[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023005772A1 - 摄像模组和电子设备 - Google Patents

摄像模组和电子设备 Download PDF

Info

Publication number
WO2023005772A1
WO2023005772A1 PCT/CN2022/106841 CN2022106841W WO2023005772A1 WO 2023005772 A1 WO2023005772 A1 WO 2023005772A1 CN 2022106841 W CN2022106841 W CN 2022106841W WO 2023005772 A1 WO2023005772 A1 WO 2023005772A1
Authority
WO
WIPO (PCT)
Prior art keywords
camera module
lens
motor
area
module according
Prior art date
Application number
PCT/CN2022/106841
Other languages
English (en)
French (fr)
Inventor
刘庆华
李张成
孙战立
王怡沁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22848377.2A priority Critical patent/EP4350415A4/en
Priority to CN202311360790.XA priority patent/CN118200705A/zh
Priority to CN202280004029.XA priority patent/CN115606193B/zh
Publication of WO2023005772A1 publication Critical patent/WO2023005772A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/02Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices involving prisms or mirrors
    • G02B23/08Periscopes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices

Definitions

  • the present application relates to the technical field of electronic equipment, in particular to a camera module and electronic equipment.
  • a periscope camera module can be arranged so that the optical axis direction of the lens is perpendicular to the thickness direction of the electronic device.
  • the size of the lens affects the stacking height of the module, thereby affecting the thickness of the electronic device.
  • An embodiment of the present application provides a camera module and an electronic device, which can reduce the stack height.
  • the embodiment of the present application provides a camera module for installation in an electronic device.
  • the camera module includes: a bracket, an optical anti-shake motor, an auto-focus motor, a reflective prism, a lens, and a mirror holder;
  • the reflective prism is arranged in the optical anti-shake motor, the lens is arranged in the auto-focus motor, the lens is connected to the mirror holder, the optical anti-shake motor, the auto-focus motor and the mirror holder are arranged in the bracket and arranged in sequence in the first direction, the first The direction is the optical axis direction of the lens, and the plane where the lens holder is located is set perpendicular to the optical axis direction;
  • the lens includes a plurality of mirrors arranged in sequence from the light entrance side to the light exit side.
  • the side of the lens facing the reflective prism is the light entrance side.
  • the one close to the light entrance side is the first lens.
  • the aperture of the lens is set at the second
  • a peripheral side of a mirror is arranged on the side of the first mirror facing the reflective prism.
  • the embodiment of the present application provides a camera module.
  • the lens diameter can be reduced.
  • the reflection prism needs The size can be reduced simultaneously, so that the stacking height of the periscope camera module is reduced.
  • the aperture of the diaphragm is equal to the aperture of the first lens.
  • the aperture of the diaphragm When the aperture of the diaphragm is set to be equal to the aperture of the first lens, the aperture of the entrance pupil is equal to the aperture of the first lens, and there is no off-axis ray offset.
  • the aperture of the entrance pupil is a certain value, the first The aperture of the lens, thereby reducing the lens aperture and the size required for the reflective prism, and reducing the stacking height of the camera module.
  • the lens includes a lens barrel and a plurality of lenses arranged in the lens barrel, and the diaphragm entity is a limiting surface of the inner wall of the lens barrel, and the limiting surface is arranged on a peripheral side of the first lens.
  • Setting the inner wall of the lens barrel as the limiting surface can make the aperture of the diaphragm equal to the diameter of the first lens, and it is easy to realize in structure.
  • the side of the light incident surface of the camera module includes a main body area and a sunken area, the sunken area is arranged around the main body area, and the height of the sunken area is smaller than that of the main body area.
  • the sunken area is set to facilitate the formation of accommodating space after the camera module is assembled, which is used to install other structural parts, so as to reduce the stacking height of the camera module and improve the compactness of the structure.
  • the camera module further includes a structural component installed on the sinking area, and the structural component includes a sealing member or an antenna bracket.
  • Setting the seal can be used to seal the camera module and the back cover, and play a buffer role.
  • Setting the antenna bracket can increase the number of antennas and improve antenna performance; by installing structural parts in the sinking area, the stacking height of the camera module can be reduced. Improve structural compactness.
  • the optical anti-shake motor, the autofocus motor, and the mirror base are respectively provided with a first sinking area, a second sinking area, and a third sinking area.
  • the edge of the bracket is flush with the surface where the sinking area is located.
  • the bracket can avoid the structural parts, increase the volume of the accommodating space between the camera module and the rear cover, and facilitate the stacking of the structural parts.
  • the height difference between the sinking area and the main body area is 1mm-2mm.
  • the height difference between the sinking area and the main area can be 1mm-2mm, which can achieve the effect of reducing the stacking height of the whole machine by 1mm-2mm.
  • the camera module further includes a reinforcing plate, a first reinforcing glue, a second reinforcing glue and a mylar sheet, and the circumference of the reinforcing plate is bonded to the optical fiber through the first reinforcing glue.
  • the mylar sheet is attached to the reinforcing plate through the second reinforcing glue.
  • Setting the reinforcing structure can enhance the stability of the position sensor of the optical image stabilization motor relative to the position of the motor mover, ensuring the stability of the performance of the optical image stabilization motor; moreover, it can reduce the stack size and avoid the surface breaking problem caused by the injection molding process.
  • the mylar sheet is copper foil.
  • the copper foil is set as the mylar sheet, which not only plays a reinforcing and buffering role, but also improves heat dissipation efficiency.
  • the sum of the thicknesses of the second reinforcing glue and the Mylar sheet is less than or equal to 0.1 mm.
  • the height of the reinforcement is extremely small, which can effectively reduce the overall stacking height of the camera module.
  • the camera module further includes a substrate, and the optical anti-shake motor, the autofocus motor, and the lens holder are respectively connected to the substrate, the substrate is arranged in the bracket, and the plane where the substrate is located is perpendicular to the plane where the lens holder is located.
  • the setting of the position of the substrate is beneficial to the reasonable arrangement of the overall structure of the camera module, and can reduce the overall volume of the camera module.
  • an electronic device including a rear cover and the above-mentioned camera module, the rear cover is provided with a camera installation area, and the camera module is installed in the camera installation area.
  • the embodiment of the present application provides a camera module and electronic equipment.
  • the aperture of the lens can be reduced by placing the aperture of the lens in front, so as to reduce the size of the lens and the reflective prism, that is, the structural design can be reduced.
  • the stack height of the small module On the other hand, a sunken step structure can be provided around the camera module, and the sunken step structure is used to cooperate with the back cover, and can stack other structural parts, that is, the stacking height of the module can be reduced from the perspective of stacking fit.
  • the stacking thickness of the reinforcing structure at the bottom of the optical image stabilization motor can be reduced, that is, from the aspect of process processing
  • the stacking height of the module is reduced, so that a compact periscope camera module can be provided, which can reduce the stacking height of the whole electronic device, and is conducive to the thin design of the electronic device.
  • FIG. 1 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of an exploded structure of an electronic device provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a camera module provided by an embodiment of the present application.
  • FIG. 4 is an exploded view of a camera module provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a lens provided by an embodiment of the present application.
  • Fig. 6 is a schematic diagram of the positional relationship between the pre-diaphragm and the lens aperture provided by an embodiment of the present application;
  • Fig. 7 is a schematic diagram of the positional relationship between the central diaphragm and the lens aperture provided by the related art
  • Fig. 8 is a schematic structural diagram of a camera module and a part of the rear cover provided by an embodiment of the present application;
  • Fig. 9 is an exploded schematic view of the camera module, part of the back cover and part of the structural parts provided by an embodiment of the present application;
  • Fig. 10 is an exploded schematic diagram of a camera module and some structural components provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of an optical anti-shake motor, an autofocus motor, and a lens holder provided by an embodiment of the present application;
