WO2023002601A1 - Communication system, communication method, and reception device - Google Patents
Communication system, communication method, and reception device Download PDFInfo
- Publication number
- WO2023002601A1 WO2023002601A1 PCT/JP2021/027326 JP2021027326W WO2023002601A1 WO 2023002601 A1 WO2023002601 A1 WO 2023002601A1 JP 2021027326 W JP2021027326 W JP 2021027326W WO 2023002601 A1 WO2023002601 A1 WO 2023002601A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- transmission line
- wireless
- wired
- unit
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims abstract description 30
- 238000000034 method Methods 0.000 title claims abstract description 11
- 230000005540 biological transmission Effects 0.000 claims abstract description 214
- 238000012937 correction Methods 0.000 claims abstract description 61
- 238000012549 training Methods 0.000 claims abstract description 41
- 230000008054 signal transmission Effects 0.000 claims description 18
- 238000006243 chemical reaction Methods 0.000 claims description 16
- 238000004364 calculation method Methods 0.000 claims description 15
- 238000004458 analytical method Methods 0.000 description 11
- 230000010355 oscillation Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 7
- 238000000059 patterning Methods 0.000 description 5
- 230000003044 adaptive effect Effects 0.000 description 3
- 238000005562 fading Methods 0.000 description 2
- 238000010295 mobile communication Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/74—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission for increasing reliability, e.g. using redundant or spare channels or apparatus
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/20—Monitoring; Testing of receivers
- H04B17/21—Monitoring; Testing of receivers for calibration; for correcting measurements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/005—Control of transmission; Equalising
Definitions
- the present invention relates to a communication system, communication method, and receiving device.
- a receiving device compensates for waveform distortion that occurs in a wireless transmission path for a signal transmitted by a transmitting device and receives the signal.
- Non-Patent Document 1 discloses a technique for compensating for waveform distortion using an adaptive equalization algorithm that successively estimates a correction function for compensating for waveform distortion by modeling based on digital signal processing in a fading transmission line. disclosed.
- the present invention has been made in view of the above-described problems, and a communication system, communication method, and reception system capable of compensating for waveform distortion occurring in a wireless transmission path with low delay while increasing the transmission capacity of wireless communication.
- the purpose is to provide an apparatus.
- a communication system is a communication system that transmits a signal from a transmitting device to a receiving device via a wired transmission line and a wireless transmission line having a plurality of different transmission line characteristics that change over time.
- the transmission device includes a wired signal transmission unit that transmits a signal including a training signal to the reception device via the wired transmission line; a wireless signal transmitting unit that, after transmission, transmits another signal to the receiving device as a backup of the wired transmission line, wherein the receiving device receives the signal transmitted by the transmitting device via the wired transmission line.
- a wired signal receiving unit for receiving; a wireless signal receiving unit for respectively receiving signals transmitted by the transmitting device via the wireless transmission paths having different transmission path characteristics; and a training signal received in advance by the wired signal receiving unit. and a correction function for correcting distortion of the signal received by the radio signal receiving unit by comparing each of the training signals received in advance by the radio signal receiving unit via the radio transmission channels having different channel characteristics.
- a correction function calculation unit that calculates beforehand for each transmission line characteristic of the wireless transmission line; a storage unit that stores each of the correction functions calculated by the correction function calculation unit for each transmission line characteristic of the wireless transmission line; an equalization unit that compensates for distortion of the signal received by the radio signal receiving unit when the transmission line is interrupted, based on the correction function stored in the storage unit for each transmission line characteristic of the radio transmission line and
- a communication method is communication in which a signal is transmitted from a transmitting device to a receiving device via a wired transmission line and a wireless transmission line having a plurality of different transmission line characteristics that change over time.
- the receiving device receives a training signal from the transmitting device via the wired transmission path; and the receiving device receives training signals from the transmitting device via a plurality of the wireless transmission paths having different transmission path characteristics.
- a step of receiving a training signal, and the receiving device comparing the training signal received via the wired transmission line with each of the training signals received via the wireless transmission line having different transmission line characteristics.
- a receiving device includes a wired signal receiving unit that receives a signal transmitted by a transmitting device via a wired transmission line, and a plurality of different transmission line characteristics that change over time in the transmitting device.
