WO2023008376A1 - Compound, composition, and photoelectric conversion element - Google Patents
Compound, composition, and photoelectric conversion element Download PDFInfo
- Publication number
- WO2023008376A1 WO2023008376A1 PCT/JP2022/028636 JP2022028636W WO2023008376A1 WO 2023008376 A1 WO2023008376 A1 WO 2023008376A1 JP 2022028636 W JP2022028636 W JP 2022028636W WO 2023008376 A1 WO2023008376 A1 WO 2023008376A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- substituent
- optionally substituted
- optionally
- represented
- Prior art date
Links
- 150000001875 compounds Chemical class 0.000 title claims abstract description 168
- 239000000203 mixture Substances 0.000 title claims abstract description 88
- 238000006243 chemical reaction Methods 0.000 title claims description 163
- 239000000463 material Substances 0.000 claims abstract description 162
- 239000004065 semiconductor Substances 0.000 claims abstract description 125
- 125000006575 electron-withdrawing group Chemical group 0.000 claims abstract description 12
- 125000001424 substituent group Chemical group 0.000 claims description 185
- 239000002904 solvent Substances 0.000 claims description 83
- 125000003118 aryl group Chemical group 0.000 claims description 56
- 238000004768 lowest unoccupied molecular orbital Methods 0.000 claims description 56
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 46
- 125000000623 heterocyclic group Chemical group 0.000 claims description 45
- 229920000642 polymer Polymers 0.000 claims description 36
- 125000000547 substituted alkyl group Chemical group 0.000 claims description 29
- 125000006615 aromatic heterocyclic group Chemical group 0.000 claims description 28
- 238000010521 absorption reaction Methods 0.000 claims description 22
- 125000004104 aryloxy group Chemical group 0.000 claims description 19
- 125000002837 carbocyclic group Chemical group 0.000 claims description 19
- 125000004414 alkyl thio group Chemical group 0.000 claims description 17
- 125000005843 halogen group Chemical group 0.000 claims description 17
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 16
- 125000000392 cycloalkenyl group Chemical group 0.000 claims description 16
- 125000005415 substituted alkoxy group Chemical group 0.000 claims description 16
- 125000005110 aryl thio group Chemical group 0.000 claims description 15
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 14
- 239000002253 acid Substances 0.000 claims description 13
- 125000003277 amino group Chemical group 0.000 claims description 13
- 125000000000 cycloalkoxy group Chemical group 0.000 claims description 12
- 125000002252 acyl group Chemical group 0.000 claims description 11
- 125000003368 amide group Chemical group 0.000 claims description 11
- 125000005462 imide group Chemical group 0.000 claims description 11
- 229910052757 nitrogen Inorganic materials 0.000 claims description 11
- 125000005740 oxycarbonyl group Chemical group [*:1]OC([*:2])=O 0.000 claims description 11
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 11
- 125000005366 cycloalkylthio group Chemical group 0.000 claims description 10
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims description 8
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 8
- 125000004434 sulfur atom Chemical group 0.000 claims description 8
- 125000005017 substituted alkenyl group Chemical group 0.000 claims description 7
- 125000004426 substituted alkynyl group Chemical group 0.000 claims description 7
- 229910052717 sulfur Inorganic materials 0.000 claims description 6
- 101001053401 Arabidopsis thaliana Acid beta-fructofuranosidase 3, vacuolar Proteins 0.000 claims description 4
- 101001053395 Arabidopsis thaliana Acid beta-fructofuranosidase 4, vacuolar Proteins 0.000 claims description 3
- 125000000879 imine group Chemical group 0.000 claims 2
- 239000010410 layer Substances 0.000 description 191
- -1 cycloalkynyl groups Chemical group 0.000 description 131
- 125000004432 carbon atom Chemical group C* 0.000 description 103
- 239000000758 substrate Substances 0.000 description 89
- 238000000034 method Methods 0.000 description 69
- 238000001514 detection method Methods 0.000 description 64
- 239000010408 film Substances 0.000 description 40
- 238000007789 sealing Methods 0.000 description 40
- 125000000217 alkyl group Chemical group 0.000 description 36
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 32
- 238000000576 coating method Methods 0.000 description 31
- 125000003545 alkoxy group Chemical group 0.000 description 26
- 239000011229 interlayer Substances 0.000 description 26
- 210000003462 vein Anatomy 0.000 description 25
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 24
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 23
- 230000005525 hole transport Effects 0.000 description 23
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical group ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 20
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical class C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 19
- 239000012043 crude product Substances 0.000 description 19
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 18
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 18
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Chemical compound C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 description 18
- 238000004519 manufacturing process Methods 0.000 description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 17
- 238000010438 heat treatment Methods 0.000 description 16
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 16
- 235000019341 magnesium sulphate Nutrition 0.000 description 16
- 239000000243 solution Substances 0.000 description 16
- 125000001153 fluoro group Chemical group F* 0.000 description 15
- 238000003384 imaging method Methods 0.000 description 15
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 14
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 14
- 238000009792 diffusion process Methods 0.000 description 14
- 238000007667 floating Methods 0.000 description 14
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 13
- 229910003472 fullerene Inorganic materials 0.000 description 13
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 12
- 238000010586 diagram Methods 0.000 description 12
- 239000011521 glass Substances 0.000 description 12
- 150000002466 imines Chemical group 0.000 description 12
- 239000007788 liquid Substances 0.000 description 12
- QPJVMBTYPHYUOC-UHFFFAOYSA-N methyl benzoate Chemical compound COC(=O)C1=CC=CC=C1 QPJVMBTYPHYUOC-UHFFFAOYSA-N 0.000 description 12
- 239000012044 organic layer Substances 0.000 description 12
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical compound C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 11
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 11
- 125000003342 alkenyl group Chemical group 0.000 description 11
- 239000011248 coating agent Substances 0.000 description 11
- UJOBWOGCFQCDNV-UHFFFAOYSA-N 9H-carbazole Chemical compound C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 description 10
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 10
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 10
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 10
- OCKPCBLVNKHBMX-UHFFFAOYSA-N butylbenzene Chemical compound CCCCC1=CC=CC=C1 OCKPCBLVNKHBMX-UHFFFAOYSA-N 0.000 description 10
- 229910052799 carbon Inorganic materials 0.000 description 9
- 125000004122 cyclic group Chemical group 0.000 description 9
- 238000013461 design Methods 0.000 description 9
- 239000000706 filtrate Substances 0.000 description 9
- 238000001914 filtration Methods 0.000 description 9
- 238000002347 injection Methods 0.000 description 9
- 239000007924 injection Substances 0.000 description 9
- 238000005259 measurement Methods 0.000 description 9
- 125000001624 naphthyl group Chemical group 0.000 description 9
- 229910002027 silica gel Inorganic materials 0.000 description 9
- 239000000741 silica gel Substances 0.000 description 9
- QPUYECUOLPXSFR-UHFFFAOYSA-N 1-methylnaphthalene Chemical compound C1=CC=C2C(C)=CC=CC2=C1 QPUYECUOLPXSFR-UHFFFAOYSA-N 0.000 description 8
- 238000000862 absorption spectrum Methods 0.000 description 8
- 230000004888 barrier function Effects 0.000 description 8
- 238000004770 highest occupied molecular orbital Methods 0.000 description 8
- 239000002184 metal Chemical class 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000003921 oil Substances 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 125000000304 alkynyl group Chemical group 0.000 description 7
- 239000012298 atmosphere Substances 0.000 description 7
- 229910052731 fluorine Inorganic materials 0.000 description 7
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 7
- 125000002950 monocyclic group Chemical group 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 7
- 125000000168 pyrrolyl group Chemical group 0.000 description 7
- 125000003107 substituted aryl group Chemical group 0.000 description 7
- 238000003786 synthesis reaction Methods 0.000 description 7
- 239000011787 zinc oxide Substances 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- URLKBWYHVLBVBO-UHFFFAOYSA-N Para-Xylene Chemical group CC1=CC=C(C)C=C1 URLKBWYHVLBVBO-UHFFFAOYSA-N 0.000 description 6
- 125000004390 alkyl sulfonyl group Chemical group 0.000 description 6
- XSIFPSYPOVKYCO-UHFFFAOYSA-N butyl benzoate Chemical compound CCCCOC(=O)C1=CC=CC=C1 XSIFPSYPOVKYCO-UHFFFAOYSA-N 0.000 description 6
- 229940126214 compound 3 Drugs 0.000 description 6
- 229910001873 dinitrogen Inorganic materials 0.000 description 6
- PQNFLJBBNBOBRQ-UHFFFAOYSA-N indane Chemical compound C1=CC=C2CCCC2=C1 PQNFLJBBNBOBRQ-UHFFFAOYSA-N 0.000 description 6
- IVSZLXZYQVIEFR-UHFFFAOYSA-N m-xylene Chemical group CC1=CC=CC(C)=C1 IVSZLXZYQVIEFR-UHFFFAOYSA-N 0.000 description 6
- 150000002739 metals Chemical class 0.000 description 6
- 229940095102 methyl benzoate Drugs 0.000 description 6
- 125000003367 polycyclic group Chemical group 0.000 description 6
- 239000003566 sealing material Substances 0.000 description 6
- FVAUCKIRQBBSSJ-UHFFFAOYSA-M sodium iodide Chemical compound [Na+].[I-] FVAUCKIRQBBSSJ-UHFFFAOYSA-M 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 238000004528 spin coating Methods 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- YTZKOQUCBOVLHL-UHFFFAOYSA-N tert-butylbenzene Chemical compound CC(C)(C)C1=CC=CC=C1 YTZKOQUCBOVLHL-UHFFFAOYSA-N 0.000 description 6
- 239000010409 thin film Substances 0.000 description 6
- GWHJZXXIDMPWGX-UHFFFAOYSA-N 1,2,4-trimethylbenzene Chemical compound CC1=CC=C(C)C(C)=C1 GWHJZXXIDMPWGX-UHFFFAOYSA-N 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 5
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 5
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 5
- 125000004429 atom Chemical group 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 229940125782 compound 2 Drugs 0.000 description 5
- 229920000547 conjugated polymer Polymers 0.000 description 5
- 239000000470 constituent Substances 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 229910044991 metal oxide Inorganic materials 0.000 description 5
- 150000004706 metal oxides Chemical class 0.000 description 5
- 229940078552 o-xylene Drugs 0.000 description 5
- 125000002971 oxazolyl group Chemical group 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 229920000123 polythiophene Polymers 0.000 description 5
- 125000003373 pyrazinyl group Chemical group 0.000 description 5
- 125000000714 pyrimidinyl group Chemical group 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 229910052814 silicon oxide Inorganic materials 0.000 description 5
- 238000002366 time-of-flight method Methods 0.000 description 5
- GHYOCDFICYLMRF-UTIIJYGPSA-N (2S,3R)-N-[(2S)-3-(cyclopenten-1-yl)-1-[(2R)-2-methyloxiran-2-yl]-1-oxopropan-2-yl]-3-hydroxy-3-(4-methoxyphenyl)-2-[[(2S)-2-[(2-morpholin-4-ylacetyl)amino]propanoyl]amino]propanamide Chemical compound C1(=CCCC1)C[C@@H](C(=O)[C@@]1(OC1)C)NC([C@H]([C@@H](C1=CC=C(C=C1)OC)O)NC([C@H](C)NC(CN1CCOCC1)=O)=O)=O GHYOCDFICYLMRF-UTIIJYGPSA-N 0.000 description 4
- UNILWMWFPHPYOR-KXEYIPSPSA-M 1-[6-[2-[3-[3-[3-[2-[2-[3-[[2-[2-[[(2r)-1-[[2-[[(2r)-1-[3-[2-[2-[3-[[2-(2-amino-2-oxoethoxy)acetyl]amino]propoxy]ethoxy]ethoxy]propylamino]-3-hydroxy-1-oxopropan-2-yl]amino]-2-oxoethyl]amino]-3-[(2r)-2,3-di(hexadecanoyloxy)propyl]sulfanyl-1-oxopropan-2-yl Chemical compound O=C1C(SCCC(=O)NCCCOCCOCCOCCCNC(=O)COCC(=O)N[C@@H](CSC[C@@H](COC(=O)CCCCCCCCCCCCCCC)OC(=O)CCCCCCCCCCCCCCC)C(=O)NCC(=O)N[C@H](CO)C(=O)NCCCOCCOCCOCCCNC(=O)COCC(N)=O)CC(=O)N1CCNC(=O)CCCCCN\1C2=CC=C(S([O-])(=O)=O)C=C2CC/1=C/C=C/C=C/C1=[N+](CC)C2=CC=C(S([O-])(=O)=O)C=C2C1 UNILWMWFPHPYOR-KXEYIPSPSA-M 0.000 description 4
- 238000005160 1H NMR spectroscopy Methods 0.000 description 4
- KWOLFJPFCHCOCG-UHFFFAOYSA-N Acetophenone Chemical compound CC(=O)C1=CC=CC=C1 KWOLFJPFCHCOCG-UHFFFAOYSA-N 0.000 description 4
- KCBAMQOKOLXLOX-BSZYMOERSA-N CC1=C(SC=N1)C2=CC=C(C=C2)[C@H](C)NC(=O)[C@@H]3C[C@H](CN3C(=O)[C@H](C(C)(C)C)NC(=O)CCCCCCCCCCNCCCONC(=O)C4=C(C(=C(C=C4)F)F)NC5=C(C=C(C=C5)I)F)O Chemical compound CC1=C(SC=N1)C2=CC=C(C=C2)[C@H](C)NC(=O)[C@@H]3C[C@H](CN3C(=O)[C@H](C(C)(C)C)NC(=O)CCCCCCCCCCNCCCONC(=O)C4=C(C(=C(C=C4)F)F)NC5=C(C=C(C=C5)I)F)O KCBAMQOKOLXLOX-BSZYMOERSA-N 0.000 description 4
- OPFJDXRVMFKJJO-ZHHKINOHSA-N N-{[3-(2-benzamido-4-methyl-1,3-thiazol-5-yl)-pyrazol-5-yl]carbonyl}-G-dR-G-dD-dD-dD-NH2 Chemical compound S1C(C=2NN=C(C=2)C(=O)NCC(=O)N[C@H](CCCN=C(N)N)C(=O)NCC(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CC(O)=O)C(N)=O)=C(C)N=C1NC(=O)C1=CC=CC=C1 OPFJDXRVMFKJJO-ZHHKINOHSA-N 0.000 description 4
- 229920002873 Polyethylenimine Polymers 0.000 description 4
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 4
- 125000002102 aryl alkyloxo group Chemical group 0.000 description 4
- 238000007611 bar coating method Methods 0.000 description 4
- 150000001721 carbon Chemical group 0.000 description 4
- 125000001309 chloro group Chemical group Cl* 0.000 description 4
- 229940125797 compound 12 Drugs 0.000 description 4
- 229940126086 compound 21 Drugs 0.000 description 4
- 229940125833 compound 23 Drugs 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- ZSWFCLXCOIISFI-UHFFFAOYSA-N cyclopentadiene Chemical group C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 4
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 4
- 125000005678 ethenylene group Chemical group [H]C([*:1])=C([H])[*:2] 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000005227 gel permeation chromatography Methods 0.000 description 4
- 238000007756 gravure coating Methods 0.000 description 4
- YIXJRHPUWRPCBB-UHFFFAOYSA-N magnesium nitrate Chemical compound [Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YIXJRHPUWRPCBB-UHFFFAOYSA-N 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 4
- 239000011368 organic material Substances 0.000 description 4
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 229920000767 polyaniline Polymers 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- PBMFSQRYOILNGV-UHFFFAOYSA-N pyridazine Chemical compound C1=CC=NN=C1 PBMFSQRYOILNGV-UHFFFAOYSA-N 0.000 description 4
- 150000003967 siloles Chemical class 0.000 description 4
- 125000001544 thienyl group Chemical group 0.000 description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 4
- 239000010937 tungsten Substances 0.000 description 4
- 238000001771 vacuum deposition Methods 0.000 description 4
- WWTBZEKOSBFBEM-SPWPXUSOSA-N (2s)-2-[[2-benzyl-3-[hydroxy-[(1r)-2-phenyl-1-(phenylmethoxycarbonylamino)ethyl]phosphoryl]propanoyl]amino]-3-(1h-indol-3-yl)propanoic acid Chemical compound N([C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)O)C(=O)C(CP(O)(=O)[C@H](CC=1C=CC=CC=1)NC(=O)OCC=1C=CC=CC=1)CC1=CC=CC=C1 WWTBZEKOSBFBEM-SPWPXUSOSA-N 0.000 description 3
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 3
- DJMUYABFXCIYSC-UHFFFAOYSA-N 1H-phosphole Chemical compound C=1C=CPC=1 DJMUYABFXCIYSC-UHFFFAOYSA-N 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- IGDNJMOBPOHHRN-UHFFFAOYSA-N 5h-benzo[b]phosphindole Chemical compound C1=CC=C2C3=CC=CC=C3PC2=C1 IGDNJMOBPOHHRN-UHFFFAOYSA-N 0.000 description 3
- 229910001316 Ag alloy Inorganic materials 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 238000002835 absorbance Methods 0.000 description 3
- 125000003282 alkyl amino group Chemical group 0.000 description 3
- 150000004982 aromatic amines Chemical group 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 229940126208 compound 22 Drugs 0.000 description 3
- 229940125898 compound 5 Drugs 0.000 description 3
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 3
- 125000002147 dimethylamino group Chemical group [H]C([H])([H])N(*)C([H])([H])[H] 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 125000002541 furyl group Chemical group 0.000 description 3
- 125000005842 heteroatom Chemical group 0.000 description 3
- 150000002391 heterocyclic compounds Chemical class 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 239000011810 insulating material Substances 0.000 description 3
- 230000001678 irradiating effect Effects 0.000 description 3
- ZLVXBBHTMQJRSX-VMGNSXQWSA-N jdtic Chemical compound C1([C@]2(C)CCN(C[C@@H]2C)C[C@H](C(C)C)NC(=O)[C@@H]2NCC3=CC(O)=CC=C3C2)=CC=CC(O)=C1 ZLVXBBHTMQJRSX-VMGNSXQWSA-N 0.000 description 3
- AUHZEENZYGFFBQ-UHFFFAOYSA-N mesitylene Substances CC1=CC(C)=CC(C)=C1 AUHZEENZYGFFBQ-UHFFFAOYSA-N 0.000 description 3
- 125000001827 mesitylenyl group Chemical group [H]C1=C(C(*)=C(C([H])=C1C([H])([H])[H])C([H])([H])[H])C([H])([H])[H] 0.000 description 3
- 239000012046 mixed solvent Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 150000002894 organic compounds Chemical class 0.000 description 3
- WCPAKWJPBJAGKN-UHFFFAOYSA-N oxadiazole Chemical compound C1=CON=N1 WCPAKWJPBJAGKN-UHFFFAOYSA-N 0.000 description 3
- YNPNZTXNASCQKK-UHFFFAOYSA-N phenanthrene Chemical group C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 3
- 125000001484 phenothiazinyl group Chemical group C1(=CC=CC=2SC3=CC=CC=C3NC12)* 0.000 description 3
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 description 3
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 239000011241 protective layer Substances 0.000 description 3
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 3
- 125000004076 pyridyl group Chemical group 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 125000005346 substituted cycloalkyl group Chemical group 0.000 description 3
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 3
- VJYJJHQEVLEOFL-UHFFFAOYSA-N thieno[3,2-b]thiophene Chemical group S1C=CC2=C1C=CS2 VJYJJHQEVLEOFL-UHFFFAOYSA-N 0.000 description 3
- GLQWRXYOTXRDNH-UHFFFAOYSA-N thiophen-2-amine Chemical compound NC1=CC=CS1 GLQWRXYOTXRDNH-UHFFFAOYSA-N 0.000 description 3
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- UGUHFDPGDQDVGX-UHFFFAOYSA-N 1,2,3-thiadiazole Chemical group C1=CSN=N1 UGUHFDPGDQDVGX-UHFFFAOYSA-N 0.000 description 2
- FYGHSUNMUKGBRK-UHFFFAOYSA-N 1,2,3-trimethylbenzene Chemical compound CC1=CC=CC(C)=C1C FYGHSUNMUKGBRK-UHFFFAOYSA-N 0.000 description 2
- YJTKZCDBKVTVBY-UHFFFAOYSA-N 1,3-Diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=CC(C=2C=CC=CC=2)=C1 YJTKZCDBKVTVBY-UHFFFAOYSA-N 0.000 description 2
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 2
- 125000006043 5-hexenyl group Chemical group 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- KYNSBQPICQTCGU-UHFFFAOYSA-N Benzopyrane Chemical group C1=CC=C2C=CCOC2=C1 KYNSBQPICQTCGU-UHFFFAOYSA-N 0.000 description 2
- 238000004057 DFT-B3LYP calculation Methods 0.000 description 2
- 238000003775 Density Functional Theory Methods 0.000 description 2
- 229910000846 In alloy Inorganic materials 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Chemical compound C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 239000005083 Zinc sulfide Substances 0.000 description 2
- MCVAAHQLXUXWLC-UHFFFAOYSA-N [O-2].[O-2].[S-2].[Gd+3].[Gd+3] Chemical compound [O-2].[O-2].[S-2].[Gd+3].[Gd+3] MCVAAHQLXUXWLC-UHFFFAOYSA-N 0.000 description 2
- 125000005073 adamantyl group Chemical group C12(CC3CC(CC(C1)C3)C2)* 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 150000004705 aldimines Chemical class 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- 125000005577 anthracene group Chemical group 0.000 description 2
- 125000001769 aryl amino group Chemical group 0.000 description 2
- ISAOCJYIOMOJEB-UHFFFAOYSA-N benzoin Chemical compound C=1C=CC=CC=1C(O)C(=O)C1=CC=CC=C1 ISAOCJYIOMOJEB-UHFFFAOYSA-N 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- XQPRBTXUXXVTKB-UHFFFAOYSA-M caesium iodide Chemical compound [I-].[Cs+] XQPRBTXUXXVTKB-UHFFFAOYSA-M 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 125000000609 carbazolyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3NC12)* 0.000 description 2
- QQVDYSUDFZZPSU-UHFFFAOYSA-M chloromethylidene(dimethyl)azanium;chloride Chemical compound [Cl-].C[N+](C)=CCl QQVDYSUDFZZPSU-UHFFFAOYSA-M 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 229940125904 compound 1 Drugs 0.000 description 2
- 229940125773 compound 10 Drugs 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 125000000596 cyclohexenyl group Chemical group C1(=CCCCC1)* 0.000 description 2
- 125000001664 diethylamino group Chemical group [H]C([H])([H])C([H])([H])N(*)C([H])([H])C([H])([H])[H] 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 238000005401 electroluminescence Methods 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 2
- MTZQAGJQAFMTAQ-UHFFFAOYSA-N ethyl benzoate Chemical compound CCOC(=O)C1=CC=CC=C1 MTZQAGJQAFMTAQ-UHFFFAOYSA-N 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 2
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 230000005283 ground state Effects 0.000 description 2
- 125000002883 imidazolyl group Chemical group 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 238000007733 ion plating Methods 0.000 description 2
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 2
- AWJUIBRHMBBTKR-UHFFFAOYSA-N isoquinoline Chemical compound C1=NC=CC2=CC=CC=C21 AWJUIBRHMBBTKR-UHFFFAOYSA-N 0.000 description 2
- 125000002183 isoquinolinyl group Chemical group C1(=NC=CC2=CC=CC=C12)* 0.000 description 2
- 239000002346 layers by function Substances 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 2
- 125000005582 pentacene group Chemical group 0.000 description 2
- 125000001644 phenoxazinyl group Chemical group C1(=CC=CC=2OC3=CC=CC=C3NC12)* 0.000 description 2
- 125000003356 phenylsulfanyl group Chemical group [*]SC1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 2
- XHXFXVLFKHQFAL-UHFFFAOYSA-N phosphoryl trichloride Chemical compound ClP(Cl)(Cl)=O XHXFXVLFKHQFAL-UHFFFAOYSA-N 0.000 description 2
- 125000005936 piperidyl group Chemical group 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 description 2
- 229920000553 poly(phenylenevinylene) Polymers 0.000 description 2
- 229920000548 poly(silane) polymer Polymers 0.000 description 2
- 229920002098 polyfluorene Polymers 0.000 description 2
- 229920000128 polypyrrole Polymers 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- KRIOVPPHQSLHCZ-UHFFFAOYSA-N propiophenone Chemical compound CCC(=O)C1=CC=CC=C1 KRIOVPPHQSLHCZ-UHFFFAOYSA-N 0.000 description 2
- 125000005581 pyrene group Chemical group 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 125000002943 quinolinyl group Chemical group N1=C(C=CC2=CC=CC=C12)* 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- ZJMWRROPUADPEA-UHFFFAOYSA-N sec-butylbenzene Chemical compound CCC(C)C1=CC=CC=C1 ZJMWRROPUADPEA-UHFFFAOYSA-N 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 235000009518 sodium iodide Nutrition 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000010345 tape casting Methods 0.000 description 2
- 125000005579 tetracene group Chemical group 0.000 description 2
- 125000000335 thiazolyl group Chemical group 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 229910001887 tin oxide Inorganic materials 0.000 description 2
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 125000005259 triarylamine group Chemical group 0.000 description 2
- 125000004306 triazinyl group Chemical group 0.000 description 2
- ODHXBMXNKOYIBV-UHFFFAOYSA-N triphenylamine Chemical compound C1=CC=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 ODHXBMXNKOYIBV-UHFFFAOYSA-N 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 229910052984 zinc sulfide Inorganic materials 0.000 description 2
- 125000004400 (C1-C12) alkyl group Chemical group 0.000 description 1
- UVNPEUJXKZFWSJ-LMTQTHQJSA-N (R)-N-[(4S)-8-[6-amino-5-[(3,3-difluoro-2-oxo-1H-pyrrolo[2,3-b]pyridin-4-yl)sulfanyl]pyrazin-2-yl]-2-oxa-8-azaspiro[4.5]decan-4-yl]-2-methylpropane-2-sulfinamide Chemical compound CC(C)(C)[S@@](=O)N[C@@H]1COCC11CCN(CC1)c1cnc(Sc2ccnc3NC(=O)C(F)(F)c23)c(N)n1 UVNPEUJXKZFWSJ-LMTQTHQJSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 1
- FCEHBMOGCRZNNI-UHFFFAOYSA-N 1-benzothiophene Chemical group C1=CC=C2SC=CC2=C1 FCEHBMOGCRZNNI-UHFFFAOYSA-N 0.000 description 1
- 125000006039 1-hexenyl group Chemical group 0.000 description 1
- 125000001637 1-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C(*)=C([H])C([H])=C([H])C2=C1[H] 0.000 description 1
- 125000005978 1-naphthyloxy group Chemical group 0.000 description 1
- 125000006017 1-propenyl group Chemical group 0.000 description 1
- 125000000530 1-propynyl group Chemical group [H]C([H])([H])C#C* 0.000 description 1
- WJFKNYWRSNBZNX-UHFFFAOYSA-N 10H-phenothiazine Chemical compound C1=CC=C2NC3=CC=CC=C3SC2=C1 WJFKNYWRSNBZNX-UHFFFAOYSA-N 0.000 description 1
- TZMSYXZUNZXBOL-UHFFFAOYSA-N 10H-phenoxazine Chemical compound C1=CC=C2NC3=CC=CC=C3OC2=C1 TZMSYXZUNZXBOL-UHFFFAOYSA-N 0.000 description 1
- NRKYWOKHZRQRJR-UHFFFAOYSA-N 2,2,2-trifluoroacetamide Chemical group NC(=O)C(F)(F)F NRKYWOKHZRQRJR-UHFFFAOYSA-N 0.000 description 1
- YQTCQNIPQMJNTI-UHFFFAOYSA-N 2,2-dimethylpropan-1-one Chemical group CC(C)(C)[C]=O YQTCQNIPQMJNTI-UHFFFAOYSA-N 0.000 description 1
- WPWWHXPRJFDTTJ-UHFFFAOYSA-N 2,3,4,5,6-pentafluorobenzamide Chemical group NC(=O)C1=C(F)C(F)=C(F)C(F)=C1F WPWWHXPRJFDTTJ-UHFFFAOYSA-N 0.000 description 1
- VFBJMPNFKOMEEW-UHFFFAOYSA-N 2,3-diphenylbut-2-enedinitrile Chemical group C=1C=CC=CC=1C(C#N)=C(C#N)C1=CC=CC=C1 VFBJMPNFKOMEEW-UHFFFAOYSA-N 0.000 description 1
- VUPXKQHLZATXTR-UHFFFAOYSA-N 2,4-diphenyl-1,3-oxazole Chemical compound C=1OC(C=2C=CC=CC=2)=NC=1C1=CC=CC=C1 VUPXKQHLZATXTR-UHFFFAOYSA-N 0.000 description 1
- STTGYIUESPWXOW-UHFFFAOYSA-N 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline Chemical compound C=12C=CC3=C(C=4C=CC=CC=4)C=C(C)N=C3C2=NC(C)=CC=1C1=CC=CC=C1 STTGYIUESPWXOW-UHFFFAOYSA-N 0.000 description 1
- OZDGMOYKSFPLSE-UHFFFAOYSA-N 2-Methylaziridine Chemical compound CC1CN1 OZDGMOYKSFPLSE-UHFFFAOYSA-N 0.000 description 1
- 125000004974 2-butenyl group Chemical group C(C=CC)* 0.000 description 1
- 125000000069 2-butynyl group Chemical group [H]C([H])([H])C#CC([H])([H])* 0.000 description 1
- SVONRAPFKPVNKG-UHFFFAOYSA-N 2-ethoxyethyl acetate Chemical compound CCOCCOC(C)=O SVONRAPFKPVNKG-UHFFFAOYSA-N 0.000 description 1
- CSWPOLMVXVBCSV-UHFFFAOYSA-N 2-ethylaziridine Chemical compound CCC1CN1 CSWPOLMVXVBCSV-UHFFFAOYSA-N 0.000 description 1
- 125000006176 2-ethylbutyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(C([H])([H])*)C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000001622 2-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C(*)C([H])=C([H])C2=C1[H] 0.000 description 1
- 125000005979 2-naphthyloxy group Chemical group 0.000 description 1
- 125000001494 2-propynyl group Chemical group [H]C#CC([H])([H])* 0.000 description 1
- 125000004975 3-butenyl group Chemical group C(CC=C)* 0.000 description 1
- 125000000474 3-butynyl group Chemical group [H]C#CC([H])([H])C([H])([H])* 0.000 description 1
- 125000006201 3-phenylpropyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- NUCIQEWGTLOQTR-UHFFFAOYSA-N 4,4-bis(2-ethylhexyl)-4h-cyclopenta[1,2-b:5,4-b']dithiophene Chemical compound S1C=CC2=C1C(SC=C1)=C1C2(CC(CC)CCCC)CC(CC)CCCC NUCIQEWGTLOQTR-UHFFFAOYSA-N 0.000 description 1
- WDBQJSCPCGTAFG-QHCPKHFHSA-N 4,4-difluoro-N-[(1S)-3-[4-(3-methyl-5-propan-2-yl-1,2,4-triazol-4-yl)piperidin-1-yl]-1-pyridin-3-ylpropyl]cyclohexane-1-carboxamide Chemical compound FC1(CCC(CC1)C(=O)N[C@@H](CCN1CCC(CC1)N1C(=NN=C1C)C(C)C)C=1C=NC=CC=1)F WDBQJSCPCGTAFG-QHCPKHFHSA-N 0.000 description 1
- BWGRDBSNKQABCB-UHFFFAOYSA-N 4,4-difluoro-N-[3-[3-(3-methyl-5-propan-2-yl-1,2,4-triazol-4-yl)-8-azabicyclo[3.2.1]octan-8-yl]-1-thiophen-2-ylpropyl]cyclohexane-1-carboxamide Chemical compound CC(C)C1=NN=C(C)N1C1CC2CCC(C1)N2CCC(NC(=O)C1CCC(F)(F)CC1)C1=CC=CS1 BWGRDBSNKQABCB-UHFFFAOYSA-N 0.000 description 1
- CMSGUKVDXXTJDQ-UHFFFAOYSA-N 4-(2-naphthalen-1-ylethylamino)-4-oxobutanoic acid Chemical compound C1=CC=C2C(CCNC(=O)CCC(=O)O)=CC=CC2=C1 CMSGUKVDXXTJDQ-UHFFFAOYSA-N 0.000 description 1
- DDTHMESPCBONDT-UHFFFAOYSA-N 4-(4-oxocyclohexa-2,5-dien-1-ylidene)cyclohexa-2,5-dien-1-one Chemical class C1=CC(=O)C=CC1=C1C=CC(=O)C=C1 DDTHMESPCBONDT-UHFFFAOYSA-N 0.000 description 1
- MAGFQRLKWCCTQJ-UHFFFAOYSA-M 4-ethenylbenzenesulfonate Chemical compound [O-]S(=O)(=O)C1=CC=C(C=C)C=C1 MAGFQRLKWCCTQJ-UHFFFAOYSA-M 0.000 description 1
- BKYWEUVIGUEMFX-UHFFFAOYSA-N 4h-dithieno[3,2-a:2',3'-d]pyrrole Chemical compound S1C=CC2=C1NC1=C2SC=C1 BKYWEUVIGUEMFX-UHFFFAOYSA-N 0.000 description 1
- 125000002373 5 membered heterocyclic group Chemical group 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 239000005725 8-Hydroxyquinoline Substances 0.000 description 1
- RLDBDAOMSNYJTG-UHFFFAOYSA-N 9-(9h-fluoren-1-yl)carbazole Chemical compound C12=CC=CC=C2C2=CC=CC=C2N1C1=C2CC3=CC=CC=C3C2=CC=C1 RLDBDAOMSNYJTG-UHFFFAOYSA-N 0.000 description 1
- PLAZXGNBGZYJSA-UHFFFAOYSA-N 9-ethylcarbazole Chemical compound C1=CC=C2N(CC)C3=CC=CC=C3C2=C1 PLAZXGNBGZYJSA-UHFFFAOYSA-N 0.000 description 1
- VIJYEGDOKCKUOL-UHFFFAOYSA-N 9-phenylcarbazole Chemical compound C1=CC=CC=C1N1C2=CC=CC=C2C2=CC=CC=C21 VIJYEGDOKCKUOL-UHFFFAOYSA-N 0.000 description 1
- DLFVBJFMPXGRIB-UHFFFAOYSA-N Acetamide Chemical group CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 description 1
- 229910001020 Au alloy Inorganic materials 0.000 description 1
- NOWKCMXCCJGMRR-UHFFFAOYSA-N Aziridine Chemical compound C1CN1 NOWKCMXCCJGMRR-UHFFFAOYSA-N 0.000 description 1
- KXDAEFPNCMNJSK-UHFFFAOYSA-N Benzamide Chemical group NC(=O)C1=CC=CC=C1 KXDAEFPNCMNJSK-UHFFFAOYSA-N 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- VMQMZMRVKUZKQL-UHFFFAOYSA-N Cu+ Chemical compound [Cu+] VMQMZMRVKUZKQL-UHFFFAOYSA-N 0.000 description 1
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical group NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 description 1
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 1
- NUGPIZCTELGDOS-QHCPKHFHSA-N N-[(1S)-3-[4-(3-methyl-5-propan-2-yl-1,2,4-triazol-4-yl)piperidin-1-yl]-1-pyridin-3-ylpropyl]cyclopentanecarboxamide Chemical compound C(C)(C)C1=NN=C(N1C1CCN(CC1)CC[C@@H](C=1C=NC=CC=1)NC(=O)C1CCCC1)C NUGPIZCTELGDOS-QHCPKHFHSA-N 0.000 description 1
- LFZAGIJXANFPFN-UHFFFAOYSA-N N-[3-[4-(3-methyl-5-propan-2-yl-1,2,4-triazol-4-yl)piperidin-1-yl]-1-thiophen-2-ylpropyl]acetamide Chemical compound C(C)(C)C1=NN=C(N1C1CCN(CC1)CCC(C=1SC=CC=1)NC(C)=O)C LFZAGIJXANFPFN-UHFFFAOYSA-N 0.000 description 1
- ZSBDPRIWBYHIAF-UHFFFAOYSA-N N-acetyl-acetamide Natural products CC(=O)NC(C)=O ZSBDPRIWBYHIAF-UHFFFAOYSA-N 0.000 description 1
- PCLIMKBDDGJMGD-UHFFFAOYSA-N N-bromosuccinimide Chemical compound BrN1C(=O)CCC1=O PCLIMKBDDGJMGD-UHFFFAOYSA-N 0.000 description 1
- 229930192627 Naphthoquinone Natural products 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- ZCQWOFVYLHDMMC-UHFFFAOYSA-N Oxazole Chemical compound C1=COC=N1 ZCQWOFVYLHDMMC-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 229920000144 PEDOT:PSS Polymers 0.000 description 1
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229920000292 Polyquinoline Polymers 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229910001260 Pt alloy Inorganic materials 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical class [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 1
- PJANXHGTPQOBST-VAWYXSNFSA-N Stilbene Natural products C=1C=CC=CC=1/C=C/C1=CC=CC=C1 PJANXHGTPQOBST-VAWYXSNFSA-N 0.000 description 1
- 244000028419 Styrax benzoin Species 0.000 description 1
- 235000000126 Styrax benzoin Nutrition 0.000 description 1
- 235000008411 Sumatra benzointree Nutrition 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910001080 W alloy Inorganic materials 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- ULGYAEQHFNJYML-UHFFFAOYSA-N [AlH3].[Ca] Chemical compound [AlH3].[Ca] ULGYAEQHFNJYML-UHFFFAOYSA-N 0.000 description 1
- JFBZPFYRPYOZCQ-UHFFFAOYSA-N [Li].[Al] Chemical compound [Li].[Al] JFBZPFYRPYOZCQ-UHFFFAOYSA-N 0.000 description 1
- JHYLKGDXMUDNEO-UHFFFAOYSA-N [Mg].[In] Chemical compound [Mg].[In] JHYLKGDXMUDNEO-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- IPBVNPXQWQGGJP-UHFFFAOYSA-N acetic acid phenyl ester Natural products CC(=O)OC1=CC=CC=C1 IPBVNPXQWQGGJP-UHFFFAOYSA-N 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 125000001118 alkylidene group Chemical group 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- SNAAJJQQZSMGQD-UHFFFAOYSA-N aluminum magnesium Chemical compound [Mg].[Al] SNAAJJQQZSMGQD-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 125000002490 anilino group Chemical group [H]N(*)C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 1
- 150000004056 anthraquinones Chemical class 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 125000001204 arachidyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- UDEWPOVQBGFNGE-UHFFFAOYSA-N benzoic acid n-propyl ester Natural products CCCOC(=O)C1=CC=CC=C1 UDEWPOVQBGFNGE-UHFFFAOYSA-N 0.000 description 1
- 229960002130 benzoin Drugs 0.000 description 1
- 150000001562 benzopyrans Chemical class 0.000 description 1
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 125000001246 bromo group Chemical group Br* 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- DNSISZSEWVHGLH-UHFFFAOYSA-N butanamide Chemical group CCCC(N)=O DNSISZSEWVHGLH-UHFFFAOYSA-N 0.000 description 1
- 125000004744 butyloxycarbonyl group Chemical group 0.000 description 1
- 125000004063 butyryl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 150000001716 carbazoles Chemical class 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 235000011089 carbon dioxide Nutrition 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- PDZKZMQQDCHTNF-UHFFFAOYSA-M copper(1+);thiocyanate Chemical compound [Cu+].[S-]C#N PDZKZMQQDCHTNF-UHFFFAOYSA-M 0.000 description 1
- 125000006165 cyclic alkyl group Chemical group 0.000 description 1
- 125000001162 cycloheptenyl group Chemical group C1(=CCCCCC1)* 0.000 description 1
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000003113 cycloheptyloxy group Chemical group C1(CCCCCC1)O* 0.000 description 1
- 125000004210 cyclohexylmethyl group Chemical group [H]C([H])(*)C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000002933 cyclohexyloxy group Chemical group C1(CCCCC1)O* 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 229910052805 deuterium Inorganic materials 0.000 description 1
- 125000004431 deuterium atom Chemical group 0.000 description 1
- 125000004663 dialkyl amino group Chemical group 0.000 description 1
- 125000004986 diarylamino group Chemical group 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000008393 encapsulating agent Substances 0.000 description 1
- 239000003759 ester based solvent Substances 0.000 description 1
- 125000003754 ethoxycarbonyl group Chemical group C(=O)(OCC)* 0.000 description 1
- 125000000031 ethylamino group Chemical group [H]C([H])([H])C([H])([H])N([H])[*] 0.000 description 1
- 125000006125 ethylsulfonyl group Chemical group 0.000 description 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- RMBPEFMHABBEKP-UHFFFAOYSA-N fluorene Chemical compound C1=CC=C2C3=C[CH]C=CC3=CC2=C1 RMBPEFMHABBEKP-UHFFFAOYSA-N 0.000 description 1
- 150000008376 fluorenones Chemical class 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000007646 gravure printing Methods 0.000 description 1
- 235000019382 gum benzoic Nutrition 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-M hexanoate Chemical compound CCCCCC([O-])=O FUZZWVXGSFPDMH-UHFFFAOYSA-M 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000005935 hexyloxycarbonyl group Chemical group 0.000 description 1
- 238000007602 hot air drying Methods 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- LHJOPRPDWDXEIY-UHFFFAOYSA-N indium lithium Chemical compound [Li].[In] LHJOPRPDWDXEIY-UHFFFAOYSA-N 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- YZASAXHKAQYPEH-UHFFFAOYSA-N indium silver Chemical compound [Ag].[In] YZASAXHKAQYPEH-UHFFFAOYSA-N 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 229910052809 inorganic oxide Inorganic materials 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 125000005929 isobutyloxycarbonyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])OC(*)=O 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 125000005928 isopropyloxycarbonyl group Chemical group [H]C([H])([H])C([H])(OC(*)=O)C([H])([H])[H] 0.000 description 1
- 125000005956 isoquinolyl group Chemical group 0.000 description 1
- 125000001786 isothiazolyl group Chemical group 0.000 description 1
- 125000000842 isoxazolyl group Chemical group 0.000 description 1
- 150000004658 ketimines Chemical class 0.000 description 1
- 239000005453 ketone based solvent Substances 0.000 description 1
- 150000002605 large molecules Chemical class 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- GCICAPWZNUIIDV-UHFFFAOYSA-N lithium magnesium Chemical compound [Li].[Mg] GCICAPWZNUIIDV-UHFFFAOYSA-N 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- SJCKRGFTWFGHGZ-UHFFFAOYSA-N magnesium silver Chemical compound [Mg].[Ag] SJCKRGFTWFGHGZ-UHFFFAOYSA-N 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 125000001160 methoxycarbonyl group Chemical group [H]C([H])([H])OC(*)=O 0.000 description 1
- OLXYLDUSSBULGU-UHFFFAOYSA-N methyl pyridine-4-carboxylate Chemical compound COC(=O)C1=CC=NC=C1 OLXYLDUSSBULGU-UHFFFAOYSA-N 0.000 description 1
- 125000000250 methylamino group Chemical group [H]N(*)C([H])([H])[H] 0.000 description 1
- 125000002816 methylsulfanyl group Chemical group [H]C([H])([H])S[*] 0.000 description 1
- 125000004170 methylsulfonyl group Chemical group [H]C([H])([H])S(*)(=O)=O 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 125000002757 morpholinyl group Chemical group 0.000 description 1
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- BVSRQQLDLMFUCZ-UHFFFAOYSA-N n,n-diphenylthiophen-2-amine Chemical compound C1=CSC(N(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BVSRQQLDLMFUCZ-UHFFFAOYSA-N 0.000 description 1
- ZHDORMMHAKXTPT-UHFFFAOYSA-N n-benzoylbenzamide Chemical group C=1C=CC=CC=1C(=O)NC(=O)C1=CC=CC=C1 ZHDORMMHAKXTPT-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000002004 n-butylamino group Chemical group [H]N(*)C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000006610 n-decyloxy group Chemical group 0.000 description 1
- AIDQCFHFXWPAFG-UHFFFAOYSA-N n-formylformamide Chemical group O=CNC=O AIDQCFHFXWPAFG-UHFFFAOYSA-N 0.000 description 1
- 125000003136 n-heptyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001298 n-hexoxy group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])O* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 125000006609 n-nonyloxy group Chemical group 0.000 description 1
- 125000006608 n-octyloxy group Chemical group 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 150000002791 naphthoquinones Chemical class 0.000 description 1
- 125000005184 naphthylamino group Chemical group C1(=CC=CC2=CC=CC=C12)N* 0.000 description 1
- 229910000484 niobium oxide Inorganic materials 0.000 description 1
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 1
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N o-biphenylenemethane Natural products C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 description 1
- 125000005447 octyloxy group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])O* 0.000 description 1
- 238000007645 offset printing Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 150000004866 oxadiazoles Chemical class 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- WYURNTSHIVDZCO-SVYQBANQSA-N oxolane-d8 Chemical compound [2H]C1([2H])OC([2H])([2H])C([2H])([2H])C1([2H])[2H] WYURNTSHIVDZCO-SVYQBANQSA-N 0.000 description 1
- 125000001820 oxy group Chemical group [*:1]O[*:2] 0.000 description 1
- 229960003540 oxyquinoline Drugs 0.000 description 1
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000006340 pentafluoro ethyl group Chemical group FC(F)(F)C(F)(F)* 0.000 description 1
- 125000001148 pentyloxycarbonyl group Chemical group 0.000 description 1
- 125000005003 perfluorobutyl group Chemical group FC(F)(F)C(F)(F)C(F)(F)C(F)(F)* 0.000 description 1
- 125000005005 perfluorohexyl group Chemical group FC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)* 0.000 description 1
- 125000005007 perfluorooctyl group Chemical group FC(C(C(C(C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)* 0.000 description 1
- KJOLVZJFMDVPGB-UHFFFAOYSA-N perylenediimide Chemical compound C=12C3=CC=C(C(NC4=O)=O)C2=C4C=CC=1C1=CC=C2C(=O)NC(=O)C4=CC=C3C1=C42 KJOLVZJFMDVPGB-UHFFFAOYSA-N 0.000 description 1
- 150000002987 phenanthrenes Chemical class 0.000 description 1
- 229950000688 phenothiazine Drugs 0.000 description 1
- 125000006678 phenoxycarbonyl group Chemical group 0.000 description 1
- WLJVXDMOQOGPHL-UHFFFAOYSA-M phenylacetate Chemical compound [O-]C(=O)CC1=CC=CC=C1 WLJVXDMOQOGPHL-UHFFFAOYSA-M 0.000 description 1
- 229940049953 phenylacetate Drugs 0.000 description 1
- 125000004193 piperazinyl group Chemical group 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920002493 poly(chlorotrifluoroethylene) Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 239000005023 polychlorotrifluoroethylene (PCTFE) polymer Substances 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- QLNJFJADRCOGBJ-UHFFFAOYSA-N propionamide Chemical group CCC(N)=O QLNJFJADRCOGBJ-UHFFFAOYSA-N 0.000 description 1
- 125000001501 propionyl group Chemical group O=C([*])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004742 propyloxycarbonyl group Chemical group 0.000 description 1
- 125000003226 pyrazolyl group Chemical group 0.000 description 1
- 125000005412 pyrazyl group Chemical group 0.000 description 1
- 125000002098 pyridazinyl group Chemical group 0.000 description 1
- 125000000719 pyrrolidinyl group Chemical group 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- MCJGNVYPOGVAJF-UHFFFAOYSA-N quinolin-8-ol Chemical compound C1=CN=C2C(O)=CC=CC2=C1 MCJGNVYPOGVAJF-UHFFFAOYSA-N 0.000 description 1
- 125000005493 quinolyl group Chemical group 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- UTUZBCDXWYMYGA-UHFFFAOYSA-N silafluorene Chemical compound C12=CC=CC=C2CC2=C1C=CC=[Si]2 UTUZBCDXWYMYGA-UHFFFAOYSA-N 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 238000007764 slot die coating Methods 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical compound C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 1
- 235000021286 stilbenes Nutrition 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- GZCRRIHWUXGPOV-UHFFFAOYSA-N terbium atom Chemical compound [Tb] GZCRRIHWUXGPOV-UHFFFAOYSA-N 0.000 description 1
- 125000005931 tert-butyloxycarbonyl group Chemical group [H]C([H])([H])C(OC(*)=O)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000001412 tetrahydropyranyl group Chemical group 0.000 description 1
- VLLMWSRANPNYQX-UHFFFAOYSA-N thiadiazole Chemical compound C1=CSN=N1.C1=CSN=N1 VLLMWSRANPNYQX-UHFFFAOYSA-N 0.000 description 1
- 125000004627 thianthrenyl group Chemical group C1(=CC=CC=2SC3=CC=CC=C3SC12)* 0.000 description 1
- CRUIOQJBPNKOJG-UHFFFAOYSA-N thieno[3,2-e][1]benzothiole Chemical compound C1=C2SC=CC2=C2C=CSC2=C1 CRUIOQJBPNKOJG-UHFFFAOYSA-N 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 125000003944 tolyl group Chemical group 0.000 description 1
- 125000005034 trifluormethylthio group Chemical group FC(S*)(F)F 0.000 description 1
- 125000004044 trifluoroacetyl group Chemical group FC(C(=O)*)(F)F 0.000 description 1
- ZNOKGRXACCSDPY-UHFFFAOYSA-N tungsten trioxide Chemical compound O=[W](=O)=O ZNOKGRXACCSDPY-UHFFFAOYSA-N 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D495/00—Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
- C07D495/02—Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
- C07D495/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D513/00—Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
- C07D513/22—Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains four or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G61/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G61/12—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/08—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
- H01L31/10—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Definitions
- the present invention relates to a compound that is a semiconductor material, a composition containing the compound, and a photoelectric conversion device using the composition as a material.
- Photoelectric conversion elements are attracting attention as they are extremely useful devices, for example, from the viewpoint of energy saving and reduction of carbon dioxide emissions.
- a photoelectric conversion element is an element that includes at least a pair of electrodes consisting of an anode and a cathode, and an active layer provided between the pair of electrodes.
- at least one of the pair of electrodes is made of a transparent or translucent material, and light is allowed to enter the active layer from the side of the transparent or translucent electrode. Electric charges (holes and electrons) are generated in the active layer by the energy (h ⁇ ) of light incident on the active layer, the generated holes move toward the anode, and the electrons move toward the cathode. Then, the charges that have reached the anode and cathode are taken out of the device.
- Non-Patent Document 1 Further improvements in photoelectric conversion efficiency are required for photoelectric conversion elements. Therefore, various semiconductor materials have been developed and reported (see Non-Patent Document 1).
- Non-Patent Document 1 it is reported that a photoelectric conversion efficiency of about 15% can be realized. However, it is still difficult to say that the reduction in dark current, which is particularly required for photoelectric conversion elements, which are photodetectors, is sufficient.
- a composition comprising a p-type semiconductor material and an n-type semiconductor material
- a composition wherein the n-type semiconductor material contains a compound represented by the following formula (I).
- D 1 -B 1 -A 1 (I) (In formula (I), D 1 represents an electron-donating group, A 1 represents an electron-withdrawing group, B 1 represents a divalent group containing one or more structural units and forming a ⁇ -conjugated system. )
- [6] An ink composition comprising the composition according to any one of [1] to [5] and a solvent.
- a film having a bulk heterojunction structure containing the composition according to any one of [1] to [5].
- [8] A photoelectric conversion device comprising the film according to [7] as an active layer.
- D 1 -B 1 -A 1 (In formula (I), D 1 represents an electron-donating group, A 1 is an electron-withdrawing group and represents an electron-withdrawing group having a ring structure; B 1 represents a divalent group comprising one or more structural units and constituting a ⁇ -conjugated system,
- the first structural unit which is at least one of the one or more structural units, is a structural unit represented by the following formula (II), and the remaining second structural unit other than the first structural unit
- a unit is a divalent group containing an unsaturated bond, a divalent aromatic carbocyclic group or a divalent aromatic heterocyclic group.
- the two or more first structural units may be the same or different.
- the two or more second structural units the two or more second structural units may be the same or different.
- Ar 1 and Ar 2 each independently represent an optionally substituted aromatic carbocyclic ring or an optionally substituted aromatic heterocyclic ring
- Y represents a direct bond
- a group represented by -C( O)- or an oxygen atom
- R are each independently hydrogen atom, halogen atom, an optionally substituted alkyl group, a cycloalkyl group optionally having a substituent, an aryl group optionally having a substituent, an optionally substituted alkyloxy group, a cycloalkyloxy group optionally having a substituent, an optionally substituted aryloxy group, an optionally substituted alkylthio group, a cycloalkylthio group optionally having a substituent, an optionally substituted arylthio group, a monovalent heterocyclic group optionally having a substituent, a substituted amino group which may have a substituent, an acyl group optionally having a substituent, an imine residue optionally having
- R are each independently hydrogen atom, halogen atom, an optionally substituted alkyl group, a cycloalkyl group optionally having a substituent, an aryl group optionally having a substituent, an optionally substituted alkyloxy group, a cycloalkyloxy group optionally having a substituent, an optionally substituted aryloxy group, an optionally substituted alkylthio group, a cycloalkylthio group optionally having a substituent, an optionally substituted arylthio group, a monovalent heterocyclic group optionally having a substituent, a substituted amino group which may have a substituent, an acyl group optionally having a substituent, an imine residue optionally having a substituent, an amide group optionally having a substituent, an acid imide group optionally having a substituent, a substituted oxycarbony
- B 1 is a divalent group having any one structure selected from the group consisting of structures represented by the following formulas (VI-1) to (VI-16), [10] The compound according to any one of -[12].
- the two or more CU1s When there are two or more CU1s, the two or more CU1s may be the same or different, and when there are two or more CU2s, the two or more CU2s may be the same or different. may However, in formula (VI-8), the case where two CU2s are the same is excluded. )
- the present invention it is possible to provide a compound that can effectively reduce dark current, a composition containing the compound, and a photoelectric conversion element using the composition as a material for the functional layer.
- FIG. 1 is a diagram schematically showing a configuration example of a photoelectric conversion element.
- FIG. 2 is a diagram schematically showing a configuration example of an image detection unit.
- FIG. 3 is a diagram schematically showing a configuration example of a fingerprint detection unit.
- FIG. 4 is a diagram schematically showing a configuration example of an image detection unit for an X-ray imaging apparatus.
- FIG. 5 is a diagram schematically showing a configuration example of a vein detection unit for the vein authentication device.
- FIG. 6 is a diagram schematically showing a configuration example of an image detection unit for an indirect TOF rangefinder.
- Non-fullerene compounds refer to compounds that are neither fullerenes nor fullerene derivatives.
- ⁇ -conjugated system means a system in which ⁇ electrons are delocalized to multiple bonds.
- polymer compound means a polymer having a molecular weight distribution and a polystyrene-equivalent number average molecular weight of 1 ⁇ 10 3 or more and 1 ⁇ 10 8 or less.
- structural units contained in the polymer compound are 100 mol % in total.
- a “structural unit” means a residue derived from a raw material compound (monomer) and present at least one in the compound and polymer compound of the present embodiment.
- a "hydrogen atom” may be a hydrogen atom or a deuterium atom.
- halogen atoms include fluorine atoms, chlorine atoms, bromine atoms, and iodine atoms.
- substituteduents include halogen atoms, alkyl groups, cycloalkyl groups, alkenyl groups, cycloalkenyl groups, alkynyl groups, cycloalkynyl groups, alkyloxy groups, cycloalkyloxy groups, alkylthio groups, cycloalkylthio groups, aryl groups, aryloxy groups, arylthio groups, monovalent heterocyclic groups, substituted amino groups, acyl groups, imine residues, amide groups, acid imide groups, substituted oxycarbonyl groups, cyano groups, alkylsulfonyl groups, and nitro groups mentioned.
- the number of carbon atoms does not include the number of carbon atoms of the substituent.
- the "alkyl group” may be linear, branched, or cyclic.
- the number of carbon atoms in the linear alkyl group is generally 1-50, preferably 1-30, more preferably 1-20, not including the number of carbon atoms in the substituents.
- the number of carbon atoms in the branched or cyclic alkyl group is usually 3 to 50, preferably 3 to 30, more preferably 4 to 20, not including the number of carbon atoms in substituents.
- alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isoamyl, 2-ethylbutyl, n- hexyl group, cyclohexyl group, n-heptyl group, cyclohexylmethyl group, cyclohexylethyl group, n-octyl group, 2-ethylhexyl group, 3-n-propylheptyl group, adamantyl group, n-decyl group, 3,7-dimethyl octyl group, 2-ethyloctyl group, 2-n-hexyl-decyl group, n-dodecyl group, tetradecyl group, hexadecyl group, octadecyl group and i
- the alkyl group may have a substituent.
- An alkyl group having a substituent is, for example, a group in which a hydrogen atom in the above-exemplified alkyl group is substituted with a substituent such as an alkyloxy group, an aryl group, or a fluorine atom.
- substituted alkyl examples include trifluoromethyl, pentafluoroethyl, perfluorobutyl, perfluorohexyl, perfluorooctyl, 3-phenylpropyl, and 3-(4-methylphenyl).
- propyl group 3-(3,5-dihexylphenyl)propyl group and 6-ethyloxyhexyl group.
- a “cycloalkyl group” may be a monocyclic group or a polycyclic group.
- a cycloalkyl group may have a substituent.
- the number of carbon atoms in the cycloalkyl group is usually 3-30, preferably 12-19, not including the number of carbon atoms in the substituents.
- cycloalkyl groups include unsubstituted alkyl groups such as cyclopentyl, cyclohexyl, cycloheptyl and adamantyl groups, and hydrogen atoms in these groups are alkyl groups, alkyloxy groups, aryl groups, fluorine Groups substituted with substituents such as atoms are included.
- cycloalkyl group having a substituent examples include a methylcyclohexyl group and an ethylcyclohexyl group.
- P-valent aromatic carbocyclic group means the remaining atomic group excluding p hydrogen atoms directly bonded to the carbon atoms constituting the ring from an aromatic hydrocarbon optionally having a substituent. do.
- the p-valent aromatic carbocyclic group may further have a substituent.
- Aryl group is a monovalent aromatic carbocyclic group, which is an optionally substituted aromatic hydrocarbon remaining after removing one hydrogen atom directly bonded to a carbon atom constituting the ring means the atomic group of
- the aryl group may have a substituent.
- aryl groups include phenyl, 1-naphthyl, 2-naphthyl, 1-anthracenyl, 2-anthracenyl, 9-anthracenyl, 1-pyrenyl, 2-pyrenyl, and 4-pyrenyl groups.
- 2-fluorenyl group, 3-fluorenyl group, 4-fluorenyl group, 2-phenylphenyl group, 3-phenylphenyl group, 4-phenylphenyl group, and hydrogen atoms in these groups are alkyl groups, alkyloxy groups , an aryl group, and a group substituted with a substituent such as a fluorine atom.
- Alkyloxy group may be linear, branched, or cyclic.
- the number of carbon atoms in the straight-chain alkyloxy group is generally 1-40, preferably 1-10, not including the number of carbon atoms in the substituents.
- the number of carbon atoms in the branched or cyclic alkyloxy group is usually 3-40, preferably 4-10, not including the number of carbon atoms in the substituents.
- the alkyloxy group may have a substituent.
- alkyloxy groups include methoxy, ethoxy, n-propyloxy, isopropyloxy, n-butyloxy, isobutyloxy, tert-butyloxy, n-pentyloxy and n-hexyloxy groups.
- the cycloalkyl group possessed by the "cycloalkyloxy group” may be a monocyclic group or a polycyclic group.
- a cycloalkyloxy group may have a substituent.
- the number of carbon atoms in the cycloalkyloxy group is usually 3-30, preferably 12-19, not including the number of carbon atoms in the substituent.
- cycloalkyloxy groups include unsubstituted cycloalkyloxy groups such as cyclopentyloxy, cyclohexyloxy, and cycloheptyloxy groups, and hydrogen atoms in these groups substituted with fluorine atoms or alkyl groups. and the groups described above.
- the number of carbon atoms in the "aryloxy group” is usually 6 to 60, preferably 6 to 48, not including the number of carbon atoms in the substituents.
- the aryloxy group may have a substituent.
- Specific examples of the aryloxy group include a phenoxy group, a 1-naphthyloxy group, a 2-naphthyloxy group, a 1-anthracenyloxy group, a 9-anthracenyloxy group, a 1-pyrenyloxy group, and these groups.
- a group in which a hydrogen atom in is substituted with a substituent such as an alkyl group, an alkyloxy group, or a fluorine atom.
- Alkylthio group may be linear, branched, or cyclic.
- the number of carbon atoms in the straight-chain alkylthio group is generally 1-40, preferably 1-10, not including the number of carbon atoms in the substituents.
- the number of carbon atoms in the branched or cyclic alkylthio group is usually 3-40, preferably 4-10, not including the number of carbon atoms in the substituents.
- the alkylthio group may have a substituent.
- alkylthio groups include methylthio, ethylthio, propylthio, isopropylthio, butylthio, isobutylthio, tert-butylthio, pentylthio, hexylthio, cyclohexylthio, heptylthio, octylthio, 2 -ethylhexylthio, nonylthio, decylthio, 3,7-dimethyloctylthio, laurylthio, and trifluoromethylthio groups.
- the cycloalkyl group possessed by the "cycloalkylthio group” may be a monocyclic group or a polycyclic group.
- a cycloalkylthio group may have a substituent.
- the number of carbon atoms in the cycloalkylthio group is usually 3-30, preferably 12-19, not including the number of carbon atoms in the substituent.
- a cyclohexylthio group is mentioned as an example of the cycloalkylthio group which may have a substituent.
- the number of carbon atoms in the "arylthio group” is usually 6-60, preferably 6-48, not including the number of carbon atoms in the substituent.
- the arylthio group may have a substituent.
- the arylthio group include a phenylthio group and a C1-C12 alkyloxyphenylthio group (C1-C12 indicates that the number of carbon atoms in the group immediately following it is 1-12. The same applies hereinafter. .), C1-C12 alkylphenylthio groups, 1-naphthylthio groups, 2-naphthylthio groups, and pentafluorophenylthio groups.