  • Fig. 12 is a structural schematic diagram of another angle of the camera module provided by an embodiment of the present application.
  • Figure 13 is an exploded schematic diagram of Mylar tablets and reinforcing glue provided by an embodiment of the present application.
  • Figure 14 is a schematic diagram of the assembly process of the Mylar sheet provided by an embodiment of the present application.
  • Figure 15 is a distribution diagram of the drop reliability compression ratio corresponding to the reinforcement structure provided by the injection molding process provided by the related technology
  • FIG. 16 is a distribution diagram of drop reliability compression ratio corresponding to a three-layer reinforcement structure provided by an embodiment of the present application.
  • the following embodiments of the present application provide an electronic device, including but not limited to mobile phone, tablet computer, notebook computer, ultra-mobile personal computer (ultra-mobile personal computer, UMPC), handheld computer, walkie-talkie, netbook, POS machine, personal digital assistant (personal digital assistant, PDA), wearable devices, virtual reality devices, wireless U disks, Bluetooth speakers, Bluetooth headsets, or vehicle-mounted devices and other electronic devices with cameras.
  • mobile phone tablet computer
  • notebook computer ultra-mobile personal computer
  • UMPC ultra-mobile personal computer
  • handheld computer walkie-talkie, netbook
  • POS machine personal digital assistant
  • PDA personal digital assistant
  • wearable devices virtual reality devices
  • wireless U disks wireless U disks
  • Bluetooth speakers Bluetooth headsets
  • vehicle-mounted devices or vehicle-mounted devices with cameras.
  • a mobile phone is taken as an example of the above-mentioned electronic device to specifically describe the structure of the electronic device.
  • the X axis can be defined as the length direction of the electronic device 100
  • the Y axis can be defined as the width direction of the electronic device 100
  • the Z axis can be defined as the thickness direction of the electronic device 100 .
  • the positive direction of the X-axis can be defined as the direction from bottom to top on the display surface when the user uses the electronic device 100
  • the positive direction of the Y-axis can be defined as the direction from right to left on the display surface when the user uses the electronic device 100
  • the positive direction of the Z axis is defined as a direction pointing from the display surface of the electronic device 100 to the rear.
  • FIG. 1 is a schematic structural diagram of an electronic device provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of an exploded structure of the electronic device provided by an embodiment of the present application.
  • the electronic device 100 may include a middle frame 12 and a rear cover 11 and a display screen 13 respectively connected to both sides of the middle frame 12, and the display screen 13, the middle frame 12 and the rear cover 11 are jointly formed into An accommodating space, in which a printed circuit board, a battery, a camera module 200 and other electronic devices can be arranged.
  • the display screen 13 is placed facing the user as a display surface
  • the rear cover 11 is placed facing away from the user.
  • the display screen 13 may be a liquid crystal display (Liquid crystal display, LCD) screen, an organic light emitting diode (Organic light emitting diode, OLED) display screen, and the like. It should be understood that the display screen 13 may include a display and a touch device, the display is used to output display content to the user, and the touch device is used to receive the user's touch operation on the display screen 13 .
  • the middle frame 12 can be made of materials such as metal, ceramics, and glass
  • the back cover 11 can be made of materials such as metal, ceramics, and glass. Or, the middle frame 12 and the rear cover 11 can also be integrally formed.
  • the back cover 11 made of materials such as metal, ceramics or glass can meet the requirements of glossiness, fashion and aesthetics of the appearance of electronic equipment.
  • a camera module 200 can also be set in the electronic device 100 to realize the shooting function.
  • the camera module 200 can be used as a front camera or a rear camera of the electronic device 100.
  • the rear camera is provided with a camera installation area 111 on the rear cover 11, and the camera installation area 111 can be opened by opening a hole on the rear cover 11. And it is formed by connecting the decorative part and the transparent cover plate in the opening.
  • the camera module 200 can be connected to the printed circuit board in the electronic device 100, the external light can enter the camera module 200 through the camera installation area 111, or the light emitted by the camera module 200 can pass through the camera installation area 111 to the external environment.
  • the shape of the camera installation area 111 is not specifically limited in this embodiment, for example, it may be a rectangle, a circle, a rounded rectangle, an ellipse, a ring, a racetrack, and the like.
  • a plurality of camera modules 200 can be arranged in the camera installation area 111, and the types of the camera modules 200 can include, for example, a periscope camera module, an ultra-wide-angle camera module, a black and white camera module, a depth camera module, and a macro camera module. modules etc.
  • the arrangement of multiple camera modules 200 in the camera installation area 111 is not specifically limited in this embodiment of the present application.
  • the camera installation area 111 can be set at any position on the back cover 11 , for example, at the upper center of the back cover 11 , at the upper right corner, or near the upper left corner as shown in FIG. 1 and FIG. 2 .
  • the design orientation of the electronic device 100 is a large screen and narrow body design.
  • the camera module 200 optical zoom with larger magnification, higher resolution imaging effect and more stable anti-shake capability are required.
  • the improvement of these camera effect requirements means that the camera module 200 needs to have a larger size and height, which is in contradiction with the thinner design trend of the electronic device 100 .
  • a periscope camera module can be provided to meet both the camera effect requirements of the camera module 200 and the thinning of the electronic device 100 .
  • the optical axis direction of the lens of the periscope camera module is perpendicular to the thickness direction of the electronic device 100 , which can reduce the thickness of the electronic device 100 while enabling the electronic device 100 to have the function of a telephoto camera.
  • the size of the lens affects the stacking height of the module (ie, the stacking height in the thickness direction of the electronic device 100 ), thereby affecting the thickness of the electronic device 100 .
  • the size of the lens needs to meet the optical performance, and it is very difficult to reduce the size of the lens, that is, it is difficult to further reduce the stack height of the periscope camera module.
  • the phenomenon of convexity of the camera module 200 is reduced visually.
  • the camera decoration on the camera installation area 11 protruding relative to the rear cover 11 can be designed to be black or other appearances that reduce the visual protruding effect, so as to Weaken the visual effect of the convexity of the camera module 200.
  • the module structure design of the camera module 200 itself does not reduce the stacking height of the modules.
  • the stacking height can be reduced by designing the components in the camera module 200 as two-in-one or multi-in-one.
  • the injection molding process can be used to integrate the circuit board and other structures in the camera module 200 with injection molded parts, so as to reduce the overall size and increase the strength of the components.
  • the method of combining two injection molding processes into one has high process requirements and is difficult to realize, resulting in low production efficiency and high cost disadvantages, and the two-in-one injection molding process has a certain thickness design bottom line, which may still not be able to meet the requirements of reducing stacking Thickness requirements.
  • the embodiment of the present application provides a camera module and electronic equipment.
  • the lens aperture can be reduced.
  • the required size of the reflective prism can be reduced simultaneously, so that the stacking height of the periscope camera module can be reduced, thereby reducing the thickness of the electronic device.
  • a periscope camera module applied to a mobile phone is taken as an example.
  • FIG. 3 is a schematic structural diagram of a camera module provided by an embodiment of the present application
  • FIG. 4 is an exploded view of the camera module provided by an embodiment of the present application.
  • the embodiment of the present application provides a camera module 200, which may include a bracket 21, an optical image stabilization (OIS for short) motor 22, an automatic focus (AF for short) motor 23.
  • the reflective prism 24 can be arranged in the optical anti-shake motor 22, the lens 25 can be arranged in the auto-focus motor 23, the lens 25 can be connected with the mirror holder 26, the optical anti-shake motor 22, the auto-focus motor 23 and the mirror holder 26 can be
  • the first direction is the optical axis direction of the lens 25, that is, the Y direction in the figure, and the plane where the mirror holder 26 is located is perpendicular to the optical axis direction of the lens 25.