- a training signal received in advance by the wired signal receiving unit, and the wireless transmission with a plurality of different transmission channel characteristics a correction function calculation unit that compares each training signal received in advance via a channel and calculates in advance a correction function for correcting distortion of a signal received by the radio signal reception unit for each transmission channel characteristic of the radio transmission channel; a storage unit for storing each correction function calculated by the correction function calculation unit for each transmission line characteristic of the wireless transmission line; and an equalizer that compensates for distortion of the signal received by the radio signal receiver based on a correction function stored for each transmission path characteristic.
- FIG. 3 is a functional block diagram illustrating functions of a transmitting device;
- FIG. 3 is a functional block diagram illustrating functions of a receiving device according to one embodiment;
- FIG. 4 is a graph schematically showing a signal analyzed by an analysis unit;
- FIG. 4 is a diagram schematically showing an example of main operations of the receiving device according to one embodiment;
- FIG. 1 is a diagram showing a configuration example of a communication system 1 according to one embodiment.
- the communication system 1 is configured such that exchanges 2 and 3 communicate with each other via a wired transmission line 4 and a wireless transmission line 5, for example.
- the switch 2 will be referred to as a transmitter 2, the switch 3 will be referred to as a receiver 3, and a case where the transmitter 2 transmits a user signal to the receiver 3 will be described as an example.
- the transmitting device 2 may have all the functions that the receiving device 3 has.
- the receiving device 3 may have all the functions that the transmitting device 2 has.
- the wired transmission line 4 is a wired section that is configured by connecting the transmitting device 2 and the receiving device 3 with, for example, a submarine optical cable and enables two-way communication.
- the radio transmission line 5 includes a plurality of radio transmission line states 51 to 53 (first radio transmission line state to third radio transmission line state) having different transmission line characteristics that change with the passage of time, for example, becoming multipath. It is a wireless section that enables two-way communication.
- different transmission path states are defined as different transmission path characteristics due to changes in weather or sea surface conditions (changes in the environment of the wireless transmission path) over time.
- wireless transmission path states 51 to 53 indicate that the wireless transmission path 5 has three different transmission path characteristics.
- the wireless transmission line 5 has a plurality of different transmission line characteristics that change over time and is used as a backup line for the wired transmission line 4 .
- FIG. 2 is a functional block diagram illustrating the functions of the transmission device 2.
- the transmission device 2 has, for example, an encoding section 21, a modulation section 22, an oscillation circuit (transmission section) 23, a frequency conversion circuit 24, a radio signal transmission section 25, and a wired signal transmission section .
- the encoding unit 21 encodes the user signal and outputs the encoded user signal to the modulation unit 22 .
- the encoding unit 21 also encodes a reference signal (training signal) for compensating for signal distortion occurring on the radio transmission line 5 , for example, and outputs the reference signal to the modulation unit 22 .
- the modulation section 22 modulates the user signal input from the encoding section 21 and outputs the modulated user signal to the frequency conversion circuit 24 and the wired signal transmission section 26 .
- the modulation section 22 also outputs the reference signal (training signal) input from the encoding section 21 to the frequency conversion circuit 24 and the wired signal transmission section 26 .
- the oscillation circuit 23 oscillates to generate a reference frequency signal used for signal transmission, and outputs the generated reference frequency signal to the frequency conversion circuit 24 and the wired signal transmission section 26 .
- the frequency conversion circuit 24 uses the signal (reference frequency signal) input from the oscillation circuit 23 to convert the frequency of the signal input from the modulation unit 22 to a predetermined frequency, and converts the frequency-converted signal into a radio signal. Output to the transmission unit 25 .
- the frequency conversion circuit 24 uses a reference frequency signal (eg, a 10 MHz signal) to convert an intermediate frequency signal (eg, a 140 MHz band signal) into a radio carrier frequency signal (eg, a 6 GHz band signal).
- the radio signal transmission unit 25 has, for example, an RF (radio frequency) unit 250 and an antenna 252, and transmits signals to the reception device 3 via the radio transmission line 5 (Fig. 1).
- the RF unit 250 includes a transmission amplifier, a filter, etc., and transmits the signal frequency-converted by the frequency conversion circuit 24 via the antenna 252 .
- the wireless signal transmission unit 25 transmits another signal to the receiving device 3 as a backup for the wired transmission path 4 .
- the wired signal transmission unit 26 uses the signal input from the oscillation circuit 23 to transmit the signal including the training signal input from the modulation unit 22 to the reception device 3 via the wired transmission line 4 . Also, the wired signal transmission unit 26 transmits the signal input from the oscillation circuit 23 to the receiving device 3 via the wired transmission line 4 as a signal of the reference frequency.
