[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023007558A1 - 電力供給装置 - Google Patents

電力供給装置 Download PDF

Info

Publication number
WO2023007558A1
WO2023007558A1 PCT/JP2021/027593 JP2021027593W WO2023007558A1 WO 2023007558 A1 WO2023007558 A1 WO 2023007558A1 JP 2021027593 W JP2021027593 W JP 2021027593W WO 2023007558 A1 WO2023007558 A1 WO 2023007558A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
switching element
power supply
circuit
load
Prior art date
Application number
PCT/JP2021/027593
Other languages
English (en)
French (fr)
Inventor
佳佑 若園
佑樹 杉沢
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Priority to JP2023537766A priority Critical patent/JPWO2023007558A1/ja
Priority to CN202180100364.5A priority patent/CN117678135A/zh
Priority to US18/290,760 priority patent/US20240333004A1/en
Priority to PCT/JP2021/027593 priority patent/WO2023007558A1/ja
Publication of WO2023007558A1 publication Critical patent/WO2023007558A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/04Constant-current supply systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • Patent Document 1 discloses a power feeding circuit.
  • This power supply circuit has a semiconductor switch provided between a power supply and a load. In the normal mode, the semiconductor switch is turned on to supply normal current to the load, and in the sleep mode, the semiconductor switch is turned off. Further, the power supply circuit has a bypass resistor connected in parallel with the semiconductor switch, and supplies dark current to the load via the bypass resistor during sleep mode.
  • bypass resistor since the bypass resistor is connected in parallel with the semiconductor switch, current flows downstream of the semiconductor switch regardless of the state of the semiconductor switch. Therefore, it is difficult to determine an abnormality of the semiconductor switch (for example, a short-circuit failure in which the switch is not switched to the off state even though the off control is performed).
  • a power supply device of the present disclosure controls power in a power supply system having a power path that is a conduction path for supplying power from a power supply unit to a load, and a first switching element provided in the power path.
  • a bypass circuit provided in parallel with the first switching element and having a resistance section, through which a current flows from the power supply section side to the load side via the resistance section;
  • a configuration provided between a first conductive path between the bypass circuit and the load and a second conductive path that is ground, and a current flows from the first conductive path to the second conductive path in an energized state and an abnormality determination section that determines an abnormality based on a voltage drop in the resistance section when the energization circuit is in the energized state.
  • FIG. 1 is a circuit diagram schematically showing the configuration of the power supply system of the first embodiment.
  • FIG. 2 is an explanatory diagram showing the relationship between the elapsed time when the load is discharged and the voltage remaining in the load.
  • FIG. 3 is a flow chart showing the operation flow of the control device in the first embodiment.
  • FIG. 4 is a flow chart showing the operation flow of the control device in the second embodiment.
  • FIG. 5 is a flow chart showing the operation flow of the control device in the third embodiment.
  • FIG. 6 is a flow chart showing the operation flow of the control device in the fourth embodiment.
  • FIG. 7 is a flow chart showing the operation flow of the control device in the fifth embodiment.
  • FIG. 8 is a flow chart showing the operation flow of the control device in the sixth embodiment.
  • FIG. 9 is a circuit diagram schematically showing the configuration of the power supply system of the seventh embodiment.
  • a power supply device of the present disclosure controls power in a power supply system having a power path that is a conduction path for supplying power from a power supply unit to a load, and a first switching element provided in the power path.
  • a power supply device comprising: a bypass circuit provided in parallel with the first switching element and having a resistance section, through which a current flows from the power supply section side to the load side via the resistance section; provided between a first conductive path between the bypass circuit and the load in the path and a second conductive path that is ground, and a current flows from the first conductive path to the second conductive path in an energized state; and an abnormality determination unit that determines an abnormality based on a voltage drop in the resistance unit when the current-carrying circuit is in the current-carrying state.
  • this power supply device determines with higher accuracy whether the first switching element connected in parallel to the bypass circuit is abnormal by determining the abnormality based on the voltage drop of the resistor when the current-carrying circuit is in the energized state. can do.
  • One end of the first resistance section may be short-circuited to the power supply section, and the other end may be short-circuited to the first conducting path.
  • bypass circuit since the bypass circuit can always be in an energized state without switching the switch, the power supply to the load is stopped by turning off the switch, thereby preventing the load from being reset. can be suppressed.
  • the first switching element allows current to flow through the power path through the first switching element when in an ON state, and permits the electric power to flow through the first switching element when in an OFF state. A normal action may be taken to interrupt the flow of current in the path.
  • the power supply device may have a control unit that performs a first switching control that gives an instruction to turn off the first switching element and gives an instruction to turn the energization circuit to the energized state. good.
  • the abnormality determination unit may determine abnormality based on the voltage of the first conducting path when the first switching control is being performed.
  • the first switching element allows current to flow through the power path through the first switching element when in an ON state, and permits the electric power to flow through the first switching element when in an OFF state. A normal action may be taken to interrupt the flow of current in the path.
  • the power supply device may include a control unit that performs a second switching control that instructs the first switching element to be turned on and instructs the energization circuit to be turned on. good.
  • the abnormality determination unit may determine abnormality based on the voltage of the first conducting path when the second switching control is being performed.
  • the resistance value of the resistor section, the resistance value of the energization circuit in the energized state, and the resistance value of the load in the standby state are the output potential of the power supply section when the first switching element is off and the
  • the voltage obtained by dividing the voltage between the potential of the second conductive path and the resistance portion, the energized circuit in the energized state, and the load in the standby state is the minimum for maintaining the standby state of the load. It may be set so as to exceed the required lower limit voltage.
  • the first signal is output when the current flowing through the resistor exceeds the threshold current
  • the second signal is output when the current is equal to or less than the threshold current. Therefore, it is possible to suppress erroneous determination caused by an error in converting a signal (for example, an error in AD conversion).
  • the energization circuit has a constant current circuit, the constant current circuit performs a constant current operation in which a constant current flows from the first conductive path toward the second conductive path, and the energized state is
  • the constant current circuit may be in a state of performing the constant current operation.
  • the energization circuit has a constant current circuit, the constant current circuit performs a constant current operation in which a constant current flows from the first conductive path toward the second conductive path, and the energized state is
  • the constant current circuit may be in a state of performing the constant current operation.
  • the power supply device includes a temperature detection section that detects the temperature of the second switching element, and a control section that adjusts the current flowing through the constant current circuit based on the temperature of the second switching element. good too.
  • the energization circuit can be realized with a simple configuration.
  • the abnormality determination unit can further improve the accuracy of abnormality determination.
  • the abnormality determination unit can determine abnormality within a time range appropriate for the power supply device of the vehicle.
  • the abnormality determination unit may determine the abnormality until the load returns from the standby state to the start state.
  • an abnormality can be determined when the vehicle is started.
  • the load may output a notification signal when switched from the activation state to the standby state, and the abnormality determination unit may determine abnormality when receiving the notification signal from the load.
  • a power supply system 100 shown in FIG. 1 is a system mounted on a vehicle.
  • the power supply system 100 includes a power supply section 90 , a load 91 , and a power path 80 that is a conducting path for supplying power based on the power supply section 90 to the load 91 .
  • the power supply unit 90 is, for example, a battery, more specifically a lead battery, a lithium ion battery, or the like.
  • a terminal on the high potential side of the power supply section 90 is electrically connected to one end of the power path 80, and a terminal on the low potential side of the power supply section 90 is electrically connected to the second conductive path 82, which is ground.
  • the output voltage of power supply 90 is applied to power path 80 .
  • the term “voltage” refers to voltage based on the potential of the second conducting path 82 .
  • the load 91 is an electronic device provided in the vehicle, such as an ECU (Electronic Control Unit).
  • the load 91 switches between an active state and a standby state.
  • the activated state is a state in which various predetermined operations are executed.
  • the standby state is a state in which power consumption is suppressed more than in the activated state, and is a state in which operations performed in the activated state are restricted.
  • the standby state is, for example, a sleep state when the load 91 is an ECU.
  • the sleep state is, for example, a state in which some functions are restricted, a state in which the device operates intermittently, and the like.
  • the bypass circuit 11 has a resistance section 11A and is provided in parallel with the first switching element 10 .
  • One end of the bypass circuit 11 is electrically connected to the conductive path on the power supply section 90 side of the first switching element 10 in the power path 80 , and the other end of the bypass circuit 11 is connected to the first switching element in the power path 80 . It is electrically connected to the conducting path on the load 91 side of 10 .
  • the bypass circuit 11 is configured such that a current flows from the power source section 90 side to the load 91 side via the resistance section 11A.
  • One end of the resistor portion 11A is short-circuited to the power supply portion 90, and the other end is short-circuited to the first conductive path 81. As shown in FIG.
  • the first conductive path 81 is a conductive path between the bypass circuit 11 in the power path 80 (in other words, a connection point between the other end of the bypass circuit 11 and the power path 80 ) and the load 91 .
  • the resistance section 11A is a structure in which a plurality of resistors are connected in series. One end of this structure is one end of the resistance portion 11A, and the other end is the other end of the resistance portion 11A.
  • the resistance section 11A has a first resistance section 11B and a second resistance section 11C.
  • the first resistance section 11B and the second resistance section 11C are connected in series between the power supply section 90 and the load 91 .
  • the first resistance portion 11B is arranged closer to the power source portion 90 than the second resistance portion 11C.
  • the conducting circuit 12 is provided between the first conducting path 81 and the second conducting path 82 .
  • One end of the conducting circuit 12 is electrically connected to the first conducting path 81 and the other end is electrically connected to the second conducting path 82 .
  • the energization circuit 12 has two states: an energization state in which current flows from the first conductive path 81 to the second conductive path 82 via the energization circuit 12, and a current flowing from the first conductive path 81 to the second conductive path 82 via the energization circuit 12. can be switched to a blocking state that blocks the
  • the energizing circuit 12 is configured such that current flows from the first conductive path 81 to the second conductive path 82 when in an energized state.
  • the energizing circuit 12 has a constant current circuit 12A and a third switching element 12B.
  • the constant current circuit 12A is provided between the first conductive path 81 and the second conductive path 82.
  • the constant current circuit 12A performs a constant current operation in which a constant current flows from the first conducting path 81 to the second conducting path 82 .
  • the third switching element 12B is, for example, a semiconductor switching element such as an FET (Field Effect Transistor).
  • the constant current circuit 12A and the third switching element 12B are connected in series between the first conducting path 81 and the second conducting path .
  • the third switching element 12B is PWM-controlled by the control device 20 .
  • the current value of the constant current supplied by the constant current circuit 12A is adjusted by the duty (ratio of ON time to cycle) of the PWM signal given to the third switching element 12B.
  • the state in which the constant current circuit 12A is performing the constant current operation is the conducting state, and the state in which the constant current circuit 12A is not performing the constant current operation is the interrupting state.
  • the state in which the third switching element 12B is PWM-controlled is the conducting state, and the state in which the third switching element 12B is maintained in the OFF state is the blocking state.
  • the constant-current operation means an operation in which a constant current of a predetermined reference current value is applied when the current value is not particularly limited.
  • the second switching element 14 switches to the ON state when the current flowing through the resistor section 11A exceeds the threshold current, and switches to the OFF state when the current is less than or equal to the threshold current.
  • the second switching element 14 is a PNP bipolar transistor in this embodiment.
  • the emitter of the second switching element 14 is short-circuited to the end of the part to be detected (the first resistance part 11B in this embodiment), which is part or all of the resistance part 11A, on the power supply part 90 side. is short-circuited to the load 91 side end of the part to be detected.
  • the output circuit 15 outputs a first signal (high level signal) when the second switching element 14 is on, and outputs a second signal (low level signal) when the second switching element 14 is off. .
  • the output circuit 15 is a voltage dividing circuit that divides the collector voltage of the second switching element 14 .