  • the light incident surface of the camera module 200 is the side facing the back cover 11, that is, the top surface of the camera module 200 in the figure, and the light output surface of the camera module 200 is perpendicular to the optical axis direction of the lens 25, which can be where the mirror holder 26 is located. plane.
  • the imaging process of the camera module 200 can be as follows: after the light enters the camera module 200 from the incident surface, it first passes through the reflection of the reflective prism 24 to change the light path, then propagates along the optical axis direction of the lens 25, and enters the mirror holder 26.
  • a photosensitive chip can be arranged in the mirror seat 26, and light is irradiated onto the photosensitive chip to form an image.
  • the auto-focus motor 23 is used to drive the lens 25 to move along the optical axis, thereby changing the distance between the lens 25 and the lens holder 26 to realize focusing.
  • the optical anti-shake motor 22 is used to drive the reflective prism 24 to turn over, so as to adjust the position of the optical axis of the incident light relative to the auto-focus motor 23, so as to compensate the shake generated by the camera module 200 during shooting, and realize the anti-shake of shooting.
  • Both the optical anti-shake motor 22 and the autofocus motor 23 can be set as voice coil motors.
  • the voice coil motor can include a magnet and a coil that moves relative to the magnet. By passing currents of different sizes into the coil, the distance between the coil and the magnet can be controlled. The magnitude of the magnetic force to control the magnitude of the force and produce the required displacement.
  • the camera module 200 as a whole can be in a rectangular parallelepiped structure.
  • the length, width and height directions of the camera module 200 can correspond to the Y direction, X direction and Z direction in the figure respectively, that is, they can correspond to in the width direction, length direction and thickness direction of the electronic device 100 .
  • the side of the camera module 200 facing the rear cover 11 of the electronic device 100 that is, the top surface of the camera module 200 is the light-incoming surface.
  • the bracket 21 can be arranged as a rectangular frame structure formed by surrounding four side walls, and the top and bottom surfaces of the rectangular frame structure are opening structures.
  • the optical anti-shake motor 22, the autofocus motor 23, the mirror base 26, and the base plate 27 can be fixedly connected inside the bracket 21, and the way of fixed connection is not specifically limited in this embodiment of the application, for example, it can be clamped, screwed, or glued. Receive and so on.
  • the substrate 27 can be a printed circuit board (Printed Circuit Boards, referred to as PCB), the substrate 27 can be arranged between the optical anti-shake motor 22, the autofocus motor 23, the mirror seat 26 and the side wall surface of the bracket 21, and the substrate 27 can be connected with the side wall surface of the bracket 21 respectively.
  • the optical anti-shake motor 22, the auto-focus motor 23, and the lens holder 26 are electrically connected, and the substrate 27 can be connected to a flexible printed circuit (FPC) 271, and the flexible printed circuit 271 extends out of the support 21 and the end can be connected to the board pair.
  • a board (Board To Board, BTB for short) connector 272 is used to fasten on the main board inside the electronic device 100.
  • the overall stacking height of the camera module 200 can be reduced by placing the diaphragm of the lens 25 in front.
  • the diaphragm refers to an entity that limits light beams in an optical system, such as the edge of a lens, a frame, or a specially set screen with holes.
  • the diaphragm can include an aperture diaphragm and a field diaphragm.
  • the aperture diaphragm is used to limit the size of the point imaging beam on the optical axis
  • the field diaphragm is used to limit the size of the imaging range.
  • FIG. 5 is a schematic structural diagram of a lens provided by an embodiment of the present application
  • FIG. 6 is a schematic diagram of the positional relationship between the diaphragm and the aperture of the lens provided by an embodiment of the present application.
  • the lens 25 may include a lens barrel 251 and a plurality of lenses 252 arranged in the lens barrel 251, and a plurality of lenses 252 are in the lens barrel 251 along the optical axis of the lens The directions are arranged sequentially from the light-incoming side to the light-outgoing side.
  • the light entrance side of the lens 25 is defined as the front side
  • the light exit side is the rear side.
  • a plurality of lenses 252 are arranged in sequence from the light entrance side to the light exit side, and the frontmost lens can be defined as the first lens.
  • the lens diaphragm G may be disposed close to the light entrance side of the lens barrel 251 , that is, the diaphragm G is placed in front instead of being disposed between two lenses 252 .
  • the lens stop G may be disposed, for example, on the peripheral side of the first mirror, or may be disposed on the front side of the first mirror, that is, the side of the mirror 252 facing the reflective prism 24 .
  • the entrance pupil aperture refers to the effective aperture that limits the incident light beam
  • the entrance pupil is the image formed by the diaphragm on the front optical system
  • the entrance pupil aperture is the equivalent aperture of the diaphragm in the object space.
  • Entrance pupil aperture effective focal length/relative aperture
  • the effective focal length is EFL (Effective Focal Length)
  • the relative aperture is FNO (F-Number).
  • the entrance pupil aperture is a definite value .
  • FIG. 7 is a schematic diagram of the positional relationship between the central diaphragm and the lens aperture provided by the related art.
  • the diaphragm G is located in the middle of the lens 25 and is arranged between adjacent lenses 252 , and its physical structure may be an optical shading sheet.
  • the aperture of the first lens is the diameter of the entrance pupil plus the offset of off-axis light.
  • d3 represents the diameter of the entrance pupil
  • d4 represents the aperture of the first lens
  • d4 is greater than d3.
  • the diameter of the limiting surface 253 can be consistent, and the width of the limiting surface 253 is not specifically limited in this embodiment of the application, for example, it can be less than 0.5 mm.
  • the influence of the width of the limiting surface 253 on light can be determined in this embodiment of the application. neglect.
  • the aperture can also be arranged on the front side of the first eyeglass, that is, on the side of the first eyeglass facing the reflective prism 24.
  • the inner wall surface on the side can also be a structure such as a light-shielding sheet arranged on the front side of the lens barrel 251 .
  • a sunken step structure can be provided around the camera module 200.
  • the sunken step structure is used to cooperate with the back cover 11 and can stack other structural components, thereby reducing the overall size of the electronic device. machine stack height.
  • Fig. 8 is a schematic structural diagram of the camera module and the back cover provided by an embodiment of the present application
  • Fig. 9 is an exploded schematic diagram of the camera module, the back cover and structural parts provided by an embodiment of the present application
  • Fig. 10 is an implementation of the present application An exploded schematic diagram of the camera module and structural parts provided in the example. It should be understood that in FIG. 8-FIG. 10, only the partial structure of the rear cover 11 and the structural member 300 is shown, so as to understand the cooperation between the rear cover 11, the structural member 300 and the camera module 200 more clearly from the figures. relation.
  • the top surface of the camera module 200 is connected with the back cover 11 , and the camera module 200 is set facing the camera installation area 111 .
  • a light transmission hole 112 can be set on the camera installation area 111, and the reflective prism 24 is arranged facing the light transmission hole 112, so that after external light enters the camera module 200 through the light transmission hole 112, it can be smoothly reflected into the lens 25 through the reflection prism 24 .
  • a structural member 300 can be arranged between the camera module 200 and the rear cover 11.
  • the structural member 300 can be a structure such as a seal or an antenna bracket.
  • the shape of the structural member 300 in the figure is only an example.
  • the structural member 300 may include a sealing member, such as foam, used to seal the camera module 200 and the rear cover 11 and play a buffer role.
  • the structural member 300 may also include an antenna bracket, and the antenna bracket may be made by laser direct structuring (LDS), or formed by embedding metal parts on a plastic bracket. antenna.
  • the antenna bracket is set between the camera module 200 and the rear cover 11, and is used as an antenna of the electronic device.
  • the number of antennas of the electronic device 100 can be increased to improve the diversity of antennas;
  • the decorative part and transparent cover plate of the camera, as well as the electronic devices and metal parts inside the electronic device 100 are not likely to interfere with the antenna, so the performance of the antenna can be improved.
  • the camera module 200 may include a main body area 201 and a sunken area 202 , the main body area 201 is the area inside the dotted line box in FIG. 10 , and the sunken area 202 is the area outside the dotted line box in FIG. 10 .
  • the sunken area 202 can be arranged around the main body area 201.
