WO2023007558A1 - 電力供給装置 - Google Patents
電力供給装置 Download PDFInfo
- Publication number
- WO2023007558A1 WO2023007558A1 PCT/JP2021/027593 JP2021027593W WO2023007558A1 WO 2023007558 A1 WO2023007558 A1 WO 2023007558A1 JP 2021027593 W JP2021027593 W JP 2021027593W WO 2023007558 A1 WO2023007558 A1 WO 2023007558A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- state
- switching element
- power supply
- circuit
- load
- Prior art date
Links
- 230000005856 abnormality Effects 0.000 claims abstract description 178
- 238000001514 detection method Methods 0.000 claims description 11
- 238000000034 method Methods 0.000 description 12
- 239000004065 semiconductor Substances 0.000 description 10
- 230000008569 process Effects 0.000 description 9
- 102220470087 Ribonucleoside-diphosphate reductase subunit M2_S20A_mutation Human genes 0.000 description 5
- 102220352372 c.148T>G Human genes 0.000 description 5
- 230000002159 abnormal effect Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/50—Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
- G01R31/52—Testing for short-circuits, leakage current or ground faults
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R16/00—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
- B60R16/02—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R16/00—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
- B60R16/02—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
- B60R16/03—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J1/00—Circuit arrangements for dc mains or dc distribution networks
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J1/00—Circuit arrangements for dc mains or dc distribution networks
- H02J1/04—Constant-current supply systems
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0047—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2310/00—The network for supplying or distributing electric power characterised by its spatial reach or by the load
- H02J2310/40—The network being an on-board power network, i.e. within a vehicle
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Definitions
- Patent Document 1 discloses a power feeding circuit.
- This power supply circuit has a semiconductor switch provided between a power supply and a load. In the normal mode, the semiconductor switch is turned on to supply normal current to the load, and in the sleep mode, the semiconductor switch is turned off. Further, the power supply circuit has a bypass resistor connected in parallel with the semiconductor switch, and supplies dark current to the load via the bypass resistor during sleep mode.
- bypass resistor since the bypass resistor is connected in parallel with the semiconductor switch, current flows downstream of the semiconductor switch regardless of the state of the semiconductor switch. Therefore, it is difficult to determine an abnormality of the semiconductor switch (for example, a short-circuit failure in which the switch is not switched to the off state even though the off control is performed).
- a power supply device of the present disclosure controls power in a power supply system having a power path that is a conduction path for supplying power from a power supply unit to a load, and a first switching element provided in the power path.
- a bypass circuit provided in parallel with the first switching element and having a resistance section, through which a current flows from the power supply section side to the load side via the resistance section;
- a configuration provided between a first conductive path between the bypass circuit and the load and a second conductive path that is ground, and a current flows from the first conductive path to the second conductive path in an energized state and an abnormality determination section that determines an abnormality based on a voltage drop in the resistance section when the energization circuit is in the energized state.
- FIG. 1 is a circuit diagram schematically showing the configuration of the power supply system of the first embodiment.
- FIG. 2 is an explanatory diagram showing the relationship between the elapsed time when the load is discharged and the voltage remaining in the load.
- FIG. 3 is a flow chart showing the operation flow of the control device in the first embodiment.
- FIG. 4 is a flow chart showing the operation flow of the control device in the second embodiment.
- FIG. 5 is a flow chart showing the operation flow of the control device in the third embodiment.
- FIG. 6 is a flow chart showing the operation flow of the control device in the fourth embodiment.
- FIG. 7 is a flow chart showing the operation flow of the control device in the fifth embodiment.
- FIG. 8 is a flow chart showing the operation flow of the control device in the sixth embodiment.
- FIG. 9 is a circuit diagram schematically showing the configuration of the power supply system of the seventh embodiment.
- a power supply device of the present disclosure controls power in a power supply system having a power path that is a conduction path for supplying power from a power supply unit to a load, and a first switching element provided in the power path.
- a power supply device comprising: a bypass circuit provided in parallel with the first switching element and having a resistance section, through which a current flows from the power supply section side to the load side via the resistance section; provided between a first conductive path between the bypass circuit and the load in the path and a second conductive path that is ground, and a current flows from the first conductive path to the second conductive path in an energized state; and an abnormality determination unit that determines an abnormality based on a voltage drop in the resistance unit when the current-carrying circuit is in the current-carrying state.
- this power supply device determines with higher accuracy whether the first switching element connected in parallel to the bypass circuit is abnormal by determining the abnormality based on the voltage drop of the resistor when the current-carrying circuit is in the energized state. can do.
- One end of the first resistance section may be short-circuited to the power supply section, and the other end may be short-circuited to the first conducting path.
- bypass circuit since the bypass circuit can always be in an energized state without switching the switch, the power supply to the load is stopped by turning off the switch, thereby preventing the load from being reset. can be suppressed.
- the first switching element allows current to flow through the power path through the first switching element when in an ON state, and permits the electric power to flow through the first switching element when in an OFF state. A normal action may be taken to interrupt the flow of current in the path.
