[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023008565A1 - 銅/セラミックス接合体、および、絶縁回路基板 - Google Patents

銅/セラミックス接合体、および、絶縁回路基板 Download PDF

Info

Publication number
WO2023008565A1
WO2023008565A1 PCT/JP2022/029320 JP2022029320W WO2023008565A1 WO 2023008565 A1 WO2023008565 A1 WO 2023008565A1 JP 2022029320 W JP2022029320 W JP 2022029320W WO 2023008565 A1 WO2023008565 A1 WO 2023008565A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
layer
ceramic
ceramic substrate
circuit board
Prior art date
Application number
PCT/JP2022/029320
Other languages
English (en)
French (fr)
Inventor
伸幸 寺▲崎▼
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to EP22849625.3A priority Critical patent/EP4378914A1/en
Priority to CN202280051515.7A priority patent/CN117897366A/zh
Priority to US18/291,265 priority patent/US20240363481A1/en
Publication of WO2023008565A1 publication Critical patent/WO2023008565A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/13Mountings, e.g. non-detachable insulating substrates characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/026Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/124Metallic interlayers based on copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/125Metallic interlayers based on noble metals, e.g. silver
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/126Metallic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
    • C04B2237/127The active component for bonding being a refractory metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/366Aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/368Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/407Copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49822Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector

Definitions

  • the present invention provides a copper/ceramic bonded body in which a copper member made of copper or a copper alloy and a ceramic member are joined together, and an insulating circuit in which a copper plate made of copper or a copper alloy is joined to the surface of a ceramic substrate. It relates to substrates.
  • a power module, an LED module, and a thermoelectric module have a structure in which a power semiconductor element, an LED element, and a thermoelectric element are joined to an insulating circuit board in which a circuit layer made of a conductive material is formed on one side of an insulating layer.
  • power semiconductor elements for high power control used to control wind power generation, electric vehicles, hybrid vehicles, etc. generate a large amount of heat during operation.
  • Patent Document 1 proposes an insulated circuit board in which a circuit layer and a metal layer are formed by bonding copper plates to one side and the other side of a ceramic substrate.
  • copper plates are arranged on one surface and the other surface of a ceramic substrate with an Ag—Cu—Ti brazing material interposed therebetween, and the copper plates are joined by heat treatment (so-called active metal brazing method).
  • Patent Document 2 proposes a power module substrate in which a copper plate made of copper or a copper alloy and a ceramic substrate made of AlN or Al 2 O 3 are bonded using a bonding material containing Ag and Ti. ing.
  • an aluminum plate made of aluminum or an aluminum alloy and a ceramic substrate are made of an alloy such as Al—Si, Al—Ge, Al—Cu, Al—Mg, or Al—Mn.
  • a power module substrate bonded using a brazing material consisting of In Patent Document 3 a projecting portion is formed around a circuit layer formed on one surface of the ceramic substrate and a heat dissipation layer formed on the other surface of the ceramic substrate. As a result, the insulation between the circuit layer and the heat dissipation layer is ensured, and the heat capacity of the circuit layer and the heat dissipation layer is increased.
  • Japanese Patent No. 3211856 (B) Japanese Patent No. 5757359 (B) Japanese Patent No. 5957862 (B)
  • the present invention has been made in view of the above-mentioned circumstances. It is an object of the present invention to provide an insulated circuit board made of this copper/ceramic bonded body.
  • a copper/ceramic joined body is a copper/ceramic joined body in which a copper member made of copper or a copper alloy and a ceramic member are joined, In the edge region of the copper member, the area ratio of the Ag solid solution portion having an Ag concentration of 0.5% by mass or more and 15% by mass or less is in the range of 0.03 or more and 0.35 or less.
  • the end region of the copper member in the present invention means a width of 100 ⁇ m from the end of the copper member to the center side of the copper member in a cross section along the stacking direction of the copper/ceramic bonded body, and a ceramic It is a region within a height range from the bonding surface of the member to the surface of the copper member opposite to the ceramic member.
  • the area ratio of the Ag solid solution portion having an Ag concentration of 0.5% by mass or more and 15% by mass or less in the end region of the copper member is 0.5% by mass or more and 15% by mass or less. Since it is set to 03 or more, Ag sufficiently reacts in the bonding interface between the copper member and the ceramic member even at the end portion of the copper member, so that the ceramic member and the copper member can be firmly bonded. In addition, since the area ratio of the Ag solid-solution part is set to 0.35 or less, the end region of the copper member is suppressed from being hardened more than necessary due to solid-solution hardening, and the ceramics when subjected to a thermal cycle load. Cracking and peeling of the member can be suppressed.
  • an active metal compound layer is formed on the ceramic member side at the bonding interface between the ceramic member and the copper member, and the active metal It is preferable that the thickness t1 of the compound layer is in the range of 0.05 ⁇ m or more and 0.8 ⁇ m or less. In this case, the active metal compound layer is formed on the ceramic member side, and the thickness t1 of the active metal compound layer is in the range of 0.05 ⁇ m or more and 0.8 ⁇ m or less. The member and the copper member are reliably and firmly joined, and hardening of the joining interface is further suppressed.
  • an Ag—Cu alloy layer is formed on the copper member side at the bonding interface between the ceramic member and the copper member, and the Ag— It is preferable that the thickness t2 of the Cu alloy layer is in the range of 1 ⁇ m or more and 15 ⁇ m or less.
  • an Ag—Cu alloy layer is formed on the copper member side, and the thickness t2 of the Ag—Cu alloy layer is in the range of 1 ⁇ m or more and 15 ⁇ m or less. Since Ag of the bonding material sufficiently reacts with the copper member, the ceramic member and the copper member are reliably and strongly bonded together, and hardening of the bonding interface is further suppressed.
  • An insulated circuit board is an insulated circuit board in which a copper plate made of copper or a copper alloy is bonded to the surface of a ceramic substrate, and the Ag concentration is 0.00 in the end region of the copper plate. It is characterized in that the area ratio of the Ag solid solution portion, which is 5% by mass or more and 15% by mass or less, is in the range of 0.03 or more and 0.35 or less.
  • the end region of the copper plate means a width of 100 ⁇ m from the end of the copper plate to the central side of the copper plate in the cross section along the lamination direction of the insulated circuit board, and from the bonding surface of the ceramic substrate. It is a region within a range of height to the surface of the copper plate opposite to the ceramic substrate.
  • the area ratio of the Ag solid solution portion having an Ag concentration of 0.5% by mass or more and 15% by mass or less is 0.03 or more. Therefore, even at the end of the copper plate, Ag sufficiently reacts at the bonding interface with the ceramic substrate, and the ceramic substrate and the copper plate can be firmly bonded.
  • the area ratio of the Ag solid-solution part is set to 0.35 or less, the end region of the copper plate is suppressed from being hardened more than necessary due to solid-solution hardening, and the ceramic substrate when subjected to a thermal cycle. Cracking and peeling of can be suppressed.
  • an active metal compound layer is formed on the ceramic substrate side at the bonding interface between the ceramic substrate and the copper plate. It is preferable that the thickness t1 is within the range of 0.05 ⁇ m or more and 0.8 ⁇ m or less. In this case, at the bonding interface between the ceramic substrate and the copper plate, an active metal compound layer is formed on the ceramic substrate side, and the thickness t1 of the active metal compound layer is 0.05 ⁇ m or more and 0.8 ⁇ m or less. Since it is within the range, the ceramic substrate and the copper plate are reliably and strongly bonded by the active metal, and hardening of the bonding interface is further suppressed.
  • an Ag—Cu alloy layer is formed on the copper plate side at the bonding interface between the ceramic substrate and the copper plate, and the Ag—Cu alloy layer It is preferable that the thickness t2 is within the range of 1 ⁇ m or more and 15 ⁇ m or less.
  • an Ag—Cu alloy layer is formed on the copper plate side, and the thickness t2 of the Ag—Cu alloy layer is within the range of 1 ⁇ m or more and 15 ⁇ m or less.
  • the present invention even when a severe thermal cycle is applied, the occurrence of cracks in the ceramic member can be suppressed, and the copper / ceramics joined body has excellent thermal cycle reliability, and the copper / ceramics joined body It is possible to provide an insulated circuit board that is
  • FIG. 1 is a schematic explanatory diagram of a power module using an insulated circuit board according to an embodiment of the present invention
  • FIG. FIG. 4 is an enlarged explanatory view of end portions of the circuit layer and the metal layer of the insulated circuit board according to the embodiment of the present invention
  • FIG. 2 is an enlarged explanatory view of a bonding interface between a circuit layer and a metal layer of an insulated circuit board and a ceramic substrate according to an embodiment of the present invention
  • 1 is a flowchart of a method for manufacturing an insulated circuit board according to an embodiment of the present invention
  • FIG. It is a schematic explanatory drawing of the manufacturing method of the insulation circuit board which concerns on embodiment of this invention.
  • the copper/ceramic bonded body according to the present embodiment includes a ceramic substrate 11 as a ceramic member made of ceramics, and a copper plate 42 (circuit layer 12) and a copper plate 43 (metal layer 13) as copper members made of copper or a copper alloy. is an insulating circuit board 10 formed by bonding the .
  • FIG. 1 shows a power module 1 having an insulated circuit board 10 according to this embodiment.
  • This power module 1 includes an insulating circuit board 10 on which a circuit layer 12 and a metal layer 13 are arranged, and a semiconductor element 3 bonded to one surface (upper surface in FIG. 1) of the circuit layer 12 via a bonding layer 2. and a heat sink 5 arranged on the other side (lower side in FIG. 1) of the metal layer 13 .
  • the semiconductor element 3 is made of a semiconductor material such as Si.
  • the semiconductor element 3 and the circuit layer 12 are bonded via the bonding layer 2 .
  • the bonding layer 2 is made of, for example, a Sn--Ag-based, Sn--In-based, or Sn--Ag--Cu-based solder material.
  • the heat sink 5 is for dissipating heat from the insulating circuit board 10 described above.
  • the heat sink 5 is made of copper or a copper alloy, and is made of phosphorus-deoxidized copper in this embodiment.
  • the heat sink 5 is provided with a channel through which cooling fluid flows.
  • the heat sink 5 and the metal layer 13 are joined by a solder layer 7 made of a solder material.
  • the solder layer 7 is made of, for example, a Sn--Ag-based, Sn--In-based, or Sn--Ag--Cu-based solder material.
  • the insulating circuit board 10 of the present embodiment includes a ceramic substrate 11, a circuit layer 12 provided on one surface (upper surface in FIG. 1) of the ceramic substrate 11, and a ceramic substrate. and a metal layer 13 disposed on the other surface (lower surface in FIG. 1) of the substrate 11 .
  • the ceramics substrate 11 is made of ceramics such as silicon nitride (Si 3 N 4 ), aluminum nitride (AlN), alumina (Al 2 O 3 ), etc., which are excellent in insulation and heat dissipation.
  • the ceramic substrate 11 is made of aluminum nitride (AlN), which has excellent heat dissipation properties.