  • the output circuit 15 has a third resistance section 15A and a fourth resistance section 15B. One end of the third resistance section 15A is short-circuited to the collector of the second switching element 14, and the other end of the third resistance section 15A is short-circuited to one end of the fourth resistance section 15B. The other end of the fourth resistor portion 15B is short-circuited to the second conductive path 82. As shown in FIG.
  • the resistance value of the resistance section 11A, the resistance value of the energization circuit 12 in the energized state (in this embodiment, the resistance value of the constant current circuit 12A during constant current operation), and the resistance value of the load 91 in the standby state are The voltage between the output potential of the power supply unit 90 when the first switching element 10 is in the OFF state and the potential of the second conducting path 82 is applied to the resistance unit 11A and the conducting circuit 12 in the conducting state (constant current operation in this embodiment).
  • the voltage divided by the constant current circuit 12A) and the load 91 in the standby state is set to exceed the minimum required minimum voltage for maintaining the standby state of the load 91.
  • the above-mentioned threshold current is such that the first switching element 10 is normally turned off when the load 91 is in the standby state and the constant current circuit 12A is performing a constant current operation to flow a constant current of a predetermined reference current value.
  • the value of the current flowing through the resistor portion 11A is smaller than the value of the current flowing through the resistor portion 11A when the first switching element 10 is in the OFF state, and the value of the current flowing through the resistor portion 11A is larger than the value of the current flowing through the resistor portion 11A when the first switching element 10 is not normally in the OFF state. is set.
  • the control device 20 can determine that there is no abnormality when the first signal is received, and can determine that there is an abnormality when the second signal is received.
  • the temperature detection unit 16 detects the temperature of the second switching element 14 .
  • the temperature detector 16 may or may not be in contact with the second switching element 14 and may be arranged near the second switching element 14 .
  • the temperature detection unit 16 is configured as, for example, a known temperature sensor. A signal indicating the temperature detected by the temperature detection unit 16 is input to the control device 20 .
  • the control device 20 can control the power supply device 1 .
  • the control device 20 is, for example, an ECU (Electronic Control Unit), and has a CPU, a memory, an AD converter, a drive circuit, and the like.
  • Control device 20 can identify the temperature of second switching element 14 based on the signal output from temperature detector 16 .
  • the control device 20 has a control section 21 and an abnormality determination section 22 .
  • the control unit 21 controls the first switching element 10 and the third switching element 12B.
  • the control unit 21 causes the constant current circuit 12A to perform constant current operation by controlling the third switching element 12B.
  • the control unit 21 gives an instruction to turn off the first switching element 10 and gives an instruction to turn on the energization circuit 12 (in this embodiment, the constant current circuit 12A is made to perform a constant current operation).
  • First switching control is performed.
  • the control unit 21 adjusts the current flowing through the constant current circuit 12A based on the temperature of the second switching element 14 when causing the constant current circuit 12A to perform the constant current operation.
  • the control unit 21 adjusts the current flowing through the constant current circuit 12A by adjusting the duty of the PWM signal given to the third switching element 12B.
  • the control unit 21 pre-stores, for example, correspondence relationship data indicating the correspondence relationship between the temperature of the second switching element 14 and the duty of the PWM signal given to the third switching element 12B, and detects the temperature detected by the temperature detection unit 16. and the correspondence data.
  • the correspondence data may be a table or an arithmetic expression.
  • the control unit 21 adjusts the current value of the constant current supplied by the constant current circuit 12A by supplying the PWM signal having the duty thus determined to the third switching element 12B.
  • the abnormality determination unit 22 determines abnormality based on the voltage drop at the resistance unit 11A when the energization circuit 12 is in the energized state. That is, the abnormality determination unit 22 determines abnormality based on the voltage drop in the resistance unit 11A when the constant current circuit 12A is performing constant current operation.
  • an abnormality means a short-circuit failure in which the first switching element 10 is not normally switched to the OFF state.
  • the abnormality determination unit 22 determines abnormality based on the voltage drop in the resistance unit 11A when the first switching control is performed. The abnormality determination unit 22 determines that there is no abnormality when receiving the first signal from the output circuit 15, and determines that there is abnormality when receiving the second signal.
  • An abnormality determination time for the abnormality determination unit 22 to determine an abnormality is set in advance.
  • the resistance value of the energized circuit 12 in the energized state (the resistance value of the constant current circuit 12A during constant current operation in this embodiment) is R, and the capacity of the load 91 is C
  • the abnormality determination time is It is set to a time longer than the time constant ⁇ represented by the following formula (A).
  • R ⁇ C
  • the current value in the constant current operation when specifying the resistance value R may be the above-described reference current value, the assumed lower limit current value, or the assumed upper limit current value. It may be a current value or another current value.
  • FIG. 2 shows the elapsed time when the load 91 is discharged after the charging voltage of the load 91 reaches the fully charged output voltage (12 V in this embodiment) of the power supply unit 90 and the voltage remaining in the load 91. relationship is shown.
  • the voltage remaining in the load 91 causes an error in the voltage of the first conducting path 81 .
  • the abnormality determination time is preferably three times or more and nine times or less the time constant ⁇ . By setting the abnormality determination time to be at least three times the time constant ⁇ , the influence of discharge from the load 91 can be eliminated more reliably. Therefore, the abnormality determination unit 22 can further improve the abnormality determination accuracy.
  • the abnormality determination unit 22 can determine abnormality within a time range appropriate for the power supply device of the vehicle.
  • Control device 20 executes the processing shown in FIG. 3 when the start switch of the vehicle is turned off.
  • step S10 the control device 20 determines whether or not the start switch of the vehicle has been switched from the off state to the on state. If the controller 20 determines that the starting switch has not been turned on (No in step S10), the process returns to step S10. That is, the control device 20 repeats step S10 until it determines that the start switch has been switched to the ON state.
  • step S10 When the control device 20 determines that the start switch has been switched to the ON state (Yes in step S10), the temperature of the second switching element 14 is specified in step S11. Then, in step S12, the control device 20 determines the duty of the PWM signal to be given to the third switching element 12B based on the temperature specified in step S11. Then, the control device 20 performs the first switching control in step S13. That is, the control device 20 gives an instruction to turn off the first switching element 10, and gives the third switching element 12B a PWM signal having the duty determined in step S12, thereby causing the constant current circuit 12A to perform constant current operation. to do
  • control device 20 determines that it has received the second signal (Yes in step S15), it determines that there is an abnormality in step S17, and terminates the processing shown in FIG. Further, when the abnormality determination time has elapsed without receiving the second signal (Yes in step S16), the control device 20 performs the processing of FIG.
  • the first switching element 10 allows current to flow through the power path 80 via the first switching element 10 when in the ON state, and allows current to flow through the power path 80 via the first switching element 10 when in the OFF state. perform normal operation to cut off the flow of current to
  • the control unit 21 performs first switching control to instruct the first switching element 10 to be turned off and to cause the constant current circuit 12A to perform constant current operation.
  • the abnormality determination unit 22 determines abnormality based on the voltage drop in the resistance unit 11A when the first switching control is performed. Therefore, it is possible to more reliably determine an abnormality in which the first switching element 10 is not switched to the OFF state.
  • the resistance value of the resistor portion 11A, the resistance value of the constant current circuit 12A during constant current operation, and the resistance value of the load 91 in the standby state are the same as those of the power supply portion when the first switching element 10 is in the OFF state.
  • 90 and the potential of the second conducting path 82 is divided by the resistor 11A, the constant current circuit 12A performing constant current operation, and the load 91 in the standby state. It is set to exceed the minimum required minimum voltage to maintain the standby state. Therefore, the abnormality can be determined while maintaining the standby state so that the load 91 is not reset.
  • control unit 21 adjusts the current flowing through constant current circuit 12A based on the temperature of second switching element 14 . Therefore, the influence of the temperature characteristics of the second switching element 14 can be canceled.
  • the abnormality determination unit 22 determines an abnormality after the load 91 enters the standby state.
  • a method of determining whether or not the load 91 has switched to the standby state is not particularly limited.
  • control device 20 executes the processing shown in FIG. 5 when the start switch of the vehicle is turned on.
  • step S30 control device 20 determines whether or not a notification signal has been received from load 91 . If the control device 20 determines that the notification signal has not been received (No in step S30), the process returns to step S30. That is, the control device 20 repeats step S30 until it determines that the notification signal has been received.
  • step S30 the control device 20 performs the processing of steps S31 to S37. Since the processes of steps S31 to S37 are the same as steps S11 to S17 in the first embodiment, detailed description thereof will be omitted.
  • the abnormality determination unit 22 determines abnormality when receiving the notification signal from the load 91 . Therefore, according to this configuration, the abnormality can be determined more reliably during the standby state.
  • the control device 20 can determine that there is no abnormality when the second signal is received, and can determine that there is an abnormality when the first signal is received.
  • the control unit 21 performs second switching control to instruct the first switching element 10 to be turned on and to instruct the energization circuit 12 to be energized.
  • the abnormality determination unit 22 determines abnormality based on the voltage drop in the resistance unit 11A when the second switching control is performed.
  • abnormality refers to an open failure in which the first switching element 10 is not normally switched to the ON state.
  • the abnormality determination unit 22 determines that there is no abnormality when receiving the first signal from the output circuit 15, and determines that there is abnormality when receiving the second signal.
  • step S40 the temperature of the second switching element 14 is specified in step S41.
  • step S42 the control device 20 determines the duty of the PWM signal to be given to the third switching element 12B based on the temperature specified in step S41.
  • the control device 20 performs the second switching control in step S43. That is, the control device 20 gives an instruction to turn on the first switching element 10, and gives the third switching element 12B a PWM signal having the duty determined in step S42, thereby causing the constant current circuit 12A to perform constant current operation. to do
  • the control device 20 starts operating the timer in step S44, and determines whether or not the first signal has been received in step S45.
  • step S46 determines whether or not the timer operation time has passed a preset abnormality determination time. judge. If the controller 20 determines that the abnormality determination time has not elapsed (No in step S46), the process returns to step S45. That is, the control device 20 determines whether the first signal has been received and whether the abnormality determination time has elapsed until it determines that the first signal has been received or the abnormality determination time has elapsed. The determination of whether or not is repeated.
  • the power supply device 1 of the fourth embodiment is configured such that "when the abnormality determination unit determines that the start switch of the vehicle has been switched from the off state to the on state, an abnormality is detected before the load switches from the standby state to the start state. It was a "judgment” configuration.
  • the power supply device 1 of the fifth embodiment is configured such that "when the abnormality determination unit determines that the start switch of the vehicle has switched from the on state to the off state, the abnormality is determined after the load enters the standby state. "Do" configuration.
  • the fifth embodiment differs from the fourth embodiment only in the timing of determining abnormality. In the following description, differences from the fourth embodiment will be mainly described, and descriptions of common parts will be omitted.
  • the abnormality determination unit 22 determines an abnormality after the load 91 enters the standby state.
  • a method of determining whether or not the load 91 has switched to the standby state is not particularly limited.
  • Control device 20 executes the processing shown in FIG. 8 when the start switch of the vehicle is turned on.
  • step S60 the control device 20 determines whether or not a notification signal has been received from the load 91. If the control device 20 determines that the notification signal has not been received (No in step S60), the process returns to step S60. That is, the control device 20 repeats step S60 until it determines that the notification signal has been received.
  • the configuration may be such that an abnormality is determined when the second signal is not received during the period from when the second switching control is started until the abnormality determination time elapses.
  • the abnormality may be determined based on the voltage drop of the resistance unit when the abnormality determination time has elapsed since the second switching control was started. More specifically, the abnormality may be determined when it is determined that the first signal has been received when the abnormality determination time has elapsed from the start of the second switching control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Dc-Dc Converters (AREA)
  • Control Of Voltage And Current In General (AREA)