- the power supply device may have a control unit that performs a first switching control that gives an instruction to turn off the first switching element and gives an instruction to turn the energization circuit to the energized state. good.
- the abnormality determination unit may determine abnormality based on the voltage of the first conducting path when the first switching control is being performed.
- the first switching element allows current to flow through the power path through the first switching element when in an ON state, and permits the electric power to flow through the first switching element when in an OFF state. A normal action may be taken to interrupt the flow of current in the path.
- the power supply device may include a control unit that performs a second switching control that instructs the first switching element to be turned on and instructs the energization circuit to be turned on. good.
- the abnormality determination unit may determine abnormality based on the voltage of the first conducting path when the second switching control is being performed.
- the resistance value of the resistor section, the resistance value of the energization circuit in the energized state, and the resistance value of the load in the standby state are the output potential of the power supply section when the first switching element is off and the
- the voltage obtained by dividing the voltage between the potential of the second conductive path and the resistance portion, the energized circuit in the energized state, and the load in the standby state is the minimum for maintaining the standby state of the load. It may be set so as to exceed the required lower limit voltage.
- the first signal is output when the current flowing through the resistor exceeds the threshold current
- the second signal is output when the current is equal to or less than the threshold current. Therefore, it is possible to suppress erroneous determination caused by an error in converting a signal (for example, an error in AD conversion).
- the energization circuit has a constant current circuit, the constant current circuit performs a constant current operation in which a constant current flows from the first conductive path toward the second conductive path, and the energized state is
- the constant current circuit may be in a state of performing the constant current operation.
- the energization circuit has a constant current circuit, the constant current circuit performs a constant current operation in which a constant current flows from the first conductive path toward the second conductive path, and the energized state is
- the constant current circuit may be in a state of performing the constant current operation.
- the power supply device includes a temperature detection section that detects the temperature of the second switching element, and a control section that adjusts the current flowing through the constant current circuit based on the temperature of the second switching element. good too.
- the energization circuit can be realized with a simple configuration.
- the abnormality determination unit can further improve the accuracy of abnormality determination.
- the abnormality determination unit can determine abnormality within a time range appropriate for the power supply device of the vehicle.
- the abnormality determination unit may determine the abnormality until the load returns from the standby state to the start state.
- an abnormality can be determined when the vehicle is started.
- the load may output a notification signal when switched from the activation state to the standby state, and the abnormality determination unit may determine abnormality when receiving the notification signal from the load.
- a power supply system 100 shown in FIG. 1 is a system mounted on a vehicle.
- the power supply system 100 includes a power supply section 90 , a load 91 , and a power path 80 that is a conducting path for supplying power based on the power supply section 90 to the load 91 .
- the power supply unit 90 is, for example, a battery, more specifically a lead battery, a lithium ion battery, or the like.
- a terminal on the high potential side of the power supply section 90 is electrically connected to one end of the power path 80, and a terminal on the low potential side of the power supply section 90 is electrically connected to the second conductive path 82, which is ground.
- the output voltage of power supply 90 is applied to power path 80 .
- the term “voltage” refers to voltage based on the potential of the second conducting path 82 .
- the load 91 is an electronic device provided in the vehicle, such as an ECU (Electronic Control Unit).
- the load 91 switches between an active state and a standby state.
- the activated state is a state in which various predetermined operations are executed.
- the standby state is a state in which power consumption is suppressed more than in the activated state, and is a state in which operations performed in the activated state are restricted.
- the standby state is, for example, a sleep state when the load 91 is an ECU.
- the sleep state is, for example, a state in which some functions are restricted, a state in which the device operates intermittently, and the like.
- the bypass circuit 11 has a resistance section 11A and is provided in parallel with the first switching element 10 .
- One end of the bypass circuit 11 is electrically connected to the conductive path on the power supply section 90 side of the first switching element 10 in the power path 80 , and the other end of the bypass circuit 11 is connected to the first switching element in the power path 80 . It is electrically connected to the conducting path on the load 91 side of 10 .
- the bypass circuit 11 is configured such that a current flows from the power source section 90 side to the load 91 side via the resistance section 11A.
- One end of the resistor portion 11A is short-circuited to the power supply portion 90, and the other end is short-circuited to the first conductive path 81. As shown in FIG.
- the first conductive path 81 is a conductive path between the bypass circuit 11 in the power path 80 (in other words, a connection point between the other end of the bypass circuit 11 and the power path 80 ) and the load 91 .
- the resistance section 11A is a structure in which a plurality of resistors are connected in series. One end of this structure is one end of the resistance portion 11A, and the other end is the other end of the resistance portion 11A.
- the resistance section 11A has a first resistance section 11B and a second resistance section 11C.
- the first resistance section 11B and the second resistance section 11C are connected in series between the power supply section 90 and the load 91 .
- the first resistance portion 11B is arranged closer to the power source portion 90 than the second resistance portion 11C.
- the conducting circuit 12 is provided between the first conducting path 81 and the second conducting path 82 .
- One end of the conducting circuit 12 is electrically connected to the first conducting path 81 and the other end is electrically connected to the second conducting path 82 .