  • the thickness of the ceramic substrate 11 is set within a range of, for example, 0.2 mm or more and 1.5 mm or less, and is set to 0.635 mm in this embodiment.
  • the circuit layer 12 is formed by bonding a copper plate 42 made of copper or a copper alloy to one surface (upper surface in FIG. 5) of the ceramic substrate 11. As shown in FIG. In this embodiment, the circuit layer 12 is formed by bonding a rolled plate of oxygen-free copper to the ceramic substrate 11 .
  • the thickness of the copper plate 42 that forms the circuit layer 12 is set within a range of 0.1 mm or more and 2.0 mm or less, and is set to 0.6 mm in this embodiment.
  • the metal layer 13 is formed by bonding a copper plate 43 made of copper or a copper alloy to the other surface (lower surface in FIG. 5) of the ceramic substrate 11. As shown in FIG. In this embodiment, the metal layer 13 is formed by bonding a rolled plate of oxygen-free copper to the ceramic substrate 11 .
  • the thickness of the copper plate 43 that forms the metal layer 13 is set within a range of 0.1 mm or more and 2.0 mm or less, and is set to 0.6 mm in this embodiment.
  • the end regions E of the circuit layer 12 and the metal layer 13 are formed.
  • the area ratio of the Ag solid solution portions 12A and 13A having an Ag concentration of 0.5 mass % or more and 15 mass % or less is set within a range of 0.03 or more and 0.35 or less.
  • the Ag solid solution portions 12A and 13A are mainly formed in the vicinity of the side surfaces (left and right end surfaces) of the circuit layer 12 and the metal layer 13 and the joint interface with the ceramic substrate 11 in the end region E.
  • the Ag solid-solution portions 12A and 13A in the present embodiment analyze the ends of the circuit layer 12 and the metal layer 13 by EPMA (electron probe microanalyzer), and determine Cu and Ag contained in the bonding material 45 to be described later. It is a region where the Ag concentration is 0.5% by mass or more and 15% by mass or less when the total of the elements is 100% by mass. Note that, as shown in FIG. 2, the Ag solid solution portions 12A and 13A are formed by bonding interfaces between the ceramic substrate 11 and the circuit layer 12 and the metal layer 13, end faces of the circuit layer 12 and the metal layer 13, It may exist on the surface side of the edge of the layer 13 .
  • EPMA electron probe microanalyzer
  • the end region E in the present embodiment refers to the region from the end of the circuit layer 12 and the metal layer 13 to the end of the circuit layer 12 and the metal layer 13 when observing the cross section along the stacking direction of the ceramic substrate 11 .
  • a width of 100 ⁇ m toward the central portion of the layer 13 and a thickness t of the circuit layer 12 and the metal layer 13 (from the surface of the ceramic substrate 11 to the surface of the circuit layer 12 and the metal layer 13 facing away from the ceramic substrate 11 distance).
  • the width of the end region E in the case where the Ag solid-solution portions 12A and 13A are formed on the end surfaces of the circuit layer 12 and the metal layer 13 is the circuit It has a width of 100 ⁇ m toward the central portion of the layer 12 and the metal layer 13 .
  • an active metal compound layer 21 is formed at the bonding interface between the circuit layer 12 and the metal layer 13, and the thickness t1 of the active metal compound layer 21 is , 0.05 ⁇ m or more and 0.8 ⁇ m or less.
  • the active metal compound layer 21 is a layer made of a compound of an active metal (one or more selected from Ti, Zr, Nb, and Hf) used in the bonding material 45 .
  • the layer becomes a nitride of these active metals
  • the ceramic substrate is made of alumina (Al 2 O 3 )
  • the layer consists of oxides of these active metals.
  • the active metal compound layer 21 is formed by aggregating active metal compound particles. The average particle size of these particles is 10 nm or more and 100 nm or less.
  • the active metal compound layers 21 are made of titanium nitride (TiN). Configured. That is, particles of titanium nitride (TiN) having an average particle diameter of 10 nm or more and 100 nm or less are aggregated and formed.
  • the Ag—Cu alloy is added to the active metal compound layer 21 on the circuit layer 12 and metal layer 13 side.
  • a layer 22 is formed, and the thickness t2 of this Ag--Cu alloy layer 22 is preferably 1 ⁇ m or more and 15 ⁇ m or less.
  • the active metal compound layer 21 is part of the ceramic substrate (ceramic member) 11 .
  • the Ag—Cu alloy layer 22 is part of the circuit layer (copper member) 12 and the metal layer (copper member) 13 .
  • the bonding interface between the ceramic substrate 11 and the circuit layer 12 and metal layer 13 is the interface between the active metal compound layer 21 and the Ag--Cu alloy layer 22.
  • FIG. 1 A method for manufacturing the insulating circuit board 10 according to the present embodiment will be described below with reference to FIGS. 4 and 5.
  • FIG. 1 A method for manufacturing the insulating circuit board 10 according to the present embodiment will be described below with reference to FIGS. 4 and 5.
  • a copper plate 42 to be the circuit layer 12 and a copper plate 43 to be the metal layer 13 are prepared. Then, a bonding material 45 is applied to the bonding surfaces of the copper plate 42 to be the circuit layer 12 and the copper plate 43 to be the metal layer 13 and dried.
  • the coating thickness of the paste-like bonding material 45 is preferably within the range of 10 ⁇ m or more and 50 ⁇ m or less after drying. In this embodiment, the paste bonding material 45 is applied by screen printing.
  • the bonding material 45 contains Ag and an active metal (one or more selected from Ti, Zr, Nb, and Hf).
  • an Ag--Ti based brazing material (Ag--Cu--Ti based brazing material) is used as the bonding material 45.
  • the Ag--Ti-based brazing material (Ag--Cu--Ti-based brazing material) contains, for example, Cu in the range of 0 mass% to 45 mass% and Ti, which is an active metal, in the range of 0.5 mass% to 20 mass%. It is preferable to use a composition that is included within the range and that the balance is Ag and unavoidable impurities.
  • the Ag equivalent film thickness and the mass ratio Ag/active metal between Ag and active metal are adjusted. This makes it possible to control the absolute amount and fluidity of the Ag—Cu liquid phase generated in the pressurization and heating step S03, which will be described later.
  • the equivalent film thickness of Ag is preferably 2.5 ⁇ m or more, more preferably 3.5 ⁇ m or more.
  • the equivalent film thickness of Ag is preferably 10 ⁇ m or less, more preferably 8 ⁇ m or less.
  • the mass ratio Ag/active metal of Ag to active metal is preferably 8 or more, more preferably 12 or more.
  • the mass ratio Ag/active metal between Ag and active metal is preferably 60 or less, more preferably 45 or less.
  • the specific surface area of the Ag powder contained in the bonding material 45 is preferably 0.15 m 2 /g or more, more preferably 0.25 m 2 /g or more, and more preferably 0.40 m 2 /g or more. is more preferable.
  • the specific surface area of the Ag powder contained in the bonding material 45 is preferably 1.40 m 2 /g or less, more preferably 1.00 m 2 /g or less, and 0.75 m 2 /g or less. is more preferable.
  • the particle size of the Ag powder contained in the paste-like bonding material 45 preferably has a D10 of 0.7 ⁇ m or more and 3.5 ⁇ m or less and a D100 of 4.5 ⁇ m or more and 23 ⁇ m or less. In the particle size distribution measured by the laser diffraction scattering particle size distribution measurement method, D10 is the particle size at which the cumulative frequency is 10% on a volume basis, and D100 is the particle size at which the cumulative frequency is 100% on a volume basis. be.
  • a copper plate 42 to be the circuit layer 12 is laminated on one surface of the ceramic substrate 11 (upper surface in FIG. 5) with a bonding material 45 interposed therebetween, and on the other surface of the ceramic substrate 11 (lower surface in FIG. 5).
  • a copper plate 43 to be the metal layer 13 is laminated with a bonding material 45 interposed therebetween.
  • the copper plate 42, the ceramic substrate 11, and the copper plate 43 are heated in a heating furnace in a vacuum atmosphere to melt the bonding material 45 while being pressurized.
  • the heating temperature in the pressurizing and heating step S03 is preferably in the range of 800° C. or higher and 850° C. or lower.
  • the product of the temperature integral value and the pressure load in the heating process from 780 ° C. to the heating temperature and the holding process at the heating temperature is within the range of 0.3 ° C.h MPa or more and 40 ° C.h MPa or less. preferably.
  • the temperature integral value described above is more preferably 0.6° C. ⁇ h ⁇ MPa or more, and more preferably 1.0° C. ⁇ h ⁇ MPa or more.
  • the above temperature integral value is more preferably 20° C. ⁇ h ⁇ MPa or less, and more preferably 10° C. ⁇ h ⁇ MPa or less.
  • the pressure load in the pressurization and heating step S03 is preferably within the range of 0.029 MPa or more and 0.98 MPa or less. Further, the degree of vacuum in the pressurizing and heating step S03 is preferably in the range of 1 ⁇ 10 ⁇ 6 Pa or more and 5 ⁇ 10 ⁇ 2 Pa or less.
  • the molten bonding material 45 is cooled to solidify, and the copper plate 42 and the ceramics substrate 11 to be the circuit layer 12, and the ceramics substrate 11 and the copper plate 43 to be the metal layer 13 are formed. join with.
  • the product R ⁇ P of the cooling rate R (° C./min) from the heating temperature to 780° C. and the pressure load P (MPa) is 0.15 ((° C./min) MPa). It is preferable to make it within the range of 15 ((°C/min) ⁇ MPa) or more.
  • the product R ⁇ P of the temperature decrease rate R (° C./min) from the above heating temperature to 780° C. and the applied load P (MPa) is 0.5 ((° C./min) MPa) or more. More preferably, it is 0.75 ((°C/min) ⁇ MPa) or more.
  • the product R ⁇ P of the temperature decrease rate R (° C./min) from the heating temperature to 780° C. and the applied load P (MPa) is more preferably 10 ((° C./min) MPa) or less. , 8 ((°C/min) ⁇ MPa) or less.
  • the temperature integral value in the pressurizing and heating step S03 and the heating temperature in the cooling step S04 By defining the product R ⁇ P of the temperature decrease rate R (° C./min) and the applied load P (MPa) from to 780 ° C. as described above, the flow state of the liquid phase can be controlled, Ag It becomes possible to adjust the area ratio of the solid solution portions 12A and 13A.
  • the insulated circuit board 10 of the present embodiment is manufactured through the bonding material disposing step S01, the laminating step S02, the pressurizing and heating step S03, and the cooling step S04.
  • Heat-sink bonding step S05 Next, the heat sink 5 is bonded to the other side of the metal layer 13 of the insulated circuit board 10 .
  • the insulating circuit board 10 and the heat sink 5 are laminated with a solder material interposed therebetween and placed in a heating furnace.