Abstract

電力供給装置(1)は、バイパス回路(11)と、通電回路(12)と、異常判定部(22)と、を有する。バイパス回路(11)は、第1スイッチング素子(10)に対して並列に設けられ、抵抗部(11A)を有し、抵抗部(11A)を介して電源部(90)側から負荷(91)側へ電流が流れる。通電回路(12)は、電力路(80)におけるバイパス回路(11)と負荷(91)との間の第1導電路(81)とグラウンドである第2導電路(82)との間に設けられ、通電状態のときに第1導電路(81)から第2導電路(82)に電流が流れる構成となる。異常判定部(22)は、通電回路(12)が通電状態のときの抵抗部(11A)での電圧降下に基づいて異常を判定する。

Description

電力供給装置
 本開示は、電力供給装置に関する。
 特許文献1には、給電回路が開示されている。この給電回路は、電源と負荷との間に設けられた半導体スイッチを備えており、通常モード時には半導体スイッチをオン制御して負荷に通常電流を供給し、スリープモード時には半導体スイッチをオフ制御する。更に、この給電回路は、半導体スイッチに並列接続されたバイパス抵抗を備えており、スリープモード時においてバイパス抵抗を介して負荷に暗電流を供給する。
特開2010-60433号公報
 上述した技術では、半導体スイッチにバイパス抵抗が並列接続されているため、半導体スイッチの状態に関わらず、半導体スイッチの下流側に電流が流れる。このため、半導体スイッチの異常(例えば、オフ制御したにもかかわらずオフ状態に切り替わらないショート故障など)を判定することが難しい。
 本開示は、回路が並列接続されたスイッチング素子の異常をより高い精度で判定しうる技術を提供する。
 本開示の電力供給装置は、電源部から負荷に電力を供給する導電路である電力路と、前記電力路に設けられる第1スイッチング素子と、を有する電源システムにおいて、電力を制御する電力供給装置であって、前記第1スイッチング素子に対して並列に設けられ、抵抗部を有し、前記抵抗部を介して前記電源部側から前記負荷側へ電流が流れるバイパス回路と、前記電力路における前記バイパス回路と前記負荷との間の第1導電路とグラウンドである第2導電路との間に設けられ、通電状態のときに前記第1導電路から前記第2導電路に電流が流れる構成となる通電回路と、前記通電回路が前記通電状態のときの前記抵抗部での電圧降下に基づいて異常を判定する異常判定部と、を有する。
 本開示によれば、回路が並列接続されたスイッチング素子の異常をより高い精度で判定しうる。
図1は、第1実施形態の電源システムの構成を概略的に示す回路図である。 図2は、負荷から放電させたときの経過時間と負荷に残る電圧との関係を示す説明図である。 図3は、第1実施形態における制御装置の動作の流れを示すフローチャートである。 図4は、第2実施形態における制御装置の動作の流れを示すフローチャートである。 図5は、第3実施形態における制御装置の動作の流れを示すフローチャートである。 図6は、第4実施形態における制御装置の動作の流れを示すフローチャートである。 図7は、第5実施形態における制御装置の動作の流れを示すフローチャートである。 図8は、第6実施形態における制御装置の動作の流れを示すフローチャートである。 図9は、第7実施形態の電源システムの構成を概略的に示す回路図である。
[本開示の実施形態の説明]
 以下では、本開示の実施形態が列記されて例示される。
 〔1〕本開示の電力供給装置は、電源部から負荷に電力を供給する導電路である電力路と、前記電力路に設けられる第1スイッチング素子と、を有する電源システムにおいて、電力を制御する電力供給装置であって、前記第1スイッチング素子に対して並列に設けられ、抵抗部を有し、前記抵抗部を介して前記電源部側から前記負荷側へ電流が流れるバイパス回路と、前記電力路における前記バイパス回路と前記負荷との間の第1導電路とグラウンドである第2導電路との間に設けられ、通電状態のときに前記第1導電路から前記第2導電路に電流が流れる構成となる通電回路と、前記通電回路が前記通電状態のときの前記抵抗部での電圧降下に基づいて異常を判定する異常判定部と、を有する。

