステータコイル32のうちステータコア31の軸方向両端部からそれぞれ突出している部分が、コイルエンド33である。 The stator coil 32 accommodated in each slot of the stator core 31 protrudes outward from the axial end of the stator core 31 . Coil ends 33 are portions of the stator coil 32 that protrude from both ends of the stator core 31 in the axial direction.
 コイルエンド33は、ステータコア31の軸方向両端部に対して、それぞれ、軸方向外方に位置する。 The coil ends 33 are positioned axially outward from both ends of the stator core 31 in the axial direction.
 樹脂部4は、ステータ3を覆っている。詳細には、樹脂部4は、ステータ3のステータコア31の径方向外側と、ステータ3のコイルエンド33の径方向外側及び径方向内側と、コイルエンド33の軸方向端部と、を覆っている。樹脂部4によって、ステータ3のコイルエンド33とロータ2とは電気的に絶縁される。 The resin portion 4 covers the stator 3. Specifically, the resin portion 4 covers the radially outer side of the stator core 31 of the stator 3 , the radially outer side and the radially inner side of the coil ends 33 of the stator 3 , and the axial ends of the coil ends 33 . . The coil ends 33 of the stator 3 and the rotor 2 are electrically insulated by the resin portion 4 .
 また、樹脂部4は、径方向外側に、ステータ3を冷却する冷却部46を有している。樹脂部4の冷却部46によって、ステータ3が冷却される。 In addition, the resin portion 4 has a cooling portion 46 for cooling the stator 3 on the radially outer side. The stator 3 is cooled by the cooling portion 46 of the resin portion 4 .
 ケーシング5は、円筒状である。ケーシング5は、ロータ2及びステータ3を収容している。樹脂部4の径方向外側は、ケーシング5の内面に接触している。これにより、樹脂部4によって径方向外側が覆われたステータコア31を、ケーシング5に対して保持することができる。 The casing 5 is cylindrical. A casing 5 houses the rotor 2 and the stator 3 . The radially outer side of the resin portion 4 is in contact with the inner surface of the casing 5 . As a result, the stator core 31 whose radial outside is covered with the resin portion 4 can be held with respect to the casing 5 .
 (樹脂部の構成)
 図1を参照して、樹脂部4の構成について説明する。樹脂部4は、ステータ3を樹脂でモールドすることにより形成されている。すなわち、樹脂部4は、ステータコア31の径方向外側に密着している。また、樹脂部4は、コイルエンド33全体にも密着している。すなわち、ステータ3と樹脂部4とは、一体化している。本実施形態では、樹脂部4は、エポキシ系の樹脂を含む。
(Structure of resin part)
The configuration of the resin portion 4 will be described with reference to FIG. The resin portion 4 is formed by molding the stator 3 with resin. That is, the resin portion 4 is in close contact with the radially outer side of the stator core 31 . In addition, the resin portion 4 is in close contact with the coil end 33 as a whole. That is, the stator 3 and the resin portion 4 are integrated. In this embodiment, the resin portion 4 contains an epoxy resin.
 本実施形態では、樹脂部4は、ステータコア径方向外側樹脂部41と、コイルエンド径方向外側樹脂部42と、コイルエンド軸方向樹脂部43と、コイルエンド径方向内側樹脂部44と、を有する。本実施形態では、ステータコア径方向外側樹脂部41、コイルエンド径方向外側樹脂部42、コイルエンド軸方向樹脂部43及びコイルエンド径方向内側樹脂部44は、一体である。 In the present embodiment, the resin portion 4 includes a stator core radially outer resin portion 41 , a coil end radially outer resin portion 42 , a coil end axial resin portion 43 , and a coil end radially inner resin portion 44 . . In this embodiment, the stator core radially outer resin portion 41, the coil end radially outer resin portion 42, the coil end axial resin portion 43, and the coil end radially inner resin portion 44 are integrated.
 ステータコア径方向外側樹脂部41は、樹脂部4のうち、ステータ3のステータコア31の径方向外方に位置する部分である。コイルエンド径方向外側樹脂部42は、樹脂部4のうち、コイルエンド33の径方向外方に位置する部分である。コイルエンド軸方向樹脂部43は、樹脂部4のうち、コイルエンド33の軸方向外方に位置する部分である。コイルエンド径方向内側樹脂部44は、樹脂部4のうち、コイルエンド33の径方向内方に位置する部分である。 The stator core radially outer resin portion 41 is a portion of the resin portion 4 located radially outward of the stator core 31 of the stator 3 . The coil end radially outer resin portion 42 is a portion of the resin portion 4 located radially outward of the coil end 33 . The coil end axial resin portion 43 is a portion of the resin portion 4 located axially outward of the coil end 33 . The coil end radially inner resin portion 44 is a portion of the resin portion 4 located radially inward of the coil end 33 .
 すなわち、樹脂部4は、ステータ3のステータコア31の径方向外側を覆うステータコア径方向外側樹脂部41を有する。樹脂部4は、ステータ3のコイルエンド33の径方向外側を覆うコイルエンド径方向外側樹脂部42を有する。樹脂部4は、ステータ3のコイルエンド33の軸方向端部を覆うコイルエンド軸方向樹脂部43を有する。樹脂部4は、ステータ3のコイルエンド33の径方向内側を覆うコイルエンド径方向内側樹脂部44を有する。 That is, the resin portion 4 has a stator core radially outer resin portion 41 that covers the radially outer side of the stator core 31 of the stator 3 . The resin portion 4 has a coil end radially outer resin portion 42 that covers the radially outer side of the coil end 33 of the stator 3 . The resin portion 4 has a coil end axial resin portion 43 that covers the axial ends of the coil ends 33 of the stator 3 . The resin portion 4 has a coil end radially inner resin portion 44 that covers the radially inner side of the coil end 33 of the stator 3 .