  • the sunken area 202 is recessed relative to the main body area 201, and there is a height difference.
  • the height of the camera module 200 in the sunken area 202 is smaller than that in the main body area 201.
  • an accommodating space can be formed between the sinking area 202 and the rear cover 11 for accommodating the structural component 300 .
  • the structural member 300 can be interposed between the sunken area 202 and the rear cover 11 , or the structural member 300 can be fixedly connected to the sunken area 202 , or the structural member 300 can be fixed on the rear cover 11 .
  • the structure 300 can be stacked between the sunken area 202 and the rear cover 11, so that, on the one hand, the stacking height of the whole machine can be reduced, and on the other hand On the one hand, it is beneficial to improve the compactness of the internal structure of the whole machine.
  • FIG. 11 is a schematic structural diagram of an optical anti-shake motor, an auto-focus motor, and a lens holder provided by an embodiment of the present application.
  • a first sinking area 2202 may be set on the OIS motor 22 , and the first sinking area 2202 may be set on the side of the OIS motor 22 away from the AF motor 23 .
  • a second sinking area 2302 may be set on the autofocus motor 23, and the second sinking area 2302 may be set on both sides in its length direction.
  • a third sinking area 2602 may be set on the mirror base 26 , and the third sinking area 2602 may be set on both sides of the mirror base 26 in the length direction.
  • the first sunken area 2202 , the second sunken area 2302 and the third sunken area 2602 together constitute the sunken area 202 , and these three sunken areas can be connected or arranged at intervals.
  • the sinking area 202 may occupy the entire length around the main body area 201 , or may only occupy part of the length around the main body area 201 .
  • the respective volumes of the optical image stabilization motor 22, the autofocus motor 23, and the lens mount 26 are reduced.
  • the structure can be improved adaptively. In the case of a more compact internal structure, a sunken area can be realized in appearance. The specific improvement of the internal structure will not be described in this embodiment of the application.
  • the height difference between the sinking area 202 and the main body area 201 may be 1mm-2mm, which can achieve the effect of reducing the stacking height of the whole machine by 1mm-2mm.
  • the edge of the bracket 21 can be flush with the surface where the sinking area 202 is located, so that the bracket 21 can avoid the structural member 300 and increase the accommodation space between the camera module 200 and the rear cover 11 , which facilitates the stacking of the structural members 300 .
  • the stacking of the reinforcing structure at the bottom of the optical image stabilization motor 22 can be reduced. thickness, so that the overall stacking height of the camera module 200 can be reduced.
  • Fig. 12 is a structural schematic diagram of another angle of the camera module provided by an embodiment of the present application
  • Fig. 13 is an exploded schematic diagram of the mylar sheet and reinforcing glue provided by an embodiment of the present application
  • Fig. 14 is a schematic diagram of an embodiment of the present application Schematic illustration of the assembly process of the Mylar sheet is provided.
  • the camera module 200 provided by the embodiment of the present application may also include a Mylar sheet 28, and the Mylar sheet 28 may be arranged at the bottom of the camera module 200, that is, at the side facing away from the light-incoming surface. On one side, the mylar sheet 28 is used to enhance the overall performance stability of the camera module 200 .
  • a position sensor such as a Hall sensor, is provided at the bottom of the OIS motor 22 to detect the position of the mover in the OIS motor 22 so as to improve the anti-shake performance of the OIS motor 22 .
  • the insert-molding process of injection molding can be used to increase the thickness of the structural parts at the bottom of the optical anti-shake motor 22 to play a supplementary role. strong effect.
  • the method of using in-mold injection molding technology for reinforcement not only has the problem of broken surfaces caused by the injection molding process, but also requires a stack thickness of more than 0.25 mm to meet the reinforcement performance, and the reinforcement height is relatively large, which is not conducive to reducing the overall stack height.
  • the reinforcing structure at the bottom of the optical image stabilization motor 22 may include a reinforcing plate 291 , a first reinforcing glue 292 , a second reinforcing glue 293 and a mylar sheet 28 .
  • the installation method of the reinforcing structure can be as follows, firstly, the reinforcing plate 291 is pasted and fixed on the bottom of the optical image stabilization motor 22, and the reinforcing plate 291 blocks the setting of the position sensor; then the first reinforcing plate is coated around the reinforcing plate 291.
  • the strong glue 292, the first reinforcing glue 292 can bond and fix the reinforcing plate 291 on the bottom of the optical anti-shake motor 22; Including the reinforcing plate 291 and the first reinforcing glue 292 ), add a circle of second reinforcing glue 293 ; finally, attach the Mylar sheet 28 , and the Mylar sheet 28 is fixed by the second reinforcing glue 293 .
  • the purpose of setting up the reinforcing structure is to enhance the stability of the position sensor of the OIS motor 22 relative to the position of the motor mover, so as to ensure the stability of the performance of the OIS motor 22 .
  • the reinforcement scheme proposed in the embodiment of the present application has a small stack size, and the first reinforcement glue 292, the second reinforcement glue 293 and the Mylar sheet 28 are added, and the overall The stack height of the film does not exceed 1mm.
  • the overall reinforcement height can be reduced by 0.2mm, only 0.1mm, and the problem of surface breaking caused by injection molding can be avoided.
  • the space reserved for reinforcement under the optical image stabilization motor 22 is extremely small, perhaps less than or equal to 0.1 mm. In this case, injection molding is used. For the process reinforcement scheme, the space is far from enough, and it cannot meet the requirements of the compression ratio.
  • the thickness of the mylar sheet 28 can be set within the range of 0.03 mm, and the thicknesses of the first reinforcing glue 292 and the second reinforcing glue 293 can be set within the range of 0.03 mm.
  • the overall reinforcement height can be achieved not exceeding 1mm.
  • the reinforcing structure composed of the reinforcing plate 291 , the first reinforcing glue 292 , the second reinforcing glue 293 and the Mylar sheet 28 not only has the reinforcing effect, but also has the buffering effect.
  • the function of the reinforcing plate 291 is to increase the structural strength, which can be set as a steel plate.
  • the effect of mylar sheet 28 is to buffer and dissipate heat, and it can be graphite, foam, steel plate and other structures.
  • the mylar sheet 28 may be copper foil.
  • the first reinforcing glue 292 is mainly used to fix the reinforcing plate 291, which can be thermosetting glue.
  • the second reinforcing glue 293 needs to take into account both the reinforcing effect and the cushioning effect, therefore, it has certain requirements on its elastic modulus, hardness, curing shrinkage rate and density.
  • the elastic modulus of the second reinforcing glue 293 is 1609MPa at 25°C, 19.83MPa at 50°C, and 12.44MPa at 80°C, and its hardness is 67. Its curing shrinkage rate is 0.78%, and its density is 1.24.
  • the mylar sheet 28 can be covered on the bottom of the optical image stabilization motor 22 and the autofocus motor 23, and the mylar sheet 28 can be set as copper foil to play a role in heat dissipation, which is beneficial to improve the optical image stabilization motor 22. And the cooling efficiency of the AF motor 23.
  • Figure 15 is a distribution diagram of the drop reliability compression ratio when the reinforcement structure is provided by the injection molding process provided by the related art
  • Figure 16 is a distribution of the drop reliability compression ratio when the three-layer reinforcement structure is used according to an embodiment of the present application
  • the abscissa represents the compression ratio (Compression Ratio, CR for short)
  • the ordinate represents the quantity
  • the histogram represents the quantity of camera modules distributed in different compression ratios when the camera module is dropped. fit.
  • the embodiment of the present application provides a camera module.
  • the aperture of the lens can be reduced by placing the aperture of the lens in front, so as to reduce the size of the lens and the reflective prism, that is, the module can be reduced in terms of structural design.
  • a sunken step structure can be set around the camera module. The sunken step structure is used to cooperate with the back cover and can be stacked with other structural parts, that is, the module can be reduced in terms of stacking fit.
  • Stack height on the other hand, by setting a three-layer reinforcing structure of reinforcing plate, reinforcing glue and mylar sheet at the bottom of the optical image stabilization motor, the stacking thickness of the reinforcing structure at the bottom of the optical image stabilization motor can be reduced, that is, from In terms of processing, the stacking height of the module is reduced, so that a compact periscope camera module can be provided, which can reduce the stacking height of the entire electronic device, and is conducive to the thinner design of the electronic device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Studio Devices (AREA)