 この電力供給装置は、通電回路を介して第1導電路から第2導電路に電流を流すことで、抵抗部を流れる電流を大きくすることができるため、このときの抵抗部を流れる電流に基づいて、第1スイッチング素子が異常であるか否かを判別しやすくなる。したがって、この電力供給装置は、通電回路が通電状態のときの抵抗部の電圧降下に基づいて異常を判定することで、バイパス回路に並列接続された第1スイッチング素子の異常をより高い精度で判定することができる。
 〔2〕前記第1抵抗部の一端が前記電源部に短絡し、他端が前記第1導電路に短絡してもよい。
 この構成によれば、スイッチを切り替えることなく常にバイパス回路を通電状態とすることができるため、スイッチをオフ状態とすることで負荷への電力供給が停止されて、負荷がリセットされてしまうことを抑制することができる。
 〔3〕前記第1スイッチング素子は、オン状態のときに前記第1スイッチング素子を介して前記電力路に電流が流れることを許容し、オフ状態のときに前記第1スイッチング素子を介して前記電力路に電流が流れることを遮断するように正常動作を行ってもよい。更に、前記電力供給装置は、前記第1スイッチング素子に対しオフ状態にする指示を与え、且つ前記通電回路に対し前記通電状態にする指示を与える第1切替制御を行う制御部を有してもよい。前記異常判定部は、前記第1切替制御が行われているときの前記第1導電路の電圧に基づいて異常を判定してもよい。
 この構成によれば、第1スイッチング素子がオフ状態に切り替わらない異常(いわゆるショート故障)を判定することができる。
 〔4〕前記第1スイッチング素子は、オン状態のときに前記第1スイッチング素子を介して前記電力路に電流が流れることを許容し、オフ状態のときに前記第1スイッチング素子を介して前記電力路に電流が流れることを遮断するように正常動作を行ってもよい。更に、前記電力供給装置は、前記第1スイッチング素子に対しオン状態にする指示を与え、且つ前記通電回路に対し前記通電状態にする指示を与える第2切替制御を行う制御部を有してもよい。前記異常判定部は、前記第2切替制御が行われているときの前記第1導電路の電圧に基づいて異常を判定してもよい。
 この構成によれば、第1スイッチング素子がオン状態に切り替わらない異常(いわゆるオープン故障)を判定することができる。
 〔5〕前記抵抗部の抵抗値、前記通電回路の前記通電状態における抵抗値及び前記負荷の待機状態における抵抗値は、前記第1スイッチング素子がオフ状態のときの前記電源部の出力電位と前記第2導電路の電位との間の電圧を前記抵抗部と前記通電状態の前記通電回路及び前記待機状態の前記負荷とで分圧した電圧が、前記負荷の前記待機状態を維持するために最低限必要な下限電圧を上回るように設定されていてもよい。
 この構成によれば、負荷がリセットされないように待機状態に維持しつつ、異常を判定することができる。
 〔6〕前記電力供給装置は、前記抵抗部を流れる電流が閾値電流を超える場合にオン状態とされ、前記閾値電流以下である場合にオフ状態とされる第2スイッチング素子と、前記第2スイッチング素子がオン状態のときに第1信号を出力し、前記第2スイッチング素子がオフ状態のときに第2信号を出力する出力回路と、を有してもよい。
 この構成によれば、抵抗部を流れる電流が閾値電流を超える場合に第1信号が出力され、閾値電流以下である場合に第2信号が出力される。このため、信号を変換する際の誤差(例えばAD変換時の誤差)に起因した誤判定を抑制することができる。
 〔7〕前記通電回路は、定電流回路を有し、前記定電流回路は、前記第1導電路から前記第2導電路に向けて定電流を流す定電流動作を行い、前記通電状態は、前記定電流回路が前記定電流動作を行っている状態であってもよい。
 この構成によれば、定電流回路を利用して通電回路の通電状態と遮断状態とを切り替えることができる。
 〔8〕前記通電回路は、定電流回路を有し、前記定電流回路は、前記第1導電路から前記第2導電路に向けて定電流を流す定電流動作を行い、前記通電状態は、前記定電流回路が前記定電流動作を行っている状態であってもよい。前記電力供給装置は、前記第2スイッチング素子の温度を検出する温度検出部と、前記第2スイッチング素子の温度に基づいて前記定電流回路を流れる電流を調整する制御部と、を有していてもよい。
 この構成によれば、第2スイッチング素子の温度特性の影響をキャンセルさせることができる。
 〔9〕前記通電回路は、通電抵抗部と通電スイッチとを有し、前記通電状態は、前記通電スイッチのオン状態であってもよい。
 この構成によれば、通電回路を簡素な構成によって実現することができる。
 〔10〕前記負荷は、容量性負荷であり、前記異常判定部が異常を判定する時間は、前記通電状態のときの前記通電回路の抵抗値をRとし、前記負荷の容量をCとした場合に下記式(A)であらわされる時定数τよりも大きくてもよい。
   τ=R×C・・・式(A)
 この構成によれば、負荷に蓄電されることに起因する誤判定を抑制することができる。
 〔11〕前記異常判定部が異常を判定する時間は、前記時定数τの3倍以上で且つ9倍以下であってもよい。
 異常判定時間を時定数τの3倍以上とすることで、負荷からの放電の影響をより確実に排除することができる。このため、異常判定部は異常の判定精度をより向上させることができる。一方、異常判定時間を時定数τの9倍以下とすることで、異常判定時間が必要以上に長くかかることを防止することができる。このため、異常判定部は車両の電力供給装置として適切な時間の範囲内で異常を判定することができる。
 〔12〕前記異常判定部は、車両の始動スイッチがオフ状態からオン状態に切り替わったと判定した場合に、前記負荷が待機状態から起動状態に復帰するまでの間に異常を判定してもよい。
 この構成によれば、車両の始動時に異常を判定することができる。
 〔13〕前記異常判定部は、車両の始動スイッチがオン状態からオフ状態に切り替わったと判定した場合に、前記負荷が待機状態になった後に異常を判定するようにしてもよい。
 この構成によれば、車両の走行に影響のない状況下で異常を判定することができる。
 〔14〕前記負荷は、起動状態から待機状態に切り替わった場合に報知信号を出力し、前記異常判定部は、前記負荷から前記報知信号を受信した場合に異常を判定してもよい。
 この構成によれば、負荷から報知信号を受信した場合に異常を判定するため、より確実に待機状態中に異常を判定することができる。
 <第1実施形態>
 図1で示す電源システム100は、車両に搭載されるシステムである。電源システム100は、電源部90と、負荷91と、電源部90に基づく電力を負荷91に供給する導電路である電力路80と、を有する。
 電源部90は、例えばバッテリであり、より具体的には鉛バッテリやリチウムイオンバッテリなどである。電源部90の高電位側の端子は、電力路80の一端に電気的に接続され、電源部90の低電位側の端子は、グラウンドである第2導電路82に電気的に接続される。電源部90の出力電圧は、電力路80に印加される。なお、本明細書において、「電圧」とは、第2導電路82の電位を基準とした電圧のことである。
 負荷91は、車両に設けられた電子機器であり、例えばECU(Electronic Control Unit)である。負荷91は、起動状態と、待機状態とに切り替わる。起動状態は、予め定められた各種動作が実行される状態である。待機状態は、起動状態よりも電力消費が抑えられた状態であり、起動状態で実行される動作が制限された状態である。待機状態は、負荷91がECUである場合、例えばスリープ状態である。スリープ状態は、例えば一部の機能が制限された状態、間欠的に動作する状態などである。負荷91は、車両の始動スイッチがオン状態となる場合に外部からの指令を受けて起動状態に切り替わり、オフ状態となる場合に外部からの指令を受けて待機状態に切り替わる。始動スイッチは、車両がエンジン搭載車である場合にはイグニッションスイッチであり、車両が電気自動車である場合にはパワースイッチである。負荷91に印加される電圧が、待機状態を維持するために最低限必要な下限電圧を下回ると、負荷91がリセットされる。リセットとは、例えば負荷91の揮発性メモリに記憶される情報が消去されること、負荷91と外部との通信が停止すること、負荷91の動作が停止すること、などである。負荷91は、容量性負荷である。
 電源システム100は、電力供給装置1を有する。電力供給装置1は、電力を制御する装置である。電力供給装置1は、第1スイッチング素子10と、バイパス回路11と、通電回路12と、第2スイッチング素子14と、出力回路15と、温度検出部16と、制御装置20と、を有する。
 第1スイッチング素子10は、半導体スイッチング素子であり、本実施形態ではノーマリオフ型のFET(Field Effect Transistor)である。第1スイッチング素子10は、電力路80に設けられる。第1スイッチング素子10は、オン状態のときに第1スイッチング素子10を介して電力路80に電流が流れることを許容し、オフ状態のときに第1スイッチング素子10を介して電力路80に電流が流れることを遮断するように正常動作を行う。
 バイパス回路11は、抵抗部11Aを有し、第1スイッチング素子10に対して並列に設けられる。バイパス回路11の一端は、電力路80における第1スイッチング素子10よりも電源部90側の導電路に電気的に接続されており、バイパス回路11の他端は、電力路80における第1スイッチング素子10よりも負荷91側の導電路に電気的に接続されている。バイパス回路11は、抵抗部11Aを介して電源部90側から負荷91側へ電流が流れる構成をなしている。抵抗部11Aの一端は電源部90に短絡し、他端は第1導電路81に短絡する。第1導電路81は、電力路80におけるバイパス回路11(言い換えると、バイパス回路11の他端と電力路80との接続点)と負荷91との間の導電路である。抵抗部11Aは、複数の抵抗器を直列に接続させた構成体である。この構成体の一端が抵抗部11Aの一端であり、他端が抵抗部11Aの他端である。抵抗部11Aは、第1抵抗部11Bと第2抵抗部11Cとを有する。第1抵抗部11B及び第2抵抗部11Cは、電源部90と負荷91との間において直列に接続されている。第1抵抗部11Bは、第2抵抗部11Cよりも電源部90側に配置されている。
 通電回路12は、第1導電路81と第2導電路82との間に設けられる。通電回路12の一端は第1導電路81に電気的に接続され、他端は第2導電路82に電気的に接続される。通電回路12は、通電回路12を介して第1導電路81から第2導電路82に電流が流れる通電状態と、通電回路12を介して第1導電路81から第2導電路82に流れる電流を遮断する遮断状態とに切り替わりうる。通電回路12は、通電状態のときに第1導電路81から第2導電路82に電流が流れる構成をなす。通電回路12は、定電流回路12Aと第3スイッチング素子12Bとを有する。
 定電流回路12Aは、第1導電路81と第2導電路82との間に設けられる。定電流回路12Aは、第1導電路81から第2導電路82に向けて定電流を流す定電流動作を行う。第3スイッチング素子12Bは、例えばFET(Field Effect Transistor)などの半導体スイッチング素子である。定電流回路12Aと第3スイッチング素子12Bは、第1導電路81と第2導電路82との間で直列に接続されている。第3スイッチング素子12Bは、制御装置20によってPWM制御される。定電流回路12Aが流す定電流の電流値は、第3スイッチング素子12Bに与えられるPWM信号のデューティ(周期に対するオン時間の割合)によって調整される。定電流回路12Aが定電流動作を行っている状態が通電状態であり、定電流回路12Aが定電流動作を行っていない状態が遮断状態である。つまり、第3スイッチング素子12BがPWM制御されている状態が通電状態であり、第3スイッチング素子12Bがオフ状態で維持されている状態が遮断状態である。なお、本明細書において、定電流動作は、電流値が特に限定されない場合、予め定められた基準電流値の定電流を流す動作を意味する。
 第2スイッチング素子14は、抵抗部11Aを流れる電流が閾値電流を超えた場合にオン状態に切り替わり、閾値電流以下となった場合にオフ状態に切り替わる。第2スイッチング素子14は、本実施形態ではPNP型のバイポーラトランジスタである。第2スイッチング素子14のエミッタは、抵抗部11Aの一部又は全体である検出対象部(本実施形態では第1抵抗部11B)の電源部90側の端部に短絡し、第2スイッチング素子14のベースは、検出対象部の負荷91側の端部に短絡する。
 出力回路15は、第2スイッチング素子14がオン状態のときに第1信号(ハイレベル信号)を出力し、第2スイッチング素子14がオフ状態のときに第2信号(ローレベル信号)を出力する。出力回路15は、第2スイッチング素子14のコレクタ電圧を分圧する分圧回路である。出力回路15は、第3抵抗部15Aと第4抵抗部15Bとを有する。第3抵抗部15Aの一端は、第2スイッチング素子14のコレクタに短絡しており、第3抵抗部15Aの他端は、第4抵抗部15Bの一端に短絡している。第4抵抗部15Bの他端は、第2導電路82に短絡している。出力回路15は、第2スイッチング素子14のコレクタ電位と第2導電路82の電位との間の電圧を、第3抵抗部15Aと第4抵抗部15Bとで分圧し、分圧した電圧を出力する。出力回路15から出力された第1信号又は第2信号は、制御装置20に入力される。
 抵抗部11Aの抵抗値、通電回路12の通電状態における抵抗値(本実施形態では定電流動作を行っているときの定電流回路12Aの抵抗値)、及び負荷91の待機状態における抵抗値は、第1スイッチング素子10がオフ状態のときの電源部90の出力電位と第2導電路82の電位との間の電圧を抵抗部11Aと通電状態の通電回路12(本実施形態では定電流動作を行っている定電流回路12A)及び待機状態の負荷91とで分圧した電圧が、負荷91の待機状態を維持するために最低限必要な下限電圧を上回るように設定されている。
 上述の閾値電流は、負荷91が待機状態で、且つ定電流回路12Aが予め定められた基準電流値の定電流を流す定電流動作を行っている状態において、第1スイッチング素子10が正常にオフ状態となっているときの抵抗部11Aに流れる電流の値よりも小さく、且つ第1スイッチング素子10が正常にオフ状態となっていないときの抵抗部11Aに流れる電流の値よりも大きくなるように設定されている。このため、第1スイッチング素子10に対しオフ状態にする指示が与えられた場合に、第1スイッチング素子10が正常にオフ状態に切り替わると、抵抗部11Aを流れる電流の値が閾値電流よりも大きくなり、第2スイッチング素子14がオン状態で維持される。その結果、出力回路15は、第1信号(ハイレベル信号)を出力する。第1スイッチング素子10に対しオフ状態にする指示が与えられたにも関わらず、第1スイッチング素子10が正常にオフ状態に切り替わらないと、抵抗部11Aを流れる電流の値が閾値電流よりも小さくなり、第2スイッチング素子14がオフ状態に切り替わる。その結果、出力回路15は、第2信号(ローレベル信号)を出力する。したがって、制御装置20は、第1信号を受信した場合に異常でないと判定し、第2信号を受信した場合に異常と判定することができる。