 上述したように、樹脂部4は、径方向外側に、ステータ3を冷却する冷却部46を有する。本実施形態では、冷却部46は、ステータコア冷却部46aと、コイルエンド冷却部46bと、を有する。ステータコア冷却部46aは、ステータコア径方向外側樹脂部41径方向外側に位置する。コイルエンド冷却部46bは、コイルエンド径方向外側樹脂部42の径方向外側に位置する。 As described above, the resin portion 4 has the cooling portion 46 that cools the stator 3 on the radially outer side. In this embodiment, the cooling section 46 has a stator core cooling section 46a and a coil end cooling section 46b. The stator core cooling portion 46 a is positioned radially outward of the stator core radially outer resin portion 41 . The coil end cooling portion 46 b is located radially outside the coil end radially outer resin portion 42 .
 本実施形態では、冷却部46は、樹脂部4の径方向外側に、凹部48を有する。凹部48は、樹脂部4においてステータコア31の径方向外方及びコイルエンド33の径方向外方に位置する。すなわち、ステータコア径方向外側樹脂部41の径方向外側に位置するステータコア冷却部46a及びコイルエンド径方向外側樹脂部42の径方向外側に位置するコイルエンド冷却部46bは、それぞれ、凹部48を有する。本実施形態では、凹部48は、ステータコア径方向外側樹脂部41及びコイルエンド径方向外側樹脂部42の径方向外側を周方向に延びる溝である。 In this embodiment, the cooling portion 46 has a concave portion 48 on the radially outer side of the resin portion 4 . The recesses 48 are positioned radially outward of the stator core 31 and radially outward of the coil ends 33 in the resin portion 4 . That is, the stator core cooling portion 46a positioned radially outward of the stator core radially outer resin portion 41 and the coil end cooling portion 46b positioned radially outwardly of the coil end radially outer resin portion 42 each have a recess 48. In the present embodiment, the recess 48 is a groove that extends radially outward of the stator core radially outer resin portion 41 and the coil end radially outer resin portion 42 in the circumferential direction.
 冷却部46の凹部48によって、樹脂部4の径方向外側の表面積を大きくすることができる。また、樹脂部4は、ステータ3に密着している。すなわち、樹脂部4の冷却部46が径方向外側に凹部48を有することによって、ステータ3の熱を冷却することができる。 The concave portion 48 of the cooling portion 46 can increase the radially outer surface area of the resin portion 4 . Also, the resin portion 4 is in close contact with the stator 3 . That is, heat of the stator 3 can be cooled by the cooling portion 46 of the resin portion 4 having the concave portion 48 on the radially outer side.
 上述したように、樹脂部4の径方向外側は、ケーシング5の内面と接触している。これにより、樹脂部4の径方向外側に位置する冷却部46の凹部48とケーシング5との間には、通路Rが構成される。通路Rは、ステータコア31及びコイルエンド33に対して径方向外方に位置し、周方向に延びている。 As described above, the radially outer side of the resin portion 4 is in contact with the inner surface of the casing 5 . Thus, a passage R is formed between the casing 5 and the recessed portion 48 of the cooling portion 46 positioned radially outwardly of the resin portion 4 . The passage R is positioned radially outwardly of the stator core 31 and the coil ends 33 and extends in the circumferential direction.
 通路Rは、モータ1の軸方向一方から他方に向かってらせん状に延びている。本実施形態では、凹部48の深さは、周方向で同じ深さである。また、凹部48の前記軸方向の間隔は均等である。また、凹部48の開口幅は、周方向で同じ幅である。すなわち、通路Rの断面形状は、モータ1の軸方向一方から他方にわたって同一である。本実施形態では、通路R内には、冷却用の冷水が流される。 The passage R spirally extends from one axial direction of the motor 1 to the other axial direction. In this embodiment, the depth of the concave portion 48 is the same in the circumferential direction. Further, the intervals in the axial direction of the concave portions 48 are uniform. Moreover, the opening width of the concave portion 48 is the same width in the circumferential direction. That is, the cross-sectional shape of the passage R is the same from one axial direction to the other axial direction of the motor 1 . In this embodiment, cold water for cooling is made to flow in the passage R. As shown in FIG.
 本実施形態では、樹脂部4は、エポキシ系の樹脂を含む。よって、ステータコア31の径方向外側及びコイルエンド33に樹脂を密着させることができるとともに、ステータコア31の径方向外側を覆う樹脂の強度を確保することができる。また、樹脂部4は、エポキシ系の樹脂を含むことにより、ステータ3の熱を冷却部46に効率良く伝達することができる。よって、ステータ3を効率良く冷却することができる。 In this embodiment, the resin portion 4 contains an epoxy resin. Therefore, the resin can be brought into close contact with the radially outer side of the stator core 31 and the coil ends 33, and the strength of the resin covering the radially outer side of the stator core 31 can be ensured. In addition, since the resin portion 4 contains epoxy resin, the heat of the stator 3 can be efficiently transmitted to the cooling portion 46 . Therefore, the stator 3 can be efficiently cooled.
 コイルエンド軸方向樹脂部43は、ステータ3のコイルエンド33の軸方向端部を覆っている。これにより、コイルエンド33の軸方向端部と、その近傍に位置する構成部品との電気的絶縁を確保することができる。 The coil end axial resin portion 43 covers the axial end of the coil end 33 of the stator 3 . Thereby, electrical insulation between the axial ends of the coil ends 33 and components located in the vicinity thereof can be ensured.