Abstract

本申请实施例提供一种摄像模组和电子设备,摄像模组用于安装在电子设备内,摄像模组包括:支架、光学防抖马达、自动对焦马达、反射棱镜、镜头和镜座;反射棱镜设置在光学防抖马达内,镜头设置在自动对焦马达内,镜头和镜座连接,光学防抖马达、自动对焦马达和镜座设置在支架内且在第一方向上依次排列,第一方向为镜头的光轴方向,镜座所在的平面垂直于光轴方向设置;镜头包括自进光侧至出光侧依次排列的多个镜片,镜头的面向反射棱镜的一侧为进光侧,多个镜片中靠近进光侧的为第一镜片,镜头的光阑设置在第一镜片的周侧或者设置在第一镜片的面向反射棱镜的一侧。本申请实施例提供一种摄像模组和电子设备,可以降低堆叠高度。

Description

摄像模组和电子设备
本申请要求于2021年07月29日提交中国专利局、申请号为202110867163.X、申请名称为“摄像模组和电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子设备技术领域,尤其涉及一种摄像模组和电子设备。
背景技术
随着电子设备的普及,用户对电子设备的美观性要求越来越高,使得电子设备例如智能手机等产品,逐渐向着薄型化的方向发展。为了使电子设备具备长焦摄像头的功能,同时不增加电子设备的厚度,可以设置潜望式摄像模组,使镜头的光轴方向垂直于电子设备的厚度方向。对于潜望式摄像模组,镜头的尺寸影响着模组的堆叠高度,从而影响电子设备的厚度。
发明内容
本申请实施例提供一种摄像模组和电子设备,可以降低堆叠高度。
本申请实施例一方面提供一种摄像模组,用于安装在电子设备内,摄像模组包括:支架、光学防抖马达、自动对焦马达、反射棱镜、镜头和镜座;
反射棱镜设置在光学防抖马达内,镜头设置在自动对焦马达内,镜头和镜座连接,光学防抖马达、自动对焦马达和镜座设置在支架内且在第一方向上依次排列,第一方向为镜头的光轴方向,镜座所在的平面垂直于光轴方向设置;
镜头包括自进光侧至出光侧依次排列的多个镜片,镜头的面向反射棱镜的一侧为进光侧,多个镜片中靠近进光侧的为第一镜片,镜头的光阑设置在第一镜片的周侧或者设置在第一镜片的面向反射棱镜的一侧。
本申请实施例提供一种摄像模组,通过将潜望式摄像模组的镜头光阑前移,相比于中置光阑,可以缩小镜头口径,同时由于镜头口径的缩小,反射棱镜所需的尺寸可同步减小,使得潜望式摄像模组的堆叠高度降低。
在一种可能的实施方式中,光阑的孔径和第一镜片的口径大小相等。
设置光阑的孔径和第一镜片的口径大小相等时,入瞳孔径和第一镜片的口径相等,无轴外光线偏移量,在入瞳孔径为确定值的情况下,可以减小第一镜片的口径,从而缩小镜头口径和反射棱镜所需的尺寸,降低摄像模组的堆叠高度。
在一种可能的实施方式中,镜头包括镜筒和设置在镜筒内的多个镜片,光阑实体为镜筒内壁的限位面,限位面设置在第一镜片的周侧。
设置镜筒内壁面作为限位面,可以使光阑的孔径和第一镜片的口径大小相等,且结构上容易实现。
在一种可能的实施方式中,摄像模组的入光面一侧包括主体区域和下沉区域,下沉区域设置在主体区域的四周,下沉区域的高度小于主体区域的高度。
设置下沉区域,有利于摄像模组装配后形成容置空间,用来安装其他结构件,以降低摄像模组的堆叠高度,提高结构紧凑性。
在一种可能的实施方式中,摄像模组还包括结构件,结构件安装在下沉区域上,结构件包括密封件或天线支架。
设置密封件可以用来密封摄像模组和后盖,并起到缓冲作用,设置天线支架可以增加天线数量,提高天线性能;通过在下沉区域处安装结构件,可以降低摄像模组的堆叠高度,提高结构紧凑性。
在一种可能的实施方式中,光学防抖马达、自动对焦马达、镜座上分别设置有第一下沉区域、第二下沉区域、第三下沉区域。
在光学防抖马达、自动对焦马达、镜座上对应设置下沉区域,可以增大下沉区域的面积,提高空间利用率。
在一种可能的实施方式中,支架的边沿和下沉区域所在的表面平齐。
支架可以避让结构件,增大摄像模组和后盖之间的容置空间的体积,有利于结构件的堆叠。
在一种可能的实施方式中,下沉区域和主体区域的高度差为1mm-2mm。
下沉区域和主体区域之间的高度差可以为1mm-2mm,可以实现整机堆叠高度降低1mm-2mm的效果。
在一种可能的实施方式中,摄像模组还包括补强板、第一补强胶、第二补强胶和麦拉片,补强板的周圈通过第一补强胶粘接在光学防抖马达的底部,麦拉片通过第二补强胶贴附在补强板上。
设置该补强结构,可以增强光学防抖马达的位置传感器相对马达动子位置的稳定性,保证光学防抖马达性能的稳定性;并且,可以降低堆叠尺寸,避免注塑工艺造成的破面问题。
在一种可能的实施方式中,麦拉片为铜箔。
设置铜箔作为麦拉片,在起到补强作用和缓冲作用的同时,还可以提高散热效率。
在一种可能的实施方式中,第二补强胶和麦拉片的厚度之和小于等于0.1mm。
通过补强胶和麦拉片来补强,补强高度极小,可以有效降低摄像模组整体的堆叠高度。
在一种可能的实施方式中,摄像模组还包括基板,光学防抖马达、自动对焦马达、镜座分别和基板连接,基板设置在支架内,基板所在的平面和镜座所在的平面垂直。
基板位置的设置,有利于摄像模组整体架构的合理排布,可以降低摄像模组整体的体积。
本申请实施例另一方面提供一种电子设备,包括后盖和上述的摄像模组,后盖上设置有摄像头安装区,摄像模组安装在摄像头安装区内。
本申请实施例提供一种摄像模组和电子设备,一方面,可以通过将镜头的光阑前置,来降低镜头的口径,以减小镜头和反射棱镜的尺寸,即可以从结构设计方面减小模组的堆叠高度。另一方面,可以在摄像模组的四周设置下沉台阶结构,下沉台阶结构用来和后盖配合,并可以堆叠其它结构件,即可以从堆叠配合方面减小模组的堆叠高度。又一方面, 通过在光学防抖马达底部设置补强板、补强胶和麦拉片三层补强结构,可以降低光学防抖马达底部的补强结构的堆叠厚度,即可以从工艺加工方面减小模组的堆叠高度,从而可以提供一种紧凑型的潜望式摄像模组,可以降低电子设备整机的堆叠高度,有利于电子设备的薄型化设计。
附图说明
图1为本申请一实施例提供的电子设备的结构示意图;
图2为本申请一实施例提供的电子设备的爆炸结构示意图;
图3为本申请一实施例提供的摄像模组的结构示意图;
图4为本申请一实施例提供的摄像模组的爆炸图;
图5为本申请一实施例提供的镜头的结构示意图;
图6为本申请一实施例提供的前置光阑和镜片口径的位置关系示意图;
图7为相关技术提供的中置光阑和镜片口径的位置关系示意图;
图8为本申请一实施例提供的摄像模组和部分后盖的结构示意图;
图9为本申请一实施例提供的摄像模组、部分后盖和部分结构件的分解示意图;
图10为本申请一实施例提供的摄像模组和部分结构件的分解示意图;
图11为本申请一实施例提供的光学防抖马达、自动对焦马达和镜座的结构示意图;
图12为本申请一实施例提供的摄像模组的另一角度的结构示意图;
图13为本申请一实施例提供的麦拉片和补强胶的分解示意图;
图14为本申请一实施例提供的麦拉片的装配过程的示意图;
图15为相关技术提供的采用注塑工艺设置补强结构时对应的跌落可靠性压缩比分布图;
图16为本申请一实施例提供的采用三层补强结构时对应的跌落可靠性压缩比分布图。
附图标记说明:
100-电子设备;11-后盖;111-摄像头安装区;112-透光孔;12-中框;13-显示屏;200-摄像模组;201-主体区域;202-下沉区域;21-支架;22-光学防抖马达;2202-第一下沉区域;23-自动对焦马达;2302-第二下沉区域;24-反射棱镜;25-镜头;251-镜筒;252-镜片;253-限位面;26-镜座;2602-第三下沉区域;27-基板;271-柔性电路板;272-板对板连接器;28-麦拉片;291-补强板;292-第一补强胶;293-第二补强胶。
具体实施方式
本申请以下实施例提供一种电子设备,包括但不限于手机、平板电脑、笔记本电脑、超级移动个人计算机(ultra-mobile personal computer,UMPC)、手持计算机、对讲机、上网本、POS机、个人数字助理(personal digital assistant,PDA)、可穿戴设备、虚拟现实设备、无线U盘、蓝牙音响、蓝牙耳机或车载装置等具有摄像头的电子设备。
本申请实施例中,以手机作为上述电子设备的例子,来对电子设备的结构进行具体说明。
需要说明的是,本申请实施例的各附图中,可以定义X轴为电子设备100的长度方向,定义Y轴为电子设备100的宽度方向,定义Z轴为电子设备100的厚度方向。更加具体地, 可以定义X轴的正方向为用户使用电子设备100时显示面上自下至上的方向,定义Y轴的正方向为用户使用电子设备100时显示面上自右至左的方向,定义Z轴的正方向为自电子设备100的显示面指向背面的方向。
图1为本申请一实施例提供的电子设备的结构示意图,图2为本申请一实施例提供的电子设备的爆炸结构示意图。参考图1和图2所示,电子设备100可以包括中框12以及分别连接在中框12两侧的后盖11和显示屏13,显示屏13、中框12和后盖11共同围设成容纳空间,该容纳空间内可以设置印刷电路板、电池、摄像模组200及其它电子器件。用户使用电子设备100时,显示屏13面向用户放置作为显示面,后盖11则背离用户放置。
其中,显示屏13可以为液晶显示(Liquid crystal display,LCD)屏、有机发光二极管(Organic light emitting diode,OLED)显示屏等。应当理解的是,显示屏13可以包括显示器和触控器件,显示器用于向用户输出显示内容,触控器件用于接收用户在显示屏13上的触摸操作。中框12可以由金属、陶瓷、玻璃等材料制成,后盖11可以由金属、陶瓷、玻璃等材料制成,中框12和后盖11可以单独成型,通过焊接、卡接、粘接等方式固定;或者,中框12和后盖11也可以一体成型。金属、陶瓷或玻璃等材料制成的后盖11,可以满足电子设备外观的光泽度、时尚度和美观度的要求。