- the energization circuit 12 has two states: an energization state in which current flows from the first conductive path 81 to the second conductive path 82 via the energization circuit 12, and a current flowing from the first conductive path 81 to the second conductive path 82 via the energization circuit 12. can be switched to a blocking state that blocks the
- the energizing circuit 12 is configured such that current flows from the first conductive path 81 to the second conductive path 82 when in an energized state.
- the energizing circuit 12 has a constant current circuit 12A and a third switching element 12B.
- the constant current circuit 12A is provided between the first conductive path 81 and the second conductive path 82.
- the constant current circuit 12A performs a constant current operation in which a constant current flows from the first conducting path 81 to the second conducting path 82 .
- the third switching element 12B is, for example, a semiconductor switching element such as an FET (Field Effect Transistor).
- the constant current circuit 12A and the third switching element 12B are connected in series between the first conducting path 81 and the second conducting path .
- the third switching element 12B is PWM-controlled by the control device 20 .
- the current value of the constant current supplied by the constant current circuit 12A is adjusted by the duty (ratio of ON time to cycle) of the PWM signal given to the third switching element 12B.
- the state in which the constant current circuit 12A is performing the constant current operation is the conducting state, and the state in which the constant current circuit 12A is not performing the constant current operation is the interrupting state.
- the state in which the third switching element 12B is PWM-controlled is the conducting state, and the state in which the third switching element 12B is maintained in the OFF state is the blocking state.
- the constant-current operation means an operation in which a constant current of a predetermined reference current value is applied when the current value is not particularly limited.
- the second switching element 14 switches to the ON state when the current flowing through the resistor section 11A exceeds the threshold current, and switches to the OFF state when the current is less than or equal to the threshold current.
- the second switching element 14 is a PNP bipolar transistor in this embodiment.
- the emitter of the second switching element 14 is short-circuited to the end of the part to be detected (the first resistance part 11B in this embodiment), which is part or all of the resistance part 11A, on the power supply part 90 side. is short-circuited to the load 91 side end of the part to be detected.
- the output circuit 15 outputs a first signal (high level signal) when the second switching element 14 is on, and outputs a second signal (low level signal) when the second switching element 14 is off. .
- the output circuit 15 is a voltage dividing circuit that divides the collector voltage of the second switching element 14 .
- the output circuit 15 has a third resistance section 15A and a fourth resistance section 15B. One end of the third resistance section 15A is short-circuited to the collector of the second switching element 14, and the other end of the third resistance section 15A is short-circuited to one end of the fourth resistance section 15B. The other end of the fourth resistor portion 15B is short-circuited to the second conductive path 82. As shown in FIG.
- the resistance value of the resistance section 11A, the resistance value of the energization circuit 12 in the energized state (in this embodiment, the resistance value of the constant current circuit 12A during constant current operation), and the resistance value of the load 91 in the standby state are The voltage between the output potential of the power supply unit 90 when the first switching element 10 is in the OFF state and the potential of the second conducting path 82 is applied to the resistance unit 11A and the conducting circuit 12 in the conducting state (constant current operation in this embodiment).
- the voltage divided by the constant current circuit 12A) and the load 91 in the standby state is set to exceed the minimum required minimum voltage for maintaining the standby state of the load 91.
- the above-mentioned threshold current is such that the first switching element 10 is normally turned off when the load 91 is in the standby state and the constant current circuit 12A is performing a constant current operation to flow a constant current of a predetermined reference current value.
- the value of the current flowing through the resistor portion 11A is smaller than the value of the current flowing through the resistor portion 11A when the first switching element 10 is in the OFF state, and the value of the current flowing through the resistor portion 11A is larger than the value of the current flowing through the resistor portion 11A when the first switching element 10 is not normally in the OFF state. is set.
- the control device 20 can determine that there is no abnormality when the first signal is received, and can determine that there is an abnormality when the second signal is received.
- the temperature detection unit 16 detects the temperature of the second switching element 14 .
- the temperature detector 16 may or may not be in contact with the second switching element 14 and may be arranged near the second switching element 14 .
- the temperature detection unit 16 is configured as, for example, a known temperature sensor. A signal indicating the temperature detected by the temperature detection unit 16 is input to the control device 20 .
- the control device 20 can control the power supply device 1 .
- the control device 20 is, for example, an ECU (Electronic Control Unit), and has a CPU, a memory, an AD converter, a drive circuit, and the like.
- Control device 20 can identify the temperature of second switching element 14 based on the signal output from temperature detector 16 .
- the control device 20 has a control section 21 and an abnormality determination section 22 .
- the control unit 21 controls the first switching element 10 and the third switching element 12B.
- the control unit 21 causes the constant current circuit 12A to perform constant current operation by controlling the third switching element 12B.
- the control unit 21 gives an instruction to turn off the first switching element 10 and gives an instruction to turn on the energization circuit 12 (in this embodiment, the constant current circuit 12A is made to perform a constant current operation).
- First switching control is performed.
- the control unit 21 adjusts the current flowing through the constant current circuit 12A based on the temperature of the second switching element 14 when causing the constant current circuit 12A to perform the constant current operation.