 コイルエンド径方向内側樹脂部44は、ステータ3のコイルエンド33の径方向内側を覆っている。これにより、ステータ3のコイルエンド33とロータ2とを、樹脂部4によって電気的に絶縁することができる。よって、コイルエンド33とロータ2との距離をより近づけることができる。したがって、コンパクトで高出力のモータ1を実現することができる。 The coil end radially inner resin portion 44 covers the radially inner side of the coil end 33 of the stator 3 . Thereby, the coil ends 33 of the stator 3 and the rotor 2 can be electrically insulated by the resin portion 4 . Therefore, the distance between the coil end 33 and the rotor 2 can be made closer. Therefore, a compact and high-output motor 1 can be realized.
 以上説明したように、モータ1は、ステータ3と、ロータ2と、樹脂部4と、を備える。ステータ3は、軸線に沿って延びる円筒状のステータコア31及びステータコア31に巻線されたステータコイル32を有する。ロータ2は、ステータコア31の径方向内側に位置し、且つ、ステータ3に対して回転する。樹脂部4は、少なくともステータコア31の径方向外側の一部を覆っている。樹脂部4は、径方向外側に、ステータ3を冷却する冷却部を有している。 As described above, the motor 1 includes the stator 3, the rotor 2, and the resin portion 4. The stator 3 has a cylindrical stator core 31 extending along its axis and a stator coil 32 wound around the stator core 31 . The rotor 2 is positioned radially inside the stator core 31 and rotates with respect to the stator 3 . The resin portion 4 covers at least a portion of the radially outer side of the stator core 31 . The resin portion 4 has a cooling portion that cools the stator 3 on the radially outer side.
 上述の構成では、ステータコア31の径方向外側を覆う樹脂部4が、ステータ3を冷却する機能を有する。よって、ステータコア31の径方向外側に樹脂部4を密着させて、ステータ3の熱をステータコア31から樹脂部4の冷却部46に効率良く伝達することができる。したがって、樹脂部4の冷却部46によって、ステータ3を効率良く冷却することができる。 In the above configuration, the resin portion 4 covering the radially outer side of the stator core 31 has the function of cooling the stator 3 . Therefore, the heat of the stator 3 can be efficiently transmitted from the stator core 31 to the cooling portion 46 of the resin portion 4 by bringing the resin portion 4 into close contact with the radially outer side of the stator core 31 . Therefore, the stator 3 can be efficiently cooled by the cooling portion 46 of the resin portion 4 .
 また、本実施形態では、樹脂部4は、ステータ3のコイルエンド33の径方向外側を覆うコイルエンド径方向外側樹脂部42を有する。冷却部46は、コイルエンド径方向外側樹脂部42の径方向外側に位置するコイルエンド冷却部46bを有する。これにより、ステータ3のコイルエンド33を、樹脂部4のコイルエンド冷却部46bによって冷却することができる。 In addition, in the present embodiment, the resin portion 4 has a coil end radially outer resin portion 42 that covers the radially outer side of the coil end 33 of the stator 3 . The cooling portion 46 has a coil end cooling portion 46 b located radially outside the coil end radially outer resin portion 42 . Thereby, the coil ends 33 of the stator 3 can be cooled by the coil end cooling portions 46 b of the resin portion 4 .
 本実施形態では、冷却部46は、樹脂部4の径方向外側に、凹部48を有している。凹部48によって、ステータ3の熱を効率良く冷却することができる。しかも、凹部48に冷却用の冷水を流すことにより、ステータ3をより効率良く冷却することができる。 In this embodiment, the cooling portion 46 has a concave portion 48 on the radially outer side of the resin portion 4 . The heat of the stator 3 can be efficiently cooled by the recesses 48 . Moreover, the stator 3 can be cooled more efficiently by flowing cold water for cooling through the recesses 48 .
 本実施形態では、凹部48は、周方向に延びる溝である。これにより、ステータ3を周方向に冷却することができる。しかも、凹部48内に冷却用の冷水を流すことにより、ステータ3をより効率良く冷却することができる。 In this embodiment, the recess 48 is a groove extending in the circumferential direction. Thereby, the stator 3 can be cooled in the circumferential direction. Moreover, the stator 3 can be cooled more efficiently by flowing cold water for cooling inside the recess 48 .
 (モータの製造方法)
 図2を参照して、実施形態1に係るモータ1を製造する方法について説明する。モータ1の製造方法は、ステータ形成工程と、樹脂モールド工程と、ケーシング収容工程と、を有する。
(Motor manufacturing method)
A method of manufacturing the motor 1 according to the first embodiment will be described with reference to FIG. The method for manufacturing the motor 1 includes a stator forming process, a resin molding process, and a casing accommodating process.
 ステータ形成工程は、ステータコア31に、ステータコイル32を巻回する。これにより、ステータコア31の軸方向両端部に対して軸方向外側にコイルエンド33を有するステータ3が形成される。 In the stator forming process, the stator coil 32 is wound around the stator core 31 . As a result, the stator 3 having the coil ends 33 axially outside the axial end portions of the stator core 31 is formed.