  • semiconductor element bonding step S06 Next, the semiconductor element 3 is soldered to one surface of the circuit layer 12 of the insulating circuit board 10 .
  • the power module 1 shown in FIG. 1 is produced by the above-described steps.
  • the Ag concentration is 0.5% by mass or more in the end region E of the circuit layer 12 and the metal layer 13. Since the area ratio of the Ag solid solution portions 12A and 13A, which are 15% by mass or less, is 0.03 or more, even at the ends of the circuit layer 12 and the metal layer 13, Ag is present at the joint interface with the ceramic substrate 11. It reacts sufficiently, and can firmly bond the ceramic substrate 11 to the circuit layer 12 and the metal layer 13 .
  • the area ratio of the Ag solid solution portions 12A and 13A is set to 0.35 or less, the end regions E of the circuit layer 12 and the metal layer 13 are suppressed from being hardened more than necessary due to solid solution hardening. It is possible to suppress cracking and peeling of the ceramic substrate 11 when a thermal cycle is applied. Therefore, thermal cycle reliability can be sufficiently improved.
  • the area ratio of the Ag solid solution portions 12A and 13A is preferably 0.06 or more, and 0.08 or more. more preferably. Further, in order to further suppress the edge regions of the circuit layer 12 and the metal layer 13 from being hardened more than necessary due to solid solution hardening, the area ratio of the Ag solid solution portions 12A and 13A should be 0.27 or less. is preferable, and 0.20 or less is more preferable.
  • the active metal compound layer 21 is formed at the bonding interface between the ceramic substrate 11 and the circuit layer 12 and the metal layer 13, and the thickness t1 of the active metal compound layer 21 is 0.05 ⁇ m or more and 0.05 ⁇ m or more.
  • the thickness is within the range of 8 ⁇ m or less, the ceramic substrate 11, the circuit layer 12 and the metal layer 13 are reliably and strongly bonded by the active metal, and hardening of the bonding interface is further suppressed. .
  • the thickness t1 of the active metal compound layer 21 is preferably 0.08 ⁇ m or more, more preferably 0.15 ⁇ m or more. Further, in order to further suppress the bonding interface from becoming unnecessarily hard, the thickness t1 of the active metal compound layer 21 is preferably 0.5 ⁇ m or less, more preferably 0.35 ⁇ m or less. .
  • the Ag—Cu alloy layer 22 is formed at the bonding interface between the ceramic substrate 11 and the circuit layer 12 and the metal layer 13, and the thickness t2 of the Ag—Cu alloy layer 22 is 1 ⁇ m or more and 15 ⁇ m.
  • the Ag of the bonding material sufficiently reacts with the circuit layer 12 and the metal layer 13, and the ceramic substrate 11, the circuit layer 12 and the metal layer 13 are securely and firmly bonded.
  • hardening of the bonding interface is further suppressed.
  • the thickness t2 of the Ag—Cu alloy layer 22 is preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more. more preferred. Further, in order to further suppress the bonding interface from becoming unnecessarily hard, the thickness t2 of the Ag—Cu alloy layer 22 is preferably 13 ⁇ m or less, more preferably 11 ⁇ m or less.
  • a power module is configured by mounting a semiconductor element on an insulated circuit board, but the present invention is not limited to this.
  • an LED module may be configured by mounting an LED element on the circuit layer of the insulating circuit board, or a thermoelectric module may be configured by mounting a thermoelectric element on the circuit layer of the insulating circuit board.
  • the ceramic substrate is made of aluminum nitride ( AlN).
  • other ceramic substrates such as silicon nitride (Si 3 N 4 ) may be used.
  • Ti was used as an example of the active metal contained in the bonding material. It suffices if it contains the above active metals. These active metals may be contained as hydrides.
  • the circuit layer was described as being formed by bonding a rolled plate of oxygen-free copper to a ceramic substrate, but the present invention is not limited to this, and a copper piece punched out of a copper plate is used.
  • a circuit layer may be formed by bonding to a ceramic substrate while being arranged in a circuit pattern. In this case, each copper piece should have the interface structure with the ceramic substrate as described above.
  • a ceramic substrate (40 mm ⁇ 40 mm) shown in Table 1 was prepared.
  • the thickness of AlN and Al 2 O 3 was 0.635 mm, and the thickness of Si 3 N 4 was 0.32 mm.
  • a copper plate made of oxygen-free copper and having a thickness of 37 mm ⁇ 37 mm and having a thickness shown in Table 1 was prepared as a copper plate serving as a circuit layer and a metal layer.
  • a bonding material was applied to the copper plate that was to become the circuit layer and the metal layer.
  • a paste material was used as the bonding material, and the amounts of Ag, Cu, and active metal were as shown in Table 1.
  • Table 1 the Ag-equivalent thickness and the mass ratio Ag/active metal between Ag and active metal were adjusted.
  • a copper plate which will be the circuit layer, is laminated on one side of the ceramic substrate.
  • a copper plate serving as a metal layer was laminated on the other surface of the ceramic substrate.
  • This laminate was heated while being pressed in the lamination direction to generate an Ag—Cu liquid phase. At this time, the product of the temperature integral value and the pressure load was as shown in Table 2. Then, the heated laminate was cooled to solidify the Ag—Cu liquid phase. At this time, the product of the cooling rate from the heating temperature to 780° C. and the pressure load was as shown in Table 2.
  • the copper plate serving as the circuit layer, the ceramic substrate, and the metal plate serving as the metal layer were bonded to obtain an insulated circuit substrate (copper/ceramic bonded body).
  • the area ratio of the Ag solid solution part in the end region, the active metal compound layer, the Ag—Cu alloy layer, and the thermal cycle reliability were evaluated as follows. bottom.
  • the insulating circuit substrate described above was subjected to the following cooling and heating cycles, and the presence or absence of cracks in the ceramics was determined by SAT inspection (ultrasonic inspection).
  • Table 2 shows the evaluation results.
  • the number of occurrences of ceramic cracks in Table 2 means the number of thermal cycles required until ceramic cracks occur.
  • AlN and Al 2 O 3 One cycle is a load of ⁇ 40° C. ⁇ 10 min and 150° C. ⁇ 10 min, and SAT inspection is performed every 50 cycles up to 500 cycles.
  • Si 3 N 4 One cycle is a load of ⁇ 40° C. ⁇ 10 min and 150° C. ⁇ 10 min, and SAT inspection is performed every 200 cycles up to 2000 cycles.
  • invention examples 1-3 using AlN as a ceramic substrate and comparative examples 1 and 2 are compared.
  • the area ratio of the Ag solid solution portion in the end region of the circuit layer (metal layer) was set to 0.023, and the number of cracks generated was 50 times in the thermal cycle test.
  • the area ratio of the Ag solid solution portion in the end region of the circuit layer (metal layer) was set to 0.423, and the number of cracks generated was 50 times in the thermal cycle test.
  • Example 1 of the present invention the area ratio of the Ag solid solution portion in the end region of the circuit layer (metal layer) is set to 0.346, and the number of cracks generated is 300 times in the thermal cycle test. became.
  • the area ratio of the Ag solid solution portion in the end region of the circuit layer (metal layer) was set to 0.063, and the number of times cracks occurred was 350 in the thermal cycle test.
  • the area ratio of the Ag solid-solution portion in the end region of the circuit layer (metal layer) was set to 0.086, and the number of times cracks occurred was 400 in the thermal cycle test.
  • Inventive Examples 1-3 were superior to Comparative Examples 1 and 2 in thermal cycle reliability.
  • invention examples 4-6 using Si 3 N 4 as the ceramic substrate and comparative examples 3 and 4 are compared.
  • the area ratio of the Ag solid solution portion in the end region of the circuit layer (metal layer) was set to 0.013, and the number of times cracks occurred was 600 in the thermal cycle test.
  • the area ratio of the Ag solid solution portion in the end region of the circuit layer (metal layer) was set to 0.400, and the number of times cracks occurred was 1200 in the thermal cycle test.
  • Example 4 of the present invention the area ratio of the Ag solid solution portion in the end region of the circuit layer (metal layer) was set to 0.031, and the number of cracks generated in the thermal cycle test was 1600 times. became.
  • the area ratio of the Ag solid solution portion in the end region of the circuit layer (metal layer) was set to 0.211, and the number of times cracks occurred was 1800 in the thermal cycle test.
  • the area ratio of the Ag solid solution portion in the end region of the circuit layer (metal layer) was set to 0.125, and cracks did not occur even after 2000 cycles in the thermal cycle test.
  • Inventive Examples 4-6 were superior to Comparative Examples 3 and 4 in thermal cycle reliability.
  • invention examples 7 and 8 using Al 2 O 3 as the ceramic substrate and comparative examples 5 and 6 are compared.
  • the area ratio of the Ag solid solution portion in the end region of the circuit layer (metal layer) was set to 0.025, and the number of times cracks occurred was 50 in the thermal cycle test.
  • the area ratio of the Ag solid solution portion in the end region of the circuit layer (metal layer) was set to 0.370, and the number of cracks generated was 50 times in the thermal cycle test.
  • Example 7 of the present invention the area ratio of the Ag solid solution portion in the end region of the circuit layer (metal layer) is set to 0.266, and the number of cracks generated in the thermal cycle test is 350 times. became.
  • Example 8 of the present invention the area ratio of the Ag solid solution portion in the end region of the circuit layer (metal layer) was set to 0.185, and the number of times cracks occurred was 400 in the thermal cycle test. As described above, Inventive Examples 7 and 8 were superior to Comparative Examples 5 and 6 in thermal cycle reliability.
  • the present invention even when a severe thermal cycle is applied, the occurrence of cracks in the ceramic member can be suppressed, and the copper / ceramics joined body has excellent thermal cycle reliability, and the copper / ceramics joined body It is possible to provide an insulated circuit board that is
  • Insulated circuit board (copper/ceramic joint) 11 Ceramic substrate (ceramic member) 12 circuit layer (copper member) 13 metal layer (copper member) 12A, 13A Ag solid solution portion 21 Active metal compound layer 22 Ag—Cu alloy layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Ceramic Products (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