- a "p-valent heterocyclic group” (p represents an integer of 1 or more) refers to a heterocyclic compound that may have a substituent, which is directly bonded to a carbon atom or a heteroatom that constitutes the ring. It means an atomic group remaining after removing p hydrogen atoms among the hydrogen atoms.
- the p-valent heterocyclic group may further have a substituent.
- the number of carbon atoms in the p-valent heterocyclic group is usually 2 to 30, preferably 2 to 6, not including the number of carbon atoms in substituents.
- heterocyclic compound may have include halogen atoms, alkyl groups, aryl groups, alkyloxy groups, aryloxy groups, alkylthio groups, arylthio groups, monovalent heterocyclic groups, substituted amino groups, acyl groups, imine residues, amide groups, acid imide groups, substituted oxycarbonyl groups, alkenyl groups, alkynyl groups, cyano groups, and nitro groups.
- the p-valent heterocyclic group includes a "p-valent aromatic heterocyclic group".
- p-valent aromatic heterocyclic group from an optionally substituted aromatic heterocyclic compound, out of the hydrogen atoms directly bonded to the carbon atoms or heteroatoms constituting the ring p means the remaining atomic groups excluding the hydrogen atoms of The p-valent aromatic heterocyclic group may further have a substituent.
- Aromatic heterocyclic compounds include not only compounds in which the heterocycle itself exhibits aromaticity, but also compounds in which an aromatic ring is fused to a heterocycle, even if the heterocycle itself does not exhibit aromaticity. be.
- aromatic heterocyclic compounds specific examples of compounds in which the heterocycle itself exhibits aromaticity include oxadiazole, thiadiazole, thiazole, oxazole, thiophene, pyrrole, phosphole, furan, pyridine, pyrazine, pyrimidine, and triazine. , pyridazine, quinoline, isoquinoline, carbazole, and dibenzophosphole.
- aromatic heterocyclic compounds specific examples of compounds in which the aromatic heterocyclic ring itself does not show aromaticity and the aromatic ring is fused to the heterocyclic ring include phenoxazine, phenothiazine, dibenzoborol, dibenzo Siloles, and benzopyrans.
- the number of carbon atoms in the monovalent heterocyclic group is usually 2-60, preferably 4-20, not including the number of carbon atoms in the substituent.
- the monovalent heterocyclic group may have a substituent, and specific examples of the monovalent heterocyclic group include thienyl, pyrrolyl, furyl, pyridyl, piperidyl, quinolyl, isoquinolyl group, pyrimidinyl group, triazinyl group, and groups in which hydrogen atoms in these groups are substituted with alkyl groups, alkyloxy groups, and the like.
- Substituted amino group means an amino group having a substituent.
- substituents on the amino group include alkyl groups, aryl groups, and monovalent heterocyclic groups, with alkyl groups, aryl groups, and monovalent heterocyclic groups being preferred.
- the substituted amino group usually has 2 to 30 carbon atoms.
- substituted amino groups include dialkylamino groups such as dimethylamino group and diethylamino group; diphenylamino group, bis(4-methylphenyl)amino group, bis(4-tert-butylphenyl)amino group, bis(3, and diarylamino groups such as 5-di-tert-butylphenyl)amino group.
- acyl group may modify a substituent.
- the number of carbon atoms in the acyl group is usually 2-20, preferably 2-18, not including the number of carbon atoms in the substituents.
- Specific examples of acyl groups include acetyl, propionyl, butyryl, isobutyryl, pivaloyl, benzoyl, trifluoroacetyl, and pentafluorobenzoyl groups.
- Imine residue means an atomic group remaining after removing one hydrogen atom directly bonded to a carbon atom or a nitrogen atom that constitutes a carbon atom-nitrogen atom double bond from an imine compound.
- An "imine compound” means an organic compound having a carbon atom-nitrogen atom double bond in the molecule.
- imine compounds include aldimines, ketimines, and compounds in which a hydrogen atom bonded to a nitrogen atom constituting a carbon atom-nitrogen double bond in aldimines is substituted with an alkyl group or the like.
- the imine residue usually has 2 to 20 carbon atoms, preferably 2 to 18 carbon atoms.
- Examples of imine residues include groups represented by the following structural formulas.
- Amido group means an atomic group remaining after removing one hydrogen atom bonded to a nitrogen atom from amide.
- the amide group usually has 1 to 20 carbon atoms, preferably 1 to 18 carbon atoms.
- Specific examples of the amide group include a formamide group, an acetamide group, a propioamide group, a butyroamide group, a benzamide group, a trifluoroacetamide group, a pentafluorobenzamide group, a diformamide group, a diacetamide group, a dipropioamide group, a dibutyroamide group, and a dibenzamide group. , a ditrifluoroacetamide group, and a dipentafluorobenzamide group.
- Acid imide group means an atomic group remaining after removing one hydrogen atom bonded to a nitrogen atom from an acid imide.
- the number of carbon atoms in the acid imide group is generally 4-20.
- Specific examples of acid imide groups include groups represented by the following structural formulas.
- R' represents an alkyl group, an aryl group, an arylalkyl group, or a monovalent heterocyclic group.
- the number of carbon atoms in the substituted oxycarbonyl group is usually 2 to 60, preferably 2 to 48, not including the number of carbon atoms in the substituent.
- substituted oxycarbonyl groups include a methoxycarbonyl group, an ethoxycarbonyl group, a propoxycarbonyl group, an isopropoxycarbonyl group, a butoxycarbonyl group, an isobutoxycarbonyl group, a tert-butoxycarbonyl group, a pentyloxycarbonyl group, and a hexyloxycarbonyl group.
- Alkenyl group may be linear, branched, or cyclic.
- the number of carbon atoms in the straight-chain alkenyl group is usually 2-30, preferably 3-20, not including the number of carbon atoms in the substituents.
- the number of carbon atoms in the branched or cyclic alkenyl group is usually 3 to 30, preferably 4 to 20, not including the number of carbon atoms in substituents.
- the alkenyl group may have a substituent.
- alkenyl groups include vinyl, 1-propenyl, 2-propenyl, 2-butenyl, 3-butenyl, 3-pentenyl, 4-pentenyl, 1-hexenyl and 5-hexenyl groups. , 7-octenyl groups, and groups in which hydrogen atoms in these groups are substituted with alkyl groups, alkyloxy groups, aryl groups, and fluorine atoms.
- a "cycloalkenyl group” may be a monocyclic group or a polycyclic group.
- a cycloalkenyl group may have a substituent.
- the number of carbon atoms in the cycloalkenyl group is usually 3-30, preferably 12-19, not including the number of carbon atoms in the substituents.
- cycloalkenyl groups include unsubstituted cycloalkenyl groups such as cyclohexenyl, and groups in which hydrogen atoms in these groups are substituted with alkyl groups, alkyloxy groups, aryl groups, and fluorine atoms. mentioned.
- substituted cycloalkenyl groups include a methylcyclohexenyl group and an ethylcyclohexenyl group.
- Alkynyl group may be linear, branched, or cyclic.
- the number of carbon atoms in the linear alkenyl group is usually 2 to 20, preferably 3 to 20, not including the number of carbon atoms in the substituents.
- the number of carbon atoms in the branched or cyclic alkenyl group is usually 4 to 30, preferably 4 to 20, not including the number of carbon atoms in the substituents.
- the alkynyl group may have a substituent.
- alkynyl groups include ethynyl, 1-propynyl, 2-propynyl, 2-butynyl, 3-butynyl, 3-pentynyl, 4-pentynyl, 1-hexynyl and 5-hexynyl groups. , and groups in which hydrogen atoms in these groups are substituted with alkyloxy groups, aryl groups, and fluorine atoms.
- a “cycloalkynyl group” may be a monocyclic group or a polycyclic group.
- a cycloalkynyl group may have a substituent.
- the number of carbon atoms in the cycloalkynyl group is generally 4-30, preferably 12-19, not including the number of carbon atoms in the substituents.
- cycloalkynyl groups include unsubstituted cycloalkynyl groups such as cyclohexynyl groups, and groups in which hydrogen atoms in these groups are substituted with alkyl groups, alkyloxy groups, aryl groups, and fluorine atoms. be done.
- substituted cycloalkynyl groups include a methylcyclohexynyl group and an ethylcyclohexynyl group.
- alkylsulfonyl group may be linear or branched.
- the alkylsulfonyl group may have a substituent.
- the number of carbon atoms in the alkylsulfonyl group is usually 1-30, not including the number of carbon atoms in the substituents.
- Specific examples of alkylsulfonyl groups include methylsulfonyl, ethylsulfonyl, and dodecylsulfonyl groups.
- “Ink composition” means a liquid used in the coating method, and is not limited to colored liquids.
- coating method includes a method of forming a film (layer) using a liquid substance, such as slot die coating method, slit coating method, knife coating method, spin coating method, casting method, micro gravure coating method. , gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, spray coating method, screen printing method, gravure printing method, flexographic printing method, offset printing method, inkjet coating method, dispenser printing method, A nozzle coating method and a capillary coating method can be mentioned.
- the ink composition may be a solution, or may be a dispersion liquid such as a dispersion liquid, an emulsion (emulsion), or a suspension (suspension).
- a dispersion liquid such as a dispersion liquid, an emulsion (emulsion), or a suspension (suspension).
- Absorption peak wavelength is a parameter specified based on the absorption peak of the absorption spectrum measured in a predetermined wavelength range, and refers to the wavelength of the absorption peak with the highest absorbance among the absorption peaks of the absorption spectrum.
- a composition according to an embodiment of the present invention is a composition containing a p-type semiconductor material and an n-type semiconductor material, wherein the n-type semiconductor material contains a compound represented by the following formula (I): .
- D 1 -B 1 -A 1 (I) D 1 represents an electron-donating group
- a 1 represents an electron-withdrawing group
- B 1 represents a divalent group containing one or more structural units and forming a ⁇ -conjugated system.
- the compound of the present embodiment is usually an n-type semiconductor material, and can be suitably used as a semiconductor material, particularly for the active layer of a photoelectric conversion device.
- whether the compound of the present embodiment functions as a p-type semiconductor material or an n-type semiconductor material is determined by the energy level of HOMO (Highest Occupied Molecular Orbital) of the selected compound or It can be relatively determined from the energy level value of LUMO (Lowest Unoccupied Molecular Orbital).
- the compound of the present embodiment can be suitably used, particularly as an n-type semiconductor material, in the active layer of a photoelectric conversion device.
- the relationship between the HOMO and LUMO energy level values of the p-type semiconductor material contained in the active layer and the HOMO and LUMO energy level values of the n-type semiconductor material is the range in which the photoelectric conversion device (light detection device) operates. can be set as appropriate.
- the "compound” of this embodiment is a compound represented by the following formula (I). D 1 -B 1 -A 1 (I)
- D 1 represents an electron-donating group
- a 1 represents an electron-withdrawing group
- B 1 represents a divalent group containing one or more structural units and forming a ⁇ -conjugated system.
- the compound of the present embodiment is a non-fullerene compound represented by the above formula (I), wherein the electron-withdrawing monovalent group A 1 contains one or more structural units and forms a ⁇ -conjugated system. It is a compound in which a divalent group B1 is bonded to one end side and an electron-donating monovalent group D1 is bonded to the other end side. In the compound of the present embodiment, it is preferable that a ⁇ -conjugated system is formed over the entire compound including D 1 and A 1 .
- a 1 , B 1 and D 1 that can constitute the compound represented by formula (I) are specifically described below.
- a 1 A 1 is an electron-withdrawing monovalent group.
- a 1 is specifically a monovalent group having the function of further reducing the electron density of B 1 , which is a divalent group constituting a ⁇ -conjugated system.
- a 1 is preferably an electron-withdrawing group having a ring structure.
- examples of the electron-withdrawing monovalent group A 1 include a group represented by —CH ⁇ C(—CN) 2 and the following formulas (a-1) to (a -10).
- T represents an optionally substituted carbocyclic ring or an optionally substituted heterocyclic ring.
- Carbocyclic and heterocyclic rings may be monocyclic or condensed. When these rings have multiple substituents, the multiple substituents may be the same or different.
- Examples of the optionally substituted carbocyclic ring represented by T include an aliphatic carbocyclic ring and an aromatic carbocyclic ring, preferably an aromatic carbocyclic ring.
- Specific examples of optionally substituted carbocyclic rings represented by T include benzene ring, naphthalene ring, anthracene ring, tetracene ring, pentacene ring, pyrene ring and phenanthrene ring, preferably benzene They are a ring, a naphthalene ring and a phenanthrene ring, more preferably a benzene ring and a naphthalene ring, still more preferably a benzene ring. These rings may have a substituent.
- Examples of the optionally substituted heterocyclic ring represented by T include an aliphatic heterocyclic ring and an aromatic heterocyclic ring, preferably an aromatic carbocyclic ring.
- Specific examples of the optionally substituted heterocyclic ring represented by T include pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, pyrrole ring, furan ring, thiophene ring, imidazole ring, oxazole ring, thiazole and a thienothiophene ring, preferably a thiophene ring, a pyridine ring, a pyrazine ring, a thiazole ring, and a thienothiophene ring, more preferably a thiophene ring. These rings may have a substituent.
- substituents that the carbocyclic or heterocyclic ring represented by T may have include halogen atoms, alkyl groups, alkyloxy groups, aryl groups, cyano groups and monovalent heterocyclic groups, preferably fluorine atom, chlorine atom, alkyloxy group having 1 to 6 carbon atoms and/or alkyl group having 1 to 6 carbon atoms.
- X 7 is a hydrogen atom or a halogen atom, a cyano group, an optionally substituted alkyl group, an optionally substituted alkyloxy group, an optionally substituted aryl group, or represents a monovalent heterocyclic group.
- X7 is preferably a cyano group.
- R a1 , R a2 , R a3 , R a4 , R a5 and R a6 are each independently a hydrogen atom, an optionally substituted alkyl group, a halogen atom, or a substituted represents an alkyloxy group, an optionally substituted aryl group or a monovalent heterocyclic group, preferably an optionally substituted alkyl group or optionally substituted It is an aryl group.
- R a7 and R a8 each independently represent a hydrogen atom, a halogen atom, an optionally substituted alkyl group, an optionally substituted cycloalkyl group, or a substituted an alkyloxy group that may have a substituent, a cycloalkyloxy group that may have a substituent, a monovalent aromatic carbocyclic group that may have a substituent, or a monovalent that may have a substituent and a plurality of R a7 and R a8 may be the same or different.
- electron-withdrawing group represented by A 1 include the following formulas (a-1-1) to (a-1-4), as well as formula (a-5-1), formula (a -6-1), groups represented by formula (a-6-2) and formula (a-7-1).
- R a11 each independently represent a hydrogen atom or a substituent
- R a1 , R a2 , R a3 , R a4 and R a5 are each independently as defined above.
- R a11 is preferably a hydrogen atom, a halogen atom, an alkyloxy group, a cyano group or an alkyl group.
- R a1 , R a2 , R a3 , R a4 and R a5 are preferably an optionally substituted alkyl group or an optionally substituted aryl group.
- Preferred examples of the electron-withdrawing group represented by A 1 include groups represented by the following formulae.
- B 1 B 1 is a divalent group containing one or more constitutional units and forming a ⁇ -conjugated system.
- B 1 is specifically a divalent group containing one or more pairs of atoms that are ⁇ -bonded to each other, with a ⁇ -electron cloud extending throughout B 1 .
- One or more structural units contained in B 1 preferably include a structural unit represented by the following formula (III).
- Ar 1 and Ar 2 each independently represent an optionally substituted aromatic carbocyclic ring or an optionally substituted aromatic heterocyclic ring
- Y represents a direct bond
- a group represented by -C( O)- or an oxygen atom
- R are each independently hydrogen atom, halogen atom, an optionally substituted alkyl group, a cycloalkyl group optionally having a substituent, an aryl group optionally having a substituent, an optionally substituted alkyloxy group, a cycloalkyloxy group optionally having a substituent, an optionally substituted aryloxy group, an optionally substituted alkylthio group, a cycloalkylthio group optionally having a substituent, an optionally substituted arylthio group, a monovalent heterocyclic group optionally having a substituent, a substituted amino group which may have a substituent, an acyl group optionally having a substituent, an imine residue optionally having a substitu
- the aromatic carbocyclic ring that can constitute Ar 1 and Ar 2 is preferably a benzene ring and a naphthalene ring, more preferably a benzene ring and a naphthalene ring, still more preferably a benzene ring. These rings may have a substituent.
- the aromatic heterocyclic ring that can constitute Ar 1 and Ar 2 is preferably an oxadiazole ring, a thiadiazole ring, a thiazole ring, an oxazole ring, a thiophene ring, a thienothiophene ring, a benzothiophene ring, a pyrrole ring, a phosphole ring, and a furan ring.
- pyridine ring pyrazine ring, pyrimidine ring, triazine ring, pyridazine ring, quinoline ring, isoquinoline ring, carbazole ring, and dibenzophosphole ring, and phenoxazine ring, phenothiazine ring, dibenzoborol ring, dibenzosilol ring, and It is a benzopyran ring.
- These rings may have a substituent.
- the halogen atom represented by R is preferably a fluorine atom.
- the optionally substituted alkyl group represented by R is preferably an optionally substituted alkyl group having 1 to 20 carbon atoms, more preferably having a substituent.
- an optionally substituted alkyl group having 1 to 15 carbon atoms, more preferably an optionally substituted alkyl group having 1 to 12 carbon atoms, and still more preferably having a substituent is an alkyl group having 1 to 10 carbon atoms which may be
- the substituent that the alkyl group represented by R may have is preferably a halogen atom, more preferably a fluorine atom and/or a chlorine atom.
- the optionally substituted cycloalkyl group represented by R is preferably an optionally substituted cycloalkyl group having 3 to 10 carbon atoms, more preferably having a substituent.
- the optionally substituted aryl group represented by R is preferably an optionally substituted aryl group having 6 to 15 carbon atoms, more preferably an optionally substituted aryl group. phenyl group or naphthyl group.
- the substituents that the aryl group represented by R may have are preferably halogen atoms (eg, chlorine atom, fluorine atom), alkyl groups having 1 to 12 carbon atoms (eg, methyl group, trifluoromethyl group, tert-butyl group, octyl group, dodecyl group), alkyloxy group having 1 to 12 carbon atoms (e.g., methoxy group, ethoxy group, octyloxy group), alkylsulfonyl group having 1 to 12 carbon atoms (e.g. , dodecylsulfonyl group), and/or a cyano group.
- halogen atoms eg, chlorine atom, fluorine atom
- alkyl groups having 1 to 12 carbon atoms eg, methyl group, trifluoromethyl group, tert-butyl group, octyl group, dodecyl group
- the optionally substituted alkyloxy group represented by R is preferably an optionally substituted alkyloxy group having 1 to 10 carbon atoms, more preferably having a substituent. an alkyloxy group having 1 to 8 carbon atoms which may be The group may have a substituent.
- the optionally substituted aryloxy group represented by R is preferably an optionally substituted aryloxy group having 6 to 15 carbon atoms, more preferably having a substituent. phenyloxy group or anthracenyloxy group which may be substituted.
- the substituent that the aryloxy group represented by R may have is preferably an alkyl group having 1 to 12 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms, and still more preferably an alkyl group having 1 to 6 carbon atoms. is a methyl group.
- the optionally substituted alkylthio group represented by R is preferably an optionally substituted alkylthio group having 1 to 6 carbon atoms, and more preferably an optionally substituted alkylthio group. an alkylthio group having 1 to 3 carbon atoms, which may be optionally substituted, and more preferably a methylthio group or a propylthio group, which may have a substituent.
- the optionally substituted arylthio group represented by R is preferably an optionally substituted arylthio group having 6 to 10 carbon atoms, more preferably an optionally substituted arylthio group. phenylthio group.
- the substituent that the arylthio group represented by R may have is preferably an alkyl group having 1 to 12 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms, further preferably is a methyl group.
- the optionally substituted monovalent heterocyclic group represented by R is preferably an optionally substituted 5- or 6-membered monovalent heterocyclic group.
- 5-membered monovalent heterocyclic groups include thienyl, furyl, pyrrolyl, imidazolyl, pyrazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, and pyrrolidinyl groups.
- 6-membered monovalent heterocyclic groups include pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, piperidyl, piperazinyl, morpholinyl, and tetrahydropyranyl groups.
- the optionally substituted monovalent heterocyclic group represented by R is more preferably a thienyl group, a furyl group, a thiazolyl group, an oxazolyl group, a pyridyl group, or a pyrazyl group, and these groups are It may have a substituent.
- the substituent that the monovalent heterocyclic group represented by R may have is preferably an alkyl group having 1 to 12 carbon atoms (e.g., methyl group, trifluoromethyl group, propyl group, hexyl group, octyl group, dodecyl group).
- the optionally substituted alkenyl group represented by R is preferably an optionally substituted alkenyl group having 2 to 10 carbon atoms, more preferably having a substituent is an alkenyl group having 2 to 6 carbon atoms which may be optionally substituted, and more preferably a 2-propenyl group or a 5-hexenyl group which may have a substituent.
- the optionally substituted cycloalkenyl group represented by R is preferably an optionally substituted cycloalkenyl group having 3 to 10 carbon atoms, more preferably having a substituent. It is a cycloalkenyl group having 6 to 7 carbon atoms which may be substituted, more preferably a cyclohexenyl group or a cycloheptenyl group which may have a substituent.
- the substituent that the cycloalkenyl group represented by R may have is preferably an alkyl group having 1 to 12 carbon atoms.
- the optionally substituted alkynyl group represented by R is preferably an optionally substituted alkynyl group having 2 to 10 carbon atoms, more preferably having a substituent. is an alkynyl group having 5 to 6 carbon atoms which may be optionally substituted, and more preferably a 5-hexynyl group or a 3-methyl-1-butynyl group which may have a substituent.
- the optionally substituted cycloalkynyl group represented by R is preferably an optionally substituted cycloalkynyl group having 6 to 10 carbon atoms, more preferably having a substituent. is a cycloalkynyl group having 7 to 8 carbon atoms which may be substituted, more preferably a cycloheptynyl group or a cyclooctynyl group which may have a substituent.
- the substituent that the cycloalkynyl group represented by R may have is preferably a C1-C12 alkyl group.
- a plurality of Rs are each independently preferably an optionally substituted alkyl group, more preferably an optionally substituted alkyl group having 1 to 15 carbon atoms, More preferably, it is an optionally substituted alkyl group having 1 to 12 carbon atoms, and more preferably an optionally substituted alkyl group having 1 to 10 carbon atoms. It is particularly preferred that each of a plurality of Rs is an optionally substituted alkyl group having 1 to 10 carbon atoms.
- R a is preferably a hydrogen atom
- R b is preferably is an optionally substituted alkyl group or an optionally substituted alkyloxy group, more preferably an optionally substituted alkyl group having 1 to 12 carbon atoms or An optionally substituted alkyloxy group having 1 to 12 carbon atoms, more preferably an optionally substituted alkyl group having 1 to 12 carbon atoms or having a substituent an alkyloxy group having 1 to 6 carbon atoms which may be substituted, and more preferably a methyl group, an ethyl group, a 2-methylpropyl group, an octyl group, a dodecyl group, or an ethoxy group; You may have a group.
- Examples of structural units represented by formula (III) include structural units represented by the following formula.
- the structural unit represented by the above formula (III) that can constitute B 1 is preferably a structural unit represented by the following formula (IV).
- Y and R are as already explained.
- X 1 and X 2 each independently represent a sulfur atom or an oxygen atom
- Examples of structural units represented by formula (IV) include structural units represented by the following formula.
- the structural unit represented by the formula (IV) that can constitute B 1 is an optionally substituted divalent polycyclic ring containing two or more thiophene rings and containing an sp3 carbon atom as a constituent element.
- a condensed ring group is preferably a structural unit represented by the following formula (IV-1).
- the structural unit represented by formula (IV) that can constitute B 1 may be a structural unit represented by formula (IV-2) below.
- Examples of structural units represented by formula (IV-2) include structural units represented by formulas (IV-2-1) to (IV-2-16) below.
- Preferred specific examples of the structural unit represented by formula (IV-2) include structural units represented by the following formula.
- B1 preferably contains one structural unit represented by formula (III) or formula (IV) (hereinafter referred to as first structural unit CU1).
- Structural units other than the structural units represented by the above formula (III) or formula (IV) that can be contained in B1 include, for example, a divalent groups, divalent aromatic carbocyclic groups and divalent aromatic heterocyclic groups.
- divalent group containing an unsaturated bond examples include ethene-1,2-diyl group, 1,3-butadiene-1,4-diyl group, acetylene-1,2-diyl group, and phenylene groups.
- R has the same definition as above.
- a phenylene group e.g., the following formulas 1 to 3
- a naphthalene-diyl group e.g., the following formula
- R has the same definition as above.
- the second structural unit CU2 is selected from the group consisting of divalent groups containing unsaturated bonds and groups represented by the following formulas (V-1) to (V-12) Among them, a structural unit selected from the group consisting of groups represented by formulas (V-10) to (V-12) is more preferred.
- X 1 , X 2 , Z 1 , Z 2 and R are as defined above. When there are two R's, the two R's may be the same or different.
- a more specific preferred example of the second structural unit CU2 is a structural unit represented by the following formula. These structural units may further have a substituent.
- B 1 contains one or more structural units, at least one of the one or more structural units is the first structural unit CU1, and The remaining structural unit is the second structural unit CU2.
- the combination and arrangement of the first structural unit CU1 and the second structural unit CU2 contained in B1 are not particularly limited, provided that a ⁇ -conjugated system can be formed.
- B 1 is preferably a divalent group having any one structure selected from the group consisting of structures represented by the following formulas (VI-1) to (VI-16).
- CU1 represents the first structural unit CU1
- CU2 represents the second structural unit CU2.
- the two or more CU1s may be the same or different, and when there are two or more CU2s, the two or more CU2s may be the same or different.
- formula (VI-8) the case where two CU2s are the same is excluded.
- formulas (VI-1) to (VI-16) structures represented by formulas (VI-1) to (VI-8), formulas (VI-15) and formulas (VI-16) A divalent group having is preferred, formula (VI-1), formula (VI-3), formula (VI-7), formula (VI-8), formula (VI-15) and formula (VI-16) A divalent group having a structure represented by is more preferable.
- the total number of the first structural unit CU1 and the second structural unit CU2 that can be contained in B1 is usually 1 or more, preferably 2 or more, more preferably 3 or more, and usually 7 or less. Yes, preferably 5 or less, more preferably 4 or less.
- the number of first structural units CU1 that can be contained in B1 is usually 5 or less, preferably 3 or less, and more preferably 1.
- the number of second structural units CU2 that can be contained in B1 is usually 5 or less, preferably 3 or less, and more preferably 1 or less.
- B 1 include divalent groups represented by the following formulas.
- R is as defined above.
- D 1 is a monovalent group that is an electron-donating group. Specifically, D 1 is a monovalent group having a function of increasing the electron density of B 1 , which is a divalent group forming a ⁇ -conjugated system.
- the HOMO energy level of D1 is preferably smaller than the HOMO energy level of A1.
- examples of the electron-donating group for D1 include a monovalent group containing an unsaturated bond, a monovalent aromatic carbocyclic group, a monovalent aromatic heterocyclic group, and a substituent. an optionally substituted alkylamino group, an optionally substituted arylamino group, an optionally substituted arylalkoxy group, an optionally substituted arylthioalkoxy group mentioned.
- the "univalent group containing an unsaturated bond" which is an electron-donating group
- examples of the "univalent group containing an unsaturated bond" include a vinyl group, a 1,3-butadien-1-yl group, and an ethynyl group.
- Examples of “monovalent aromatic carbocyclic group” and “monovalent aromatic heterocyclic group” which are electron-donating groups include a hydrogen atom 1 directly bonded to an atom constituting a ring from a triarylamine derivative
- the rest of the atomic groups excluding one, 5-membered heterocyclic rings such as aryl groups, thiophene rings, furan rings, pyrrole rings, cyclopentadiene, silacyclopentadiene, etc., and structures containing these as condensed rings are directly bonded to the atoms constituting the rings. and the remaining atomic groups excluding one hydrogen atom.
- examples of the triarylamine derivatives include triphenylamine, dinaphthylphenylamine, bis(4-alkylphenyl)phenylamine, bis(4-alkoxyphenyl)phenylamine, bis(9,9-dimethylphenylamine), ole-2-nyl)phenylamine, diphenylthienylamine, bis(4-alkylphenyl)thienylamine, bis(4-alkoxyphenyl)thienylamine, bis(9,9-dimethylfluor-2-yl)thienylamine, etc. is mentioned.
- Preferred are triphenylamine, bis(4-alkylphenyl)phenylamine and bis(4-alkoxyphenyl)phenylamine.
- carbazole derivative examples include carbazole, 9-alkylcarbazole, 9-arylcarbazole and the like. Specific examples include carbazole, 9-ethylcarbazole, 9-phenylcarbazole, 9-fluorenylcarbazole and the like. Carbazole is preferred.
- Examples of the aryl group which may have a substituent include a phenyl group, a 4-alkoxyphenyl group, a 4-tetraethyleneglycooxyphenyl group, a 3,4,5-trialkoxyphenyl group, a dimethylaminophenyl group, Diethylaminophenyl group, pyrrolozylphenyl group, thienyl group, alkylthienyl group, alkoxythienyl group, ethylenedioxythienyl group, phenothiazinyl group and thianthrenyl group.
- Examples of the alkyl group of the alkylthienyl group and the alkoxy group of the alkoxythienyl group include the groups already described.
- aryl groups may be linked to the aryl group.
- the aryl group is preferably a diethylaminophenyl group, a 3,4,5-trialkoxyphenyl group, or an ethylenedioxythienyl group.
- the alkylamino group which may have a substituent, for example, carbon such as methylamino group, ethylamino group, isopropylamino group, n-butylamino group, dimethylamino group, diethylamino group, di-isopropylamino group, etc.
- substituents for example, carbon such as methylamino group, ethylamino group, isopropylamino group, n-butylamino group, dimethylamino group, diethylamino group, di-isopropylamino group, etc.
- Examples include alkylamino groups having 1 to 8 atoms, preferably dimethylamino group.
- optionally substituted arylamino groups include phenylamino group, naphthylamino group, diphenylamino group, di-4-ethylphenylamino group and di-4-methylphenylamino group.
- a diphenylamino group is preferred.
- arylalkoxy groups examples include phenyl, 4-alkoxyphenyl, 4-hexyloxyphenyl and 4-tetraethyleneglycol groups as aryl groups optionally having substituents.
- Arylalkoxy groups including a xyphenyl group, a 3,4,5-trialkoxyphenyl group, a dimethylaminophenyl group, a diethylaminophenyl group and a pyrrolozylphenyl group can be mentioned.
- the arylalkoxy group is preferably a phenoxy group or a 4-hexyloxyphenyloxy group.
- optionally substituted arylthioalkoxy groups include aryl groups optionally having substituents such as phenyl, 4-alkoxyphenyl, 4-hexyloxyphenyl, 4-tetra Arylthioalkoxy groups including ethyleneglycoxyphenyl groups, 3,4,5-trialkoxyphenyl groups, dimethylaminophenyl groups, diethylaminophenyl groups and pyrrolozylphenyl groups are included.
- the aryl group in the arylthioalkoxy group is preferably 4-hexyloxyphenyl group.
- hetero five-membered rings such as thiophene ring, furan ring, pyrrole ring, cyclopentadiene and silacyclopentadiene and structures containing these as condensed rings include fluorene, silafluorene, dithienocyclopentadiene, dithienosilacyclopentadiene, Mention may be made of dithienopyrrole, benzodithiophene.
- D 1 is specifically an N-carbazolyl group, a diphenylamino group, a phenoxy group, and preferably a group represented by the following formula, such as an N-carbazolyl group, diphenylamino Groups and groups represented by the following formulas are more preferred.
- the LUMO energy level (E D-LUMO ) of D 1 and one or more of B 1 The LUMO energy level (E ⁇ -LUMO ) of at least one of the structural units (usually the first structural unit CU) and the LUMO energy level (E A-LUMO ) of A 1 preferably satisfies the conditions represented by the following formula.
- the LUMO energy level of the structural unit with the lowest LUMO energy level among the one or more structural units constituting B1 ( E B-LUMO )min preferably satisfies the conditions represented by the following formula.
- the average value of LUMO energy levels (E B-LUMO ) ave of one or more structural units constituting B 1 is represented by the following formula It is preferable to satisfy the condition represented by. E D-LUMO > (E B-LUMO ) ave > E A-LUMO
- the LUMO energy level value (eV) of the structural units (D 1 , B 1 and A 1 ) contained in the compound represented by formula (I) is calculated by any suitable conventionally known computational scientific method. be able to.
- a computational scientific method for example, the quantum chemical calculation program Gaussian 03, the B3LYP-level density functional theory is used to optimize the ground state structure, and a method using 6-31g* as the basis function can be applied.
- each structure (compound) derived from each structural unit in which the bond between the structural units (D 1 , B 1 and A 1 ) is cut and a hydrogen atom is added to the bond generated by the cutting can be calculated by applying the above method.
- the compound of the present embodiment can be suitably used as a semiconductor material for the active layer of a photoelectric conversion device, particularly as a non-fullerene compound that is an n-type semiconductor material.
- the compound of the present embodiment is used as an n-type semiconductor material for the material of the active layer, it is possible to effectively reduce the dark current particularly required for the photoelectric conversion element, which is a photodetector.
- Two or more of the compounds of this embodiment used as the n-type semiconductor material may be included as materials for the active layer.
- the active layer of a photoelectric conversion device may contain only the compound of the present embodiment as an n-type semiconductor material, and may contain a compound other than the compound of the present embodiment which is an n-type semiconductor material. , as a further n-type semiconductor material.
- Compounds other than the compounds of the present embodiment that can be included as additional n-type semiconductor materials may be low-molecular-weight compounds or high-molecular-weight compounds.
- n-type semiconductor materials (electron-accepting compounds) other than the low-molecular compound "compound of the present embodiment” examples include oxadiazole derivatives, anthraquinodimethane and its derivatives, benzoquinone and its derivatives, naphthoquinone and its derivatives. derivatives, anthraquinone and its derivatives, tetracyanoanthraquinodimethane and its derivatives, fluorenone derivatives, diphenyldicyanoethylene and its derivatives, diphenoquinone derivatives, metal complexes of 8-hydroxyquinoline and its derivatives, and phenanthrene derivatives such as bathocuproine. be done.
- n-type semiconductor materials other than the "compound of the present embodiment" which is a polymer compound include polyvinylcarbazole and its derivatives, polysilane and its derivatives, polysiloxane derivatives having an aromatic amine structure in the side chain or main chain, polyaniline and its derivatives, polythiophene and its derivatives, polypyrrole and its derivatives, polyphenylene vinylene and its derivatives, polythienylene vinylene and its derivatives, polyquinoline and its derivatives, polyquinoxaline and its derivatives, and polyfluorene and its derivatives .
- Compounds other than “compounds of the present embodiment” may include fullerene derivatives.
- the fullerene derivative refers to a compound in which at least a portion of fullerene ( C60 fullerene, C70 fullerene, C76 fullerene, C78 fullerene , and C84 fullerene) is modified. In other words, it refers to a compound having one or more groups attached to the fullerene skeleton.
- the fullerene derivative of C60 fullerene may be particularly referred to as " C60 fullerene derivative”
- the fullerene derivative of C70 fullerene may be referred to as " C70 fullerene derivative”.
- the fullerene derivative that can be used as an n-type semiconductor material other than the "compound of the present embodiment” is not particularly limited as long as it does not impair the purpose of the present invention.
- C60 fullerene derivative that can be used as the n-type semiconductor material other than the "compound of the present embodiment” include the following compounds.
- R is as defined above.
- the multiple R's may be the same or different.
- C70 fullerene derivatives include the following compounds.
- Photoelectric conversion element The photoelectric conversion element according to the present embodiment includes an anode, a cathode, and an active layer provided between the anode and the cathode and containing a p-type semiconductor material and an n-type semiconductor material, A photoelectric conversion device containing the compound of the present embodiment described above as the n-type semiconductor material.
- the photoelectric conversion element of the present embodiment by having the above configuration, it is possible to effectively reduce the dark current particularly required for the photoelectric conversion element, which is a photodetector.
- FIG. 1 is a diagram schematically showing the configuration of the photoelectric conversion element of this embodiment.
- the photoelectric conversion element 10 is provided on a support substrate 11 .
- the photoelectric conversion element 10 includes an anode 12 provided in contact with a support substrate 11, a hole transport layer 13 provided in contact with the anode 12, and a hole transport layer 13 provided in contact with the hole transport layer 13. an active layer 14 , an electron transport layer 15 provided in contact with the active layer 14 , and a cathode 16 provided in contact with the electron transport layer 15 .
- a sealing member 17 is further provided so as to be in contact with the cathode 16 .
- a photoelectric conversion element is usually formed on a substrate (support substrate). Further, it may be further sealed with a substrate (sealing substrate).
- a substrate substrate (sealing substrate).
- the material of the substrate is not particularly limited as long as it is a material that does not chemically change when the layer containing an organic compound is formed.
- the electrode opposite to the electrode provided on the opaque substrate is preferably a transparent or translucent electrode.
- a photoelectric conversion element includes a pair of electrodes, an anode and a cathode. At least one of the anode and the cathode is preferably a transparent or translucent electrode in order to allow light to enter.
- Examples of materials for transparent or semi-transparent electrodes include conductive metal oxide films and semi-transparent metal thin films. Specifically, indium oxide, zinc oxide, tin oxide, and their composites indium tin oxide (ITO), indium zinc oxide (IZO), conductive materials such as NESA, gold, platinum, silver, copper. ITO, IZO, and tin oxide are preferable as materials for transparent or translucent electrodes. Moreover, as the electrode, a transparent conductive film using an organic compound such as polyaniline and its derivatives, polythiophene and its derivatives as a material may be used. The transparent or translucent electrode can be either the anode or the cathode.
- the other electrode may be an electrode with low light transmittance.
- materials for electrodes with low light transmittance include metals and conductive polymers.
- Specific examples of low light transmissive electrode materials include lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, Metals such as terbium, ytterbium, and alloys of two or more thereof, or one or more of these metals together with gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten and tin alloys with one or more metals selected from the group consisting of graphite, graphite intercalation compounds, polyaniline and its derivatives, polythiophene and its derivatives.
- Alloys include magnesium-silver alloys, magnesium-indium alloys, magnesium-aluminum alloys, indium-silver alloys, lithium-aluminum alloys, lithium-magnesium alloys, lithium-indium alloys, and calcium-aluminum alloys.
- the active layer included in the photoelectric conversion element of the present embodiment is assumed to have a bulk heterojunction structure, and includes a p-type semiconductor material and an n-type semiconductor material. (details will be described later).
- the thickness of the active layer is not particularly limited.
- the thickness of the active layer can be any suitable thickness considering the balance between suppression of dark current and extraction of the generated photocurrent.
- the thickness of the active layer is preferably 100 nm or more, more preferably 150 nm or more, and even more preferably 200 nm or more, particularly from the viewpoint of further reducing dark current.
- the thickness of the active layer is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, and even more preferably 1 ⁇ m or less.
- a p-type semiconductor material that can be suitably used as a material for the active layer according to this embodiment in combination with the n-type semiconductor material, which is the compound of this embodiment already described, will be described.
- the p-type semiconductor material of the present embodiment is preferably a polymer compound having a predetermined polystyrene-equivalent weight-average molecular weight.
- the p-type semiconductor material of the present embodiment is preferably a polymer compound with an absorption peak wavelength greater than 700 nm.
- the “absorption peak wavelength” can be measured using any suitable conventionally known ultraviolet-visible-near-infrared spectrophotometer (eg, "JASCO-V670" manufactured by JASCO Corporation).
- any suitable conventionally known ultraviolet-visible-near-infrared spectrophotometer eg, "JASCO-V670" manufactured by JASCO Corporation.
- the weight average molecular weight in terms of polystyrene means the weight average molecular weight calculated using a standard sample of polystyrene using gel permeation chromatography (GPC).
- the polystyrene-equivalent weight average molecular weight of the p-type semiconductor material is preferably 3,000 or more and 500,000 or less, particularly from the viewpoint of improving solubility in solvents.
- the p-type semiconductor material is a ⁇ -conjugated polymer compound (DA-type conjugated polymer Also referred to as a compound or simply a conjugated polymer compound.). It should be noted that which is the donor structural unit or the acceptor structural unit can be relatively determined from the energy level of the HOMO or LUMO.
- the donor structural unit is a structural unit with an excess of ⁇ electrons
- the acceptor structural unit is a structural unit with a ⁇ electron deficiency.
- the structural unit that can constitute the p-type semiconductor material may be a structural unit in which a donor structural unit and an acceptor structural unit are directly bonded, or a donor structural unit and an acceptor structural unit.
- Structural units linked via spacers are also included.
- Examples of p-type semiconductor materials that are polymer compounds include polyvinylcarbazole and its derivatives, polysilane and its derivatives, polysiloxane derivatives containing an aromatic amine structure in the side chain or main chain, polyaniline and its derivatives, polythiophene and its derivatives. , polypyrrole and its derivatives, polyphenylene vinylene and its derivatives, polythienylene vinylene and its derivatives, polyfluorene and its derivatives.
- a polymer compound containing a structural unit represented by the following formula (VII) of the present embodiment is preferred.
- a structural unit represented by the following formula (VII) is usually a donor structural unit in the present embodiment.
- Ar 3 and Ar 4 represent a trivalent aromatic heterocyclic group which may have a substituent, and Z represents the following formulas (Z-1) to (Z-7). represents the group represented.
- R is as defined above. In each of formulas (Z-1) to (Z-7), when there are two R's, the two R's may be the same or different.
- the aromatic heterocycles that can constitute Ar 3 and Ar 4 include, in addition to single rings and condensed rings in which the heterocycles themselves exhibit aromaticity, A ring in which an aromatic ring is condensed to a heterocyclic ring is included.
- Each of the aromatic heterocycles that can constitute Ar 3 and Ar 4 may be a monocyclic ring or a condensed ring.
- the aromatic heterocycle is a condensed ring, all of the rings constituting the condensed ring may be aromatic condensed rings, or only some of the rings may be aromatic condensed rings.
- these rings have multiple substituents, these substituents may be the same or different.
- aromatic carbocyclic rings that can constitute Ar 3 and Ar 4 include benzene ring, naphthalene ring, anthracene ring, tetracene ring, pentacene ring, pyrene ring and phenanthrene ring, preferably benzene ring and naphthalene ring. It is a ring, more preferably a benzene ring or a naphthalene ring, still more preferably a benzene ring. These rings may have a substituent.
- aromatic heterocyclic ring examples include ring structures possessed by compounds already described as aromatic heterocyclic compounds, such as oxadiazole ring, thiadiazole ring, thiazole ring, oxazole ring, thiophene ring, pyrrole ring, phosphole ring, furan ring, pyridine ring, pyrazine ring, pyrimidine ring, triazine ring, pyridazine ring, quinoline ring, isoquinoline ring, carbazole ring, dibenzophosphole ring, phenoxazine ring, phenothiazine ring, dibenzoborol ring, dibenzo A silole ring and a benzopyran ring are included. These rings may have a substituent.
- the structural unit represented by formula (VII) is preferably a structural unit represented by formula (VIII) or (IX) below.
- the p-type semiconductor material in this embodiment is preferably a polymer compound containing a structural unit represented by the following formula (VIII) or (IX).
- Examples of suitable structural units represented by formulas (VII) and (IX) include the following formulas (VII-1) and (VII-2), and formulas (IX-1) and (IX-2). structural units that are
- R is as defined above.
- the two R's may be the same or different.
- Examples of more specific preferred structural units represented by formula (VII-1) include structural units represented by the following formulas (VII-1-1) and (VII-1-2).
- the structural unit represented by formula (VIII) is preferably a structural unit represented by formula (X) below.
- the p-type semiconductor material may be a polymer compound containing a structural unit represented by the following formula (X).
- X 1 and X 2 are each independently a sulfur atom or an oxygen atom
- R is as defined above.
- Examples of preferred structural units represented by formula (IX) include structural units represented by the following formulas (X-1) to (X-16).
- the polymer compound which is the p-type semiconductor material in this embodiment, preferably contains a structural unit represented by the following formula (XI).
- a structural unit represented by the following formula (XI) is usually an acceptor structural unit in the present embodiment.
- Ar 5 represents a divalent aromatic heterocyclic group.
- the number of carbon atoms in the divalent aromatic heterocyclic group represented by Ar 5 is generally 2-60, preferably 4-60, more preferably 4-20.
- the divalent aromatic heterocyclic group represented by Ar 5 may have a substituent.
- substituents that the divalent aromatic heterocyclic group represented by Ar 5 may have include a halogen atom, an optionally substituted alkyl group, and optionally substituted aryl group, optionally substituted alkyloxy group, optionally substituted aryloxy group, optionally substituted alkylthio group, optionally substituted optionally substituted arylthio group, optionally substituted monovalent heterocyclic group, optionally substituted amino group, optionally substituted acyl group, optionally substituted optionally imine residue, optionally substituted amide group, optionally substituted acid imide group, optionally substituted oxycarbonyl group, substituent alkenyl groups optionally having a, alkynyl groups optionally having substituents, cyano groups, and nitro groups.
- X 1 , X 2 , Z 1 , Z 2 and R are as defined above. When there are two R's, the two R's may be the same or different.
- both X 1 and X 2 in formulas (X-1) to (X-10) are preferably sulfur atoms.
- the structural units represented by formulas (X-1) to (X-10) can usually function as acceptor structural units, as described above. However, it is not limited to this, and in particular structural units represented by formulas (X-4), (X-5) and (X-7) can also function as donor structural units.
- the p-type semiconductor material is preferably a ⁇ -conjugated polymer compound containing a structural unit containing a thiophene skeleton and containing a ⁇ -conjugated system.
- divalent aromatic heterocyclic group represented by Ar 5 include groups represented by the following formulas (101) to (191). These groups may further have a substituent.
- R has the same definition as above.
- the multiple R's may be the same or different.
- the polymer compound that is the p-type semiconductor material of the present embodiment contains a structural unit represented by formula (VI) as a donor structural unit and a structural unit represented by formula (X) as an acceptor structural unit.
- a conjugated polymer compound is preferred.
- a polymer compound that is a p-type semiconductor material may contain two or more structural units represented by formula (VI), and may contain two or more structural units represented by formula (X). good too.
- the polymer compound that is the p-type semiconductor material of the present embodiment may contain a structural unit represented by the following formula (XII).
- Ar 6 represents a divalent aromatic carbocyclic group.
- the divalent aromatic carbocyclic group represented by Ar 6 is an atomic group remaining after removing two hydrogen atoms from an optionally substituted aromatic hydrocarbon.
- Aromatic hydrocarbons include compounds having condensed rings, and compounds in which two or more selected from the group consisting of independent benzene rings and condensed rings are bonded directly or via a divalent group such as a vinylene group. included.
- substituents that the aromatic hydrocarbon may have include substituents similar to those exemplified as substituents that the heterocyclic compound may have.
- the number of carbon atoms in the divalent aromatic carbocyclic group represented by Ar 6 is usually 6-60, preferably 6-20, not including the number of carbon atoms in the substituents.
- the number of carbon atoms including substituents is usually 6-100.
- Examples of the divalent aromatic carbocyclic group represented by Ar 6 include a phenylene group (eg, formulas 1 to 3 below), a naphthalene-diyl group (eg, formulas 4 to 13 below), and anthracene-diyl.
- R is as defined above. Multiple R's may be the same or different.
- the structural unit represented by formula (XII) is preferably a structural unit represented by formula (XIII) below.
- R is as defined above. Two R's may be the same or different.
- the structural unit that constitutes the polymer compound that is the p-type semiconductor material may be a structural unit in which two or more types of structural units selected from the above structural units are combined and linked.
- the polymer compound as the p-type semiconductor material contains the structural unit represented by formula (VI) and/or the structural unit represented by formula (X), the structural unit represented by formula (VI) and the formula
- the total amount of structural units represented by (X) is usually 20 mol% to 100 mol% when the amount of all structural units contained in the polymer compound is 100 mol%, and the charge as a p-type semiconductor material
- the content is preferably 40 mol % to 100 mol %, more preferably 50 mol % to 100 mol %, because it can improve transportability.
- polymer compound that is the p-type semiconductor material of the present embodiment include polymer compounds represented by the following formulas (P-1) to (P-17).
- R is as defined above. Multiple R's may be the same or different.
- the photoelectric conversion device of the present embodiment includes, for example, a charge transport layer (electron transport layer, hole transport layer, electron injection layer, An intermediate layer (buffer layer) such as a hole injection layer is preferably provided.
- materials used for the intermediate layer include metals such as calcium, inorganic oxide semiconductors such as molybdenum oxide and zinc oxide, and PEDOT (poly(3,4-ethylenedioxythiophene)) and PSS (poly( 4-styrenesulfonate)) (PEDOT:PSS).
- metals such as calcium, inorganic oxide semiconductors such as molybdenum oxide and zinc oxide
- PEDOT poly(3,4-ethylenedioxythiophene)
- PSS poly( 4-styrenesulfonate)
- the photoelectric conversion element preferably has a hole transport layer between the anode and the active layer.
- the hole transport layer has a function of transporting holes from the active layer to the electrode.
- the hole-transporting layer provided in contact with the anode is sometimes called a hole-injecting layer.
- a hole transport layer (hole injection layer) provided in contact with the anode has a function of promoting injection of holes into the anode.
- the hole transport layer (hole injection layer) may be in contact with the active layer.
- the hole-transporting layer contains a hole-transporting material.
- hole-transporting materials include polythiophene and its derivatives, aromatic amine compounds, polymer compounds containing constitutional units having aromatic amine residues, CuSCN, CuI, NiO, tungsten oxide (WO 3 ) and molybdenum oxide. (MoO 3 ).
- the intermediate layer can be formed by any suitable conventionally known forming method.
- the intermediate layer can be formed by a vacuum deposition method or a coating method similar to the method for forming the active layer.
- the intermediate layer is an electron transport layer
- the substrate supporting substrate
- anode, hole transport layer, active layer, electron transport layer, and cathode are laminated in this order so as to be in contact with each other. It is preferable to have a
- the photoelectric conversion element of this embodiment preferably has an electron transport layer as an intermediate layer between the cathode and the active layer.
- the electron transport layer has a function of transporting electrons from the active layer to the cathode.
- the electron transport layer may be in contact with the cathode.
- the electron transport layer may be in contact with the active layer.
- the electron-transporting layer provided in contact with the cathode is sometimes called an electron-injecting layer.
- An electron transport layer (electron injection layer) provided in contact with the cathode has a function of promoting injection of electrons generated in the active layer into the cathode.
- the electron-transporting layer contains an electron-transporting material.
- electron-transporting materials include polyalkyleneimine and derivatives thereof, high-molecular compounds having a fluorene structure, metals such as calcium, and metal oxides.
- polyalkyleneimines and derivatives thereof include alkyleneimine having 2 to 8 carbon atoms, especially alkyleneimine having 2 to 8 carbon atoms, such as ethyleneimine, propyleneimine, butyleneimine, dimethylethyleneimine, pentyleneimine, hexyleneimine, heptyleneimine, octyleneimine.
- alkyleneimine having 2 to 8 carbon atoms such as ethyleneimine, propyleneimine, butyleneimine, dimethylethyleneimine, pentyleneimine, hexyleneimine, heptyleneimine, octyleneimine.
- examples include polymers obtained by conventionally polymerizing one or more of 2 to 4 alkyleneimines, and polymers chemically modified by reacting them with various compounds.
- Preferred polyalkyleneimines and derivatives thereof are polyethyleneimine (PEI) and ethoxylated polyethyleneimine (PEIE).
- polymer compounds containing a fluorene structure examples include poly[(9,9-bis(3′-(N,N-dimethylamino)propyl)-2,7-fluorene)-ortho-2,7-(9 ,9′-dioctylfluorene)] (PFN) and PFN-P2.
- metal oxides examples include zinc oxide, gallium-doped zinc oxide, aluminum-doped zinc oxide, titanium oxide, and niobium oxide.
- a metal oxide containing zinc is preferable, and zinc oxide is particularly preferable.
- Examples of other electron-transporting materials include poly(4-vinylphenol) and perylene diimide.
- the photoelectric conversion element of the present embodiment further includes a sealing member, and is a sealed body sealed with the sealing member.
- a sealing member Any suitable conventionally known member can be used as the sealing member.
- the sealing member include a combination of a glass substrate as a substrate (sealing substrate) and a sealing material (adhesive) such as a UV curable resin.
- the sealing member may be a sealing layer having a layer structure of one or more layers.
- layers constituting the sealing layer include gas barrier layers and gas barrier films.
- the sealing layer is preferably made of a material that has a property of blocking moisture (water vapor barrier property) or a property of blocking oxygen (oxygen barrier property).
- suitable materials for the sealing layer include polyethylene trifluoride, polytrifluoroethylene chloride (PCTFE), polyimide, polycarbonate, polyethylene terephthalate, alicyclic polyolefin, ethylene-vinyl alcohol copolymer, and the like.
- Examples include organic materials, inorganic materials such as silicon oxide, silicon nitride, aluminum oxide, and diamond-like carbon.
- the sealing member is usually made of a material that can withstand heat treatment to which the photoelectric conversion element is applied, for example, when it is incorporated into the device of the following application examples.
- Applications of the photoelectric conversion element of the present embodiment include photodetection elements and solar cells. More specifically, the photoelectric conversion element of the present embodiment allows a photocurrent to flow by irradiating light from the transparent or translucent electrode side while a voltage (reverse bias voltage) is applied between the electrodes. and can be operated as a photodetector (optical sensor). Also, it can be used as an image sensor by integrating a plurality of photodetectors. The photoelectric conversion element of this embodiment can be suitably used particularly as a photodetector.
- the photoelectric conversion element of the present embodiment can generate a photovoltaic force between electrodes by being irradiated with light, and can be operated as a solar cell.
- a solar cell module can also be obtained by integrating a plurality of photoelectric conversion elements.
- the photoelectric conversion element according to the present embodiment can be used as a photodetector in various electronic devices such as workstations, personal computers, personal digital assistants, entrance/exit management systems, digital cameras, and medical equipment. It can be suitably applied to the detection unit provided in the device.
- the photoelectric conversion element of the present embodiment is provided in the above-exemplified electronic device, for example, an image detection unit for a solid-state imaging device such as an X-ray imaging device and a CMOS image sensor (e.g., an image sensor such as an X-ray sensor), a fingerprint Detection units of biometric information authentication devices that detect predetermined features of a part of a living body, such as detection units, face detection units, vein detection units, and iris detection units (e.g., near-infrared sensors), and optical biosensors such as pulse oximeters. It can be suitably applied to a detection unit or the like.
- a CMOS image sensor e.g., an image sensor such as an X-ray sensor
- a fingerprint Detection units of biometric information authentication devices that detect predetermined features of a part of a living body, such as detection units, face detection units, vein detection units, and iris detection units (e.g., near-infrared sensors), and optical biosensor
- the photoelectric conversion element of this embodiment can be suitably applied as an image detection unit for a solid-state imaging device, and further to a time-of-flight (TOF) type distance measurement device (TOF type distance measurement device).
- TOF time-of-flight
- the TOF rangefinder measures the distance by causing the photoelectric conversion element to receive the light emitted from the light source and reflected by the object to be measured. Specifically, the distance to the object to be measured is obtained by detecting the time of flight until the irradiation light emitted from the light source is reflected by the object to be measured and returns as reflected light.
- the TOF type includes a direct TOF method and an indirect TOF method.
- the direct TOF method directly measures the difference between the time when the light is irradiated from the light source and the time when the reflected light is received by the photoelectric conversion element. to measure the distance.
- the distance measurement principle used in the indirect TOF method to obtain the time of flight by charge accumulation includes a continuous wave (especially sine wave) modulation method in which the time of flight is obtained from the phases of the light emitted from the light source and the reflected light reflected by the measurement target. and pulse modulation method.
- an image detection unit for a solid-state imaging device an image detection unit for an X-ray imaging device, a biometric authentication device (for example, a fingerprint authentication device, a vein Configuration examples of a fingerprint detection unit and a vein detection unit for an authentication device, etc., and an image detection unit of a TOF rangefinder (indirect TOF method) will be described with reference to the drawings.
- a biometric authentication device for example, a fingerprint authentication device, a vein Configuration examples of a fingerprint detection unit and a vein detection unit for an authentication device, etc.
- an image detection unit of a TOF rangefinder indirect TOF method
- FIG. 2 is a diagram schematically showing a configuration example of an image detection unit for a solid-state imaging device.
- the image detection unit 1 includes a CMOS transistor substrate 20, an interlayer insulating film 30 provided so as to cover the CMOS transistor substrate 20, and a photoelectric conversion element provided on the interlayer insulating film 30 according to the embodiment of the present invention. It is provided so as to penetrate the element 10 and the interlayer insulating film 30 , and is provided so as to cover the photoelectric conversion element 10 and the interlayer wiring part 32 electrically connecting the CMOS transistor substrate 20 and the photoelectric conversion element 10 . and a color filter 50 provided on the sealing layer 40 .
- the CMOS transistor substrate 20 has a conventionally well-known arbitrary and suitable configuration in accordance with the design.
- the CMOS transistor substrate 20 includes functional elements such as CMOS transistor circuits (MOS transistor circuits) for realizing various functions, including transistors and capacitors formed within the thickness of the substrate.
- MOS transistor circuits CMOS transistor circuits
- Functional elements include, for example, floating diffusions, reset transistors, output transistors, and selection transistors.
- a signal readout circuit and the like are built into the CMOS transistor substrate 20 with such functional elements, wiring, and the like.
- the interlayer insulating film 30 can be made of any suitable conventionally known insulating material such as silicon oxide and insulating resin.
- the interlayer wiring section 32 can be made of any suitable conventionally known conductive material (wiring material) such as copper and tungsten.
- the interlayer wiring portion 32 may be, for example, an in-hole wiring formed simultaneously with the formation of the wiring layer, or an embedded plug formed separately from the wiring layer.
- the sealing layer 40 may be made of any suitable conventionally known material on the condition that it can prevent or suppress permeation of harmful substances such as oxygen and water that may functionally deteriorate the photoelectric conversion element 10. can be done.
- the sealing layer 40 can have the same configuration as the sealing member 17 already described.
- the color filter 50 for example, a primary color filter made of any conventionally known suitable material and corresponding to the design of the image detection unit 1 can be used. Further, as the color filter 50, a complementary color filter that can be thinner than the primary color filter can be used. As complementary color filters, for example, three types of (yellow, cyan, magenta), three types of (yellow, cyan, transparent), three types of (yellow, transparent, magenta), and three types of (transparent, cyan, magenta) A combination of types of color filters can be used. These can be arranged in any suitable arrangement corresponding to the design of the photoelectric conversion element 10 and the CMOS transistor substrate 20 on the condition that color image data can be generated.
- the light received by the photoelectric conversion element 10 through the color filter 50 is converted by the photoelectric conversion element 10 into an electric signal corresponding to the amount of light received, and is output as a light reception signal, that is, the object to be imaged, to the outside of the photoelectric conversion element 10 through the electrodes. is output as an electrical signal corresponding to
- the received light signal output from the photoelectric conversion element 10 is input to the CMOS transistor substrate 20 via the interlayer wiring portion 32, read by a signal readout circuit built into the CMOS transistor substrate 20, and further Image information based on the object to be imaged is generated by performing signal processing by an arbitrary suitable conventionally known functional unit.
- FIG. 3 is a diagram schematically showing a configuration example of a fingerprint detection unit integrally configured with a display device.
- the display device 2 of the mobile information terminal includes a fingerprint detection unit 100 including the photoelectric conversion element 10 according to the embodiment of the present invention as a main component, and a display panel provided on the fingerprint detection unit 100 and displaying a predetermined image. 200.
- the fingerprint detection section 100 is provided in an area that matches the display area 200a of the display panel section 200 .
- the display panel section 200 is integrally laminated above the fingerprint detection section 100 .
- the fingerprint detection section 100 may be provided so as to correspond only to the partial area.
- the fingerprint detection unit 100 includes the photoelectric conversion element 10 according to the embodiment of the present invention as a functional unit that performs essential functions.
- the fingerprint detection unit 100 includes any suitable conventionally known members such as a protection film (not shown), a support substrate, a sealing substrate, a sealing member, a barrier film, a bandpass filter, and an infrared cut film. It may be provided in a manner corresponding to the design to obtain the properties.
- the fingerprint detection unit 100 may adopt the configuration of the image detection unit already described.
- the photoelectric conversion element 10 can be included in any manner within the display area 200a.
- a plurality of photoelectric conversion elements 10 may be arranged in a matrix.
- the photoelectric conversion element 10 is provided on the support substrate 11, and the support substrate 11 is provided with electrodes (first electrodes or second electrodes), for example, in a matrix.
- the light received by the photoelectric conversion element 10 is converted by the photoelectric conversion element 10 into an electrical signal corresponding to the amount of received light, and the received light signal, that is, the electricity corresponding to the imaged fingerprint, is output outside the photoelectric conversion element 10 via the electrodes. output as a signal.
- the display panel section 200 is configured as an organic electroluminescence display panel (organic EL display panel) including a touch sensor panel.
- the display panel unit 200 may be configured by, for example, a display panel having an arbitrary and suitable conventionally known configuration such as a liquid crystal display panel including a light source such as a backlight, instead of the organic EL display panel.
- the display panel section 200 is provided on the fingerprint detection section 100 already described.
- the display panel section 200 includes an organic electroluminescence element (organic EL element) 220 as a functional section that performs an essential function.
- the display panel unit 200 further includes an arbitrary and suitable substrate such as a conventionally known glass substrate (support substrate 210 or sealing substrate 240), a sealing member, a barrier film, a polarizing plate such as a circularly polarizing plate, and an arbitrary substrate such as a touch sensor panel 230.