 温度検出部16は、第2スイッチング素子14の温度を検出する。温度検出部16は、第2スイッチング素子14に接触していてもよいし、接触していなくてもよく、第2スイッチング素子14の近傍に配置されてもよい。温度検出部16は、例えば公知の温度センサとして構成されている。温度検出部16によって検出された温度を示す信号は、制御装置20に入力される。
 制御装置20は、電力供給装置1を制御しうる。制御装置20は、例えばECU(Electronic Control Unit)であり、CPU、メモリ、ADコンバータ、駆動回路などを有する。制御装置20は、温度検出部16から出力された信号に基づいて、第2スイッチング素子14の温度を特定しうる。制御装置20は、制御部21と、異常判定部22と、を有する。
 制御部21は、第1スイッチング素子10及び第3スイッチング素子12Bを制御する。制御部21は、第3スイッチング素子12Bを制御することで、定電流回路12Aに定電流動作を行わせる。制御部21は、第1スイッチング素子10に対しオフ状態にする指示を与え、且つ通電回路12に対し通電状態にする指示を与える(本実施形態では定電流回路12Aに定電流動作を行わせる)第1切替制御を行う。制御部21は、定電流回路12Aに定電流動作を行わせる際、第2スイッチング素子14の温度に基づいて定電流回路12Aを流れる電流を調整する。制御部21は、第3スイッチング素子12Bに与えるPWM信号のデューティを調整することで、定電流回路12Aを流れる電流を調整する。
 第2スイッチング素子14がオフ状態からオン状態に切り替わるベース-エミッタ間電圧は、第2スイッチング素子14の温度によって変化しうる。このため、制御部21は、第1スイッチング素子10が正常にオフ状態に切り替わった場合に第2スイッチング素子14がオン状態に維持され、第1スイッチング素子10が正常に切り替わらない場合に第2スイッチング素子14がオフ状態に切り替わるように、第2スイッチング素子14の温度に基づいて定電流回路12Aを流れる電流を調整する。
 制御部21は、例えば第2スイッチング素子14の温度と第3スイッチング素子12Bに与えるPWM信号のデューティとの対応関係を示す対応関係データを予め記憶しておき、温度検出部16によって検出された温度と対応関係データとに基づいてデューティを決定する。対応関係データは、テーブルであってもよいし、演算式であってもよい。制御部21は、このようにして決定したデューティのPWM信号を第3スイッチング素子12Bに与えることで、定電流回路12Aが流す定電流の電流値を調整する。
 異常判定部22は、通電回路12が通電状態のときの抵抗部11Aでの電圧降下に基づいて異常を判定する。つまり、異常判定部22は、定電流回路12Aが定電流動作を行っているときの抵抗部11Aでの電圧降下に基づいて異常を判定する。ここで、異常とは、第1スイッチング素子10が正常にオフ状態に切り替わらないショート故障のことである。異常判定部22は、第1切替制御が行われているときの抵抗部11Aでの電圧降下に基づいて異常を判定する。異常判定部22は、出力回路15から第1信号を受信した場合に異常でないと判定し、第2信号を受信した場合に異常であると判定する。
 異常判定部22が異常を判定する異常判定時間は、予め設定される。異常判定時間は、通電状態の通電回路12の抵抗値(本実施形態では定電流動作を行っているときの定電流回路12Aの抵抗値)をRとし、負荷91の容量をCとした場合に下記式(A)であらわされる時定数τよりも大きい時間に設定される。
   τ=R×C・・・式(A)
 なお、抵抗値Rを特定するときの定電流動作における電流の値は、上述した基準電流値であってもよいし、想定される下限の電流値であってもよいし、想定される上限の電流値であってもよいし、別の電流値であってもよい。
 図2には、負荷91の充電電圧が電源部90の満充電時の出力電圧(本実施形態では12V)に到達した後、負荷91から放電させたときの経過時間と負荷91に残る電圧との関係が示されている。負荷91に残る電圧は、第1導電路81の電圧の誤差要因となる。図2から明らかなように、異常判定時間は、時定数τの3倍以上かつ9倍以下であることが好ましい。異常判定時間を時定数τの3倍以上とすることで、負荷91からの放電の影響をより確実に排除することができる。このため、異常判定部22は異常の判定精度をより向上させることができる。一方、異常判定時間を時定数τの9倍以下とすることで、異常判定時間が必要以上に長くかかることを防止することができる。このため、異常判定部22は車両の電力供給装置として適切な時間の範囲内で異常を判定することができる。
 異常判定部22は、車両の始動スイッチがオフ状態からオン状態に切り替わったと判定した場合に、負荷91が待機状態から起動状態に復帰するまでの間に異常を判定する。制御装置20には、始動スイッチのオンオフ状態を示す信号が外部から入力される。異常判定部22は、この信号に基づいて、始動スイッチのオンオフ状態を判定する。異常判定部22は、始動スイッチがオン状態に切り替わったと判定した場合に、即座に異常を判定することで、負荷91が待機状態から起動状態に復帰するまでの間に異常を判定しうる。
 以下の説明は、制御装置20が行う動作に関する。制御装置20は、車両の始動スイッチがオフ状態になった場合に図3に示す処理を実行する。制御装置20は、まずステップS10にて、車両の始動スイッチがオフ状態からオン状態に切り替わったか否かを判定する。制御装置20は、始動スイッチがオン状態に切り替わっていないと判定した場合(ステップS10にてNoの場合)、ステップS10に戻る。つまり、制御装置20は、始動スイッチがオン状態に切り替わったと判定するまでステップS10を繰り返す。
 制御装置20は、始動スイッチがオン状態に切り替わったと判定した場合(ステップS10にてYesの場合)、ステップS11にて第2スイッチング素子14の温度を特定する。そして、制御装置20は、ステップS12にてステップS11で特定した温度に基づいて、第3スイッチング素子12Bに与えるPWM信号のデューティを決定する。そして、制御装置20は、ステップS13にて、第1切替制御を行う。つまり、制御装置20は、第1スイッチング素子10に対しオフ状態にする指示を与え、且つステップS12で決定したデューティのPWM信号を第3スイッチング素子12Bに与えることで定電流回路12Aに定電流動作を行わせる。
 制御装置20は、ステップS14にてタイマの作動を開始し、ステップS15にて第2信号を受信したか否かを判定する。制御装置20は、第2信号を受信していないと判定した場合(ステップS15にてNoの場合)、ステップS16にて、タイマの作動時間が予め設定された異常判定時間を経過したか否かを判定する。制御装置20は、異常判定時間が経過していないと判定した場合(ステップS16にてNoの場合)、ステップS15に戻る。つまり、制御装置20は、第2信号を受信したと判定するか、あるいは異常判定時間が経過したと判定するまで、第2信号を受信したか否かの判定、及び異常判定時間が経過したか否かの判定を繰り返す。
 制御装置20は、第2信号を受信したと判定した場合(ステップS15にてYesの場合)、ステップS17にて異常と判定し、図3に示す処理を終了する。また、制御装置20は、第2信号を受信することなく異常判定時間が経過した場合(ステップS16にてYesの場合)、図3の処理をする。
 次の説明は、効果に関する。
 第1実施形態の電力供給装置1は、抵抗部11Aを有し、第1スイッチング素子10に対して並列に設けられるバイパス回路11を有している。このため、第1スイッチング素子10に対しオン状態にする指示を与えることなく、バイパス回路11を介して負荷91に暗電流を供給することができる。しかし、バイパス回路11を有する構成では、第1スイッチング素子10が正常にオフ状態になったか否かに関わらず、バイパス回路11を介して第1スイッチング素子10の下流側に電流が回り込むため、第1スイッチング素子10が正常にオフ状態に切り替わらない異常を判定することが困難である。しかし、電力供給装置1は、第1導電路81から第2導電路82に向けて定電流を流す定電流動作を行う定電流回路12Aと、定電流回路12Aが定電流動作を行っているときの抵抗部11Aの電圧降下に基づいて異常を判定する異常判定部22と、を有している。電力供給装置1は、定電流回路12Aに定電流を流すことで、抵抗部11Aを流れる電流を大きくすることができるため、このときの抵抗部11Aを流れる電流に基づいて、第1スイッチング素子10が異常であるか否かを判別しやすくなる。したがって、この電力供給装置1は、定電流回路12Aに電流を流しているときの抵抗部11Aの電圧降下に基づいて異常を判定することで、バイパス回路11に並列接続された第1スイッチング素子10の異常をより高い精度で判定することができる。
 更に、抵抗部11Aの一端が電源部90に短絡し、他端が第1導電路81に短絡している。よって、この電力供給装置1は、スイッチを切り替えることなく常にバイパス回路11を通電状態とすることができるため、スイッチをオフ状態とすることで負荷91への電力供給が停止されて、負荷91がリセットされてしまうことを抑制することができる。
 更に、第1スイッチング素子10は、オン状態のときに第1スイッチング素子10を介して電力路80に電流が流れることを許容し、オフ状態のときに第1スイッチング素子10を介して電力路80に電流が流れることを遮断するように正常動作を行う。制御部21は、第1スイッチング素子10に対しオフ状態にする指示を与え、且つ定電流回路12Aに定電流動作を行わせる第1切替制御を行う。異常判定部22は、第1切替制御が行われているときの抵抗部11Aでの電圧降下に基づいて異常を判定する。このため、第1スイッチング素子10がオフ状態に切り替わらない異常をより確実に判定することができる。
 更に、抵抗部11Aの抵抗値、定電流動作を行っているときの定電流回路12Aの抵抗値、及び負荷91の待機状態における抵抗値は、第1スイッチング素子10がオフ状態のときの電源部90の出力電位と第2導電路82の電位との間の電圧を抵抗部11Aと定電流動作を行っている定電流回路12A及び待機状態の負荷91とで分圧した電圧が、負荷91の待機状態を維持するために最低限必要な下限電圧を上回るように設定されている。このため、負荷91がリセットされないように待機状態に維持しつつ、異常を判定することができる。
 更に、電力供給装置1は、第2スイッチング素子14と、出力回路15と、を有している。第2スイッチング素子14は、抵抗部11Aを流れる電流が閾値電流を超える場合にオン状態に維持され、閾値電流以下である場合にオフ状態に切り替わる。出力回路15は、第2スイッチング素子14がオン状態のときに第1信号を出力し、第2スイッチング素子14がオフ状態のときに第2信号を出力する。この構成によれば、抵抗部11Aを流れる電流が閾値電流を超える場合に第1信号が出力され、閾値電流以下である場合に第2信号が出力される。このため、信号を変換する際の誤差(例えばAD変換時の誤差)に起因した誤判定を抑制することができる。
 更に、電力供給装置1は、温度検出部16を有している。制御部21は、第2スイッチング素子14の温度に基づいて定電流回路12Aを流れる電流を調整する。このため、第2スイッチング素子14の温度特性の影響をキャンセルさせることができる。
 更に、負荷91は、容量性負荷であり、異常判定部22が異常を判定する時間は、上述した式(A)であらわされる時定数τよりも大きい。このため、負荷91に蓄電されることに起因する誤判定を抑制することができる。
 更に、異常判定部22が、車両の始動スイッチがオフ状態からオン状態に切り替わったと判定した場合に、負荷91が待機状態から起動状態に復帰するまでの間に異常を判定するため、車両の走行に影響のない状況下で異常を判定することができる。
 <第2実施形態>
 第2実施形態では、「異常判定部は、車両の始動スイッチがオン状態からオフ状態に切り替わったと判定した場合に、負荷が待機状態になった後に異常を判定する」例について説明する。なお、第2実施形態は、「異常判定部は、車両の始動スイッチがオン状態からオフ状態に切り替わったと判定した場合に、負荷が待機状態になった後に異常を判定する」点を除き、第1実施形態と同じ構成である。第2実施形態の説明では、第1実施形態の電源システムの構成を示す図1を参照して説明する。
 異常判定部22は、車両の始動スイッチがオン状態からオフ状態に切り替わったと判定した場合に、負荷91が待機状態になった後に異常を判定する。負荷91が待機状態に切り替わったか否かを判定する方法は、特に限定されず、例えばオフ状態に切り替わったと判定してからの経過時間に基づいて判定してもよい。
 以下の説明は、第2実施形態の制御装置20が行う動作に関する。制御装置20は、車両の始動スイッチがオン状態になった場合に図4に示す処理を実行する。制御装置20は、まずステップS20にて、車両の始動スイッチがオン状態からオフ状態に切り替わったか否かを判定する。制御装置20は、始動スイッチがオフ状態に切り替わっていないと判定した場合(ステップS20にてNoの場合)、ステップS20に戻る。つまり、制御装置20は、始動スイッチがオフ状態に切り替わったと判定するまでステップS20を繰り返す。
 制御装置20は、始動スイッチがオフ状態に切り替わったと判定した場合(ステップS20にてYesの場合)、負荷91が待機状態に切り替わったか否かを判定する(ステップS20A)。制御装置20は、負荷91が待機状態に切り替わっていないと判定した場合(ステップS20AにてNoの場合)、ステップS20Aに戻り、負荷91が待機状態に切り替わったと判定するまでステップS20Aを繰り返す。制御装置20は、負荷91が待機状態に切り替わったと判定した場合(ステップS20AにてYesの場合)、ステップS21~S27の処理を行う。ステップS21~S27の処理は、第1実施形態におけるステップS11~S17と同じであるため、詳しい説明を省略する。
 以上のように、第2実施形態の電力供給装置1では、異常判定部22が、車両の始動スイッチがオン状態からオフ状態に切り替わったと判定した場合に、負荷91が待機状態になった後に異常を判定する。このため、この電力供給装置1によれば、車両の走行に影響のない状況下で異常を判定することができる。
 <第3実施形態>
 第3実施形態では、第1実施形態で説明した制御装置20を負荷91と通信可能とし、制御装置20が、負荷91が待機状態に切り替わったことを示す報知信号を負荷91から受信した場合に異常を判定する例について説明する。なお、第3実施形態は、制御装置20から報知信号を受信した場合に異常を判定する点で第1実施形態と異なり、その他の点で共通する。なお、第3実施形態の電源システムの構成は、制御装置20が負荷91と通信可能であることを除き同じであるため、第1実施形態の電源システムの構成を示す図1を参照して説明する。