本発明の銅/セラミックス接合体は、銅又は銅合金からなる銅部材(12),(13)と、セラミックス部材(11)とが接合されてなる銅/セラミックス接合体(10)であって、銅部材(12),(13)の端部領域Eにおいて、Ag濃度が0.5質量%以上15質量%以下であるAg固溶部(12A),(13A)の面積比が0.03以上0.35以下の範囲内とされている。

Description

銅/セラミックス接合体、および、絶縁回路基板
 この発明は、銅又は銅合金からなる銅部材と、セラミックス部材とが接合されてなる銅/セラミックス接合体、および、セラミックス基板の表面に、銅又は銅合金からなる銅板が接合されてなる絶縁回路基板に関するものである。
 本願は、2021年7月30日に、日本に出願された特願2021-125532号に基づき優先権を主張し、その内容をここに援用する。
 パワーモジュール、LEDモジュールおよび熱電モジュールにおいては、絶縁層の一方の面に導電材料からなる回路層を形成した絶縁回路基板に、パワー半導体素子、LED素子および熱電素子が接合された構造とされている。
 例えば、風力発電、電気自動車、ハイブリッド自動車等を制御するために用いられる大電力制御用のパワー半導体素子は、動作時の発熱量が多いことから、これを搭載する基板としては、セラミックス基板と、このセラミックス基板の一方の面に導電性の優れた金属板を接合して形成した回路層と、セラミックス基板の他方の面に金属板を接合して形成した放熱用の金属層と、を備えた絶縁回路基板が、従来から広く用いられている。
 例えば、特許文献1には、セラミックス基板の一方の面および他方の面に、銅板を接合することにより回路層および金属層を形成した絶縁回路基板が提案されている。この特許文献1においては、セラミックス基板の一方の面および他方の面に、Ag-Cu-Ti系ろう材を介在させて銅板を配置し、加熱処理を行うことにより銅板が接合されている(いわゆる活性金属ろう付け法)。
 また、特許文献2においては、銅又は銅合金からなる銅板と、AlN又はAlからなるセラミックス基板とが、AgおよびTiを含む接合材を用いて接合されたパワーモジュール用基板が提案されている。
 さらに、特許文献3には、アルミニウム又はアルミニウム合金からなるアルミニウム板と、セラミックス基板とが、Al-Si系、Al-Ge系、Al-Cu系、Al-Mg系またはAl-Mn系等の合金からなるろう材を用いて接合されたパワーモジュール用基板が提案されている。そして、この特許文献3においては、セラミックス基板の一方の面に形成された回路層およびセラミックス基板の他方の面に形成された放熱層の周囲に張出部が形成されている。これにより、回路層と放熱層との絶縁性を確保するともに、回路層および放熱層における熱容量を増やしている。
日本国特許第3211856号公報(B) 日本国特許第5757359号公報(B) 日本国特許第5957862号公報(B)
 ところで、最近では、絶縁回路基板に搭載される半導体素子の発熱温度が高くなる傾向にあり、絶縁回路基板には、従来にも増して、厳しい冷熱サイクルに耐えることができる冷熱サイクル信頼性が求められている。
 ここで、銅板とセラミックス基板とを接合した絶縁回路基板において、特許文献3に記載されたように、回路層に張出部を形成した場合には、冷熱サイクルを負荷した際に、熱応力が回路層の端部に集中し、接合信頼性が低下するおそれがあった。
 また、銅部材の端部においては、接合材に含まれるAgが固溶して、固溶硬化することになる。銅部材の端部が固溶硬化によって硬くなった場合には、やはり、熱応力が回路層の端部に集中し、接合信頼性が低下するおそれがあった。
 この発明は、前述した事情に鑑みてなされたものであって、厳しい冷熱サイクルを負荷した場合であっても、セラミックス部材における割れの発生を抑制でき、冷熱サイクル信頼性に優れた銅/セラミックス接合体、および、この銅/セラミックス接合体からなる絶縁回路基板を提供することを目的とする。
 前述の課題を解決するために、本発明の一態様に係る銅/セラミックス接合体は、銅又は銅合金からなる銅部材と、セラミックス部材とが接合されてなる銅/セラミックス接合体であって、前記銅部材の端部領域において、Ag濃度が0.5質量%以上15質量%以下であるAg固溶部の面積比が0.03以上0.35以下の範囲内とされていることを特徴としている。
 なお、本発明における前記銅部材の端部領域とは、銅/セラミックス接合体の積層方向に沿った断面において、前記銅部材の端部から前記銅部材の中央側へ100μmの幅、かつ、セラミックス部材の接合面から前記銅部材の前記セラミックス部材とは反対側の表面までの高さの範囲内の領域である。
 本発明の一態様に係る銅/セラミックス接合体によれば、前記銅部材の端部領域において、Ag濃度が0.5質量%以上15質量%以下であるAg固溶部の面積比が0.03以上とされているので、前記銅部材の端部においても、セラミックス部材との接合界でAgが十分に反応しており、セラミックス部材と銅部材とを強固に接合することができる。
 また、前記Ag固溶部の面積比が0.35以下とされているので、銅部材の端部領域が必要以上に固溶硬化によって硬くなることが抑制され、冷熱サイクルを負荷した際のセラミックス部材の割れや剥がれを抑制することができる。
 ここで、本発明の一態様に係る銅/セラミックス接合体においては、前記セラミックス部材と前記銅部材との接合界面において、前記セラミックス部材側には活性金属化合物層が形成されており、前記活性金属化合物層の厚さt1が0.05μm以上0.8μm以下の範囲内とされていることが好ましい。
 この場合、前記セラミックス部材側には活性金属化合物層が形成されており、前記活性金属化合物層の厚さt1が0.05μm以上0.8μm以下の範囲内とされているので、活性金属によってセラミックス部材と銅部材とが確実に強固に接合されているとともに、接合界面が硬くなることがさらに抑制される。
 また、本発明の一態様に係る銅/セラミックス接合体においては、前記セラミックス部材と前記銅部材との接合界面において、前記銅部材側にはAg-Cu合金層が形成されており、前記Ag-Cu合金層の厚さt2が1μm以上15μm以下の範囲内とされていることが好ましい。
 この場合、前記セラミックス部材と前記銅部材との接合界面において、前記銅部材側にはAg-Cu合金層が形成されており、前記Ag-Cu合金層の厚さt2が1μm以上15μm以下の範囲内とされているので、接合材のAgが銅部材と十分に反応してセラミックス部材と銅部材とが確実に強固に接合されているとともに、接合界面が硬くなることがさらに抑制される。
 本発明の一態様に係る絶縁回路基板は、セラミックス基板の表面に、銅又は銅合金からなる銅板が接合されてなる絶縁回路基板であって、前記銅板の端部領域において、Ag濃度が0.5質量%以上15質量%以下であるAg固溶部の面積比が0.03以上0.35以下の範囲内とされていることを特徴としている。
 なお、本発明における前記銅板の端部領域とは、絶縁回路基板の積層方向に沿った断面において、前記銅板の端部から前記銅板の中央側へ100μmの幅、かつ、セラミックス基板の接合面から前記銅板の前記セラミックス基板とは反対側の表面までの高さの範囲内の領域である。
 本発明の一態様に係る絶縁回路基板によれば、前記銅板の端部領域において、Ag濃度が0.5質量%以上15質量%以下であるAg固溶部の面積比が0.03以上とされているので、前記銅板の端部においても、セラミックス基板との接合界面でAgが十分に反応しており、セラミックス基板と銅板とを強固に接合することができる。
 また、前記Ag固溶部の面積比が0.35以下とされているので、銅板の端部領域が必要以上に固溶硬化によって硬くなることが抑制され、冷熱サイクルを負荷した際のセラミックス基板の割れや剥がれを抑制することができる。
 ここで、本発明の一態様に係る絶縁回路基板においては、前記セラミックス基板と前記銅板との接合界面において、前記セラミックス基板側には活性金属化合物層が形成されており、前記活性金属化合物層の厚さt1が0.05μm以上0.8μm以下の範囲内とされていることが好ましい。
 この場合、前記セラミックス基板と前記銅板との接合界面において、前記セラミックス基板側には活性金属化合物層が形成されており、前記活性金属化合物層の厚さt1が0.05μm以上0.8μm以下の範囲内とされているので、活性金属によってセラミックス基板と銅板とが確実に強固に接合されているとともに、接合界面が硬くなることがさらに抑制される。
 また、本発明の一態様に係る絶縁回路基板においては、前記セラミックス基板と前記銅板との接合界面において、前記銅板側にはAg-Cu合金層が形成されており、前記Ag-Cu合金層の厚さt2が1μm以上15μm以下の範囲内とされていることが好ましい。
 この場合、前記セラミックス基板と前記銅板との接合界面において、前記銅板側にはAg-Cu合金層が形成されており、前記Ag-Cu合金層の厚さt2が1μm以上15μm以下の範囲内とされているので、接合材のAgが銅板と十分に反応してセラミックス基板と銅板とが確実に強固に接合されているとともに、接合界面が硬くなることがさらに抑制される。
 本発明によれば、厳しい冷熱サイクルを負荷した場合であっても、セラミックス部材における割れの発生を抑制でき、冷熱サイクル信頼性に優れた銅/セラミックス接合体、および、この銅/セラミックス接合体からなる絶縁回路基板を提供することができる。
本発明の実施形態に係る絶縁回路基板を用いたパワーモジュールの概略説明図である。 本発明の実施形態に係る絶縁回路基板の回路層および金属層の端部の拡大説明図である。 本発明の実施形態に係る絶縁回路基板の回路層および金属層とセラミックス基板との接合界面の拡大説明図である。 本発明の実施形態に係る絶縁回路基板の製造方法のフロー図である。 本発明の実施形態に係る絶縁回路基板の製造方法の概略説明図である。
 以下に、本発明の実施形態について添付した図面を参照して説明する。
 本実施形態に係る銅/セラミックス接合体は、セラミックスからなるセラミックス部材としてのセラミックス基板11と、銅又は銅合金からなる銅部材としての銅板42(回路層12)および銅板43(金属層13)とが接合されてなる絶縁回路基板10である。図1に、本実施形態である絶縁回路基板10を備えたパワーモジュール1を示す。
 このパワーモジュール1は、回路層12および金属層13が配設された絶縁回路基板10と、回路層12の一方の面(図1において上面)に接合層2を介して接合された半導体素子3と、金属層13の他方側(図1において下側)に配置されたヒートシンク5と、を備えている。
 半導体素子3は、Si等の半導体材料で構成されている。この半導体素子3と回路層12は、接合層2を介して接合されている。
 接合層2は、例えばSn-Ag系、Sn-In系、若しくはSn-Ag-Cu系のはんだ材で構成されている。
 ヒートシンク5は、前述の絶縁回路基板10からの熱を放散するためのものである。このヒートシンク5は、銅又は銅合金で構成されており、本実施形態ではりん脱酸銅で構成されている。このヒートシンク5には、冷却用の流体が流れるための流路が設けられている。
 なお、本実施形態においては、ヒートシンク5と金属層13とが、はんだ材からなるはんだ層7によって接合されている。このはんだ層7は、例えばSn-Ag系、Sn-In系、若しくはSn-Ag-Cu系のはんだ材で構成されている。
 そして、本実施形態である絶縁回路基板10は、図1に示すように、セラミックス基板11と、このセラミックス基板11の一方の面(図1において上面)に配設された回路層12と、セラミックス基板11の他方の面(図1において下面)に配設された金属層13と、を備えている。