- Suitable conventionally known members may be provided in a manner corresponding to the desired properties.
- the organic EL element 220 is used as a light source for the pixels in the display area 200a, and is also used as a light source for imaging the fingerprint in the fingerprint detection section 100.
- fingerprint detection unit 100 detects a fingerprint using light emitted from organic EL element 220 of display panel unit 200 . Specifically, the light emitted from the organic EL element 220 passes through the constituent elements existing between the organic EL element 220 and the photoelectric conversion element 10 of the fingerprint detection unit 100, and the display in the display area 200a is displayed. The light is reflected by the skin (finger surface) of the fingertip placed in contact with the surface of the panel section 200 . At least part of the light reflected by the finger surface is transmitted through intervening components and received by the photoelectric conversion element 10 , and converted into an electrical signal corresponding to the amount of light received by the photoelectric conversion element 10 . Image information about the fingerprint on the surface of the finger is constructed from the converted electric signal.
- the mobile information terminal equipped with the display device 2 performs fingerprint authentication by comparing the obtained image information with pre-recorded fingerprint data for fingerprint authentication by any suitable conventionally known step.
- FIG. 4 is a diagram schematically showing a configuration example of an image detection unit for an X-ray imaging apparatus.
- An image detection unit 1 for an X-ray imaging device includes a CMOS transistor substrate 20, an interlayer insulating film 30 provided so as to cover the CMOS transistor substrate 20, and an interlayer insulating film 30 provided on the interlayer insulating film 30.
- a photoelectric conversion element 10 according to the embodiment; , a scintillator 42 provided on the sealing layer 40, a reflective layer 44 provided to cover the scintillator 42, and a reflective layer 44 provided to cover the and a protective layer 46 having a
- the CMOS transistor substrate 20 has a conventionally well-known arbitrary and suitable configuration in accordance with the design.
- the CMOS transistor substrate 20 includes functional elements such as CMOS transistor circuits (MOS transistor circuits) for realizing various functions, including transistors and capacitors formed within the thickness of the substrate.
- MOS transistor circuits CMOS transistor circuits
- Functional elements include, for example, floating diffusions, reset transistors, output transistors, and selection transistors.
- a signal readout circuit and the like are built into the CMOS transistor substrate 20 with such functional elements, wiring, and the like.
- the interlayer insulating film 30 can be made of any suitable conventionally known insulating material such as silicon oxide and insulating resin.
- the interlayer wiring section 32 can be made of any suitable conventionally known conductive material (wiring material) such as copper and tungsten.
- the interlayer wiring portion 32 may be, for example, an in-hole wiring formed simultaneously with the formation of the wiring layer, or an embedded plug formed separately from the wiring layer.
- the sealing layer 40 may be made of any suitable conventionally known material on the condition that it can prevent or suppress permeation of harmful substances such as oxygen and water that may functionally deteriorate the photoelectric conversion element 10. can be done.
- the sealing layer 40 can have the same configuration as the sealing member 17 already described.
- the scintillator 42 can be made of any conventionally known suitable material that corresponds to the design of the image detection section 1 for the X-ray imaging apparatus.
- suitable materials for the scintillator 42 include inorganic crystals of inorganic materials such as CsI (cesium iodide), NaI (sodium iodide), ZnS (zinc sulfide), GOS (gadolinium oxysulfide), and GSO (gadolinium silicate).
- organic crystals of organic materials such as anthracene, naphthalene, and stilbene
- organic liquids obtained by dissolving organic materials such as diphenyloxazole (PPO) and terphenyl (TP) in organic solvents such as toluene, xylene, and dioxane
- organic materials such as xenon and helium. Gases, plastics, etc. can be used.
- the above components correspond to the design of the photoelectric conversion element 10 and the CMOS transistor substrate 20 on the condition that the scintillator 42 converts incident X-rays into light having a wavelength centered in the visible region to generate image data. Any suitable arrangement can be used.
- the reflective layer 44 reflects the light converted by the scintillator 42 .
- the reflective layer 44 can reduce the loss of converted light and increase detection sensitivity.
- the reflective layer 44 can also block light that is directly incident from the outside.
- the protective layer 46 can be made of any suitable conventionally known material on the condition that it can prevent or suppress permeation of harmful substances such as oxygen and water that may functionally deteriorate the scintillator 42.
- the scintillator 42 When radiation energy such as X-rays and ⁇ -rays is incident on the scintillator 42, the scintillator 42 absorbs the radiation energy and converts it into light (fluorescence) with a wavelength in the infrared range from ultraviolet, centered on the visible range. The light converted by the scintillator 42 is received by the photoelectric conversion element 10 .
- the light received by the photoelectric conversion element 10 via the scintillator 42 is converted by the photoelectric conversion element 10 into an electric signal corresponding to the amount of light received, and the received light signal is output outside the photoelectric conversion element 10 via the electrodes. That is, it is output as an electrical signal corresponding to the object to be imaged.
- Radiation energy (X-rays) to be detected may be incident from either the scintillator 42 side or the photoelectric conversion element 10 side.
- the received light signal output from the photoelectric conversion element 10 is input to the CMOS transistor substrate 20 via the interlayer wiring portion 32, read by a signal readout circuit built into the CMOS transistor substrate 20, and further Image information based on the object to be imaged is generated by performing signal processing by an arbitrary suitable conventionally known functional unit.
- FIG. 5 is a diagram schematically showing a configuration example of a vein detection unit for the vein authentication device.
- the vein detection unit 300 for the vein authentication device includes a cover unit 306 defining an insertion unit 310 into which a finger to be measured (eg, one or more fingertips, fingers and palm) is inserted during measurement, and a cover unit 306 .
- a light source unit 304 provided in a unit 306 for irradiating light onto an object to be measured, a photoelectric conversion element 10 for receiving the light emitted from the light source unit 304 through the object to be measured, and a support for supporting the photoelectric conversion element 10 .
- the glass substrate 302 is arranged so as to face the substrate 11 and the support substrate 11 with the photoelectric conversion element 10 interposed therebetween, is separated from the cover portion 306 at a predetermined distance, and defines the insertion portion 306 together with the cover portion 306 .
- the light source unit 304 is configured integrally with the cover unit 306 so that the photoelectric conversion element 10 is separated from the photoelectric conversion element 10 while sandwiching the object to be measured during use.
- the light source unit 304 is not necessarily positioned on the cover unit 306 side.
- the object to be measured can be efficiently irradiated with the light from the light source unit 304, for example, a reflection imaging method in which the object to be measured is irradiated from the photoelectric conversion element 10 side may be employed.
- the vein detection unit 300 includes the photoelectric conversion element 10 according to the embodiment of the present invention as a functional unit that performs essential functions.
- the vein detection unit 300 includes any suitable conventionally known member such as a protection film (not shown), a sealing member, a barrier film, a bandpass filter, a near-infrared transmission filter, a visible light cut film, and a finger placement guide. can be provided in a manner corresponding to the design to obtain the desired properties.
- the vein detection unit 300 may employ the configuration of the image detection unit 1 already described.
- the photoelectric conversion element 10 can be included in any manner.
- a plurality of photoelectric conversion elements 10 may be arranged in a matrix.
- the photoelectric conversion element 10 is provided on the support substrate 11, and the support substrate 11 is provided with electrodes (first electrodes or second electrodes), for example, in a matrix.
- the light received by the photoelectric conversion element 10 is converted by the photoelectric conversion element 10 into an electrical signal corresponding to the amount of light received, and the received light signal, that is, the electricity corresponding to the imaged vein, is output outside the photoelectric conversion element 10 via the electrodes. output as a signal.
- the object to be measured may or may not be in contact with the glass substrate 302 on the photoelectric conversion element 10 side.
- the vein detection unit 300 detects the vein pattern of the measurement target using light emitted from the light source unit 304 . Specifically, the light emitted from the light source unit 304 is transmitted through the measurement target and converted into an electrical signal corresponding to the amount of light received by the photoelectric conversion element 10 . Image information of the vein pattern to be measured is constructed from the converted electrical signal.
- vein authentication is performed by comparing the obtained image information with previously recorded vein data for vein authentication by any suitable conventionally known step.
- FIG. 6 is a diagram schematically showing a configuration example of an image detection unit for an indirect TOF rangefinder.
- the image detection unit 400 for the TOF type distance measuring device includes a CMOS transistor substrate 20, an interlayer insulating film 30 provided so as to cover the CMOS transistor substrate 20, and an interlayer insulating film 30 provided on the interlayer insulating film 30.
- the photoelectric conversion element 10 according to the embodiment, the two floating diffusion layers 402 spaced apart to sandwich the photoelectric conversion element 10, and the photoelectric conversion element 10 and the floating diffusion layer 402 are provided to cover the photoelectric conversion element 10. It comprises an insulating layer 401 and two photogates 404 provided on the insulating layer 401 and spaced apart from each other.
- a part of the insulating layer 401 is exposed from the gap between the two photogates 404 separated from each other, and the remaining area is shielded from light by the light shielding portion 406 .
- the CMOS transistor substrate 20 and the floating diffusion layer 402 are electrically connected by an interlayer wiring portion 32 provided so as to penetrate the interlayer insulating film 30 .
- the interlayer insulating film 30 can be made of any suitable conventionally known insulating material such as silicon oxide and insulating resin.
- the interlayer wiring section 32 can be made of any suitable conventionally known conductive material (wiring material) such as copper and tungsten.
- the interlayer wiring portion 32 may be, for example, an in-hole wiring formed simultaneously with the formation of the wiring layer, or an embedded plug formed separately from the wiring layer.
- the insulating layer 401 in this configuration example can have any conventionally known and suitable configuration such as a field oxide film made of silicon oxide.
- the photogate 404 can be made of any suitable conventionally known material such as polysilicon.
- the image detection section 400 for the TOF type rangefinder includes the photoelectric conversion element 10 according to the embodiment of the present invention as a functional section that performs essential functions.
- the image detector 400 for the TOF-type rangefinder uses any suitable conventional film such as a protection film (not shown), a support substrate, a sealing substrate, a sealing member, a barrier film, a bandpass filter, an infrared cut film, and the like.
- Known components may be provided in a manner corresponding to the design to obtain the desired properties.
- Two photogates 404 are provided between the photoelectric conversion element 10 and the floating diffusion layer 402 , and by alternately applying pulses, signal charges generated by the photoelectric conversion element 10 are transferred to the two floating diffusion layers 402 . The charge is transferred to either one and accumulated in the floating diffusion layer 402 .
- the light pulse arrives so as to equally straddle the timing of opening the two photogates 404, the amount of charge accumulated in the two floating diffusion layers 402 becomes equal. If the light pulse arrives at the other photogate 404 with a delay with respect to the timing at which the light pulse arrives at the one photogate 404, the amount of charge accumulated in the two floating diffusion layers 402 will differ.
- the difference in the amount of charge accumulated in the floating diffusion layer 402 depends on the delay time of the light pulse.
- the amount of light received by the photoelectric conversion element 10 is converted into an electrical signal as the difference between the amounts of charge accumulated in the two floating diffusion layers 402, and the received light signal, that is, the electricity corresponding to the object to be measured, is output outside the photoelectric conversion element 10. output as a signal.
- the received light signal output from the floating diffusion layer 402 is input to the CMOS transistor substrate 20 via the interlayer wiring portion 32, read by a signal readout circuit built into the CMOS transistor substrate 20, and read out by a signal readout circuit (not shown).
- Distance information based on the measurement object is generated through signal processing by an arbitrary suitable conventionally known functional unit.
- the photoelectric conversion element of the present embodiment can have a photodetection function capable of converting irradiated light into an electric signal corresponding to the amount of received light and outputting the signal to an external circuit via an electrode. Therefore, the photoelectric conversion element according to the embodiment of the present invention can be particularly suitably applied as a photodetector having a photodetection function.
- the photodetector element of this embodiment may be a photoelectric conversion element itself, or may further include a functional element for voltage control in addition to the photoelectric conversion element.
- the method for manufacturing the photoelectric conversion element of the present embodiment is not particularly limited.
- the photoelectric conversion element of this embodiment can be manufactured by combining the materials selected for forming the constituent elements with a suitable forming method.
- the method for manufacturing the photoelectric conversion element of the present embodiment can include a step including a process of heating at a heating temperature of 220°C or higher. More specifically, the active layer is formed by a step including a treatment heated at a heating temperature of 220° C. or higher, and/or heated at a heating temperature of 220° C. or higher after the step of forming the active layer. can include steps including processing to be performed.
- a method for manufacturing a photoelectric conversion element having a structure in which a substrate (supporting substrate), an anode, a hole transport layer, an active layer, an electron transport layer, and a cathode are in contact with each other in this order will be described.
- a support substrate provided with an anode is prepared.
- a substrate provided with a conductive thin film made of the material for the electrode already described is obtained from the market, and if necessary, the conductive thin film is patterned to form an anode, thereby forming an anode.
- a coated support substrate can be provided.
- the method for forming the anode when forming the anode on the support substrate is not particularly limited.
- the anode is formed by any suitable conventionally known method such as a vacuum deposition method, a sputtering method, an ion plating method, a plating method, a coating method, etc., using the materials already described. layer, hole transport layer).
- the method for manufacturing a photoelectric conversion element may include a step of forming a hole transport layer (hole injection layer) provided between the active layer and the anode.
- the method for forming the hole transport layer is not particularly limited. From the viewpoint of simplifying the process of forming the hole transport layer, it is preferable to form the hole transport layer by any suitable conventionally known coating method.
- the hole transport layer can be formed by, for example, a coating method using a coating liquid containing the material for the hole transport layer and a solvent, or a vacuum deposition method.
- the active layer is formed on the hole transport layer.
- the active layer which is the main component, can be formed by any suitable conventionally known forming process.
- the active layer is preferably manufactured by a coating method using an ink composition (coating liquid).
- any suitable coating method can be used as a method for coating the ink composition onto the coating object.
- the coating method is preferably a slit coating method, a knife coating method, a spin coating method, a micro gravure coating method, a gravure coating method, a bar coating method, an inkjet printing method, a nozzle coating method, or a capillary coating method.
- a coating method, a capillary coating method, or a bar coating method is more preferable, and a slit coating method or a spin coating method is even more preferable.
- the ink composition used in the method for producing a photoelectric conversion element of the present embodiment contains a p-type semiconductor material and an n-type semiconductor material, and the n-type semiconductor material includes the compound of the present embodiment already described. It includes a composition and a solvent.
- the bandgap of the n-type semiconductor material (the difference between the LUMO energy level and the HOMO energy level) is It is preferably chosen to be larger than the bandgap of the p-type semiconductor material.
- the absorption edge wavelength can be specified based on the "absorption spectrum" already explained. Specifically, in the obtained absorption spectrum, the wavelength at the intersection of the baseline and a straight line that fits the descending curve on the longer wavelength side of the absorption peak curve can be specified as the absorption edge wavelength.
- the ink composition for forming the active layer of this embodiment will be described.
- the ink composition for forming an active layer of the present embodiment is an ink composition for forming an active layer having a bulk heterojunction (BHJ) structure.
- BHJ bulk heterojunction
- the active layer included in the photoelectric conversion element of the present embodiment is a (solidified) film obtained by solidifying the ink composition, and is a (solidified) film having a bulk heterojunction structure.
- the photoelectric conversion device of this embodiment includes a film having a bulk heterojunction structure as an active layer.
- the ink composition for forming an active layer of the present embodiment includes a composition containing the compound of the present embodiment already described as the p-type semiconductor material and the n-type semiconductor material already described.
- the ink composition for forming an active layer of the present embodiment preferably contains the composition and one or more solvents.
- the dark current required for the photoelectric conversion element, which is a photodetector, is reduced. can be effectively reduced.
- the ink composition for forming an active layer according to the present embodiment is not particularly limited as long as it can form an active layer.
- the solvent for example, a mixed solvent in which a first solvent and a second solvent are combined to be described later can be used.
- the main solvent which is the main component, and other additives added for improving solubility, etc. It preferably contains a solvent (second solvent).
- first solvent which is the main component, and other additives added for improving solubility, etc.
- second solvent preferably contains a solvent (second solvent).
- only the first solvent may be used.
- the first solvent, the second solvent, and combinations thereof that can be suitably used in the ink composition for forming the active layer of the present embodiment will be described below.
- the first solvent a solvent capable of dissolving the p-type semiconductor material is preferable.
- the first solvent of this embodiment is an aromatic hydrocarbon.
- aromatic hydrocarbons as the first solvent examples include toluene, xylene (eg, o-xylene, m-xylene, p-xylene), o-dichlorobenzene, trimethylbenzene (eg, mesitylene, 1,2,4 -trimethylbenzene (pseudocumene)), butylbenzene (eg n-butylbenzene, sec-butylbenzene, tert-butylbenzene), methylnaphthalene (eg 1-methylnaphthalene), tetralin and indane.
- xylene eg, o-xylene, m-xylene, p-xylene
- o-dichlorobenzene trimethylbenzene (eg, mesitylene, 1,2,4 -trimethylbenzene (pseudocumene))
- butylbenzene eg n-butylbenzen
- the first solvent may be composed of one type of aromatic hydrocarbon, or may be composed of two or more types of aromatic hydrocarbons.
- the first solvent preferably consists of one aromatic hydrocarbon.
- the first solvent is preferably toluene, o-xylene (oXAP), m-xylene, p-xylene, mesitylene, o-dichlorobenzene (ODCB), 1,2,4-trimethylbenzene, n-butylbenzene, sec- One or more selected from the group consisting of butylbenzene, tert-butylbenzene, methylnaphthalene, tetralin and indane, more preferably toluene, o-xylene, m-xylene, p-xylene, o-dichlorobenzene and mesitylene , 1,2,4-trimethylbenzene, n-butylbenzene, sec-butylbenzene, tert-butylbenzene, methylnaphthalene, tetralin, or indane.
- oXAP o-xylene
- ODCB o-dichlor
- the second solvent is a solvent selected from the viewpoint of making the manufacturing process easier and further improving the properties of the photoelectric conversion device.
- the second solvent include ketone solvents such as acetone, methyl ethyl ketone, cyclohexanone, acetophenone and propiophenone, ethyl acetate, butyl acetate, phenyl acetate, ethyl cellosolve acetate, methyl benzoate (MBZ), butyl benzoate and benzoin.
- ester solvents such as benzyl acid.
- the second solvent it is preferable to use, for example, acetophenone, propiophenone, methyl benzoate, or butyl benzoate from the viewpoint of further reducing dark current.
- first solvent and second solvent examples include o-xylene and methyl benzoate, tetralin and ethyl benzoate, tetralin and propyl benzoate, and tetralin. Combinations with butyl benzoate are mentioned.
- the weight ratio of the first solvent that is the main solvent to the second solvent that is the additive solvent is the p-type semiconductor material and the n-type semiconductor From the viewpoint of further improving the solubility of the material, the range is preferably from 85:15 to 99:1.
- the solvent may contain any other solvent other than the first solvent and the second solvent.
- the content of any other solvent is preferably 5% by weight or less, more preferably 3% by weight or less, and further It is preferably 1% by weight or less.
- Any other solvent preferably has a higher boiling point than the second solvent.
- the ink composition contains a surfactant, an ultraviolet Optional ingredients such as absorbers, antioxidants, sensitizers to enhance the ability to generate charge from absorbed light, and light stabilizers to increase stability from UV light may be included.
- Concentration of p-type semiconductor material and n-type semiconductor material The concentration of the p-type semiconductor material and the n-type semiconductor material in the ink composition is arbitrary within a range that does not impair the object of the present invention, taking into consideration the solubility in the solvent. Any suitable concentration can be used.
- the weight ratio (polymer/non-fullerene compound) of the “p-type semiconductor material” to the “n-type semiconductor material” in the ink composition is usually in the range of 1/0.1 to 1/10, preferably 1/0. 0.5 to 1/2, more preferably 1/1.5.
- the total concentration of the "p-type semiconductor material” and "n-type semiconductor material” in the ink composition is usually 0.01% by weight or more, more preferably 0.02% by weight or more, and 0.25% by weight or more. More preferred.
- the total concentration of the "p-type semiconductor material” and “n-type semiconductor material” in the ink composition is usually 20% by weight or less, preferably 10% by weight or less, and 7.50% by weight or less. It is more preferable to have
- the concentration of the "p-type semiconductor material" in the ink composition is usually 0.01% by weight or more, more preferably 0.02% by weight or more, and even more preferably 0.10% by weight or more. Also, the concentration of the "p-type semiconductor material" in the ink composition is usually 10% by weight or less, more preferably 5.00% by weight or less, and even more preferably 3.00% by weight or less.
- the concentration of the "n-type semiconductor material" in the ink composition is usually 0.01% by weight or more, more preferably 0.02% by weight or more, and even more preferably 0.15% by weight or more. Also, the concentration of the "n-type semiconductor material" in the ink composition is usually 10% by weight or less, more preferably 5% by weight or less, and even more preferably 4.50% by weight or less.
- the ink composition can be prepared by a known method. For example, a method of preparing a mixed solvent by mixing a first solvent, or a first solvent and a second solvent, and adding a p-type semiconductor material and an n-type semiconductor material to the obtained mixed solvent; It can be prepared by a method of adding a semiconductor material, adding an n-type semiconductor material to a second solvent, and then mixing the first solvent and the second solvent to which each material has been added.
- the first solvent, the second solvent, the p-type semiconductor material and the n-type semiconductor material may be heated to a temperature below the boiling point of the solvent and mixed.
- the obtained mixture may be filtered using a filter, and the obtained filtrate may be used as the mixture.
- a filter for example, a filter made of a fluororesin such as polytetrafluoroethylene (PTFE) can be used.
- PTFE polytetrafluoroethylene
- the ink composition for forming the active layer is applied to an application target selected according to the photoelectric conversion element and its manufacturing method.
- the ink composition for forming an active layer can be applied to a functional layer of a photoelectric conversion element, in which an active layer may exist, in the manufacturing process of the photoelectric conversion element. Therefore, the object to be coated with the ink composition for forming the active layer varies depending on the layer structure and the order of layer formation of the photoelectric conversion element to be manufactured. For example, when the photoelectric conversion element has a layer structure in which a substrate, an anode, a hole transport layer, an active layer, an electron transport layer, and a cathode are laminated, and the layer described further to the left is formed first.
- the object to be coated with the ink composition for forming the active layer is the hole transport layer.
- the photoelectric conversion element has a layer structure in which a substrate, a cathode, an electron transport layer, an active layer, a hole transport layer, and an anode are laminated, and the layer described further to the left is formed first.
- the target of application of the ink composition for forming the active layer is the electron transport layer.
- step (ii) Any suitable method can be used as a method for removing the solvent from the coating film of the ink composition, that is, as a method for removing the solvent from the coating film and solidifying the coating film.
- methods for removing the solvent include direct heating using a hot plate under an inert gas atmosphere such as nitrogen gas, hot air drying, infrared heat drying, flash lamp annealing drying, and vacuum drying. and other drying methods.
- step (ii) that is, conditions such as heating temperature and heat treatment time, can be arbitrarily suitable conditions in consideration of the composition of the ink composition used, the boiling point of the solvent, and the like.
- step (ii) can be performed using a hot plate in a nitrogen gas atmosphere, for example.
- the step (ii) may include multiple heat treatment steps, for example, a pre-baking step and a post-baking step.
- the heating temperature in the pre-baking step and/or the post-baking step can be about 100° C., which is a conventionally known arbitrary suitable temperature.
- the total heat treatment time in the pre-baking process and post-baking process can be, for example, 1 hour.
- the heating temperature in the pre-baking process and the heating temperature in the post-baking process may be the same or different.
- the heat treatment time can be, for example, 10 minutes or more. Although the upper limit of the heat treatment time is not particularly limited, it can be set to, for example, 4 hours in consideration of the tact time and the like.
- the thickness of the active layer can be set to any suitable desired thickness by appropriately adjusting the solid content concentration in the coating liquid and the conditions of the above step (i) and/or step (ii).
- the step of forming the active layer may include other steps in addition to the steps (i) and (ii) provided that the object and effect of the present invention are not impaired.
- the method for manufacturing a photoelectric conversion element of the present embodiment may be a method for manufacturing a photoelectric conversion element including a plurality of active layers, or may be a method in which steps (i) and (ii) are repeated multiple times. good.
- the method for manufacturing the photoelectric conversion element of this embodiment includes a step of forming an electron transport layer (electron injection layer) provided on the active layer.
- the method for forming the electron transport layer is not particularly limited. From the viewpoint of making the step of forming the electron transport layer simpler, it is preferable to form the electron transport layer by any suitable conventionally known vacuum vapor deposition method.
- the method of forming the cathode is not particularly limited.
- the cathode can be formed, for example, on the electron-transporting layer using any of the electrode materials exemplified above by a conventionally known suitable method such as coating, vacuum deposition, sputtering, ion plating, or plating. . Through the above steps, the photoelectric conversion element of this embodiment is manufactured.
- sealing body In forming the sealing body, in the present embodiment, a conventionally known and suitable sealing material (adhesive) and substrate (sealing substrate) are used. Specifically, a sealing material such as a UV curable resin is applied to the support substrate so as to surround the manufactured photoelectric conversion element, and then the sealing material is bonded without gaps.
- a photoelectric conversion element sealed body can be obtained by sealing the photoelectric conversion element in the gap between the supporting substrate and the sealing substrate using a method suitable for the selected sealing material, such as light irradiation. .
- the polymer compounds shown in Table 1 below were used as p-type semiconductor materials (electron-donating compounds), and the compounds shown in Tables 2 and 3 below were used as n-type semiconductor materials (electron-accepting compounds). ) was used as p-type semiconductor materials (electron-donating compounds), and the compounds shown in Tables 2 and 3 below were used as n-type semiconductor materials (electron-accepting compounds). ) was used as p-type semiconductor materials (electron-donating compounds), and the compounds shown in Tables 2 and 3 below were used as n-type semiconductor materials (electron-accepting compounds). ) was used as
- Polymer compound P-1 which is a p-type semiconductor material, was synthesized with reference to the method described in International Publication No. 2011/052709 and used.
- Compound N-1, Compound N-2, Compound N-3, and Compound N-5 which are n-type semiconductor materials, were synthesized and used according to Synthesis Examples described later.
- Compound N-4, which is an n-type semiconductor material was commercially available under the trade name Y6 (manufactured by 1-material).
- compound 1 (2.00 g, 3.28 mmol) synthesized by the method described in paragraph [0335] of WO 2011/052709 is placed in a 300 mL three-necked flask whose internal atmosphere has been replaced with nitrogen gas, Dehydrated chloroform (109 mL, 0.02 M) and Vilsmeier reagent ((Chloromethylene) dimethyliminium chloride) (0.630 g, 4.92 mmol) were charged, and the internal temperature of the three-necked flask was adjusted to 60° C. using an oil bath and held for 3 hours. bottom.
- Dehydrated chloroform 109 mL, 0.02 M
- Vilsmeier reagent (Chloromethylene) dimethyliminium chloride)
- the three-necked flask was lifted from the oil bath and allowed to cool to room temperature. After water was poured into the reaction solution in the three-necked flask to quench it, a saturated sodium bicarbonate aqueous solution was added and stirred at room temperature.
- Carbazole (2.14 g, 5.81 mmol) (manufactured by Tokyo Chemical Industry Co., Ltd.) and THF (48 mL, 0.1 M) were charged, and after replacing the internal atmosphere with nitrogen gas, Pd 2 (dba) 3 (0 .13 g, 0.15 mmol), P(tBu) 3 HBF 4 (0.088 g, 0.29 mmol), and 3M K 3 PO 4 aq (48 mL) were charged in this order and heated to 60°C.
- reaction solution was cooled to room temperature.
- the organic layer was extracted from the reaction solution, diluted with hexane, washed twice with water, dried over magnesium sulfate, and filtered to remove magnesium nitrate. got
- DMF (0.47 g, 0.6 mmol) was dissolved in 1.8 mL of dehydrated THF, charged into a four-necked flask, held for 1 hour, and then heated to room temperature.
- compound 21 (6.31 g, 14.7 mmol) and tetrahydrofuran (THF) (316 mL) were charged in a 1 L four-necked flask whose internal atmosphere was replaced with N 2 gas, and the internal temperature was brought to 0°C in an ice bath. cooled. After adding N-bromosuccinimide (NBS) (2.66 g, 14.9 mmol), the mixture was stirred for 14 hours, and water was poured into the reaction solution. Hexane was added to extract the organic layer.
- NBS N-bromosuccinimide
- the resulting organic layer was washed twice with water, dehydrated with magnesium sulfate, and the magnesium sulfate was removed by filtration, after which the filtrate was concentrated with a rotary evaporator to obtain a crude product.
- reaction solution was cooled to room temperature, 72 mL of ethyl acetate was added, and the organic layer was extracted from the reaction solution. The resulting organic layer was washed twice with water, dried over magnesium sulfate, filtered to remove magnesium nitrate, and the entire filtrate was concentrated using a rotary evaporator to obtain a crude product.
- compound 23 (0.500 g, 0.744 mmol), compound 13 (0.236 g, 0.97 mmol), pTsOH ⁇ H 2 O (0.425 g, 2.23 mmol), EtOH (12 mL), toluene (25 mL), and MgSO 4 (0.25 g) were charged and kept in an oil bath heated to 60°C. After stirring for 2 hours, compound 13 (0.093 g, 0.38 mmol) was added and stirred for an additional 4 hours.
- h represents Planck's constant
- the absorption edge wavelength was obtained by the following method. For the thin films formed from the above samples, absorption spectra were measured with the absorbance as the vertical axis and the wavelength as the horizontal axis. In the obtained absorption spectrum, the wavelength at the intersection of the baseline and the straight line that fits the descending curve on the long wavelength side of the absorption peak curve was taken as the absorption edge wavelength.
- absorption peak wavelength An absorption spectrum was obtained for the polymer compound P-1 according to a conventional method. In the obtained absorption spectrum, the value corresponding to the wavelength corresponding to the absorption peak with the highest absorbance was defined as "absorption peak wavelength”. The absorption peak wavelength of the polymer compound P-1 was 921 nm.
- the LUMO energy level values (eV) of the structural units contained in the compounds N-1 to N-5, which are the n-type semiconductor materials in the present embodiment, are calculated using a computational scientific method for the compounds corresponding to the structural units. calculated by
- the quantum chemical calculation program Gaussian 03 is applied to each compound (structure) corresponding to each structural unit, in which the bonds between the structural units are cut and hydrogen atoms are added to the bonds generated by the cutting. Then, the structure of the ground state is optimized by the B3LYP level density functional theory, and the value obtained by calculating using 6-31g* as the basis function for the optimized structure is calculated for each structural unit. A value of the LUMO energy level was used.
- the LUMO energy level value (E D-LUMO ) of D 1 in compounds N-1 and N-2 and the LUMO of at least one structural unit among the one or more structural units constituting B 1 The energy level value (E ⁇ -LUMO ) of A 1 and the energy level value (E A-LUMO ) of the LUMO of A 1 satisfy the expression “E D-LUMO >E B-LUMO >E A-LUMO ” was
- Example 5 (Preparation of ink composition I-2) Ink composition (I-2) was prepared in the same manner as in Example 4, except that the combinations of n-type semiconductor materials shown in Table 8 below were used.
- Ink composition (I-4) was prepared in the same manner as in Example 4, except that ortho-dichlorobenzene (ODCB) was used as the solvent and the combination of n-type semiconductor materials shown in Table 8 below was used.
- ODCB ortho-dichlorobenzene
- Example 6 Preparation of ink composition I-5) Ink composition (I-5) was prepared in the same manner as in Example 4, except that the combinations of n-type semiconductor materials shown in Table 8 below were used.
- Example 7 Manufacture and evaluation of photoelectric conversion element (1) Production of a photoelectric conversion element and its encapsulant A glass substrate on which an ITO thin film (anode) having a thickness of 50 nm is formed by a sputtering method is prepared, and this glass substrate is subjected to ozone UV treatment as surface treatment. rice field.
- the ink composition (I-1) was applied onto the ITO thin film by spin coating to form a coating film, and then heat-treated for 10 minutes using a hot plate heated to 100° C. in a nitrogen gas atmosphere. and dried to form an active layer.
- the thickness of the formed active layer was about 300 nm.
- ZnO was applied onto the formed active layer by spin coating to form an electron transport layer with a thickness of about 50 nm.
- a silver (Ag) layer having a thickness of about 60 nm was formed on the formed electron transport layer to form a cathode.
- a photoelectric conversion element was manufactured on the glass substrate by the above steps.
- a UV curable sealant as a sealing material was applied onto a glass substrate as a support substrate so as to surround the manufactured photoelectric conversion element, and the glass substrate as a sealing substrate was bonded. After that, by irradiating UV light, the photodetector was sealed in the gap between the supporting substrate and the sealing substrate, thereby obtaining a sealed body of the photoelectric conversion element.
- the planar shape of the photoelectric conversion element sealed in the gap between the supporting substrate and the sealing substrate was a square of 2 mm ⁇ 2 mm when viewed from the thickness direction. The resulting sealed body was designated as Sample 1.
- Examples 8 and 9, and Comparative Examples 1 and 2> (Production and evaluation of photoelectric conversion element)
- the ink compositions (I-2) to (I-5) were used instead of the ink composition (I-1)
- a sealed body of a photoelectric conversion element was produced. was manufactured and evaluated. The results are shown in Table 9 below.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Wood Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Plural Heterocyclic Compounds (AREA)
- Light Receiving Elements (AREA)
- Photovoltaic Devices (AREA)
Abstract
The present invention addresses the problem of reducing dark current. To solve the problem, provided is a composition containing a p-type semiconductor material and an n-type semiconductor material, wherein the n-type semiconductor material contains a compound represented by formula (I). D1-B1-A1 (I) (In formula (I), D1 represents an electron-donating group, A1 represents an electron-withdrawing group, and B1 includes at least one constitutional unit and represents a divalent group constituting a π-conjugated system.) The bandgap of the n-type semiconductor material is preferably greater than the bandgap of the p-type semiconductor material.
Description
本発明は、半導体材料である化合物、当該化合物を含む組成物及び当該組成物を材料として用いた光電変換素子に関する。
The present invention relates to a compound that is a semiconductor material, a composition containing the compound, and a photoelectric conversion device using the composition as a material.
光電変換素子は、例えば、省エネルギー、二酸化炭素の排出量の低減の観点から極めて有用なデバイスであり、注目されている。
Photoelectric conversion elements are attracting attention as they are extremely useful devices, for example, from the viewpoint of energy saving and reduction of carbon dioxide emissions.
光電変換素子とは、陽極及び陰極からなる一対の電極と、該一対の電極間に設けられる活性層とを少なくとも備える素子である。光電変換素子においては、上記一対の電極のうちの少なくとも一方の電極を透明又は半透明の材料から構成し、透明又は半透明とした電極側から活性層に光を入射させる。活性層に入射した光のエネルギー(hν)によって、活性層において電荷(正孔及び電子)が生成し、生成した正孔は陽極に向かって移動し、電子は陰極に向かって移動する。そして、陽極及び陰極に到達した電荷は、素子の外部に取り出される。
A photoelectric conversion element is an element that includes at least a pair of electrodes consisting of an anode and a cathode, and an active layer provided between the pair of electrodes. In the photoelectric conversion element, at least one of the pair of electrodes is made of a transparent or translucent material, and light is allowed to enter the active layer from the side of the transparent or translucent electrode. Electric charges (holes and electrons) are generated in the active layer by the energy (hν) of light incident on the active layer, the generated holes move toward the anode, and the electrons move toward the cathode. Then, the charges that have reached the anode and cathode are taken out of the device.
光電変換素子においてはさらなる光電変換効率の向上が求められている。そのため、種々の半導体材料が開発され、報告されている(非特許文献1参照。)。
Further improvements in photoelectric conversion efficiency are required for photoelectric conversion elements. Therefore, various semiconductor materials have been developed and reported (see Non-Patent Document 1).
しかしながら、上記非特許文献1が報告しているn型半導体材料によれば、確かに15%程度の光電変換効率が実現できることが報告されている。
しかしながら、特に光検出素子である光電変換素子に要求される暗電流の低減については未だ十分であるとは言い難い。 However, according to the n-type semiconductor material reported in Non-PatentDocument 1, it is reported that a photoelectric conversion efficiency of about 15% can be realized.
However, it is still difficult to say that the reduction in dark current, which is particularly required for photoelectric conversion elements, which are photodetectors, is sufficient.
しかしながら、特に光検出素子である光電変換素子に要求される暗電流の低減については未だ十分であるとは言い難い。 However, according to the n-type semiconductor material reported in Non-Patent
However, it is still difficult to say that the reduction in dark current, which is particularly required for photoelectric conversion elements, which are photodetectors, is sufficient.
よって、光電変換素子に要求される特性、特に光検出素子において暗電流を低減させることができるさらなる半導体材料が求められている。
Therefore, there is a demand for further semiconductor materials capable of reducing dark current in the properties required for photoelectric conversion elements, particularly in photodetection elements.
本発明者は、上記課題を解決すべく鋭意検討した結果、後述する所定の構造を有する化合物、及び当該化合物を含む組成物により、上記課題を解決できることを見出し、本発明を完成するに至った。
As a result of intensive studies to solve the above problems, the present inventors have found that the above problems can be solved by a compound having a predetermined structure described below and a composition containing the compound, and have completed the present invention. .
よって、本発明は、下記[1]~[13]を提供する。
[1] p型半導体材料とn型半導体材料とを含む組成物であって、
前記n型半導体材料が下記式(I)で表される化合物を含む、組成物。
D1-B1-A1 (I)
(式(I)中、
D1は、電子供与性の基を表し、
A1は、電子求引性の基を表し、
B1は、1以上の構成単位を含み、π共役系を構成している2価の基を表す。)
[2] 前記n型半導体材料のバンドギャップが、前記p型半導体材料のバンドギャップよりも大きい、[1]に記載の組成物。
[3] D1のLUMOのエネルギーレベル(ED-LUMO)と、B1を構成する1以上の構成単位のうちの少なくとも1つの構成単位のLUMOのエネルギーレベル(Eπ-LUMO)と、A1のLUMOのエネルギーレベル(EA-LUMO)とが下記式で表される条件を満たす、[1]又は[2]に記載の組成物。
ED-LUMO>EB-LUMO>EA-LUMO
[4] 前記p型半導体材料が、高分子化合物である、[1]~[3]のいずれか1つに記載の組成物。
[5] 前記p型半導体材料が、吸収ピーク波長が700nmよりも大きい高分子化合物である、[4]に記載の組成物。
[6] [1]~[5]のいずれか1つに記載の組成物と、溶媒とを含むインク組成物。[7] [1]~[5]のいずれか1つに記載の組成物を含む、バルクヘテロ接合構造を有する膜。
[8] [7]に記載の膜を活性層として含む、光電変換素子。
[9] 光検出素子である、請求項8に記載の光電変換素子。
[10] 下記式(I)で表される化合物。
D1-B1-A1 (I)
(式(I)中、
D1は、電子供与性の基を表し、
A1は、電子求引性の基であって、環構造を有する電子求引性の基を表し、
B1は、1以上の構成単位を含み、π共役系を構成している2価の基を表し、
前記1以上の構成単位のうちの少なくとも1つである第1の構成単位は、下記式(II)で表される構成単位であり、かつ該第1の構成単位以外の残余の第2の構成単位は不飽和結合を含む2価の基、2価の芳香族炭素環基又は2価の芳香族複素環基である。
前記第1の構成単位が2つ以上ある場合、2つ以上ある第1の構成単位は、互いに同一であっても異なっていてもよい。第2の構成単位が2つ以上ある場合、2つ以上ある第2の構成単位は、互いに同一であっても異なっていてもよい。) Accordingly, the present invention provides the following [1] to [13].
[1] A composition comprising a p-type semiconductor material and an n-type semiconductor material,
A composition, wherein the n-type semiconductor material contains a compound represented by the following formula (I).
D 1 -B 1 -A 1 (I)
(In formula (I),
D 1 represents an electron-donating group,
A 1 represents an electron-withdrawing group,
B 1 represents a divalent group containing one or more structural units and forming a π-conjugated system. )
[2] The composition according to [1], wherein the bandgap of the n-type semiconductor material is larger than the bandgap of the p-type semiconductor material.
[3] The LUMO energy level (E D-LUMO ) of D 1 , the LUMO energy level (E π-LUMO ) of at least one structural unit among the one or more structural units constituting B 1 , and A The composition according to [ 1 ] or [2], wherein the LUMO energy level (E A-LUMO ) of 1 satisfies the condition represented by the following formula.
E D-LUMO >E B-LUMO >E A-LUMO
[4] The composition according to any one of [1] to [3], wherein the p-type semiconductor material is a polymer compound.
[5] The composition according to [4], wherein the p-type semiconductor material is a polymer compound having an absorption peak wavelength greater than 700 nm.
[6] An ink composition comprising the composition according to any one of [1] to [5] and a solvent. [7] A film having a bulk heterojunction structure, containing the composition according to any one of [1] to [5].
[8] A photoelectric conversion device comprising the film according to [7] as an active layer.
[9] The photoelectric conversion device according to [8], which is a photodetector.
[10] A compound represented by the following formula (I).
D 1 -B 1 -A 1 (I)
(In formula (I),
D 1 represents an electron-donating group,
A 1 is an electron-withdrawing group and represents an electron-withdrawing group having a ring structure;
B 1 represents a divalent group comprising one or more structural units and constituting a π-conjugated system,
The first structural unit, which is at least one of the one or more structural units, is a structural unit represented by the following formula (II), and the remaining second structural unit other than the first structural unit A unit is a divalent group containing an unsaturated bond, a divalent aromatic carbocyclic group or a divalent aromatic heterocyclic group.
When there are two or more first structural units, the two or more first structural units may be the same or different. When there are two or more second structural units, the two or more second structural units may be the same or different. )
[1] p型半導体材料とn型半導体材料とを含む組成物であって、
前記n型半導体材料が下記式(I)で表される化合物を含む、組成物。
D1-B1-A1 (I)
(式(I)中、
D1は、電子供与性の基を表し、
A1は、電子求引性の基を表し、
B1は、1以上の構成単位を含み、π共役系を構成している2価の基を表す。)
[2] 前記n型半導体材料のバンドギャップが、前記p型半導体材料のバンドギャップよりも大きい、[1]に記載の組成物。
[3] D1のLUMOのエネルギーレベル(ED-LUMO)と、B1を構成する1以上の構成単位のうちの少なくとも1つの構成単位のLUMOのエネルギーレベル(Eπ-LUMO)と、A1のLUMOのエネルギーレベル(EA-LUMO)とが下記式で表される条件を満たす、[1]又は[2]に記載の組成物。
ED-LUMO>EB-LUMO>EA-LUMO
[4] 前記p型半導体材料が、高分子化合物である、[1]~[3]のいずれか1つに記載の組成物。
[5] 前記p型半導体材料が、吸収ピーク波長が700nmよりも大きい高分子化合物である、[4]に記載の組成物。
[6] [1]~[5]のいずれか1つに記載の組成物と、溶媒とを含むインク組成物。[7] [1]~[5]のいずれか1つに記載の組成物を含む、バルクヘテロ接合構造を有する膜。
[8] [7]に記載の膜を活性層として含む、光電変換素子。
[9] 光検出素子である、請求項8に記載の光電変換素子。
[10] 下記式(I)で表される化合物。
D1-B1-A1 (I)
(式(I)中、
D1は、電子供与性の基を表し、
A1は、電子求引性の基であって、環構造を有する電子求引性の基を表し、
B1は、1以上の構成単位を含み、π共役系を構成している2価の基を表し、
前記1以上の構成単位のうちの少なくとも1つである第1の構成単位は、下記式(II)で表される構成単位であり、かつ該第1の構成単位以外の残余の第2の構成単位は不飽和結合を含む2価の基、2価の芳香族炭素環基又は2価の芳香族複素環基である。
前記第1の構成単位が2つ以上ある場合、2つ以上ある第1の構成単位は、互いに同一であっても異なっていてもよい。第2の構成単位が2つ以上ある場合、2つ以上ある第2の構成単位は、互いに同一であっても異なっていてもよい。) Accordingly, the present invention provides the following [1] to [13].
[1] A composition comprising a p-type semiconductor material and an n-type semiconductor material,
A composition, wherein the n-type semiconductor material contains a compound represented by the following formula (I).
D 1 -B 1 -A 1 (I)
(In formula (I),
D 1 represents an electron-donating group,
A 1 represents an electron-withdrawing group,
B 1 represents a divalent group containing one or more structural units and forming a π-conjugated system. )
[2] The composition according to [1], wherein the bandgap of the n-type semiconductor material is larger than the bandgap of the p-type semiconductor material.
[3] The LUMO energy level (E D-LUMO ) of D 1 , the LUMO energy level (E π-LUMO ) of at least one structural unit among the one or more structural units constituting B 1 , and A The composition according to [ 1 ] or [2], wherein the LUMO energy level (E A-LUMO ) of 1 satisfies the condition represented by the following formula.
E D-LUMO >E B-LUMO >E A-LUMO
[4] The composition according to any one of [1] to [3], wherein the p-type semiconductor material is a polymer compound.
[5] The composition according to [4], wherein the p-type semiconductor material is a polymer compound having an absorption peak wavelength greater than 700 nm.
[6] An ink composition comprising the composition according to any one of [1] to [5] and a solvent. [7] A film having a bulk heterojunction structure, containing the composition according to any one of [1] to [5].
[8] A photoelectric conversion device comprising the film according to [7] as an active layer.
[9] The photoelectric conversion device according to [8], which is a photodetector.
[10] A compound represented by the following formula (I).
D 1 -B 1 -A 1 (I)
(In formula (I),
D 1 represents an electron-donating group,
A 1 is an electron-withdrawing group and represents an electron-withdrawing group having a ring structure;
B 1 represents a divalent group comprising one or more structural units and constituting a π-conjugated system,
The first structural unit, which is at least one of the one or more structural units, is a structural unit represented by the following formula (II), and the remaining second structural unit other than the first structural unit A unit is a divalent group containing an unsaturated bond, a divalent aromatic carbocyclic group or a divalent aromatic heterocyclic group.
When there are two or more first structural units, the two or more first structural units may be the same or different. When there are two or more second structural units, the two or more second structural units may be the same or different. )
Ar1及びAr2は、それぞれ独立して、置換基を有していてもよい芳香族炭素環又は置換基を有していてもよい芳香族複素環を表し、
Yは、直接結合、-C(=O)-で表される基又は酸素原子を表し、
Rは、それぞれ独立して、
水素原子、
ハロゲン原子、
置換基を有していてもよいアルキル基、
置換基を有していてもよいシクロアルキル基、
置換基を有していてもよいアリール基、
置換基を有していてもよいアルキルオキシ基、
置換基を有していてもよいシクロアルキルオキシ基、
置換基を有していてもよいアリールオキシ基、
置換基を有していてもよいアルキルチオ基、
置換基を有していてもよいシクロアルキルチオ基、
置換基を有していてもよいアリールチオ基、
置換基を有していてもよい1価の複素環基、
置換基を有していてもよい置換アミノ基、
置換基を有していてもよいアシル基、
置換基を有していてもよいイミン残基、
置換基を有していてもよいアミド基、
置換基を有していてもよい酸イミド基、
置換基を有していてもよい置換オキシカルボニル基、
置換基を有していてもよいアルケニル基、
置換基を有していてもよいシクロアルケニル基、
置換基を有していてもよいアルキニル基、
置換基を有していてもよいシクロアルキニル基、
シアノ基、
ニトロ基、
-C(=O)-Raで表される基、又は
-SO2-Rbで表される基を表し、
Ra及びRbは、それぞれ独立して、
水素原子、
置換基を有していてもよいアルキル基、
置換基を有していてもよいアリール基、
置換基を有していてもよいアルキルオキシ基、
置換基を有していてもよいアリールオキシ基、又は
置換基を有していてもよい1価の複素環基を表す。
複数あるRは、互いに同一であっても異なっていてもよい。)
[11] 前記第1の構成単位が、下記式(III)で表される構成単位である、[10]に記載の化合物。
Ar 1 and Ar 2 each independently represent an optionally substituted aromatic carbocyclic ring or an optionally substituted aromatic heterocyclic ring,
Y represents a direct bond, a group represented by -C(=O)- or an oxygen atom,
R are each independently
hydrogen atom,
halogen atom,
an optionally substituted alkyl group,
a cycloalkyl group optionally having a substituent,
an aryl group optionally having a substituent,
an optionally substituted alkyloxy group,
a cycloalkyloxy group optionally having a substituent,
an optionally substituted aryloxy group,
an optionally substituted alkylthio group,
a cycloalkylthio group optionally having a substituent,
an optionally substituted arylthio group,
a monovalent heterocyclic group optionally having a substituent,
a substituted amino group which may have a substituent,
an acyl group optionally having a substituent,
an imine residue optionally having a substituent,
an amide group optionally having a substituent,
an acid imide group optionally having a substituent,
a substituted oxycarbonyl group optionally having a substituent,
an optionally substituted alkenyl group,
a cycloalkenyl group optionally having a substituent,
an optionally substituted alkynyl group,
a cycloalkynyl group optionally having a substituent,
cyano group,
nitro group,
a group represented by —C(=O)—R a or a group represented by —SO 2 —R b ,
R a and R b each independently
hydrogen atom,
an optionally substituted alkyl group,
an aryl group optionally having a substituent,
an optionally substituted alkyloxy group,
It represents an optionally substituted aryloxy group or an optionally substituted monovalent heterocyclic group.
Multiple R's may be the same or different. )
[11] The compound according to [10], wherein the first structural unit is a structural unit represented by the following formula (III).
Y及びRは、前記定義のとおりであり、
X1及びX2は、それぞれ独立して、硫黄原子又は酸素原子を表し、
Z1及びZ2は、それぞれ独立して、=C(R)-で表される基又は窒素原子を表す。)
[12] 前記第1の構成単位が、下記式(IV-1)で表される構成単位である、[11]に記載の化合物。
Y and R are as defined above;
X 1 and X 2 each independently represent a sulfur atom or an oxygen atom,
Z 1 and Z 2 each independently represent a group represented by =C(R)- or a nitrogen atom. )
[12] The compound according to [11], wherein the first structural unit is a structural unit represented by the following formula (IV-1).
Yは、-C(=O)-で表される基又は酸素原子を表し、
Rは、それぞれ独立して、
水素原子、
ハロゲン原子、
置換基を有していてもよいアルキル基、
置換基を有していてもよいシクロアルキル基、
置換基を有していてもよいアリール基、
置換基を有していてもよいアルキルオキシ基、
置換基を有していてもよいシクロアルキルオキシ基、
置換基を有していてもよいアリールオキシ基、
置換基を有していてもよいアルキルチオ基、
置換基を有していてもよいシクロアルキルチオ基、
置換基を有していてもよいアリールチオ基、
置換基を有していてもよい1価の複素環基、
置換基を有していてもよい置換アミノ基、
置換基を有していてもよいアシル基、
置換基を有していてもよいイミン残基、
置換基を有していてもよいアミド基、
置換基を有していてもよい酸イミド基、
置換基を有していてもよい置換オキシカルボニル基、
置換基を有していてもよいアルケニル基、
置換基を有していてもよいシクロアルケニル基、
置換基を有していてもよいアルキニル基、
置換基を有していてもよいシクロアルキニル基、
シアノ基、
ニトロ基、
-C(=O)-Raで表される基、又は
-SO2-Rbで表される基を表し、
Ra及びRbは、それぞれ独立して、
水素原子、
置換基を有していてもよいアルキル基、
置換基を有していてもよいアリール基、
置換基を有していてもよいアルキルオキシ基、
置換基を有していてもよいアリールオキシ基、又は
置換基を有していてもよい1価の複素環基を表す。
複数あるRは、互いに同一であっても異なっていてもよい。)
[13] B1が、下記式(VI-1)~式(VI-16)で表される構造からなる群から選択されるいずれか1つの構造を有する2価の基である、[10]~[12]のいずれか1つに記載の化合物。
―CU1- (VI-1)
-CU1-CU1- (VI-2)
-CU1-CU2- (VI-3)
-CU1-CU1-CU1- (VI-4)
―CU1-CU2-CU1- (VI-5)
―CU1-CU1-CU2- (VI-6)
-CU1-CU2-CU2- (VI-7)
―CU2-CU1-CU2- (VI-8)
-CU1-CU1-CU1-CU1- (VI-9)
-CU1-CU1-CU1-CU2- (VI-10)
-CU1-CU1-CU2-CU1- (VI-11)
-CU1-CU1-CU2-CU2- (VI-12)
-CU1-CU2-CU1-CU2- (VI-13)
-CU1-CU2-CU2-CU1- (VI-14)
-CU1-CU2-CU2-CU2- (VI-15)
-CU2-CU1-CU2-CU2- (VI-16)
(式(V-1)~式(V-16)中、
CU1は、前記第1の構成単位を表し、
CU2は、前記第2の構成単位を表す。
CU1が2つ以上ある場合、2つ以上あるCU1は、互いに同一であっても異なっていてもよく、CU2が2つ以上ある場合、2つ以上あるCU2は、互いに同一であっても異なっていてもよい。ただし、式(VI-8)においては、2つ存在しているCU2が同一である場合が除かれる。)
Y represents a group represented by -C(=O)- or an oxygen atom,
R are each independently
hydrogen atom,
halogen atom,
an optionally substituted alkyl group,
a cycloalkyl group optionally having a substituent,
an aryl group optionally having a substituent,
an optionally substituted alkyloxy group,
a cycloalkyloxy group optionally having a substituent,
an optionally substituted aryloxy group,
an optionally substituted alkylthio group,
a cycloalkylthio group optionally having a substituent,
an optionally substituted arylthio group,
a monovalent heterocyclic group optionally having a substituent,
a substituted amino group which may have a substituent,
an acyl group optionally having a substituent,
an imine residue optionally having a substituent,
an amide group optionally having a substituent,
an acid imide group optionally having a substituent,
a substituted oxycarbonyl group optionally having a substituent,
an optionally substituted alkenyl group,
a cycloalkenyl group optionally having a substituent,
an optionally substituted alkynyl group,
a cycloalkynyl group optionally having a substituent,
cyano group,
nitro group,
a group represented by —C(=O)—R a or a group represented by —SO 2 —R b ,
R a and R b each independently
hydrogen atom,
an optionally substituted alkyl group,
an aryl group optionally having a substituent,
an optionally substituted alkyloxy group,
It represents an optionally substituted aryloxy group or an optionally substituted monovalent heterocyclic group.
Multiple R's may be the same or different. )
[13] B 1 is a divalent group having any one structure selected from the group consisting of structures represented by the following formulas (VI-1) to (VI-16), [10] The compound according to any one of -[12].
-CU1- (VI-1)
-CU1-CU1- (VI-2)
-CU1-CU2- (VI-3)
-CU1-CU1-CU1- (VI-4)
-CU1-CU2-CU1- (VI-5)
-CU1-CU1-CU2- (VI-6)
-CU1-CU2-CU2- (VI-7)
-CU2-CU1-CU2- (VI-8)
-CU1-CU1-CU1-CU1- (VI-9)
-CU1-CU1-CU1-CU2- (VI-10)
-CU1-CU1-CU2-CU1- (VI-11)
-CU1-CU1-CU2-CU2- (VI-12)
-CU1-CU2-CU1-CU2- (VI-13)
-CU1-CU2-CU2-CU1- (VI-14)
-CU1-CU2-CU2-CU2- (VI-15)
-CU2-CU1-CU2-CU2- (VI-16)
(In the formulas (V-1) to (V-16),
CU1 represents the first structural unit,
CU2 represents the second structural unit.
When there are two or more CU1s, the two or more CU1s may be the same or different, and when there are two or more CU2s, the two or more CU2s may be the same or different. may However, in formula (VI-8), the case where two CU2s are the same is excluded. )
本発明によれば、特に暗電流を効果的に低減させることができる化合物、当該化合物を含む組成物及び当該組成物を機能層の材料として用いた光電変換素子を提供することができる。
According to the present invention, it is possible to provide a compound that can effectively reduce dark current, a composition containing the compound, and a photoelectric conversion element using the composition as a material for the functional layer.
以下、本発明の実施形態にかかる化合物について説明し、さらには本実施形態にかかる化合物が用いられる光電変換素子について、図面を参照して説明する。なお、図面は、発明が理解できる程度に、構成要素の形状、大きさ及び配置が概略的に示されているに過ぎない。本発明は以下の記述によって限定されるものではなく、各構成要素は本発明の要旨を逸脱しない範囲において適宜変更可能である。また、本発明の実施形態にかかる構成は、必ずしも図面に示された配置で、製造されたり、使用されたりするとは限らない。
A compound according to an embodiment of the present invention will be described below, and a photoelectric conversion device using the compound according to the present embodiment will be described with reference to the drawings. It should be noted that the drawings only schematically show the shape, size and arrangement of the constituent elements to the extent that the invention can be understood. The present invention is not limited by the following description, and each component can be changed as appropriate without departing from the gist of the present invention. Also, the configurations according to the embodiments of the present invention are not necessarily manufactured or used in the arrangement shown in the drawings.
以下の説明において共通して用いられる用語についてまず説明する。
First, the terms commonly used in the following explanation will be explained.
「非フラーレン化合物」とは、フラーレン及びフラーレン誘導体のいずれでもない化合物をいう。
"Non-fullerene compounds" refer to compounds that are neither fullerenes nor fullerene derivatives.
「π共役系」とは、π電子が複数の結合に非局在化している系を意味している。
"π-conjugated system" means a system in which π electrons are delocalized to multiple bonds.
「高分子化合物」とは、分子量分布を有し、ポリスチレン換算の数平均分子量が、1×103以上1×108以下である重合体を意味する。なお、高分子化合物に含まれる構成単位は、合計100モル%である。
The term “polymer compound” means a polymer having a molecular weight distribution and a polystyrene-equivalent number average molecular weight of 1×10 3 or more and 1×10 8 or less. In addition, the structural units contained in the polymer compound are 100 mol % in total.
「構成単位」とは、本実施形態の化合物、及び高分子化合物中に1個以上存在している、原料化合物(モノマー)に由来する残基を意味する。
A "structural unit" means a residue derived from a raw material compound (monomer) and present at least one in the compound and polymer compound of the present embodiment.
「水素原子」は、軽水素原子であっても、重水素原子であってもよい。
A "hydrogen atom" may be a hydrogen atom or a deuterium atom.
「ハロゲン原子」の例としては、フッ素原子、塩素原子、臭素原子、及びヨウ素原子が挙げられる。
Examples of "halogen atoms" include fluorine atoms, chlorine atoms, bromine atoms, and iodine atoms.
「置換基を有していてもよい」態様には、化合物又は基を構成するすべての水素原子が無置換の場合、及び1個以上の水素原子の一部又は全部が置換基によって置換されている場合の両方の態様が含まれる。
In the "optionally substituted" aspect, when all hydrogen atoms constituting the compound or group are unsubstituted, and when one or more hydrogen atoms are partially or entirely substituted by a substituent Both aspects are included.
「置換基」の例としては、ハロゲン原子、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルキニル基、シクロアルキニル基、アルキルオキシ基、シクロアルキルオキシ基、アルキルチオ基、シクロアルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、1価の複素環基、置換アミノ基、アシル基、イミン残基、アミド基、酸イミド基、置換オキシカルボニル基、シアノ基、アルキルスルホニル基、及びニトロ基が挙げられる。なお、本明細書において炭素原子数という場合、当該炭素原子数には、置換基の炭素原子数は含まれない。
Examples of "substituents" include halogen atoms, alkyl groups, cycloalkyl groups, alkenyl groups, cycloalkenyl groups, alkynyl groups, cycloalkynyl groups, alkyloxy groups, cycloalkyloxy groups, alkylthio groups, cycloalkylthio groups, aryl groups, aryloxy groups, arylthio groups, monovalent heterocyclic groups, substituted amino groups, acyl groups, imine residues, amide groups, acid imide groups, substituted oxycarbonyl groups, cyano groups, alkylsulfonyl groups, and nitro groups mentioned. In addition, when referring to the number of carbon atoms in the present specification, the number of carbon atoms does not include the number of carbon atoms of the substituent.
本明細書において、特に特定しない限り、「アルキル基」は、直鎖状、分岐状、及び環状のいずれであってもよい。直鎖状のアルキル基の炭素原子数は、置換基の炭素原子数を含めないで、通常1~50であり、好ましくは1~30であり、より好ましくは1~20である。分岐状又は環状であるアルキル基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~50であり、好ましくは3~30であり、より好ましくは4~20である。
In the present specification, unless otherwise specified, the "alkyl group" may be linear, branched, or cyclic. The number of carbon atoms in the linear alkyl group is generally 1-50, preferably 1-30, more preferably 1-20, not including the number of carbon atoms in the substituents. The number of carbon atoms in the branched or cyclic alkyl group is usually 3 to 50, preferably 3 to 30, more preferably 4 to 20, not including the number of carbon atoms in substituents.
アルキル基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソアミル基、2-エチルブチル基、n-ヘキシル基、シクロヘキシル基、n-ヘプチル基、シクロヘキシルメチル基、シクロヘキシルエチル基、n-オクチル基、2-エチルヘキシル基、3-n-プロピルヘプチル基、アダマンチル基、n-デシル基、3,7-ジメチルオクチル基、2-エチルオクチル基、2-n-ヘキシル-デシル基、n-ドデシル基、テトラデシル基、ヘキサデシル墓、オクタデシル基、イコシル基が挙げられる。
Specific examples of alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isoamyl, 2-ethylbutyl, n- hexyl group, cyclohexyl group, n-heptyl group, cyclohexylmethyl group, cyclohexylethyl group, n-octyl group, 2-ethylhexyl group, 3-n-propylheptyl group, adamantyl group, n-decyl group, 3,7-dimethyl octyl group, 2-ethyloctyl group, 2-n-hexyl-decyl group, n-dodecyl group, tetradecyl group, hexadecyl group, octadecyl group and icosyl group.