 制御装置20は、負荷91と通信可能である。負荷91は、始動スイッチがオフ状態に切り替わる場合に、外部からの指令に応じて起動状態から待機状態に切り替わる。負荷91は、起動状態から待機状態に切り替わった場合に、その旨を報知する報知信号を出力する。報知信号は、制御装置20に入力される。制御装置20の異常判定部22は、負荷91から報知信号を受信した場合に異常を判定する。
 以下の説明は、第3実施形態の制御装置20が行う動作に関する。制御装置20は、車両の始動スイッチがオン状態になった場合に図5に示す処理を実行する。制御装置20は、まずステップS30にて、負荷91から報知信号を受信したか否かを判定する。制御装置20は、報知信号を受信していないと判定した場合(ステップS30にてNoの場合)、ステップS30に戻る。つまり、制御装置20は、報知信号を受信したと判定するまでステップS30を繰り返す。制御装置20は、報知信号を受信したと判定した場合(ステップS30にてYesの場合)、ステップS31~S37の処理を行う。ステップS31~S37の処理は、第1実施形態におけるステップS11~S17と同じであるため、詳しい説明を省略する。
 以上のように、第3実施形態の電力供給装置1では、異常判定部22が、負荷91から報知信号を受信した場合に異常を判定する。このため、この構成によれば、より確実に待機状態中に異常を判定することができる。
 <第4実施形態>
 第1実施形態、第2実施形態及び第3実施形態は、第1スイッチング素子のショート故障を判定する構成であった。これに対し、第4実施形態は、第1スイッチング素子のオープン故障を判定する構成である。第4実施形態は、制御装置20による制御方法のみが第1実施形態と異なる。以下の説明では、第1実施形態と同じ構成については同じ符号を付して詳しい説明を省略する。
 第2スイッチング素子14は、抵抗部11Aを流れる電流が閾値電流を超えた場合にオン状態に切り替わり、閾値電流以下となった場合にオフ状態に切り替わる。閾値電流は、負荷91が待機状態で、且つ定電流回路12Aが予め定められた基準電流値の定電流を流す定電流動作を行っている状態において、第1スイッチング素子10が正常にオン状態となっているときの抵抗部11Aに流れる電流の値よりも大きく、且つ第1スイッチング素子10が正常にオン状態となっていないときの抵抗部11Aに流れる電流の値よりも小さくなるように設定されている。このため、第1スイッチング素子10に対しオン状態にする指示が与えられた場合に、第1スイッチング素子10が正常にオン状態に切り替わると、抵抗部11Aを流れる電流の値が閾値電流よりも小さくなり、第2スイッチング素子14がオフ状態に切り替わる。その結果、出力回路15は、第2信号(ローレベル信号)を出力する。第1スイッチング素子10に対しオン状態にする指示が与えられたにも関わらず、第1スイッチング素子10が正常にオン状態に切り替わらないと、抵抗部11Aを流れる電流の値が閾値電流よりも大きいままで維持され、第2スイッチング素子14がオン状態に維持される。その結果、出力回路15は、第1信号(ハイレベル信号)を出力する。したがって、制御装置20は、第2信号を受信した場合に異常でないと判定し、第1信号を受信した場合に異常と判定することができる。
 制御部21は、第1スイッチング素子10に対しオン状態にする指示を与え、且つ通電回路12に対し通電状態にする指示を与える第2切替制御を行う。異常判定部22は、第2切替制御が行われているときの抵抗部11Aでの電圧降下に基づいて異常を判定する。ここで、異常とは、第1スイッチング素子10が正常にオン状態に切り替わらないオープン故障のことである。異常判定部22は、出力回路15から第1信号を受信した場合に異常でないと判定し、第2信号を受信した場合に異常であると判定する。
 以下の説明は、第4実施形態の制御装置20が行う動作に関する。制御装置20は、車両の始動スイッチがオフ状態になった場合に、図6に示す処理を実行する。制御装置20は、まずステップS40にて、車両の始動スイッチがオフ状態からオン状態に切り替わったか否かを判定する。制御装置20は、始動スイッチがオン状態に切り替わっていないと判定した場合(ステップS40にてNoの場合)、ステップS40に戻る。つまり、制御装置20は、始動スイッチがオン状態に切り替わったと判定するまでステップS40を繰り返す。
 制御装置20は、始動スイッチがオン状態に切り替わったと判定した場合(ステップS40にてYesの場合)、ステップS41にて第2スイッチング素子14の温度を特定する。そして、制御装置20は、ステップS42にてステップS41で特定した温度に基づいて、第3スイッチング素子12Bに与えるPWM信号のデューティを決定する。そして、制御装置20は、ステップS43にて、第2切替制御を行う。つまり、制御装置20は、第1スイッチング素子10に対しオン状態にする指示を与え、且つステップS42で決定したデューティのPWM信号を第3スイッチング素子12Bに与えることで定電流回路12Aに定電流動作を行わせる。
 制御装置20は、ステップS44にてタイマの作動を開始し、ステップS45にて第1信号を受信したか否かを判定する。制御装置20は、第1信号を受信していないと判定した場合(ステップS45にてNoの場合)、ステップS46にて、タイマの作動時間が予め設定された異常判定時間を経過したか否かを判定する。制御装置20は、異常判定時間が経過していないと判定した場合(ステップS46にてNoの場合)、ステップS45に戻る。つまり、制御装置20は、第1信号を受信したと判定するか、あるいは異常判定時間が経過したと判定するまで、第1信号を受信したか否かの判定、及び異常判定時間が経過したか否かの判定を繰り返す。
 制御装置20は、第1信号を受信したと判定した場合(ステップS45にてYesの場合)、ステップS47にて異常と判定し、図6に示す処理を終了する。また、制御装置20は、第1信号を受信することなく異常判定時間が経過した場合(ステップS46にてYesの場合)、図6の処理をする。
 以上のように、第4実施形態の電力供給装置1によれば、第1スイッチング素子10がオン状態に切り替わらない異常(いわゆるオープン故障)を判定することができる。
 <第5実施形態>
 第4実施形態の電力供給装置1は、「異常判定部は、車両の始動スイッチがオフ状態からオン状態に切り替わったと判定した場合に、負荷が待機状態から起動状態に切り替わるまでの間に異常を判定する」構成であった。これに対し、第5実施形態の電力供給装置1は、「異常判定部は、車両の始動スイッチがオン状態からオフ状態に切り替わったと判定した場合に、負荷が待機状態となった後に異常を判定する」構成である。第5実施形態は、異常を判定するタイミングのみが第4実施形態と異なる。以下の説明では、主に第4実施形態との相違点について説明し、共通する部分の説明を省略する。
 異常判定部22は、車両の始動スイッチがオン状態からオフ状態に切り替わったと判定した場合に、負荷91が待機状態になった後に異常を判定する。負荷91が待機状態に切り替わったか否かを判定する方法は、特に限定されず、例えばオフ状態に切り替わったと判定してからの経過時間に基づいて判定してもよい。
 以下の説明は、第5実施形態の制御装置20が行う動作に関する。制御装置20は、車両の始動スイッチがオン状態になった場合に、図7に示す処理を実行する。制御装置20は、まずステップS50にて、車両の始動スイッチがオン状態からオフ状態に切り替わったか否かを判定する。制御装置20は、始動スイッチがオフ状態に切り替わっていないと判定した場合(ステップS50にてNoの場合)、ステップS50に戻る。つまり、制御装置20は、始動スイッチがオフ状態に切り替わったと判定するまでステップS50を繰り返す。
 制御装置20は、始動スイッチがオフ状態に切り替わったと判定した場合(ステップS50にてYesの場合)、負荷91が待機状態に切り替わったか否かを判定する(ステップS50A)。制御装置20は、負荷91が待機状態に切り替わっていないと判定した場合(ステップS50AにてNoの場合)、ステップS50Aに戻り、負荷91が待機状態に切り替わったと判定するまでステップS50Aを繰り返す。制御装置20は、負荷91が待機状態に切り替わったと判定した場合(ステップS50AにてYesの場合)、ステップS51~S58の処理を行う。ステップS51~S58の処理は、第4実施形態におけるステップS41~S48と同じであるため、詳しい説明を省略する。
 以上のように、第5実施形態の電力供給装置1では、異常判定部22が、車両の始動スイッチがオン状態からオフ状態に切り替わったと判定した場合に、負荷91が待機状態になった後に異常を判定する。このため、この電力供給装置1によれば、車両の走行に影響のない状況下で異常を判定することができる。
 <第6実施形態>
 第4実施形態の電力供給装置1は、「異常判定部は、車両の始動スイッチがオフ状態からオン状態に切り替わったと判定した場合に、負荷が待機状態から起動状態に切り替わるまでの間に異常を判定する」構成であった。これに対し、第6実施形態の電力供給装置1は、「異常判定部は、負荷から報知信号を受信した場合に異常を判定する」構成である。第6実施形態は、異常を判定するタイミングのみが第4実施形態と異なる。以下の説明では、主に第4実施形態との相違点について説明し、共通する部分の説明を省略する。
 負荷91は、待機状態から起動状態に切り替わった場合に報知信号を出力する。異常判定部22は、負荷91から報知信号を受信した場合に異常を判定する。
 以下の説明は、第6実施形態の制御装置20が行う動作に関する。制御装置20は、車両の始動スイッチがオン状態になった場合に、図8に示す処理を実行する。制御装置20は、まずステップS60にて、負荷91から報知信号を受信したか否かを判定する。制御装置20は、報知信号を受信していないと判定した場合(ステップS60にてNoの場合)、ステップS60に戻る。つまり、制御装置20は、報知信号を受信したと判定するまでステップS60を繰り返す。
 制御装置20は、報知信号を受信したと判定した場合(ステップS60にてYesの場合)、ステップS61~S68の処理を行う。ステップS61~S68の処理は、第4実施形態におけるステップS41~S48と同じであるため、詳しい説明を省略する。
 以上のように、第6実施形態の電力供給装置1では、異常判定部22が、負荷91から報知信号を受信した場合に異常を判定する。このため、この電力供給装置1によれば、負荷91がより確実に待機状態となってから異常を判定することができる。
 <第7実施形態>
 第7実施形態の電力供給装置701は、通電回路12が、通電抵抗部と通電スイッチとを有する点で、第1実施形態の電力供給装置1とは異なる。以下の説明では、第1実施形態と同じ構成については、同じ符号を付して詳しい説明を省略する。
 第7実施形態の電源システム700は、電力供給装置701を有する。電力供給装置701は、通電回路712を有する。通電回路712は、通電抵抗部712Aと、通電スイッチ712Bとを有する。通電抵抗部712A及び通電スイッチ712Bは、互いに直列に接続される。通電抵抗部712Aは、複数の抵抗器を直列に接続させた構成体である。通電状態は、通電スイッチ712Bのオン状態であり、遮断状態は、通電スイッチ712Bのオフ状態である。通電回路712は、通電スイッチ712Bがオン状態のときに第1導電路81から第2導電路82に電流が流れる構成をなしている。
 制御部21は、第1スイッチング素子10に対しオフ状態にする指示を与え、且つ通電スイッチ712Bに対しオン状態にする指示を与える第1切替制御を行う。異常判定部22は、通電スイッチ712Bがオン状態のときの抵抗部11Aでの電圧降下に基づいて異常を判定する。
 以上のように、第7実施形態の電力供給装置701によれば、通電回路12を簡素な構成によって実現することができる。
 <他の実施形態>
 本開示は、上記記述及び図面によって説明した実施形態に限定されるものではない。例えば、上述又は後述の実施形態の特徴は、矛盾しない範囲であらゆる組み合わせが可能である。また、上述又は後述の実施形態のいずれの特徴も、必須のものとして明示されていなければ省略することもできる。更に、上述した実施形態は、次のように変更されてもよい。
 上記各実施形態では、バイパス回路11がスイッチを有さない構成であるが、スイッチを有する構成であってもよい。
 上記各実施形態において、負荷91が起動状態に切り替わったことを検出する検出回路と、検出回路が負荷91の起動状態への切り替わりを検出した場合に第1スイッチング素子10をオン状態に切り替える切替回路と、を設けるようにしてもよい。この構成によれば、負荷91が起動状態に切り替わった場合に、即座に第1スイッチング素子10をオン状態に切り替え、負荷91に電力を供給することができる。検出回路は、第1導電路81の電圧に基づいて検出してもよいし、第1導電路81を流れる電流に基づいて検出してもよい。
 上記第1実施形態、第2実施形態及び第3実施形態では、第1切替制御が開始されてから異常判定時間が経過するまでの間に第2信号を受信した場合に異常と判定する構成としたが、別の構成であってもよい。例えば、第1切替制御が開始されてから異常判定時間が経過するまでの間に第1信号を受信しなかった場合に異常と判定する構成であってもよい。あるいは、第1切替制御が開始されてから異常判定時間が経過したときの抵抗部の電圧降下に基づいて異常を判定してもよい。より具体的には、第1切替制御が開始されてから異常判定時間が経過したときに第2信号を受信したと判定した場合に異常と判定してもよい。
 上記第4実施形態、第5実施形態及び第6実施形態では、第2切替制御が開始されてから異常判定時間が経過するまでの間に第1信号を受信した場合に異常と判定する構成としたが、別の構成であってもよい。例えば、第2切替制御が開始されてから異常判定時間が経過するまでの間に第2信号を受信しなかった場合に異常と判定する構成であってもよい。あるいは、第2切替制御が開始されてから異常判定時間が経過したときの抵抗部の電圧降下に基づいて異常を判定してもよい。より具体的には、第2切替制御が開始されてから異常判定時間が経過したときに第1信号を受信したと判定した場合に異常を判定してもよい。
 なお、今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、今回開示された実施の形態に限定されるものではなく、特許請求の範囲によって示された範囲内又は特許請求の範囲と均等の範囲内での全ての変更が含まれることが意図される。
1…電力供給装置
10…第1スイッチング素子
11…バイパス回路
11A…抵抗部
11B…第1抵抗部
11C…第2抵抗部
12…通電回路
12A…定電流回路
12B…第3スイッチング素子
14…第2スイッチング素子
15…出力回路
15A…第3抵抗部
15B…第4抵抗部
16…温度検出部
20…制御装置
21…制御部
22…異常判定部
80…電力路
81…第1導電路
82…第2導電路
90…電源部
91…負荷
100…電源システム
700…電源システム
701…電力供給装置
712…通電回路
712A…通電抵抗部
712B…通電スイッチ
τ…時定数