 セラミックス基板11は、絶縁性および放熱性に優れた窒化ケイ素(Si)、窒化アルミニウム(AlN)、アルミナ(Al)等のセラミックスで構成されている。本実施形態では、セラミックス基板11は、特に放熱性の優れた窒化アルミニウム(AlN)で構成されている。また、セラミックス基板11の厚さは、例えば、0.2mm以上1.5mm以下の範囲内に設定されており、本実施形態では、0.635mmに設定されている。
 回路層12は、図5に示すように、セラミックス基板11の一方の面(図5において上面)に、銅又は銅合金からなる銅板42が接合されることにより形成されている。
 本実施形態においては、回路層12は、無酸素銅の圧延板がセラミックス基板11に接合されることで形成されている。
 なお、回路層12となる銅板42の厚さは0.1mm以上2.0mm以下の範囲内に設定されており、本実施形態では、0.6mmに設定されている。
 金属層13は、図5に示すように、セラミックス基板11の他方の面(図5において下面)に、銅又は銅合金からなる銅板43が接合されることにより形成されている。
 本実施形態においては、金属層13は、無酸素銅の圧延板がセラミックス基板11に接合されることで形成されている。
 なお、金属層13となる銅板43の厚さは0.1mm以上2.0mm以下の範囲内に設定されており、本実施形態では、0.6mmに設定されている。
 そして、本実施形態である絶縁回路基板10においては、図2に示すように、セラミックス基板11と回路層12および金属層13との接合界面において、回路層12および金属層13の端部領域E(破線で囲む領域)において、Ag濃度が0.5質量%以上15質量%以下であるAg固溶部12A,13Aの面積比が0.03以上0.35以下の範囲内とされている。Ag固溶部12A、13Aは、端部領域Eにおいて、主に、回路層12および金属層13の側面(左右の端面)近傍、およびセラミックス基板11との接合界面に形成される。
 ここで、本実施形態におけるAg固溶部12A,13Aは、回路層12および金属層13の端部をEPMA(電子プローブマイクロアナライザ)分析し、Cuと後述する接合材45に含まれるAgと活性元素との合計を100質量%とした際に、Ag濃度が0.5質量%以上15質量%以下となる領域である。
 なお、このAg固溶部12A,13Aは、図2に示すように、セラミックス基板11と回路層12および金属層13との接合界面、回路層12および金属層13の端面、回路層12および金属層13の端部の表面側、に存在することがある。
 また、本実施形態における端部領域Eとは、図2に示すように、セラミックス基板11の積層方向に沿った断面の観察において、回路層12および金属層13の端部から回路層12および金属層13の中央部側へ100μmの幅、かつ、回路層12および金属層13の厚さt(セラミックス基板11の表面から回路層12および金属層13のセラミックス基板11とは反対側を向く表面までの距離)、の領域である。なお、回路層12および金属層13の端面にAg固溶部12A,13Aが形成されている場合の端部領域Eの幅は、このAg固溶部12A,13Aの端部を起点として、回路層12および金属層13の中央部側へ100μmの幅となる。
 また、本実施形態においては、図3に示すように、回路層12および金属層13との接合界面には活性金属化合物層21が形成されており、この活性金属化合物層21の厚さt1が、0.05μm以上0.8μm以下の範囲内とされていることが好ましい。
 ここで、活性金属化合物層21は接合材45で用いる活性金属(Ti,Zr,Nb,Hfから選択される一種以上)の化合物からなる層である。より具体的には、セラミックス基板が窒化ケイ素(Si)、窒化アルミニウム(AlN)からなる場合には、これらの活性金属の窒化物からなる層となり、セラミックス基板がアルミナ(Al)である場合には、これらの活性金属の酸化物からなる層となる。活性金属化合物層21は活性金属化合物の粒子が集合して形成されている。この粒子の平均粒径は10nm以上100nm以下である。
 なお、本実施形態では、接合材45が活性金属としてTiを含有し、セラミックス基板11が窒化アルミニウムで構成されているため、活性金属化合物層21(21A,21B)は、窒化チタン(TiN)で構成される。すなわち、平均粒径が10nm以上100nm以下の窒化チタン(TiN)の粒子が集合して形成されている。
 さらに、本実施形態においては、図3に示すように、回路層12および金属層13との接合界面において、上述の活性金属化合物層21の回路層12および金属層13側に、Ag-Cu合金層22が形成されており、このAg-Cu合金層22の厚さt2が、1μm以上15μm以下とされていることが好ましい。
 活性金属化合物層21は、セラミックス基板(セラミックス部材)11の一部であると言うこともできる。Ag-Cu合金層22は、回路層(銅部材)12および金属層(銅部材)13の一部であると言うこともできる。このため、セラミックス基板11と回路層12および金属層13(銅板42,43)との接合界面は、活性金属化合物層21とAg-Cu合金層22との界面である。Ag-Cu合金層22を有しない場合、セラミックス基板11と回路層12および金属層13(銅板42,43)との接合界面は、活性金属化合物層21と回路層12および金属層13(銅板42,43)との界面である。
 以下に、本実施形態に係る絶縁回路基板10の製造方法について、図4および図5を参照して説明する。
(接合材配設工程S01)
 回路層12となる銅板42と、金属層13となる銅板43とを準備する。
 そして、回路層12となる銅板42および金属層13となる銅板43の接合面に、接合材45を塗布し、乾燥させる。ペースト状の接合材45の塗布厚さは、乾燥後で10μm以上50μm以下の範囲内とすることが好ましい。
 本実施形態では、スクリーン印刷によってペースト状の接合材45を塗布する。
 接合材45は、Agと活性金属(Ti,Zr,Nb,Hfから選択される一種以上)を含有するものとされている。本実施形態では、接合材45として、Ag-Ti系ろう材(Ag-Cu-Ti系ろう材)を用いている。なお、Ag-Ti系ろう材(Ag-Cu-Ti系ろう材)としては、例えば、Cuを0mass%以上45mass%以下の範囲内、活性金属であるTiを0.5mass%以上20mass%以下の範囲で含み、残部がAgおよび不可避不純物とされた組成のものを用いることが好ましい。
 ここで、塗布する接合材45については、Agの換算膜厚と、Agと活性金属の質量比Ag/活性金属を、調整する。これにより、後述する加圧および加熱工程S03において、発生するAg-Cu液相の絶対量および流動性を制御することが可能となる。
 具体的には、Agの換算膜厚を2.5μm以上とすることが好ましく、3.5μm以上とすることがさらに好ましい。一方、Agの換算膜厚を10μm以下とすることが好ましく、8μm以下とすることがさらに好ましい。
 また、Agと活性金属の質量比Ag/活性金属を8以上とすることが好ましく、12以上とすることがさらに好ましい。一方、Agと活性金属の質量比Ag/活性金属を60以下とすることが好ましく、45以下とすることがさらに好ましい。
 また、接合材45に含まれるAg粉の比表面積は、0.15m/g以上とすることが好ましく、0.25m/g以上とすることがさらに好ましく、0.40m/g以上とすることがより好ましい。一方、接合材45に含まれるAg粉の比表面積は、1.40m/g以下とすることが好ましく、1.00m/g以下とすることがさらに好ましく、0.75m/g以下とすることがより好ましい。
 なお、ペースト状の接合材45に含まれるAg粉の粒径は、D10が0.7μm以上3.5μm以下、かつ、D100が4.5μm以上23μm以下の範囲内であることが好ましい。レーザー回折散乱式粒度分布測定法によって測定された粒度分布において、D10は、体積基準で累積頻度が10%になる粒径であり、D100は、体積基準で累積頻度が100%になる粒径である。
(積層工程S02)
 次に、セラミックス基板11の一方の面(図5において上面)に、接合材45を介して回路層12となる銅板42を積層するとともに、セラミックス基板11の他方の面(図5において下面)に、接合材45を介して金属層13となる銅板43を積層する。
(加圧および加熱工程S03)
 次に、銅板42とセラミックス基板11と銅板43とを加圧した状態で、真空雰囲気の加熱炉内で加熱し、接合材45を溶融する。
 ここで、加圧および加熱工程S03における加熱温度は、800℃以上850℃以下の範囲内とすることが好ましい。
 そして、780℃から加熱温度までの昇温工程および加熱温度での保持工程における温度積分値と加圧荷重の積が0.3℃・h・MPa以上40℃・h・MPa以下の範囲内とすることが好ましい。なお、上述の温度積分値は0.6℃・h・MPa以上であることがさらに好ましく、1.0℃・h・MPa以上であることがより好ましい。一方、上述の温度積分値は20℃・h・MPa以下であることがさらに好ましく、10℃・h・MPa以下であることがより好ましい。
 また、加圧および加熱工程S03における加圧荷重は、0.029MPa以上0.98MPa以下の範囲内とすることが好ましい。
 さらに、加圧および加熱工程S03における真空度は、1×10-6Pa以上5×10-2Pa以下の範囲内とすることが好ましい。
(冷却工程S04)
 そして、加圧および加熱工程S03の後、冷却を行うことにより、溶融した接合材45を凝固させて、回路層12となる銅板42とセラミックス基板11、セラミックス基板11と金属層13となる銅板43とを接合する。
 ここで、本実施形態においては、加熱温度から780℃までの降温速度R(℃/min)と加圧荷重P(MPa)の積R×Pが0.15((℃/min)・MPa)以上15((℃/min)・MPa)以下の範囲内とすることが好ましい。
 なお、上述の加熱温度から780℃までの降温速度R(℃/min)と加圧荷重P(MPa)の積R×Pは0.5((℃/min)・MPa)以上であることがさらに好ましく、0.75((℃/min)・MPa)以上であることがより好ましい。一方、上述の加熱温度から780℃までの降温速度R(℃/min)と加圧荷重P(MPa)の積R×Pは10((℃/min)・MPa)以下であることがさらに好ましく、8((℃/min)・MPa)以下であることがより好ましい。
 接合材45を塗布する際のAgの換算膜厚およびAgと活性金属の質量比Ag/活性金属を調整することともに、加圧および加熱工程S03における温度積分値、および、冷却工程S04における加熱温度から780℃までの降温速度R(℃/min)と加圧荷重P(MPa)の積R×Pを、上述のように規定することにより、液相の流動状況を制御することができ、Ag固溶部12A,13Aの面積比を調整することが可能となる。
 以上のように、接合材配設工程S01、積層工程S02、加圧および加熱工程S03、冷却工程S04によって、本実施形態である絶縁回路基板10が製造されることになる。
(ヒートシンク接合工程S05)
 次に、絶縁回路基板10の金属層13の他方の面側にヒートシンク5を接合する。
 絶縁回路基板10とヒートシンク5とを、はんだ材を介して積層して加熱炉に装入し、はんだ層7を介して絶縁回路基板10とヒートシンク5とをはんだ接合する。
(半導体素子接合工程S06)
 次に、絶縁回路基板10の回路層12の一方の面に、半導体素子3をはんだ付けにより接合する。
 前述の工程により、図1に示すパワーモジュール1が製出される。
 以上のような構成とされた本実施形態の絶縁回路基板10(銅/セラミックス接合体)によれば、回路層12および金属層13の端部領域Eにおいて、Ag濃度が0.5質量%以上15質量%以下であるAg固溶部12A,13Aの面積比が0.03以上とされているので、回路層12および金属層13の端部においても、セラミックス基板11との接合界面でAgが十分に反応しており、セラミックス基板11と回路層12および金属層13とを強固に接合することができる。