- the control unit 21 adjusts the current flowing through the constant current circuit 12A by adjusting the duty of the PWM signal given to the third switching element 12B.
- the control unit 21 pre-stores, for example, correspondence relationship data indicating the correspondence relationship between the temperature of the second switching element 14 and the duty of the PWM signal given to the third switching element 12B, and detects the temperature detected by the temperature detection unit 16. and the correspondence data.
- the correspondence data may be a table or an arithmetic expression.
- the control unit 21 adjusts the current value of the constant current supplied by the constant current circuit 12A by supplying the PWM signal having the duty thus determined to the third switching element 12B.
- the abnormality determination unit 22 determines abnormality based on the voltage drop at the resistance unit 11A when the energization circuit 12 is in the energized state. That is, the abnormality determination unit 22 determines abnormality based on the voltage drop in the resistance unit 11A when the constant current circuit 12A is performing constant current operation.
- an abnormality means a short-circuit failure in which the first switching element 10 is not normally switched to the OFF state.
- the abnormality determination unit 22 determines abnormality based on the voltage drop in the resistance unit 11A when the first switching control is performed. The abnormality determination unit 22 determines that there is no abnormality when receiving the first signal from the output circuit 15, and determines that there is abnormality when receiving the second signal.
- An abnormality determination time for the abnormality determination unit 22 to determine an abnormality is set in advance.
- the resistance value of the energized circuit 12 in the energized state (the resistance value of the constant current circuit 12A during constant current operation in this embodiment) is R, and the capacity of the load 91 is C
- the abnormality determination time is It is set to a time longer than the time constant ⁇ represented by the following formula (A).
- ⁇ R ⁇ C
- the current value in the constant current operation when specifying the resistance value R may be the above-described reference current value, the assumed lower limit current value, or the assumed upper limit current value. It may be a current value or another current value.
- FIG. 2 shows the elapsed time when the load 91 is discharged after the charging voltage of the load 91 reaches the fully charged output voltage (12 V in this embodiment) of the power supply unit 90 and the voltage remaining in the load 91. relationship is shown.
- the voltage remaining in the load 91 causes an error in the voltage of the first conducting path 81 .
- the abnormality determination time is preferably three times or more and nine times or less the time constant ⁇ . By setting the abnormality determination time to be at least three times the time constant ⁇ , the influence of discharge from the load 91 can be eliminated more reliably. Therefore, the abnormality determination unit 22 can further improve the abnormality determination accuracy.
- the abnormality determination unit 22 can determine abnormality within a time range appropriate for the power supply device of the vehicle.
- Control device 20 executes the processing shown in FIG. 3 when the start switch of the vehicle is turned off.
- step S10 the control device 20 determines whether or not the start switch of the vehicle has been switched from the off state to the on state. If the controller 20 determines that the starting switch has not been turned on (No in step S10), the process returns to step S10. That is, the control device 20 repeats step S10 until it determines that the start switch has been switched to the ON state.
- step S10 When the control device 20 determines that the start switch has been switched to the ON state (Yes in step S10), the temperature of the second switching element 14 is specified in step S11. Then, in step S12, the control device 20 determines the duty of the PWM signal to be given to the third switching element 12B based on the temperature specified in step S11. Then, the control device 20 performs the first switching control in step S13. That is, the control device 20 gives an instruction to turn off the first switching element 10, and gives the third switching element 12B a PWM signal having the duty determined in step S12, thereby causing the constant current circuit 12A to perform constant current operation. to do
- control device 20 determines that it has received the second signal (Yes in step S15), it determines that there is an abnormality in step S17, and terminates the processing shown in FIG. Further, when the abnormality determination time has elapsed without receiving the second signal (Yes in step S16), the control device 20 performs the processing of FIG.
- the first switching element 10 allows current to flow through the power path 80 via the first switching element 10 when in the ON state, and allows current to flow through the power path 80 via the first switching element 10 when in the OFF state. perform normal operation to cut off the flow of current to
- the control unit 21 performs first switching control to instruct the first switching element 10 to be turned off and to cause the constant current circuit 12A to perform constant current operation.
- the abnormality determination unit 22 determines abnormality based on the voltage drop in the resistance unit 11A when the first switching control is performed. Therefore, it is possible to more reliably determine an abnormality in which the first switching element 10 is not switched to the OFF state.
- the resistance value of the resistor portion 11A, the resistance value of the constant current circuit 12A during constant current operation, and the resistance value of the load 91 in the standby state are the same as those of the power supply portion when the first switching element 10 is in the OFF state.
- 90 and the potential of the second conducting path 82 is divided by the resistor 11A, the constant current circuit 12A performing constant current operation, and the load 91 in the standby state. It is set to exceed the minimum required minimum voltage to maintain the standby state. Therefore, the abnormality can be determined while maintaining the standby state so that the load 91 is not reset.
- control unit 21 adjusts the current flowing through constant current circuit 12A based on the temperature of second switching element 14 . Therefore, the influence of the temperature characteristics of the second switching element 14 can be canceled.
- the abnormality determination unit 22 determines an abnormality after the load 91 enters the standby state.