电子设备100内还可以设置摄像模组200,以实现拍摄功能。摄像模组200可以作为电子设备100的前置摄像头或者后置摄像头使用,以后置摄像头为例,后盖11上设置有摄像头安装区111,摄像头安装区111可以通过在后盖11上开孔,并在该开孔内连接装饰件和透明盖板来形成。摄像模组200可以连接在电子设备100内的印刷电路板上,外界光线可以通过摄像头安装区111进入到摄像模组200中,或者,摄像模组200发出的光线可以经摄像头安装区111透出至外部环境中。
其中,摄像头安装区111的形状在本实施例中不做具体限制,例如可以为矩形、圆形、圆角矩形、椭圆形、环形、跑道形等形状。摄像头安装区111内可以布置多个摄像模组200,该摄像模组200的种类例如可以包括潜望式摄像模组、超广角摄像模组、黑白摄像模组、深度摄像模组、微距摄像模组等类型。多个摄像模组200在摄像头安装区111内的排布方式在本申请实施例中不做具体限制。摄像头安装区111可以设置在后盖11上的任意位置,例如设置在后盖11的上部中央位置,右上角位置,或者如图1和图2中靠近左上角的位置。
目前电子设备100的设计取向为大屏幕、窄机身设计,对于摄像模组200,则要求更大放大倍数的光学变焦、分辨率更高的成像效果和更稳定的防抖能力。这些摄像效果要求的提高意味着需要摄像模组200具有更大的尺寸和高度,与电子设备100的薄型化设计趋势相矛盾。
在一种可能的实施方式中,可以设置潜望式摄像模组来兼顾摄像模组200的摄像效果要求和电子设备100的薄型化。潜望式摄像模组的镜头的光轴方向垂直于电子设备100的厚度方向,在使电子设备100具备长焦摄像头的功能的同时,可以降低电子设备100的厚度。
对于潜望式摄像模组,镜头的尺寸影响着模组的堆叠高度(即在电子设备100的厚度方向上的堆叠高度),从而影响到电子设备100的厚度。在潜望式摄像模组的焦距等性能一定的情况下,镜头的尺寸需要满足光学性能,缩小镜头的尺寸难度很高,即潜望式摄像模组的堆叠高度很难进一步减小。
相关技术中,为了解决薄机身和摄像模组高度矛盾的这一问题,采用从视觉效果上减少摄像模组200外凸的现象。例如在摄像模组200相对于后盖11凸出时,可以将摄像头安装区11上相对于后盖11凸出的摄像头装饰件设计为黑色或者其它减小视觉凸出效果的外观,以此来减弱摄像模组200外凸程度的视觉效果。但是,这种情况下,摄像模组200自身的模组结构设计,并没有减小模组的堆叠高度,视觉效果上虽然外凸程度减弱,但实际外凸效果依然非常明显。
另一种相关技术中,可以通过将摄像模组200内的部件设计为二合一或者多合一,以此来减少堆叠高度。例如,可以采用注塑工艺将摄像模组200内的电路板等结构和注塑件合为一体,以此来减小整体的尺寸同时增大部件强度。但是,采用注塑工艺合二为一的方法对于工艺要求高,工艺难度实现大,造成生产效率低和成本高劣势,并且二合一的注塑工艺有一定的厚度设计底线,可能仍不能满足降低堆叠厚度的要求。
基于上述问题,本申请实施例提供一种摄像模组和电子设备,通过将潜望式摄像模组的镜头光阑前移,相比于中置光阑,可以缩小镜头口径,同时由于镜头口径的缩小,反射棱镜所需的尺寸可同步减小,使得潜望式摄像模组的堆叠高度降低,从而可以降低电子设备的厚度。
以下,参考附图和具体的实施例对本申请实施例提供的摄像模组的结构进行具体说明,本申请实施例中,以应用在手机上的潜望式摄像模组作为例子。
图3为本申请一实施例提供的摄像模组的结构示意图,图4为本申请一实施例提供的摄像模组的爆炸图。参考图3和图4所示,本申请实施例提供一种摄像模组200,可以包括支架21、光学防抖(Optical image stabilization,简称OIS)马达22、自动对焦(Automatic Focus,简称AF)马达23、反射棱镜24、镜头25、镜座26和基板27。
其中,反射棱镜24可以设置在光学防抖马达22内,镜头25可以设置在自动对焦马达23内,镜头25可以和镜座26连接,光学防抖马达22、自动对焦马达23和镜座26可以设置在支架21内且在第一方向上依次排列,第一方向为镜头25的光轴方向,即图中Y方向,镜座26所在的平面垂直于镜头25的光轴方向。
摄像模组200的入光面为其面向后盖11的一面,即图中摄像模组200的顶面,摄像模组200的出光面垂直于镜头25的光轴方向,可以为镜座26所在的平面。摄像模组200的成像过程可以为,光线自入光面进入摄像模组200后,首先经过反射棱镜24的反射改变进光路径,然后沿着镜头25的光轴方向传播,进入镜座26内,镜座26内可以设置有感光芯片,光线照射至感光芯片上以成像。
自动对焦马达23用来带动镜头25沿着光轴方向移动,从而改变镜头25和镜座26之间的距离,以实现调焦。光学防抖马达22用来带动反射棱镜24翻转,从而可以调整入射光的相对自动对焦马达23的光轴位置,以补偿摄像模组200在拍摄时产生的抖动,实现拍摄的防抖。
光学防抖马达22和自动对焦马达23均可以设置为音圈马达,音圈马达可以包括磁石和相对于磁石运动的线圈,通过向线圈中通入不同大小的电流,可以控制线圈与磁石之间的磁力的大小,以控制作用力的大小,产生需要的位移。对于光学防抖马达22和自动对焦马达23的具体结构,本申请实施例中不做重点说明。
摄像模组200整体可以呈长方体结构,在一种可能的排布方式中,摄像模组200的长 度、宽度、高度方向可以分别对应于图中的Y方向、X方向和Z方向,即可以对应于电子设备100的宽度方向、长度方向和厚度方向。摄像模组200面向电子设备100的后盖11的一面,即摄像模组200的顶面为进光面。
支架21可以设置为四个侧壁面围设形成的矩形框架结构,矩形框架结构的顶面和底面为开口结构。光学防抖马达22、自动对焦马达23、镜座26和基板27可以固定连接在支架21内部,固定连接的方式在本申请实施例中不做具体限制,例如可以为卡接、螺接、粘接等方式。
基板27可以为印制电路板(Printed Circuit Boards,简称PCB),基板27可以设置在光学防抖马达22、自动对焦马达23、镜座26与支架21的侧壁面之间,基板27可以分别与光学防抖马达22、自动对焦马达23、镜座26电连接,且基板27可以连接柔性电路板(Flexible Printed Circuit,简称FPC)271,柔性电路板271伸出支架21外且末端可以连接板对板(Board To Board,简称BTB)连接器272,以用来扣合在电子设备100内部的主板上。
本申请实施例中,一方面,可以通过将镜头25的光阑前置,来降低摄像模组200整体的堆叠高度。
需要说明的是,光阑指的是在光学系统中对光束起着限制作用的实体,例如可以是透镜的边缘、框架或特别设置的带孔屏。光阑可以包括孔径光阑和视场光阑,孔径光阑用于限制光轴上点成像光束大小,视场光阑用于限制成像范围大小,以下本申请实施例中提及的光阑,指的是孔径光阑。
图5为本申请一实施例提供的镜头的结构示意图,图6为本申请一实施例提供的光阑和镜片口径的位置关系示意图。参考图5和图6所示,本申请实施例中,镜头25可以包括镜筒251和设置在镜筒251内的多个镜片252,多个镜片252在镜筒251内沿着镜头的光轴方向自进光侧至出光侧依次排布。定义镜头25的进光侧为前侧,出光侧为后侧,多个镜片252自进光侧至出光侧依次排列,可以定义最前侧的一个镜片为第一镜片。
本申请实施例中,镜头光阑G可以靠近镜筒251的进光侧设置,即将光阑G前置,而非设置在两个镜片252之间。镜头光阑G例如可以设置在第一镜片的周侧,或者可以设置在第一镜片的前侧,即镜片252的面向反射棱镜24的一侧。
应当理解的是,入瞳孔径指的是限制入射光束的有效孔径,入瞳是光阑对前方光学系统所成的像,入瞳孔径即光阑在物空间中的等效孔径。入瞳孔径=有效焦距/相对孔径,有效焦距即EFL(Effective Focal Length),相对孔径即FNO(F-Number),对于已经确定光学特性的摄像模组200来说,入瞳孔径为一确定值。
以将光阑G设置在第一镜片的周侧为例,参考图6所示,光阑的孔径与第一镜片的口径d2相同,此时,无轴外光线偏移量,入瞳孔径d1与光阑的孔径一致,从而,入瞳孔径d1=第一镜片的口径d2。
图7为相关技术提供的中置光阑和镜片口径的位置关系示意图。参考图7所示,相关技术中,光阑G位于镜头25的中部,设置在相邻的镜片252之间,其实体结构可以为光学遮光片。当光阑G中置时,第一镜片的口径为入瞳孔径加上轴外光线偏移量,图中,d3代表入瞳孔径,d4代表第一镜片的口径,d4大于d3。
对比图6和图7可看出,在入瞳孔径为定值的情况下,光阑前置相比于中置光阑,第 一镜片的口径缩小,镜头25的口径尺寸可减小10%~20%。同时,由于镜头25口径的缩小,反射棱镜24所需的尺寸可同步减小。对于潜望式摄像模组而言,镜头25和反射棱镜24的尺寸减小使得模组整体的堆叠高度降低。并且,反射棱镜24尺寸的减小,有利于光学防抖马达22的驱动控制,以及反射棱镜24粘接的稳定性。
应理解,光阑设置在第一镜片的周侧时,参考图5所示,光阑实体可以为限位面253,限位面253为镜筒251的位于第一镜片周侧的内壁面,限位面253的直径可以保持一致,限位面253的宽度在本申请实施例中不做具体限制,例如可以小于0.5mm,限位面253的宽度对光线的影响在本申请实施例中可以忽略。
需要补充说明的是,光阑还可以设置在第一镜片的前侧,即位于第一镜片的面向反射棱镜24的一侧,此时,光阑实体可以为镜筒251的位于第一镜片前侧的内壁面,也可以为设置在镜筒251前侧的遮光片等结构。