 また、Ag固溶部12A,13Aの面積比が0.35以下とされているので、回路層12および金属層13の端部領域Eが必要以上に固溶硬化によって硬くなることが抑制され、冷熱サイクルを負荷した際のセラミックス基板11の割れや剥がれを抑制することができる。よって、冷熱サイクル信頼性を十分に向上させることができる。
 なお、セラミックス基板11と回路層12および金属層13とをさらに強固に接合するためには、Ag固溶部12A,13Aの面積比を0.06以上とすることが好ましく、0.08以上とすることがさらに好ましい。
 また、回路層12および金属層13の端部領域が必要以上に固溶硬化によって硬くなることをさらに抑制するためには、Ag固溶部12A,13Aの面積比を0.27以下とすることが好ましく、0.20以下とすることがさらに好ましい。
 また、本実施形態において、セラミックス基板11と回路層12および金属層13との接合界面に活性金属化合物層21が形成されており、活性金属化合物層21の厚さt1が0.05μm以上0.8μm以下の範囲内とされている場合には、活性金属によってセラミックス基板11と回路層12および金属層13とが確実に強固に接合されているとともに、接合界面が硬くなることがさらに抑制される。
 なお、冷熱サイクル信頼性をさらに向上させるためには活性金属化合物層21の厚さt1を0.08μm以上とすることが好ましく、0.15μm以上とすることがより好ましい。
 また、接合界面が必要以上に硬くなることをさらに抑制するためには、活性金属化合物層21の厚さt1を、0.5μm以下とすることが好ましく、0.35μm以下とすることがより好ましい。
 さらに、本実施形態において、セラミックス基板11と回路層12および金属層13との接合界面にAg-Cu合金層22が形成されており、このAg-Cu合金層22の厚さt2が1μm以上15μm以下の範囲内とされている場合には、接合材のAgが回路層12および金属層13と十分に反応してセラミックス基板11と回路層12および金属層13とが確実に強固に接合されているとともに、接合界面が硬くなることがさらに抑制される。
 なお、セラミックス基板11と回路層12および金属層13とをさらに強固に接合するためには、Ag-Cu合金層22の厚さt2を、3μm以上とすることが好ましく、5μm以上とすることがより好ましい。
 また、接合界面が必要以上に硬くなることをさらに抑制するためには、Ag-Cu合金層22の厚さt2を、13μm以下とすることが好ましく、11μm以下とすることがより好ましい。
 以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
 例えば、本実施形態では、絶縁回路基板に半導体素子を搭載してパワーモジュールを構成するものとして説明したが、これに限定されることはない。例えば、絶縁回路基板の回路層にLED素子を搭載してLEDモジュールを構成してもよいし、絶縁回路基板の回路層に熱電素子を搭載して熱電モジュールを構成してもよい。
 また、本実施形態の絶縁回路基板では、セラミックス基板として、窒化アルミニウム(AlN)で構成されたものを例に挙げて説明したが、これに限定されることはなく、アルミナ(Al)、窒化ケイ素(Si)等の他のセラミックス基板を用いたものであってもよい。
 さらに、本実施形態では、接合材に含まれる活性金属としてTiを例に挙げて説明したが、これに限定されることはなく、Ti,Zr,Hf,Nbから選択される1種又は2種以上の活性金属を含んでいればよい。なお、これらの活性金属は、水素化物として含まれていてもよい。
 さらに、本実施形態においては、回路層を、無酸素銅の圧延板をセラミックス基板に接合することにより形成するものとして説明したが、これに限定されることはなく、銅板を打ち抜いた銅片を回路パターン状に配置された状態でセラミックス基板に接合されることによって回路層を形成してもよい。この場合、それぞれの銅片において、上述のようなセラミックス基板との界面構造を有していればよい。
 以下に、本発明の効果を確認すべく行った確認実験の結果について説明する。
 まず、表1記載のセラミックス基板(40mm×40mm)を準備した。なお、厚さは、AlNおよびAlは0.635mm、Siは0.32mmとした。
 また、回路層および金属層となる銅板として、無酸素銅からなり、表1に示す厚さの37mm×37mmの銅板を準備した。
 そして、回路層および金属層となる銅板に、接合材を塗布した。なお、接合材はペースト材を用い、Ag,Cu,活性金属の量は表1の通りとした。ここで、表1に示すように、Ag換算厚さ、および、Agと活性金属の質量比Ag/活性金属を調整した。
 セラミックス基板の一方の面に、回路層となる銅板を積層した。また、セラミックス基板の他方の面に、金属層となる銅板を積層した。
この積層体を、積層方向に加圧した状態で加熱し、Ag-Cu液相を発生させた。このとき、温度積分値と加圧荷重の積は表2の通りとした。
 そして、加熱した積層体を冷却し、Ag-Cu液相を凝固させた。このとき、加熱温度から780℃までの降温速度と加圧荷重の積を、表2の通りとした。
 以上の工程により、回路層となる銅板とセラミックス基板と金属層となる金属板を接合し、絶縁回路基板(銅/セラミックス接合体)を得た。
 得られた絶縁回路基板(銅/セラミックス接合体)について、端部領域におけるAg固溶部の面積比、活性金属化合物層、Ag-Cu合金層、冷熱サイクル信頼性を、以下のようにして評価した。
(端部領域におけるAg固溶部の面積比)
 回路層とセラミックス基板との接合界面、および、セラミックス基板と金属層との接合界面の断面を、EPMA分析し、Ag+Cu+活性金属の合計を100質量%とし、Ag濃度が0.5質量%以上15質量%以下の範囲内の領域をAg固溶部とした。
 そして、回路層および金属層の端部領域(回路層および金属層の端部から回路層および金属層の中央部側へ100μmの幅、かつ、回路層および金属層の厚さtの領域を、端部領域)におけるAg固溶部の面積比を算出した。
(活性金属化合物層)
 回路層とセラミックス基板との接合界面、および、セラミックス基板と金属層との接合界面の断面を、走査型電子顕微鏡(カールツァイスNTS社製ULTRA55、加速電圧1.8kV)を用いて倍率30000倍で測定し、エネルギー分散型X線分析法により、N、O及び活性金属元素の元素マッピングを取得した。活性金属元素とNまたはOが同一領域に存在する場合に活性金属化合物層が有ると判断した。
 それぞれ5視野、合計10視野で観察を行い、活性金属元素とNまたはOが同一領域に存在する範囲の面積を測定した幅で割ったものの平均値を「活性金属化合物層の厚さ」とし表2に記載した。
(Ag-Cu合金層)
 回路層とセラミックス基板との接合界面、および、セラミックス基板と金属層との接合界面の断面を、EPMA装置を用いて、Ag,Cu,活性金属の各元素マッピングを取得した。それぞれ5視野で各元素マッピングを取得した。
 そして、Ag+Cu+活性金属=100質量%としたとき、Ag濃度が15質量%以上である領域をAg-Cu合金層とし、その面積を求めて、測定領域の幅で割った値(面積/測定領域の幅)を求めた。その値の平均をAg-Cu合金層の厚さとして表2に記載した。
(冷熱サイクル信頼性)
 上述の絶縁回路基板を、セラミックス基板の材質に応じて、下記の冷熱サイクルを負荷し、SAT検査(超音波探傷検査)によりセラミックス割れの有無を判定した。評価結果を表2に示す。表2のセラミックス割れの発生回数は、セラミックス割れが発生するまでに要した冷熱サイクル数を意味している。
 AlN,Alの場合:-40℃×10min、150℃×10minの負荷を1サイクルとし、500サイクルまで50サイクル毎にSAT検査する。
 Siの場合:-40℃×10min、150℃×10minの負荷を1サイクルとし、2000サイクルまで200サイクル毎にSAT検査する。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 まず、セラミックス基板としてAlNを用いた本発明例1-3と比較例1,2とを比較する。
 比較例1においては、回路層(金属層)の端部領域におけるAg固溶部の面積比が0.023とされており、冷熱サイクル試験において割れ発生回数が50回となった。
 比較例2においては、回路層(金属層)の端部領域におけるAg固溶部の面積比が0.423とされており、冷熱サイクル試験において割れ発生回数が50回となった。
 これに対して、本発明例1においては、回路層(金属層)の端部領域におけるAg固溶部の面積比が0.346とされており、冷熱サイクル試験において割れ発生回数が300回となった。
 本発明例2においては、回路層(金属層)の端部領域におけるAg固溶部の面積比が0.063とされており、冷熱サイクル試験において割れ発生回数が350回となった。
 本発明例3においては、回路層(金属層)の端部領域におけるAg固溶部の面積比が0.086とされており、冷熱サイクル試験において割れ発生回数が400回となった。
 以上のように、本発明例1-3においては、比較例1,2に比べて冷熱サイクル信頼性に優れていた。
 次に、セラミックス基板としてSiを用いた本発明例4-6と比較例3,4とを比較する。
 比較例3においては、回路層(金属層)の端部領域におけるAg固溶部の面積比が0.013とされており、冷熱サイクル試験において割れ発生回数が600回となった。
 比較例4においては、回路層(金属層)の端部領域におけるAg固溶部の面積比が0.400とされており、冷熱サイクル試験において割れ発生回数が1200回となった。
 これに対して、本発明例4においては、回路層(金属層)の端部領域におけるAg固溶部の面積比が0.031とされており、冷熱サイクル試験において割れ発生回数が1600回となった。
 本発明例5においては、回路層(金属層)の端部領域におけるAg固溶部の面積比が0.211とされており、冷熱サイクル試験において割れ発生回数が1800回となった。
 本発明例6においては、回路層(金属層)の端部領域におけるAg固溶部の面積比が0.125とされており、冷熱サイクル試験において、2000回後も割れが発生しなかった。
 以上のように、本発明例4-6においては、比較例3,4に比べて冷熱サイクル信頼性に優れていた。
 次に、セラミックス基板としてAlを用いた本発明例7,8と比較例5,6とを比較する。
 比較例5においては、回路層(金属層)の端部領域におけるAg固溶部の面積比が0.025とされており、冷熱サイクル試験において割れ発生回数が50回となった。
 比較例6においては、回路層(金属層)の端部領域におけるAg固溶部の面積比が0.370とされており、冷熱サイクル試験において割れ発生回数が50回となった。
 これに対して、本発明例7においては、回路層(金属層)の端部領域におけるAg固溶部の面積比が0.266とされており、冷熱サイクル試験において割れ発生回数が350回となった。
 本発明例8においては、回路層(金属層)の端部領域におけるAg固溶部の面積比が0.185とされており、冷熱サイクル試験において割れ発生回数が400回となった。 以上のように、本発明例7,8においては、比較例5,6に比べて冷熱サイクル信頼性に優れていた。
 以上の確認実験の結果から、本発明例によれば、厳しい冷熱サイクルを負荷した場合であっても、セラミックス基板における割れの発生を抑制でき、冷熱サイクル信頼性に優れた絶縁回路基板(銅/セラミックス接合体)を提供可能であることが確認された。
 本発明によれば、厳しい冷熱サイクルを負荷した場合であっても、セラミックス部材における割れの発生を抑制でき、冷熱サイクル信頼性に優れた銅/セラミックス接合体、および、この銅/セラミックス接合体からなる絶縁回路基板を提供することができる。
10 絶縁回路基板(銅/セラミックス接合体)
11 セラミックス基板(セラミックス部材)
12 回路層(銅部材)
13 金属層(銅部材)
12A,13A Ag固溶部
21 活性金属化合物層
22 Ag-Cu合金層