 樹脂モールド工程は、ステータ3の径方向外側を樹脂によってモールドする。詳細には、まず、ステータ3を成形型M内に位置付ける。図2に示すように、成形型Mは、樹脂部4の径方向外側に冷却部46の凹部48を形成するための凸部Maを有している。成形型M内に、ステータ3を位置付けた状態で、成形型M内に樹脂を射出する。これにより、ステータ3が樹脂によってモールドされるとともに、樹脂部4の径方向外側に冷却部46の凹部48が形成される。すなわち、樹脂モールド工程によって、径方向外側に冷却部46を有する樹脂部4が形成される。 In the resin molding process, the radially outer side of the stator 3 is molded with resin. Specifically, first, the stator 3 is positioned within the mold M. As shown in FIG. As shown in FIG. 2 , the molding die M has a convex portion Ma for forming the concave portion 48 of the cooling portion 46 on the radially outer side of the resin portion 4 . Resin is injected into the molding die M with the stator 3 positioned therein. As a result, the stator 3 is molded with resin, and the recessed portion 48 of the cooling portion 46 is formed radially outside the resin portion 4 . That is, the resin part 4 having the cooling part 46 on the radially outer side is formed by the resin molding process.
 ケーシング収容工程は、樹脂モールドされたステータ3をケーシング5内に収容する。この工程によって、樹脂部4の径方向外側がケーシング5の内面に接触する。よって、樹脂部4の径方向外側に位置する凹部とケーシング5の内面とによって、通路Rが構成される。 In the casing housing step, the resin-molded stator 3 is housed in the casing 5 . Through this process, the radially outer side of the resin portion 4 contacts the inner surface of the casing 5 . Therefore, the passage R is formed by the recess located radially outside of the resin portion 4 and the inner surface of the casing 5 .
 すなわち、本実施形態に係るモータ1の製造方法は、ステータ3を形成するステータ形成工程と、ステータ3の径方向外側の少なくとも一部を樹脂によってモールドすることにより、径方向外側に冷却部46を有する樹脂部4を形成する樹脂モールド工程と、前記樹脂によってモールドされたステータ3をケーシング内に収容するケーシング収容工程と、を有する。 That is, the method for manufacturing the motor 1 according to the present embodiment includes a stator forming step for forming the stator 3, and molding of at least a part of the radially outer side of the stator 3 with a resin to form the cooling portion 46 on the radially outer side. a resin molding step of forming the resin portion 4 having the resin portion 4; and a casing housing step of housing the stator 3 molded with the resin in the casing.
 この製造方法により、ステータを効率良く冷却可能なモータ1を得ることができる。 With this manufacturing method, it is possible to obtain the motor 1 that can efficiently cool the stator.
 (実施形態1の変形例)
 図3は、実施形態1の変形例に係るモータ101を示す図である。本変形例に係るモータ101は、凹部148の構成が実施形態1のモータ1における凹部48の構成と異なる。それ以外の構成は、実施形態1と同じである。以下では、実施形態1と同一の構成には同一の符号を付して、説明を省略する。
(Modification of Embodiment 1)
FIG. 3 is a diagram showing the motor 101 according to a modification of the first embodiment. A motor 101 according to this modification differs in the configuration of a recess 148 from the configuration of the recess 48 in the motor 1 of the first embodiment. Other configurations are the same as those of the first embodiment. Below, the same code|symbol is attached|subjected to the structure same as Embodiment 1, and description is abbreviate|omitted.
 モータ101は、ロータ2と、ステータ3と、樹脂部104と、ケーシング5とを備える。本変形例では、樹脂部104は、ステータコア径方向外側樹脂部141と、コイルエンド径方向外側樹脂部142と、コイルエンド軸方向樹脂部43と、コイルエンド径方向内側樹脂部44と、を有する。ステータコア径方向外側樹脂部141は、ステータ3のステータコア31の径方向外側を覆う。コイルエンド径方向外側樹脂部142は、ステータ3のコイルエンド33の径方向外側を覆う。 The motor 101 includes a rotor 2, a stator 3, a resin portion 104, and a casing 5. In this modification, the resin portion 104 includes a stator core radially outer resin portion 141, a coil end radially outer resin portion 142, a coil end axial resin portion 43, and a coil end radially inner resin portion 44. . The stator core radially outer resin portion 141 covers the radially outer side of the stator core 31 of the stator 3 . The coil end radially outer resin portion 142 covers the radially outer side of the coil end 33 of the stator 3 .
 樹脂部104は、径方向外側に、冷却部146を有する。本実施形態では、冷却部146は、ステータコア冷却部146aと、コイルエンド冷却部146bと、を有する。ステータコア冷却部146aは、ステータコア径方向外側樹脂部141の径方向外側に位置する。コイルエンド冷却部146bは、コイルエンド径方向外側樹脂部142の径方向外側に位置する。 The resin portion 104 has a cooling portion 146 on the radially outer side. In this embodiment, the cooling section 146 has a stator core cooling section 146a and a coil end cooling section 146b. The stator core cooling portion 146 a is positioned radially outward of the stator core radially outer resin portion 141 . The coil end cooling portion 146 b is located radially outside the coil end radially outer resin portion 142 .
 本実施形態では、冷却部146は、樹脂部104の径方向外側に、凹部148を有する。本実施形態では、凹部148は、樹脂部104においてステータコア31の径方向外方に位置する第1凹部148aと、樹脂部104においてステータ3のコイルエンド33の
径方向外方に位置する第2凹部148bと、を有する。
In this embodiment, the cooling portion 146 has a concave portion 148 on the radially outer side of the resin portion 104 . In the present embodiment, the recessed portions 148 are composed of a first recessed portion 148 a located radially outward of the stator core 31 in the resin portion 104 and a second recessed portion located radially outward of the coil end 33 of the stator 3 in the resin portion 104 . 148b and .