Claims (14)

  1.  電源部から負荷に電力を供給する導電路である電力路と、前記電力路に設けられる第1スイッチング素子と、を有する電源システムにおいて、電力を制御する電力供給装置であって、
     前記第1スイッチング素子に対して並列に設けられ、抵抗部を有し、前記抵抗部を介して前記電源部側から前記負荷側へ電流が流れるバイパス回路と、
     前記電力路における前記バイパス回路と前記負荷との間の第1導電路とグラウンドである第2導電路との間に設けられ、通電状態のときに前記第1導電路から前記第2導電路に電流が流れる構成となる通電回路と、
     前記通電回路が前記通電状態のときの前記抵抗部での電圧降下に基づいて異常を判定する異常判定部と、
     を有する
     電力供給装置。
  2.  前記抵抗部の一端が前記電源部に短絡し、他端が前記第1導電路に短絡する
     請求項1に記載の電力供給装置。
  3.  前記第1スイッチング素子は、オン状態のときに前記第1スイッチング素子を介して前記電力路に電流が流れることを許容し、オフ状態のときに前記第1スイッチング素子を介して前記電力路に電流が流れることを遮断するように正常動作を行い、
     更に、前記第1スイッチング素子に対しオフ状態にする指示を与え、且つ前記通電回路に対し前記通電状態にする指示を与える第1切替制御を行う制御部を有し、
     前記異常判定部は、前記第1切替制御が行われているときの前記第1導電路の電圧に基づいて異常を判定する
     請求項1又は請求項2に記載の電力供給装置。
  4.  前記第1スイッチング素子は、オン状態のときに前記第1スイッチング素子を介して前記電力路に電流が流れることを許容し、オフ状態のときに前記第1スイッチング素子を介して前記電力路に電流が流れることを遮断するように正常動作を行い、
     更に、前記第1スイッチング素子に対しオン状態にする指示を与え、且つ前記通電回路に対し前記通電状態にする指示を与える第2切替制御を行う制御部を有し、
     前記異常判定部は、前記第2切替制御が行われているときの前記第1導電路の電圧に基づいて異常を判定する
     請求項1又は請求項2に記載の電力供給装置。
  5.  前記抵抗部の抵抗値、前記通電回路の前記通電状態における抵抗値及び前記負荷の待機状態における抵抗値は、前記第1スイッチング素子がオフ状態のときの前記電源部の出力電位と前記第2導電路の電位との間の電圧を前記抵抗部と前記通電状態の前記通電回路及び前記待機状態の前記負荷とで分圧した電圧が、前記負荷の前記待機状態を維持するために最低限必要な下限電圧を上回るように設定されている
     請求項1から請求項4のいずれか一項に記載の電力供給装置。
  6.  前記抵抗部を流れる電流が閾値電流を超える場合にオン状態とされ、前記閾値電流以下である場合にオフ状態とされる第2スイッチング素子と、
     前記第2スイッチング素子がオン状態のときに第1信号を出力し、前記第2スイッチング素子がオフ状態のときに第2信号を出力する出力回路と、を有する
     請求項1から請求項5のいずれか一項に記載の電力供給装置。
  7.  前記通電回路は、定電流回路を有し、
     前記定電流回路は、前記第1導電路から前記第2導電路に向けて定電流を流す定電流動作を行い、
     前記通電状態は、前記定電流回路が前記定電流動作を行っている状態である
     請求項1から請求項6のいずれか一項に記載の電力供給装置。
  8.  前記通電回路は、定電流回路を有し、
     前記定電流回路は、前記第1導電路から前記第2導電路に向けて定電流を流す定電流動作を行い、
     前記通電状態は、前記定電流回路が前記定電流動作を行っている状態であり、
     更に、前記第2スイッチング素子の温度を検出する温度検出部と、
     前記第2スイッチング素子の温度に基づいて前記定電流回路を流れる電流を調整する制御部と、を有する
     請求項6に記載の電力供給装置。
  9.  前記通電回路は、通電抵抗部と通電スイッチとを有し、
     前記通電状態は、前記通電スイッチのオン状態である
     請求項1から請求項6のいずれか一項に記載の電力供給装置。
  10.  前記負荷は、容量性負荷であり、
     前記異常判定部が異常を判定する時間は、前記通電状態のときの前記通電回路の抵抗値をRとし、前記負荷の容量をCとした場合に下記式(A)であらわされる時定数τよりも大きい
     請求項1から請求項9のいずれか一項に記載の電力供給装置。
       τ=R×C・・・式(A)
  11.  前記異常判定部が異常を判定する時間は、前記時定数τの3倍以上で且つ9倍以下である
     請求項10に記載の電力供給装置。
  12.  前記異常判定部は、車両の始動スイッチがオフ状態からオン状態に切り替わったと判定した場合に、前記負荷が待機状態から起動状態に復帰するまでの間に異常を判定する
     請求項1から請求項11のいずれか一項に記載の電力供給装置。
  13.  前記異常判定部は、車両の始動スイッチがオン状態からオフ状態に切り替わったと判定した場合に、前記負荷が待機状態になった後に異常を判定する
     請求項1から請求項11のいずれか一項に記載の電力供給装置。
  14.  前記負荷は、起動状態から待機状態に切り替わった場合に報知信号を出力し、
     前記異常判定部は、前記負荷から前記報知信号を受信した場合に異常を判定する
     請求項1から請求項11のいずれか一項に記載の電力供給装置。
PCT/JP2021/027593 2021-07-26 2021-07-26 電力供給装置 WO2023007558A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023537766A JPWO2023007558A1 (ja) 2021-07-26 2021-07-26
CN202180100364.5A CN117678135A (zh) 2021-07-26 2021-07-26 电力供给装置
US18/290,760 US20240333004A1 (en) 2021-07-26 2021-07-26 Power supply apparatus
PCT/JP2021/027593 WO2023007558A1 (ja) 2021-07-26 2021-07-26 電力供給装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/027593 WO2023007558A1 (ja) 2021-07-26 2021-07-26 電力供給装置