アルキル基は、置換基を有していてもよい。置換基を有するアルキル基は、例えば、上記例示のアルキル基における水素原子が、アルキルオキシ基、アリール基、フッ素原子等の置換基で置換された基である。
The alkyl group may have a substituent. An alkyl group having a substituent is, for example, a group in which a hydrogen atom in the above-exemplified alkyl group is substituted with a substituent such as an alkyloxy group, an aryl group, or a fluorine atom.
置換基を有するアルキルの具体例としては、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロブチル基、パーフルオロヘキシル基、パーフルオロオクチル基、3-フェニルプロピル基、3-(4-メチルフェニル)プロピル基、3-(3,5-ジヘキシルフェニル)プロピル基、6-エチルオキシヘキシル基が挙げられる。
Specific examples of substituted alkyl include trifluoromethyl, pentafluoroethyl, perfluorobutyl, perfluorohexyl, perfluorooctyl, 3-phenylpropyl, and 3-(4-methylphenyl). propyl group, 3-(3,5-dihexylphenyl)propyl group and 6-ethyloxyhexyl group.
「シクロアルキル基」は、単環の基であってもよく、多環の基であってもよい。シクロアルキル基は、置換基を有していてもよい。シクロアルキル基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~30であり、好ましくは12~19である。
A "cycloalkyl group" may be a monocyclic group or a polycyclic group. A cycloalkyl group may have a substituent. The number of carbon atoms in the cycloalkyl group is usually 3-30, preferably 12-19, not including the number of carbon atoms in the substituents.
シクロアルキル基の例としては、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、アダマンチル基などの置換基を有しないアルキル基、及びこれらの基における水素原子が、アルキル基、アルキルオキシ基、アリール基、フッ素原子などの置換基で置換された基が挙げられる。
Examples of cycloalkyl groups include unsubstituted alkyl groups such as cyclopentyl, cyclohexyl, cycloheptyl and adamantyl groups, and hydrogen atoms in these groups are alkyl groups, alkyloxy groups, aryl groups, fluorine Groups substituted with substituents such as atoms are included.
置換基を有するシクロアルキル基の具体例としては、メチルシクロヘキシル基、エチルシクロヘキシル基が挙げられる。
Specific examples of the cycloalkyl group having a substituent include a methylcyclohexyl group and an ethylcyclohexyl group.
「p価の芳香族炭素環基」とは、置換基を有していてもよい芳香族炭化水素から環を構成する炭素原子に直接結合する水素原子p個を除いた残りの原子団を意味する。p価の芳香族炭素環基は、置換基をさらに有していてもよい。
"P-valent aromatic carbocyclic group" means the remaining atomic group excluding p hydrogen atoms directly bonded to the carbon atoms constituting the ring from an aromatic hydrocarbon optionally having a substituent. do. The p-valent aromatic carbocyclic group may further have a substituent.
「アリール基」は、1価の芳香族炭素環基であって、置換基を有していてもよい芳香族炭化水素から環を構成する炭素原子に直接結合する水素原子1つを除いた残りの原子団を意味する。
"Aryl group" is a monovalent aromatic carbocyclic group, which is an optionally substituted aromatic hydrocarbon remaining after removing one hydrogen atom directly bonded to a carbon atom constituting the ring means the atomic group of
アリール基は、置換基を有していてもよい。アリール基の具体例としては、フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、1-ピレニル基、2-ピレニル基、4-ピレニル基、2-フルオレニル基、3-フルオレニル基、4-フルオレニル基、2-フェニルフェニル基、3-フェニルフェニル基、4-フェニルフェニル基、及び、これらの基における水素原子が、アルキル基、アルキルオキシ基、アリール基、フッ素原子などの置換基で置換された基が挙げられる。
The aryl group may have a substituent. Specific examples of aryl groups include phenyl, 1-naphthyl, 2-naphthyl, 1-anthracenyl, 2-anthracenyl, 9-anthracenyl, 1-pyrenyl, 2-pyrenyl, and 4-pyrenyl groups. , 2-fluorenyl group, 3-fluorenyl group, 4-fluorenyl group, 2-phenylphenyl group, 3-phenylphenyl group, 4-phenylphenyl group, and hydrogen atoms in these groups are alkyl groups, alkyloxy groups , an aryl group, and a group substituted with a substituent such as a fluorine atom.
「アルキルオキシ基」は、直鎖状、分岐状、及び環状のいずれであってもよい。直鎖状のアルキルオキシ基の炭素原子数は、置換基の炭素原子数を含めないで、通常1~40であり、好ましくは1~10である。分岐状又は環状のアルキルオキシ基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~40であり、好ましくは4~10である。
"Alkyloxy group" may be linear, branched, or cyclic. The number of carbon atoms in the straight-chain alkyloxy group is generally 1-40, preferably 1-10, not including the number of carbon atoms in the substituents. The number of carbon atoms in the branched or cyclic alkyloxy group is usually 3-40, preferably 4-10, not including the number of carbon atoms in the substituents.
アルキルオキシ基は、置換基を有していてもよい。アルキルオキシ基の具体例としては、メトキシ基、エトキシ基、n-プロピルオキシ基、イソプロピルオキシ基、n-ブチルオキシ基、イソブチルオキシ基、tert-ブチルオキシ基、n-ペンチルオキシ基、n-ヘキシルオキシ基、シクロヘキシルオキシ基、n-ヘプチルオキシ基、n-オクチルオキシ基、2-エチルヘキシルオキシ基、n-ノニルオキシ基、n-デシルオキシ基、3,7-ジメチルオクチルオキシ基、3-ヘプチルドデシルオキシ基、ラウリルオキシ基、及びこれらの基における水素原子が、アルキルオキシ基、アリール基、フッ素原子で置換された基が挙げられる。
The alkyloxy group may have a substituent. Specific examples of alkyloxy groups include methoxy, ethoxy, n-propyloxy, isopropyloxy, n-butyloxy, isobutyloxy, tert-butyloxy, n-pentyloxy and n-hexyloxy groups. , cyclohexyloxy group, n-heptyloxy group, n-octyloxy group, 2-ethylhexyloxy group, n-nonyloxy group, n-decyloxy group, 3,7-dimethyloctyloxy group, 3-heptyldodecyloxy group, lauryl Examples include oxy groups and groups in which hydrogen atoms in these groups are substituted with alkyloxy groups, aryl groups, and fluorine atoms.
「シクロアルキルオキシ基」が有するシクロアルキル基は、単環の基であってもよく、多環の基であってもよい。シクロアルキルオキシ基は、置換基を有していてもよい。シクロアルキルオキシ基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~30であり、好ましくは12~19である。
The cycloalkyl group possessed by the "cycloalkyloxy group" may be a monocyclic group or a polycyclic group. A cycloalkyloxy group may have a substituent. The number of carbon atoms in the cycloalkyloxy group is usually 3-30, preferably 12-19, not including the number of carbon atoms in the substituent.
シクロアルキルオキシ基の例としては、シクロペンチルオキシ基、シクロヘキシルオキシ基、シクロヘプチルオキシ基などの、置換基を有しないシクロアルキルオキシ基、及びこれらの基における水素原子が、フッ素原子、アルキル基で置換された基が挙げられる。
Examples of cycloalkyloxy groups include unsubstituted cycloalkyloxy groups such as cyclopentyloxy, cyclohexyloxy, and cycloheptyloxy groups, and hydrogen atoms in these groups substituted with fluorine atoms or alkyl groups. and the groups described above.
「アリールオキシ基」の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~48である。
The number of carbon atoms in the "aryloxy group" is usually 6 to 60, preferably 6 to 48, not including the number of carbon atoms in the substituents.
アリールオキシ基は、置換基を有していてもよい。アリールオキシ基の具体例としては、フェノキシ基、1-ナフチルオキシ基、2-ナフチルオキシ基、1-アントラセニルオキシ基、9-アントラセニルオキシ基、1-ピレニルオキシ基、及び、これらの基における水素原子が、アルキル基、アルキルオキシ基、フッ素原子などの置換基で置換された基が挙げられる。
The aryloxy group may have a substituent. Specific examples of the aryloxy group include a phenoxy group, a 1-naphthyloxy group, a 2-naphthyloxy group, a 1-anthracenyloxy group, a 9-anthracenyloxy group, a 1-pyrenyloxy group, and these groups. A group in which a hydrogen atom in is substituted with a substituent such as an alkyl group, an alkyloxy group, or a fluorine atom.
「アルキルチオ基」は、直鎖状、分岐状、及び環状のいずれであってもよい。直鎖状のアルキルチオ基の炭素原子数は、置換基の炭素原子数を含めないで、通常1~40であり、好ましくは1~10である。分岐状及び環状のアルキルチオ基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~40であり、好ましくは4~10である。
"Alkylthio group" may be linear, branched, or cyclic. The number of carbon atoms in the straight-chain alkylthio group is generally 1-40, preferably 1-10, not including the number of carbon atoms in the substituents. The number of carbon atoms in the branched or cyclic alkylthio group is usually 3-40, preferably 4-10, not including the number of carbon atoms in the substituents.
アルキルチオ基は、置換基を有していてもよい。アルキルチオ基の具体例としては、メチルチオ基、エチルチオ基、プロピルチオ基、イソプロピルチオ基、ブチルチオ基、イソブチルチオ基、tert-ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、シクロヘキシルチオ基、ヘプチルチオ基、オクチルチオ基、2-エチルヘキシルチオ基、ノニルチオ基、デシルチオ基、3,7-ジメチルオクチルチオ基、ラウリルチオ基、及びトリフルオロメチルチオ基が挙げられる。
The alkylthio group may have a substituent. Specific examples of alkylthio groups include methylthio, ethylthio, propylthio, isopropylthio, butylthio, isobutylthio, tert-butylthio, pentylthio, hexylthio, cyclohexylthio, heptylthio, octylthio, 2 -ethylhexylthio, nonylthio, decylthio, 3,7-dimethyloctylthio, laurylthio, and trifluoromethylthio groups.
「シクロアルキルチオ基」が有するシクロアルキル基は、単環の基であってもよく、多環の基であってもよい。シクロアルキルチオ基は、置換基を有していてもよい。シクロアルキルチオ基の炭素原子数は、置換基の炭素原子数を含まないで、通常3~30であり、好ましくは12~19である。
The cycloalkyl group possessed by the "cycloalkylthio group" may be a monocyclic group or a polycyclic group. A cycloalkylthio group may have a substituent. The number of carbon atoms in the cycloalkylthio group is usually 3-30, preferably 12-19, not including the number of carbon atoms in the substituent.
置換基を有していてもよいシクロアルキルチオ基の例としては、シクロヘキシルチオ基が挙げられる。
A cyclohexylthio group is mentioned as an example of the cycloalkylthio group which may have a substituent.
「アリールチオ基」の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~48である。
The number of carbon atoms in the "arylthio group" is usually 6-60, preferably 6-48, not including the number of carbon atoms in the substituent.
アリールチオ基は、置換基を有していてもよい。アリールチオ基の例としては、フェニルチオ基、C1~C12アルキルオキシフェニルチオ基(C1~C12は、その直後に記載された基の炭素原子数が1~12であることを示す。以下も同様である。)、C1~C12アルキルフェニルチオ基、1-ナフチルチオ基、2-ナフチルチオ基、及びペンタフルオロフェニルチオ基が挙げられる。
The arylthio group may have a substituent. Examples of the arylthio group include a phenylthio group and a C1-C12 alkyloxyphenylthio group (C1-C12 indicates that the number of carbon atoms in the group immediately following it is 1-12. The same applies hereinafter. .), C1-C12 alkylphenylthio groups, 1-naphthylthio groups, 2-naphthylthio groups, and pentafluorophenylthio groups.
「p価の複素環基」(pは、1以上の整数を表す。)とは、置換基を有していてもよい複素環式化合物から、環を構成する炭素原子又はヘテロ原子に直接結合している水素原子のうちp個の水素原子を除いた残りの原子団を意味する。
A "p-valent heterocyclic group" (p represents an integer of 1 or more) refers to a heterocyclic compound that may have a substituent, which is directly bonded to a carbon atom or a heteroatom that constitutes the ring. It means an atomic group remaining after removing p hydrogen atoms among the hydrogen atoms.
p価の複素環基は、置換基をさらに有していてもよい。p価の複素環基の炭素原子数は、置換基の炭素原子数を含まないで、通常2~30であり、好ましくは2~6である。
The p-valent heterocyclic group may further have a substituent. The number of carbon atoms in the p-valent heterocyclic group is usually 2 to 30, preferably 2 to 6, not including the number of carbon atoms in substituents.
複素環式化合物が有していてもよい置換基としては、例えば、ハロゲン原子、アルキル基、アリール基、アルキルオキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基、1価の複素環基、置換アミノ基、アシル基、イミン残基、アミド基、酸イミド基、置換オキシカルボニル基、アルケニル基、アルキニル基、シアノ基、及びニトロ基が挙げられる。p価の複素環基には、「p価の芳香族複素環基」が含まれる。
Examples of substituents that the heterocyclic compound may have include halogen atoms, alkyl groups, aryl groups, alkyloxy groups, aryloxy groups, alkylthio groups, arylthio groups, monovalent heterocyclic groups, substituted amino groups, acyl groups, imine residues, amide groups, acid imide groups, substituted oxycarbonyl groups, alkenyl groups, alkynyl groups, cyano groups, and nitro groups. The p-valent heterocyclic group includes a "p-valent aromatic heterocyclic group".
「p価の芳香族複素環基」は、置換基を有していてもよい芳香族複素環式化合物から、環を構成する炭素原子又はヘテロ原子に直接結合している水素原子のうちp個の水素原子を除いた残りの原子団を意味する。p価の芳香族複素環基は、置換基をさらに有していてもよい。
"p-valent aromatic heterocyclic group", from an optionally substituted aromatic heterocyclic compound, out of the hydrogen atoms directly bonded to the carbon atoms or heteroatoms constituting the ring p means the remaining atomic groups excluding the hydrogen atoms of The p-valent aromatic heterocyclic group may further have a substituent.
芳香族複素環式化合物には、複素環自体が芳香族性を示す化合物に加えて、複素環自体は芳香族性を示さなくとも、複素環に芳香環が縮環している化合物が包含される。
Aromatic heterocyclic compounds include not only compounds in which the heterocycle itself exhibits aromaticity, but also compounds in which an aromatic ring is fused to a heterocycle, even if the heterocycle itself does not exhibit aromaticity. be.
芳香族複素環式化合物のうち、複素環自体が芳香族性を示す化合物の具体例としては、オキサジアゾール、チアジアゾール、チアゾール、オキサゾール、チオフェン、ピロール、ホスホール、フラン、ピリジン、ピラジン、ピリミジン、トリアジン、ピリダジン、キノリン、イソキノリン、カルバゾール、及びジベンゾホスホールが挙げられる。
Among aromatic heterocyclic compounds, specific examples of compounds in which the heterocycle itself exhibits aromaticity include oxadiazole, thiadiazole, thiazole, oxazole, thiophene, pyrrole, phosphole, furan, pyridine, pyrazine, pyrimidine, and triazine. , pyridazine, quinoline, isoquinoline, carbazole, and dibenzophosphole.
芳香族複素環式化合物のうち、芳香族複素環自体が芳香族性を示さず、複素環に芳香環が縮環している化合物の具体例としては、フェノキサジン、フェノチアジン、ジベンゾボロール、ジベンゾシロール、及びベンゾピランが挙げられる。
Among aromatic heterocyclic compounds, specific examples of compounds in which the aromatic heterocyclic ring itself does not show aromaticity and the aromatic ring is fused to the heterocyclic ring include phenoxazine, phenothiazine, dibenzoborol, dibenzo Siloles, and benzopyrans.
1価の複素環基の炭素原子数は、置換基の炭素原子数を含めないで、通常2~60であり、好ましくは4~20である。
The number of carbon atoms in the monovalent heterocyclic group is usually 2-60, preferably 4-20, not including the number of carbon atoms in the substituent.
1価の複素環基は、置換基を有していてもよく、1価の複素環基の具体例としては、例えば、チエニル基、ピロリル基、フリル基、ピリジル基、ピペリジル基、キノリル基、イソキノリル基、ピリミジニル基、トリアジニル基、及び、これらの基における水素原子が、アルキル基、アルキルオキシ基等で置換された基が挙げられる。
The monovalent heterocyclic group may have a substituent, and specific examples of the monovalent heterocyclic group include thienyl, pyrrolyl, furyl, pyridyl, piperidyl, quinolyl, isoquinolyl group, pyrimidinyl group, triazinyl group, and groups in which hydrogen atoms in these groups are substituted with alkyl groups, alkyloxy groups, and the like.
「置換アミノ基」は、置換基を有するアミノ基を意味する。アミノ基が有する置換基の例としては、アルキル基、アリール基、及び1価の複素環基が挙げられ、アルキル基、アリール基、又は1価の複素環基が好ましい。置換アミノ基の炭素原子数は、通常2~30である。
"Substituted amino group" means an amino group having a substituent. Examples of substituents on the amino group include alkyl groups, aryl groups, and monovalent heterocyclic groups, with alkyl groups, aryl groups, and monovalent heterocyclic groups being preferred. The substituted amino group usually has 2 to 30 carbon atoms.
置換アミノ基の例としては、ジメチルアミノ基、ジエチルアミノ基等のジアルキルアミノ基;ジフェニルアミノ基、ビス(4-メチルフェニル)アミノ基、ビス(4-tert-ブチルフェニル)アミノ基、ビス(3,5-ジ-tert-ブチルフェニル)アミノ基等のジアリールアミノ基が挙げられる。
Examples of substituted amino groups include dialkylamino groups such as dimethylamino group and diethylamino group; diphenylamino group, bis(4-methylphenyl)amino group, bis(4-tert-butylphenyl)amino group, bis(3, and diarylamino groups such as 5-di-tert-butylphenyl)amino group.
「アシル基」は、置換基を修していてもよい。アシル基の炭素原子数は、置換基の炭素原子数を含めないで、通常2~20であり、好ましくは2~18である。アシル基の具体例としては、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、ピバロイル基、ベンゾイル基、トリフルオロアセチル基、及びペンタフルオロベンゾイル基が挙げられる。
"Acyl group" may modify a substituent. The number of carbon atoms in the acyl group is usually 2-20, preferably 2-18, not including the number of carbon atoms in the substituents. Specific examples of acyl groups include acetyl, propionyl, butyryl, isobutyryl, pivaloyl, benzoyl, trifluoroacetyl, and pentafluorobenzoyl groups.
「イミン残基」とは、イミン化合物から、炭素原子-窒素原子二重結合を構成する炭素原子又は窒素原子に直接結合する水素原子1つを除いた残りの原子団を意味する。「イミン化合物」とは、分子内に、炭素原子-窒素原子二重結合を有する有機化合物を意味する。イミン化合物の例として、アルジミン、ケチミン、及びアルジミン中の炭素原子-窒素原子二重結合を構成する窒素原子に結合している水素原子が、アルキル基等で置換された化合物が挙げられる。
"Imine residue" means an atomic group remaining after removing one hydrogen atom directly bonded to a carbon atom or a nitrogen atom that constitutes a carbon atom-nitrogen atom double bond from an imine compound. An "imine compound" means an organic compound having a carbon atom-nitrogen atom double bond in the molecule. Examples of imine compounds include aldimines, ketimines, and compounds in which a hydrogen atom bonded to a nitrogen atom constituting a carbon atom-nitrogen double bond in aldimines is substituted with an alkyl group or the like.
イミン残基は、通常、炭素原子数が2~20であり、好ましくは炭素原子数が2~18である。イミン残基の例としては、下記の構造式で表される基が挙げられる。
The imine residue usually has 2 to 20 carbon atoms, preferably 2 to 18 carbon atoms. Examples of imine residues include groups represented by the following structural formulas.
「アミド基」は、アミドから窒素原子に結合した水素原子を1個除いた残りの原子団を意味する。アミド基の炭素原子数は、通常1~20であり、好ましくは1~18である。アミド基の具体例としては、ホルムアミド基、アセトアミド基、プロピオアミド基、ブチロアミド基、ベンズアミド基、トリフルオロアセトアミド基、ペンタフルオロベンズアミド基、ジホルムアミド基、ジアセトアミド基、ジプロピオアミド基、ジブチロアミド基、ジベンズアミド基、ジトリフルオロアセトアミド基、及びジペンタフルオロベンズアミド基が挙げられる。
"Amido group" means an atomic group remaining after removing one hydrogen atom bonded to a nitrogen atom from amide. The amide group usually has 1 to 20 carbon atoms, preferably 1 to 18 carbon atoms. Specific examples of the amide group include a formamide group, an acetamide group, a propioamide group, a butyroamide group, a benzamide group, a trifluoroacetamide group, a pentafluorobenzamide group, a diformamide group, a diacetamide group, a dipropioamide group, a dibutyroamide group, and a dibenzamide group. , a ditrifluoroacetamide group, and a dipentafluorobenzamide group.
「酸イミド基」とは、酸イミドから窒素原子に結合した水素原子を1個除いた残りの原子団を意味する。酸イミド基の炭素原子数は、通常4~20である。酸イミド基の具体例としては、下記の構造式で表される基が挙げられる。
"Acid imide group" means an atomic group remaining after removing one hydrogen atom bonded to a nitrogen atom from an acid imide. The number of carbon atoms in the acid imide group is generally 4-20. Specific examples of acid imide groups include groups represented by the following structural formulas.
「置換オキシカルボニル基」とは、R’-O-(C=O)-で表される基を意味する。ここで、R’は、アルキル基、アリール基、アリールアルキル基、又は1価の複素環基を表す。
"Substituted oxycarbonyl group" means a group represented by R'-O-(C=O)-. Here, R' represents an alkyl group, an aryl group, an arylalkyl group, or a monovalent heterocyclic group.
置換オキシカルボニル基の炭素原子数は、置換基の炭素原子数を含めないで、通常2~60であり、好ましくは2~48である。
The number of carbon atoms in the substituted oxycarbonyl group is usually 2 to 60, preferably 2 to 48, not including the number of carbon atoms in the substituent.
置換オキシカルボニル基の具体例としては、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、イソプロポキシカルボニル基、ブトキシカルボニル基、イソブトキシカルボニル基、tert-ブトキシカルボニル基、ペンチルオキシカルボニル基、ヘキシルオキシカルボニル基、シクロヘキシルオキシカルボニル基、ヘプチルオキシカルボニル基、オクチルオキシカルボニル基、2-エチルヘキシルオキシカルボニル基、ノニルオキシカルボニル基、デシルオキシカルボニル基、3,7-ジメチルオクチルオキシカルボニル基、ドデシルオキシカルボニル基、トリフルオロメトキシカルボニル基、ペンタフルオロエトキシカルボニル基、パーフルオロブトキシカルボニル基、パーフルオロヘキシルオキシカルボニル基、パーフルオロオクチルオキシカルボニル基、フェノキシカルボニル基、ナフトキシカルボニル基、及びピリジルオキシカルボニル基が挙げられる。
Specific examples of substituted oxycarbonyl groups include a methoxycarbonyl group, an ethoxycarbonyl group, a propoxycarbonyl group, an isopropoxycarbonyl group, a butoxycarbonyl group, an isobutoxycarbonyl group, a tert-butoxycarbonyl group, a pentyloxycarbonyl group, and a hexyloxycarbonyl group. group, cyclohexyloxycarbonyl group, heptyloxycarbonyl group, octyloxycarbonyl group, 2-ethylhexyloxycarbonyl group, nonyloxycarbonyl group, decyloxycarbonyl group, 3,7-dimethyloctyloxycarbonyl group, dodecyloxycarbonyl group, tri fluoromethoxycarbonyl, pentafluoroethoxycarbonyl, perfluorobutoxycarbonyl, perfluorohexyloxycarbonyl, perfluorooctyloxycarbonyl, phenoxycarbonyl, naphthoxycarbonyl, and pyridyloxycarbonyl groups.
「アルケニル基」は、直鎖状、分岐状、及び環状のいずれであってもよい。直鎖状のアルケニル基の炭素原子数は、置換基の炭素原子数を含めないで、通常2~30であり、好ましくは3~20である。分岐状又は環状のアルケニル基の炭素原子数は、置換基の炭素原子数を含まないで、通常3~30であり、好ましくは4~20である。
"Alkenyl group" may be linear, branched, or cyclic. The number of carbon atoms in the straight-chain alkenyl group is usually 2-30, preferably 3-20, not including the number of carbon atoms in the substituents. The number of carbon atoms in the branched or cyclic alkenyl group is usually 3 to 30, preferably 4 to 20, not including the number of carbon atoms in substituents.
アルケニル基は、置換基を有していてもよい。アルケニル基の具体例としては、ビニル基、1-プロペニル基、2-プロペニル基、2-ブテニル基、3-ブテニル基、3-ペンテニル基、4-ペンテニル基、1-ヘキセニル基、5-ヘキセニル基、7-オクテニル基、及び、これらの基における水素原子がアルキル基、アルキルオキシ基、アリール基、フッ素原子で置換された基が挙げられる。
The alkenyl group may have a substituent. Specific examples of alkenyl groups include vinyl, 1-propenyl, 2-propenyl, 2-butenyl, 3-butenyl, 3-pentenyl, 4-pentenyl, 1-hexenyl and 5-hexenyl groups. , 7-octenyl groups, and groups in which hydrogen atoms in these groups are substituted with alkyl groups, alkyloxy groups, aryl groups, and fluorine atoms.
「シクロアルケニル基」は、単環の基であってもよく、多環の基であってもよい。シクロアルケニル基は、置換基を有していてもよい。シクロアルケニル基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~30であり、好ましくは12~19である。
A "cycloalkenyl group" may be a monocyclic group or a polycyclic group. A cycloalkenyl group may have a substituent. The number of carbon atoms in the cycloalkenyl group is usually 3-30, preferably 12-19, not including the number of carbon atoms in the substituents.
シクロアルケニル基の例としては、シクロヘキセニル基などの、置換基を有しないシクロアルケニル基、及びこれらの基における水素原子が、アルキル基、アルキルオキシ基、アリール基、フッ素原子で置換された基が挙げられる。
Examples of cycloalkenyl groups include unsubstituted cycloalkenyl groups such as cyclohexenyl, and groups in which hydrogen atoms in these groups are substituted with alkyl groups, alkyloxy groups, aryl groups, and fluorine atoms. mentioned.
置換基を有するシクロアルケニル基の例としては、メチルシクロヘキセニル基、及びエチルシクロヘキセニル基が挙げられる。
Examples of substituted cycloalkenyl groups include a methylcyclohexenyl group and an ethylcyclohexenyl group.
「アルキニル基」は、直鎖状、分岐状、及び環状のいずれであってもよい。直鎖状のアルケニル基の炭素原子数は、置換基の炭素原子数を含めないで、通常2~20であり、好ましくは3~20である。分岐状又は環状のアルケニル基の炭素原子数は、置換基の炭素原子数を含めないで、通常4~30であり、好ましくは4~20である。
"Alkynyl group" may be linear, branched, or cyclic. The number of carbon atoms in the linear alkenyl group is usually 2 to 20, preferably 3 to 20, not including the number of carbon atoms in the substituents. The number of carbon atoms in the branched or cyclic alkenyl group is usually 4 to 30, preferably 4 to 20, not including the number of carbon atoms in the substituents.
アルキニル基は置換基を有していてもよい。アルキニル基の具体例としては、エチニル基、1-プロピニル基、2-プロピニル基、2-ブチニル基、3-ブチニル基、3-ペンチニル基、4-ペンチニル基、1-ヘキシニル基、5-ヘキシニル基、及び、これらの基における水素原子がアルキルオキシ基、アリール基、フッ素原子で置換された基が挙げられる。
The alkynyl group may have a substituent. Specific examples of alkynyl groups include ethynyl, 1-propynyl, 2-propynyl, 2-butynyl, 3-butynyl, 3-pentynyl, 4-pentynyl, 1-hexynyl and 5-hexynyl groups. , and groups in which hydrogen atoms in these groups are substituted with alkyloxy groups, aryl groups, and fluorine atoms.
「シクロアルキニル基」は、単環の基であってもよく、多環の基であってもよい。シクロアルキニル基は、置換基を有していてもよい。シクロアルキニル基の炭素原子数は、置換基の炭素原子数を含めないで、通常4~30であり、好ましくは12~19である。
A "cycloalkynyl group" may be a monocyclic group or a polycyclic group. A cycloalkynyl group may have a substituent. The number of carbon atoms in the cycloalkynyl group is generally 4-30, preferably 12-19, not including the number of carbon atoms in the substituents.
シクロアルキニル基の例としては、シクロヘキシニル基などの置換基を有しないシクロアルキニル基、及びこれらの基における水素原子が、アルキル基、アルキルオキシ基、アリール基、フッ素原子で置換された基が挙げられる。
Examples of cycloalkynyl groups include unsubstituted cycloalkynyl groups such as cyclohexynyl groups, and groups in which hydrogen atoms in these groups are substituted with alkyl groups, alkyloxy groups, aryl groups, and fluorine atoms. be done.
置換基を有するシクロアルキニル基の例としては、メチルシクロヘキシニル基、及びエチルシクロヘキシニル基が挙げられる。
Examples of substituted cycloalkynyl groups include a methylcyclohexynyl group and an ethylcyclohexynyl group.
「アルキルスルホニル基」は、直鎖状でもあってもよく、分岐状であってもよい。アルキルスルホニル基は、置換基を有していてもよい。アルキルスルホニル基の炭素原子数は、置換基の炭素原子数を含めないで、通常1~30である。アルキルスルホニル基の具体例としては、メチルスルホニル基、エチルスルホニル基、及びドデシルスルホニル基が挙げられる。
The "alkylsulfonyl group" may be linear or branched. The alkylsulfonyl group may have a substituent. The number of carbon atoms in the alkylsulfonyl group is usually 1-30, not including the number of carbon atoms in the substituents. Specific examples of alkylsulfonyl groups include methylsulfonyl, ethylsulfonyl, and dodecylsulfonyl groups.
化学式に付されうる符合「*」は、結合手を表す。
The sign "*" that can be attached to the chemical formula represents a bond.
「インク組成物」は、塗布法に用いられる液状体を意味しており、着色した液に限定されない。また、「塗布法」は、液状物質を用いて膜(層)を形成する方法を包含し、例えば、スロットダイコート法、スリットコート法、ナイフコート法、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイヤーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、グラビア印刷法、フレキソ印刷法、オフセット印刷法、インクジェットコート法、ディスペンサー印刷法、ノズルコート法、及びキャピラリーコート法が挙げられる。
"Ink composition" means a liquid used in the coating method, and is not limited to colored liquids. In addition, "coating method" includes a method of forming a film (layer) using a liquid substance, such as slot die coating method, slit coating method, knife coating method, spin coating method, casting method, micro gravure coating method. , gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, spray coating method, screen printing method, gravure printing method, flexographic printing method, offset printing method, inkjet coating method, dispenser printing method, A nozzle coating method and a capillary coating method can be mentioned.
インク組成物は、溶液であってよく、分散液、エマルション(乳濁液)、サスペンション(懸濁液)などの分散液であってもよい。
The ink composition may be a solution, or may be a dispersion liquid such as a dispersion liquid, an emulsion (emulsion), or a suspension (suspension).
「吸収ピーク波長」とは、所定の波長範囲で測定された吸収スペクトルの吸収ピークに基づいて特定されるパラメータであり、吸収スペクトルの吸収ピークのうちの吸光度が最も大きい吸収ピークの波長をいう。
"Absorption peak wavelength" is a parameter specified based on the absorption peak of the absorption spectrum measured in a predetermined wavelength range, and refers to the wavelength of the absorption peak with the highest absorbance among the absorption peaks of the absorption spectrum.
本発明の実施形態にかかる組成物は、p型半導体材料とn型半導体材料を含む組成物であって、n型半導体材料が下記式(I)で表される化合物を含む、組成物である。
D1-B1-A1 (I)
式(I)中、
D1は、電子供与性の基を表し、
A1は、電子求引性の基を表し、
B1は、1以上の構成単位を含み、π共役系を構成している2価の基を表す。 A composition according to an embodiment of the present invention is a composition containing a p-type semiconductor material and an n-type semiconductor material, wherein the n-type semiconductor material contains a compound represented by the following formula (I): .
D 1 -B 1 -A 1 (I)
In formula (I),
D 1 represents an electron-donating group,
A 1 represents an electron-withdrawing group,
B 1 represents a divalent group containing one or more structural units and forming a π-conjugated system.
D1-B1-A1 (I)
式(I)中、
D1は、電子供与性の基を表し、
A1は、電子求引性の基を表し、
B1は、1以上の構成単位を含み、π共役系を構成している2価の基を表す。 A composition according to an embodiment of the present invention is a composition containing a p-type semiconductor material and an n-type semiconductor material, wherein the n-type semiconductor material contains a compound represented by the following formula (I): .
D 1 -B 1 -A 1 (I)
In formula (I),
D 1 represents an electron-donating group,
A 1 represents an electron-withdrawing group,
B 1 represents a divalent group containing one or more structural units and forming a π-conjugated system.
以下、具体的に説明する。
A specific explanation is provided below.
1.化合物(n型半導体材料)
まず、本実施形態の「化合物」について説明する。本実施形態の化合物は、通常、n型半導体材料であって、光電変換素子の特に活性層の半導体材料として好適に用いることができる。 1. Compound (n-type semiconductor material)
First, the "compound" of this embodiment will be described. The compound of the present embodiment is usually an n-type semiconductor material, and can be suitably used as a semiconductor material, particularly for the active layer of a photoelectric conversion device.
まず、本実施形態の「化合物」について説明する。本実施形態の化合物は、通常、n型半導体材料であって、光電変換素子の特に活性層の半導体材料として好適に用いることができる。 1. Compound (n-type semiconductor material)
First, the "compound" of this embodiment will be described. The compound of the present embodiment is usually an n-type semiconductor material, and can be suitably used as a semiconductor material, particularly for the active layer of a photoelectric conversion device.
なお、活性層において、本実施形態の化合物が、p型半導体材料及びn型半導体材料のうちのいずれとして機能するかは、選択された化合物のHOMO(Highest Occupied Molecular Orbital)のエネルギーレベルの値又はLUMO(Lowest Unoccupied Molecular Orbital)のエネルギーレベルの値から相対的に決定することができる。本実施形態の化合物は、光電変換素子の活性層において、特にn型半導体材料として好適に用いることができる。
In the active layer, whether the compound of the present embodiment functions as a p-type semiconductor material or an n-type semiconductor material is determined by the energy level of HOMO (Highest Occupied Molecular Orbital) of the selected compound or It can be relatively determined from the energy level value of LUMO (Lowest Unoccupied Molecular Orbital). The compound of the present embodiment can be suitably used, particularly as an n-type semiconductor material, in the active layer of a photoelectric conversion device.
活性層に含まれるp型半導体材料のHOMO及びLUMOのエネルギーレベルの値と、n型半導体材料のHOMO及びLUMOのエネルギーレベルの値との関係は、光電変換素子(光検出素子)が動作する範囲に適宜設定することができる。
The relationship between the HOMO and LUMO energy level values of the p-type semiconductor material contained in the active layer and the HOMO and LUMO energy level values of the n-type semiconductor material is the range in which the photoelectric conversion device (light detection device) operates. can be set as appropriate.
本実施形態の「化合物」は、下記式(I)で表される化合物である。
D1-B1-A1 (I)
The "compound" of this embodiment is a compound represented by the following formula (I).
D 1 -B 1 -A 1 (I)
D1-B1-A1 (I)
The "compound" of this embodiment is a compound represented by the following formula (I).
D 1 -B 1 -A 1 (I)
式(I)中、
D1は、電子供与性の基を表し、
A1は、電子求引性の基を表し、
B1は、1以上の構成単位を含み、π共役系を構成している2価の基を表す。 In formula (I),
D 1 represents an electron-donating group,
A 1 represents an electron-withdrawing group,
B 1 represents a divalent group containing one or more structural units and forming a π-conjugated system.
D1は、電子供与性の基を表し、
A1は、電子求引性の基を表し、
B1は、1以上の構成単位を含み、π共役系を構成している2価の基を表す。 In formula (I),
D 1 represents an electron-donating group,
A 1 represents an electron-withdrawing group,
B 1 represents a divalent group containing one or more structural units and forming a π-conjugated system.
本実施形態の化合物は、上記式(I)で表される非フラーレン化合物であって、電子求引性の1価の基であるA1が、1以上の構成単位を含み、π共役系を構成している2価の基であるB1の一端側に結合しており、かつ電子供与性の1価の基であるD1が他端側に結合した化合物である。本実施形態の化合物においては、D1及びA1を含め化合物全体にわたってπ共役系が構成されることが好ましい。
The compound of the present embodiment is a non-fullerene compound represented by the above formula (I), wherein the electron-withdrawing monovalent group A 1 contains one or more structural units and forms a π-conjugated system. It is a compound in which a divalent group B1 is bonded to one end side and an electron-donating monovalent group D1 is bonded to the other end side. In the compound of the present embodiment, it is preferable that a π-conjugated system is formed over the entire compound including D 1 and A 1 .
以下、式(I)で表される化合物を構成しうるA1、B1及びD1について具体的に説明する。
A 1 , B 1 and D 1 that can constitute the compound represented by formula (I) are specifically described below.
(1)A1について
A1は、電子求引性の1価の基である。
A1は、具体的には、π共役系を構成している2価の基であるB1の電子密度をより減少させることができる機能を有する1価の基である。
A1は、環構造を有する電子求引性の基であることが好ましい。 (1) A 1 A 1 is an electron-withdrawing monovalent group.
A 1 is specifically a monovalent group having the function of further reducing the electron density of B 1 , which is a divalent group constituting a π-conjugated system.
A 1 is preferably an electron-withdrawing group having a ring structure.
A1は、電子求引性の1価の基である。
A1は、具体的には、π共役系を構成している2価の基であるB1の電子密度をより減少させることができる機能を有する1価の基である。
A1は、環構造を有する電子求引性の基であることが好ましい。 (1) A 1 A 1 is an electron-withdrawing monovalent group.
A 1 is specifically a monovalent group having the function of further reducing the electron density of B 1 , which is a divalent group constituting a π-conjugated system.
A 1 is preferably an electron-withdrawing group having a ring structure.
本実施形態において、電子求引性の1価の基であるA1の例としては、-CH=C(-CN)2で表される基、及び下記式(a-1)~式(a-10)で表される基が挙げられる。
In the present embodiment, examples of the electron-withdrawing monovalent group A 1 include a group represented by —CH═C(—CN) 2 and the following formulas (a-1) to (a -10).
式(a-1)~式(a-8)中、
Tは、置換基を有していてもよい炭素環、又は置換基を有していてもよい複素環を表す。炭素環及び複素環は、単環であってもよく、縮合環であってもよい。これらの環が置換基を複数有する場合、複数ある置換基は、互いに同一であっても異なっていてもよい。 In formulas (a-1) to (a-8),
T represents an optionally substituted carbocyclic ring or an optionally substituted heterocyclic ring. Carbocyclic and heterocyclic rings may be monocyclic or condensed. When these rings have multiple substituents, the multiple substituents may be the same or different.
Tは、置換基を有していてもよい炭素環、又は置換基を有していてもよい複素環を表す。炭素環及び複素環は、単環であってもよく、縮合環であってもよい。これらの環が置換基を複数有する場合、複数ある置換基は、互いに同一であっても異なっていてもよい。 In formulas (a-1) to (a-8),
T represents an optionally substituted carbocyclic ring or an optionally substituted heterocyclic ring. Carbocyclic and heterocyclic rings may be monocyclic or condensed. When these rings have multiple substituents, the multiple substituents may be the same or different.
Tで表される置換基を有していてもよい炭素環の例としては、脂肪族炭素環、芳香族炭素環が挙げられ、好ましくは芳香族炭素環である。Tで表される置換基を有していてもよい炭素環の具体例としては、ベンゼン環、ナフタレン環、アントラセン環、テトラセン環、ペンタセン環、ピレン環、及びフェナントレン環が挙げられ、好ましくはベンゼン環、ナフタレン環、及びフェナントレン環であり、より好ましくはベンゼン環及びナフタレン環であり、さらに好ましくはベンゼン環である。これらの環は、置換基を有していてもよい。
Examples of the optionally substituted carbocyclic ring represented by T include an aliphatic carbocyclic ring and an aromatic carbocyclic ring, preferably an aromatic carbocyclic ring. Specific examples of optionally substituted carbocyclic rings represented by T include benzene ring, naphthalene ring, anthracene ring, tetracene ring, pentacene ring, pyrene ring and phenanthrene ring, preferably benzene They are a ring, a naphthalene ring and a phenanthrene ring, more preferably a benzene ring and a naphthalene ring, still more preferably a benzene ring. These rings may have a substituent.
Tで表される置換基を有していてもよい複素環の例としては、脂肪族複素環、芳香族複素環が挙げられ、好ましくは芳香族炭素環である。Tで表される置換基を有していてもよい複素環の具体例としては、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、ピロール環、フラン環、チオフェン環、イミダゾール環、オキサゾール環、チアゾール環、及びチエノチオフェン環が挙げられ、好ましくはチオフェン環、及びピリジン環、ピラジン環、チアゾール環、及びチエノチオフェン環であり、より好ましくはチオフェン環である。これらの環は、置換基を有していてもよい。
Examples of the optionally substituted heterocyclic ring represented by T include an aliphatic heterocyclic ring and an aromatic heterocyclic ring, preferably an aromatic carbocyclic ring. Specific examples of the optionally substituted heterocyclic ring represented by T include pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, pyrrole ring, furan ring, thiophene ring, imidazole ring, oxazole ring, thiazole and a thienothiophene ring, preferably a thiophene ring, a pyridine ring, a pyrazine ring, a thiazole ring, and a thienothiophene ring, more preferably a thiophene ring. These rings may have a substituent.
Tで表される炭素環又は複素環が有しうる置換基の例としては、ハロゲン原子、アルキル基、アルキルオキシ基、アリール基、シアノ基及び1価の複素環基が挙げられ、好ましくはフッ素原子、塩素原子、炭素原子数1~6のアルキルオキシ基及び/又は炭素原子数1~6のアルキル基である。
Examples of substituents that the carbocyclic or heterocyclic ring represented by T may have include halogen atoms, alkyl groups, alkyloxy groups, aryl groups, cyano groups and monovalent heterocyclic groups, preferably fluorine atom, chlorine atom, alkyloxy group having 1 to 6 carbon atoms and/or alkyl group having 1 to 6 carbon atoms.
X4、X5、及びX6は、それぞれ独立して、酸素原子、硫黄原子、アルキリデン基、又は=C(-CN)2で表される基を表し、好ましくは、酸素原子、硫黄原子、又は=C(-CN)2で表される基である。
X 4 , X 5 and X 6 each independently represents an oxygen atom, a sulfur atom, an alkylidene group or a group represented by =C(-CN) 2 , preferably an oxygen atom, a sulfur atom, or =C(-CN) 2 .
X7は、水素原子又はハロゲン原子、シアノ基、置換基を有していてもよいアルキル基、置換基を有していてもよいアルキルオキシ基、置換基を有していてもよいアリール基又は1価の複素環基を表す。X7は、好ましくはシアノ基である。
X 7 is a hydrogen atom or a halogen atom, a cyano group, an optionally substituted alkyl group, an optionally substituted alkyloxy group, an optionally substituted aryl group, or represents a monovalent heterocyclic group. X7 is preferably a cyano group.
Ra1、Ra2、Ra3、Ra4、Ra5及びRa6は、それぞれ独立して、水素原子、置換基を有していてもよいアルキル基、ハロゲン原子、置換基を有していてもよいアルキルオキシ基、置換基を有していてもよいアリール基又は1価の複素環基を表し、好ましくは、置換基を有していてもよいアルキル基又は置換基を有していてもよいアリール基である。
R a1 , R a2 , R a3 , R a4 , R a5 and R a6 are each independently a hydrogen atom, an optionally substituted alkyl group, a halogen atom, or a substituted represents an alkyloxy group, an optionally substituted aryl group or a monovalent heterocyclic group, preferably an optionally substituted alkyl group or optionally substituted It is an aryl group.
式(a-9)及び式(a-10)中、
Ra7及びRa8は、それぞれ独立して、水素原子、ハロゲン原子、置換基を有していてもよいアルキル基、置換基を有していてもよいシクロアルキル基、置換基を有していてもよいアルキルオキシ基、置換基を有していてもよいシクロアルキルオキシ基、置換基を有していてもよい1価の芳香族炭素環基、又は置換基を有していてもよい1価の芳香族複素環基を表し、複数あるRa7及びRa8は、互いに同一であっても異なっていてもよい。 In formulas (a-9) and (a-10),
R a7 and R a8 each independently represent a hydrogen atom, a halogen atom, an optionally substituted alkyl group, an optionally substituted cycloalkyl group, or a substituted an alkyloxy group that may have a substituent, a cycloalkyloxy group that may have a substituent, a monovalent aromatic carbocyclic group that may have a substituent, or a monovalent that may have a substituent and a plurality of R a7 and R a8 may be the same or different.
Ra7及びRa8は、それぞれ独立して、水素原子、ハロゲン原子、置換基を有していてもよいアルキル基、置換基を有していてもよいシクロアルキル基、置換基を有していてもよいアルキルオキシ基、置換基を有していてもよいシクロアルキルオキシ基、置換基を有していてもよい1価の芳香族炭素環基、又は置換基を有していてもよい1価の芳香族複素環基を表し、複数あるRa7及びRa8は、互いに同一であっても異なっていてもよい。 In formulas (a-9) and (a-10),
R a7 and R a8 each independently represent a hydrogen atom, a halogen atom, an optionally substituted alkyl group, an optionally substituted cycloalkyl group, or a substituted an alkyloxy group that may have a substituent, a cycloalkyloxy group that may have a substituent, a monovalent aromatic carbocyclic group that may have a substituent, or a monovalent that may have a substituent and a plurality of R a7 and R a8 may be the same or different.
A1で表される電子求引性の基の具体例としては、下記式(a-1-1)~式(a-1-4)、並びに式(a-5-1)、式(a-6-1)、式(a-6-2)及び式(a-7-1)で表される基が挙げられる。
Specific examples of the electron-withdrawing group represented by A 1 include the following formulas (a-1-1) to (a-1-4), as well as formula (a-5-1), formula (a -6-1), groups represented by formula (a-6-2) and formula (a-7-1).
式(a-1-1)~式(a-1-4)、並びに式(a-5-1)、式(a-6-1)及び式(a-7-1)中、
複数あるRa11は、それぞれ独立して、水素原子又は置換基を表し、
Ra1、Ra2、Ra3、Ra4、及びRa5は、それぞれ独立して、前記と同義である。 In formulas (a-1-1) to (a-1-4), and formulas (a-5-1), formulas (a-6-1) and formulas (a-7-1),
multiple R a11 each independently represent a hydrogen atom or a substituent,
R a1 , R a2 , R a3 , R a4 and R a5 are each independently as defined above.
複数あるRa11は、それぞれ独立して、水素原子又は置換基を表し、
Ra1、Ra2、Ra3、Ra4、及びRa5は、それぞれ独立して、前記と同義である。 In formulas (a-1-1) to (a-1-4), and formulas (a-5-1), formulas (a-6-1) and formulas (a-7-1),
multiple R a11 each independently represent a hydrogen atom or a substituent,
R a1 , R a2 , R a3 , R a4 and R a5 are each independently as defined above.
Ra11は、好ましくは水素原子、ハロゲン原子、アルキルオキシ基、シアノ基又はアルキル基である。Ra1、Ra2、Ra3、Ra4、及びRa5は、好ましくは置換基を有していてもよいアルキル基又は置換基を有していてもよいアリール基である。
R a11 is preferably a hydrogen atom, a halogen atom, an alkyloxy group, a cyano group or an alkyl group. R a1 , R a2 , R a3 , R a4 and R a5 are preferably an optionally substituted alkyl group or an optionally substituted aryl group.
A1で表される電子求引性の基の好ましい例としては、下記式で表される基が挙げられる。
Preferred examples of the electron-withdrawing group represented by A 1 include groups represented by the following formulae.
(2)B1について
B1は、1以上の構成単位を含み、π共役系を構成している2価の基である。B1は、具体的には、互いにπ結合している一対以上の原子を含んでおり、π電子雲がB1の全体に広がっている2価の基である。 (2) B 1 B 1 is a divalent group containing one or more constitutional units and forming a π-conjugated system. B 1 is specifically a divalent group containing one or more pairs of atoms that are π-bonded to each other, with a π-electron cloud extending throughout B 1 .
B1は、1以上の構成単位を含み、π共役系を構成している2価の基である。B1は、具体的には、互いにπ結合している一対以上の原子を含んでおり、π電子雲がB1の全体に広がっている2価の基である。 (2) B 1 B 1 is a divalent group containing one or more constitutional units and forming a π-conjugated system. B 1 is specifically a divalent group containing one or more pairs of atoms that are π-bonded to each other, with a π-electron cloud extending throughout B 1 .
B1に含まれる1以上の構成単位は、下記式(III)で表される構成単位を含むことが好ましい。
One or more structural units contained in B 1 preferably include a structural unit represented by the following formula (III).
式(III)中、
Ar1及びAr2は、それぞれ独立して、置換基を有していてもよい芳香族炭素環又は置換基を有していてもよい芳香族複素環を表し、
Yは、直接結合、-C(=O)-で表される基又は酸素原子を表し、
Rは、それぞれ独立して、
水素原子、
ハロゲン原子、
置換基を有していてもよいアルキル基、
置換基を有していてもよいシクロアルキル基、
置換基を有していてもよいアリール基、
置換基を有していてもよいアルキルオキシ基、
置換基を有していてもよいシクロアルキルオキシ基、
置換基を有していてもよいアリールオキシ基、
置換基を有していてもよいアルキルチオ基、
置換基を有していてもよいシクロアルキルチオ基、
置換基を有していてもよいアリールチオ基、
置換基を有していてもよい1価の複素環基、
置換基を有していてもよい置換アミノ基、
置換基を有していてもよいアシル基、
置換基を有していてもよいイミン残基、
置換基を有していてもよいアミド基、
置換基を有していてもよい酸イミド基、
置換基を有していてもよい置換オキシカルボニル基、
置換基を有していてもよいアルケニル基、
置換基を有していてもよいシクロアルケニル基、
置換基を有していてもよいアルキニル基、
置換基を有していてもよいシクロアルキニル基、
シアノ基、
ニトロ基、
-C(=O)-Raで表される基、又は
-SO2-Rbで表される基を表し、
Ra及びRbは、それぞれ独立して、
水素原子、
置換基を有していてもよいアルキル基、
置換基を有していてもよいアリール基、
置換基を有していてもよいアルキルオキシ基、
置換基を有していてもよいアリールオキシ基、又は
置換基を有していてもよい1価の複素環基を表す。
複数あるRは、互いに同一であっても異なっていてもよい。 In formula (III),
Ar 1 and Ar 2 each independently represent an optionally substituted aromatic carbocyclic ring or an optionally substituted aromatic heterocyclic ring,
Y represents a direct bond, a group represented by -C(=O)- or an oxygen atom,
R are each independently
hydrogen atom,
halogen atom,
an optionally substituted alkyl group,
a cycloalkyl group optionally having a substituent,
an aryl group optionally having a substituent,
an optionally substituted alkyloxy group,
a cycloalkyloxy group optionally having a substituent,
an optionally substituted aryloxy group,
an optionally substituted alkylthio group,
a cycloalkylthio group optionally having a substituent,
an optionally substituted arylthio group,
a monovalent heterocyclic group optionally having a substituent,
a substituted amino group which may have a substituent,
an acyl group optionally having a substituent,
an imine residue optionally having a substituent,
an amide group optionally having a substituent,
an acid imide group optionally having a substituent,
a substituted oxycarbonyl group optionally having a substituent,
an optionally substituted alkenyl group,
a cycloalkenyl group optionally having a substituent,
an optionally substituted alkynyl group,
a cycloalkynyl group optionally having a substituent,
cyano group,
nitro group,
a group represented by —C(=O)—R a or a group represented by —SO 2 —R b ,
R a and R b each independently
hydrogen atom,
an optionally substituted alkyl group,
an aryl group optionally having a substituent,
an optionally substituted alkyloxy group,
It represents an optionally substituted aryloxy group or an optionally substituted monovalent heterocyclic group.
Multiple R's may be the same or different.
Ar1及びAr2は、それぞれ独立して、置換基を有していてもよい芳香族炭素環又は置換基を有していてもよい芳香族複素環を表し、
Yは、直接結合、-C(=O)-で表される基又は酸素原子を表し、
Rは、それぞれ独立して、
水素原子、
ハロゲン原子、
置換基を有していてもよいアルキル基、
置換基を有していてもよいシクロアルキル基、
置換基を有していてもよいアリール基、
置換基を有していてもよいアルキルオキシ基、
置換基を有していてもよいシクロアルキルオキシ基、
置換基を有していてもよいアリールオキシ基、
置換基を有していてもよいアルキルチオ基、
置換基を有していてもよいシクロアルキルチオ基、
置換基を有していてもよいアリールチオ基、
置換基を有していてもよい1価の複素環基、
置換基を有していてもよい置換アミノ基、
置換基を有していてもよいアシル基、
置換基を有していてもよいイミン残基、
置換基を有していてもよいアミド基、
置換基を有していてもよい酸イミド基、
置換基を有していてもよい置換オキシカルボニル基、
置換基を有していてもよいアルケニル基、
置換基を有していてもよいシクロアルケニル基、
置換基を有していてもよいアルキニル基、
置換基を有していてもよいシクロアルキニル基、
シアノ基、
ニトロ基、
-C(=O)-Raで表される基、又は
-SO2-Rbで表される基を表し、
Ra及びRbは、それぞれ独立して、
水素原子、
置換基を有していてもよいアルキル基、
置換基を有していてもよいアリール基、
置換基を有していてもよいアルキルオキシ基、
置換基を有していてもよいアリールオキシ基、又は
置換基を有していてもよい1価の複素環基を表す。
複数あるRは、互いに同一であっても異なっていてもよい。 In formula (III),
Ar 1 and Ar 2 each independently represent an optionally substituted aromatic carbocyclic ring or an optionally substituted aromatic heterocyclic ring,
Y represents a direct bond, a group represented by -C(=O)- or an oxygen atom,
R are each independently
hydrogen atom,
halogen atom,
an optionally substituted alkyl group,
a cycloalkyl group optionally having a substituent,
an aryl group optionally having a substituent,
an optionally substituted alkyloxy group,
a cycloalkyloxy group optionally having a substituent,
an optionally substituted aryloxy group,
an optionally substituted alkylthio group,
a cycloalkylthio group optionally having a substituent,
an optionally substituted arylthio group,
a monovalent heterocyclic group optionally having a substituent,
a substituted amino group which may have a substituent,
an acyl group optionally having a substituent,
an imine residue optionally having a substituent,
an amide group optionally having a substituent,
an acid imide group optionally having a substituent,
a substituted oxycarbonyl group optionally having a substituent,
an optionally substituted alkenyl group,
a cycloalkenyl group optionally having a substituent,
an optionally substituted alkynyl group,
a cycloalkynyl group optionally having a substituent,
cyano group,
nitro group,
a group represented by —C(=O)—R a or a group represented by —SO 2 —R b ,
R a and R b each independently
hydrogen atom,
an optionally substituted alkyl group,
an aryl group optionally having a substituent,
an optionally substituted alkyloxy group,
It represents an optionally substituted aryloxy group or an optionally substituted monovalent heterocyclic group.
Multiple R's may be the same or different.
式(III)中、Ar1及びAr2を構成しうる芳香族炭素環は、好ましくはベンゼン環及びナフタレン環であり、より好ましくはベンゼン環及びナフタレン環であり、さらに好ましくはベンゼン環である。これらの環は、置換基を有していてもよい。
In formula (III), the aromatic carbocyclic ring that can constitute Ar 1 and Ar 2 is preferably a benzene ring and a naphthalene ring, more preferably a benzene ring and a naphthalene ring, still more preferably a benzene ring. These rings may have a substituent.
Ar1及びAr2を構成しうる芳香族複素環は、好ましくはオキサジアゾール環、チアジアゾール環、チアゾール環、オキサゾール環、チオフェン環、チエノチオフェン環、ベンゾチオフェン環、ピロール環、ホスホール環、フラン環、ピリジン環、ピラジン環、ピリミジン環、トリアジン環、ピリダジン環、キノリン環、イソキノリン環、カルバゾール環、及びジベンゾホスホール環、並びに、フェノキサジン環、フェノチアジン環、ジベンゾボロール環、ジベンゾシロール環、及びベンゾピラン環である。これらの環は、置換基を有していてもよい。
The aromatic heterocyclic ring that can constitute Ar 1 and Ar 2 is preferably an oxadiazole ring, a thiadiazole ring, a thiazole ring, an oxazole ring, a thiophene ring, a thienothiophene ring, a benzothiophene ring, a pyrrole ring, a phosphole ring, and a furan ring. , pyridine ring, pyrazine ring, pyrimidine ring, triazine ring, pyridazine ring, quinoline ring, isoquinoline ring, carbazole ring, and dibenzophosphole ring, and phenoxazine ring, phenothiazine ring, dibenzoborol ring, dibenzosilol ring, and It is a benzopyran ring. These rings may have a substituent.
Rで表されるハロゲン原子は、好ましくはフッ素原子である。
The halogen atom represented by R is preferably a fluorine atom.
Rで表される置換基を有していてもよいアルキル基は、好ましくは置換基を有していてもよい炭素原子数1~20のアルキル基であり、より好ましくは置換基を有していてもよい炭素原子数1~15のアルキル基であり、さらに好ましくは、置換基を有していてもよい炭素原子数1~12のアルキル基であり、さらにまた好ましくは置換基を有していてもよい炭素原子数1~10のアルキル基である。
The optionally substituted alkyl group represented by R is preferably an optionally substituted alkyl group having 1 to 20 carbon atoms, more preferably having a substituent. an optionally substituted alkyl group having 1 to 15 carbon atoms, more preferably an optionally substituted alkyl group having 1 to 12 carbon atoms, and still more preferably having a substituent is an alkyl group having 1 to 10 carbon atoms which may be
Rで表されるアルキル基が有していてもよい置換基は、好ましくはハロゲン原子であり、より好ましくはフッ素原子及び/又は塩素原子である。
The substituent that the alkyl group represented by R may have is preferably a halogen atom, more preferably a fluorine atom and/or a chlorine atom.
Rで表される置換基を有していてもよいシクロアルキル基は、好ましくは置換基を有していてもよい炭素原子数3~10のシクロアルキル基であり、より好ましくは置換基を有していてもよい炭素原子数5~6のシクロアルキル基であり、さらに好ましくは置換基を有していてもよいシクロヘキシル基である。
The optionally substituted cycloalkyl group represented by R is preferably an optionally substituted cycloalkyl group having 3 to 10 carbon atoms, more preferably having a substituent. A cycloalkyl group having 5 to 6 carbon atoms which may be substituted, more preferably a cyclohexyl group which may have a substituent.
Rで表される置換基を有していてもよいアリール基は、好ましくは置換基を有していてもよい炭素原子数6~15のアリール基であり、より好ましくは置換基を有していてもよいフェニル基又はナフチル基である。
The optionally substituted aryl group represented by R is preferably an optionally substituted aryl group having 6 to 15 carbon atoms, more preferably an optionally substituted aryl group. phenyl group or naphthyl group.
Rで表されるアリール基が有していてもよい置換基は、好ましくはハロゲン原子(例、塩素原子、フッ素原子)、炭素原子数1~12のアルキル基(例、メチル基、トリフルオロメチル基、tert-ブチル基、オクチル基、ドデシル基)、炭素原子数1~12のアルキルオキシ基(例、メトキシ基、エトキシ基、オクチルオキシ基)、炭素原子数1~12のアルキルスルホニル基(例、ドデシルスルホニル基)、及び/又はシアノ基である。
The substituents that the aryl group represented by R may have are preferably halogen atoms (eg, chlorine atom, fluorine atom), alkyl groups having 1 to 12 carbon atoms (eg, methyl group, trifluoromethyl group, tert-butyl group, octyl group, dodecyl group), alkyloxy group having 1 to 12 carbon atoms (e.g., methoxy group, ethoxy group, octyloxy group), alkylsulfonyl group having 1 to 12 carbon atoms (e.g. , dodecylsulfonyl group), and/or a cyano group.
Rで表される置換基を有していてもよいアルキルオキシ基は、好ましくは置換基を有していてもよい炭素原子数1~10のアルキルオキシ基であり、より好ましくは置換基を有していてもよい炭素原子数1~8のアルキルオキシ基であり、さらに好ましくは、メトキシ基、エトキシ基、プロピルオキシ基、3-メチルブチルオキシ、又は2-エチルヘキシルオキシ基であって、これらの基は置換基を有していてもよい。
The optionally substituted alkyloxy group represented by R is preferably an optionally substituted alkyloxy group having 1 to 10 carbon atoms, more preferably having a substituent. an alkyloxy group having 1 to 8 carbon atoms which may be The group may have a substituent.
Rで表される置換基を有していてもよいアリールオキシ基は、好ましくは置換基を有していてもよい炭素原子数6~15のアリールオキシ基であり、より好ましくは置換基を有していてもよいフェニルオキシ基又はアントラセニルオキシ基である。
The optionally substituted aryloxy group represented by R is preferably an optionally substituted aryloxy group having 6 to 15 carbon atoms, more preferably having a substituent. phenyloxy group or anthracenyloxy group which may be substituted.
Rで表されるアリールオキシ基が有していてもよい置換基は、好ましくは炭素原子数1~12のアルキル基であり、より好ましくは炭素原子数1~6のアルキル基であり、さらに好ましくはメチル基である。
The substituent that the aryloxy group represented by R may have is preferably an alkyl group having 1 to 12 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms, and still more preferably an alkyl group having 1 to 6 carbon atoms. is a methyl group.
Rで表される置換基を有していてもよいアルキルチオ基は、好ましくは置換基を有していてもよい炭素原子数1~6のアルキルチオ基であり、より好ましくは置換基を有していてもよい炭素原子数1~3のアルキルチオ基であり、さらに好ましくは置換基を有していてもよいメチルチオ基又はプロピルチオ基である。
The optionally substituted alkylthio group represented by R is preferably an optionally substituted alkylthio group having 1 to 6 carbon atoms, and more preferably an optionally substituted alkylthio group. an alkylthio group having 1 to 3 carbon atoms, which may be optionally substituted, and more preferably a methylthio group or a propylthio group, which may have a substituent.