- a method of determining whether or not the load 91 has switched to the standby state is not particularly limited.
- control device 20 executes the processing shown in FIG. 5 when the start switch of the vehicle is turned on.
- step S30 control device 20 determines whether or not a notification signal has been received from load 91 . If the control device 20 determines that the notification signal has not been received (No in step S30), the process returns to step S30. That is, the control device 20 repeats step S30 until it determines that the notification signal has been received.
- step S30 the control device 20 performs the processing of steps S31 to S37. Since the processes of steps S31 to S37 are the same as steps S11 to S17 in the first embodiment, detailed description thereof will be omitted.
- the abnormality determination unit 22 determines abnormality when receiving the notification signal from the load 91 . Therefore, according to this configuration, the abnormality can be determined more reliably during the standby state.
- the control device 20 can determine that there is no abnormality when the second signal is received, and can determine that there is an abnormality when the first signal is received.
- the control unit 21 performs second switching control to instruct the first switching element 10 to be turned on and to instruct the energization circuit 12 to be energized.
- the abnormality determination unit 22 determines abnormality based on the voltage drop in the resistance unit 11A when the second switching control is performed.
- abnormality refers to an open failure in which the first switching element 10 is not normally switched to the ON state.
- the abnormality determination unit 22 determines that there is no abnormality when receiving the first signal from the output circuit 15, and determines that there is abnormality when receiving the second signal.
- step S40 the temperature of the second switching element 14 is specified in step S41.
- step S42 the control device 20 determines the duty of the PWM signal to be given to the third switching element 12B based on the temperature specified in step S41.
- the control device 20 performs the second switching control in step S43. That is, the control device 20 gives an instruction to turn on the first switching element 10, and gives the third switching element 12B a PWM signal having the duty determined in step S42, thereby causing the constant current circuit 12A to perform constant current operation. to do
- the control device 20 starts operating the timer in step S44, and determines whether or not the first signal has been received in step S45.
- step S46 determines whether or not the timer operation time has passed a preset abnormality determination time. judge. If the controller 20 determines that the abnormality determination time has not elapsed (No in step S46), the process returns to step S45. That is, the control device 20 determines whether the first signal has been received and whether the abnormality determination time has elapsed until it determines that the first signal has been received or the abnormality determination time has elapsed. The determination of whether or not is repeated.
- the power supply device 1 of the fourth embodiment is configured such that "when the abnormality determination unit determines that the start switch of the vehicle has been switched from the off state to the on state, an abnormality is detected before the load switches from the standby state to the start state. It was a "judgment” configuration.