- FIG. 3 is a functional block diagram illustrating functions of the receiving device 3 according to one embodiment.
- the receiving device 3 includes, for example, a wired signal receiving section 30, an oscillator circuit (transmitting section) 31, a synchronization section 32, a radio signal receiving section 33, a frequency conversion circuit 34, an AD converter (A/D). 35, an estimation unit 36, a correction function calculation unit 37, an analysis unit 38, a patterning unit 39, a storage unit 40, a switching unit 41, an equalization unit 42, a decoding unit 43, and a control unit 44.
- the wired signal receiver 30 receives a signal transmitted by the transmitter 2 via the wired transmission line 4 and outputs the received signal to the synchronizer 32 and the estimator 36 .
- the wired signal receiving unit 30 utilizes the free space of the wired transmission line 4 to receive signals including training signals. Also, the wired signal receiving unit 30 receives the signal of the reference frequency transmitted by the transmitting device 2 .
- the oscillation circuit 31 oscillates to generate a reference signal used for signal reception, and outputs the generated reference signal to the synchronization unit 32 .
- the synchronization unit 32 synchronizes the signal (reference signal) input from the oscillation circuit 31 with the reference frequency signal received by the wired signal reception unit 30 and outputs the signal to the frequency conversion circuit 34 .
- the radio signal receiving section 33 has an antenna 330 and an RF section 332, and receives signals via a plurality of radio transmission lines 5 having different transmission line characteristics. Specifically, antenna 330 receives a signal via wireless transmission line 5 .
- the RF unit 332 includes a reception amplifier, AGC (automatic gain control), etc., and outputs a signal received via the antenna 330 to the frequency conversion circuit 34 .
- the frequency conversion circuit 34 uses the reference signal input from the synchronization unit 32 to convert the frequency of the signal input from the radio signal reception unit 33 into a predetermined frequency, and sends the frequency-converted signal to the AD converter 35. Output for For example, the frequency conversion circuit 34 uses a reference frequency signal (eg, a 10 MHz signal) to convert a radio carrier frequency signal (eg, a 6 GHz band signal) into an intermediate frequency signal (eg, a 140 MHz band signal).
- a reference frequency signal eg, a 10 MHz signal
- a radio carrier frequency signal eg, a 6 GHz band signal
- an intermediate frequency signal eg, a 140 MHz band signal
- the AD converter 35 AD-converts the signal input from the frequency conversion circuit 34 and outputs it to the estimation unit 36 and the analysis unit 38 .
- the estimating unit 36 uses the training signal input from the wired signal receiving unit 30, the estimating unit 36 estimates the wireless transmission path states 51 to 51 based on the number of notches, frequency, and amplitude of each training signal received by the wireless signal receiving unit 33. 53 is estimated and output to the correction function calculator 37 .
- the correction function calculator 37 compares the training signal received in advance by the wired signal receiver 30 with the training signal received in advance by the wireless signal receiver 33 via each of the wireless transmission path states 51 to 53 . Next, the correction function calculator 37 preliminarily sets a correction function for correcting the distortion of the signal received by the wireless signal receiver 33 for each of the wireless transmission channel states 51 to 53 (different transmission channel characteristics of the wireless transmission channel 5). calculate.
- the correction function calculation unit 37 calculates correction functions for each of the wireless transmission channel states 51 to 53 based on the transmission channel characteristics estimated by the estimation unit 36 for each of the wireless transmission channel states 51 to 53 .
- the correction function calculator 37 then outputs the calculated correction function to the patterning unit 39 and the switching unit 41 .
- the analysis unit 38 analyzes the signal input from the AD converter 35 and outputs the analysis result to the equalization unit 42 and patterning unit 39 .
- FIG. 4 is a graph schematically showing signals analyzed by the analysis unit 38.
- the analysis unit 38 performs spectrum analysis on the signal input from the AD converter 35 in the frequency domain, and determines the frequency (notch frequency A), depth (notch depth B), and the peak level (amplitude C) are observed, and the waveform distortion of the received signal is patterned.
- the amplitude level of the reflected wave when the amplitude level of the reflected wave is higher than that of the direct wave, when the amplitude level of the reflected wave is lower, or when the delay time of the reflected wave causes the notch frequency, notch depth, and peak level to fade.
- a distortion pattern that changes with time depending on the state of the propagation path is specified.