Rで表される置換基を有していてもよいアリールチオ基は、好ましくは置換基を有していてもよい炭素原子数6~10のアリールチオ基であり、より好ましくは置換基を有していてもよいフェニルチオ基である。
The optionally substituted arylthio group represented by R is preferably an optionally substituted arylthio group having 6 to 10 carbon atoms, more preferably an optionally substituted arylthio group. phenylthio group.
Rで表されるアリールチオ基が有していてもよい置換基は、好ましくは炭素原子数1~12のアルキル基であり、より好ましくは炭素原子数1~6のアルキル基であり、さらに好ましくはメチル基である。
The substituent that the arylthio group represented by R may have is preferably an alkyl group having 1 to 12 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms, further preferably is a methyl group.
Rで表される置換基を有していてもよい1価の複素環基は、好ましくは置換基を有していてもよい5員又は6員である1価の複素環基である。5員である1価の複素環基の例としては、チエニル基、フリル基、ピロリル基、イミダゾリル基、ピラゾリル基、チアゾリル基、イソチアゾリル基、オキサゾリル基、イソオキサゾリル基、及びピロリジニル基が挙げられる。6員である1価の複素環基の例としては、ピリジル基、ピラジニル基、ピリミジニル基、ピリダジニル基、ピペリジル基、ピペラジニル基、モルホリニル基、及びテトラヒドロピラニル基が挙げられる。
The optionally substituted monovalent heterocyclic group represented by R is preferably an optionally substituted 5- or 6-membered monovalent heterocyclic group. Examples of 5-membered monovalent heterocyclic groups include thienyl, furyl, pyrrolyl, imidazolyl, pyrazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, and pyrrolidinyl groups. Examples of 6-membered monovalent heterocyclic groups include pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, piperidyl, piperazinyl, morpholinyl, and tetrahydropyranyl groups.
Rで表される置換基を有していてもよい1価の複素環基は、より好ましくはチエニル基、フリル基、チアゾリル基、オキサゾリル基、ピリジル基、又はピラジル基であり、これらの基は置換基を有していてもよい。
The optionally substituted monovalent heterocyclic group represented by R is more preferably a thienyl group, a furyl group, a thiazolyl group, an oxazolyl group, a pyridyl group, or a pyrazyl group, and these groups are It may have a substituent.
Rで表される1価の複素環基が有していてもよい置換基は、好ましくは炭素原子数1~12のアルキル基(例、メチル基、トリフルオロメチル基、プロピル基、ヘキシル基、オクチル基、ドデシル基)である。
The substituent that the monovalent heterocyclic group represented by R may have is preferably an alkyl group having 1 to 12 carbon atoms (e.g., methyl group, trifluoromethyl group, propyl group, hexyl group, octyl group, dodecyl group).
Rで表される置換基を有していてもよいアルケニル基は、好ましくは置換基を有していてもよい炭素原子数2~10のアルケニル基であり、より好ましくは置換基を有していてもよい炭素原子数2~6のアルケニル基であり、さらに好ましくは置換基を有していてもよい2-プロペニル基又は5-ヘキセニル基である。
The optionally substituted alkenyl group represented by R is preferably an optionally substituted alkenyl group having 2 to 10 carbon atoms, more preferably having a substituent is an alkenyl group having 2 to 6 carbon atoms which may be optionally substituted, and more preferably a 2-propenyl group or a 5-hexenyl group which may have a substituent.
Rで表される置換基を有していてもよいシクロアルケニル基は、好ましくは置換基を有していてもよい炭素原子数3~10のシクロアルケニル基であり、より好ましくは置換基を有していてもよい炭素原子数6~7のシクロアルケニル基であり、さらに好ましくは置換基を有していてもよいシクロヘキセニル基又はシクロヘプテニル基である。
The optionally substituted cycloalkenyl group represented by R is preferably an optionally substituted cycloalkenyl group having 3 to 10 carbon atoms, more preferably having a substituent. It is a cycloalkenyl group having 6 to 7 carbon atoms which may be substituted, more preferably a cyclohexenyl group or a cycloheptenyl group which may have a substituent.
Rで表されるシクロアルケニル基が有していてもよい置換基は、好ましくは炭素原子数1~12のアルキル基である。
The substituent that the cycloalkenyl group represented by R may have is preferably an alkyl group having 1 to 12 carbon atoms.
Rで表される置換基を有していてもよいアルキニル基は、好ましくは置換基を有していてもよい炭素原子数2~10のアルキニル基であり、より好ましくは置換基を有していてもよい炭素原子数5~6のアルキニル基であり、さらに好ましくは置換基を有していてもよい5-ヘキシニル基又は3-メチル-1-ブチニル基である。
The optionally substituted alkynyl group represented by R is preferably an optionally substituted alkynyl group having 2 to 10 carbon atoms, more preferably having a substituent. is an alkynyl group having 5 to 6 carbon atoms which may be optionally substituted, and more preferably a 5-hexynyl group or a 3-methyl-1-butynyl group which may have a substituent.
Rで表される置換基を有していてもよいシクロアルキニル基は、好ましくは置換基を有していてもよい炭素原子数6~10のシクロアルキニル基であり、より好ましくは置換基を有していてもよい炭素原子数7~8のシクロアルキニル基であり、さらに好ましくは、置換基を有していてもよいシクロヘプチニル基又はシクロオクチニル基である。
The optionally substituted cycloalkynyl group represented by R is preferably an optionally substituted cycloalkynyl group having 6 to 10 carbon atoms, more preferably having a substituent. is a cycloalkynyl group having 7 to 8 carbon atoms which may be substituted, more preferably a cycloheptynyl group or a cyclooctynyl group which may have a substituent.
Rで表されるシクロアルキニル基が有していてもよい置換基は、好ましくはC1~C12アルキル基である。
The substituent that the cycloalkynyl group represented by R may have is preferably a C1-C12 alkyl group.
複数あるRは、それぞれ独立して、好ましくは置換基を有していてもよいアルキル基であり、より好ましくは置換基を有していてもよい炭素原子数1~15のアルキル基であり、さらに好ましくは置換基を有していてもよい炭素原子数1~12のアルキル基であり、さらにまた好ましくは、置換基を有していてもよい炭素原子数1~10のアルキル基である。複数あるRが、いずれも置換基を有していてもよい炭素原子数1~10のアルキル基であることが特に好ましい。
A plurality of Rs are each independently preferably an optionally substituted alkyl group, more preferably an optionally substituted alkyl group having 1 to 15 carbon atoms, More preferably, it is an optionally substituted alkyl group having 1 to 12 carbon atoms, and more preferably an optionally substituted alkyl group having 1 to 10 carbon atoms. It is particularly preferred that each of a plurality of Rs is an optionally substituted alkyl group having 1 to 10 carbon atoms.
Rで表される-C(=O)-Raで表される基及び-SO2-Rbで表される基において、Raは、好ましくは、水素原子であり、Rbは、好ましくは置換基を有していてもよいアルキル基又は置換基を有していてもよいアルキルオキシ基であり、より好ましくは置換基を有していてもよい炭素原子数1~12のアルキル基又は置換基を有していてもよい炭素原子数1~12のアルキルオキシ基であり、さらに好ましくは置換基を有していてもよい炭素原子数1~12のアルキル基又は置換基を有していてもよい炭素原子数1~6のアルキルオキシ基であり、さらにまた好ましくは、メチル基、エチル基、2-メチルプロピル基、オクチル基、ドデシル基、又はエトキシ基であり、これらの基は置換基を有していてもよい。
In the group represented by —C(=O)—R a represented by R and the group represented by —SO 2 —R b , R a is preferably a hydrogen atom, and R b is preferably is an optionally substituted alkyl group or an optionally substituted alkyloxy group, more preferably an optionally substituted alkyl group having 1 to 12 carbon atoms or An optionally substituted alkyloxy group having 1 to 12 carbon atoms, more preferably an optionally substituted alkyl group having 1 to 12 carbon atoms or having a substituent an alkyloxy group having 1 to 6 carbon atoms which may be substituted, and more preferably a methyl group, an ethyl group, a 2-methylpropyl group, an octyl group, a dodecyl group, or an ethoxy group; You may have a group.
式(III)で表される構成単位の例としては、下記式で表される構成単位が挙げられる。
Examples of structural units represented by formula (III) include structural units represented by the following formula.
前記式中、Rは既に説明したとおりである。
In the above formula, R is as already explained.
B1を構成しうる前記式(III)で表される構成単位は、下記式(IV)で表される構成単位であることが好ましい。
The structural unit represented by the above formula (III) that can constitute B 1 is preferably a structural unit represented by the following formula (IV).
式(IV)中、Y及びRは、既に説明したとおりである。X1及びX2は、それぞれ独立して、硫黄原子又は酸素原子を表し、Z1及びZ2は、それぞれ独立して、=C(R)-で表される基又は窒素原子を表す。
In formula (IV), Y and R are as already explained. X 1 and X 2 each independently represent a sulfur atom or an oxygen atom, and Z 1 and Z 2 each independently represent a group represented by =C(R)- or a nitrogen atom.
式(IV)で表される構成単位の例としては、下記式で表される構成単位が挙げられる。
Examples of structural units represented by formula (IV) include structural units represented by the following formula.
B1を構成しうる前記式(IV)で表される構成単位は、チオフェン環を2以上含み、かつ構成元素としてsp3炭素原子を含む、置換基を有していてもよい2価の多環式縮合環基下記式(IV-1)で表される構成単位であることが好ましい。
The structural unit represented by the formula (IV) that can constitute B 1 is an optionally substituted divalent polycyclic ring containing two or more thiophene rings and containing an sp3 carbon atom as a constituent element. A condensed ring group is preferably a structural unit represented by the following formula (IV-1).
式(IV-1)中、Y及びRは、前記定義のとおりである。
In formula (IV-1), Y and R are as defined above.
前記式(IV-1)で表される構成単位の好ましい具体例としては、下記式で表される構成単位が挙げられる。
Preferable specific examples of the structural unit represented by the formula (IV-1) include structural units represented by the following formula.
B1を構成しうる式(IV)で表される構成単位は、下記式(IV-2)で表される構成単位であってもよい。
The structural unit represented by formula (IV) that can constitute B 1 may be a structural unit represented by formula (IV-2) below.
式(IV-2)中、X1及びX2、Z1及びZ2並びにRは、既に説明したとおりである。
In formula (IV-2), X 1 and X 2 , Z 1 and Z 2 and R are as already explained.
式(IV-2)で表される構成単位の例としては、下記式(IV-2-1)~式(IV-2-16)で表される構成単位が挙げられる。
Examples of structural units represented by formula (IV-2) include structural units represented by formulas (IV-2-1) to (IV-2-16) below.
式(IV-2)で表される構成単位の好ましい具体例としては、下記式で表される構成単位が挙げられる。
Preferred specific examples of the structural unit represented by formula (IV-2) include structural units represented by the following formula.
本実施形態の化合物において、B1は、上記式(III)又は式(IV)で表される構成単位(以下、第1の構成単位CU1という。)を1つ含むことが好ましい。
In the compound of the present embodiment, B1 preferably contains one structural unit represented by formula (III) or formula (IV) (hereinafter referred to as first structural unit CU1).
上記式(III)又は式(IV)で表される構成単位以外のB1が含みうる構成単位(以下、第2の構成単位CU2という。)としては、例えば、不飽和結合を含む2価の基、2価の芳香族炭素環基及び2価の芳香族複素環基が挙げられる。
Structural units (hereinafter referred to as second structural units CU2) other than the structural units represented by the above formula (III) or formula (IV) that can be contained in B1 include, for example, a divalent groups, divalent aromatic carbocyclic groups and divalent aromatic heterocyclic groups.
第2の構成単位CU2である「不飽和結合を含む2価の基」とは、例えば、-(CR=CR)n-で表される基(Rは前記定義のとおりであり、nは1以上の整数である。nの値は、好ましくは1又は2であり、より好ましくは1である。)、-C≡C-で表される基、及びフェニレン基である。
The second structural unit CU2 "a divalent group containing an unsaturated bond" is, for example, a group represented by -(CR=CR)n- (R is as defined above, n is 1 n is an integer equal to or greater than 1. The value of n is preferably 1 or 2, more preferably 1.), a group represented by -C≡C-, and a phenylene group.
「不飽和結合を含む2価の基」の具体例としては、エテン-1,2-ジイル基、1,3-ブタジエン-1,4-ジイル基、アセチレン-1,2-ジイル基、及びフェニレン基が挙げられる。
Specific examples of the "divalent group containing an unsaturated bond" include ethene-1,2-diyl group, 1,3-butadiene-1,4-diyl group, acetylene-1,2-diyl group, and phenylene groups.
第2の構成単位CU2である「2価の芳香族複素環基」の具体例としては、下記式(101)~式(191)で表される基が挙げられる。これらの基はさらに置換基を有していてもよい。
Specific examples of the "divalent aromatic heterocyclic group" that is the second structural unit CU2 include groups represented by the following formulas (101) to (191). These groups may further have a substituent.
式(101)~式(191)中、Rは前記と同義である。
In formulas (101) to (191), R has the same definition as above.
第2の構成単位CU2である「2価の芳香族炭素環基」の具体例としては、フェニレン基(例えば、下記式1~式3)、ナフタレン-ジイル基(例えば、下記式4~式13)、アントラセン-ジイル基(例えば、下記式14~式19)、ビフェニル-ジイル基(例えば、下記式20~式25)、ターフェニル-ジイル基(例えば、下記式26~式28)、縮合環化合物基(例えば、下記式29~式35)、フルオレン-ジイル基(例えば、下記式36~式38)、及びベンゾフルオレン-ジイル基(例えば、下記式39~式46)が挙げられる。
Specific examples of the "divalent aromatic carbocyclic group" that is the second structural unit CU2 include a phenylene group (e.g., the following formulas 1 to 3), a naphthalene-diyl group (e.g., the following formulas 4 to 13 ), anthracene-diyl group (e.g., formulas 14 to 19 below), biphenyl-diyl group (e.g., formulas 20 to 25 below), terphenyl-diyl group (e.g., formulas 26 to 28 below), condensed ring Compound groups (eg, formulas 29 to 35 below), fluorene-diyl groups (eg, formulas 36 to 38 below), and benzofluorene-diyl groups (eg, formulas 39 to 46 below) are included.
式1~式46中、Rは前記と同義である。
In formulas 1 to 46, R has the same definition as above.
本実施形態の化合物において、第2の構成単位CU2は、不飽和結合を含む2価の基及び下記式(V-1)~式(V-12)で表される基からなる群から選択される構成単位であることが好ましく、中でも、式(V-10)~式(V-12)で表される基からなる群から選択される構成単位であることがより好ましい。
In the compound of the present embodiment, the second structural unit CU2 is selected from the group consisting of divalent groups containing unsaturated bonds and groups represented by the following formulas (V-1) to (V-12) Among them, a structural unit selected from the group consisting of groups represented by formulas (V-10) to (V-12) is more preferred.
式(V-1)~式(V-12)中、X1、X2、Z1、Z2及びRは前記定義のとおりである。
Rが2つある場合、2つあるRは、互いに同一であっても異なっていてもよい。 In formulas (V-1) to (V-12), X 1 , X 2 , Z 1 , Z 2 and R are as defined above.
When there are two R's, the two R's may be the same or different.
Rが2つある場合、2つあるRは、互いに同一であっても異なっていてもよい。 In formulas (V-1) to (V-12), X 1 , X 2 , Z 1 , Z 2 and R are as defined above.
When there are two R's, the two R's may be the same or different.
第2の構成単位CU2のより具体的な好ましい例としては、下記式で表される構成単位が挙げられる。これらの構成単位は、さらに置換基を有していてもよい。
A more specific preferred example of the second structural unit CU2 is a structural unit represented by the following formula. These structural units may further have a substituent.
本実施形態の化合物において、B1は、1以上の構成単位を含み、当該1以上の構成単位のうちの少なくとも1つが第1の構成単位CU1であり、かつ該第1の構成単位CU1以外の残余の構成単位が第2の構成単位CU2である。
In the compound of this embodiment, B 1 contains one or more structural units, at least one of the one or more structural units is the first structural unit CU1, and The remaining structural unit is the second structural unit CU2.
B1に含まれる第1の構成単位CU1及び第2の構成単位CU2の組合せ及びその配列の態様は、π共役系を構成することができることを条件として、特に制限されない。
The combination and arrangement of the first structural unit CU1 and the second structural unit CU2 contained in B1 are not particularly limited, provided that a π-conjugated system can be formed.
B1は、下記式(VI-1)~式(VI-16)で表される構造からなる群から選択されるいずれか1つの構造を有する2価の基であることが好ましい。
―CU1- (VI-1)
-CU1-CU1- (VI-2)
-CU1-CU2- (VI-3)
-CU1-CU1-CU1- (VI-4)
―CU1-CU2-CU1- (VI-5)
―CU1-CU1-CU2- (VI-6)
-CU1-CU2-CU2- (VI-7)
―CU2-CU1-CU2- (VI-8)
-CU1-CU1-CU1-CU1- (VI-9)
-CU1-CU1-CU1-CU2- (VI-10)
-CU1-CU1-CU2-CU1- (VI-11)
-CU1-CU1-CU2-CU2- (VI-12)
-CU1-CU2-CU1-CU2- (VI-13)
-CU1-CU2-CU2-CU1- (VI-14)
-CU1-CU2-CU2-CU2- (VI-15)
-CU2-CU1-CU2-CU2- (VI-16)
B 1 is preferably a divalent group having any one structure selected from the group consisting of structures represented by the following formulas (VI-1) to (VI-16).
-CU1- (VI-1)
-CU1-CU1- (VI-2)
-CU1-CU2- (VI-3)
-CU1-CU1-CU1- (VI-4)
-CU1-CU2-CU1- (VI-5)
-CU1-CU1-CU2- (VI-6)
-CU1-CU2-CU2- (VI-7)
-CU2-CU1-CU2- (VI-8)
-CU1-CU1-CU1-CU1- (VI-9)
-CU1-CU1-CU1-CU2- (VI-10)
-CU1-CU1-CU2-CU1- (VI-11)
-CU1-CU1-CU2-CU2- (VI-12)
-CU1-CU2-CU1-CU2- (VI-13)
-CU1-CU2-CU2-CU1- (VI-14)
-CU1-CU2-CU2-CU2- (VI-15)
-CU2-CU1-CU2-CU2- (VI-16)
―CU1- (VI-1)
-CU1-CU1- (VI-2)
-CU1-CU2- (VI-3)
-CU1-CU1-CU1- (VI-4)
―CU1-CU2-CU1- (VI-5)
―CU1-CU1-CU2- (VI-6)
-CU1-CU2-CU2- (VI-7)
―CU2-CU1-CU2- (VI-8)
-CU1-CU1-CU1-CU1- (VI-9)
-CU1-CU1-CU1-CU2- (VI-10)
-CU1-CU1-CU2-CU1- (VI-11)
-CU1-CU1-CU2-CU2- (VI-12)
-CU1-CU2-CU1-CU2- (VI-13)
-CU1-CU2-CU2-CU1- (VI-14)
-CU1-CU2-CU2-CU2- (VI-15)
-CU2-CU1-CU2-CU2- (VI-16)
B 1 is preferably a divalent group having any one structure selected from the group consisting of structures represented by the following formulas (VI-1) to (VI-16).
-CU1- (VI-1)
-CU1-CU1- (VI-2)
-CU1-CU2- (VI-3)
-CU1-CU1-CU1- (VI-4)
-CU1-CU2-CU1- (VI-5)
-CU1-CU1-CU2- (VI-6)
-CU1-CU2-CU2- (VI-7)
-CU2-CU1-CU2- (VI-8)
-CU1-CU1-CU1-CU1- (VI-9)
-CU1-CU1-CU1-CU2- (VI-10)
-CU1-CU1-CU2-CU1- (VI-11)
-CU1-CU1-CU2-CU2- (VI-12)
-CU1-CU2-CU1-CU2- (VI-13)
-CU1-CU2-CU2-CU1- (VI-14)
-CU1-CU2-CU2-CU2- (VI-15)
-CU2-CU1-CU2-CU2- (VI-16)
式(VI-1)~式(VI-16)中、
CU1は、第1の構成単位CU1を表し、
CU2は、第2の構成単位CU2を表す。
CU1が2つ以上ある場合、2つ以上あるCU1は、互いに同一であっても異なっていてもよく、CU2が2つ以上ある場合、2つ以上あるCU2は、互いに同一であっても異なっていてもよい。ただし、式(VI-8)においては、2つ存在しているCU2が同一である場合が除かれる。 In formulas (VI-1) to (VI-16),
CU1 represents the first structural unit CU1,
CU2 represents the second structural unit CU2.
When there are two or more CU1s, the two or more CU1s may be the same or different, and when there are two or more CU2s, the two or more CU2s may be the same or different. may However, in formula (VI-8), the case where two CU2s are the same is excluded.
CU1は、第1の構成単位CU1を表し、
CU2は、第2の構成単位CU2を表す。
CU1が2つ以上ある場合、2つ以上あるCU1は、互いに同一であっても異なっていてもよく、CU2が2つ以上ある場合、2つ以上あるCU2は、互いに同一であっても異なっていてもよい。ただし、式(VI-8)においては、2つ存在しているCU2が同一である場合が除かれる。 In formulas (VI-1) to (VI-16),
CU1 represents the first structural unit CU1,
CU2 represents the second structural unit CU2.
When there are two or more CU1s, the two or more CU1s may be the same or different, and when there are two or more CU2s, the two or more CU2s may be the same or different. may However, in formula (VI-8), the case where two CU2s are the same is excluded.
前記式(VI-1)~式(VI-16)のうちでは、式(VI-1)から式(VI-8)、式(VI-15)及び式(VI-16)で表される構造を有する2価の基が好ましく、式(VI-1)、式(VI-3)、式(VI-7)、式(VI-8)、式(VI-15)及び式(VI-16)で表される構造を有する2価の基がより好ましい。
Among the formulas (VI-1) to (VI-16), structures represented by formulas (VI-1) to (VI-8), formulas (VI-15) and formulas (VI-16) A divalent group having is preferred, formula (VI-1), formula (VI-3), formula (VI-7), formula (VI-8), formula (VI-15) and formula (VI-16) A divalent group having a structure represented by is more preferable.
B1に含まれうる第1の構成単位CU1及び第2の構成単位CU2の個数の総和は、通常1以上であり、好ましくは2以上であり、より好ましくは3以上であり、通常7以下であり、好ましくは5以下であり、より好ましくは4以下である。
B1に含まれうる第1の構成単位CU1の個数は、通常5以下であり、好ましくは3以下であり、より好ましくは1である。
B1に含まれうる第2の構成単位CU2の個数は、通常5以下であり、好ましくは3以下であり、より好ましくは1以下である。 The total number of the first structural unit CU1 and the second structural unit CU2 that can be contained in B1 is usually 1 or more, preferably 2 or more, more preferably 3 or more, and usually 7 or less. Yes, preferably 5 or less, more preferably 4 or less.
The number of first structural units CU1 that can be contained in B1 is usually 5 or less, preferably 3 or less, and more preferably 1.
The number of second structural units CU2 that can be contained in B1 is usually 5 or less, preferably 3 or less, and more preferably 1 or less.
B1に含まれうる第1の構成単位CU1の個数は、通常5以下であり、好ましくは3以下であり、より好ましくは1である。
B1に含まれうる第2の構成単位CU2の個数は、通常5以下であり、好ましくは3以下であり、より好ましくは1以下である。 The total number of the first structural unit CU1 and the second structural unit CU2 that can be contained in B1 is usually 1 or more, preferably 2 or more, more preferably 3 or more, and usually 7 or less. Yes, preferably 5 or less, more preferably 4 or less.
The number of first structural units CU1 that can be contained in B1 is usually 5 or less, preferably 3 or less, and more preferably 1.
The number of second structural units CU2 that can be contained in B1 is usually 5 or less, preferably 3 or less, and more preferably 1 or less.
B1の具体的な好ましい例としては、下記式で表される2価の基が挙げられる。
Specific preferred examples of B 1 include divalent groups represented by the following formulas.
式中、Rは前記定義のとおりである。
In the formula, R is as defined above.
(3)D1について
本実施形態の化合物において、D1は、電子供与性の基である1価の基である。
D1は、具体的には、π共役系を構成している2価の基であるB1の電子密度をより増大させることができる機能を有する1価の基である。本実施形態の化合物においては、D1のHOMOのエネルギーレベルの値が、A1のHOMOのエネルギーレベルの値よりも小さいことが好ましい。 (3) D 1 In the compound of the present embodiment, D 1 is a monovalent group that is an electron-donating group.
Specifically, D 1 is a monovalent group having a function of increasing the electron density of B 1 , which is a divalent group forming a π-conjugated system. In the compound of the present embodiment, the HOMO energy level of D1 is preferably smaller than the HOMO energy level of A1.
本実施形態の化合物において、D1は、電子供与性の基である1価の基である。
D1は、具体的には、π共役系を構成している2価の基であるB1の電子密度をより増大させることができる機能を有する1価の基である。本実施形態の化合物においては、D1のHOMOのエネルギーレベルの値が、A1のHOMOのエネルギーレベルの値よりも小さいことが好ましい。 (3) D 1 In the compound of the present embodiment, D 1 is a monovalent group that is an electron-donating group.
Specifically, D 1 is a monovalent group having a function of increasing the electron density of B 1 , which is a divalent group forming a π-conjugated system. In the compound of the present embodiment, the HOMO energy level of D1 is preferably smaller than the HOMO energy level of A1.
本実施形態において、D1である電子供与性の基の例としては、不飽和結合を含む1価の基、1価の芳香族炭素環基、1価の芳香族複素環基、置換基を有していてもよいアルキルアミノ基、置換基を有していてもよいアリールアミノ基、置換基を有していてもよいアリールアルコキシ基、置換基を有していてもよいアリールチオアルコキシ基が挙げられる。
In the present embodiment, examples of the electron-donating group for D1 include a monovalent group containing an unsaturated bond, a monovalent aromatic carbocyclic group, a monovalent aromatic heterocyclic group, and a substituent. an optionally substituted alkylamino group, an optionally substituted arylamino group, an optionally substituted arylalkoxy group, an optionally substituted arylthioalkoxy group mentioned.
電子供与性の基である「不飽和結合を含む1価の基」の具体例としては、ビニル基、1,3-ブタジエン-1-イル基、エチニル基が挙げられる。
Specific examples of the "univalent group containing an unsaturated bond", which is an electron-donating group, include a vinyl group, a 1,3-butadien-1-yl group, and an ethynyl group.
電子供与性の基である「1価の芳香族炭素環基」及び「1価の芳香族複素環基」の例としては、トリアリールアミン誘導体から環を構成する原子に直接結合する水素原子1つを除いた残りの原子団、アリール基、チオフェン環、フラン環、ピロール環、シクロペンタジエン、シラシクロペンタジエン等の複素5員環及びこれらを縮合環として含む構造から環を構成する原子に直接結合する水素原子1つを除いた残りの原子団が挙げられる。
Examples of "monovalent aromatic carbocyclic group" and "monovalent aromatic heterocyclic group" which are electron-donating groups include a hydrogen atom 1 directly bonded to an atom constituting a ring from a triarylamine derivative The rest of the atomic groups excluding one, 5-membered heterocyclic rings such as aryl groups, thiophene rings, furan rings, pyrrole rings, cyclopentadiene, silacyclopentadiene, etc., and structures containing these as condensed rings are directly bonded to the atoms constituting the rings. and the remaining atomic groups excluding one hydrogen atom.
ここで、上記トリアリールアミン誘導体としては、例えば、トリフェニルアミン、ジナフチルフェニルアミン、ビス(4-アルキルフェニル)フェニルアミン、ビス(4-アルコキシフェニル)フェニルアミン、ビス(9,9-ジメチルフルオレ-2-ニル)フェニルアミン、ジフェニルチエニルアミン、ビス(4-アルキルフェニル)チエニルアミン、ビス(4-アルコキシフェニル)チエニルアミン、ビス(9,9-ジメチルフルオレ-2-ニル)チエニルアミン等が挙げられる。好ましくは、トリフェニルアミン、ビス(4-アルキルフェニル)フェニルアミン、ビス(4-アルコキシフェニル)フェニルアミンである。
Here, examples of the triarylamine derivatives include triphenylamine, dinaphthylphenylamine, bis(4-alkylphenyl)phenylamine, bis(4-alkoxyphenyl)phenylamine, bis(9,9-dimethylphenylamine), ole-2-nyl)phenylamine, diphenylthienylamine, bis(4-alkylphenyl)thienylamine, bis(4-alkoxyphenyl)thienylamine, bis(9,9-dimethylfluor-2-yl)thienylamine, etc. is mentioned. Preferred are triphenylamine, bis(4-alkylphenyl)phenylamine and bis(4-alkoxyphenyl)phenylamine.
また、上記カルバゾール誘導体としては、例えば、カルバゾール、9-アルキルカルバゾール、9-アリールカルバゾール等が挙げられる。具体的には、カルバゾール、9-エチルカルバゾール、9-フェニルカルバゾール、9-フルオレニルカルバゾール等である。好ましくは、カルバゾールである。
Further, examples of the carbazole derivative include carbazole, 9-alkylcarbazole, 9-arylcarbazole and the like. Specific examples include carbazole, 9-ethylcarbazole, 9-phenylcarbazole, 9-fluorenylcarbazole and the like. Carbazole is preferred.
置換基を有していてもよいアリール基としては、例えば、フェニル基、4-アルコキシフェニル基、4-テトラエチレングリコキシフェニル基、3,4,5-トリアルコキシフェニル基、ジメチルアミノフェニル基、ジエチルアミノフェニル基、ピロロジルフェニル基、チエニル基、アルキルチエニル基、アルコキシチエニル基、エチレンジオキシチエニル基、フェノチアジニル基、チアントレニル基が挙げられる。アルキルチエニル基のアルキル基、及びアルコキシチエニル基のアルコキシ基としては、既に説明した基が挙げられる。また、アリール基は複数のアリール基が連結していてもよい。アリール基としては、好ましくは、ジエチルアミノフェニル基、3,4,5-トリアルコキシフェニル基、エチレンジオキシチエニル基である。
Examples of the aryl group which may have a substituent include a phenyl group, a 4-alkoxyphenyl group, a 4-tetraethyleneglycooxyphenyl group, a 3,4,5-trialkoxyphenyl group, a dimethylaminophenyl group, Diethylaminophenyl group, pyrrolozylphenyl group, thienyl group, alkylthienyl group, alkoxythienyl group, ethylenedioxythienyl group, phenothiazinyl group and thianthrenyl group. Examples of the alkyl group of the alkylthienyl group and the alkoxy group of the alkoxythienyl group include the groups already described. In addition, multiple aryl groups may be linked to the aryl group. The aryl group is preferably a diethylaminophenyl group, a 3,4,5-trialkoxyphenyl group, or an ethylenedioxythienyl group.
置換基を有していてもよいアルキルアミノ基としては、例えば、メチルアミノ基、エチルアミノ基、イソプロピルアミノ基、n-ブチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジ-イソプロピルアミノ基等の炭素原子数1~8のアルキルアミノ基が挙げられ、好ましくは、ジメチルアミノ基である。
The alkylamino group which may have a substituent, for example, carbon such as methylamino group, ethylamino group, isopropylamino group, n-butylamino group, dimethylamino group, diethylamino group, di-isopropylamino group, etc. Examples include alkylamino groups having 1 to 8 atoms, preferably dimethylamino group.
置換基を有していてもよいアリールアミノ基としては、例えば、フェニルアミノ基、ナフチルアミノ基、ジフェニルアミノ基、ジ-4-エチルフェニルアミノ基、ジ-4-メチルフェニルアミノ基が挙げられ、好ましくは、ジフェニルアミノ基である。
Examples of optionally substituted arylamino groups include phenylamino group, naphthylamino group, diphenylamino group, di-4-ethylphenylamino group and di-4-methylphenylamino group. A diphenylamino group is preferred.
置換基を有していてもよいアリールアルコキシ基としては、例えば、置換基を有していてもよいアリール基としてフェニル基、4-アルコキシフェニル基、4-ヘキシロキシフェニル基、4-テトラエチレングリコキシフェニル基、3,4,5-トリアルコキシフェニル基、ジメチルアミノフェニル基、ジエチルアミノフェニル基、ピロロジルフェニル基を含むアリールアルコキシ基が挙げられる。アリールアルコキシ基としては、好ましくは、フェノキシ基、4-ヘキシロキシフェニルオキシ基である。
Examples of optionally substituted arylalkoxy groups include phenyl, 4-alkoxyphenyl, 4-hexyloxyphenyl and 4-tetraethyleneglycol groups as aryl groups optionally having substituents. Arylalkoxy groups including a xyphenyl group, a 3,4,5-trialkoxyphenyl group, a dimethylaminophenyl group, a diethylaminophenyl group and a pyrrolozylphenyl group can be mentioned. The arylalkoxy group is preferably a phenoxy group or a 4-hexyloxyphenyloxy group.
置換基を有していてもよいアリールチオアルコキシ基としては、例えば、置換基を有していてもよいアリール基として、フェニル基、4-アルコキシフェニル基、4-ヘキシロキシフェニル基、4-テトラエチレングリコキシフェニル基、3,4,5-トリアルコキシフェニル基、ジメチルアミノフェニル基、ジエチルアミノフェニル基、ピロロジルフェニル基を含むアリールチオアルコキシ基が挙げられる。アリールチオアルコキシ基におけるアリール基は、好ましくは、4-ヘキシロキシフェニル基である。
Examples of optionally substituted arylthioalkoxy groups include aryl groups optionally having substituents such as phenyl, 4-alkoxyphenyl, 4-hexyloxyphenyl, 4-tetra Arylthioalkoxy groups including ethyleneglycoxyphenyl groups, 3,4,5-trialkoxyphenyl groups, dimethylaminophenyl groups, diethylaminophenyl groups and pyrrolozylphenyl groups are included. The aryl group in the arylthioalkoxy group is preferably 4-hexyloxyphenyl group.
チオフェン環、フラン環、ピロール環、シクロペンタジエン、シラシクロペンタジエン等の複素5員環及びこれらを縮合環として含む構造の例としては、フルオレン、シラフルオレン、ジチエノシクロペンタジエン、ジチエノシラシクロペンタジエン、ジチエノピロール、ベンゾジチオフェンを挙げることができる。
Examples of hetero five-membered rings such as thiophene ring, furan ring, pyrrole ring, cyclopentadiene and silacyclopentadiene and structures containing these as condensed rings include fluorene, silafluorene, dithienocyclopentadiene, dithienosilacyclopentadiene, Mention may be made of dithienopyrrole, benzodithiophene.
その他の1価の芳香族複素環基としては下記式で表される基を挙げることができる。
Other monovalent aromatic heterocyclic groups include groups represented by the following formulas.
本実施形態の化合物において、D1は、具体的には、N-カルバゾリル基、ジフェニルアミノ基、フェノキシ基、さらには下記式で表される基であることが好ましく、N-カルバゾリル基、ジフェニルアミノ基及び下記式で表される基であることがより好ましい。
In the compound of the present embodiment, D 1 is specifically an N-carbazolyl group, a diphenylamino group, a phenoxy group, and preferably a group represented by the following formula, such as an N-carbazolyl group, diphenylamino Groups and groups represented by the following formulas are more preferred.
本実施形態の式(I)で表される化合物の具体例としては、下記式で表される化合物が挙げられる。
Specific examples of the compound represented by formula (I) of the present embodiment include compounds represented by the following formula.
本実施形態の式(I)で表される化合物のより具体的な好ましい例としては、下記式で表される化合物が挙げられる。
More specific preferred examples of the compound represented by formula (I) of the present embodiment include compounds represented by the following formula.
本実施形態の化合物である式(I)で表される化合物においては、暗電流を低減させる観点から、D1のLUMOのエネルギーレベル(ED-LUMO)と、B1を構成する1以上の構成単位のうちの少なくとも1つの構成単位(通常、第1の構成単位CUである。)のLUMOのエネルギーレベル(Eπ-LUMO)と、A1のLUMOのエネルギーレベル(EA-LUMO)とが下記式で表される条件を満たすことが好ましい。
ED-LUMO>EB-LUMO>EA-LUMO
In the compound represented by formula (I), which is the compound of the present embodiment, from the viewpoint of reducing dark current, the LUMO energy level (E D-LUMO ) of D 1 and one or more of B 1 The LUMO energy level (E π-LUMO ) of at least one of the structural units (usually the first structural unit CU) and the LUMO energy level (E A-LUMO ) of A 1 preferably satisfies the conditions represented by the following formula.
E D-LUMO >E B-LUMO >E A-LUMO
ED-LUMO>EB-LUMO>EA-LUMO
In the compound represented by formula (I), which is the compound of the present embodiment, from the viewpoint of reducing dark current, the LUMO energy level (E D-LUMO ) of D 1 and one or more of B 1 The LUMO energy level (E π-LUMO ) of at least one of the structural units (usually the first structural unit CU) and the LUMO energy level (E A-LUMO ) of A 1 preferably satisfies the conditions represented by the following formula.
E D-LUMO >E B-LUMO >E A-LUMO
また、本実施形態の化合物である式(I)で表される化合物においては、B1を構成する1以上の構成単位のうちで、LUMOのエネルギーレベルが最も低い構成単位のLUMOのエネルギーレベル(EB-LUMO)minが、下記式で表される条件を満たすことが好ましい。
ED-LUMO>(EB-LUMO)min>EA-LUMO
In the compound represented by formula (I), which is the compound of the present embodiment, the LUMO energy level of the structural unit with the lowest LUMO energy level among the one or more structural units constituting B1 ( E B-LUMO )min preferably satisfies the conditions represented by the following formula.
E D-LUMO > (E B-LUMO ) min > E A-LUMO
ED-LUMO>(EB-LUMO)min>EA-LUMO
In the compound represented by formula (I), which is the compound of the present embodiment, the LUMO energy level of the structural unit with the lowest LUMO energy level among the one or more structural units constituting B1 ( E B-LUMO )min preferably satisfies the conditions represented by the following formula.
E D-LUMO > (E B-LUMO ) min > E A-LUMO
さらに、本実施形態の化合物である式(I)で表される化合物においては、B1を構成する1以上の構成単位のLUMOのエネルギーレベルの平均値(EB-LUMO)aveが、下記式で表される条件を満たすことが好ましい。
ED-LUMO>(EB-LUMO)ave>EA-LUMO
Furthermore, in the compound represented by formula (I), which is the compound of the present embodiment, the average value of LUMO energy levels (E B-LUMO ) ave of one or more structural units constituting B 1 is represented by the following formula It is preferable to satisfy the condition represented by.
E D-LUMO > (E B-LUMO ) ave > E A-LUMO
ED-LUMO>(EB-LUMO)ave>EA-LUMO
Furthermore, in the compound represented by formula (I), which is the compound of the present embodiment, the average value of LUMO energy levels (E B-LUMO ) ave of one or more structural units constituting B 1 is represented by the following formula It is preferable to satisfy the condition represented by.
E D-LUMO > (E B-LUMO ) ave > E A-LUMO
式(I)で表される化合物に含まれる構成単位(D1、B1及びA1)のLUMOのエネルギーレベルの値(eV)は、従来公知の任意好適な計算科学的手法にて算出することができる。計算科学的手法としては、例えば、量子化学計算プログラムGaussian
03を用い、B3LYPレベルの密度汎関数法により、基底状態の構造最適化を行い、基底関数として6-31g*を用いる方法を適用することができる。 The LUMO energy level value (eV) of the structural units (D 1 , B 1 and A 1 ) contained in the compound represented by formula (I) is calculated by any suitable conventionally known computational scientific method. be able to. As a computational scientific method, for example, the quantum chemical calculation program Gaussian
03, the B3LYP-level density functional theory is used to optimize the ground state structure, and a method using 6-31g* as the basis function can be applied.
03を用い、B3LYPレベルの密度汎関数法により、基底状態の構造最適化を行い、基底関数として6-31g*を用いる方法を適用することができる。 The LUMO energy level value (eV) of the structural units (D 1 , B 1 and A 1 ) contained in the compound represented by formula (I) is calculated by any suitable conventionally known computational scientific method. be able to. As a computational scientific method, for example, the quantum chemical calculation program Gaussian
03, the B3LYP-level density functional theory is used to optimize the ground state structure, and a method using 6-31g* as the basis function can be applied.
具体的には、構成単位(D1、B1及びA1)同士間の結合を切断し、切断により生じた結合手に水素原子を付加した、各構成単位に由来する構造(化合物)それぞれについて、上記の方法を適用することにより、算出することができる。
Specifically, for each structure (compound) derived from each structural unit in which the bond between the structural units (D 1 , B 1 and A 1 ) is cut and a hydrogen atom is added to the bond generated by the cutting, , can be calculated by applying the above method.
本実施形態の化合物は、光電変換素子の活性層の半導体材料、特にn型半導体材料である非フラーレン化合物として好適に用いることができる。
The compound of the present embodiment can be suitably used as a semiconductor material for the active layer of a photoelectric conversion device, particularly as a non-fullerene compound that is an n-type semiconductor material.
特に本実施形態の化合物を、n型半導体材料として活性層の材料に用いれば、特に光検出素子である光電変換素子に要求される暗電流を効果的に低減させることができる。
In particular, if the compound of the present embodiment is used as an n-type semiconductor material for the material of the active layer, it is possible to effectively reduce the dark current particularly required for the photoelectric conversion element, which is a photodetector.
n型半導体材料として用いられる本実施形態の化合物は、2種以上が活性層の材料として含まれていてもよい。
Two or more of the compounds of this embodiment used as the n-type semiconductor material may be included as materials for the active layer.
光電変換素子(詳細については後述する。)の活性層は、特にn型半導体材料として本実施形態の化合物のみを含んでいてもよく、n型半導体材料である本実施形態の化合物以外の化合物を、さらなるn型半導体材料として含んでいてもよい。さらなるn型半導体材料として含まれうる本実施形態の化合物以外の化合物は、低分子化合物であっても高分子化合物であってもよい。
The active layer of a photoelectric conversion device (details will be described later) may contain only the compound of the present embodiment as an n-type semiconductor material, and may contain a compound other than the compound of the present embodiment which is an n-type semiconductor material. , as a further n-type semiconductor material. Compounds other than the compounds of the present embodiment that can be included as additional n-type semiconductor materials may be low-molecular-weight compounds or high-molecular-weight compounds.
低分子化合物である「本実施形態の化合物」以外のn型半導体材料(電子受容性化合物)の例としては、オキサジアゾール誘導体、アントラキノジメタン及びその誘導体、ベンゾキノン及びその誘導体、ナフトキノン及びその誘導体、アントラキノン及びその誘導体、テトラシアノアントラキノジメタン及びその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレン及びその誘導体、ジフェノキノン誘導体、8-ヒドロキシキノリン及びその誘導体の金属錯体、並びに、バソクプロイン等のフェナントレン誘導体が挙げられる。
Examples of n-type semiconductor materials (electron-accepting compounds) other than the low-molecular compound "compound of the present embodiment" include oxadiazole derivatives, anthraquinodimethane and its derivatives, benzoquinone and its derivatives, naphthoquinone and its derivatives. derivatives, anthraquinone and its derivatives, tetracyanoanthraquinodimethane and its derivatives, fluorenone derivatives, diphenyldicyanoethylene and its derivatives, diphenoquinone derivatives, metal complexes of 8-hydroxyquinoline and its derivatives, and phenanthrene derivatives such as bathocuproine. be done.
高分子化合物である「本実施形態の化合物」以外のn型半導体材料の例としては、ポリビニルカルバゾール及びその誘導体、ポリシラン及びその誘導体、側鎖又は主鎖に芳香族アミン構造を有するポリシロキサン誘導体、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリピロール及びその誘導体、ポリフェニレンビニレン及びその誘導体、ポリチエニレンビニレン及びその誘導体、ポリキノリン及びその誘導体、ポリキノキサリン及びその誘導体、並びに、ポリフルオレン及びその誘導体が挙げられる。
Examples of n-type semiconductor materials other than the "compound of the present embodiment" which is a polymer compound include polyvinylcarbazole and its derivatives, polysilane and its derivatives, polysiloxane derivatives having an aromatic amine structure in the side chain or main chain, polyaniline and its derivatives, polythiophene and its derivatives, polypyrrole and its derivatives, polyphenylene vinylene and its derivatives, polythienylene vinylene and its derivatives, polyquinoline and its derivatives, polyquinoxaline and its derivatives, and polyfluorene and its derivatives .
「本実施形態の化合物」以外の化合物には、フラーレン誘導体が含まれうる。
Compounds other than "compounds of the present embodiment" may include fullerene derivatives.
ここで、フラーレン誘導体とは、フラーレン(C60フラーレン、C70フラーレン、C76フラーレン、C78フラーレン、及びC84フラーレン)のうちの少なくとも一部が修飾された化合物をいう。換言すると、フラーレン骨格に付加された1つ以上の基を有する化合物をいう。以下、特にC60フラーレンのフラーレン誘導体を「C60フラーレン誘導体」といい、C70フラーレンのフラーレン誘導体を「C70フラーレン誘導体」という場合がある。
Here, the fullerene derivative refers to a compound in which at least a portion of fullerene ( C60 fullerene, C70 fullerene, C76 fullerene, C78 fullerene , and C84 fullerene) is modified. In other words, it refers to a compound having one or more groups attached to the fullerene skeleton. Hereinafter, the fullerene derivative of C60 fullerene may be particularly referred to as " C60 fullerene derivative", and the fullerene derivative of C70 fullerene may be referred to as " C70 fullerene derivative".
「本実施形態の化合物」以外のn型半導体材料として用いられうるフラーレン誘導体は、本発明の目的を損なわない限り特に限定されない。
The fullerene derivative that can be used as an n-type semiconductor material other than the "compound of the present embodiment" is not particularly limited as long as it does not impair the purpose of the present invention.
「本実施形態の化合物」以外のn型半導体材料として用いられうるC60フラーレン誘導体の具体例としては、下記の化合物が挙げられる。
Specific examples of the C60 fullerene derivative that can be used as the n-type semiconductor material other than the "compound of the present embodiment" include the following compounds.
式中、Rは前記定義のとおりである。Rが複数ある場合、複数あるRは、互いに同一であっても異なっていてもよい。
In the formula, R is as defined above. When there are multiple R's, the multiple R's may be the same or different.
C70フラーレン誘導体の例としては、下記の化合物が挙げられる。
Examples of C70 fullerene derivatives include the following compounds.
2.光電変換素子
本実施形態にかかる光電変換素子は、陽極と、陰極と、該陽極と該陰極との間に設けられており、p型半導体材料及びn型半導体材料を含む活性層とを含み、該n型半導体材料として、既に説明した本実施形態の化合物を含む、光電変換素子である。 2. Photoelectric conversion element The photoelectric conversion element according to the present embodiment includes an anode, a cathode, and an active layer provided between the anode and the cathode and containing a p-type semiconductor material and an n-type semiconductor material, A photoelectric conversion device containing the compound of the present embodiment described above as the n-type semiconductor material.
本実施形態にかかる光電変換素子は、陽極と、陰極と、該陽極と該陰極との間に設けられており、p型半導体材料及びn型半導体材料を含む活性層とを含み、該n型半導体材料として、既に説明した本実施形態の化合物を含む、光電変換素子である。 2. Photoelectric conversion element The photoelectric conversion element according to the present embodiment includes an anode, a cathode, and an active layer provided between the anode and the cathode and containing a p-type semiconductor material and an n-type semiconductor material, A photoelectric conversion device containing the compound of the present embodiment described above as the n-type semiconductor material.
本実施形態の光電変換素子によれば、上記の構成を有することにより、特に光検出素子である光電変換素子に要求される暗電流を効果的に低減することができる。
According to the photoelectric conversion element of the present embodiment, by having the above configuration, it is possible to effectively reduce the dark current particularly required for the photoelectric conversion element, which is a photodetector.
ここで、本実施形態の光電変換素子が取りうる構成例について説明する。図1は、本実施形態の光電変換素子の構成を模式的に示す図である。
Here, a configuration example that the photoelectric conversion element of this embodiment can take will be described. FIG. 1 is a diagram schematically showing the configuration of the photoelectric conversion element of this embodiment.
図1に示されるように、光電変換素子10は、支持基板11に設けられている。光電変換素子10は、支持基板11に接するように設けられている陽極12と、陽極12に接するように設けられている正孔輸送層13と、正孔輸送層13に接するように設けられている活性層14と、活性層14に接するように設けられている電子輸送層15と、電子輸送層15に接するように設けられている陰極16とを備えている。この構成例では、陰極16に接するように封止部材17がさらに設けられている。
以下、本実施形態の光電変換素子に含まれうる構成要素について具体的に説明する。 As shown in FIG. 1 , thephotoelectric conversion element 10 is provided on a support substrate 11 . The photoelectric conversion element 10 includes an anode 12 provided in contact with a support substrate 11, a hole transport layer 13 provided in contact with the anode 12, and a hole transport layer 13 provided in contact with the hole transport layer 13. an active layer 14 , an electron transport layer 15 provided in contact with the active layer 14 , and a cathode 16 provided in contact with the electron transport layer 15 . In this configuration example, a sealing member 17 is further provided so as to be in contact with the cathode 16 .
Constituent elements that can be included in the photoelectric conversion element of this embodiment will be specifically described below.
以下、本実施形態の光電変換素子に含まれうる構成要素について具体的に説明する。 As shown in FIG. 1 , the
Constituent elements that can be included in the photoelectric conversion element of this embodiment will be specifically described below.
(基板)
光電変換素子は、通常、基板(支持基板)上に形成される。また、さらに基板(封止基板)により封止される場合もある。基板には、通常、陽極及び陰極からなる一対の電極のうちの一方が形成される。基板の材料は、特に有機化合物を含む層を形成する際に化学的に変化しない材料であれば特に限定されない。 (substrate)
A photoelectric conversion element is usually formed on a substrate (support substrate). Further, it may be further sealed with a substrate (sealing substrate). One of a pair of electrodes, typically an anode and a cathode, is formed on the substrate. The material of the substrate is not particularly limited as long as it is a material that does not chemically change when the layer containing an organic compound is formed.
光電変換素子は、通常、基板(支持基板)上に形成される。また、さらに基板(封止基板)により封止される場合もある。基板には、通常、陽極及び陰極からなる一対の電極のうちの一方が形成される。基板の材料は、特に有機化合物を含む層を形成する際に化学的に変化しない材料であれば特に限定されない。 (substrate)
A photoelectric conversion element is usually formed on a substrate (support substrate). Further, it may be further sealed with a substrate (sealing substrate). One of a pair of electrodes, typically an anode and a cathode, is formed on the substrate. The material of the substrate is not particularly limited as long as it is a material that does not chemically change when the layer containing an organic compound is formed.
基板の材料としては、例えば、ガラス、プラスチック、高分子フィルム、シリコンが挙げられる。不透明な基板が用いられる場合には、不透明な基板側に設けられる電極とは反対側の電極(換言すると、不透明な基板から遠い側の電極)が透明又は半透明の電極とされることが好ましい。
Examples of substrate materials include glass, plastic, polymer film, and silicon. When an opaque substrate is used, the electrode opposite to the electrode provided on the opaque substrate (in other words, the electrode on the far side from the opaque substrate) is preferably a transparent or translucent electrode. .
(電極)
光電変換素子は、一対の電極である陽極及び陰極を含んでいる。陽極及び陰極のうち、少なくとも一方の電極は、光を入射させるために、透明又は半透明の電極とすることが好ましい。 (electrode)
A photoelectric conversion element includes a pair of electrodes, an anode and a cathode. At least one of the anode and the cathode is preferably a transparent or translucent electrode in order to allow light to enter.
光電変換素子は、一対の電極である陽極及び陰極を含んでいる。陽極及び陰極のうち、少なくとも一方の電極は、光を入射させるために、透明又は半透明の電極とすることが好ましい。 (electrode)
A photoelectric conversion element includes a pair of electrodes, an anode and a cathode. At least one of the anode and the cathode is preferably a transparent or translucent electrode in order to allow light to enter.
透明又は半透明の電極の材料の例としては、導電性の金属酸化物膜、半透明の金属薄膜が挙げられる。具体的には、酸化インジウム、酸化亜鉛、酸化スズ、及びそれらの複合体であるインジウムスズ酸化物(ITO)、インジウム亜鉛酸化物(IZO)、NESA等の導電性材料、金、白金、銀、銅が挙げられる。透明又は半透明である電極の材料としては、ITO、IZO、酸化スズが好ましい。また、電極として、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体などの有機化合物が材料として用いられる透明導電膜を用いてもよい。透明又は半透明の電極は、陽極であっても陰極であってもよい。
Examples of materials for transparent or semi-transparent electrodes include conductive metal oxide films and semi-transparent metal thin films. Specifically, indium oxide, zinc oxide, tin oxide, and their composites indium tin oxide (ITO), indium zinc oxide (IZO), conductive materials such as NESA, gold, platinum, silver, copper. ITO, IZO, and tin oxide are preferable as materials for transparent or translucent electrodes. Moreover, as the electrode, a transparent conductive film using an organic compound such as polyaniline and its derivatives, polythiophene and its derivatives as a material may be used. The transparent or translucent electrode can be either the anode or the cathode.
一対の電極のうちの一方の電極が透明又は半透明であれば、他方の電極は光透過性の低い電極であってもよい。光透過性の低い電極の材料の例としては、金属、及び導電性高分子が挙げられる。光透過性の低い電極の材料の具体例としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウム等の金属、及びこれらのうちの2種以上の合金、又は、これらのうちの1種以上の金属と、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン及び錫からなる群から選ばれる1種以上の金属との合金、グラファイト、グラファイト層間化合物、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体が挙げられる。合金としては、マグネシウム-銀合金、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、インジウム-銀合金、リチウム-アルミニウム合金、リチウム-マグネシウム合金、リチウム-インジウム合金、及びカルシウム-アルミニウム合金が挙げられる。
If one electrode of the pair of electrodes is transparent or translucent, the other electrode may be an electrode with low light transmittance. Examples of materials for electrodes with low light transmittance include metals and conductive polymers. Specific examples of low light transmissive electrode materials include lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, Metals such as terbium, ytterbium, and alloys of two or more thereof, or one or more of these metals together with gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten and tin alloys with one or more metals selected from the group consisting of graphite, graphite intercalation compounds, polyaniline and its derivatives, polythiophene and its derivatives. Alloys include magnesium-silver alloys, magnesium-indium alloys, magnesium-aluminum alloys, indium-silver alloys, lithium-aluminum alloys, lithium-magnesium alloys, lithium-indium alloys, and calcium-aluminum alloys.
(活性層)
本実施形態の光電変換素子が備える活性層は、バルクヘテロジャンクション型の構造を有することが想定されており、p型半導体材料と、n型半導体材料とを含み、該n型半導体材料として、本実施形態の化合物を含む(詳細については後述する。)。 (active layer)
The active layer included in the photoelectric conversion element of the present embodiment is assumed to have a bulk heterojunction structure, and includes a p-type semiconductor material and an n-type semiconductor material. (details will be described later).
本実施形態の光電変換素子が備える活性層は、バルクヘテロジャンクション型の構造を有することが想定されており、p型半導体材料と、n型半導体材料とを含み、該n型半導体材料として、本実施形態の化合物を含む(詳細については後述する。)。 (active layer)
The active layer included in the photoelectric conversion element of the present embodiment is assumed to have a bulk heterojunction structure, and includes a p-type semiconductor material and an n-type semiconductor material. (details will be described later).
本実施形態において、活性層の厚さは、特に限定されない。活性層の厚さは、暗電流の抑制と生じた光電流の取り出しとのバランスを考慮して、任意好適な厚さとすることができる。活性層の厚さは、特に暗電流をより低減する観点から、好ましくは100nm以上であり、より好ましくは150nm以上であり、さらに好ましくは200nm以上である。また、活性層の厚さは、好ましくは10μm以下であり、より好ましくは5μm以下であり、さらに好ましくは1μm以下である。
In this embodiment, the thickness of the active layer is not particularly limited. The thickness of the active layer can be any suitable thickness considering the balance between suppression of dark current and extraction of the generated photocurrent. The thickness of the active layer is preferably 100 nm or more, more preferably 150 nm or more, and even more preferably 200 nm or more, particularly from the viewpoint of further reducing dark current. Also, the thickness of the active layer is preferably 10 μm or less, more preferably 5 μm or less, and even more preferably 1 μm or less.
ここで、本実施形態にかかる活性層の材料として、既に説明した本実施形態の化合物であるn型半導体材料と組み合わせて好適に用いることができるp型半導体材料について説明する。
Here, a p-type semiconductor material that can be suitably used as a material for the active layer according to this embodiment in combination with the n-type semiconductor material, which is the compound of this embodiment already described, will be described.
本実施形態のp型半導体材料は、所定のポリスチレン換算の重量平均分子量を有する高分子化合物であることが好ましい。
The p-type semiconductor material of the present embodiment is preferably a polymer compound having a predetermined polystyrene-equivalent weight-average molecular weight.
また、本実施形態のp型半導体材料は、吸収ピーク波長が700nmよりも大きい高分子化合物であることが好ましい。
In addition, the p-type semiconductor material of the present embodiment is preferably a polymer compound with an absorption peak wavelength greater than 700 nm.
「吸収ピーク波長」は、従来公知の任意好適な紫外可視近赤外分光光度計(例、日本分光社製「JASCO-V670」)を用いて測定することができる。
The "absorption peak wavelength" can be measured using any suitable conventionally known ultraviolet-visible-near-infrared spectrophotometer (eg, "JASCO-V670" manufactured by JASCO Corporation).
ここで、ポリスチレン換算の重量平均分子量とは、ゲルパーミエーションクロマトグラフィー(GPC)を用い、ポリスチレンの標準試料を用いて算出した重量平均分子量を意味する。
Here, the weight average molecular weight in terms of polystyrene means the weight average molecular weight calculated using a standard sample of polystyrene using gel permeation chromatography (GPC).
p型半導体材料のポリスチレン換算の重量平均分子量は、特に溶媒に対する溶解性を向上させる観点から、3000以上500000以下であることが好ましい。
The polystyrene-equivalent weight average molecular weight of the p-type semiconductor material is preferably 3,000 or more and 500,000 or less, particularly from the viewpoint of improving solubility in solvents.
本実施形態において、p型半導体材料は、ドナー構成単位(D構成単位ともいう。)とアクセプター構成単位(A構成単位ともいう。)とを含むπ共役高分子化合物(D-A型共役高分子化合物又は単に共役高分子化合物ともいう。)であることが好ましい。なお、いずれがドナー構成単位又はアクセプター構成単位であるかは、HOMO又はLUMOのエネルギーレベルから相対的に決定しうる。
In the present embodiment, the p-type semiconductor material is a π-conjugated polymer compound (DA-type conjugated polymer Also referred to as a compound or simply a conjugated polymer compound.). It should be noted that which is the donor structural unit or the acceptor structural unit can be relatively determined from the energy level of the HOMO or LUMO.
ここで、ドナー構成単位はπ電子が過剰である構成単位であり、アクセプター構成単位はπ電子が欠乏している構成単位である。
Here, the donor structural unit is a structural unit with an excess of π electrons, and the acceptor structural unit is a structural unit with a π electron deficiency.
本実施形態において、p型半導体材料を構成しうる構成単位には、ドナー構成単位とアクセプター構成単位とが直接的に結合した構成単位、さらにはドナー構成単位とアクセプター構成単位とが、任意好適なスペーサー(基又は構成単位)を介して結合した構成単位も含まれる。
In the present embodiment, the structural unit that can constitute the p-type semiconductor material may be a structural unit in which a donor structural unit and an acceptor structural unit are directly bonded, or a donor structural unit and an acceptor structural unit. Structural units linked via spacers (groups or structural units) are also included.
高分子化合物であるp型半導体材料としては、例えば、ポリビニルカルバゾール及びその誘導体、ポリシラン及びその誘導体、側鎖又は主鎖に芳香族アミン構造を含むポリシロキサン誘導体、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリピロール及びその誘導体、ポリフェニレンビニレン及びその誘導体、ポリチエニレンビニレン及びその誘導体、ポリフルオレン及びその誘導体が挙げられる。
Examples of p-type semiconductor materials that are polymer compounds include polyvinylcarbazole and its derivatives, polysilane and its derivatives, polysiloxane derivatives containing an aromatic amine structure in the side chain or main chain, polyaniline and its derivatives, polythiophene and its derivatives. , polypyrrole and its derivatives, polyphenylene vinylene and its derivatives, polythienylene vinylene and its derivatives, polyfluorene and its derivatives.
本実施形態の下記式(VII)で表される構成単位を含む高分子化合物であることが好ましい。下記式(VII)で表される構成単位は、本実施形態においては、通常、ドナー構成単位である。
A polymer compound containing a structural unit represented by the following formula (VII) of the present embodiment is preferred. A structural unit represented by the following formula (VII) is usually a donor structural unit in the present embodiment.
式(VII)中、Ar3及びAr4は、置換基を有していてもよい3価の芳香族複素環基を表し、Zは下記式(Z-1)~式(Z-7)で表される基を表す。
In formula (VII), Ar 3 and Ar 4 represent a trivalent aromatic heterocyclic group which may have a substituent, and Z represents the following formulas (Z-1) to (Z-7). represents the group represented.
式(Z-1)~(Z-7)中、
Rは、前記定義のとおりである。
式(Z-1)~式(Z-7)のそれぞれにおいて、Rが2つある場合、2つのRは互いに同一であっても異なっていてもよい。 In formulas (Z-1) to (Z-7),
R is as defined above.
In each of formulas (Z-1) to (Z-7), when there are two R's, the two R's may be the same or different.
Rは、前記定義のとおりである。
式(Z-1)~式(Z-7)のそれぞれにおいて、Rが2つある場合、2つのRは互いに同一であっても異なっていてもよい。 In formulas (Z-1) to (Z-7),
R is as defined above.