Claims (6)

  1.  銅又は銅合金からなる銅部材と、セラミックス部材とが接合されてなる銅/セラミックス接合体であって、
     前記銅部材の端部領域において、Ag濃度が0.5質量%以上15質量%以下であるAg固溶部の面積比が0.03以上0.35以下の範囲内とされていることを特徴とする銅/セラミックス接合体。
  2.  前記セラミックス部材と前記銅部材との接合界面において、前記セラミックス部材側には活性金属化合物層が形成されており、
     前記活性金属化合物層の厚さt1が0.05μm以上0.8μm以下の範囲内とされていることを特徴とする請求項1に記載の銅/セラミックス接合体。
  3.  前記セラミックス部材と前記銅部材との接合界面において、前記銅部材側にはAg-Cu合金層が形成されており、
     前記Ag-Cu合金層の厚さt2が1μm以上15μm以下の範囲内とされていることを特徴とする請求項1または請求項2に記載の銅/セラミックス接合体。
  4.  セラミックス基板の表面に、銅又は銅合金からなる銅板が接合されてなる絶縁回路基板であって、
     前記銅板の端部領域において、Ag濃度が0.5質量%以上15質量%以下であるAg固溶部の面積比が0.03以上0.35以下の範囲内とされていることを特徴とする絶縁回路基板。
  5.  前記セラミックス基板と前記銅板との接合界面において、前記セラミックス基板側には活性金属化合物層が形成されており、
     前記活性金属化合物層の厚さt1が0.05μm以上0.8μm以下の範囲内とされていることを特徴とする請求項4に記載の絶縁回路基板。
  6.  前記セラミックス基板と前記銅板との接合界面において、前記銅板側にはAg-Cu合金層が形成されており、
     前記Ag-Cu合金層の厚さt2が1μm以上15μm以下の範囲内とされていることを特徴とする請求項4または請求項5に記載の絶縁回路基板。
PCT/JP2022/029320 2021-07-30 2022-07-29 銅/セラミックス接合体、および、絶縁回路基板 WO2023008565A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22849625.3A EP4378914A1 (en) 2021-07-30 2022-07-29 Copper/ceramic bonded body and insulated circuit board
CN202280051515.7A CN117897366A (zh) 2021-07-30 2022-07-29 铜-陶瓷接合体及绝缘电路基板
US18/291,265 US20240363481A1 (en) 2021-07-30 2022-07-29 Copper/ceramic bonded body and insulating circuit substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-125532 2021-07-30
JP2021125532A JP2023020266A (ja) 2021-07-30 2021-07-30 銅/セラミックス接合体、および、絶縁回路基板

Publications (1)

Publication Number Publication Date
WO2023008565A1 true WO2023008565A1 (ja) 2023-02-02

Family

ID=85086887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029320 WO2023008565A1 (ja) 2021-07-30 2022-07-29 銅/セラミックス接合体、および、絶縁回路基板

Country Status (5)

Country Link
US (1) US20240363481A1 (ja)
EP (1) EP4378914A1 (ja)
JP (1) JP2023020266A (ja)
CN (1) CN117897366A (ja)
WO (1) WO2023008565A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3211856B2 (ja) 1994-11-02 2001-09-25 電気化学工業株式会社 回路基板
JP2002274964A (ja) * 2001-03-13 2002-09-25 Denki Kagaku Kogyo Kk 接合体の製造方法
JP2003055058A (ja) * 2001-08-23 2003-02-26 Denki Kagaku Kogyo Kk セラミック体と銅板の接合方法
JP2014090144A (ja) * 2012-10-31 2014-05-15 Denki Kagaku Kogyo Kk セラミック回路基板および製造方法
JP2015092552A (ja) * 2013-09-30 2015-05-14 三菱マテリアル株式会社 Cu/セラミックス接合体、Cu/セラミックス接合体の製造方法、及び、パワーモジュール用基板
JP5957862B2 (ja) 2011-12-05 2016-07-27 三菱マテリアル株式会社 パワーモジュール用基板
WO2017213207A1 (ja) * 2016-06-10 2017-12-14 田中貴金属工業株式会社 セラミックス回路基板、及び、セラミックス回路基板の製造方法
JP2018008869A (ja) * 2016-06-30 2018-01-18 三菱マテリアル株式会社 銅/セラミックス接合体、及び、絶縁回路基板
WO2018221493A1 (ja) * 2017-05-30 2018-12-06 デンカ株式会社 セラミックス回路基板及びそれを用いたモジュール
JP2021098641A (ja) * 2019-12-19 2021-07-01 三菱マテリアル株式会社 銅/セラミックス接合体、及び、絶縁回路基板
JP2021125532A (ja) 2020-02-04 2021-08-30 株式会社村田製作所 コモンモードチョークコイル

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3211856B2 (ja) 1994-11-02 2001-09-25 電気化学工業株式会社 回路基板
JP2002274964A (ja) * 2001-03-13 2002-09-25 Denki Kagaku Kogyo Kk 接合体の製造方法
JP2003055058A (ja) * 2001-08-23 2003-02-26 Denki Kagaku Kogyo Kk セラミック体と銅板の接合方法
JP5957862B2 (ja) 2011-12-05 2016-07-27 三菱マテリアル株式会社 パワーモジュール用基板
JP2014090144A (ja) * 2012-10-31 2014-05-15 Denki Kagaku Kogyo Kk セラミック回路基板および製造方法
JP2015092552A (ja) * 2013-09-30 2015-05-14 三菱マテリアル株式会社 Cu/セラミックス接合体、Cu/セラミックス接合体の製造方法、及び、パワーモジュール用基板
JP5757359B2 (ja) 2013-09-30 2015-07-29 三菱マテリアル株式会社 Cu/セラミックス接合体、Cu/セラミックス接合体の製造方法、及び、パワーモジュール用基板
WO2017213207A1 (ja) * 2016-06-10 2017-12-14 田中貴金属工業株式会社 セラミックス回路基板、及び、セラミックス回路基板の製造方法
JP2018008869A (ja) * 2016-06-30 2018-01-18 三菱マテリアル株式会社 銅/セラミックス接合体、及び、絶縁回路基板
WO2018221493A1 (ja) * 2017-05-30 2018-12-06 デンカ株式会社 セラミックス回路基板及びそれを用いたモジュール
JP2021098641A (ja) * 2019-12-19 2021-07-01 三菱マテリアル株式会社 銅/セラミックス接合体、及び、絶縁回路基板
JP2021125532A (ja) 2020-02-04 2021-08-30 株式会社村田製作所 コモンモードチョークコイル

Also Published As

Publication number Publication date
EP4378914A1 (en) 2024-06-05
JP2023020266A (ja) 2023-02-09
US20240363481A1 (en) 2024-10-31
CN117897366A (zh) 2024-04-16

Similar Documents

Publication Publication Date Title
US10818585B2 (en) Copper/ceramic joined body, insulated circuit board, method for producing copper/ceramic joined body, and method for producing insulated circuit board
US12027434B2 (en) Bonded body of copper and ceramic, insulating circuit substrate, bonded body of copper and ceramic production method, and insulating circuit substrate production method
JP5698947B2 (ja) 電子機器用放熱板およびその製造方法
WO2018159590A1 (ja) 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法
JP6870767B2 (ja) 銅/セラミックス接合体、及び、絶縁回路基板
WO2023286856A1 (ja) 銅/セラミックス接合体、および、絶縁回路基板
JP2021165227A (ja) 銅/セラミックス接合体、及び、絶縁回路基板
KR20220106748A (ko) 세라믹스/구리/그래핀 접합체와 그 제조 방법, 및 세라믹스/구리/그래핀 접합 구조
WO2023008565A1 (ja) 銅/セラミックス接合体、および、絶縁回路基板
WO2022224949A1 (ja) 銅/セラミックス接合体、および、絶縁回路基板
JP2023086688A (ja) 銅/セラミックス接合体、および、絶縁回路基板
JP7512863B2 (ja) 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法
WO2023008562A1 (ja) 銅/セラミックス接合体、および、絶縁回路基板
WO2023286862A1 (ja) 銅/セラミックス接合体、および、絶縁回路基板
WO2023286860A1 (ja) 銅/セラミックス接合体、および、絶縁回路基板
WO2023286857A1 (ja) 銅/セラミックス接合体、および、絶縁回路基板
WO2022224946A1 (ja) 銅/セラミックス接合体、および、絶縁回路基板
WO2023286858A1 (ja) 銅/セラミックス接合体、絶縁回路基板、および、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法
WO2022224958A1 (ja) 銅/セラミックス接合体、および、絶縁回路基板
JP7424043B2 (ja) 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法
WO2023106226A1 (ja) 銅/セラミックス接合体、および、絶縁回路基板
JP2024039593A (ja) 銅/セラミックス接合体、および、絶縁回路基板
WO2021112046A1 (ja) 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22849625

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280051515.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022849625

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022849625

Country of ref document: EP

Effective date: 20240229