 本実施形態では、第2凹部148bの深さは、第1凹部148aの深さよりも大きい。すなわち、本実施形態では、冷却部146の第2凹部148bの底面の位置は、実施形態1のコイルエンド33の径方向外側の凹部48の底面の位置よりもコイルエンド33に近い。これにより、ステータコア31の外方に位置する凹部及びコイルエンド33の外方に位置する凹部が同じ深さの場合に比べて、コイルエンド33をより効率良く冷却することができる。 In this embodiment, the depth of the second recess 148b is greater than the depth of the first recess 148a. That is, in the present embodiment, the position of the bottom surface of the second recess 148b of the cooling portion 146 is closer to the coil end 33 than the position of the bottom surface of the radially outer recess 48 of the coil end 33 of the first embodiment. As a result, the coil ends 33 can be cooled more efficiently than when the recesses located outside the stator core 31 and the recesses located outside the coil ends 33 have the same depth.
 (実施形態2)
 図4は、実施形態2に係るモータ201を示す図である。モータ201は、ロータ2と、ステータ3と、樹脂部204と、ケーシング5と、金属部材206と、を備える。本実施形態では、モータ201は、樹脂部204の内部または径方向外側に金属部材206を備えている。それ以外の構成は、実施形態1と同じである。以下では、実施形態1と同一の構成には同一の符号を付して、説明を省略する。
(Embodiment 2)
FIG. 4 is a diagram showing the motor 201 according to the second embodiment. Motor 201 includes rotor 2 , stator 3 , resin portion 204 , casing 5 and metal member 206 . In this embodiment, the motor 201 includes a metal member 206 inside or radially outside the resin portion 204 . Other configurations are the same as those of the first embodiment. Below, the same code|symbol is attached|subjected to the structure same as Embodiment 1, and description is abbreviate|omitted.
 樹脂部204は、径方向外側に、冷却部46を有する。 The resin portion 204 has a cooling portion 46 on the radially outer side.
 金属部材206は、金属製の部材である。本実施形態では、金属部材206は、モータ201の軸方向に延びる円筒状である。金属部材206は、樹脂部204の内部に位置する。詳細には、金属部材206は、ステータ3の径方向において、樹脂部204内におけるステータコア31の径方向外方且つ凹部48の底面より内方に位置し、軸方向に延びている。すなわち、金属部材206は、ステータ3を、径方向外方で取り囲んでいる。 The metal member 206 is a metal member. In this embodiment, the metal member 206 has a cylindrical shape extending in the axial direction of the motor 201 . Metal member 206 is positioned inside resin portion 204 . Specifically, in the radial direction of the stator 3, the metal member 206 is positioned radially outward of the stator core 31 in the resin portion 204 and inward of the bottom surface of the recess 48, and extends in the axial direction. That is, the metal member 206 surrounds the stator 3 radially outward.
 金属部材206は、例えば、ステータ3をモールドする工程で、樹脂部204の内部に埋め込むことができる。樹脂部204の内部に金属部材206が位置することで、樹脂部204の強度向上を図れるとともに、樹脂部204における熱伝達率を向上して樹脂部204によってステータ3をより効率良く冷却することができる。 The metal member 206 can be embedded inside the resin portion 204 in the process of molding the stator 3, for example. By positioning the metal member 206 inside the resin portion 204, the strength of the resin portion 204 can be improved, and the heat transfer rate of the resin portion 204 can be improved, so that the stator 3 can be cooled more efficiently by the resin portion 204. can.
 (その他の実施形態)
 以上、本発明の実施の形態を説明したが、上述した実施の形態は本発明を実施するための例示に過ぎない。よって、上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変形して実施することが可能である。
(Other embodiments)
Although the embodiments of the present invention have been described above, the above-described embodiments are merely examples for carrying out the present invention. Therefore, without being limited to the above-described embodiment, it is possible to modify the above-described embodiment as appropriate without departing from the spirit thereof.
 前記各実施形態では、樹脂部4,104,204は、ステータコア径方向外側樹脂部41,141と、コイルエンド径方向外側樹脂部42,142と、コイルエンド軸方向樹脂部43と、コイルエンド径方向内側樹脂部44と、を有する。しかしながら、樹脂部は、コイルエンド径方向外側樹脂部を有さなくてもよい。樹脂部は、コイルエンド軸方向樹脂部を有さなくてもよい。樹脂部は、コイルエンド径方向内側樹脂部を有さなくてもよい。樹脂部は、少なくともステータコア31の径方向外側の一部を覆っていればよい。 In each of the above-described embodiments, the resin portions 4, 104, 204 are composed of the stator core radial direction outer resin portions 41, 141, the coil end radial direction outer resin portions 42, 142, the coil end axial direction resin portion 43, the coil end diameter and a direction inner resin portion 44 . However, the resin portion may not have the coil end radially outer resin portion. The resin portion may not have the coil end axial resin portion. The resin portion may not have the coil end radially inner resin portion. The resin portion may cover at least a portion of the radially outer side of the stator core 31 .