In each of formulas (Z-1) to (Z-7), when there are two R's, the two R's may be the same or different.
Ar3及びAr4を構成しうる芳香族複素環には、複素環自体が芳香族性を示す単環及び縮合環に加えて、環を構成する複素環自体は芳香族性を示さなくとも、複素環に芳香環が縮合している環が包含される。
The aromatic heterocycles that can constitute Ar 3 and Ar 4 include, in addition to single rings and condensed rings in which the heterocycles themselves exhibit aromaticity, A ring in which an aromatic ring is condensed to a heterocyclic ring is included.
Ar3及びAr4を構成しうる芳香族複素環は、それぞれ単環であってもよく、縮合環であってもよい。芳香族複素環が縮合環である場合、縮合環を構成する環の全部が芳香族性を有する縮合環であってもよく、一部のみが芳香族性を有する縮合環であってもよい。これらの環が複数の置換基を有する場合、これらの置換基は、同一であっても異なっていてもよい。
Each of the aromatic heterocycles that can constitute Ar 3 and Ar 4 may be a monocyclic ring or a condensed ring. When the aromatic heterocycle is a condensed ring, all of the rings constituting the condensed ring may be aromatic condensed rings, or only some of the rings may be aromatic condensed rings. When these rings have multiple substituents, these substituents may be the same or different.
Ar3及びAr4を構成しうる芳香族炭素環の具体例としては、ベンゼン環、ナフタレン環、アントラセン環、テトラセン環、ペンタセン環、ピレン環、及びフェナントレン環が挙げられ、好ましくはベンゼン環及びナフタレン環であり、より好ましくはベンゼン環及びナフタレン環であり、さらに好ましくはベンゼン環である。これらの環は、置換基を有していてもよい。
Specific examples of aromatic carbocyclic rings that can constitute Ar 3 and Ar 4 include benzene ring, naphthalene ring, anthracene ring, tetracene ring, pentacene ring, pyrene ring and phenanthrene ring, preferably benzene ring and naphthalene ring. It is a ring, more preferably a benzene ring or a naphthalene ring, still more preferably a benzene ring. These rings may have a substituent.
芳香族複素環の具体例としては、芳香族複素環式化合物として既に説明した化合物が有する環構造が挙げられ、オキサジアゾール環、チアジアゾール環、チアゾール環、オキサゾール環、チオフェン環、ピロール環、ホスホール環、フラン環、ピリジン環、ピラジン環、ピリミジン環、トリアジン環、ピリダジン環、キノリン環、イソキノリン環、カルバゾール環、及びジベンゾホスホール環、並びに、フェノキサジン環、フェノチアジン環、ジベンゾボロール環、ジベンゾシロール環、及びベンゾピラン環が挙げられる。これらの環は、置換基を有していてもよい。
Specific examples of the aromatic heterocyclic ring include ring structures possessed by compounds already described as aromatic heterocyclic compounds, such as oxadiazole ring, thiadiazole ring, thiazole ring, oxazole ring, thiophene ring, pyrrole ring, phosphole ring, furan ring, pyridine ring, pyrazine ring, pyrimidine ring, triazine ring, pyridazine ring, quinoline ring, isoquinoline ring, carbazole ring, dibenzophosphole ring, phenoxazine ring, phenothiazine ring, dibenzoborol ring, dibenzo A silole ring and a benzopyran ring are included. These rings may have a substituent.
式(VII)で表される構成単位は、下記式(VIII)又は(IX)で表される構成単位であることが好ましい。換言すると、本実施形態においてp型半導体材料は、下記式(VIII)又は(IX)で表される構成単位を含む高分子化合物であることが好ましい。
The structural unit represented by formula (VII) is preferably a structural unit represented by formula (VIII) or (IX) below. In other words, the p-type semiconductor material in this embodiment is preferably a polymer compound containing a structural unit represented by the following formula (VIII) or (IX).
式(VIII)及び(IX)中、Ar3、Ar4及びRは、前記定義のとおりである。
In formulas (VIII) and (IX), Ar 3 , Ar 4 and R are as defined above.
式(VII)及び(IX)で表される好適な構成単位の例としては、下記式(VII-1)及び(VII-2)、並びに式(IX-1)及び(IX-2)で表される構成単位が挙げられる。
Examples of suitable structural units represented by formulas (VII) and (IX) include the following formulas (VII-1) and (VII-2), and formulas (IX-1) and (IX-2). structural units that are
式(VII-1)、式(VII-2)、式(IX-1)及び式(IX-2)中、
Rは前記定義のとおりである。
Rが2つある場合、2つあるRは同一であっても異なっていてもよい。 In formula (VII-1), formula (VII-2), formula (IX-1) and formula (IX-2),
R is as defined above.
When there are two R's, the two R's may be the same or different.
Rは前記定義のとおりである。
Rが2つある場合、2つあるRは同一であっても異なっていてもよい。 In formula (VII-1), formula (VII-2), formula (IX-1) and formula (IX-2),
R is as defined above.
When there are two R's, the two R's may be the same or different.
式(VII-1)で表されるより具体的な好ましい構成単位の例としては、下記式(VII-1-1)及び式(VII-1-2)で表される構成単位が挙げられる。
Examples of more specific preferred structural units represented by formula (VII-1) include structural units represented by the following formulas (VII-1-1) and (VII-1-2).
また、式(VIII)で表される構成単位は、下記式(X)で表される構成単位であることが好ましい。換言すると、本実施形態において、p型半導体材料は、下記式(X)で表される構成単位を含む高分子化合物であってもよい。
Further, the structural unit represented by formula (VIII) is preferably a structural unit represented by formula (X) below. In other words, in this embodiment, the p-type semiconductor material may be a polymer compound containing a structural unit represented by the following formula (X).
式(X)中、
X1及びX2は、それぞれ独立して、硫黄原子又は酸素原子であり、
Z1及びZ2は、それぞれ独立して、=C(R)-で表される基又は窒素原子であり、
Rは、前記定義のとおりである。 In formula (X),
X 1 and X 2 are each independently a sulfur atom or an oxygen atom,
Z 1 and Z 2 are each independently a group represented by =C(R)- or a nitrogen atom,
R is as defined above.
X1及びX2は、それぞれ独立して、硫黄原子又は酸素原子であり、
Z1及びZ2は、それぞれ独立して、=C(R)-で表される基又は窒素原子であり、
Rは、前記定義のとおりである。 In formula (X),
X 1 and X 2 are each independently a sulfur atom or an oxygen atom,
Z 1 and Z 2 are each independently a group represented by =C(R)- or a nitrogen atom,
R is as defined above.
式(IX)で表される好ましい構成単位の例としては、下記式(X-1)~式(X-16)で表される構成単位が挙げられる。
Examples of preferred structural units represented by formula (IX) include structural units represented by the following formulas (X-1) to (X-16).
式(X)で表される構成単位としては、X1及びX2が硫黄原子であり、Z1及びZ2が=C(R)-で表される基である構成単位が好ましい。
As the structural unit represented by formula (X), a structural unit in which X 1 and X 2 are sulfur atoms and Z 1 and Z 2 are groups represented by =C(R)- is preferred.
本実施形態においてp型半導体材料である高分子化合物は、下記式(XI)で表される構成単位を含むことが好ましい。下記式(XI)で表される構成単位は、本実施形態においては、通常、アクセプター構成単位である。
The polymer compound, which is the p-type semiconductor material in this embodiment, preferably contains a structural unit represented by the following formula (XI). A structural unit represented by the following formula (XI) is usually an acceptor structural unit in the present embodiment.
式(XI)中、Ar5は2価の芳香族複素環基を表す。
In formula (XI), Ar 5 represents a divalent aromatic heterocyclic group.
Ar5で表される2価の芳香族複素環基の炭素原子数は、通常2~60であり、好ましくは4~60であり、より好ましくは4~20である。
The number of carbon atoms in the divalent aromatic heterocyclic group represented by Ar 5 is generally 2-60, preferably 4-60, more preferably 4-20.
Ar5で表される2価の芳香族複素環基は置換基を有していてもよい。Ar5で表される2価の芳香族複素環基が有していてもよい置換基の例としては、ハロゲン原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいアルキルオキシ基、置換基を有していてもよいアリールオキシ基、置換基を有していてもよいアルキルチオ基、置換基を有していてもよいアリールチオ基、置換基を有していてもよい1価の複素環基、置換基を有していてもよい置換アミノ基、置換基を有していてもよいアシル基、置換基を有していてもよいイミン残基、置換基を有していてもよいアミド基、置換基を有していてもよい酸イミド基、置換基を有していてもよい置換オキシカルボニル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいアルキニル基、シアノ基、及びニトロ基が挙げられる。
The divalent aromatic heterocyclic group represented by Ar 5 may have a substituent. Examples of the substituent that the divalent aromatic heterocyclic group represented by Ar 5 may have include a halogen atom, an optionally substituted alkyl group, and optionally substituted aryl group, optionally substituted alkyloxy group, optionally substituted aryloxy group, optionally substituted alkylthio group, optionally substituted optionally substituted arylthio group, optionally substituted monovalent heterocyclic group, optionally substituted amino group, optionally substituted acyl group, optionally substituted optionally imine residue, optionally substituted amide group, optionally substituted acid imide group, optionally substituted oxycarbonyl group, substituent alkenyl groups optionally having a, alkynyl groups optionally having substituents, cyano groups, and nitro groups.
式(X)で表される構成単位としては、下記式(X-1)~式(X-10)で表される構成単位が好ましい。
As the structural unit represented by formula (X), structural units represented by the following formulas (X-1) to (X-10) are preferable.
式(X-1)~式(X-10)中、
X1、X2、Z1、Z2及びRは前記定義のとおりである。
Rが2つある場合、2つあるRは、互いに同一であっても異なっていてもよい。 In formulas (X-1) to (X-10),
X 1 , X 2 , Z 1 , Z 2 and R are as defined above.
When there are two R's, the two R's may be the same or different.
X1、X2、Z1、Z2及びRは前記定義のとおりである。
Rが2つある場合、2つあるRは、互いに同一であっても異なっていてもよい。 In formulas (X-1) to (X-10),
X 1 , X 2 , Z 1 , Z 2 and R are as defined above.
When there are two R's, the two R's may be the same or different.
原料化合物の入手性の観点から、式(X-1)~式(X-10)中のX1及びX2は、いずれも硫黄原子であることが好ましい。
From the viewpoint of the availability of raw material compounds, both X 1 and X 2 in formulas (X-1) to (X-10) are preferably sulfur atoms.
なお、式(X-1)~式(X-10)で表される構成単位は、上記のとおり、通常、アクセプター構成単位として機能しうる。しかしながらこれに限定されず、特に式(X-4)、式(X-5)及び式(X-7)で表される構成単位は、ドナー構成単位としても機能しうる。
The structural units represented by formulas (X-1) to (X-10) can usually function as acceptor structural units, as described above. However, it is not limited to this, and in particular structural units represented by formulas (X-4), (X-5) and (X-7) can also function as donor structural units.
本実施形態において、p型半導体材料は、チオフェン骨格を含む構成単位を含み、π共役系を含むπ共役高分子化合物であることが好ましい。
In the present embodiment, the p-type semiconductor material is preferably a π-conjugated polymer compound containing a structural unit containing a thiophene skeleton and containing a π-conjugated system.
Ar5で表される2価の芳香族複素環基の具体例としては、下記式(101)~式(191)で表される基が挙げられる。これらの基はさらに置換基を有していてもよい。
Specific examples of the divalent aromatic heterocyclic group represented by Ar 5 include groups represented by the following formulas (101) to (191). These groups may further have a substituent.
式(101)~式(191)中、Rは前記と同義である。Rが複数ある場合、複数あるRは、互いに同一であっても異なっていてもよい。
In formulas (101) to (191), R has the same definition as above. When there are multiple R's, the multiple R's may be the same or different.
本実施形態のp型半導体材料である高分子化合物は、ドナー構成単位として式(VI)で表される構成単位を含み、かつアクセプター構成単位として式(X)で表される構成単位を含むπ共役高分子化合物であることが好ましい。
The polymer compound that is the p-type semiconductor material of the present embodiment contains a structural unit represented by formula (VI) as a donor structural unit and a structural unit represented by formula (X) as an acceptor structural unit. A conjugated polymer compound is preferred.
p型半導体材料である高分子化合物は、2種以上の式(VI)で表される構成単位を含んでいてもよく、2種以上の式(X)で表される構成単位を含んでいてもよい。
A polymer compound that is a p-type semiconductor material may contain two or more structural units represented by formula (VI), and may contain two or more structural units represented by formula (X). good too.
例えば、溶媒に対する溶解性を向上させる観点から、本実施形態のp型半導体材料である高分子化合物は、下記式(XII)で表される構成単位を含んでいてもよい。
For example, from the viewpoint of improving solubility in solvents, the polymer compound that is the p-type semiconductor material of the present embodiment may contain a structural unit represented by the following formula (XII).
式(XII)中、Ar6は2価の芳香族炭素環基を表す。
In formula (XII), Ar 6 represents a divalent aromatic carbocyclic group.
Ar6で表される2価の芳香族炭素環基とは、置換基を有していてもよい芳香族炭化水素から、水素原子を2個除いた残りの原子団である。芳香族炭化水素には、縮合環を有する化合物、独立したベンゼン環及び縮合環からなる群から選ばれる2個以上が、直接的に又はビニレン基などの2価の基を介して結合した化合物も含まれる。
The divalent aromatic carbocyclic group represented by Ar 6 is an atomic group remaining after removing two hydrogen atoms from an optionally substituted aromatic hydrocarbon. Aromatic hydrocarbons include compounds having condensed rings, and compounds in which two or more selected from the group consisting of independent benzene rings and condensed rings are bonded directly or via a divalent group such as a vinylene group. included.
芳香族炭化水素が有していてもよい置換基の例としては、複素環式化合物が有していてもよい置換基として例示された置換基と同様の置換基が挙げられる。
Examples of substituents that the aromatic hydrocarbon may have include substituents similar to those exemplified as substituents that the heterocyclic compound may have.
Ar6で表される2価の芳香族炭素環基の炭素原子数は、置換基の炭素原子数を含めないで通常6~60であり、好ましくは6~20である。置換基を含めた炭素原子数は、通常6~100である。
The number of carbon atoms in the divalent aromatic carbocyclic group represented by Ar 6 is usually 6-60, preferably 6-20, not including the number of carbon atoms in the substituents. The number of carbon atoms including substituents is usually 6-100.
Ar6で表される2価の芳香族炭素環基の例としては、フェニレン基(例えば、下記式1~式3)、ナフタレン-ジイル基(例えば、下記式4~式13)、アントラセン-ジイル基(例えば、下記式14~式19)、ビフェニル-ジイル基(例えば、下記式20~式25)、ターフェニル-ジイル基(例えば、下記式26~式28)、縮合環化合物基(例えば、下記式29~式35)、フルオレン-ジイル基(例えば、下記式36~式38)、及びベンゾフルオレン-ジイル基(例えば、下記式39~式46)が挙げられる。
Examples of the divalent aromatic carbocyclic group represented by Ar 6 include a phenylene group (eg, formulas 1 to 3 below), a naphthalene-diyl group (eg, formulas 4 to 13 below), and anthracene-diyl. groups (e.g., formulas 14 to 19 below), biphenyl-diyl groups (e.g., formulas 20 to 25 below), terphenyl-diyl groups (e.g., formulas 26 to 28 below), condensed ring compound groups (e.g., 29 to 35 below), fluorene-diyl groups (eg, formulas 36 to 38 below), and benzofluorene-diyl groups (eg, formulas 39 to 46 below).
式中、Rは前記定義のとおりである。複数あるRは、互いに同一であっても異なっていてもよい。
In the formula, R is as defined above. Multiple R's may be the same or different.
式(XII)で表される構成単位は、下記式(XIII)で表される構成単位であることが好ましい。
The structural unit represented by formula (XII) is preferably a structural unit represented by formula (XIII) below.
式(XIII)中、Rは、前記定義のとおりである。2つあるRは、互いに同一であっても異なっていてもよい。
In formula (XIII), R is as defined above. Two R's may be the same or different.
p型半導体材料である高分子化合物を構成する構成単位は、上記の構成単位から選択される2種以上の構成単位が2つ以上組み合わされて連結された構成単位であってもよい。
The structural unit that constitutes the polymer compound that is the p-type semiconductor material may be a structural unit in which two or more types of structural units selected from the above structural units are combined and linked.
p型半導体材料としての高分子化合物が、式(VI)で表される構成単位及び/又は式(X)で表される構成単位を含む場合、式(VI)で表される構成単位及び式(X)で表される構成単位の合計量は、高分子化合物が含むすべての構成単位の量を100モル%とすると、通常20モル%~100モル%であり、p型半導体材料としての電荷輸送性を向上させることができるので、好ましくは40モル%~100モル%であり、より好ましくは50モル%~100モル%である。
When the polymer compound as the p-type semiconductor material contains the structural unit represented by formula (VI) and/or the structural unit represented by formula (X), the structural unit represented by formula (VI) and the formula The total amount of structural units represented by (X) is usually 20 mol% to 100 mol% when the amount of all structural units contained in the polymer compound is 100 mol%, and the charge as a p-type semiconductor material The content is preferably 40 mol % to 100 mol %, more preferably 50 mol % to 100 mol %, because it can improve transportability.
本実施形態のp型半導体材料である高分子化合物の具体例としては、下記式(P-1)~(P-17)で表される高分子化合物が挙げられる。
Specific examples of the polymer compound that is the p-type semiconductor material of the present embodiment include polymer compounds represented by the following formulas (P-1) to (P-17).
式中、Rは、前記定義のとおりである。複数あるRは、互いに同一であっても異なっていてもよい。
In the formula, R is as defined above. Multiple R's may be the same or different.
p型半導体材料として、上記例示の高分子化合物を用いれば、特に光検出素子である光電変換素子に要求される暗電流を効果的に低減することができる。
By using the polymer compound exemplified above as the p-type semiconductor material, it is possible to effectively reduce the dark current particularly required for photoelectric conversion elements, which are light detection elements.
(中間層)
図1に示されるとおり、本実施形態の光電変換素子は、光電変換効率などの特性を向上させるための構成要素として、例えば、電荷輸送層(電子輸送層、正孔輸送層、電子注入層、正孔注入層)などの中間層(バッファー層)を備えていることが好ましい。 (middle layer)
As shown in FIG. 1, the photoelectric conversion device of the present embodiment includes, for example, a charge transport layer (electron transport layer, hole transport layer, electron injection layer, An intermediate layer (buffer layer) such as a hole injection layer is preferably provided.
図1に示されるとおり、本実施形態の光電変換素子は、光電変換効率などの特性を向上させるための構成要素として、例えば、電荷輸送層(電子輸送層、正孔輸送層、電子注入層、正孔注入層)などの中間層(バッファー層)を備えていることが好ましい。 (middle layer)
As shown in FIG. 1, the photoelectric conversion device of the present embodiment includes, for example, a charge transport layer (electron transport layer, hole transport layer, electron injection layer, An intermediate layer (buffer layer) such as a hole injection layer is preferably provided.
また、中間層に用いられる材料の例としては、カルシウムなどの金属、酸化モリブデン、酸化亜鉛などの無機酸化物半導体、及びPEDOT(ポリ(3,4-エチレンジオキシチオフェン))とPSS(ポリ(4-スチレンスルホネート))との混合物(PEDOT:PSS)が挙げられる。
Examples of materials used for the intermediate layer include metals such as calcium, inorganic oxide semiconductors such as molybdenum oxide and zinc oxide, and PEDOT (poly(3,4-ethylenedioxythiophene)) and PSS (poly( 4-styrenesulfonate)) (PEDOT:PSS).
図1に示されるように、光電変換素子は、陽極と活性層との間に、正孔輸送層を備えることが好ましい。正孔輸送層は、活性層から電極へと正孔を輸送する機能を有する。
As shown in FIG. 1, the photoelectric conversion element preferably has a hole transport layer between the anode and the active layer. The hole transport layer has a function of transporting holes from the active layer to the electrode.
陽極に接して設けられる正孔輸送層を、特に正孔注入層という場合がある。陽極に接して設けられる正孔輸送層(正孔注入層)は、陽極への正孔の注入を促進する機能を有する。正孔輸送層(正孔注入層)は、活性層に接していてもよい。
The hole-transporting layer provided in contact with the anode is sometimes called a hole-injecting layer. A hole transport layer (hole injection layer) provided in contact with the anode has a function of promoting injection of holes into the anode. The hole transport layer (hole injection layer) may be in contact with the active layer.
正孔輸送層は、正孔輸送性材料を含む。正孔輸送性材料の例としては、ポリチオフェン及びその誘導体、芳香族アミン化合物、芳香族アミン残基を有する構成単位を含む高分子化合物、CuSCN、CuI、NiO、酸化タングステン(WO3)及び酸化モリブデン(MoO3)が挙げられる。
The hole-transporting layer contains a hole-transporting material. Examples of hole-transporting materials include polythiophene and its derivatives, aromatic amine compounds, polymer compounds containing constitutional units having aromatic amine residues, CuSCN, CuI, NiO, tungsten oxide (WO 3 ) and molybdenum oxide. (MoO 3 ).
中間層は、従来公知の任意好適な形成方法により形成することができる。中間層は、真空蒸着法や活性層の形成方法と同様の塗布法により形成することができる。
The intermediate layer can be formed by any suitable conventionally known forming method. The intermediate layer can be formed by a vacuum deposition method or a coating method similar to the method for forming the active layer.
本実施形態にかかる光電変換素子は、中間層が電子輸送層であって、基板(支持基板)、陽極、正孔輸送層、活性層、電子輸送層、陰極がこの順に互いに接するように積層された構成を有することが好ましい。
In the photoelectric conversion element according to the present embodiment, the intermediate layer is an electron transport layer, and the substrate (supporting substrate), anode, hole transport layer, active layer, electron transport layer, and cathode are laminated in this order so as to be in contact with each other. It is preferable to have a
図1に示されるように、本実施形態の光電変換素子は、陰極と活性層との間に、中間層として電子輸送層を備えていることが好ましい。電子輸送層は、活性層から陰極へと電子を輸送する機能を有する。電子輸送層は、陰極に接していてもよい。電子輸送層は活性層に接していてもよい。
As shown in FIG. 1, the photoelectric conversion element of this embodiment preferably has an electron transport layer as an intermediate layer between the cathode and the active layer. The electron transport layer has a function of transporting electrons from the active layer to the cathode. The electron transport layer may be in contact with the cathode. The electron transport layer may be in contact with the active layer.
陰極に接して設けられる電子輸送層を、特に電子注入層という場合がある。陰極に接して設けられる電子輸送層(電子注入層)は、活性層で発生した電子の陰極への注入を促進する機能を有する。
The electron-transporting layer provided in contact with the cathode is sometimes called an electron-injecting layer. An electron transport layer (electron injection layer) provided in contact with the cathode has a function of promoting injection of electrons generated in the active layer into the cathode.
電子輸送層は、電子輸送性材料を含む。電子輸送性材料の例としては、ポリアルキレンイミン及びその誘導体、フルオレン構造を含む高分子化合物、カルシウムなどの金属、金属酸化物が挙げられる。
The electron-transporting layer contains an electron-transporting material. Examples of electron-transporting materials include polyalkyleneimine and derivatives thereof, high-molecular compounds having a fluorene structure, metals such as calcium, and metal oxides.
ポリアルキレンイミン及びその誘導体の例としては、エチレンイミン、プロピレンイミン、ブチレンイミン、ジメチルエチレンイミン、ペンチレンイミン、ヘキシレンイミン、ヘプチレンイミン、オクチレンイミンといった炭素原子数2~8のアルキレンイミン、特に炭素原子数2~4のアルキレンイミンの1種又は2種以上を常法により重合して得られるポリマー、ならびにそれらを種々の化合物と反応させて化学的に変性させたポリマーが挙げられる。ポリアルキレンイミン及びその誘導体としては、ポリエチレンイミン(PEI)及びエトキシ化ポリエチレンイミン(PEIE)が好ましい。
Examples of polyalkyleneimines and derivatives thereof include alkyleneimine having 2 to 8 carbon atoms, especially alkyleneimine having 2 to 8 carbon atoms, such as ethyleneimine, propyleneimine, butyleneimine, dimethylethyleneimine, pentyleneimine, hexyleneimine, heptyleneimine, octyleneimine. Examples include polymers obtained by conventionally polymerizing one or more of 2 to 4 alkyleneimines, and polymers chemically modified by reacting them with various compounds. Preferred polyalkyleneimines and derivatives thereof are polyethyleneimine (PEI) and ethoxylated polyethyleneimine (PEIE).
フルオレン構造を含む高分子化合物の例としては、ポリ[(9,9-ビス(3’-(N,N-ジメチルアミノ)プロピル)-2,7-フルオレン)-オルト-2,7-(9,9’-ジオクチルフルオレン)](PFN)及びPFN-P2が挙げられる。
Examples of polymer compounds containing a fluorene structure include poly[(9,9-bis(3′-(N,N-dimethylamino)propyl)-2,7-fluorene)-ortho-2,7-(9 ,9′-dioctylfluorene)] (PFN) and PFN-P2.
金属酸化物の例としては、酸化亜鉛、ガリウムドープ酸化亜鉛、アルミニウムドープ酸化亜鉛、酸化チタン及び酸化ニオブが挙げられる。金属酸化物としては、亜鉛を含む金属酸化物が好ましく、中でも酸化亜鉛が好ましい。
Examples of metal oxides include zinc oxide, gallium-doped zinc oxide, aluminum-doped zinc oxide, titanium oxide, and niobium oxide. As the metal oxide, a metal oxide containing zinc is preferable, and zinc oxide is particularly preferable.
その他の電子輸送性材料の例としては、ポリ(4-ビニルフェノール)、ペリレンジイミドが挙げられる。
Examples of other electron-transporting materials include poly(4-vinylphenol) and perylene diimide.
(封止部材)
本実施形態の光電変換素子は、封止部材をさらに含み、かかる封止部材により封止された封止体とすることが好ましい。
封止部材は任意好適な従来公知の部材を用いることができる。封止部材の例としては、基板(封止基板)であるガラス基板とUV硬化性樹脂などの封止材(接着剤)との組合せが挙げられる。 (sealing member)
Preferably, the photoelectric conversion element of the present embodiment further includes a sealing member, and is a sealed body sealed with the sealing member.
Any suitable conventionally known member can be used as the sealing member. Examples of the sealing member include a combination of a glass substrate as a substrate (sealing substrate) and a sealing material (adhesive) such as a UV curable resin.
本実施形態の光電変換素子は、封止部材をさらに含み、かかる封止部材により封止された封止体とすることが好ましい。
封止部材は任意好適な従来公知の部材を用いることができる。封止部材の例としては、基板(封止基板)であるガラス基板とUV硬化性樹脂などの封止材(接着剤)との組合せが挙げられる。 (sealing member)
Preferably, the photoelectric conversion element of the present embodiment further includes a sealing member, and is a sealed body sealed with the sealing member.
Any suitable conventionally known member can be used as the sealing member. Examples of the sealing member include a combination of a glass substrate as a substrate (sealing substrate) and a sealing material (adhesive) such as a UV curable resin.
封止部材は、1層以上の層構造である封止層であってもよい。封止層を構成する層の例としては、ガスバリア層、ガスバリア性フィルムが挙げられる。
The sealing member may be a sealing layer having a layer structure of one or more layers. Examples of layers constituting the sealing layer include gas barrier layers and gas barrier films.
封止層は、水分を遮断する性質(水蒸気バリア性)又は酸素を遮断する性質(酸素バリア性)を有する材料により形成することが好ましい。封止層の材料として好適な材料の例としては、三フッ化ポリエチレン、ポリ三フッ化塩化エチレン(PCTFE)、ポリイミド、ポリカーボネート、ポリエチレンテレフタレート、脂環式ポリオレフィン、エチレン-ビニルアルコール共重合体などの有機材料、酸化ケイ素、窒化ケイ素、酸化アルミニウム、ダイヤモンドライクカーボンなどの無機材料などが挙げられる。
The sealing layer is preferably made of a material that has a property of blocking moisture (water vapor barrier property) or a property of blocking oxygen (oxygen barrier property). Examples of suitable materials for the sealing layer include polyethylene trifluoride, polytrifluoroethylene chloride (PCTFE), polyimide, polycarbonate, polyethylene terephthalate, alicyclic polyolefin, ethylene-vinyl alcohol copolymer, and the like. Examples include organic materials, inorganic materials such as silicon oxide, silicon nitride, aluminum oxide, and diamond-like carbon.
封止部材は、通常、光電変換素子が適用される、例えば下記適用例のデバイスに組み込まれる際において実施される加熱処理に耐え得る材料により構成される。
The sealing member is usually made of a material that can withstand heat treatment to which the photoelectric conversion element is applied, for example, when it is incorporated into the device of the following application examples.
(3)光電変換素子の用途
本実施形態の光電変換素子の用途としては、光検出素子、太陽電池が挙げられる。
より具体的には、本実施形態の光電変換素子は、電極間に電圧(逆バイアス電圧)を印加した状態で、透明又は半透明の電極側から光を照射することにより、光電流を流すことができ、光検出素子(光センサー)として動作させることができる。また、光検出素子を複数集積することによりイメージセンサーとして用いることもできる。本実施形態の光電変換素子は、特に光検出素子として好適に用いることができる。 (3) Applications of Photoelectric Conversion Element Applications of the photoelectric conversion element of the present embodiment include photodetection elements and solar cells.
More specifically, the photoelectric conversion element of the present embodiment allows a photocurrent to flow by irradiating light from the transparent or translucent electrode side while a voltage (reverse bias voltage) is applied between the electrodes. and can be operated as a photodetector (optical sensor). Also, it can be used as an image sensor by integrating a plurality of photodetectors. The photoelectric conversion element of this embodiment can be suitably used particularly as a photodetector.
本実施形態の光電変換素子の用途としては、光検出素子、太陽電池が挙げられる。
より具体的には、本実施形態の光電変換素子は、電極間に電圧(逆バイアス電圧)を印加した状態で、透明又は半透明の電極側から光を照射することにより、光電流を流すことができ、光検出素子(光センサー)として動作させることができる。また、光検出素子を複数集積することによりイメージセンサーとして用いることもできる。本実施形態の光電変換素子は、特に光検出素子として好適に用いることができる。 (3) Applications of Photoelectric Conversion Element Applications of the photoelectric conversion element of the present embodiment include photodetection elements and solar cells.
More specifically, the photoelectric conversion element of the present embodiment allows a photocurrent to flow by irradiating light from the transparent or translucent electrode side while a voltage (reverse bias voltage) is applied between the electrodes. and can be operated as a photodetector (optical sensor). Also, it can be used as an image sensor by integrating a plurality of photodetectors. The photoelectric conversion element of this embodiment can be suitably used particularly as a photodetector.
また、本実施形態の光電変換素子は、光が照射されることにより、電極間に光起電力を発生させることができ、太陽電池として動作させることができる。光電変換素子を複数集積することにより太陽電池モジュールとすることもできる。
In addition, the photoelectric conversion element of the present embodiment can generate a photovoltaic force between electrodes by being irradiated with light, and can be operated as a solar cell. A solar cell module can also be obtained by integrating a plurality of photoelectric conversion elements.
(4)光電変換素子の適用例
本実施形態にかかる光電変換素子は、光検出素子として、ワークステーション、パーソナルコンピュータ、携帯情報端末、入退室管理システム、デジタルカメラ、及び医療機器などの種々の電子装置が備える検出部に好適に適用することができる。 (4) Application Examples of Photoelectric Conversion Element The photoelectric conversion element according to the present embodiment can be used as a photodetector in various electronic devices such as workstations, personal computers, personal digital assistants, entrance/exit management systems, digital cameras, and medical equipment. It can be suitably applied to the detection unit provided in the device.
本実施形態にかかる光電変換素子は、光検出素子として、ワークステーション、パーソナルコンピュータ、携帯情報端末、入退室管理システム、デジタルカメラ、及び医療機器などの種々の電子装置が備える検出部に好適に適用することができる。 (4) Application Examples of Photoelectric Conversion Element The photoelectric conversion element according to the present embodiment can be used as a photodetector in various electronic devices such as workstations, personal computers, personal digital assistants, entrance/exit management systems, digital cameras, and medical equipment. It can be suitably applied to the detection unit provided in the device.
本実施形態の光電変換素子は、上記例示の電子装置が備える、例えば、X線撮像装置及びCMOSイメージセンサーなどの固体撮像装置用のイメージ検出部(例えば、X線センサーなどのイメージセンサー)、指紋検出部、顔検出部、静脈検出部及び虹彩検出部などの生体の一部分の所定の特徴を検出する生体情報認証装置の検出部(例えば、近赤外線センサー)、パルスオキシメータなどの光学バイオセンサーの検出部などに好適に適用することができる。
The photoelectric conversion element of the present embodiment is provided in the above-exemplified electronic device, for example, an image detection unit for a solid-state imaging device such as an X-ray imaging device and a CMOS image sensor (e.g., an image sensor such as an X-ray sensor), a fingerprint Detection units of biometric information authentication devices that detect predetermined features of a part of a living body, such as detection units, face detection units, vein detection units, and iris detection units (e.g., near-infrared sensors), and optical biosensors such as pulse oximeters. It can be suitably applied to a detection unit or the like.
本実施形態の光電変換素子は、固体撮像装置用のイメージ検出部として、さらにはTime-of-flight(TOF)型距離測定装置(TOF型測距装置)に好適に適用することもできる。
The photoelectric conversion element of this embodiment can be suitably applied as an image detection unit for a solid-state imaging device, and further to a time-of-flight (TOF) type distance measurement device (TOF type distance measurement device).
TOF型測距装置では、光源からの放射光が測定対象物において反射された反射光を光電変換素子で受光させることにより距離を測定する。具体的には、光源から放射された照射光が測定対象物で反射して反射光として戻るまでの飛行時間を検出して測定対象物までの距離を求める。TOF型には、直接TOF方式と間接TOF方式とが存在する。直接TOF方式では光源から光を照射した時刻と反射光を光電変換素子で受光した時刻との差を直接計測し、間接TOF方式では飛行時間に依存した電荷蓄積量の変化を時間変化に換算することで距離を計測する。間接TOF方式で用いられる電荷蓄積により飛行時間を得る測距原理には、光源からの放射光と測定対象で反射される反射光との位相から飛行時間を求める連続波(特に正弦波)変調方式とパルス変調方式とがある。
The TOF rangefinder measures the distance by causing the photoelectric conversion element to receive the light emitted from the light source and reflected by the object to be measured. Specifically, the distance to the object to be measured is obtained by detecting the time of flight until the irradiation light emitted from the light source is reflected by the object to be measured and returns as reflected light. The TOF type includes a direct TOF method and an indirect TOF method. The direct TOF method directly measures the difference between the time when the light is irradiated from the light source and the time when the reflected light is received by the photoelectric conversion element. to measure the distance. The distance measurement principle used in the indirect TOF method to obtain the time of flight by charge accumulation includes a continuous wave (especially sine wave) modulation method in which the time of flight is obtained from the phases of the light emitted from the light source and the reflected light reflected by the measurement target. and pulse modulation method.
以下、本実施形態にかかる光電変換素子が好適に適用され得る検出部のうち、固体撮像装置用のイメージ検出部及びX線撮像装置用のイメージ検出部、生体認証装置(例えば指紋認証装置や静脈認証装置など)のための指紋検出部及び静脈検出部、並びにTOF型測距装置(間接TOF方式)のイメージ検出部の構成例について、図面を参照して説明する。
Hereinafter, among detection units to which the photoelectric conversion element according to the present embodiment can be preferably applied, an image detection unit for a solid-state imaging device, an image detection unit for an X-ray imaging device, a biometric authentication device (for example, a fingerprint authentication device, a vein Configuration examples of a fingerprint detection unit and a vein detection unit for an authentication device, etc., and an image detection unit of a TOF rangefinder (indirect TOF method) will be described with reference to the drawings.
(固体撮像装置用のイメージ検出部)
図2は、固体撮像装置用のイメージ検出部の構成例を模式的に示す図である。 (Image detector for solid-state imaging device)
FIG. 2 is a diagram schematically showing a configuration example of an image detection unit for a solid-state imaging device.
図2は、固体撮像装置用のイメージ検出部の構成例を模式的に示す図である。 (Image detector for solid-state imaging device)
FIG. 2 is a diagram schematically showing a configuration example of an image detection unit for a solid-state imaging device.
イメージ検出部1は、CMOSトランジスタ基板20と、CMOSトランジスタ基板20を覆うように設けられている層間絶縁膜30と、層間絶縁膜30上に設けられている、本発明の実施形態にかかる光電変換素子10と、層間絶縁膜30を貫通するように設けられており、CMOSトランジスタ基板20と光電変換素子10とを電気的に接続する層間配線部32と、光電変換素子10を覆うように設けられている封止層40と、封止層40上に設けられているカラーフィルター50とを備えている。
The image detection unit 1 includes a CMOS transistor substrate 20, an interlayer insulating film 30 provided so as to cover the CMOS transistor substrate 20, and a photoelectric conversion element provided on the interlayer insulating film 30 according to the embodiment of the present invention. It is provided so as to penetrate the element 10 and the interlayer insulating film 30 , and is provided so as to cover the photoelectric conversion element 10 and the interlayer wiring part 32 electrically connecting the CMOS transistor substrate 20 and the photoelectric conversion element 10 . and a color filter 50 provided on the sealing layer 40 .
CMOSトランジスタ基板20は、従来公知の任意好適な構成を設計に応じた態様で備えている。
The CMOS transistor substrate 20 has a conventionally well-known arbitrary and suitable configuration in accordance with the design.
CMOSトランジスタ基板20は、基板の厚さ内に形成されたトランジスタ、コンデンサなどを含み、種々の機能を実現するためのCMOSトランジスタ回路(MOSトランジスタ回路)などの機能素子を備えている。
The CMOS transistor substrate 20 includes functional elements such as CMOS transistor circuits (MOS transistor circuits) for realizing various functions, including transistors and capacitors formed within the thickness of the substrate.
機能素子としては、例えば、フローティングディフュージョン、リセットトランジスタ、出力トランジスタ、選択トランジスタが挙げられる。
Functional elements include, for example, floating diffusions, reset transistors, output transistors, and selection transistors.
このような機能素子、配線などにより、CMOSトランジスタ基板20には、信号読み出し回路などが作り込まれている。
A signal readout circuit and the like are built into the CMOS transistor substrate 20 with such functional elements, wiring, and the like.
層間絶縁膜30は、例えば酸化シリコン、絶縁性樹脂などの従来公知の任意好適な絶縁性材料により構成することができる。層間配線部32は、例えば、銅、タングステンなどの従来公知の任意好適な導電性材料(配線材料)により構成することができる。層間配線部32は、例えば、配線層の形成と同時に形成されるホール内配線であっても、配線層とは別途形成される埋込みプラグであってもよい。
The interlayer insulating film 30 can be made of any suitable conventionally known insulating material such as silicon oxide and insulating resin. The interlayer wiring section 32 can be made of any suitable conventionally known conductive material (wiring material) such as copper and tungsten. The interlayer wiring portion 32 may be, for example, an in-hole wiring formed simultaneously with the formation of the wiring layer, or an embedded plug formed separately from the wiring layer.
封止層40は、光電変換素子10を機能的に劣化させてしまうおそれのある酸素、水などの有害物質の浸透を防止又は抑制できることを条件として、従来公知の任意好適な材料により構成することができる。封止層40は、既に説明した封止部材17と同様の構成とすることができる。
The sealing layer 40 may be made of any suitable conventionally known material on the condition that it can prevent or suppress permeation of harmful substances such as oxygen and water that may functionally deteriorate the photoelectric conversion element 10. can be done. The sealing layer 40 can have the same configuration as the sealing member 17 already described.
カラーフィルター50としては、従来公知の任意好適な材料により構成され、かつイメージ検出部1の設計に対応した例えば原色カラーフィルターを用いることができる。また、カラーフィルター50としては、原色カラーフィルターと比較して、厚さを薄くすることができる補色カラーフィルターを用いることもできる。補色カラーフィルターとしては、例えば(イエロー、シアン、マゼンタ)の3種類、(イエロー、シアン、透明)の3種類、(イエロー、透明、マゼンタ)の3種類、及び(透明、シアン、マゼンタ)の3種類が組み合わされたカラーフィルターを用いることができる。これらは、カラー画像データを生成できることを条件として、光電変換素子10及びCMOSトランジスタ基板20の設計に対応した任意好適な配置とすることができる。
As the color filter 50, for example, a primary color filter made of any conventionally known suitable material and corresponding to the design of the image detection unit 1 can be used. Further, as the color filter 50, a complementary color filter that can be thinner than the primary color filter can be used. As complementary color filters, for example, three types of (yellow, cyan, magenta), three types of (yellow, cyan, transparent), three types of (yellow, transparent, magenta), and three types of (transparent, cyan, magenta) A combination of types of color filters can be used. These can be arranged in any suitable arrangement corresponding to the design of the photoelectric conversion element 10 and the CMOS transistor substrate 20 on the condition that color image data can be generated.
カラーフィルター50を介して光電変換素子10が受光した光は、光電変換素子10によって、受光量に応じた電気信号に変換され、電極を介して、光電変換素子10外に受光信号、すなわち撮像対象に対応する電気信号として出力される。
The light received by the photoelectric conversion element 10 through the color filter 50 is converted by the photoelectric conversion element 10 into an electric signal corresponding to the amount of light received, and is output as a light reception signal, that is, the object to be imaged, to the outside of the photoelectric conversion element 10 through the electrodes. is output as an electrical signal corresponding to
次いで、光電変換素子10から出力された受光信号は、層間配線部32を介して、CMOSトランジスタ基板20に入力され、CMOSトランジスタ基板20に作り込まれた信号読み出し回路により読み出され、図示しないさらなる任意好適な従来公知の機能部によって信号処理されることにより、撮像対象に基づく画像情報が生成される。
Next, the received light signal output from the photoelectric conversion element 10 is input to the CMOS transistor substrate 20 via the interlayer wiring portion 32, read by a signal readout circuit built into the CMOS transistor substrate 20, and further Image information based on the object to be imaged is generated by performing signal processing by an arbitrary suitable conventionally known functional unit.
(指紋検出部)
図3は、表示装置に一体的に構成される指紋検出部の構成例を模式的に示す図である。 (fingerprint detector)
FIG. 3 is a diagram schematically showing a configuration example of a fingerprint detection unit integrally configured with a display device.
図3は、表示装置に一体的に構成される指紋検出部の構成例を模式的に示す図である。 (fingerprint detector)
FIG. 3 is a diagram schematically showing a configuration example of a fingerprint detection unit integrally configured with a display device.
携帯情報端末の表示装置2は、本発明の実施形態にかかる光電変換素子10を主たる構成要素として含む指紋検出部100と、当該指紋検出部100上に設けられ、所定の画像を表示する表示パネル部200とを備えている。
The display device 2 of the mobile information terminal includes a fingerprint detection unit 100 including the photoelectric conversion element 10 according to the embodiment of the present invention as a main component, and a display panel provided on the fingerprint detection unit 100 and displaying a predetermined image. 200.
この構成例では、表示パネル部200の表示領域200aと一致する領域に指紋検出部100が設けられている。換言すると、指紋検出部100の上方に、表示パネル部200が一体的に積層されている。
In this configuration example, the fingerprint detection section 100 is provided in an area that matches the display area 200a of the display panel section 200 . In other words, the display panel section 200 is integrally laminated above the fingerprint detection section 100 .
表示領域200aのうちの一部の領域においてのみ指紋検出を行う場合には、当該一部の領域のみに対応させて指紋検出部100を設ければよい。
In the case where fingerprint detection is performed only in a partial area of the display area 200a, the fingerprint detection section 100 may be provided so as to correspond only to the partial area.
指紋検出部100は、本発明の実施形態にかかる光電変換素子10を本質的な機能を奏する機能部として含む。指紋検出部100は、図示されていない保護フィルム(protection film)、支持基板、封止基板、封止部材、バリアフィルム、バンドパスフィルター、赤外線カットフィルムなどの任意好適な従来公知の部材を所望の特性が得られるような設計に対応した態様で備え得る。指紋検出部100には、既に説明したイメージ検出部の構成を採用することもできる。
The fingerprint detection unit 100 includes the photoelectric conversion element 10 according to the embodiment of the present invention as a functional unit that performs essential functions. The fingerprint detection unit 100 includes any suitable conventionally known members such as a protection film (not shown), a support substrate, a sealing substrate, a sealing member, a barrier film, a bandpass filter, and an infrared cut film. It may be provided in a manner corresponding to the design to obtain the properties. The fingerprint detection unit 100 may adopt the configuration of the image detection unit already described.
光電変換素子10は、表示領域200a内において、任意の態様で含まれ得る。例えば、複数の光電変換素子10が、マトリクス状に配置されていてもよい。
The photoelectric conversion element 10 can be included in any manner within the display area 200a. For example, a plurality of photoelectric conversion elements 10 may be arranged in a matrix.
光電変換素子10は、既に説明したとおり、支持基板11に設けられており、支持基板11には、例えばマトリクス状に電極(第一の電極又は第二の電極)が設けられている。
As already described, the photoelectric conversion element 10 is provided on the support substrate 11, and the support substrate 11 is provided with electrodes (first electrodes or second electrodes), for example, in a matrix.
光電変換素子10が受光した光は、光電変換素子10によって、受光量に応じた電気信号に変換され、電極を介して、光電変換素子10外に受光信号、すなわち撮像された指紋に対応する電気信号として出力される。
The light received by the photoelectric conversion element 10 is converted by the photoelectric conversion element 10 into an electrical signal corresponding to the amount of received light, and the received light signal, that is, the electricity corresponding to the imaged fingerprint, is output outside the photoelectric conversion element 10 via the electrodes. output as a signal.
表示パネル部200は、この構成例では、タッチセンサーパネルを含む有機エレクトロルミネッセンス表示パネル(有機EL表示パネル)として構成されている。表示パネル部200は、例えば有機EL表示パネルの代わりに、バックライトなどの光源を含む液晶表示パネルなどの任意好適な従来公知の構成を有する表示パネルにより構成されていてもよい。
In this configuration example, the display panel section 200 is configured as an organic electroluminescence display panel (organic EL display panel) including a touch sensor panel. The display panel unit 200 may be configured by, for example, a display panel having an arbitrary and suitable conventionally known configuration such as a liquid crystal display panel including a light source such as a backlight, instead of the organic EL display panel.
表示パネル部200は、既に説明した指紋検出部100上に設けられている。表示パネル部200は、有機エレクトロルミネッセンス素子(有機EL素子)220を本質的な機能を奏する機能部として含む。表示パネル部200は、さらに任意好適な従来公知のガラス基板といった基板(支持基板210又は封止基板240)、封止部材、バリアフィルム、円偏光板などの偏光板、タッチセンサーパネル230などの任意好適な従来公知の部材を所望の特性に対応した態様で備え得る。
The display panel section 200 is provided on the fingerprint detection section 100 already described. The display panel section 200 includes an organic electroluminescence element (organic EL element) 220 as a functional section that performs an essential function. The display panel unit 200 further includes an arbitrary and suitable substrate such as a conventionally known glass substrate (support substrate 210 or sealing substrate 240), a sealing member, a barrier film, a polarizing plate such as a circularly polarizing plate, and an arbitrary substrate such as a touch sensor panel 230. Suitable conventionally known members may be provided in a manner corresponding to the desired properties.
以上説明した構成例において、有機EL素子220は、表示領域200aにおける画素の光源として用いられるとともに、指紋検出部100における指紋の撮像のための光源としても用いられる。
In the configuration example described above, the organic EL element 220 is used as a light source for the pixels in the display area 200a, and is also used as a light source for imaging the fingerprint in the fingerprint detection section 100.
ここで、指紋検出部100の動作について簡単に説明する。
指紋認証の実行時には、表示パネル部200の有機EL素子220から放射される光を用いて指紋検出部100が指紋を検出する。具体的には、有機EL素子220から放射された光は、有機EL素子220と指紋検出部100の光電変換素子10との間に存在する構成要素を透過して、表示領域200a内である表示パネル部200の表面に接するように載置された手指の指先の皮膚(指表面)によって反射される。指表面によって反射された光のうちの少なくとも一部は、間に存在する構成要素を透過して光電変換素子10によって受光され、光電変換素子10の受光量に応じた電気信号に変換される。そして、変換された電気信号から、指表面の指紋についての画像情報が構成される。 Here, the operation offingerprint detection unit 100 will be briefly described.
When performing fingerprint authentication,fingerprint detection unit 100 detects a fingerprint using light emitted from organic EL element 220 of display panel unit 200 . Specifically, the light emitted from the organic EL element 220 passes through the constituent elements existing between the organic EL element 220 and the photoelectric conversion element 10 of the fingerprint detection unit 100, and the display in the display area 200a is displayed. The light is reflected by the skin (finger surface) of the fingertip placed in contact with the surface of the panel section 200 . At least part of the light reflected by the finger surface is transmitted through intervening components and received by the photoelectric conversion element 10 , and converted into an electrical signal corresponding to the amount of light received by the photoelectric conversion element 10 . Image information about the fingerprint on the surface of the finger is constructed from the converted electric signal.
指紋認証の実行時には、表示パネル部200の有機EL素子220から放射される光を用いて指紋検出部100が指紋を検出する。具体的には、有機EL素子220から放射された光は、有機EL素子220と指紋検出部100の光電変換素子10との間に存在する構成要素を透過して、表示領域200a内である表示パネル部200の表面に接するように載置された手指の指先の皮膚(指表面)によって反射される。指表面によって反射された光のうちの少なくとも一部は、間に存在する構成要素を透過して光電変換素子10によって受光され、光電変換素子10の受光量に応じた電気信号に変換される。そして、変換された電気信号から、指表面の指紋についての画像情報が構成される。 Here, the operation of
When performing fingerprint authentication,
表示装置2を備える携帯情報端末は、従来公知の任意好適なステップにより、得られた画像情報と、予め記録されていた指紋認証用の指紋データとを比較して、指紋認証を行う。
The mobile information terminal equipped with the display device 2 performs fingerprint authentication by comparing the obtained image information with pre-recorded fingerprint data for fingerprint authentication by any suitable conventionally known step.
(X線撮像装置用のイメージ検出部)
図4は、X線撮像装置用のイメージ検出部の構成例を模式的に示す図である。 (Image detector for X-ray imaging device)
FIG. 4 is a diagram schematically showing a configuration example of an image detection unit for an X-ray imaging apparatus.
図4は、X線撮像装置用のイメージ検出部の構成例を模式的に示す図である。 (Image detector for X-ray imaging device)
FIG. 4 is a diagram schematically showing a configuration example of an image detection unit for an X-ray imaging apparatus.
X線撮像装置用のイメージ検出部1は、CMOSトランジスタ基板20と、CMOSトランジスタ基板20を覆うように設けられている層間絶縁膜30と、層間絶縁膜30上に設けられている、本発明の実施形態にかかる光電変換素子10と、層間絶縁膜30を貫通するように設けられており、CMOSトランジスタ基板20と光電変換素子10とを電気的に接続する層間配線部32と、光電変換素子10を覆うように設けられている封止層40と、封止層40上に設けられているシンチレータ42とシンチレータ42を覆うように設けられている反射層44と、反射層44を覆うように設けられている保護層46とを備えている。
An image detection unit 1 for an X-ray imaging device includes a CMOS transistor substrate 20, an interlayer insulating film 30 provided so as to cover the CMOS transistor substrate 20, and an interlayer insulating film 30 provided on the interlayer insulating film 30. a photoelectric conversion element 10 according to the embodiment; , a scintillator 42 provided on the sealing layer 40, a reflective layer 44 provided to cover the scintillator 42, and a reflective layer 44 provided to cover the and a protective layer 46 having a
CMOSトランジスタ基板20は、従来公知の任意好適な構成を設計に応じた態様で備えている。
The CMOS transistor substrate 20 has a conventionally well-known arbitrary and suitable configuration in accordance with the design.
CMOSトランジスタ基板20は、基板の厚さ内に形成されたトランジスタ、コンデンサなどを含み、種々の機能を実現するためのCMOSトランジスタ回路(MOSトランジスタ回路)などの機能素子を備えている。
The CMOS transistor substrate 20 includes functional elements such as CMOS transistor circuits (MOS transistor circuits) for realizing various functions, including transistors and capacitors formed within the thickness of the substrate.
機能素子としては、例えば、フローティングディフュージョン、リセットトランジスタ、出力トランジスタ、選択トランジスタが挙げられる。
Functional elements include, for example, floating diffusions, reset transistors, output transistors, and selection transistors.
このような機能素子、配線などにより、CMOSトランジスタ基板20には、信号読み出し回路などが作り込まれている。
A signal readout circuit and the like are built into the CMOS transistor substrate 20 with such functional elements, wiring, and the like.
層間絶縁膜30は、例えば酸化シリコン、絶縁性樹脂などの従来公知の任意好適な絶縁性材料により構成することができる。層間配線部32は、例えば、銅、タングステンなどの従来公知の任意好適な導電性材料(配線材料)により構成することができる。層間配線部32は、例えば、配線層の形成と同時に形成されるホール内配線であっても、配線層とは別途形成される埋込みプラグであってもよい。
The interlayer insulating film 30 can be made of any suitable conventionally known insulating material such as silicon oxide and insulating resin. The interlayer wiring section 32 can be made of any suitable conventionally known conductive material (wiring material) such as copper and tungsten. The interlayer wiring portion 32 may be, for example, an in-hole wiring formed simultaneously with the formation of the wiring layer, or an embedded plug formed separately from the wiring layer.
封止層40は、光電変換素子10を機能的に劣化させてしまうおそれのある酸素、水などの有害物質の浸透を防止又は抑制できることを条件として、従来公知の任意好適な材料により構成することができる。封止層40は、既に説明した封止部材17と同様の構成とすることができる。
The sealing layer 40 may be made of any suitable conventionally known material on the condition that it can prevent or suppress permeation of harmful substances such as oxygen and water that may functionally deteriorate the photoelectric conversion element 10. can be done. The sealing layer 40 can have the same configuration as the sealing member 17 already described.
シンチレータ42は、X線撮像装置用のイメージ検出部1の設計に対応した従来公知の任意好適な材料により構成することができる。シンチレータ42の好適な材料の例としては、CsI(ヨウ化セシウム)やNaI(ヨウ化ナトリウム)、ZnS(硫化亜鉛)、GOS(酸硫化ガドリニウム)、GSO(ケイ酸ガドリニウム)といった無機材料の無機結晶や、アントラセン、ナフタレン、スチルベンといった有機材料の有機結晶や、トルエン、キシレン、ジオキサンといった有機溶媒にジフェニルオキサゾール(PPO)やテルフェニル(TP)などの有機材料を溶解させた有機液体、キセノンやヘリウムといった気体、プラスチックなどを用いることができる。
The scintillator 42 can be made of any conventionally known suitable material that corresponds to the design of the image detection section 1 for the X-ray imaging apparatus. Examples of suitable materials for the scintillator 42 include inorganic crystals of inorganic materials such as CsI (cesium iodide), NaI (sodium iodide), ZnS (zinc sulfide), GOS (gadolinium oxysulfide), and GSO (gadolinium silicate). , organic crystals of organic materials such as anthracene, naphthalene, and stilbene; organic liquids obtained by dissolving organic materials such as diphenyloxazole (PPO) and terphenyl (TP) in organic solvents such as toluene, xylene, and dioxane; and organic materials such as xenon and helium. Gases, plastics, etc. can be used.
上記の構成要素は、シンチレータ42が入射したX線を可視領域を中心とした波長を有する光に変換して画像データを生成できることを条件として、光電変換素子10及びCMOSトランジスタ基板20の設計に対応した任意好適な配置とすることができる。
The above components correspond to the design of the photoelectric conversion element 10 and the CMOS transistor substrate 20 on the condition that the scintillator 42 converts incident X-rays into light having a wavelength centered in the visible region to generate image data. Any suitable arrangement can be used.
反射層44は、シンチレータ42で変換された光を反射する。反射層44は、変換された光の損失を低減し、検出感度を増大させることができる。また、反射層44は、外部から直接的に入射する光を遮断することもできる。
The reflective layer 44 reflects the light converted by the scintillator 42 . The reflective layer 44 can reduce the loss of converted light and increase detection sensitivity. In addition, the reflective layer 44 can also block light that is directly incident from the outside.
保護層46は、シンチレータ42を機能的に劣化させてしまうおそれのある酸素、水などの有害物質の浸透を防止又は抑制できることを条件として、従来公知の任意好適な材料により構成することができる。
The protective layer 46 can be made of any suitable conventionally known material on the condition that it can prevent or suppress permeation of harmful substances such as oxygen and water that may functionally deteriorate the scintillator 42.
ここで、上記の構成を有するX線撮像装置用のイメージ検出部1の動作について簡単に説明する。
Here, the operation of the image detection unit 1 for the X-ray imaging apparatus having the above configuration will be briefly described.
X線やγ線といった放射線エネルギーがシンチレータ42に入射すると、シンチレータ42は放射線エネルギーを吸収し、可視領域を中心とした紫外から赤外領域の波長の光(蛍光)に変換する。そして、シンチレータ42によって変換された光は、光電変換素子10によって受光される。
When radiation energy such as X-rays and γ-rays is incident on the scintillator 42, the scintillator 42 absorbs the radiation energy and converts it into light (fluorescence) with a wavelength in the infrared range from ultraviolet, centered on the visible range. The light converted by the scintillator 42 is received by the photoelectric conversion element 10 .
このように、シンチレータ42を介して光電変換素子10が受光した光は、光電変換素子10によって、受光量に応じた電気信号に変換され、電極を介して、光電変換素子10外に受光信号、すなわち撮像対象に対応する電気信号として出力される。検出対象である放射線エネルギー(X線)は、シンチレータ42側、光電変換素子10側のいずれから入射させてもよい。
In this way, the light received by the photoelectric conversion element 10 via the scintillator 42 is converted by the photoelectric conversion element 10 into an electric signal corresponding to the amount of light received, and the received light signal is output outside the photoelectric conversion element 10 via the electrodes. That is, it is output as an electrical signal corresponding to the object to be imaged. Radiation energy (X-rays) to be detected may be incident from either the scintillator 42 side or the photoelectric conversion element 10 side.
次いで、光電変換素子10から出力された受光信号は、層間配線部32を介して、CMOSトランジスタ基板20に入力され、CMOSトランジスタ基板20に作り込まれた信号読み出し回路により読み出され、図示しないさらなる任意好適な従来公知の機能部によって信号処理されることにより、撮像対象に基づく画像情報が生成される。
Next, the received light signal output from the photoelectric conversion element 10 is input to the CMOS transistor substrate 20 via the interlayer wiring portion 32, read by a signal readout circuit built into the CMOS transistor substrate 20, and further Image information based on the object to be imaged is generated by performing signal processing by an arbitrary suitable conventionally known functional unit.
(静脈検出部)
図5は、静脈認証装置用の静脈検出部の構成例を模式的に示す図である。 静脈認証装置用の静脈検出部300は、測定時において測定対象である手指(例、1以上の手指の指先、手指及び掌)が挿入される挿入部310を画成するカバー部306と、カバー部306に設けられており、測定対象に光を照射する光源部304と、光源部304から照射された光を測定対象を介して受光する光電変換素子10と、光電変換素子10を支持する支持基板11と、支持基板11と光電変換素子10を挟んで対向するように配置されており、所定の距離でカバー部306から離間して、カバー部306とともに挿入部306を画成するガラス基板302から構成されている。 (Vein detector)
FIG. 5 is a diagram schematically showing a configuration example of a vein detection unit for the vein authentication device. Thevein detection unit 300 for the vein authentication device includes a cover unit 306 defining an insertion unit 310 into which a finger to be measured (eg, one or more fingertips, fingers and palm) is inserted during measurement, and a cover unit 306 . A light source unit 304 provided in a unit 306 for irradiating light onto an object to be measured, a photoelectric conversion element 10 for receiving the light emitted from the light source unit 304 through the object to be measured, and a support for supporting the photoelectric conversion element 10 . The glass substrate 302 is arranged so as to face the substrate 11 and the support substrate 11 with the photoelectric conversion element 10 interposed therebetween, is separated from the cover portion 306 at a predetermined distance, and defines the insertion portion 306 together with the cover portion 306 . consists of
図5は、静脈認証装置用の静脈検出部の構成例を模式的に示す図である。 静脈認証装置用の静脈検出部300は、測定時において測定対象である手指(例、1以上の手指の指先、手指及び掌)が挿入される挿入部310を画成するカバー部306と、カバー部306に設けられており、測定対象に光を照射する光源部304と、光源部304から照射された光を測定対象を介して受光する光電変換素子10と、光電変換素子10を支持する支持基板11と、支持基板11と光電変換素子10を挟んで対向するように配置されており、所定の距離でカバー部306から離間して、カバー部306とともに挿入部306を画成するガラス基板302から構成されている。 (Vein detector)
FIG. 5 is a diagram schematically showing a configuration example of a vein detection unit for the vein authentication device. The
この構成例では、光源部304は、光電変換素子10とは、使用時において測定対象を挟んで離間するように、カバー部306と一体的に構成されている透過型撮影方式を示しているが、光源部304は必ずしもカバー部306側に位置させる必要はない。
In this configuration example, the light source unit 304 is configured integrally with the cover unit 306 so that the photoelectric conversion element 10 is separated from the photoelectric conversion element 10 while sandwiching the object to be measured during use. , the light source unit 304 is not necessarily positioned on the cover unit 306 side.
光源部304からの光を、測定対象に効率的に照射できることを条件として、例えば、光電変換素子10側から測定対象を照射する反射型撮影方式としてもよい。
On the condition that the object to be measured can be efficiently irradiated with the light from the light source unit 304, for example, a reflection imaging method in which the object to be measured is irradiated from the photoelectric conversion element 10 side may be employed.