- the power supply device 1 of the fifth embodiment is configured such that "when the abnormality determination unit determines that the start switch of the vehicle has switched from the on state to the off state, the abnormality is determined after the load enters the standby state. "Do" configuration.
- the fifth embodiment differs from the fourth embodiment only in the timing of determining abnormality. In the following description, differences from the fourth embodiment will be mainly described, and descriptions of common parts will be omitted.
- the abnormality determination unit 22 determines an abnormality after the load 91 enters the standby state.
- a method of determining whether or not the load 91 has switched to the standby state is not particularly limited.
- Control device 20 executes the processing shown in FIG. 8 when the start switch of the vehicle is turned on.
- step S60 the control device 20 determines whether or not a notification signal has been received from the load 91. If the control device 20 determines that the notification signal has not been received (No in step S60), the process returns to step S60. That is, the control device 20 repeats step S60 until it determines that the notification signal has been received.
- the configuration may be such that an abnormality is determined when the second signal is not received during the period from when the second switching control is started until the abnormality determination time elapses.
- the abnormality may be determined based on the voltage drop of the resistance unit when the abnormality determination time has elapsed since the second switching control was started. More specifically, the abnormality may be determined when it is determined that the first signal has been received when the abnormality determination time has elapsed from the start of the second switching control.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Dc-Dc Converters (AREA)
- Control Of Voltage And Current In General (AREA)
Abstract
Description
以下では、本開示の実施形態が列記されて例示される。
この電力供給装置は、通電回路を介して第1導電路から第2導電路に電流を流すことで、抵抗部を流れる電流を大きくすることができるため、このときの抵抗部を流れる電流に基づいて、第1スイッチング素子が異常であるか否かを判別しやすくなる。したがって、この電力供給装置は、通電回路が通電状態のときの抵抗部の電圧降下に基づいて異常を判定することで、バイパス回路に並列接続された第1スイッチング素子の異常をより高い精度で判定することができる。
τ=R×C・・・式(A)
図1で示す電源システム100は、車両に搭載されるシステムである。電源システム100は、電源部90と、負荷91と、電源部90に基づく電力を負荷91に供給する導電路である電力路80と、を有する。
τ=R×C・・・式(A)
なお、抵抗値Rを特定するときの定電流動作における電流の値は、上述した基準電流値であってもよいし、想定される下限の電流値であってもよいし、想定される上限の電流値であってもよいし、別の電流値であってもよい。
第1実施形態の電力供給装置1は、抵抗部11Aを有し、第1スイッチング素子10に対して並列に設けられるバイパス回路11を有している。このため、第1スイッチング素子10に対しオン状態にする指示を与えることなく、バイパス回路11を介して負荷91に暗電流を供給することができる。しかし、バイパス回路11を有する構成では、第1スイッチング素子10が正常にオフ状態になったか否かに関わらず、バイパス回路11を介して第1スイッチング素子10の下流側に電流が回り込むため、第1スイッチング素子10が正常にオフ状態に切り替わらない異常を判定することが困難である。しかし、電力供給装置1は、第1導電路81から第2導電路82に向けて定電流を流す定電流動作を行う定電流回路12Aと、定電流回路12Aが定電流動作を行っているときの抵抗部11Aの電圧降下に基づいて異常を判定する異常判定部22と、を有している。電力供給装置1は、定電流回路12Aに定電流を流すことで、抵抗部11Aを流れる電流を大きくすることができるため、このときの抵抗部11Aを流れる電流に基づいて、第1スイッチング素子10が異常であるか否かを判別しやすくなる。したがって、この電力供給装置1は、定電流回路12Aに電流を流しているときの抵抗部11Aの電圧降下に基づいて異常を判定することで、バイパス回路11に並列接続された第1スイッチング素子10の異常をより高い精度で判定することができる。
第2実施形態では、「異常判定部は、車両の始動スイッチがオン状態からオフ状態に切り替わったと判定した場合に、負荷が待機状態になった後に異常を判定する」例について説明する。なお、第2実施形態は、「異常判定部は、車両の始動スイッチがオン状態からオフ状態に切り替わったと判定した場合に、負荷が待機状態になった後に異常を判定する」点を除き、第1実施形態と同じ構成である。第2実施形態の説明では、第1実施形態の電源システムの構成を示す図1を参照して説明する。
第3実施形態では、第1実施形態で説明した制御装置20を負荷91と通信可能とし、制御装置20が、負荷91が待機状態に切り替わったことを示す報知信号を負荷91から受信した場合に異常を判定する例について説明する。なお、第3実施形態は、制御装置20から報知信号を受信した場合に異常を判定する点で第1実施形態と異なり、その他の点で共通する。なお、第3実施形態の電源システムの構成は、制御装置20が負荷91と通信可能であることを除き同じであるため、第1実施形態の電源システムの構成を示す図1を参照して説明する。