本申请实施例中,另一方面,可以通过在摄像模组200的四周设置下沉台阶结构,下沉台阶结构用来和后盖11配合,并可以堆叠其它结构件,从而可以降低电子设备整机的堆叠高度。
图8为本申请一实施例提供的摄像模组和后盖的结构示意图,图9为本申请一实施例提供的摄像模组、后盖和结构件的分解示意图,图10为本申请一实施例提供的摄像模组和结构件的分解示意图。应理解,图8-图10中,仅示出了后盖11及结构件300的局部结构,以便于从图中更清楚地理解后盖11、结构件300及摄像模组200之间的配合关系。
参考图8-图10所示,摄像模组200装配在电子设备100中时,摄像模组200的顶面与后盖11配合连接,摄像模组200面对摄像头安装区111设置。摄像头安装区111上可以设置透光孔112,反射棱镜24面对透光孔112设置,以使外部光线经透光孔112进入摄像模组200后,可以顺利经反射棱镜24反射到镜头25中。
摄像模组200和后盖11之间可以设置结构件300,结构件300的具体实施方式有多种,其可以为密封件或者天线支架等结构,图中结构件300的形状仅为一种示例。在一种可能的实施方式中,结构件300可以包括密封件,例如泡棉,用来密封摄像模组200和后盖11,并起到缓冲作用。
在另一种可能的实施方式中,结构件300还可以包括天线支架,天线支架可以采用激光直接成型技术(Laser Direct Structuring,LDS)制成,也可以通过在塑料支架上嵌设金属件来形成天线。在摄像模组200和后盖11之间设置天线支架,作为电子设备的天线使用,一方面,可以增加电子设备100的天线数量,提高天线的多样性;另一方面,在摄像头安装区11设置的摄像头装饰件和透明盖板,以及电子设备100内部的电子器件和金属件,不容易对天线产生干扰,因此可以提高天线的性能。
摄像模组200可以包括主体区域201和下沉区域202,主体区域201如图10中虚线框内的区域,下沉区域202如图10中虚线框外的区域。下沉区域202可以设置在主体区域201的四周,下沉区域202相对于主体区域201呈凹陷设置,存在高度差,摄像模组200在下沉区域202内的高度小于在主体区域201内的高度。
摄像模组200和后盖11配合时,下沉区域202和后盖11之间可以形成容置空间,用来容置结构件300。结构件300可以夹设在下沉区域202和后盖11之间,或者,结构件300可以固定连接在下沉区域202上,或者,结构件300可以固定在后盖11上。
应理解,通过在摄像模组200上设置下沉区域202,以使下沉区域202和后盖11之间可以用来堆叠结构件300,从而,一方面,可以降低整机的堆叠高度,另一方面,有利于提高整机内部的结构紧凑性。
图11为本申请一实施例提供的光学防抖马达、自动对焦马达和镜座的结构示意图。参考图11所示,光学防抖马达22上可以设置第一下沉区域2202,第一下沉区域2202可以设置在光学防抖马达22的背离自动对焦马达23的一侧。自动对焦马达23上可以设置第二下沉区域2302,第二下沉区域2302可以设置在其长度方向上的两侧。镜座26上可以设置第三下沉区域2602,第三下沉区域2602可以设置在镜座26的长度方向上的两侧。
第一下沉区域2202、第二下沉区域2302和第三下沉区域2602共同构成下沉区域202,这三个下沉区域之间可以连通,也可以间隔设置。下沉区域202可以占据主体区域201四周的全部长度,也可以只占据主体区域201四周的部分长度。通过在光学防抖马达22、自动对焦马达23、镜座26上均对应设置下沉区域,可以增大下沉区域的面积,提高空间利用率。
需要说明的是,设置下沉区域后,光学防抖马达22、自动对焦马达23、镜座26各自的体积减小,此时,光学防抖马达22、自动对焦马达23、镜座26内部的结构可以做适应性的改进,在内部结构更加紧凑的情况下,外观上实现下沉区域,对于内部结构的具体改进,在本申请实施例中不做重点描述。
在一种可能的实施方式中,下沉区域202和主体区域201之间的高度差可以为1mm-2mm,可以实现整机堆叠高度降低1mm-2mm的效果。
另外,需要补充说明的是,支架21的边沿可以和下沉区域202所在的表面平齐,以使支架21可以避让结构件300,增大摄像模组200和后盖11之间的容置空间,有利于结构件300的堆叠。
本申请实施例中,又一方面,通过在光学防抖马达22底部设置补强板、热固胶和麦拉片三层补强结构,可以降低光学防抖马达22底部的补强结构的堆叠厚度,从而可以降低摄像模组200整体的堆叠高度。
图12为本申请一实施例提供的摄像模组的另一角度的结构示意图,图13为本申请一实施例提供的麦拉片和补强胶的分解示意图,图14为本申请一实施例提供的麦拉片的装配过程的示意图。参考图12-图14所示,本申请实施例提供的摄像模组200,还可以包括麦拉片28,麦拉片28可以设置在摄像模组200的底部,即设置在背离进光面的一侧,麦拉片28用来增强摄像模组200整体的性能稳定性。
具体地,在光学防抖马达22的底部设置有位置传感器,例如霍尔传感器,用来检测光学防抖马达22中的动子的位置,以提高光学防抖马达22的防抖性能。
为了增强光学防抖马达22的位置传感器相对马达动子位置的稳定性,相关技术中,可以采用注塑成型insert-molding的工艺,增高光学防抖马达22底部的结构件的厚度,以起到补强作用。但是,采用模内注塑成型工艺进行补强的方法,不仅存在注塑工艺导致的破面问题,并且,要满足补强性能需要超过0.25mm的堆叠厚度,补强高度较大,不利于降低整体的堆叠高度。
本申请实施例中,光学防抖马达22底部的补强结构可以包括补强板291、第一补强胶292、第二补强胶293和麦拉片28。补强结构的安装方法可以为,首先,将补强板291贴 合固定在光学防抖马达22的底部,补强板291遮挡位置传感器设置;然后在补强板291的四周涂布第一补强胶292,第一补强胶292可以将补强板291粘接固定在光学防抖马达22的底部;待第一补强胶292固化完成后,可以继续在光学防抖马达22的底部(包括补强板291及第一补强胶292上)增加涂布一圈第二补强胶293;最后,贴附麦拉片28,麦拉片28通过第二补强胶293固定。
设置该补强结构的目的在于,增强光学防抖马达22的位置传感器相对马达动子位置的稳定性,保证光学防抖马达22性能的稳定性。相对于相关技术中采用注塑工艺补强的方法,本申请实施例中提出的补强方案,堆叠尺寸小,增加设置第一补强胶292、第二补强胶293和麦拉片28,整体的堆叠高度不超过1mm,相比于采用膜内注塑成型工艺补强的相关技术来说,整体补强高度可以减小0.2mm,仅需0.1mm,并且可以避免注塑工艺造成的破面问题。
尤其对于摄像模组200及电子设备100整体的架构确定后的情况下,对于光学防抖马达22下方保留的用来补强的空间极小,可能小于等于0.1mm,此种情况下,采用注塑工艺补强方案,空间远远不够,并且不能够满足压缩比的需求。而采用本申请实施例中的补强结构,麦拉片28的厚度可以设置在0.03mm的范围内,第一补强胶292和第二补强胶293的厚度可以设置在0.03mm的范围内,整体上补强高度可以实现不超过1mm。
由补强板291、第一补强胶292、第二补强胶293和麦拉片28构成的补强结构,除了具有补强作用外,还具有缓冲作用。其中,补强板291的作用是增加结构强度,其可以设置为钢板。麦拉片28的作用是缓冲和散热,其可以为石墨、泡棉、钢板等结构。在一种可能的实施方式中,麦拉片28可以为铜箔。
第一补强胶292主要用来固定补强板291,其可以采用热固胶。而第二补强胶293需要同时兼顾补强作用和缓冲作用,因此,对其弹性模量、硬度、固化收缩率和密度都具有一定的要求。在一种可能的实施方式中,第二补强胶293的弹性模量特性为,在25℃下为1609MPa,在50℃下为19.83MPa,在80℃下为12.44MPa,其硬度为67,其固化收缩率为0.78%,其密度为1.24。
另外,需要补充的是,麦拉片28可以覆盖在光学防抖马达22和自动对焦马达23的底部,麦拉片28可以设置为铜箔,起到散热作用,有利于提高光学防抖马达22和自动对焦马达23的散热效率。
图15为相关技术提供的采用注塑工艺设置补强结构时对应的跌落可靠性压缩比分布图,图16为本申请一实施例提供的采用三层补强结构时对应的跌落可靠性压缩比分布图,其中,横坐标表示压缩比(Compression Ratio,简称CR),纵坐标代表数量,柱状图表示对摄像模组进行跌落试验时分布在不同压缩比的摄像模组的数量,曲线为柱状图的拟合。对比图15和图16可知,本申请实施例提供的采用三层补强结构的马达,压缩比主要分布在25.5-37.5的范围内,而相关技术提供的采用注塑工艺补强的方案,压缩比主要分布在13.5-22.5的范围内。因此,本申请实施例提供的采用三层补强结构的马达,可以有效提高压缩比,从而提高光学防抖马达22的防抖效果。
本申请实施例提供一种摄像模组,一方面,可以通过将镜头的光阑前置,来降低镜头的口径,以减小镜头和反射棱镜的尺寸,即可以从结构设计方面减小模组的堆叠高度;另一方面,可以在摄像模组的四周设置下沉台阶结构,下沉台阶结构用来和后盖配合,并可 以堆叠其它结构件,即可以从堆叠配合方面减小模组的堆叠高度;又一方面,通过在光学防抖马达底部设置补强板、补强胶和麦拉片三层补强结构,可以降低光学防抖马达底部的补强结构的堆叠厚度,即可以从工艺加工方面减小模组的堆叠高度,从而可以提供一种紧凑型的潜望式摄像模组,可以降低电子设备整机的堆叠高度,有利于电子设备的薄型化设计。
最后应说明的是:以上各实施例仅用以说明本申请实施例的技术方案,而非对其限制;尽管参照前述各实施例对本申请实施例进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请实施例技术方案的范围。