静脈検出部300は、本発明の実施形態にかかる光電変換素子10を本質的な機能を奏する機能部として含む。静脈検出部300は、図示されていない保護フィルム(protection film)、封止部材、バリアフィルム、バンドパスフィルター、近赤外線透過フィルター、可視光カットフィルム、指置きガイドなどの任意好適な従来公知の部材を所望の特性が得られるような設計に対応した態様で備え得る。静脈検出部300には、既に説明したイメージ検出部1の構成を採用することもできる。
The vein detection unit 300 includes the photoelectric conversion element 10 according to the embodiment of the present invention as a functional unit that performs essential functions. The vein detection unit 300 includes any suitable conventionally known member such as a protection film (not shown), a sealing member, a barrier film, a bandpass filter, a near-infrared transmission filter, a visible light cut film, and a finger placement guide. can be provided in a manner corresponding to the design to obtain the desired properties. The vein detection unit 300 may employ the configuration of the image detection unit 1 already described.
光電変換素子10は、任意の態様で含まれ得る。例えば、複数の光電変換素子10が、マトリクス状に配置されていてもよい。
The photoelectric conversion element 10 can be included in any manner. For example, a plurality of photoelectric conversion elements 10 may be arranged in a matrix.
光電変換素子10は、既に説明したとおり、支持基板11に設けられており、支持基板11には、例えばマトリクス状に電極(第一の電極又は第二の電極)が設けられている。
As already described, the photoelectric conversion element 10 is provided on the support substrate 11, and the support substrate 11 is provided with electrodes (first electrodes or second electrodes), for example, in a matrix.
光電変換素子10が受光した光は、光電変換素子10によって、受光量に応じた電気信号に変換され、電極を介して、光電変換素子10外に受光信号、すなわち撮像された静脈に対応する電気信号として出力される。
The light received by the photoelectric conversion element 10 is converted by the photoelectric conversion element 10 into an electrical signal corresponding to the amount of light received, and the received light signal, that is, the electricity corresponding to the imaged vein, is output outside the photoelectric conversion element 10 via the electrodes. output as a signal.
静脈検出時(使用時)において、測定対象は、光電変換素子10側のガラス基板302に接触していても、接触していなくてもよい。
At the time of vein detection (during use), the object to be measured may or may not be in contact with the glass substrate 302 on the photoelectric conversion element 10 side.
ここで、静脈検出部300の動作について簡単に説明する。
静脈検出時には、光源部304から放射される光を用いて静脈検出部300が測定対象の静脈パターンを検出する。具体的には、光源部304から放射された光は、測定対象を透過して光電変換素子10の受光量に応じた電気信号に変換される。そして、変換された電気信号から、測定対象の静脈パターンの画像情報が構成される。 Here, the operation of thevein detection unit 300 will be briefly described.
During vein detection, thevein detection unit 300 detects the vein pattern of the measurement target using light emitted from the light source unit 304 . Specifically, the light emitted from the light source unit 304 is transmitted through the measurement target and converted into an electrical signal corresponding to the amount of light received by the photoelectric conversion element 10 . Image information of the vein pattern to be measured is constructed from the converted electrical signal.
静脈検出時には、光源部304から放射される光を用いて静脈検出部300が測定対象の静脈パターンを検出する。具体的には、光源部304から放射された光は、測定対象を透過して光電変換素子10の受光量に応じた電気信号に変換される。そして、変換された電気信号から、測定対象の静脈パターンの画像情報が構成される。 Here, the operation of the
During vein detection, the
静脈認証装置では、従来公知の任意好適なステップにより、得られた画像情報と、予め記録されていた静脈認証用の静脈データとを比較して、静脈認証が行われる。
In the vein authentication device, vein authentication is performed by comparing the obtained image information with previously recorded vein data for vein authentication by any suitable conventionally known step.
(TOF型測距装置用イメージ検出部)
図6は、間接方式のTOF型測距装置用イメージ検出部の構成例を模式的に示す図である。 (Image detector for TOF rangefinder)
FIG. 6 is a diagram schematically showing a configuration example of an image detection unit for an indirect TOF rangefinder.
図6は、間接方式のTOF型測距装置用イメージ検出部の構成例を模式的に示す図である。 (Image detector for TOF rangefinder)
FIG. 6 is a diagram schematically showing a configuration example of an image detection unit for an indirect TOF rangefinder.
TOF型測距装置用イメージ検出部400は、CMOSトランジスタ基板20と、CMOSトランジスタ基板20を覆うように設けられている層間絶縁膜30と、層間絶縁膜30上に設けられている、本発明の実施形態にかかる光電変換素子10と、光電変換素子10を挟むように離間して配置されている2つの浮遊拡散層402と、光電変換素子10と浮遊拡散層402を覆うように設けられている絶縁層401と、絶縁層401上に設けられており、互いに離間して配置されている2つのフォトゲート404とを備えている。
The image detection unit 400 for the TOF type distance measuring device includes a CMOS transistor substrate 20, an interlayer insulating film 30 provided so as to cover the CMOS transistor substrate 20, and an interlayer insulating film 30 provided on the interlayer insulating film 30. The photoelectric conversion element 10 according to the embodiment, the two floating diffusion layers 402 spaced apart to sandwich the photoelectric conversion element 10, and the photoelectric conversion element 10 and the floating diffusion layer 402 are provided to cover the photoelectric conversion element 10. It comprises an insulating layer 401 and two photogates 404 provided on the insulating layer 401 and spaced apart from each other.
離間した2つのフォトゲート404の間隙からは絶縁層401の一部分が露出しており、残余の領域は遮光部406により遮光されている。CMOSトランジスタ基板20と浮遊拡散層402とは層間絶縁膜30を貫通するように設けられている層間配線部32によって電気的に接続されている。
A part of the insulating layer 401 is exposed from the gap between the two photogates 404 separated from each other, and the remaining area is shielded from light by the light shielding portion 406 . The CMOS transistor substrate 20 and the floating diffusion layer 402 are electrically connected by an interlayer wiring portion 32 provided so as to penetrate the interlayer insulating film 30 .
層間絶縁膜30は、例えば酸化シリコン、絶縁性樹脂などの従来公知の任意好適な絶縁性材料により構成することができる。層間配線部32は、例えば、銅、タングステンなどの従来公知の任意好適な導電性材料(配線材料)により構成することができる。層間配線部32は、例えば、配線層の形成と同時に形成されるホール内配線であっても、配線層とは別途形成される埋込みプラグであってもよい。
The interlayer insulating film 30 can be made of any suitable conventionally known insulating material such as silicon oxide and insulating resin. The interlayer wiring section 32 can be made of any suitable conventionally known conductive material (wiring material) such as copper and tungsten. The interlayer wiring portion 32 may be, for example, an in-hole wiring formed simultaneously with the formation of the wiring layer, or an embedded plug formed separately from the wiring layer.
絶縁層401は、この構成例では、酸化シリコンにより構成されるフィールド酸化膜などの従来公知の任意好適な構成とすることができる。
The insulating layer 401 in this configuration example can have any conventionally known and suitable configuration such as a field oxide film made of silicon oxide.
フォトゲート404は、例えばポリシリコンなどの従来公知の任意好適な材料により構成することができる。
The photogate 404 can be made of any suitable conventionally known material such as polysilicon.
TOF型測距装置用イメージ検出部400は、本発明の実施形態にかかる光電変換素子10を本質的な機能を奏する機能部として含む。TOF型測距装置用イメージ検出部400は、図示されていない保護フィルム(protection film)、支持基板、封止基板、封止部材、バリアフィルム、バンドパスフィルター、赤外線カットフィルムなどの任意好適な従来公知の部材を所望の特性が得られるような設計に対応した態様で備え得る。
The image detection section 400 for the TOF type rangefinder includes the photoelectric conversion element 10 according to the embodiment of the present invention as a functional section that performs essential functions. The image detector 400 for the TOF-type rangefinder uses any suitable conventional film such as a protection film (not shown), a support substrate, a sealing substrate, a sealing member, a barrier film, a bandpass filter, an infrared cut film, and the like. Known components may be provided in a manner corresponding to the design to obtain the desired properties.
ここで、TOF型測距装置用イメージ検出部400の動作について簡単に説明する。
Here, the operation of the TOF rangefinder image detection unit 400 will be briefly described.
光源から光が照射され、光源からの光が測定対象より反射され、反射光を光電変換素子10で受光する。光電変換素子10と浮遊拡散層402との間には2つのフォトゲート404が設けられており、交互にパルスを加えることによって、光電変換素子10によって発生した信号電荷を2つの浮遊拡散層402のいずれかに転送し、浮遊拡散層402に電荷が蓄積される。2つのフォトゲート404を開くタイミングに対して、光パルスが等分にまたがるように到来すると、2つの浮遊拡散層402に蓄積される電荷量は等量になる。一方のフォトゲート404に光パルスが到達するタイミングに対して、他方のフォトゲート404に光パルスが遅れて到来すると、2つの浮遊拡散層402に蓄積される電荷量に差が生じる。
Light is emitted from the light source, the light from the light source is reflected from the object to be measured, and the photoelectric conversion element 10 receives the reflected light. Two photogates 404 are provided between the photoelectric conversion element 10 and the floating diffusion layer 402 , and by alternately applying pulses, signal charges generated by the photoelectric conversion element 10 are transferred to the two floating diffusion layers 402 . The charge is transferred to either one and accumulated in the floating diffusion layer 402 . When the light pulse arrives so as to equally straddle the timing of opening the two photogates 404, the amount of charge accumulated in the two floating diffusion layers 402 becomes equal. If the light pulse arrives at the other photogate 404 with a delay with respect to the timing at which the light pulse arrives at the one photogate 404, the amount of charge accumulated in the two floating diffusion layers 402 will differ.
浮遊拡散層402に蓄積された電荷量の差は、光パルスの遅延時間に依存する。測定対象までの距離Lは、光の往復時間tdと光の速度cを用いてL=(1/2)ctdの関係にあるので、遅延時間が2つの浮遊拡散層402の電荷量の差から推定できれば、測定対象までの距離を求めることができる。
The difference in the amount of charge accumulated in the floating diffusion layer 402 depends on the delay time of the light pulse. The distance L to the object to be measured has a relationship of L=(1/2) ctd using the round trip time td of light and the speed of light c. If it can be estimated, the distance to the measurement target can be obtained.
光電変換素子10が受光した光の受光量は、2つの浮遊拡散層402に蓄積される電荷量の差として電気信号に変換され、光電変換素子10外に受光信号、すなわち測定対象に対応する電気信号として出力される。
The amount of light received by the photoelectric conversion element 10 is converted into an electrical signal as the difference between the amounts of charge accumulated in the two floating diffusion layers 402, and the received light signal, that is, the electricity corresponding to the object to be measured, is output outside the photoelectric conversion element 10. output as a signal.
次いで、浮遊拡散層402から出力された受光信号は、層間配線部32を介して、CMOSトランジスタ基板20に入力され、CMOSトランジスタ基板20に作り込まれた信号読み出し回路により読み出され、図示しないさらなる任意好適な従来公知の機能部によって信号処理されることにより、測定対象に基づく距離情報が生成される。
Next, the received light signal output from the floating diffusion layer 402 is input to the CMOS transistor substrate 20 via the interlayer wiring portion 32, read by a signal readout circuit built into the CMOS transistor substrate 20, and read out by a signal readout circuit (not shown). Distance information based on the measurement object is generated through signal processing by an arbitrary suitable conventionally known functional unit.
3.光検出素子
前記のとおり、本実施形態の光電変換素子は、照射された光を、受光量に応じた電気信号に変換し、電極を介して外部回路に出力しうる光検出機能を有しうる。よって、本発明の実施形態にかか光電変換素子は、光検出機能を有する光検出素子として特に好適に適用されうる。ここで、本実施形態の光検出素子は、光電変換素子そのものであってもよく、光電変換素子に加えて、電圧制御のためなどの機能素子をさらに含んでいてもよい。 3. Photodetection element As described above, the photoelectric conversion element of the present embodiment can have a photodetection function capable of converting irradiated light into an electric signal corresponding to the amount of received light and outputting the signal to an external circuit via an electrode. . Therefore, the photoelectric conversion element according to the embodiment of the present invention can be particularly suitably applied as a photodetector having a photodetection function. Here, the photodetector element of this embodiment may be a photoelectric conversion element itself, or may further include a functional element for voltage control in addition to the photoelectric conversion element.
前記のとおり、本実施形態の光電変換素子は、照射された光を、受光量に応じた電気信号に変換し、電極を介して外部回路に出力しうる光検出機能を有しうる。よって、本発明の実施形態にかか光電変換素子は、光検出機能を有する光検出素子として特に好適に適用されうる。ここで、本実施形態の光検出素子は、光電変換素子そのものであってもよく、光電変換素子に加えて、電圧制御のためなどの機能素子をさらに含んでいてもよい。 3. Photodetection element As described above, the photoelectric conversion element of the present embodiment can have a photodetection function capable of converting irradiated light into an electric signal corresponding to the amount of received light and outputting the signal to an external circuit via an electrode. . Therefore, the photoelectric conversion element according to the embodiment of the present invention can be particularly suitably applied as a photodetector having a photodetection function. Here, the photodetector element of this embodiment may be a photoelectric conversion element itself, or may further include a functional element for voltage control in addition to the photoelectric conversion element.
4.光電変換素子の製造方法
本実施形態の光電変換素子の製造方法は、特に限定されない。本実施形態の光電変換素子は、構成要素を形成するにあたり選択された材料に好適な形成方法を組み合わせることにより製造することができる。 4. Method for Manufacturing Photoelectric Conversion Element The method for manufacturing the photoelectric conversion element of the present embodiment is not particularly limited. The photoelectric conversion element of this embodiment can be manufactured by combining the materials selected for forming the constituent elements with a suitable forming method.
本実施形態の光電変換素子の製造方法は、特に限定されない。本実施形態の光電変換素子は、構成要素を形成するにあたり選択された材料に好適な形成方法を組み合わせることにより製造することができる。 4. Method for Manufacturing Photoelectric Conversion Element The method for manufacturing the photoelectric conversion element of the present embodiment is not particularly limited. The photoelectric conversion element of this embodiment can be manufactured by combining the materials selected for forming the constituent elements with a suitable forming method.
本実施形態の光電変換素子の製造方法には、220℃以上の加熱温度で加熱される処理を含む工程が含まれうる。より具体的には、活性層が、220℃以上の加熱温度で加熱される処理を含む工程により形成され、及び/又は活性層が形成される工程よりも後に、220℃以上の加熱温度で加熱される処理を含む工程が含まれうる。
The method for manufacturing the photoelectric conversion element of the present embodiment can include a step including a process of heating at a heating temperature of 220°C or higher. More specifically, the active layer is formed by a step including a treatment heated at a heating temperature of 220° C. or higher, and/or heated at a heating temperature of 220° C. or higher after the step of forming the active layer. can include steps including processing to be performed.
以下、本発明の実施形態として、基板(支持基板)、陽極、正孔輸送層、活性層、電子輸送層、陰極がこの順に互いに接する構成を有する光電変換素子の製造方法について説明する。
Hereinafter, as an embodiment of the present invention, a method for manufacturing a photoelectric conversion element having a structure in which a substrate (supporting substrate), an anode, a hole transport layer, an active layer, an electron transport layer, and a cathode are in contact with each other in this order will be described.
(基板を用意する工程)
本工程では、例えば陽極が設けられた支持基板を用意する。また、既に説明した電極の材料により形成された導電性の薄膜が設けられた基板を市場より入手し、必要に応じて、導電性の薄膜をパターニングして陽極を形成することにより、陽極が設けられた支持基板を用意することができる。 (Process of preparing substrate)
In this step, for example, a support substrate provided with an anode is prepared. Alternatively, a substrate provided with a conductive thin film made of the material for the electrode already described is obtained from the market, and if necessary, the conductive thin film is patterned to form an anode, thereby forming an anode. A coated support substrate can be provided.
本工程では、例えば陽極が設けられた支持基板を用意する。また、既に説明した電極の材料により形成された導電性の薄膜が設けられた基板を市場より入手し、必要に応じて、導電性の薄膜をパターニングして陽極を形成することにより、陽極が設けられた支持基板を用意することができる。 (Process of preparing substrate)
In this step, for example, a support substrate provided with an anode is prepared. Alternatively, a substrate provided with a conductive thin film made of the material for the electrode already described is obtained from the market, and if necessary, the conductive thin film is patterned to form an anode, thereby forming an anode. A coated support substrate can be provided.
本実施形態にかかる光電変換素子の製造方法において、支持基板上に陽極を形成する場合の陽極の形成方法は特に限定されない。陽極は、既に説明した材料を、真空蒸着法、スパッタリング法、イオンプレーティング法、めっき法、塗布法などの従来公知の任意好適な方法によって、陽極を形成すべき構成(例、支持基板、活性層、正孔輸送層)上に形成することができる。
In the method for manufacturing the photoelectric conversion element according to this embodiment, the method for forming the anode when forming the anode on the support substrate is not particularly limited. The anode is formed by any suitable conventionally known method such as a vacuum deposition method, a sputtering method, an ion plating method, a plating method, a coating method, etc., using the materials already described. layer, hole transport layer).
(正孔輸送層の形成工程)
光電変換素子の製造方法は、活性層と陽極との間に設けられる正孔輸送層(正孔注入層)を形成する工程を含んでいてもよい。 (Step of forming hole transport layer)
The method for manufacturing a photoelectric conversion element may include a step of forming a hole transport layer (hole injection layer) provided between the active layer and the anode.
光電変換素子の製造方法は、活性層と陽極との間に設けられる正孔輸送層(正孔注入層)を形成する工程を含んでいてもよい。 (Step of forming hole transport layer)
The method for manufacturing a photoelectric conversion element may include a step of forming a hole transport layer (hole injection layer) provided between the active layer and the anode.
正孔輸送層の形成方法は特に限定されない。正孔輸送層の形成工程をより簡便にする観点からは、従来公知の任意好適な塗布法によって正孔輸送層を形成することが好ましい。正孔輸送層は、例えば、既に説明した正孔輸送層の材料と溶媒とを含む塗布液を用いる塗布法や真空蒸着法により形成することができる。
The method for forming the hole transport layer is not particularly limited. From the viewpoint of simplifying the process of forming the hole transport layer, it is preferable to form the hole transport layer by any suitable conventionally known coating method. The hole transport layer can be formed by, for example, a coating method using a coating liquid containing the material for the hole transport layer and a solvent, or a vacuum deposition method.
(活性層の形成工程)
本実施形態の光電変換素子の製造方法においては、正孔輸送層上に活性層が形成される。主要な構成要素である活性層は、任意好適な従来公知の形成工程により形成することができる。 (Step of forming active layer)
In the method for manufacturing the photoelectric conversion element of this embodiment, the active layer is formed on the hole transport layer. The active layer, which is the main component, can be formed by any suitable conventionally known forming process.
本実施形態の光電変換素子の製造方法においては、正孔輸送層上に活性層が形成される。主要な構成要素である活性層は、任意好適な従来公知の形成工程により形成することができる。 (Step of forming active layer)
In the method for manufacturing the photoelectric conversion element of this embodiment, the active layer is formed on the hole transport layer. The active layer, which is the main component, can be formed by any suitable conventionally known forming process.
本実施形態において、活性層は、インク組成物(塗布液)を用いる塗布法により製造することが好ましい。
In the present embodiment, the active layer is preferably manufactured by a coating method using an ink composition (coating liquid).
以下、本発明の光電変換素子の主たる構成要素である活性層の形成工程が含む工程(i)及び工程(ii)について説明する。
The steps (i) and (ii) included in the step of forming the active layer, which is the main component of the photoelectric conversion device of the present invention, will be described below.
工程(i)
インク組成物を塗布対象に塗布する方法としては、任意好適な塗布法を用いることができる。塗布法としては、スリットコート法、ナイフコート法、スピンコート法、マイクログラビアコート法、グラビアコート法、バーコート法、インクジェット印刷法、ノズルコート法、又はキャピラリーコート法が好ましく、スリットコート法、スピンコート法、キャピラリーコート法、又はバーコート法がより好ましく、スリットコート法、又はスピンコート法がさらに好ましい。 step (i)
Any suitable coating method can be used as a method for coating the ink composition onto the coating object. The coating method is preferably a slit coating method, a knife coating method, a spin coating method, a micro gravure coating method, a gravure coating method, a bar coating method, an inkjet printing method, a nozzle coating method, or a capillary coating method. A coating method, a capillary coating method, or a bar coating method is more preferable, and a slit coating method or a spin coating method is even more preferable.
インク組成物を塗布対象に塗布する方法としては、任意好適な塗布法を用いることができる。塗布法としては、スリットコート法、ナイフコート法、スピンコート法、マイクログラビアコート法、グラビアコート法、バーコート法、インクジェット印刷法、ノズルコート法、又はキャピラリーコート法が好ましく、スリットコート法、スピンコート法、キャピラリーコート法、又はバーコート法がより好ましく、スリットコート法、又はスピンコート法がさらに好ましい。 step (i)
Any suitable coating method can be used as a method for coating the ink composition onto the coating object. The coating method is preferably a slit coating method, a knife coating method, a spin coating method, a micro gravure coating method, a gravure coating method, a bar coating method, an inkjet printing method, a nozzle coating method, or a capillary coating method. A coating method, a capillary coating method, or a bar coating method is more preferable, and a slit coating method or a spin coating method is even more preferable.
本実施形態の光電変換素子の製造方法に用いられるインク組成物は、p型半導体材料と、n型半導体材料とを含み、該n型半導体材料として、既に説明した本実施形態の化合物を含む、組成物と、溶媒とを含む。
The ink composition used in the method for producing a photoelectric conversion element of the present embodiment contains a p-type semiconductor material and an n-type semiconductor material, and the n-type semiconductor material includes the compound of the present embodiment already described. It includes a composition and a solvent.
ここで、本実施形態の組成物によれば、p型半導体材料及びn型半導体材料を選択するにあたり、n型半導体材料のバンドギャップ(LUMOのエネルギーレベルとHOMOのエネルギーレベルとの差)が、p型半導体材料のバンドギャップよりも大きくなるように選択することが好ましい。このように選択すれば、光電変換素子の暗電流をより効果的に低減することができる。
Here, according to the composition of the present embodiment, when selecting the p-type semiconductor material and the n-type semiconductor material, the bandgap of the n-type semiconductor material (the difference between the LUMO energy level and the HOMO energy level) is It is preferably chosen to be larger than the bandgap of the p-type semiconductor material. By selecting in this way, the dark current of the photoelectric conversion element can be reduced more effectively.
p型半導体材料及びn型半導体材料のバンドギャップ(Eg)は、従来公知の任意好適な測定方法により測定することができる。バンドギャップは、具体的には、化合物の吸収端波長を用いて下記式により算出することができる。
Eg=hc/吸収端波長
式中、hはプランク定数を表し、cは光速を表す。 The bandgap (Eg) of the p-type semiconductor material and the n-type semiconductor material can be measured by any suitable conventionally known measurement method. Specifically, the bandgap can be calculated by the following formula using the absorption edge wavelength of the compound.
Eg=hc/absorption edge wavelength
In the formula, h represents Planck's constant and c represents the speed of light.
Eg=hc/吸収端波長
式中、hはプランク定数を表し、cは光速を表す。 The bandgap (Eg) of the p-type semiconductor material and the n-type semiconductor material can be measured by any suitable conventionally known measurement method. Specifically, the bandgap can be calculated by the following formula using the absorption edge wavelength of the compound.
Eg=hc/absorption edge wavelength
In the formula, h represents Planck's constant and c represents the speed of light.
ここで、吸収端波長は、既に説明した「吸収スペクトル」に基づいて特定することができる。具体的には、得られた吸収スペクトルにおいて、ベースラインと、吸収ピーク曲線における長波長側の下降曲線にフィッティングする直線との交点の波長を、吸収端波長として特定することができる。
Here, the absorption edge wavelength can be specified based on the "absorption spectrum" already explained. Specifically, in the obtained absorption spectrum, the wavelength at the intersection of the baseline and a straight line that fits the descending curve on the longer wavelength side of the absorption peak curve can be specified as the absorption edge wavelength.
本実施形態の活性層形成用のインク組成物について説明する。なお、本実施形態の活性層形成用のインク組成物はバルクヘテロ接合(BHJ)構造の活性層の形成用のインク組成物である。
The ink composition for forming the active layer of this embodiment will be described. The ink composition for forming an active layer of the present embodiment is an ink composition for forming an active layer having a bulk heterojunction (BHJ) structure.
よって、本実施形態の光電変換素子に含まれる活性層は、インク組成物を固化した(固化)膜であって、バルクへテロ接合構造を有する(固化)膜である。換言すると、本実施形態の光電変換素子は、バルクへテロ接合構造を有する膜を活性層として含んでいる。
Therefore, the active layer included in the photoelectric conversion element of the present embodiment is a (solidified) film obtained by solidifying the ink composition, and is a (solidified) film having a bulk heterojunction structure. In other words, the photoelectric conversion device of this embodiment includes a film having a bulk heterojunction structure as an active layer.
本実施形態の活性層形成用のインク組成物は、既に説明したp型半導体材料とn型半導体材料として、既に説明した本実施形態の化合物を含む組成物を含む。本実施形態の活性層形成用のインク組成物は、当該組成物と、1種又は2種以上の溶媒とを含むことが好ましい。
The ink composition for forming an active layer of the present embodiment includes a composition containing the compound of the present embodiment already described as the p-type semiconductor material and the n-type semiconductor material already described. The ink composition for forming an active layer of the present embodiment preferably contains the composition and one or more solvents.
本実施形態の活性層形成用のインク組成物によれば、p型半導体材料と、「本実施形態の化合物」とを含むことにより、特に光検出素子である光電変換素子に要求される暗電流を効果的に低減することができる。
According to the ink composition for forming an active layer of the present embodiment, by including the p-type semiconductor material and the "compound of the present embodiment", the dark current required for the photoelectric conversion element, which is a photodetector, is reduced. can be effectively reduced.
本実施形態にかかる活性層形成用のインク組成物は、活性層が形成できることを条件として、特に限定されない。溶媒としては、例えば、後述する第1溶媒と第2溶媒と組み合わせた混合溶媒を用いることができる。具体的には、活性層形成用のインク組成物が2種以上の溶媒を含む場合、主たる成分である主溶媒(第1溶媒)と、溶解性の向上などのために添加されるその他の添加溶媒(第2溶媒)とを含むことが好ましい。しかしながら、第1溶媒のみを用いてもよい。
The ink composition for forming an active layer according to the present embodiment is not particularly limited as long as it can form an active layer. As the solvent, for example, a mixed solvent in which a first solvent and a second solvent are combined to be described later can be used. Specifically, when the ink composition for forming the active layer contains two or more solvents, the main solvent (first solvent), which is the main component, and other additives added for improving solubility, etc. It preferably contains a solvent (second solvent). However, only the first solvent may be used.
以下、本実施形態の活性層形成用のインク組成物に好適に用いることができる第1溶媒及び第2溶媒とこれらの組合せについて説明する。
The first solvent, the second solvent, and combinations thereof that can be suitably used in the ink composition for forming the active layer of the present embodiment will be described below.
(1)第1溶媒
第1溶媒としては、p型半導体材料が溶解可能である溶媒が好ましい。本実施形態の第1溶媒は、芳香族炭化水素である。 (1) First Solvent As the first solvent, a solvent capable of dissolving the p-type semiconductor material is preferable. The first solvent of this embodiment is an aromatic hydrocarbon.
第1溶媒としては、p型半導体材料が溶解可能である溶媒が好ましい。本実施形態の第1溶媒は、芳香族炭化水素である。 (1) First Solvent As the first solvent, a solvent capable of dissolving the p-type semiconductor material is preferable. The first solvent of this embodiment is an aromatic hydrocarbon.
第1溶媒である芳香族炭化水素としては、例えば、トルエン、キシレン(例、o-キシレン、m-キシレン、p-キシレン)、o-ジクロロベンゼン、トリメチルベンゼン(例、メシチレン、1,2,4-トリメチルベンゼン(プソイドクメン))、ブチルベンゼン(例、n-ブチルベンゼン、sec-ブチルベンゼン、tert-ブチルベンゼン)、メチルナフタレン(例、1-メチルナフタレン)、テトラリン及びインダンが挙げられる。
Examples of aromatic hydrocarbons as the first solvent include toluene, xylene (eg, o-xylene, m-xylene, p-xylene), o-dichlorobenzene, trimethylbenzene (eg, mesitylene, 1,2,4 -trimethylbenzene (pseudocumene)), butylbenzene (eg n-butylbenzene, sec-butylbenzene, tert-butylbenzene), methylnaphthalene (eg 1-methylnaphthalene), tetralin and indane.
第1溶媒は、1種の芳香族炭化水素から構成されていても、2種以上の芳香族炭化水素から構成されていてもよい。第1溶媒は、好ましくは1種の芳香族炭化水素から構成される。
The first solvent may be composed of one type of aromatic hydrocarbon, or may be composed of two or more types of aromatic hydrocarbons. The first solvent preferably consists of one aromatic hydrocarbon.
第1溶媒は、好ましくはトルエン、o-キシレン(oXAP)、m-キシレン、p-キシレン、メシチレン、o-ジクロロベンゼン(ODCB)、1,2,4-トリメチルベンゼン、n-ブチルベンゼン、sec-ブチルベンゼン、tert-ブチルベンゼン、メチルナフタレン、テトラリン及びインダンからなる群から選択される1種以上であり、より好ましくはトルエン、o-キシレン、m-キシレン、p-キシレン、o-ジクロロベンゼン、メシチレン、1,2,4-トリメチルベンゼン、n-ブチルベンゼン、sec-ブチルベンゼン、tert-ブチルベンゼン、メチルナフタレン、テトラリン、又はインダンである。
The first solvent is preferably toluene, o-xylene (oXAP), m-xylene, p-xylene, mesitylene, o-dichlorobenzene (ODCB), 1,2,4-trimethylbenzene, n-butylbenzene, sec- One or more selected from the group consisting of butylbenzene, tert-butylbenzene, methylnaphthalene, tetralin and indane, more preferably toluene, o-xylene, m-xylene, p-xylene, o-dichlorobenzene and mesitylene , 1,2,4-trimethylbenzene, n-butylbenzene, sec-butylbenzene, tert-butylbenzene, methylnaphthalene, tetralin, or indane.
(2)第2溶媒
第2溶媒は、製造工程の実施をより容易にし、光電変換素子の特性をより向上させる観点から選択される溶媒である。第2溶媒としては、例えば、アセトン、メチルエチルケトン、シクロヘキサノン、アセトフェノン、プロピオフェノンなどのケトン溶媒、酢酸エチル、酢酸ブチル、酢酸フェニル、エチルセルソルブアセテート、安息香酸メチル(MBZ)、安息香酸ブチル及び安息香酸ベンジルなどのエステル溶媒が挙げられる。 (2) Second Solvent The second solvent is a solvent selected from the viewpoint of making the manufacturing process easier and further improving the properties of the photoelectric conversion device. Examples of the second solvent include ketone solvents such as acetone, methyl ethyl ketone, cyclohexanone, acetophenone and propiophenone, ethyl acetate, butyl acetate, phenyl acetate, ethyl cellosolve acetate, methyl benzoate (MBZ), butyl benzoate and benzoin. Examples include ester solvents such as benzyl acid.
第2溶媒は、製造工程の実施をより容易にし、光電変換素子の特性をより向上させる観点から選択される溶媒である。第2溶媒としては、例えば、アセトン、メチルエチルケトン、シクロヘキサノン、アセトフェノン、プロピオフェノンなどのケトン溶媒、酢酸エチル、酢酸ブチル、酢酸フェニル、エチルセルソルブアセテート、安息香酸メチル(MBZ)、安息香酸ブチル及び安息香酸ベンジルなどのエステル溶媒が挙げられる。 (2) Second Solvent The second solvent is a solvent selected from the viewpoint of making the manufacturing process easier and further improving the properties of the photoelectric conversion device. Examples of the second solvent include ketone solvents such as acetone, methyl ethyl ketone, cyclohexanone, acetophenone and propiophenone, ethyl acetate, butyl acetate, phenyl acetate, ethyl cellosolve acetate, methyl benzoate (MBZ), butyl benzoate and benzoin. Examples include ester solvents such as benzyl acid.
第2溶媒は、例えば、暗電流をより低減する観点から、アセトフェノン、プロピオフェノン、安息香酸メチル又は安息香酸ブチルを用いることが好ましい。
For the second solvent, it is preferable to use, for example, acetophenone, propiophenone, methyl benzoate, or butyl benzoate from the viewpoint of further reducing dark current.
(3)第1溶媒及び第2溶媒の組合せ
第1溶媒及び第2溶媒の好適な組合せの例としては、o-キシレンと安息香酸メチル、テトラリンと安息香酸エチル、テトラリンと安息香酸プロピル及びテトラリンと安息香酸ブチルとの組合せが挙げられる。 (3) Combination of first solvent and second solvent Examples of suitable combinations of the first solvent and second solvent include o-xylene and methyl benzoate, tetralin and ethyl benzoate, tetralin and propyl benzoate, and tetralin. Combinations with butyl benzoate are mentioned.
第1溶媒及び第2溶媒の好適な組合せの例としては、o-キシレンと安息香酸メチル、テトラリンと安息香酸エチル、テトラリンと安息香酸プロピル及びテトラリンと安息香酸ブチルとの組合せが挙げられる。 (3) Combination of first solvent and second solvent Examples of suitable combinations of the first solvent and second solvent include o-xylene and methyl benzoate, tetralin and ethyl benzoate, tetralin and propyl benzoate, and tetralin. Combinations with butyl benzoate are mentioned.
(4)第1溶媒及び第2溶媒の重量比
主溶媒である第1溶媒の添加溶媒である第2溶媒に対する重量比(第1溶媒:第2溶媒)は、p型半導体材料及びn型半導体材料の溶解性をより向上させる観点から、85:15~99:1の範囲とすることが好ましい。 (4) Weight ratio of the first solvent and the second solvent The weight ratio of the first solvent that is the main solvent to the second solvent that is the additive solvent (first solvent: second solvent) is the p-type semiconductor material and the n-type semiconductor From the viewpoint of further improving the solubility of the material, the range is preferably from 85:15 to 99:1.
主溶媒である第1溶媒の添加溶媒である第2溶媒に対する重量比(第1溶媒:第2溶媒)は、p型半導体材料及びn型半導体材料の溶解性をより向上させる観点から、85:15~99:1の範囲とすることが好ましい。 (4) Weight ratio of the first solvent and the second solvent The weight ratio of the first solvent that is the main solvent to the second solvent that is the additive solvent (first solvent: second solvent) is the p-type semiconductor material and the n-type semiconductor From the viewpoint of further improving the solubility of the material, the range is preferably from 85:15 to 99:1.
(5)任意の他の溶媒
溶媒は、第1溶媒及び第2溶媒以外の任意の他の溶媒を含んでいてもよい。インク組成物に含まれる全溶媒の合計重量を100重量%としたときに、任意の他の溶媒の含有率は、好ましくは5重量%以下であり、より好ましくは3重量%以下であり、さらに好ましくは1重量%以下である。任意の他の溶媒としては、第2溶媒より沸点が高い溶媒が好ましい。 (5) Any Other Solvent The solvent may contain any other solvent other than the first solvent and the second solvent. When the total weight of all solvents contained in the ink composition is 100% by weight, the content of any other solvent is preferably 5% by weight or less, more preferably 3% by weight or less, and further It is preferably 1% by weight or less. Any other solvent preferably has a higher boiling point than the second solvent.
溶媒は、第1溶媒及び第2溶媒以外の任意の他の溶媒を含んでいてもよい。インク組成物に含まれる全溶媒の合計重量を100重量%としたときに、任意の他の溶媒の含有率は、好ましくは5重量%以下であり、より好ましくは3重量%以下であり、さらに好ましくは1重量%以下である。任意の他の溶媒としては、第2溶媒より沸点が高い溶媒が好ましい。 (5) Any Other Solvent The solvent may contain any other solvent other than the first solvent and the second solvent. When the total weight of all solvents contained in the ink composition is 100% by weight, the content of any other solvent is preferably 5% by weight or less, more preferably 3% by weight or less, and further It is preferably 1% by weight or less. Any other solvent preferably has a higher boiling point than the second solvent.
(6)任意の成分
インク組成物には、第1溶媒、第2溶媒、p型半導体材料及びn型半導体材料の他に、本発明の目的及び効果を損なわない限度において、界面活性剤、紫外線吸収剤、酸化防止剤、吸収した光により電荷を発生させる機能を増感するための増感剤、紫外線からの安定性を増すための光安定剤といった任意の成分が含まれていてもよい。 (6) Optional Components In addition to the first solvent, the second solvent, the p-type semiconductor material and the n-type semiconductor material, the ink composition contains a surfactant, an ultraviolet Optional ingredients such as absorbers, antioxidants, sensitizers to enhance the ability to generate charge from absorbed light, and light stabilizers to increase stability from UV light may be included.
インク組成物には、第1溶媒、第2溶媒、p型半導体材料及びn型半導体材料の他に、本発明の目的及び効果を損なわない限度において、界面活性剤、紫外線吸収剤、酸化防止剤、吸収した光により電荷を発生させる機能を増感するための増感剤、紫外線からの安定性を増すための光安定剤といった任意の成分が含まれていてもよい。 (6) Optional Components In addition to the first solvent, the second solvent, the p-type semiconductor material and the n-type semiconductor material, the ink composition contains a surfactant, an ultraviolet Optional ingredients such as absorbers, antioxidants, sensitizers to enhance the ability to generate charge from absorbed light, and light stabilizers to increase stability from UV light may be included.
(7)p型半導体材料及びn型半導体材料の濃度
インク組成物におけるp型半導体材料及びn型半導体材料の濃度は、溶媒に対する溶解度なども考慮して、本発明の目的を損なわない範囲で任意好適な濃度とすることができる。 (7) Concentration of p-type semiconductor material and n-type semiconductor material The concentration of the p-type semiconductor material and the n-type semiconductor material in the ink composition is arbitrary within a range that does not impair the object of the present invention, taking into consideration the solubility in the solvent. Any suitable concentration can be used.
インク組成物におけるp型半導体材料及びn型半導体材料の濃度は、溶媒に対する溶解度なども考慮して、本発明の目的を損なわない範囲で任意好適な濃度とすることができる。 (7) Concentration of p-type semiconductor material and n-type semiconductor material The concentration of the p-type semiconductor material and the n-type semiconductor material in the ink composition is arbitrary within a range that does not impair the object of the present invention, taking into consideration the solubility in the solvent. Any suitable concentration can be used.
インク組成物における「p型半導体材料」の「n型半導体材料」に対する重量比(重合体/非フラーレン化合物)は、通常1/0.1から1/10の範囲であり、好ましくは1/0.5から1/2の範囲であり、より好ましくは1/1.5である。
The weight ratio (polymer/non-fullerene compound) of the “p-type semiconductor material” to the “n-type semiconductor material” in the ink composition is usually in the range of 1/0.1 to 1/10, preferably 1/0. 0.5 to 1/2, more preferably 1/1.5.
インク組成物における「p型半導体材料」及び「n型半導体材料」の合計の濃度は、通常0.01重量%以上であり、0.02重量%以上がより好ましく、0.25重量%以上がさらに好ましい。また、インク組成物における「p型半導体材料」及び「n型半導体材料」の合計の濃度は、通常20重量%以下であり、10重量%以下であることが好ましく、7.50重量%以下であることがより好ましい。
The total concentration of the "p-type semiconductor material" and "n-type semiconductor material" in the ink composition is usually 0.01% by weight or more, more preferably 0.02% by weight or more, and 0.25% by weight or more. More preferred. The total concentration of the "p-type semiconductor material" and "n-type semiconductor material" in the ink composition is usually 20% by weight or less, preferably 10% by weight or less, and 7.50% by weight or less. It is more preferable to have
インク組成物における「p型半導体材料」の濃度は、通常0.01重量%以上であり、0.02重量%以上がより好ましく、0.10重量%以上がさらに好ましい。また、インク組成物における「p型半導体材料」の濃度は、通常10重量%以下であり、5.00重量%以下がより好ましく、3.00重量%以下がさらに好ましい。
The concentration of the "p-type semiconductor material" in the ink composition is usually 0.01% by weight or more, more preferably 0.02% by weight or more, and even more preferably 0.10% by weight or more. Also, the concentration of the "p-type semiconductor material" in the ink composition is usually 10% by weight or less, more preferably 5.00% by weight or less, and even more preferably 3.00% by weight or less.
インク組成物における「n型半導体材料」の濃度は、通常0.01重量%以上であり、0.02重量%以上がより好ましく、0.15重量%以上がさらに好ましい。また、インク組成物における「n型半導体材料」の濃度は、通常10重量%以下であり、5重量%以下がより好ましく、4.50重量%以下がさらに好ましい。
The concentration of the "n-type semiconductor material" in the ink composition is usually 0.01% by weight or more, more preferably 0.02% by weight or more, and even more preferably 0.15% by weight or more. Also, the concentration of the "n-type semiconductor material" in the ink composition is usually 10% by weight or less, more preferably 5% by weight or less, and even more preferably 4.50% by weight or less.
(8)インク組成物の調製
インク組成物は、公知の方法により調製することができる。例えば、第1溶媒、又は第1溶媒及び第2溶媒を混合して混合溶媒を調製し、得られた混合溶媒にp型半導体材料及びn型半導体材料を添加する方法、第1溶媒にp型半導体材料を添加し、第2溶媒にn型半導体材料を添加してから、各材料が添加された第1溶媒及び第2溶媒を混合する方法などにより、調製することができる。 (8) Preparation of ink composition The ink composition can be prepared by a known method. For example, a method of preparing a mixed solvent by mixing a first solvent, or a first solvent and a second solvent, and adding a p-type semiconductor material and an n-type semiconductor material to the obtained mixed solvent; It can be prepared by a method of adding a semiconductor material, adding an n-type semiconductor material to a second solvent, and then mixing the first solvent and the second solvent to which each material has been added.
インク組成物は、公知の方法により調製することができる。例えば、第1溶媒、又は第1溶媒及び第2溶媒を混合して混合溶媒を調製し、得られた混合溶媒にp型半導体材料及びn型半導体材料を添加する方法、第1溶媒にp型半導体材料を添加し、第2溶媒にn型半導体材料を添加してから、各材料が添加された第1溶媒及び第2溶媒を混合する方法などにより、調製することができる。 (8) Preparation of ink composition The ink composition can be prepared by a known method. For example, a method of preparing a mixed solvent by mixing a first solvent, or a first solvent and a second solvent, and adding a p-type semiconductor material and an n-type semiconductor material to the obtained mixed solvent; It can be prepared by a method of adding a semiconductor material, adding an n-type semiconductor material to a second solvent, and then mixing the first solvent and the second solvent to which each material has been added.
第1溶媒及び第2溶媒とp型半導体材料及びn型半導体材料とを、溶媒の沸点以下の温度まで加温して混合してもよい。
The first solvent, the second solvent, the p-type semiconductor material and the n-type semiconductor material may be heated to a temperature below the boiling point of the solvent and mixed.
第1溶媒及び第2溶媒とp型半導体材料及びn型半導体材料とを混合した後、得られた混合物をフィルターを用いてろ過し、得られたろ液をとして用いてもよい。フィルターとしては、例えば、ポリテトラフルオロエチレン(PTFE)などのフッ素樹脂で形成されたフィルターを用いることができる。
After mixing the first solvent and the second solvent with the p-type semiconductor material and the n-type semiconductor material, the obtained mixture may be filtered using a filter, and the obtained filtrate may be used as the mixture. As the filter, for example, a filter made of a fluororesin such as polytetrafluoroethylene (PTFE) can be used.
活性層形成用のインク組成物は、光電変換素子及びその製造方法に応じて選択された塗布対象に塗布される。活性層形成用のインク組成物は、光電変換素子の製造工程において、光電変換素子が有する機能層であって、活性層が存在し得る機能層に塗布されうる。よって、活性層形成用のインク組成物の塗布対象は、製造される光電変換素子の層構成及び層形成の順序によって異なる。例えば、光電変換素子が、基板、陽極、正孔輸送層、活性層、電子輸送層、陰極が積層された層構成を有しており、より左側に記載された層が先に形成される場合、活性層形成用のインク組成物の塗布対象は、正孔輸送層となる。また、例えば、光電変換素子が、基板、陰極、電子輸送層、活性層、正孔輸送層、陽極が積層された層構成を有しており、より左側に記載された層が先に形成される場合、活性層形成用のインク組成物の塗布対象は、電子輸送層となる。
The ink composition for forming the active layer is applied to an application target selected according to the photoelectric conversion element and its manufacturing method. The ink composition for forming an active layer can be applied to a functional layer of a photoelectric conversion element, in which an active layer may exist, in the manufacturing process of the photoelectric conversion element. Therefore, the object to be coated with the ink composition for forming the active layer varies depending on the layer structure and the order of layer formation of the photoelectric conversion element to be manufactured. For example, when the photoelectric conversion element has a layer structure in which a substrate, an anode, a hole transport layer, an active layer, an electron transport layer, and a cathode are laminated, and the layer described further to the left is formed first. The object to be coated with the ink composition for forming the active layer is the hole transport layer. Further, for example, the photoelectric conversion element has a layer structure in which a substrate, a cathode, an electron transport layer, an active layer, a hole transport layer, and an anode are laminated, and the layer described further to the left is formed first. In this case, the target of application of the ink composition for forming the active layer is the electron transport layer.
工程(ii)
インク組成物の塗膜から、溶媒を除去する方法、すなわち塗膜から溶媒を除去して固化する方法としては、任意好適な方法を用いることができる。溶媒を除去する方法の例としては、窒素ガスなどの不活性ガス雰囲気下でホットプレートを用いて直接的に加熱する方法、熱風乾燥法、赤外線加熱乾燥法、フラッシュランプアニール乾燥法、減圧乾燥法などの乾燥法が挙げられる。 step (ii)
Any suitable method can be used as a method for removing the solvent from the coating film of the ink composition, that is, as a method for removing the solvent from the coating film and solidifying the coating film. Examples of methods for removing the solvent include direct heating using a hot plate under an inert gas atmosphere such as nitrogen gas, hot air drying, infrared heat drying, flash lamp annealing drying, and vacuum drying. and other drying methods.
インク組成物の塗膜から、溶媒を除去する方法、すなわち塗膜から溶媒を除去して固化する方法としては、任意好適な方法を用いることができる。溶媒を除去する方法の例としては、窒素ガスなどの不活性ガス雰囲気下でホットプレートを用いて直接的に加熱する方法、熱風乾燥法、赤外線加熱乾燥法、フラッシュランプアニール乾燥法、減圧乾燥法などの乾燥法が挙げられる。 step (ii)
Any suitable method can be used as a method for removing the solvent from the coating film of the ink composition, that is, as a method for removing the solvent from the coating film and solidifying the coating film. Examples of methods for removing the solvent include direct heating using a hot plate under an inert gas atmosphere such as nitrogen gas, hot air drying, infrared heat drying, flash lamp annealing drying, and vacuum drying. and other drying methods.
工程(ii)の実施条件、すなわち加熱温度、加熱処理時間などの条件については、用いられるインク組成物の組成、溶媒の沸点などを考慮して、任意好適な条件とすることができる。
The implementation conditions of step (ii), that is, conditions such as heating temperature and heat treatment time, can be arbitrarily suitable conditions in consideration of the composition of the ink composition used, the boiling point of the solvent, and the like.
本実施形態においては、工程(ii)は、具体的には、例えば、窒素ガス雰囲気下でホットプレートを用いて実施することができる。
Specifically, in this embodiment, step (ii) can be performed using a hot plate in a nitrogen gas atmosphere, for example.
工程(ii)は、複数回の加熱処理工程、例えば、プリベーク工程及びポストベーク工程を含んでいてもよい。この場合、プリベーク工程及び/又はポストベーク工程における加熱温度は、従来公知の任意好適な温度である100℃程度とすることができる。
The step (ii) may include multiple heat treatment steps, for example, a pre-baking step and a post-baking step. In this case, the heating temperature in the pre-baking step and/or the post-baking step can be about 100° C., which is a conventionally known arbitrary suitable temperature.
プリベーク工程及びポストベーク工程における合計の加熱処理時間は、例えば1時間とすることができる。
The total heat treatment time in the pre-baking process and post-baking process can be, for example, 1 hour.
プリベーク工程における加熱温度とポストベーク工程における加熱温度とは同一であっても異なっていてもよい。
The heating temperature in the pre-baking process and the heating temperature in the post-baking process may be the same or different.
加熱処理時間は例えば10分間以上とすることができる。加熱処理時間の上限値は特に限定されないが、タクトタイム等を考慮し、例えば4時間とすることができる。
The heat treatment time can be, for example, 10 minutes or more. Although the upper limit of the heat treatment time is not particularly limited, it can be set to, for example, 4 hours in consideration of the tact time and the like.
活性層の厚さは、塗布液中の固形分濃度、上記工程(i)及び/又は工程(ii)の条件を適宜調整することにより、任意好適な所望の厚さとすることができる。
The thickness of the active layer can be set to any suitable desired thickness by appropriately adjusting the solid content concentration in the coating liquid and the conditions of the above step (i) and/or step (ii).
活性層を形成する工程は、前記工程(i)及び工程(ii)以外に、本発明の目的及び効果を損なわないことを条件としてその他の工程を含んでいてもよい。
The step of forming the active layer may include other steps in addition to the steps (i) and (ii) provided that the object and effect of the present invention are not impaired.
本実施形態の光電変換素子の製造方法は、複数の活性層を含む光電変換素子を製造する方法であってもよく、工程(i)及び工程(ii)が複数回繰り返される方法であってもよい。
The method for manufacturing a photoelectric conversion element of the present embodiment may be a method for manufacturing a photoelectric conversion element including a plurality of active layers, or may be a method in which steps (i) and (ii) are repeated multiple times. good.
(電子輸送層の形成工程)
本実施形態の光電変換素子の製造方法は、活性層上に設けられた電子輸送層(電子注入層)を形成する工程を含んでいる。 (Step of forming electron transport layer)
The method for manufacturing the photoelectric conversion element of this embodiment includes a step of forming an electron transport layer (electron injection layer) provided on the active layer.
本実施形態の光電変換素子の製造方法は、活性層上に設けられた電子輸送層(電子注入層)を形成する工程を含んでいる。 (Step of forming electron transport layer)
The method for manufacturing the photoelectric conversion element of this embodiment includes a step of forming an electron transport layer (electron injection layer) provided on the active layer.
電子輸送層の形成方法は特に限定されない。電子輸送層の形成工程をより簡便にする観点からは、従来公知の任意好適な真空蒸着法によって電子輸送層を形成することが好ましい。
The method for forming the electron transport layer is not particularly limited. From the viewpoint of making the step of forming the electron transport layer simpler, it is preferable to form the electron transport layer by any suitable conventionally known vacuum vapor deposition method.
(陰極の形成工程)
陰極の形成方法は特に限定されない。陰極は、例えば、上記例示の電極の材料を、塗布法、真空蒸着法、スパッタリング法、イオンプレーティング法、めっき法など従来公知の任意好適な方法によって、電子輸送層上に形成することができる。以上の工程により、本実施形態の光電変換素子が製造される。 (Cathode formation step)
The method of forming the cathode is not particularly limited. The cathode can be formed, for example, on the electron-transporting layer using any of the electrode materials exemplified above by a conventionally known suitable method such as coating, vacuum deposition, sputtering, ion plating, or plating. . Through the above steps, the photoelectric conversion element of this embodiment is manufactured.
陰極の形成方法は特に限定されない。陰極は、例えば、上記例示の電極の材料を、塗布法、真空蒸着法、スパッタリング法、イオンプレーティング法、めっき法など従来公知の任意好適な方法によって、電子輸送層上に形成することができる。以上の工程により、本実施形態の光電変換素子が製造される。 (Cathode formation step)
The method of forming the cathode is not particularly limited. The cathode can be formed, for example, on the electron-transporting layer using any of the electrode materials exemplified above by a conventionally known suitable method such as coating, vacuum deposition, sputtering, ion plating, or plating. . Through the above steps, the photoelectric conversion element of this embodiment is manufactured.
(封止体の形成工程)
封止体の形成にあたり、本実施形態では、従来公知の任意好適な封止材(接着剤)及び基板(封止基板)を用いる。具体的には、製造された光電変換素子の周辺を囲むように、支持基板上に、例えばUV硬化性樹脂などの封止材を塗布した後、封止材により隙間なく貼り合わせた後、UV光の照射などの選択された封止材に好適な方法を用いて支持基板と封止基板との間隙に光電変換素子を封止することにより、光電変換素子の封止体を得ることができる。 (Step of forming sealing body)
In forming the sealing body, in the present embodiment, a conventionally known and suitable sealing material (adhesive) and substrate (sealing substrate) are used. Specifically, a sealing material such as a UV curable resin is applied to the support substrate so as to surround the manufactured photoelectric conversion element, and then the sealing material is bonded without gaps. A photoelectric conversion element sealed body can be obtained by sealing the photoelectric conversion element in the gap between the supporting substrate and the sealing substrate using a method suitable for the selected sealing material, such as light irradiation. .
封止体の形成にあたり、本実施形態では、従来公知の任意好適な封止材(接着剤)及び基板(封止基板)を用いる。具体的には、製造された光電変換素子の周辺を囲むように、支持基板上に、例えばUV硬化性樹脂などの封止材を塗布した後、封止材により隙間なく貼り合わせた後、UV光の照射などの選択された封止材に好適な方法を用いて支持基板と封止基板との間隙に光電変換素子を封止することにより、光電変換素子の封止体を得ることができる。 (Step of forming sealing body)
In forming the sealing body, in the present embodiment, a conventionally known and suitable sealing material (adhesive) and substrate (sealing substrate) are used. Specifically, a sealing material such as a UV curable resin is applied to the support substrate so as to surround the manufactured photoelectric conversion element, and then the sealing material is bonded without gaps. A photoelectric conversion element sealed body can be obtained by sealing the photoelectric conversion element in the gap between the supporting substrate and the sealing substrate using a method suitable for the selected sealing material, such as light irradiation. .
以下、本発明をさらに詳細に説明するために実施例を示す。本発明は以下に説明する実施例に限定されない。
Examples are given below to describe the present invention in more detail. The invention is not limited to the examples described below.
本実施例においては、下記表1に示される高分子化合物をp型半導体材料(電子供与性化合物)として使用し、下記表2及び表3に示される化合物をn型半導体材料(電子受容性化合物)として使用した。
In this example, the polymer compounds shown in Table 1 below were used as p-type semiconductor materials (electron-donating compounds), and the compounds shown in Tables 2 and 3 below were used as n-type semiconductor materials (electron-accepting compounds). ) was used as
p型半導体材料である高分子化合物P-1は、国際公開第2011/052709号に記載の方法を参考にして合成して使用した。
Polymer compound P-1, which is a p-type semiconductor material, was synthesized with reference to the method described in International Publication No. 2011/052709 and used.
n型半導体材料である化合物N-1、化合物N-2、化合物N-3及び化合物N-5は、後述の合成例のとおり合成して使用した。
n型半導体材料である化合物N-4は、商品名Y6(1-material社製)を市場より入手して使用した。 Compound N-1, Compound N-2, Compound N-3, and Compound N-5, which are n-type semiconductor materials, were synthesized and used according to Synthesis Examples described later.
Compound N-4, which is an n-type semiconductor material, was commercially available under the trade name Y6 (manufactured by 1-material).
n型半導体材料である化合物N-4は、商品名Y6(1-material社製)を市場より入手して使用した。 Compound N-1, Compound N-2, Compound N-3, and Compound N-5, which are n-type semiconductor materials, were synthesized and used according to Synthesis Examples described later.
Compound N-4, which is an n-type semiconductor material, was commercially available under the trade name Y6 (manufactured by 1-material).
<合成例1>(化合物2の合成)
下記のとおり、化合物1を用いて化合物2を合成した。 <Synthesis Example 1> (Synthesis of Compound 2)
Compound 2 was synthesized using compound 1 as follows.
下記のとおり、化合物1を用いて化合物2を合成した。 <Synthesis Example 1> (Synthesis of Compound 2)
具体的には、内部の雰囲気を窒素ガスで置換した300mL三口フラスコに、国際公開第2011/052709号の段落[0335]に記載の方法により合成した化合物1(2.00g、3.28mmol)、脱水クロロホルム(109mL、0.02M)、及びVilsmeier試薬((Chloromethylene)dimethyliminium Chloride)(0.630g、4.92mmol)を仕込み、オイルバスを用いて三口フラスコの内温を60℃とし、3時間保持した。
Specifically, compound 1 (2.00 g, 3.28 mmol) synthesized by the method described in paragraph [0335] of WO 2011/052709 is placed in a 300 mL three-necked flask whose internal atmosphere has been replaced with nitrogen gas, Dehydrated chloroform (109 mL, 0.02 M) and Vilsmeier reagent ((Chloromethylene) dimethyliminium chloride) (0.630 g, 4.92 mmol) were charged, and the internal temperature of the three-necked flask was adjusted to 60° C. using an oil bath and held for 3 hours. bottom.
三口フラスコをオイルバスから上げて常温まで放冷し、三口フラスコ内の反応液に水を注いでクエンチした後に、飽和炭酸水素ナトリウム水溶液を加えて常温で撹拌した。
The three-necked flask was lifted from the oil bath and allowed to cool to room temperature. After water was poured into the reaction solution in the three-necked flask to quench it, a saturated sodium bicarbonate aqueous solution was added and stirred at room temperature.
得られた反応液から有機層を抽出した後に、有機層を水で2回洗浄した後、硫酸マグネシウムで脱水し、硫酸マグネシウムをろ過によって除去した。ろ過によって得られたろ液をロータリーエバポレーターで全量濃縮することにより粗生成物を得た。
After extracting the organic layer from the obtained reaction solution, the organic layer was washed twice with water, dehydrated with magnesium sulfate, and filtered to remove magnesium sulfate. A crude product was obtained by concentrating the filtrate obtained by filtration with a rotary evaporator.
得られた粗生成物をシリカゲルカラム(展開溶媒はヘキサン/酢酸エチル=100/0から98/2(質量%)とした。)にて精製することにより、化合物2を橙黒色の粘性液体として2.00g得た(収率96%)。
By purifying the obtained crude product with a silica gel column (developing solvent was hexane/ethyl acetate = 100/0 to 98/2 (mass%)), compound 2 was obtained as an orange-black viscous liquid. 00 g (96% yield).
得られた化合物2について、NMRスペクトルを解析した。結果は下記のとおりである。
1H-NMR (400 MHz, CHLOROFORM-D) δ9.76-9.72 (1H), 7.24 (1H), 6.70 (1H), 1.88-1.74 (4H), 1.22-1.41 (40H), 0.88-0.83 (6H), The NMR spectrum of the obtainedcompound 2 was analyzed. The results are as follows.
1H-NMR (400 MHz, CHLOROFORM-D) δ9.76-9.72 (1H), 7.24 (1H), 6.70 (1H), 1.88-1.74 (4H), 1.22 -1.41 (40H), 0.88-0.83 (6H),
1H-NMR (400 MHz, CHLOROFORM-D) δ9.76-9.72 (1H), 7.24 (1H), 6.70 (1H), 1.88-1.74 (4H), 1.22-1.41 (40H), 0.88-0.83 (6H), The NMR spectrum of the obtained
1H-NMR (400 MHz, CHLOROFORM-D) δ9.76-9.72 (1H), 7.24 (1H), 6.70 (1H), 1.88-1.74 (4H), 1.22 -1.41 (40H), 0.88-0.83 (6H),
<合成例2>(化合物3の合成)
下記のとおり、化合物2を用いて化合物3を合成した。 <Synthesis Example 2> (Synthesis of Compound 3)
Compound 3 was synthesized usingcompound 2 as described below.
下記のとおり、化合物2を用いて化合物3を合成した。 <Synthesis Example 2> (Synthesis of Compound 3)
Compound 3 was synthesized using
200mL三口フラスコに化合物2(2.00g、4.84mmol)、9-[4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]-9H-カルバゾール(2.14g、5.81mmol)(東京化成工業株式会社製)、及びTHF(48mL、0.1M)を仕込み、内部の雰囲気を窒素ガスで置換した後に、Pd2(dba)3(0.13g、0.15mmol)、P(tBu)3HBF4(0.088g、0.29mmol)、3M K3PO4aq(48mL)の順に仕込み、60℃に昇温した。
Compound 2 (2.00 g, 4.84 mmol), 9-[4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]-9H- was added to a 200 mL three-necked flask. Carbazole (2.14 g, 5.81 mmol) (manufactured by Tokyo Chemical Industry Co., Ltd.) and THF (48 mL, 0.1 M) were charged, and after replacing the internal atmosphere with nitrogen gas, Pd 2 (dba) 3 (0 .13 g, 0.15 mmol), P(tBu) 3 HBF 4 (0.088 g, 0.29 mmol), and 3M K 3 PO 4 aq (48 mL) were charged in this order and heated to 60°C.
昇温して2時間撹拌した後に、反応液を常温まで冷却した。反応液から有機層を抽出し、ヘキサンで希釈し、水で2回洗浄した後、硫酸マグネシウムで乾燥し、ろ過することにより硝酸マグネシウムを除去したろ液をロータリーエバポレーターで全量濃縮して粗生成物を得た。
After heating and stirring for 2 hours, the reaction solution was cooled to room temperature. The organic layer was extracted from the reaction solution, diluted with hexane, washed twice with water, dried over magnesium sulfate, and filtered to remove magnesium nitrate. got
得られた粗生成物をシリカゲルカラム(展開溶媒はヘキサン/酢酸エチル=100/0から98/2質量%とした。)にて精製することにより、化合物3を橙色の粘性液体として2.63g得た(収率67.9%)。
The resulting crude product was purified with a silica gel column (developing solvent was hexane/ethyl acetate = 100/0 to 98/2% by mass) to obtain 2.63 g of compound 3 as an orange viscous liquid. (Yield 67.9%).
<実施例1>(化合物4の合成)
下記のとおり、化合物3及び化合物12を用いて化合物4(化合物N-1)を合成した。 <Example 1> (Synthesis of Compound 4)
Compound 4 (compound N-1) was synthesized using compound 3 andcompound 12 as described below.