第1実施形態、第2実施形態及び第3実施形態は、第1スイッチング素子のショート故障を判定する構成であった。これに対し、第4実施形態は、第1スイッチング素子のオープン故障を判定する構成である。第4実施形態は、制御装置20による制御方法のみが第1実施形態と異なる。以下の説明では、第1実施形態と同じ構成については同じ符号を付して詳しい説明を省略する。
第4実施形態の電力供給装置1は、「異常判定部は、車両の始動スイッチがオフ状態からオン状態に切り替わったと判定した場合に、負荷が待機状態から起動状態に切り替わるまでの間に異常を判定する」構成であった。これに対し、第5実施形態の電力供給装置1は、「異常判定部は、車両の始動スイッチがオン状態からオフ状態に切り替わったと判定した場合に、負荷が待機状態となった後に異常を判定する」構成である。第5実施形態は、異常を判定するタイミングのみが第4実施形態と異なる。以下の説明では、主に第4実施形態との相違点について説明し、共通する部分の説明を省略する。
第4実施形態の電力供給装置1は、「異常判定部は、車両の始動スイッチがオフ状態からオン状態に切り替わったと判定した場合に、負荷が待機状態から起動状態に切り替わるまでの間に異常を判定する」構成であった。これに対し、第6実施形態の電力供給装置1は、「異常判定部は、負荷から報知信号を受信した場合に異常を判定する」構成である。第6実施形態は、異常を判定するタイミングのみが第4実施形態と異なる。以下の説明では、主に第4実施形態との相違点について説明し、共通する部分の説明を省略する。
第7実施形態の電力供給装置701は、通電回路12が、通電抵抗部と通電スイッチとを有する点で、第1実施形態の電力供給装置1とは異なる。以下の説明では、第1実施形態と同じ構成については、同じ符号を付して詳しい説明を省略する。
本開示は、上記記述及び図面によって説明した実施形態に限定されるものではない。例えば、上述又は後述の実施形態の特徴は、矛盾しない範囲であらゆる組み合わせが可能である。また、上述又は後述の実施形態のいずれの特徴も、必須のものとして明示されていなければ省略することもできる。更に、上述した実施形態は、次のように変更されてもよい。
10…第1スイッチング素子
11…バイパス回路
11A…抵抗部
11B…第1抵抗部
11C…第2抵抗部
12…通電回路
12A…定電流回路
12B…第3スイッチング素子
14…第2スイッチング素子
15…出力回路
15A…第3抵抗部
15B…第4抵抗部
16…温度検出部
20…制御装置
21…制御部
22…異常判定部
80…電力路
81…第1導電路
82…第2導電路
90…電源部
91…負荷
100…電源システム
700…電源システム
701…電力供給装置
712…通電回路
712A…通電抵抗部
712B…通電スイッチ
τ…時定数
Claims (14)
- 電源部から負荷に電力を供給する導電路である電力路と、前記電力路に設けられる第1スイッチング素子と、を有する電源システムにおいて、電力を制御する電力供給装置であって、
前記第1スイッチング素子に対して並列に設けられ、抵抗部を有し、前記抵抗部を介して前記電源部側から前記負荷側へ電流が流れるバイパス回路と、
前記電力路における前記バイパス回路と前記負荷との間の第1導電路とグラウンドである第2導電路との間に設けられ、通電状態のときに前記第1導電路から前記第2導電路に電流が流れる構成となる通電回路と、
前記通電回路が前記通電状態のときの前記抵抗部での電圧降下に基づいて異常を判定する異常判定部と、
を有する
電力供給装置。 - 前記抵抗部の一端が前記電源部に短絡し、他端が前記第1導電路に短絡する
請求項1に記載の電力供給装置。 - 前記第1スイッチング素子は、オン状態のときに前記第1スイッチング素子を介して前記電力路に電流が流れることを許容し、オフ状態のときに前記第1スイッチング素子を介して前記電力路に電流が流れることを遮断するように正常動作を行い、
更に、前記第1スイッチング素子に対しオフ状態にする指示を与え、且つ前記通電回路に対し前記通電状態にする指示を与える第1切替制御を行う制御部を有し、
前記異常判定部は、前記第1切替制御が行われているときの前記第1導電路の電圧に基づいて異常を判定する
請求項1又は請求項2に記載の電力供給装置。 - 前記第1スイッチング素子は、オン状態のときに前記第1スイッチング素子を介して前記電力路に電流が流れることを許容し、オフ状態のときに前記第1スイッチング素子を介して前記電力路に電流が流れることを遮断するように正常動作を行い、
更に、前記第1スイッチング素子に対しオン状態にする指示を与え、且つ前記通電回路に対し前記通電状態にする指示を与える第2切替制御を行う制御部を有し、
前記異常判定部は、前記第2切替制御が行われているときの前記第1導電路の電圧に基づいて異常を判定する
請求項1又は請求項2に記載の電力供給装置。 - 前記抵抗部の抵抗値、前記通電回路の前記通電状態における抵抗値及び前記負荷の待機状態における抵抗値は、前記第1スイッチング素子がオフ状態のときの前記電源部の出力電位と前記第2導電路の電位との間の電圧を前記抵抗部と前記通電状態の前記通電回路及び前記待機状態の前記負荷とで分圧した電圧が、前記負荷の前記待機状態を維持するために最低限必要な下限電圧を上回るように設定されている
請求項1から請求項4のいずれか一項に記載の電力供給装置。 - 前記抵抗部を流れる電流が閾値電流を超える場合にオン状態とされ、前記閾値電流以下である場合にオフ状態とされる第2スイッチング素子と、
前記第2スイッチング素子がオン状態のときに第1信号を出力し、前記第2スイッチング素子がオフ状態のときに第2信号を出力する出力回路と、を有する
請求項1から請求項5のいずれか一項に記載の電力供給装置。 - 前記通電回路は、定電流回路を有し、
前記定電流回路は、前記第1導電路から前記第2導電路に向けて定電流を流す定電流動作を行い、
前記通電状態は、前記定電流回路が前記定電流動作を行っている状態である
請求項1から請求項6のいずれか一項に記載の電力供給装置。 - 前記通電回路は、定電流回路を有し、
前記定電流回路は、前記第1導電路から前記第2導電路に向けて定電流を流す定電流動作を行い、
前記通電状態は、前記定電流回路が前記定電流動作を行っている状態であり、
更に、前記第2スイッチング素子の温度を検出する温度検出部と、
前記第2スイッチング素子の温度に基づいて前記定電流回路を流れる電流を調整する制御部と、を有する
請求項6に記載の電力供給装置。 - 前記通電回路は、通電抵抗部と通電スイッチとを有し、
前記通電状態は、前記通電スイッチのオン状態である
請求項1から請求項6のいずれか一項に記載の電力供給装置。 - 前記負荷は、容量性負荷であり、
前記異常判定部が異常を判定する時間は、前記通電状態のときの前記通電回路の抵抗値をRとし、前記負荷の容量をCとした場合に下記式(A)であらわされる時定数τよりも大きい
請求項1から請求項9のいずれか一項に記載の電力供給装置。
τ=R×C・・・式(A) - 前記異常判定部が異常を判定する時間は、前記時定数τの3倍以上で且つ9倍以下である
請求項10に記載の電力供給装置。 - 前記異常判定部は、車両の始動スイッチがオフ状態からオン状態に切り替わったと判定した場合に、前記負荷が待機状態から起動状態に復帰するまでの間に異常を判定する
請求項1から請求項11のいずれか一項に記載の電力供給装置。 - 前記異常判定部は、車両の始動スイッチがオン状態からオフ状態に切り替わったと判定した場合に、前記負荷が待機状態になった後に異常を判定する
請求項1から請求項11のいずれか一項に記載の電力供給装置。 - 前記負荷は、起動状態から待機状態に切り替わった場合に報知信号を出力し、
前記異常判定部は、前記負荷から前記報知信号を受信した場合に異常を判定する
請求項1から請求項11のいずれか一項に記載の電力供給装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023537766A JPWO2023007558A1 (ja) | 2021-07-26 | 2021-07-26 | |