Claims (13)

  1. 一种摄像模组,用于安装在电子设备内,其特征在于,所述摄像模组包括:支架、光学防抖马达、自动对焦马达、反射棱镜、镜头和镜座;
    所述反射棱镜设置在所述光学防抖马达内,所述镜头设置在所述自动对焦马达内,所述镜头和所述镜座连接,所述光学防抖马达、所述自动对焦马达和所述镜座设置在所述支架内且在第一方向上依次排列,所述第一方向为所述镜头的光轴方向,所述镜座所在的平面垂直于所述光轴方向设置;
    所述镜头包括自进光侧至出光侧依次排列的多个镜片,所述镜头的面向所述反射棱镜的一侧为进光侧,所述多个镜片中靠近所述进光侧的为第一镜片,所述镜头的光阑设置在所述第一镜片的周侧或者设置在所述第一镜片的面向所述反射棱镜的一侧。
  2. 根据权利要求1所述的摄像模组,其特征在于,所述光阑的孔径和所述第一镜片的口径大小相等。
  3. 根据权利要求2所述的摄像模组,其特征在于,所述镜头包括镜筒和设置在所述镜筒内的多个镜片,所述光阑实体为所述镜筒内壁的限位面,所述限位面设置在所述第一镜片的周侧。
  4. 根据权利要求1-3任一项所述的摄像模组,其特征在于,所述摄像模组的入光面一侧包括主体区域和下沉区域,所述下沉区域设置在所述主体区域的四周,所述下沉区域的高度小于所述主体区域的高度。
  5. 根据权利要求4所述的摄像模组,其特征在于,所述摄像模组还包括结构件,所述结构件安装在所述下沉区域上,所述结构件包括密封件或天线支架。
  6. 根据权利要求4所述的摄像模组,其特征在于,所述光学防抖马达、所述自动对焦马达、所述镜座上分别设置有第一下沉区域、第二下沉区域、第三下沉区域。
  7. 根据权利要求4-6任一项所述的摄像模组,其特征在于,所述支架的边沿和所述下沉区域所在的表面平齐。
  8. 根据权利要求4-7任一项所述的摄像模组,其特征在于,所述下沉区域和所述主体区域的高度差为1mm-2mm。
  9. 根据权利要求1-8任一项所述的摄像模组,其特征在于,所述摄像模组还包括补强板、第一补强胶、第二补强胶和麦拉片,所述补强板的周圈通过第一补强胶粘接在所述光学防抖马达的底部,所述麦拉片通过第二补强胶贴附在所述补强板上。
  10. 根据权利要求9所述的摄像模组,其特征在于,所述麦拉片为铜箔。
  11. 根据权利要求9所述的摄像模组,其特征在于,所述第二补强胶和所述麦拉片的厚度之和小于等于0.1mm。
  12. 根据权利要求1-11任一项所述的摄像模组,其特征在于,所述摄像模组还包括基板,所述光学防抖马达、所述自动对焦马达、所述镜座分别和所述基板连接,所述基板设置在所述支架内,所述基板所在的平面和所述镜座所在的平面垂直。
  13. 一种电子设备,其特征在于,包括后盖和权利要求1-12任一项所述的摄像模组,所述后盖上设置有摄像头安装区,所述摄像模组安装在所述摄像头安装区内。
PCT/CN2022/106841 2021-07-29 2022-07-20 摄像模组和电子设备 WO2023005772A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22848377.2A EP4350415A4 (en) 2021-07-29 2022-07-20 CAMERA MODULE AND ELECTRONIC DEVICE
CN202311360790.XA CN118200705A (zh) 2021-07-29 2022-07-20 摄像模组和电子设备
CN202280004029.XA CN115606193B (zh) 2021-07-29 2022-07-20 摄像模组和电子设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110867163.X 2021-07-29
CN202110867163.XA CN115701117A (zh) 2021-07-29 2021-07-29 摄像模组和电子设备

Publications (1)

Publication Number Publication Date
WO2023005772A1 true WO2023005772A1 (zh) 2023-02-02

Family

ID=85087482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/106841 WO2023005772A1 (zh) 2021-07-29 2022-07-20 摄像模组和电子设备

Country Status (2)

Country Link
CN (1) CN115701117A (zh)
WO (1) WO2023005772A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150172522A1 (en) * 2013-12-16 2015-06-18 Olloclip, Llc Devices and methods for close-up imaging with a mobile electronic device
CN107517285A (zh) * 2016-06-17 2017-12-26 宁波舜宇光电信息有限公司 分体式潜望模组及其组装方法和应用
CN208110149U (zh) * 2018-04-27 2018-11-16 南昌欧菲精密光学制品有限公司 潜望式镜头、成像模组和电子装置
CN109239903A (zh) * 2018-09-29 2019-01-18 辽宁中蓝电子科技有限公司 一种潜望式取像光学透镜组
CN110488451A (zh) * 2019-09-10 2019-11-22 上海比路电子股份有限公司 光学变焦马达、摄像装置及光学变焦马达的组装方法
CN112995443A (zh) * 2019-12-13 2021-06-18 宁波舜宇光电信息有限公司 潜望式摄像模组及其制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150172522A1 (en) * 2013-12-16 2015-06-18 Olloclip, Llc Devices and methods for close-up imaging with a mobile electronic device
CN107517285A (zh) * 2016-06-17 2017-12-26 宁波舜宇光电信息有限公司 分体式潜望模组及其组装方法和应用
CN208110149U (zh) * 2018-04-27 2018-11-16 南昌欧菲精密光学制品有限公司 潜望式镜头、成像模组和电子装置
CN109239903A (zh) * 2018-09-29 2019-01-18 辽宁中蓝电子科技有限公司 一种潜望式取像光学透镜组
CN110488451A (zh) * 2019-09-10 2019-11-22 上海比路电子股份有限公司 光学变焦马达、摄像装置及光学变焦马达的组装方法
CN112995443A (zh) * 2019-12-13 2021-06-18 宁波舜宇光电信息有限公司 潜望式摄像模组及其制造方法

Also Published As

Publication number Publication date
CN115701117A (zh) 2023-02-07

Similar Documents

Publication Publication Date Title
US20150116591A1 (en) Camera module
JP2013167818A (ja) 撮像装置
CN112532816B (zh) 潜望式摄像模组及电子设备
US7170690B2 (en) Zoom lens
CN109194860B (zh) 成像模组、摄像头组件及电子装置
CN109218589B (zh) 成像模组、摄像头组件及电子装置
CN109218590B (zh) 成像模组、摄像头组件及电子装置
WO2006043376A1 (ja) 変倍光学系及び撮像装置
CN211149032U (zh) 摄像头模组
KR20190111482A (ko) 카메라 모듈 및 이를 포함하는 광학 기기
WO2023005772A1 (zh) 摄像模组和电子设备
KR20200114263A (ko) 카메라 모듈
CN113315899A (zh) 摄像头组件、电子设备及其控制方法
CN115606193B (zh) 摄像模组和电子设备
US20240377611A1 (en) Camera module and electronic device
EP4206778A1 (en) Camera module, photographing module and terminal
CN212255859U (zh) 镜头模组及电子设备
CN109167908B (zh) 成像模组、摄像头组件及电子装置
CN109639939B (zh) 电子装置
CN111580255A (zh) 镜头模组及电子设备
KR20200114264A (ko) 카메라 모듈
CN220775980U (zh) 镜头模组、摄像模组和电子设备
CN115407475B (zh) 光学镜头、摄像模组以及电子设备
WO2023093178A1 (zh) 一种电子设备
WO2022199538A1 (zh) 一种驱动马达、摄像头模组和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22848377

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022848377

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 18291498

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022848377

Country of ref document: EP

Effective date: 20240105

NENP Non-entry into the national phase

Ref country code: DE