Publications (1)

Publication Number Publication Date
WO2023007558A1 true WO2023007558A1 (ja) 2023-02-02

Family

ID=85086398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/027593 WO2023007558A1 (ja) 2021-07-26 2021-07-26 電力供給装置

Country Status (4)

Country Link
US (1) US20240333004A1 (ja)
JP (1) JPWO2023007558A1 (ja)
CN (1) CN117678135A (ja)
WO (1) WO2023007558A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024195532A1 (ja) * 2023-03-23 2024-09-26 株式会社オートネットワーク技術研究所 劣化判定装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010120624A (ja) * 2008-10-23 2010-06-03 Nissan Motor Co Ltd 車両用電源供給制御装置、及び車両用電源供給制御方法
JP2013161535A (ja) * 2012-02-01 2013-08-19 Honda Elesys Co Ltd 異常検出装置及び異常検出方法
WO2016103721A1 (ja) * 2014-12-24 2016-06-30 株式会社Gsユアサ 電源保護装置、電源装置及びスイッチ故障診断方法
JP2017119454A (ja) * 2015-12-28 2017-07-06 カルソニックカンセイ株式会社 電源管理装置及び異常検出方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010120624A (ja) * 2008-10-23 2010-06-03 Nissan Motor Co Ltd 車両用電源供給制御装置、及び車両用電源供給制御方法
JP2013161535A (ja) * 2012-02-01 2013-08-19 Honda Elesys Co Ltd 異常検出装置及び異常検出方法
WO2016103721A1 (ja) * 2014-12-24 2016-06-30 株式会社Gsユアサ 電源保護装置、電源装置及びスイッチ故障診断方法
JP2017119454A (ja) * 2015-12-28 2017-07-06 カルソニックカンセイ株式会社 電源管理装置及び異常検出方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024195532A1 (ja) * 2023-03-23 2024-09-26 株式会社オートネットワーク技術研究所 劣化判定装置

Also Published As

Publication number Publication date
JPWO2023007558A1 (ja) 2023-02-02
US20240333004A1 (en) 2024-10-03
CN117678135A (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
CN102265475B (zh) 负载电路保护装置
US7800870B2 (en) Power protection apparatus and electronic control unit
JP2010110091A (ja) 負荷駆動装置
CN102246375B (zh) 电力供给控制电路
WO2023007558A1 (ja) 電力供給装置
KR101025535B1 (ko) 단락보호회로를 구비한 스위치 제어 회로
JP2001216878A (ja) スイッチ状態監視回路及びスイッチ
US11709514B2 (en) Voltage regulator and in-vehicle backup power supply
JP6724726B2 (ja) 電力供給装置
WO2023007557A1 (ja) 電力供給装置
JP5524096B2 (ja) 過電流保護装置
JP2014053265A (ja) 電源装置
CN108292851B (zh) 供电控制装置
WO2022249719A1 (ja) 給電制御装置及び給電制御方法
JP2004032966A (ja) 半導体スイッチ装置
JPH11338556A (ja) 電源回路
JP7567662B2 (ja) 給電制御装置及び給電制御方法
JP2023165483A (ja) 電源制御装置および電源制御方法
JP3830093B2 (ja) 異常電源電圧検出回路
JPH08275263A (ja) 過電流保護装置
JPH11136847A (ja) 過負荷保護回路
CN117767221A (zh) 负载保护电路和方法
JP2546622Y2 (ja) 車両用電源装置
JP2005045985A (ja) バックアップ電源供給装置およびバックアップ電源供給方法
CN117878828A (zh) 短路保护电路和供电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21951769

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023537766

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202180100364.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18290760

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21951769

Country of ref document: EP

Kind code of ref document: A1