 前記各実施形態では、樹脂部4,104,204のステータコア径方向外側樹脂部41,141、コイルエンド径方向外側樹脂部42,142、コイルエンド軸方向樹脂部43及びコイルエンド径方向内側樹脂部44は、一体である。しかしながら、ステータコア径方向外側樹脂部、コイルエンド径方向外側樹脂部、コイルエンド軸方向樹脂部及びコイルエンド径方向内側樹脂部は、一体でなくてもよい。 In each of the above-described embodiments, the stator core radially outer resin portions 41, 141, the coil end radially outer resin portions 42, 142, the coil end axial direction resin portion 43, and the coil end radially inner resin portions of the resin portions 4, 104, 204 44 is integral. However, the stator core radially outer resin portion, the coil end radially outer resin portion, the coil end axial resin portion, and the coil end radially inner resin portion may not be integrated.
 前記各実施形態では、冷却部46,146の凹部48,148は、周方向に延びる溝である。しかしながら、凹部は、周方向に延びなくてもよい。例えば、凹部は、樹脂部の径方向外側に位置する複数の穴であってもよい。例えば、樹脂部の径方向外側の面が、凹凸の形状を有していてもよい。これにより、樹脂部の径方向外側の表面積を大きくすることができる。よって、ステータの熱を効率良く冷却することができる
 前記各実施形態では、冷却部46,146の凹部48,148内には、冷却用の冷水が流される。しかしながら、凹部内には、冷却用のオイルなど他の液体が流されてもよい。
凹部内には、気体が流されてもよい。
In each of the embodiments described above, the recesses 48, 148 of the cooling portions 46, 146 are grooves extending in the circumferential direction. However, the recess need not extend circumferentially. For example, the recess may be a plurality of holes positioned radially outwardly of the resin portion. For example, the radially outer surface of the resin portion may have an uneven shape. Thereby, the surface area of the radially outer side of the resin portion can be increased. Therefore, the heat of the stator can be efficiently cooled. In each of the above-described embodiments, cold water for cooling is made to flow in the concave portions 48 and 148 of the cooling portions 46 and 146 . However, other liquids such as oil for cooling may be flowed into the recess.
A gas may be flowed into the recess.
 前記各実施形態では、冷却部46,146における凹部48,148の軸方向の間隔は均等である。また、凹部48,148の開口幅は、周方向で同じ幅である。しかしながら、凹部の軸方向の間隔は均等でなくてもよい。凹部の開口幅は、周方向で同じ幅でなくてもよい。 In each of the above embodiments, the axial intervals of the recesses 48, 148 in the cooling portions 46, 146 are uniform. Also, the opening widths of the recesses 48 and 148 are the same in the circumferential direction. However, the axial spacing of the recesses may not be uniform. The opening width of the recess may not be the same width in the circumferential direction.
 前記実施形態1,2では、冷却部46は、ステータコア径方向外側樹脂部41の径方向外側に位置するステータコア冷却部46aと、コイルエンド径方向外側樹脂部42の径方向外側に位置するコイルエンド冷却部46bと、を有する。しかしながら、冷却部は、コイルエンド冷却部を有さなくてもよい。 In Embodiments 1 and 2, the cooling portion 46 includes the stator core cooling portion 46 a located radially outside the stator core radially outer resin portion 41 and the coil end cooling portion 46 a located radially outside the coil end radially outside resin portion 42 . and a cooling portion 46b. However, the cooling section may not have the coil end cooling section.
 前記各実施形態では、樹脂部4,104,204の径方向外側の全体が、ケーシング5の内面に接触している。しかしながら、樹脂部の径方向外側の一部が、ケーシングの内面に接触していてもよい。これにより、樹脂部によって径方向外側の少なくとも一部が覆われたステータコア31を、ケーシングに対して保持することができる。 In each of the above-described embodiments, the entire radially outer side of the resin portions 4 , 104 , 204 is in contact with the inner surface of the casing 5 . However, a part of the radially outer side of the resin portion may be in contact with the inner surface of the casing. As a result, the stator core 31 having at least a portion of the radially outer side covered with the resin portion can be held with respect to the casing.
 前記実施形態2では、金属部材206は、モータ201の軸方向に延びる円筒状であり、ステータコア31の径方向外方を取り囲んでいる。しかしながら、金属部材は、ステータコアの一部を取り囲む形状であってもよい。金属部材は、モータの軸方向に延びる複数の金属片であってもよい。 In Embodiment 2, the metal member 206 has a cylindrical shape extending in the axial direction of the motor 201 and surrounds the stator core 31 radially outward. However, the metal member may have a shape surrounding part of the stator core. The metal member may be a plurality of metal pieces extending in the axial direction of the motor.
 本発明は、モータに利用可能である。 The present invention can be used for motors.
1、101、201 モータ
2 ロータ
3 ステータ
4、104、204 樹脂部
5 ケーシング
20 シャフト
21 ロータコア
22 ロータ磁石
31 ステータコア
32 ステータコイル
33 コイルエンド
41、141 ステータコア径方向外側樹脂部
42、142 コイルエンド径方向外側樹脂部
43 コイルエンド軸方向樹脂部
44 コイルエンド径方向内側樹脂部
46、146 冷却部
46a、146a ステータコア冷却部
46b、146b コイルエンド冷却部
48、148 凹部
148a 第1凹部
148b 第2凹部
206 金属部材
1, 101, 201 Motor 2 Rotor 3 Stator 4, 104, 204 Resin portion 5 Casing 20 Shaft 21 Rotor core 22 Rotor magnet 31 Stator core 32 Stator coil 33 Coil end 41, 141 Stator core radial outer resin portion 42, 142 Coil end radial direction Outer resin portion 43 Coil end axial direction resin portion 44 Coil end radial direction inner resin portion 46, 146 Cooling portions 46a, 146a Stator core cooling portions 46b, 146b Coil end cooling portions 48, 148 Recess 148a First recess 148b Second recess 206 Metal Element