下記のとおり、化合物3及び化合物12を用いて化合物4(化合物N-1)を合成した。 <Example 1> (Synthesis of Compound 4)
Compound 4 (compound N-1) was synthesized using compound 3 and
50mL三口フラスコに化合物3(0.310g、0.387mmol)、脱水クロロホルム(19g、0.03M)、Adv. Mater. 2017, 29, 1703080.に記載の方法により合成した化合物12(0.153g、0.581mmol)、及びpyridine(0.306g、3.87mmol)を仕込み、60℃に昇温したオイルバスに三口フラスコをつけて保持した。
Compound 3 (0.310 g, 0.387 mmol), dehydrated chloroform (19 g, 0.03 M), Adv. Mater. 2017, 29, 1703080. Compound 12 (0.153 g, 0.581 mmol) synthesized by the method described in 1. and pyridine (0.306 g, 3.87 mmol) were charged, and a three-necked flask was attached to an oil bath heated to 60°C and held.
昇温して2時間撹拌した後に、三口フラスコをオイルバスから上げて常温まで放冷した。反応液を水で1回洗浄した後に、硫酸マグネシウムで脱水し、硫酸マグネシウムを桐山漏斗でろ過することで除去した。得られたろ液をロータリーエバポレーターで全量濃縮して粗生成物を得た。
After raising the temperature and stirring for 2 hours, the three-necked flask was removed from the oil bath and allowed to cool to room temperature. After the reaction solution was washed once with water, it was dehydrated with magnesium sulfate, and the magnesium sulfate was removed by filtration through a Kiriyama funnel. The obtained filtrate was concentrated by a rotary evaporator to obtain a crude product.
得られた粗生成物をシリカゲルカラム(展開溶媒:クロロホルム)にて精製した後、リサイクル分取GPC(展開溶媒:クロロホルム)を用いて精製することで化合物4を黒色固体として0.186g得た(収率46%)。
The resulting crude product was purified with a silica gel column (developing solvent: chloroform), and then purified using preparative recycled GPC (developing solvent: chloroform) to obtain 0.186 g of compound 4 as a black solid ( Yield 46%).
得られた化合物4について、NMRスペクトルを解析した。結果は下記のとおりである。
1H-NMR (400 MHz, CHLOROFORM-D) δ 8.72 (1H), 8.71 (1H), 8.13 (2H), 7.84-7.87 (3H), 7.64-7.67 (2H), 7.38-7.46 (5H), 7.28-7.32 (2H), 7.10 (s, 1H), 1.89-2.00 (4H), 1.22-1.50 (40H), 0.84 (6H) The NMR spectrum of the obtained compound 4 was analyzed. The results are as follows.
1H-NMR (400 MHz, CHLOROFORM-D) δ 8.72 (1H), 8.71 (1H), 8.13 (2H), 7.84-7.87 (3H), 7.64-7. 67 (2H), 7.38-7.46 (5H), 7.28-7.32 (2H), 7.10 (s, 1H), 1.89-2.00 (4H), 1.22 -1.50 (40H), 0.84 (6H)
1H-NMR (400 MHz, CHLOROFORM-D) δ 8.72 (1H), 8.71 (1H), 8.13 (2H), 7.84-7.87 (3H), 7.64-7.67 (2H), 7.38-7.46 (5H), 7.28-7.32 (2H), 7.10 (s, 1H), 1.89-2.00 (4H), 1.22-1.50 (40H), 0.84 (6H) The NMR spectrum of the obtained compound 4 was analyzed. The results are as follows.
1H-NMR (400 MHz, CHLOROFORM-D) δ 8.72 (1H), 8.71 (1H), 8.13 (2H), 7.84-7.87 (3H), 7.64-7. 67 (2H), 7.38-7.46 (5H), 7.28-7.32 (2H), 7.10 (s, 1H), 1.89-2.00 (4H), 1.22 -1.50 (40H), 0.84 (6H)
<実施例2>(化合物5の合成)
下記のとおり、化合物3及び化合物13を用いて化合物5(化合物N-2)を合成した。 <Example 2> (Synthesis of Compound 5)
Compound 5 (Compound N-2) was synthesized using Compound 3 andCompound 13 as follows.
下記のとおり、化合物3及び化合物13を用いて化合物5(化合物N-2)を合成した。 <Example 2> (Synthesis of Compound 5)
Compound 5 (Compound N-2) was synthesized using Compound 3 and
100mL三口フラスコに化合物3(0.750g、0.937mmol)、国際公開第2020/109823号に記載の方法に従って合成した化合物13(0.298g、1.22mmol)、pTsOH(0.535g、2.8mmol)、EtOH(16mL)、トルエン(31mL)、MgSO4(0.38g)を仕込み、60℃に昇温したオイルバスに三口フラスコをつけて保持した。
Compound 3 (0.750 g, 0.937 mmol), Compound 13 (0.298 g, 1.22 mmol) synthesized according to the method described in WO 2020/109823, pTsOH (0.535 g, 2. 8 mmol), EtOH (16 mL), toluene (31 mL), and MgSO 4 (0.38 g) were charged, and a three-necked flask was attached to an oil bath heated to 60° C. and held.
昇温して2時間撹拌した後に、三口フラスコを常温まで放冷した。得られた反応液をエバポレーターで濃縮した後に、反応液にトルエンを加え、水で3回洗浄した後、硫酸マグネシウムで乾燥し、ろ過して硫酸マグネシウムを除去した後に、得られたろ液をロータリーエバポレーターで全量濃縮して粗生成物を得た。
After raising the temperature and stirring for 2 hours, the three-necked flask was allowed to cool to room temperature. After concentrating the obtained reaction solution with an evaporator, toluene was added to the reaction solution, washed with water three times, dried over magnesium sulfate, filtered to remove magnesium sulfate, and the resulting filtrate was subjected to a rotary evaporator. to obtain a crude product.
得られた粗生成物をシリカゲルカラム(展開溶媒:クロロホルム)にて精製した後、リサイクル分取GPC(展開溶媒:クロロホルム)を用いて精製することで化合物5を黒色固体として0.495g得た(収率51%)。
After purifying the obtained crude product with a silica gel column (developing solvent: chloroform), 0.495 g of compound 5 was obtained as a black solid by purifying using recycle preparative GPC (developing solvent: chloroform) ( Yield 51%).
得られた化合物5について、NMRスペクトルを解析した。結果は下記のとおりである。
1H NMR (300 MHz, CDCl3) δ 8.94(s, 1H), 8.73(s, 1H), 8.10(2H), 8.06(1H), 7.88(2H),7.68 (2H), 7.42(5H), 7.31(3H), 7.14(1H), 1.97 (m, 4H), 1.49-1.18 (m, 40H), 0.84
(6H, -CH3). The NMR spectrum of the obtained compound 5 was analyzed. The results are as follows.
1H NMR (300 MHz, CDCl3) δ 8.94 (s, 1H), 8.73 (s, 1H), 8.10 (2H), 8.06 (1H), 7.88 (2H), 7. 68 (2H), 7.42 (5H), 7.31 (3H), 7.14 (1H), 1.97 (m, 4H), 1.49-1.18 (m, 40H), 0. 84
(6H, -CH3).
1H NMR (300 MHz, CDCl3) δ 8.94(s, 1H), 8.73(s, 1H), 8.10(2H), 8.06(1H), 7.88(2H),7.68 (2H), 7.42(5H), 7.31(3H), 7.14(1H), 1.97 (m, 4H), 1.49-1.18 (m, 40H), 0.84
(6H, -CH3). The NMR spectrum of the obtained compound 5 was analyzed. The results are as follows.
1H NMR (300 MHz, CDCl3) δ 8.94 (s, 1H), 8.73 (s, 1H), 8.10 (2H), 8.06 (1H), 7.88 (2H), 7. 68 (2H), 7.42 (5H), 7.31 (3H), 7.14 (1H), 1.97 (m, 4H), 1.49-1.18 (m, 40H), 0. 84
(6H, -CH3).
<合成例4>(化合物9の合成)
下記のとおり、化合物8を用いて化合物9を合成した。 <Synthesis Example 4> (Synthesis of Compound 9)
Compound 9 was synthesized using compound 8 as described below.
下記のとおり、化合物8を用いて化合物9を合成した。 <Synthesis Example 4> (Synthesis of Compound 9)
Compound 9 was synthesized using compound 8 as described below.
内部の雰囲気を窒素ガスで置換した100mL四口フラスコに、国際公開第2011/052709号の段落[0271]に記載の方法により合成した化合物8(1.1g、2.2mmol)、TMEDA(0.25g、2.2mmol)、及び脱水THFを16mL仕込み、ドライアイス及びアセトンを充填したバスを用いて、内温を-70℃まで冷却した。続いて四口フラスコ内にnBuLi(3.5mL、5mmol)をさらに仕込み、2時間保持した。
Compound 8 (1.1 g, 2.2 mmol) synthesized by the method described in paragraph [0271] of International Publication No. 2011/052709, TMEDA (0. 25 g, 2.2 mmol) and 16 mL of dehydrated THF were charged, and the internal temperature was cooled to -70°C using a bath filled with dry ice and acetone. Subsequently, nBuLi (3.5 mL, 5 mmol) was further charged into the four-necked flask and held for 2 hours.
DMF(0.47g、0.6mmol)を脱水THF1.8mLに溶解させて四口フラスコ内に仕込み、1時間保持した後に、常温まで昇温した。
DMF (0.47 g, 0.6 mmol) was dissolved in 1.8 mL of dehydrated THF, charged into a four-necked flask, held for 1 hour, and then heated to room temperature.
次いで、飽和塩化アンモニウム水溶液を四口フラスコにさらに仕込み、酢酸エチルで分液して有機層を得た。得られた有機層を硫酸マグネシウムを用いて乾燥させ、硫酸マグネシウムをろ過して取り除いた後に、得られたろ液をロータリーエバポレーターで濃縮して粗生成物を得た。
Next, a saturated aqueous ammonium chloride solution was added to the four-necked flask, and the mixture was separated with ethyl acetate to obtain an organic layer. The obtained organic layer was dried using magnesium sulfate, and after the magnesium sulfate was removed by filtration, the obtained filtrate was concentrated by a rotary evaporator to obtain a crude product.
得られた粗生成物をシリカゲルカラム(展開溶媒はヘキサン/酢酸エチル=100/2質量%とした。)にて精製することにより、化合物9を黄色の粘性液体として0.85g得た(収率78%)。
The obtained crude product was purified with a silica gel column (developing solvent was hexane/ethyl acetate=100/2% by mass) to obtain 0.85 g of compound 9 as a yellow viscous liquid (yield: 78%).
<合成例5>(化合物10の合成)
下記のとおり、化合物9を用いて化合物10(化合物N-3)を合成した。 <Synthesis Example 5> (Synthesis of Compound 10)
Compound 10 (Compound N-3) was synthesized using Compound 9 as described below.
下記のとおり、化合物9を用いて化合物10(化合物N-3)を合成した。 <Synthesis Example 5> (Synthesis of Compound 10)
Compound 10 (Compound N-3) was synthesized using Compound 9 as described below.
内部の雰囲気を窒素ガスで置換した100mL四口フラスコに、化合物9(0.85g、1.44mmol)、脱水クロロホルム(17g、20WR)、化合物12(1.14g、4.33mmol)、及びpyridine(0.05g、0.72mmol)を仕込み、65℃に昇温したオイルバスに四口フラスコをつけて保持した。
Compound 9 (0.85 g, 1.44 mmol), dehydrated chloroform (17 g, 20 WR), compound 12 (1.14 g, 4.33 mmol), and pyridine ( 0.05 g, 0.72 mmol) was charged, and a four-necked flask was attached to an oil bath heated to 65°C and held.
昇温して4時間撹拌した後に、常温まで放冷した。得られた反応液に水を注ぎ、分液ロートを用いて分液して下層の有機層を採取した後に、再度水を加えて分液して有機層を分取した。硫酸マグネシウムで有機層の脱水を行い、ろ過によって硫酸マグネシウムを取り除いた。得られたろ液をロータリーエバポレーターで全量濃縮して粗生成物を得た。
After raising the temperature and stirring for 4 hours, the mixture was allowed to cool to room temperature. Water was poured into the obtained reaction solution, and the solution was separated using a separating funnel to collect the lower organic layer. The organic layer was dehydrated with magnesium sulfate, and the magnesium sulfate was removed by filtration. The obtained filtrate was concentrated by a rotary evaporator to obtain a crude product.
得られた粗生成物をシリカゲルカラム(展開溶媒:クロロホルム)にて精製することにより、化合物10を褐色固体として0.37g得た(収率24%)。
By purifying the resulting crude product with a silica gel column (developing solvent: chloroform), 0.37 g of compound 10 was obtained as a brown solid (yield 24%).
<実施例3>(化合物N-5の合成)
下記のとおり、まず化合物21を合成した。 <Example 3> (Synthesis of compound N-5)
Compound 21 was first synthesized as described below.
下記のとおり、まず化合物21を合成した。 <Example 3> (Synthesis of compound N-5)
Compound 21 was first synthesized as described below.
具体的には、内部の雰囲気を窒素ガスで置換した500mL三口フラスコに、4,4-ビス(2-エチルヘキシル)-4H-シクロペンタ[2,1-b:3,4-b’]ジチオフェン(8.46g)(東京化成工業株式会社製)、脱水DMF(4.30g)、及び脱水クロロホルム(212mL)を仕込み、氷浴で0℃まで冷却した。
Specifically, 4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b:3,4-b′]dithiophene (8 .46 g) (manufactured by Tokyo Chemical Industry Co., Ltd.), dehydrated DMF (4.30 g), and dehydrated chloroform (212 mL) were charged and cooled to 0° C. in an ice bath.
次に、オキシ塩化リン(3.87g)を加えて常温まで昇温した後、14時間撹拌した。20%酢酸ナトリウム水でクエンチした後、有機層を抽出し、有機層を水で2回洗浄した後、硫酸マグネシウムで脱水し、硫酸マグネシウムをろ過によって除去した。ろ過によって得られたろ液をロータリーエバポレーターで全量濃縮することにより粗生成物を得た。
Next, phosphorus oxychloride (3.87 g) was added, the temperature was raised to room temperature, and the mixture was stirred for 14 hours. After quenching with 20% aqueous sodium acetate, the organic layer was extracted, washed with water twice, dried over magnesium sulfate, and magnesium sulfate was removed by filtration. A crude product was obtained by concentrating the filtrate obtained by filtration with a rotary evaporator.
得られた粗生成物をシリカゲルカラム(展開溶媒はクロロホルム/ヘキサン=70/30(質量%)とした。)にて精製することにより、化合物21を6.32g得た(収率70%)。
The resulting crude product was purified with a silica gel column (developing solvent was chloroform/hexane = 70/30 (mass%)) to obtain 6.32 g of compound 21 (yield 70%).
次いで、下記のとおり、化合物21を用いて化合物22を合成した。
Then, using compound 21, compound 22 was synthesized as follows.
具体的には、N2ガスで内部の雰囲気を置換した1L4つ口フラスコに化合物21(6.31g、14.7mmol)、テトラヒドロフラン(THF)(316mL)を仕込み、アイスバスで内温0℃に冷却した。N-ブロモスクシンイミド(NBS)(2.66g、14.9mmol)を加えた後、14時間撹拌し、反応液に水を注いだ。ヘキサンを加えて有機層を抽出した。
Specifically, compound 21 (6.31 g, 14.7 mmol) and tetrahydrofuran (THF) (316 mL) were charged in a 1 L four-necked flask whose internal atmosphere was replaced with N 2 gas, and the internal temperature was brought to 0°C in an ice bath. cooled. After adding N-bromosuccinimide (NBS) (2.66 g, 14.9 mmol), the mixture was stirred for 14 hours, and water was poured into the reaction solution. Hexane was added to extract the organic layer.
得られた有機層を水で2回洗浄し、硫酸マグネシウムで脱水し、硫酸マグネシウムをろ過によって除去した後、ろ液をロータリーエバポレーターで全量濃縮して粗生成物を得た。
The resulting organic layer was washed twice with water, dehydrated with magnesium sulfate, and the magnesium sulfate was removed by filtration, after which the filtrate was concentrated with a rotary evaporator to obtain a crude product.
得られた粗生成物をシリカゲルカラム(展開溶媒:ヘキサン/クロロホルム=50/50質量%)にて精製することにより、化合物22を7.40g得た。
7.40 g of compound 22 was obtained by purifying the resulting crude product with a silica gel column (developing solvent: hexane/chloroform=50/50% by mass).
次いで、下記のとおり、化合物22を用いて化合物23を合成した。
Then, compound 23 was synthesized using compound 22 as follows.
具体的には、200mL三口フラスコに化合物12(2.57g、5.04mmol)、9-[4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]-9H-カルバゾール(1.74g、6.05mmol)(東京化成工業株式会社製)、及びTHF(72mL)を仕込み、内部の雰囲気を窒素ガスで置換した後に、K2CO3aq(25mL)、及びPd(PPh3)4(0.583g、0.504mmol)をこの順に仕込み、60℃に昇温した。
Specifically, compound 12 (2.57 g, 5.04 mmol), 9-[4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) was added to a 200 mL three-necked flask. Phenyl]-9H-carbazole (1.74 g, 6.05 mmol) (manufactured by Tokyo Chemical Industry Co., Ltd.) and THF (72 mL) were charged, and after replacing the internal atmosphere with nitrogen gas, K 2 CO 3 aq (25 mL ), and Pd(PPh 3 ) 4 (0.583 g, 0.504 mmol) were charged in this order, and the temperature was raised to 60°C.
昇温して2時間撹拌した後に、反応液を常温まで冷却して、酢酸エチル72mLを加えた後、反応液から有機層を抽出した。得られた有機層を、水で2回洗浄した後、硫酸マグネシウムで乾燥し、ろ過することにより硝酸マグネシウムを除去したろ液をロータリーエバポレーターで全量濃縮して粗生成物を得た。
After raising the temperature and stirring for 2 hours, the reaction solution was cooled to room temperature, 72 mL of ethyl acetate was added, and the organic layer was extracted from the reaction solution. The resulting organic layer was washed twice with water, dried over magnesium sulfate, filtered to remove magnesium nitrate, and the entire filtrate was concentrated using a rotary evaporator to obtain a crude product.
得られた粗生成物をシリカゲルカラム(展開溶媒はヘキサン/トルエン=20/80)にて精製することにより、化合物23を3.14g得た(収率92.6%)。
By purifying the resulting crude product with a silica gel column (developing solvent: hexane/toluene = 20/80), 3.14 g of compound 23 was obtained (yield 92.6%).
次いで、下記のとおり、化合物23を用いて化合物N-5を合成した。
Then, compound N-5 was synthesized using compound 23 as follows.
具体的には、100mL3つ口フラスコに化合物23(0.500g、0.744mmol)、化合物13(0.236g、0.97mmol)、pTsOH・H2O(0.425g、2.23mmol)、EtOH(12mL)、トルエン(25mL)、MgSO4(0.25g)を仕込み、60℃に加熱したオイルバスにつけて保温した。2時間撹拌後に化合物13(0.093g、0.38mmol)を加えて、さらに4時間撹拌した。
Specifically, compound 23 (0.500 g, 0.744 mmol), compound 13 (0.236 g, 0.97 mmol), pTsOH·H 2 O (0.425 g, 2.23 mmol), EtOH (12 mL), toluene (25 mL), and MgSO 4 (0.25 g) were charged and kept in an oil bath heated to 60°C. After stirring for 2 hours, compound 13 (0.093 g, 0.38 mmol) was added and stirred for an additional 4 hours.
次に、3つ口フラスコをオイルバスから上げて常温まで放冷し、水を加えエバポレーターでEtOHを除去した後に、メタノールを加え、析出した固体を桐山漏斗(No.5Bろ紙を含む。)でろ過・回収することにより粗生成物を得た。
Next, lift the three-necked flask from the oil bath and allow it to cool to room temperature, add water and remove EtOH with an evaporator, add methanol, and filter the precipitated solid with a Kiriyama funnel (including No. 5B filter paper). A crude product was obtained by filtration and collection.
得られた粗生成物をクロロホルムで再結晶することにより、化合物N-5を茶色固体として0.527g(0.587mmol、収率79%、LC面百値:98.9%)得た。
By recrystallizing the resulting crude product from chloroform, 0.527 g (0.587 mmol, yield 79%, LC surface percentage: 98.9%) of compound N-5 was obtained as a brown solid.
得られた化合物N-5について、NMRスペクトルを解析した。結果は下記のとおりである。
1H-NMR (400 MHz, TETRAHYDROFURAN-D8) δ 8.97 (1H), 8.95 (1H), 8.39 (1H), 8.12 (2H), 8.02-8.05 (2H), 7.99 (s, 1H), 7.77 (1H), 7.71 (2H), 7.45 (d, 2H), 7.37 (2H), 7.24 (2H), 2.05-2.22 (m, 4H), 0.98-1.08 (m, 16H), 0.72-0.77 (m, 6H), 0.63-0.69 (m, 6H) The NMR spectrum of the obtained compound N-5 was analyzed. The results are as follows.
1H-NMR (400 MHz, TETRAHYDROFURAN-D8) δ 8.97 (1H), 8.95 (1H), 8.39 (1H), 8.12 (2H), 8.02-8.05 (2H) , 7.99 (s, 1H), 7.77 (1H), 7.71 (2H), 7.45 (d, 2H), 7.37 (2H), 7.24 (2H), 2.05 -2.22 (m, 4H), 0.98-1.08 (m, 16H), 0.72-0.77 (m, 6H), 0.63-0.69 (m, 6H)
1H-NMR (400 MHz, TETRAHYDROFURAN-D8) δ 8.97 (1H), 8.95 (1H), 8.39 (1H), 8.12 (2H), 8.02-8.05 (2H), 7.99 (s, 1H), 7.77 (1H), 7.71 (2H), 7.45 (d, 2H), 7.37 (2H), 7.24 (2H), 2.05-2.22 (m, 4H), 0.98-1.08 (m, 16H), 0.72-0.77 (m, 6H), 0.63-0.69 (m, 6H) The NMR spectrum of the obtained compound N-5 was analyzed. The results are as follows.
1H-NMR (400 MHz, TETRAHYDROFURAN-D8) δ 8.97 (1H), 8.95 (1H), 8.39 (1H), 8.12 (2H), 8.02-8.05 (2H) , 7.99 (s, 1H), 7.77 (1H), 7.71 (2H), 7.45 (d, 2H), 7.37 (2H), 7.24 (2H), 2.05 -2.22 (m, 4H), 0.98-1.08 (m, 16H), 0.72-0.77 (m, 6H), 0.63-0.69 (m, 6H)
(化合物のバンドギャップ(Eg))
上記のとおり用意した化合物N-1~N-5それぞれを、オルトキシレンに溶解させた溶液を得た。次に、得られた溶液それぞれを、ガラス基板上にスピンコート法により塗布して、塗布膜を形成し、ホットプレートで乾燥して、サンプルとした。 (Band gap (Eg) of compound)
A solution was obtained by dissolving each of the compounds N-1 to N-5 prepared as described above in ortho-xylene. Next, each of the obtained solutions was applied onto a glass substrate by spin coating to form a coating film, which was dried on a hot plate to obtain a sample.
上記のとおり用意した化合物N-1~N-5それぞれを、オルトキシレンに溶解させた溶液を得た。次に、得られた溶液それぞれを、ガラス基板上にスピンコート法により塗布して、塗布膜を形成し、ホットプレートで乾燥して、サンプルとした。 (Band gap (Eg) of compound)
A solution was obtained by dissolving each of the compounds N-1 to N-5 prepared as described above in ortho-xylene. Next, each of the obtained solutions was applied onto a glass substrate by spin coating to form a coating film, which was dried on a hot plate to obtain a sample.
バンドギャップは、化合物の吸収端波長を用いて下記式により算出した。
Eg=hc/吸収端波長
式中、hはプランク定数を表し、cは光速を表す。
なお、h=6.626×10-34Jsとし、c=3×108m/sとして計算した。 The bandgap was calculated by the following formula using the absorption edge wavelength of the compound.
Eg=hc/absorption edge wavelength
In the formula, h represents Planck's constant and c represents the speed of light.
The calculation was made with h=6.626×10 −34 Js and c=3×10 8 m/s.
Eg=hc/吸収端波長
式中、hはプランク定数を表し、cは光速を表す。
なお、h=6.626×10-34Jsとし、c=3×108m/sとして計算した。 The bandgap was calculated by the following formula using the absorption edge wavelength of the compound.
Eg=hc/absorption edge wavelength
In the formula, h represents Planck's constant and c represents the speed of light.
The calculation was made with h=6.626×10 −34 Js and c=3×10 8 m/s.
なお、吸収端波長は、下記の方法により求めた。
上記のサンプルから形成した薄膜について、吸光度を縦軸とし、波長を横軸とした吸収スペクトルを測定した。
得られた吸収スペクトルにおいて、ベースラインと、吸収ピーク曲線における長波長側の下降曲線にフィッティングする直線との交点の波長を、吸収端波長とした。 The absorption edge wavelength was obtained by the following method.
For the thin films formed from the above samples, absorption spectra were measured with the absorbance as the vertical axis and the wavelength as the horizontal axis.
In the obtained absorption spectrum, the wavelength at the intersection of the baseline and the straight line that fits the descending curve on the long wavelength side of the absorption peak curve was taken as the absorption edge wavelength.
上記のサンプルから形成した薄膜について、吸光度を縦軸とし、波長を横軸とした吸収スペクトルを測定した。
得られた吸収スペクトルにおいて、ベースラインと、吸収ピーク曲線における長波長側の下降曲線にフィッティングする直線との交点の波長を、吸収端波長とした。 The absorption edge wavelength was obtained by the following method.
For the thin films formed from the above samples, absorption spectra were measured with the absorbance as the vertical axis and the wavelength as the horizontal axis.
In the obtained absorption spectrum, the wavelength at the intersection of the baseline and the straight line that fits the descending curve on the long wavelength side of the absorption peak curve was taken as the absorption edge wavelength.
本実施例において用いた高分子化合物P-1及び化合物N-1~N-5のバンドギャップを、下記表4に示す。
The bandgaps of the polymer compound P-1 and the compounds N-1 to N-5 used in this example are shown in Table 4 below.
(吸収ピーク波長)
高分子化合物P―1について、常法に従って吸収スペクトルを得た。得られた吸収スペクトルにおいて、吸光度が最も大きい吸収ピークに対応する波長に対応する値を「吸収ピーク波長」とした。高分子化合物P―1の吸収ピーク波長は921nmであった。 (absorption peak wavelength)
An absorption spectrum was obtained for the polymer compound P-1 according to a conventional method. In the obtained absorption spectrum, the value corresponding to the wavelength corresponding to the absorption peak with the highest absorbance was defined as "absorption peak wavelength". The absorption peak wavelength of the polymer compound P-1 was 921 nm.
高分子化合物P―1について、常法に従って吸収スペクトルを得た。得られた吸収スペクトルにおいて、吸光度が最も大きい吸収ピークに対応する波長に対応する値を「吸収ピーク波長」とした。高分子化合物P―1の吸収ピーク波長は921nmであった。 (absorption peak wavelength)
An absorption spectrum was obtained for the polymer compound P-1 according to a conventional method. In the obtained absorption spectrum, the value corresponding to the wavelength corresponding to the absorption peak with the highest absorbance was defined as "absorption peak wavelength". The absorption peak wavelength of the polymer compound P-1 was 921 nm.
本実施形態におけるn型半導体材料である上記化合物N-1~N-5に含まれる構成単位のLUMOのエネルギーレベルの値(eV)は、当該構成単位に対応する化合物について計算科学的手法を用いて算出した。
The LUMO energy level values (eV) of the structural units contained in the compounds N-1 to N-5, which are the n-type semiconductor materials in the present embodiment, are calculated using a computational scientific method for the compounds corresponding to the structural units. calculated by
具体的には、構成単位同士間の結合を切断し、切断により生じた結合手に水素原子を付加した、各構成単位に対応する化合物(構造)それぞれについて、量子化学計算プログラムGaussian 03を適用して、B3LYPレベルの密度汎関数法により、基底状態の構造最適化を行い、最適化された構造について、基底関数として6-31g*を用いて算出して得られた値を、各構成単位のLUMOのエネルギーレベルの値とした。
Specifically, the quantum chemical calculation program Gaussian 03 is applied to each compound (structure) corresponding to each structural unit, in which the bonds between the structural units are cut and hydrogen atoms are added to the bonds generated by the cutting. Then, the structure of the ground state is optimized by the B3LYP level density functional theory, and the value obtained by calculating using 6-31g* as the basis function for the optimized structure is calculated for each structural unit. A value of the LUMO energy level was used.
結果を下記表5~表7に示した。なお、算出にあたり、化合物(構造)に含まれうるアルキル基については、その代表としてプロピル基(-CH2-CH2-CH3)を例にとって計算した。
The results are shown in Tables 5 to 7 below. In the calculation , a propyl group ( --CH.sub.2--CH.sub.2--CH.sub.3) was used as a representative example of an alkyl group that can be contained in a compound (structure).
上記のとおり、化合物N-1及びN-2におけるD1のLUMOのエネルギーレベルの値(ED-LUMO)と、B1を構成する1以上の構成単位のうちの少なくとも1つの構成単位のLUMOのエネルギーレベルの値(Eπ-LUMO)と、A1のLUMOのエネルギーレベルの値(EA-LUMO)とは、式「ED-LUMO>EB-LUMO>EA-LUMO」を満たしていた。
As described above, the LUMO energy level value (E D-LUMO ) of D 1 in compounds N-1 and N-2 and the LUMO of at least one structural unit among the one or more structural units constituting B 1 The energy level value (E π-LUMO ) of A 1 and the energy level value (E A-LUMO ) of the LUMO of A 1 satisfy the expression “E D-LUMO >E B-LUMO >E A-LUMO ” was
<実施例4>(インク組成物I-1の調製)
溶媒であるo-キシレン(oXAP)と安息香酸メチル(MBZ)(95/5=体積%
)の混合溶液に、p型半導体材料である高分子化合物P―1をインク組成物の全重量に対し1.3質量%の濃度となるように、また、n型半導体材料である化合物N-1をインク組成物の全重量に対して1.3質量%の濃度となるように(p型半導体材料/n型半導体材料=1/1)混合し、60℃で8時間撹拌を行って得られた混合液をフィルターを用いてろ過することにより、インク組成物(I-1)を得た。成分等については下記表8にも示した。 <Example 4> (Preparation of ink composition I-1)
Solvent o-xylene (oXAP) and methyl benzoate (MBZ) (95/5 = % by volume
), the polymer compound P-1, which is a p-type semiconductor material, is added to a concentration of 1.3% by mass with respect to the total weight of the ink composition, and the compound N-, which is an n-type semiconductor material, is added to the mixed solution of 1 was mixed so as to have a concentration of 1.3% by mass with respect to the total weight of the ink composition (p-type semiconductor material/n-type semiconductor material=1/1), and the mixture was stirred at 60° C. for 8 hours. An ink composition (I-1) was obtained by filtering the resulting mixed solution using a filter. The ingredients and the like are also shown in Table 8 below.
溶媒であるo-キシレン(oXAP)と安息香酸メチル(MBZ)(95/5=体積%
)の混合溶液に、p型半導体材料である高分子化合物P―1をインク組成物の全重量に対し1.3質量%の濃度となるように、また、n型半導体材料である化合物N-1をインク組成物の全重量に対して1.3質量%の濃度となるように(p型半導体材料/n型半導体材料=1/1)混合し、60℃で8時間撹拌を行って得られた混合液をフィルターを用いてろ過することにより、インク組成物(I-1)を得た。成分等については下記表8にも示した。 <Example 4> (Preparation of ink composition I-1)
Solvent o-xylene (oXAP) and methyl benzoate (MBZ) (95/5 = % by volume
), the polymer compound P-1, which is a p-type semiconductor material, is added to a concentration of 1.3% by mass with respect to the total weight of the ink composition, and the compound N-, which is an n-type semiconductor material, is added to the mixed solution of 1 was mixed so as to have a concentration of 1.3% by mass with respect to the total weight of the ink composition (p-type semiconductor material/n-type semiconductor material=1/1), and the mixture was stirred at 60° C. for 8 hours. An ink composition (I-1) was obtained by filtering the resulting mixed solution using a filter. The ingredients and the like are also shown in Table 8 below.
<実施例5>(インク組成物I-2の調製)
n型半導体材料を下記表8に示す組合せとして使用した以外は、実施例4と同様にして、インク組成物(I-2)の調製を行った。 <Example 5> (Preparation of ink composition I-2)
Ink composition (I-2) was prepared in the same manner as in Example 4, except that the combinations of n-type semiconductor materials shown in Table 8 below were used.
n型半導体材料を下記表8に示す組合せとして使用した以外は、実施例4と同様にして、インク組成物(I-2)の調製を行った。 <Example 5> (Preparation of ink composition I-2)
Ink composition (I-2) was prepared in the same manner as in Example 4, except that the combinations of n-type semiconductor materials shown in Table 8 below were used.
<調製例1>(インク組成物(I-3)の調製)
n型半導体材料を下記表8に示す組合せとして使用した以外は、実施例4と同様にして、インク組成物(I-3)の調製を行った。 <Preparation Example 1> (Preparation of ink composition (I-3))
Ink composition (I-3) was prepared in the same manner as in Example 4, except that the combinations of n-type semiconductor materials shown in Table 8 below were used.
n型半導体材料を下記表8に示す組合せとして使用した以外は、実施例4と同様にして、インク組成物(I-3)の調製を行った。 <Preparation Example 1> (Preparation of ink composition (I-3))
Ink composition (I-3) was prepared in the same manner as in Example 4, except that the combinations of n-type semiconductor materials shown in Table 8 below were used.
<調製例2>(インク組成物(I-4)の調製)
溶媒をオルトジクロロベンゼン(ODCB)とし、n型半導体材料を下記表8に示す組合せとして使用した以外は、実施例4と同様にして、インク組成物(I-4)の調製を行った。 <Preparation Example 2> (Preparation of ink composition (I-4))
Ink composition (I-4) was prepared in the same manner as in Example 4, except that ortho-dichlorobenzene (ODCB) was used as the solvent and the combination of n-type semiconductor materials shown in Table 8 below was used.
溶媒をオルトジクロロベンゼン(ODCB)とし、n型半導体材料を下記表8に示す組合せとして使用した以外は、実施例4と同様にして、インク組成物(I-4)の調製を行った。 <Preparation Example 2> (Preparation of ink composition (I-4))
Ink composition (I-4) was prepared in the same manner as in Example 4, except that ortho-dichlorobenzene (ODCB) was used as the solvent and the combination of n-type semiconductor materials shown in Table 8 below was used.
<実施例6>(インク組成物I-5の調製)
n型半導体材料を下記表8に示す組合せとして使用した以外は、実施例4と同様にして、インク組成物(I-5)の調製を行った。 <Example 6> (Preparation of ink composition I-5)
Ink composition (I-5) was prepared in the same manner as in Example 4, except that the combinations of n-type semiconductor materials shown in Table 8 below were used.
n型半導体材料を下記表8に示す組合せとして使用した以外は、実施例4と同様にして、インク組成物(I-5)の調製を行った。 <Example 6> (Preparation of ink composition I-5)
Ink composition (I-5) was prepared in the same manner as in Example 4, except that the combinations of n-type semiconductor materials shown in Table 8 below were used.
<実施例7>(光電変換素子の製造及び評価)
(1)光電変換素子及びその封止体の製造
スパッタ法により50nmの厚さのITO薄膜(陽極)が形成されたガラス基板を用意し、このガラス基板に対し、表面処理としてオゾンUV処理を行った。 <Example 7> (Manufacture and evaluation of photoelectric conversion element)
(1) Production of a photoelectric conversion element and its encapsulant A glass substrate on which an ITO thin film (anode) having a thickness of 50 nm is formed by a sputtering method is prepared, and this glass substrate is subjected to ozone UV treatment as surface treatment. rice field.
(1)光電変換素子及びその封止体の製造
スパッタ法により50nmの厚さのITO薄膜(陽極)が形成されたガラス基板を用意し、このガラス基板に対し、表面処理としてオゾンUV処理を行った。 <Example 7> (Manufacture and evaluation of photoelectric conversion element)
(1) Production of a photoelectric conversion element and its encapsulant A glass substrate on which an ITO thin film (anode) having a thickness of 50 nm is formed by a sputtering method is prepared, and this glass substrate is subjected to ozone UV treatment as surface treatment. rice field.
次に、インク組成物(I-1)を、ITO薄膜上にスピンコート法により塗布して塗膜を形成した後、窒素ガス雰囲気下で100℃に加熱したホットプレートを用いて10分間加熱処理して乾燥させることにより、活性層を形成した。形成された活性層の厚さは約300nmであった。
Next, the ink composition (I-1) was applied onto the ITO thin film by spin coating to form a coating film, and then heat-treated for 10 minutes using a hot plate heated to 100° C. in a nitrogen gas atmosphere. and dried to form an active layer. The thickness of the formed active layer was about 300 nm.
次に、形成された活性層上にスピンコート法によりZnOを塗布して約50nmの厚さの電子輸送層を形成した。
Next, ZnO was applied onto the formed active layer by spin coating to form an electron transport layer with a thickness of about 50 nm.
次いで、形成された電子輸送層上に、銀(Ag)層を約60nmの厚さで形成し、陰極とした。
以上の工程により光電変換素子が、ガラス基板上に製造された。 Next, a silver (Ag) layer having a thickness of about 60 nm was formed on the formed electron transport layer to form a cathode.
A photoelectric conversion element was manufactured on the glass substrate by the above steps.
以上の工程により光電変換素子が、ガラス基板上に製造された。 Next, a silver (Ag) layer having a thickness of about 60 nm was formed on the formed electron transport layer to form a cathode.
A photoelectric conversion element was manufactured on the glass substrate by the above steps.
次に、製造された光電変換素子の周辺を囲むように、支持基板であるガラス基板上に封止材であるUV硬化性封止剤を塗布し、封止基板であるガラス基板を貼り合わせた後、UV光を照射することで、光検出素子を支持基板と封止基板との間隙に封止することにより光電変換素子の封止体を得た。支持基板と封止基板との間隙に封止された光電変換素子の厚さ方向から見たときの平面的な形状は2mm×2mmの正方形であった。得られた封止体をサンプル1とした。
Next, a UV curable sealant as a sealing material was applied onto a glass substrate as a support substrate so as to surround the manufactured photoelectric conversion element, and the glass substrate as a sealing substrate was bonded. After that, by irradiating UV light, the photodetector was sealed in the gap between the supporting substrate and the sealing substrate, thereby obtaining a sealed body of the photoelectric conversion element. The planar shape of the photoelectric conversion element sealed in the gap between the supporting substrate and the sealing substrate was a square of 2 mm×2 mm when viewed from the thickness direction. The resulting sealed body was designated as Sample 1.
(2)光電変換素子の評価(暗電流の評価)
製造されたサンプル1に対し、光が照射されない暗状態において、-10Vから2Vの電圧を印加し、公知の手法を用いて測定された-2Vの逆バイアス電圧印加時の電流値を暗電流の値として得た。結果を下記表9に示す。 (2) Evaluation of photoelectric conversion element (evaluation of dark current)
A voltage of −10 V to 2 V was applied to the manufacturedsample 1 in a dark state where light was not irradiated, and the current value at the time of applying a reverse bias voltage of −2 V measured using a known method was the dark current. obtained as a value. The results are shown in Table 9 below.
製造されたサンプル1に対し、光が照射されない暗状態において、-10Vから2Vの電圧を印加し、公知の手法を用いて測定された-2Vの逆バイアス電圧印加時の電流値を暗電流の値として得た。結果を下記表9に示す。 (2) Evaluation of photoelectric conversion element (evaluation of dark current)
A voltage of −10 V to 2 V was applied to the manufactured
<実施例8及び9、並びに比較例1及び2>(光電変換素子の製造及び評価)
インク組成物(I-1)の代わりに、インク組成物(I-2)~(I-5)を用いた以外は、既に説明した実施例7と同様にして、光電変換素子の封止体を製造し、評価した。結果を下記表9に示す。 <Examples 8 and 9, and Comparative Examples 1 and 2> (Production and evaluation of photoelectric conversion element)
In the same manner as in Example 7 already described, except that the ink compositions (I-2) to (I-5) were used instead of the ink composition (I-1), a sealed body of a photoelectric conversion element was produced. was manufactured and evaluated. The results are shown in Table 9 below.
インク組成物(I-1)の代わりに、インク組成物(I-2)~(I-5)を用いた以外は、既に説明した実施例7と同様にして、光電変換素子の封止体を製造し、評価した。結果を下記表9に示す。 <Examples 8 and 9, and Comparative Examples 1 and 2> (Production and evaluation of photoelectric conversion element)
In the same manner as in Example 7 already described, except that the ink compositions (I-2) to (I-5) were used instead of the ink composition (I-1), a sealed body of a photoelectric conversion element was produced. was manufactured and evaluated. The results are shown in Table 9 below.
1 イメージ検出部
2 表示装置
10 光電変換素子
11、210 支持基板
12 陽極
13 正孔輸送層
14 活性層
15 電子輸送層
16 陰極
17 封止部材
20 CMOSトランジスタ基板
30 層間絶縁膜
32 層間配線部
40 封止層
42 シンチレータ
44 反射層
46 保護層
50 カラーフィルター
100 指紋検出部
200 表示パネル部
200a 表示領域
220 有機EL素子
230 タッチセンサーパネル
240 封止基板
300 静脈検出部
302 ガラス基板
304 光源部
306 カバー部
310 挿入部
400 TOF型測距装置用イメージ検出部
401 絶縁層
402 浮遊拡散層
404 フォトゲート
406 遮光部 REFERENCE SIGNSLIST 1 image detection section 2 display device 10 photoelectric conversion element 11, 210 support substrate 12 anode 13 hole transport layer 14 active layer 15 electron transport layer 16 cathode 17 sealing member 20 CMOS transistor substrate 30 interlayer insulating film 32 interlayer wiring section 40 sealing Stopping layer 42 Scintillator 44 Reflective layer 46 Protective layer 50 Color filter 100 Fingerprint detection part 200 Display panel part 200a Display area 220 Organic EL element 230 Touch sensor panel 240 Sealing substrate 300 Vein detection part 302 Glass substrate 304 Light source part 306 Cover part 310 Insertion section 400 Image detection section for TOF type rangefinder 401 Insulation layer 402 Floating diffusion layer 404 Photogate 406 Light shielding section
2 表示装置
10 光電変換素子
11、210 支持基板
12 陽極
13 正孔輸送層
14 活性層
15 電子輸送層
16 陰極
17 封止部材
20 CMOSトランジスタ基板
30 層間絶縁膜
32 層間配線部
40 封止層
42 シンチレータ
44 反射層
46 保護層
50 カラーフィルター
100 指紋検出部
200 表示パネル部
200a 表示領域
220 有機EL素子
230 タッチセンサーパネル
240 封止基板
300 静脈検出部
302 ガラス基板
304 光源部
306 カバー部
310 挿入部
400 TOF型測距装置用イメージ検出部
401 絶縁層
402 浮遊拡散層
404 フォトゲート
406 遮光部 REFERENCE SIGNS
Claims (13)
- p型半導体材料とn型半導体材料とを含む組成物であって、
前記n型半導体材料が下記式(I)で表される化合物を含む、組成物。
D1-B1-A1 (I)
(式(I)中、
D1は、電子供与性の基を表し、
A1は、電子求引性の基を表し、
B1は、1以上の構成単位を含み、π共役系を構成している2価の基を表す。) A composition comprising a p-type semiconductor material and an n-type semiconductor material,
A composition, wherein the n-type semiconductor material contains a compound represented by the following formula (I).
D 1 -B 1 -A 1 (I)
(In formula (I),
D 1 represents an electron-donating group,
A 1 represents an electron-withdrawing group,
B 1 represents a divalent group containing one or more structural units and forming a π-conjugated system. ) - 前記n型半導体材料のバンドギャップが、前記p型半導体材料のバンドギャップよりも大きい、請求項1に記載の組成物。 The composition according to claim 1, wherein the bandgap of the n-type semiconductor material is larger than the bandgap of the p-type semiconductor material.
- D1のLUMOのエネルギーレベル(ED-LUMO)と、B1を構成する1以上の構成単位のうちの少なくとも1つの構成単位のLUMOのエネルギーレベル(Eπ-LUMO)と、A1のLUMOのエネルギーレベル(EA-LUMO)とが下記式で表される条件を満たす、請求項1又は2に記載の組成物。
ED-LUMO>EB-LUMO>EA-LUMO
The LUMO energy level (E D-LUMO ) of D 1 , the LUMO energy level (E π-LUMO ) of at least one structural unit among the one or more structural units constituting B 1 , and the LUMO of A 1 The composition according to claim 1 or 2, wherein the energy level (E A-LUMO ) of and satisfies the condition represented by the following formula.
E D-LUMO >E B-LUMO >E A-LUMO
- 前記p型半導体材料が、高分子化合物である、請求項1又は2に記載の組成物。 The composition according to claim 1 or 2, wherein the p-type semiconductor material is a polymer compound.
- 前記p型半導体材料が、吸収ピーク波長が700nmよりも大きい高分子化合物である、請求項4に記載の組成物。 The composition according to claim 4, wherein the p-type semiconductor material is a polymer compound having an absorption peak wavelength greater than 700 nm.
- 請求項1又は2に記載の組成物と、溶媒とを含むインク組成物。 An ink composition comprising the composition according to claim 1 or 2 and a solvent.
- 請求項1又は2に記載の組成物を含む、バルクヘテロ接合構造を有する膜。 A film having a bulk heterojunction structure, comprising the composition according to claim 1 or 2.
- 請求項7に記載の膜を活性層として含む、光電変換素子。 A photoelectric conversion device comprising the film according to claim 7 as an active layer.
- 光検出素子である、請求項8に記載の光電変換素子。 The photoelectric conversion element according to claim 8, which is a photodetector.
- 下記式(I)で表される化合物。
D1-B1-A1 (I)
(式(I)中、
D1は、電子供与性の基を表し、
A1は、電子求引性の基であって、環構造を有する電子求引性の基を表し、
B1は、1以上の構成単位を含み、π共役系を構成している2価の基を表し、
前記1以上の構成単位のうちの少なくとも1つである第1の構成単位は、下記式(II)で表される構成単位であり、かつ該第1の構成単位以外の残余の第2の構成単位は不飽和結合を含む2価の基、2価の芳香族炭素環基又は2価の芳香族複素環基である。
前記第1の構成単位が2つ以上ある場合、2つ以上ある第1の構成単位は、互いに同一であっても異なっていてもよい。第2の構成単位が2つ以上ある場合、2つ以上ある第2の構成単位は、互いに同一であっても異なっていてもよい。)
Ar1及びAr2は、それぞれ独立して、置換基を有していてもよい芳香族炭素環又は置換基を有していてもよい芳香族複素環を表し、
Yは、直接結合、-C(=O)-で表される基又は酸素原子を表し、
Rは、それぞれ独立して、
水素原子、
ハロゲン原子、
置換基を有していてもよいアルキル基、
置換基を有していてもよいシクロアルキル基、
置換基を有していてもよいアリール基、
置換基を有していてもよいアルキルオキシ基、
置換基を有していてもよいシクロアルキルオキシ基、
置換基を有していてもよいアリールオキシ基、
置換基を有していてもよいアルキルチオ基、
置換基を有していてもよいシクロアルキルチオ基、
置換基を有していてもよいアリールチオ基、
置換基を有していてもよい1価の複素環基、
置換基を有していてもよい置換アミノ基、
置換基を有していてもよいアシル基、
置換基を有していてもよいイミン残基、
置換基を有していてもよいアミド基、
置換基を有していてもよい酸イミド基、
置換基を有していてもよい置換オキシカルボニル基、
置換基を有していてもよいアルケニル基、
置換基を有していてもよいシクロアルケニル基、
置換基を有していてもよいアルキニル基、
置換基を有していてもよいシクロアルキニル基、
シアノ基、
ニトロ基、
-C(=O)-Raで表される基、又は
-SO2-Rbで表される基を表し、
Ra及びRbは、それぞれ独立して、
水素原子、
置換基を有していてもよいアルキル基、
置換基を有していてもよいアリール基、
置換基を有していてもよいアルキルオキシ基、
置換基を有していてもよいアリールオキシ基、又は
置換基を有していてもよい1価の複素環基を表す。
複数あるRは、互いに同一であっても異なっていてもよい。) A compound represented by the following formula (I).
D 1 -B 1 -A 1 (I)
(In formula (I),
D 1 represents an electron-donating group,
A 1 is an electron-withdrawing group and represents an electron-withdrawing group having a ring structure;
B 1 represents a divalent group comprising one or more structural units and constituting a π-conjugated system,
The first structural unit, which is at least one of the one or more structural units, is a structural unit represented by the following formula (II), and the remaining second structural unit other than the first structural unit A unit is a divalent group containing an unsaturated bond, a divalent aromatic carbocyclic group or a divalent aromatic heterocyclic group.
When there are two or more first structural units, the two or more first structural units may be the same or different. When there are two or more second structural units, the two or more second structural units may be the same or different. )
Ar 1 and Ar 2 each independently represent an optionally substituted aromatic carbocyclic ring or an optionally substituted aromatic heterocyclic ring,
Y represents a direct bond, a group represented by -C(=O)- or an oxygen atom,
R are each independently
hydrogen atom,
halogen atom,
an optionally substituted alkyl group,
a cycloalkyl group optionally having a substituent,
an aryl group optionally having a substituent,
an optionally substituted alkyloxy group,
a cycloalkyloxy group optionally having a substituent,
an optionally substituted aryloxy group,
an optionally substituted alkylthio group,
a cycloalkylthio group optionally having a substituent,
an optionally substituted arylthio group,
a monovalent heterocyclic group optionally having a substituent,
a substituted amino group which may have a substituent,
an acyl group optionally having a substituent,
an imine residue optionally having a substituent,
an amide group optionally having a substituent,
an acid imide group optionally having a substituent,
a substituted oxycarbonyl group optionally having a substituent,
an optionally substituted alkenyl group,
a cycloalkenyl group optionally having a substituent,
an optionally substituted alkynyl group,
a cycloalkynyl group optionally having a substituent,
cyano group,
nitro group,
a group represented by —C(=O)—R a or a group represented by —SO 2 —R b ,
R a and R b each independently
hydrogen atom,
an optionally substituted alkyl group,
an aryl group optionally having a substituent,
an optionally substituted alkyloxy group,
It represents an optionally substituted aryloxy group or an optionally substituted monovalent heterocyclic group.
Multiple R's may be the same or different. ) - 前記第1の構成単位が、下記式(III)で表される構成単位である、請求項10に記載の化合物。
Y及びRは、前記定義のとおりであり、
X1及びX2は、それぞれ独立して、硫黄原子又は酸素原子を表し、
Z1及びZ2は、それぞれ独立して、=C(R)-で表される基又は窒素原子を表す。) 11. The compound according to claim 10, wherein the first structural unit is a structural unit represented by formula (III) below.
Y and R are as defined above;
X 1 and X 2 each independently represent a sulfur atom or an oxygen atom,
Z 1 and Z 2 each independently represent a group represented by =C(R)- or a nitrogen atom. ) - 前記第1の構成単位が、下記式(IV-1)で表される構成単位である、請求項11に記載の化合物。
Yは、-C(=O)-で表される基又は酸素原子を表し、
Rは、それぞれ独立して、
水素原子、
ハロゲン原子、
置換基を有していてもよいアルキル基、
置換基を有していてもよいシクロアルキル基、
置換基を有していてもよいアリール基、
置換基を有していてもよいアルキルオキシ基、
置換基を有していてもよいシクロアルキルオキシ基、
置換基を有していてもよいアリールオキシ基、
置換基を有していてもよいアルキルチオ基、
置換基を有していてもよいシクロアルキルチオ基、
置換基を有していてもよいアリールチオ基、
置換基を有していてもよい1価の複素環基、
置換基を有していてもよい置換アミノ基、
置換基を有していてもよいアシル基、
置換基を有していてもよいイミン残基、
置換基を有していてもよいアミド基、
置換基を有していてもよい酸イミド基、
置換基を有していてもよい置換オキシカルボニル基、
置換基を有していてもよいアルケニル基、
置換基を有していてもよいシクロアルケニル基、
置換基を有していてもよいアルキニル基、
置換基を有していてもよいシクロアルキニル基、
シアノ基、
ニトロ基、
-C(=O)-Raで表される基、又は
-SO2-Rbで表される基を表し、
Ra及びRbは、それぞれ独立して、
水素原子、
置換基を有していてもよいアルキル基、
置換基を有していてもよいアリール基、
置換基を有していてもよいアルキルオキシ基、
置換基を有していてもよいアリールオキシ基、又は
置換基を有していてもよい1価の複素環基を表す。
複数あるRは、互いに同一であっても異なっていてもよい。) The compound according to claim 11, wherein the first structural unit is a structural unit represented by the following formula (IV-1).
Y represents a group represented by -C(=O)- or an oxygen atom,
R are each independently
hydrogen atom,
halogen atom,
an optionally substituted alkyl group,
a cycloalkyl group optionally having a substituent,
an aryl group optionally having a substituent,
an optionally substituted alkyloxy group,
a cycloalkyloxy group optionally having a substituent,
an optionally substituted aryloxy group,
an optionally substituted alkylthio group,
a cycloalkylthio group optionally having a substituent,
an optionally substituted arylthio group,
a monovalent heterocyclic group optionally having a substituent,
a substituted amino group which may have a substituent,
an acyl group optionally having a substituent,
an imine residue optionally having a substituent,
an amide group optionally having a substituent,
an acid imide group optionally having a substituent,
a substituted oxycarbonyl group optionally having a substituent,
an optionally substituted alkenyl group,
a cycloalkenyl group optionally having a substituent,
an optionally substituted alkynyl group,
a cycloalkynyl group optionally having a substituent,
cyano group,
nitro group,
a group represented by —C(=O)—R a or a group represented by —SO 2 —R b ,
R a and R b each independently
hydrogen atom,
an optionally substituted alkyl group,
an aryl group optionally having a substituent,
an optionally substituted alkyloxy group,
It represents an optionally substituted aryloxy group or an optionally substituted monovalent heterocyclic group.
Multiple R's may be the same or different. ) - B1が、下記式(VI-1)~式(VI-16)で表される構造からなる群から選択されるいずれか1つの構造を有する2価の基である、請求項10~12のいずれか1項に記載の化合物。
―CU1- (VI-1)
-CU1-CU1- (VI-2)
-CU1-CU2- (VI-3)
-CU1-CU1-CU1- (VI-4)
―CU1-CU2-CU1- (VI-5)
―CU1-CU1-CU2- (VI-6)
-CU1-CU2-CU2- (VI-7)
―CU2-CU1-CU2- (VI-8)
-CU1-CU1-CU1-CU1- (VI-9)
-CU1-CU1-CU1-CU2- (VI-10)
-CU1-CU1-CU2-CU1- (VI-11)
-CU1-CU1-CU2-CU2- (VI-12)
-CU1-CU2-CU1-CU2- (VI-13)
-CU1-CU2-CU2-CU1- (VI-14)
-CU1-CU2-CU2-CU2- (VI-15)
-CU2-CU1-CU2-CU2- (VI-16)
(式(V-1)~式(V-16)中、
CU1は、前記第1の構成単位を表し、
CU2は、前記第2の構成単位を表す。
CU1が2つ以上ある場合、2つ以上あるCU1は、互いに同一であっても異なっていてもよく、CU2が2つ以上ある場合、2つ以上あるCU2は、互いに同一であっても異なっていてもよい。ただし、式(VI-8)においては、2つ存在しているCU2が同一である場合が除かれる。) B 1 is a divalent group having any one structure selected from the group consisting of structures represented by the following formulas (VI-1) to (VI-16): A compound according to any one of claims 1 to 3.
-CU1- (VI-1)
-CU1-CU1- (VI-2)
-CU1-CU2- (VI-3)
-CU1-CU1-CU1- (VI-4)
-CU1-CU2-CU1- (VI-5)
-CU1-CU1-CU2- (VI-6)
-CU1-CU2-CU2- (VI-7)
-CU2-CU1-CU2- (VI-8)
-CU1-CU1-CU1-CU1- (VI-9)
-CU1-CU1-CU1-CU2- (VI-10)
-CU1-CU1-CU2-CU1- (VI-11)
-CU1-CU1-CU2-CU2- (VI-12)
-CU1-CU2-CU1-CU2- (VI-13)
-CU1-CU2-CU2-CU1- (VI-14)
-CU1-CU2-CU2-CU2- (VI-15)
-CU2-CU1-CU2-CU2- (VI-16)
(In the formulas (V-1) to (V-16),
CU1 represents the first structural unit,
CU2 represents the second structural unit.
When there are two or more CU1s, the two or more CU1s may be the same or different, and when there are two or more CU2s, the two or more CU2s may be the same or different. may However, in formula (VI-8), the case where two CU2s are the same is excluded. )
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280051331.0A CN117769897A (en) | 2021-07-28 | 2022-07-25 | Compound, composition, and photoelectric conversion element |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021123353 | 2021-07-28 | ||
JP2021-123353 | 2021-07-28 | ||
JP2022101134A JP2023020911A (en) | 2021-07-28 | 2022-06-23 | Compound, composition and photoelectric conversion element |
JP2022-101134 | 2022-06-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023008376A1 true WO2023008376A1 (en) | 2023-02-02 |
Family
ID=85086973
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/028636 WO2023008376A1 (en) | 2021-07-28 | 2022-07-25 | Compound, composition, and photoelectric conversion element |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW202311266A (en) |
WO (1) | WO2023008376A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012144447A (en) * | 2011-01-07 | 2012-08-02 | Hiroshima Univ | DONOR-π-ACCEPTOR COMPOUND, FLUORESCENT DYE COMPOUND, AND FLUORESCENT DYE COMPOUND FOR DYE-SENSITIZED SOLAR BATTERY |
JP2018142597A (en) * | 2017-02-27 | 2018-09-13 | 三菱ケミカル株式会社 | Solar cell module |
JP2019134030A (en) * | 2018-01-30 | 2019-08-08 | 国立研究開発法人科学技術振興機構 | Photodetector |
CN112225882A (en) * | 2020-09-11 | 2021-01-15 | 华南理工大学 | N-type polymer containing non-condensed ring acceptor unit and preparation method and application thereof |
-
2022
- 2022-07-25 WO PCT/JP2022/028636 patent/WO2023008376A1/en active Application Filing
- 2022-07-26 TW TW111127956A patent/TW202311266A/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012144447A (en) * | 2011-01-07 | 2012-08-02 | Hiroshima Univ | DONOR-π-ACCEPTOR COMPOUND, FLUORESCENT DYE COMPOUND, AND FLUORESCENT DYE COMPOUND FOR DYE-SENSITIZED SOLAR BATTERY |
JP2018142597A (en) * | 2017-02-27 | 2018-09-13 | 三菱ケミカル株式会社 | Solar cell module |
JP2019134030A (en) * | 2018-01-30 | 2019-08-08 | 国立研究開発法人科学技術振興機構 | Photodetector |
CN112225882A (en) * | 2020-09-11 | 2021-01-15 | 华南理工大学 | N-type polymer containing non-condensed ring acceptor unit and preparation method and application thereof |
Non-Patent Citations (2)
Title |
---|
LI JIANFENG; LI FENG; GENG YANFANG; WANG XIAOCHEN; ZHU XIAOYANG; ZENG QINGDAO; FENG XING; GUO QIANG; ZHOU ERJUN: "Exploring thieno[3,4-c]pyrrole-4,6-dione combined thiophene as π-bridge to construct non-fullerene acceptors with high VOC beyond 1.0 V", DYES AND PIGMENTS, vol. 178, 19 March 2020 (2020-03-19), GB , pages 1 - 7, XP086124113, ISSN: 0143-7208, DOI: 10.1016/j.dyepig.2020.108335 * |
SUMAN SUMAN, SIDDIQUI AFZAL, KESHTOV M. L., SHARMA GANESH D., SINGH SURYA PRAKASH: "New indolo carbazole-based non-fullerene n-type semiconductors for organic solar cell applications", JOURNAL OF MATERIALS CHEMISTRY C, vol. 7, no. 3, 21 January 2019 (2019-01-21), GB , pages 543 - 552, XP093028614, ISSN: 2050-7526, DOI: 10.1039/C8TC05318A * |
Also Published As
Publication number | Publication date |
---|---|
TW202311266A (en) | 2023-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022019300A1 (en) | Compound and photoelectric conversion element using same | |
WO2022014482A1 (en) | Photoelectric conversion element and method for manufacturing same | |
WO2022014483A1 (en) | Photoelectric conversion element and method for manufacturing same | |
JP6697833B2 (en) | Photoelectric conversion element and manufacturing method thereof | |
WO2021065374A1 (en) | Photoelectric conversion element | |
JP7315531B2 (en) | Photodetector | |
WO2023058724A1 (en) | Composition and ink composition | |
KR102545540B1 (en) | Method for preparing ink composition | |
WO2023008376A1 (en) | Compound, composition, and photoelectric conversion element | |
JP7235465B2 (en) | Photoelectric conversion element and manufacturing method thereof | |
WO2023120359A1 (en) | Compound and photoelectric conversion element using same | |
WO2023100844A1 (en) | Compound and photoelectric conversion element employing same | |
JP2023020911A (en) | Compound, composition and photoelectric conversion element | |
WO2023058725A1 (en) | Composition and ink composition | |
WO2024172105A1 (en) | Compound, composition, ink, photoelectric conversion element, photosensor, and photoelectric conversion material | |
CN117769897A (en) | Compound, composition, and photoelectric conversion element | |
TW202434598A (en) | Compound, composition, ink, photoelectric conversion element, photosensor, and photoelectric conversion material | |
JP2020088170A (en) | Organic photoelectric conversion element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 202280051331.0 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22849437 Country of ref document: EP Kind code of ref document: A1 |