CN202180100364.5A CN117678135A (zh) | 2021-07-26 | 2021-07-26 | 电力供给装置 |
US18/290,760 US20240333004A1 (en) | 2021-07-26 | 2021-07-26 | Power supply apparatus |
PCT/JP2021/027593 WO2023007558A1 (ja) | 2021-07-26 | 2021-07-26 | 電力供給装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/027593 WO2023007558A1 (ja) | 2021-07-26 | 2021-07-26 | 電力供給装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023007558A1 true WO2023007558A1 (ja) | 2023-02-02 |
Family
ID=85086398
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/027593 WO2023007558A1 (ja) | 2021-07-26 | 2021-07-26 | 電力供給装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20240333004A1 (ja) |
JP (1) | JPWO2023007558A1 (ja) |
CN (1) | CN117678135A (ja) |
WO (1) | WO2023007558A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024195532A1 (ja) * | 2023-03-23 | 2024-09-26 | 株式会社オートネットワーク技術研究所 | 劣化判定装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010120624A (ja) * | 2008-10-23 | 2010-06-03 | Nissan Motor Co Ltd | 車両用電源供給制御装置、及び車両用電源供給制御方法 |
JP2013161535A (ja) * | 2012-02-01 | 2013-08-19 | Honda Elesys Co Ltd | 異常検出装置及び異常検出方法 |
WO2016103721A1 (ja) * | 2014-12-24 | 2016-06-30 | 株式会社Gsユアサ | 電源保護装置、電源装置及びスイッチ故障診断方法 |
JP2017119454A (ja) * | 2015-12-28 | 2017-07-06 | カルソニックカンセイ株式会社 | 電源管理装置及び異常検出方法 |
-
2021
- 2021-07-26 US US18/290,760 patent/US20240333004A1/en active Pending
- 2021-07-26 JP JP2023537766A patent/JPWO2023007558A1/ja active Pending
- 2021-07-26 CN CN202180100364.5A patent/CN117678135A/zh active Pending
- 2021-07-26 WO PCT/JP2021/027593 patent/WO2023007558A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010120624A (ja) * | 2008-10-23 | 2010-06-03 | Nissan Motor Co Ltd | 車両用電源供給制御装置、及び車両用電源供給制御方法 |
JP2013161535A (ja) * | 2012-02-01 | 2013-08-19 | Honda Elesys Co Ltd | 異常検出装置及び異常検出方法 |
WO2016103721A1 (ja) * | 2014-12-24 | 2016-06-30 | 株式会社Gsユアサ | 電源保護装置、電源装置及びスイッチ故障診断方法 |
JP2017119454A (ja) * | 2015-12-28 | 2017-07-06 | カルソニックカンセイ株式会社 | 電源管理装置及び異常検出方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024195532A1 (ja) * | 2023-03-23 | 2024-09-26 | 株式会社オートネットワーク技術研究所 | 劣化判定装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023007558A1 (ja) | 2023-02-02 |
US20240333004A1 (en) | 2024-10-03 |
CN117678135A (zh) | 2024-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102265475B (zh) | 负载电路保护装置 | |
US7800870B2 (en) | Power protection apparatus and electronic control unit | |
JP2010110091A (ja) | 負荷駆動装置 | |
CN102246375B (zh) | 电力供给控制电路 | |
WO2023007558A1 (ja) | 電力供給装置 | |
KR101025535B1 (ko) | 단락보호회로를 구비한 스위치 제어 회로 | |
JP2001216878A (ja) | スイッチ状態監視回路及びスイッチ | |
US11709514B2 (en) | Voltage regulator and in-vehicle backup power supply | |
JP6724726B2 (ja) | 電力供給装置 | |
WO2023007557A1 (ja) | 電力供給装置 | |
JP5524096B2 (ja) | 過電流保護装置 | |
JP2014053265A (ja) | 電源装置 | |
CN108292851B (zh) | 供电控制装置 | |
WO2022249719A1 (ja) | 給電制御装置及び給電制御方法 | |
JP2004032966A (ja) | 半導体スイッチ装置 | |
JPH11338556A (ja) | 電源回路 | |
JP7567662B2 (ja) | 給電制御装置及び給電制御方法 | |
JP2023165483A (ja) | 電源制御装置および電源制御方法 | |
JP3830093B2 (ja) | 異常電源電圧検出回路 | |
JPH08275263A (ja) | 過電流保護装置 | |
JPH11136847A (ja) | 過負荷保護回路 | |
CN117767221A (zh) | 负载保护电路和方法 | |
JP2546622Y2 (ja) | 車両用電源装置 | |
JP2005045985A (ja) | バックアップ電源供給装置およびバックアップ電源供給方法 | |
CN117878828A (zh) | 短路保护电路和供电装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21951769 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023537766 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202180100364.5 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18290760 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21951769 Country of ref document: EP Kind code of ref document: A1 |