Claims (11)

  1.  軸線に沿って延びる円筒状のステータコア及び前記ステータコアに巻線されたステータコイルを有するステータと、
     前記ステータコアの径方向内方に位置し、且つ、前記ステータに対して回転するロータと、
     少なくとも前記ステータコアの径方向外側の一部を覆う樹脂部と、
    を備え、
     前記樹脂部は、径方向外側に、前記ステータを冷却する冷却部を有する、モータ。
    a stator having a cylindrical stator core extending along an axis and a stator coil wound around the stator core;
    a rotor positioned radially inward of the stator core and rotating with respect to the stator;
    a resin portion covering at least a portion of the radially outer side of the stator core;
    with
    The motor, wherein the resin portion has a cooling portion that cools the stator radially outward.
  2.  請求項1に記載のモータにおいて、
     前記樹脂部は、前記ステータのコイルエンドの径方向外側を覆うコイルエンド径方向外側樹脂部を有し、
     前記冷却部は、前記コイルエンド径方向外側樹脂部の径方向外側に位置するコイルエンド冷却部を有する、モータ。
    2. The motor of claim 1, wherein
    The resin portion has a coil end radially outer resin portion that covers the radially outer side of the coil end of the stator,
    The motor, wherein the cooling portion has a coil end cooling portion positioned radially outward of the coil end radially outer resin portion.
  3.  請求項1または2に記載のモータにおいて、
     前記冷却部は、前記樹脂部の径方向外側に、凹部を有する、モータ。
    3. The motor according to claim 1 or 2,
    The motor, wherein the cooling portion has a recess radially outward of the resin portion.
  4.  請求項3に記載のモータにおいて、
     前記凹部は、
     前記樹脂部において前記ステータコアの径方向外方に位置する第1凹部と、
     前記樹脂部において前記ステータのコイルエンドの径方向外方に位置する第2凹部と、
    を有し、
     前記第2凹部の深さは、前記第1凹部の深さよりも大きい、モータ。
    4. The motor of claim 3, wherein
    The recess is
    a first recess located radially outward of the stator core in the resin portion;
    a second recess located radially outward of the coil end of the stator in the resin portion;
    has
    The motor, wherein the depth of the second recess is greater than the depth of the first recess.
  5.  請求項3または4に記載のモータにおいて、
     前記凹部は、周方向に延びる溝である、モータ。
    5. The motor according to claim 3 or 4,
    The motor, wherein the recess is a circumferentially extending groove.
  6.  請求項1から5のいずれか一つに記載のモータにおいて、
     前記樹脂部は、前記ステータのコイルエンドの軸方向端部を覆うコイルエンド軸方向樹脂部を有する、モータ。
    The motor according to any one of claims 1 to 5,
    The motor, wherein the resin portion has a coil end axial resin portion covering an axial end portion of a coil end of the stator.
  7.  請求項1から6のいずれか一つに記載のモータにおいて、
     前記樹脂部は、前記ステータのコイルエンドの径方向内側を覆うコイルエンド径方向内側樹脂部を有する、モータ。
    The motor according to any one of claims 1 to 6,
    The motor, wherein the resin portion has a coil end radially inner resin portion covering a radially inner side of the coil end of the stator.
  8.  請求項1から7のいずれか一つに記載のモータにおいて、
     前記樹脂部の内部または径方向外側に、金属部材をさらに備える、モータ。
    The motor according to any one of claims 1 to 7,
    The motor, further comprising a metal member inside or radially outside the resin portion.
  9.  請求項1から8のいずれか一つに記載のモータにおいて、
     前記ステータ及び前記ロータを収容するケーシングをさらに備え、
     前記樹脂部の径方向外側の一部は、前記ケーシングの内面に接触している、モータ。
    The motor according to any one of claims 1 to 8,
    further comprising a casing that houses the stator and the rotor;
    A motor, wherein a radially outer portion of the resin portion is in contact with an inner surface of the casing.
  10.  請求項1から9のいずれか一つに記載のモータにおいて、
     前記樹脂部は、エポキシ系の樹脂を含む、モータ。
    The motor according to any one of claims 1 to 9,
    The motor, wherein the resin portion contains an epoxy-based resin.
  11.  請求項1から10のいずれか一つに記載のモータの製造方法であって、
     ステータを形成するステータ形成工程と、
     前記ステータの径方向外側の少なくとも一部を樹脂によってモールドすることにより、径方向外側に冷却部を有する樹脂部を形成する樹脂モールド工程と、
     前記樹脂によってモールドされた前記ステータをケーシング内に収容するケーシング収容工程と、を有する、モータの製造方法。 
    A method for manufacturing a motor according to any one of claims 1 to 10,
    a stator forming step of forming a stator;
    a resin molding step of forming a resin portion having a cooling portion on the radially outer side by molding at least a portion of the radially outer side of the stator with a resin;
    a casing housing step of housing the stator molded with the resin in a casing.
PCT/JP2022/019743 2021-08-06 2022-05-10 Motor and method for manufacturing motor WO2023013197A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202290000300.8U CN220605696U (en) 2021-08-06 2022-05-10 Motor
JP2023539655A JPWO2023013197A1 (en) 2021-08-06 2022-05-10

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-130188 2021-08-06
JP2021130188 2021-08-06

Publications (1)

Publication Number Publication Date
WO2023013197A1 true WO2023013197A1 (en) 2023-02-09

Family

ID=85154052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/019743 WO2023013197A1 (en) 2021-08-06 2022-05-10 Motor and method for manufacturing motor

Country Status (4)

Country Link
JP (1) JPWO2023013197A1 (en)
CN (1) CN220605696U (en)
DE (1) DE202022002910U1 (en)
WO (1) WO2023013197A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0898441A (en) * 1994-09-20 1996-04-12 Fujitsu General Ltd Molded motor
JP2008193821A (en) * 2007-02-06 2008-08-21 Tamagawa Seiki Co Ltd Stator structure
JP2015116113A (en) * 2013-12-16 2015-06-22 ファナック株式会社 Motor for turbo blower
JP2019134567A (en) * 2018-01-30 2019-08-08 本田技研工業株式会社 Stator of rotary electric machine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019161899A (en) 2018-03-14 2019-09-19 本田技研工業株式会社 Cooling system of rotary electric machine and cooling method of rotary electric machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0898441A (en) * 1994-09-20 1996-04-12 Fujitsu General Ltd Molded motor
JP2008193821A (en) * 2007-02-06 2008-08-21 Tamagawa Seiki Co Ltd Stator structure
JP2015116113A (en) * 2013-12-16 2015-06-22 ファナック株式会社 Motor for turbo blower
JP2019134567A (en) * 2018-01-30 2019-08-08 本田技研工業株式会社 Stator of rotary electric machine

Also Published As

Publication number Publication date
CN220605696U (en) 2024-03-15
JPWO2023013197A1 (en) 2023-02-09
DE202022002910U1 (en) 2023-12-14

Similar Documents

Publication Publication Date Title
US8963383B2 (en) Stator section for an axial flux electric machine with liquid cooling system
US12136858B2 (en) Axial flux machine
KR20140057560A (en) Electric machine module cooling system and method
CN108574352B (en) Rotating electrical machine
CN109391083B (en) Motor
JP2013066314A (en) Motor and manufacturing method of the same
US20130342052A1 (en) Electric machine with circumferential rotor and housing fins
JP6199057B2 (en) Electric motor
KR101792915B1 (en) Motor of direct cooling type for stator's coil
WO2019159522A1 (en) Cooling structure for rotary electric machine
WO2023013197A1 (en) Motor and method for manufacturing motor
JP7276358B2 (en) Rotating electric machine and cooling structure for rotating electric machine
JP7525002B2 (en) Rotating electric machine and cooling structure for rotating electric machine
KR20220144322A (en) Electric motor vehicle traction motor
JP2003125547A (en) Dynamo-electric machine
JP7363296B2 (en) Holder, rotor, motor, and rotor manufacturing method
CN112994282A (en) Rotating electrical machine
US10348151B2 (en) Motor
JP7568563B2 (en) Stator of rotating electrical machine
JP2018074877A (en) Stator for rotary electric machine, and rotary electric machine
JP5363221B2 (en) Stator
US20240204608A1 (en) Electric motor
WO2022080200A1 (en) Stator of dynamo-electric machine
JP2024013921A (en) Rotary electric machine
US11664698B2 (en) Motor and blower

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22852626

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202290000300.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023539655

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22852626

Country of ref document: EP

Kind code of ref document: A1