- the entire propagated signal waveform may be attenuated, and the amplitude level of the waveform peak may decrease.
- the number of notches varies depending on the number of delayed waves.
- the patterning unit 39 (FIG. 3) classifies the correction functions of the wireless transmission path states 51 to 53 input from the correction function calculation unit 37 into patterns by referring to the analysis results input from the analysis unit 38. , the correction function is stored in the storage unit 40 for each pattern.
- the storage unit 40 is a database (DB) that stores correction functions for each pattern. That is, the storage unit 40 stores each correction function calculated by the correction function calculation unit 37 for each wireless transmission channel state (for each different transmission channel characteristic of the wireless transmission channel 5).
- DB database
- the switching unit 41 outputs one of the correction functions stored in the storage unit 40 or the correction function input from the correction function calculation unit 37 to the equalization unit 42 under the control of the control unit 44. do.
- the switching unit 41 sends the correction function input from the correction function calculation unit 37 to the equalization unit 42. output. Further, when the wired transmission line 4 does not transmit a signal (when the wired transmission line 4 is disabled due to interruption or the like), the switching unit 41 selects one of the correction functions stored in the storage unit 40 as the equalization unit. 42.
- the equalization unit 42 uses the correction function input from the switching unit 41 to compensate for the distortion of the signal input from the analysis unit 38 and outputs the distortion-compensated signal to the decoding unit 43 .
- the equalization unit 42 causes the wireless signal receiving unit 33 to receive the Compensate for signal distortion.
- the decoding unit 43 decodes the signal input from the equalization unit 42 and outputs it as a user signal.
- the control unit 44 controls each unit that configures the receiving device 3 . For example, the control unit 44 determines whether the wired transmission line 4 is valid based on the signal output by the wired signal receiving unit 30 and controls the switching unit 41 .
- each function of the above-described transmitting device 2 and receiving device 3 may be partially or entirely configured by hardware such as PLD (Programmable Logic Device) or FPGA (Field Programmable Gate Array), It may be configured as a program executed by a processor such as a CPU.
- PLD Processable Logic Device
- FPGA Field Programmable Gate Array
- the transmitting device 2 and the receiving device 3 can each be realized using a computer and a program, and the program can be recorded on a storage medium or provided through a network.
- FIG. 5 is a diagram schematically showing a main operation example of the receiving device 3 according to one embodiment. As shown in FIG. 5, the receiving device 3 receives a training signal from the transmitting device 2 via the wired transmission line 4 (S100).
- S100 wired transmission line 4
- the receiving device 3 receives the training signal from the transmitting device 2 via each of the radio transmission channel states 51 to 53, which have different wave conditions on the sea surface due to the influence of the weather, for example, on the ocean channel (S102).
- the receiving device 3 compares the training signal received via the wired transmission line 4 with the training signal received via each of the wireless transmission line states 51 to 53, and then compares the wireless transmission line state 51. 53 are calculated for each wireless transmission path state (S104).
- the receiving device 3 stores each calculated correction function in the storage unit 40 for each wireless transmission path state (S106).
- the receiving device 3 receives via the wireless transmission line 5 as a backup of the wired transmission line 4 based on the correction function stored for each state of the wireless transmission line. Compensate the distortion of the signal to be transmitted (S108).
- the receiving device 3 when the wired transmission line 4 is cut off, the receiving device 3 according to one embodiment can perform compensates for the distortion of the received signal, it is possible to compensate for the waveform distortion of the signal generated in the wireless transmission line 5 with a low delay while increasing the transmission capacity of the wireless communication.
- the communication system 1 since the communication system 1 according to one embodiment transmits a training signal for correcting waveform distortion due to fading in the wireless section via the wired transmission line 4, it is possible to increase the transmission capacity of the main signal in the wireless section. can.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
Abstract
A communication method according to one embodiment of the present invention includes: a reception device receiving a training signal from a transmission device via a wired transmission line; the reception device receiving a training signal from the transmission device via a plurality of wireless transmission lines having different transmission line characteristics; the reception device comparing the training signal received via the wired transmission line and each of the training signals received via the plurality of wireless transmission lines having different transmission line characteristics and calculating, for each transmission line characteristic of the wireless transmission lines, a correction function to correct distortion of signals received thereafter via the wireless transmission lines having different transmission line characteristics; the reception device storing each of the calculated correction functions for each transmission line characteristic of the wireless transmission lines; and, when the wired transmission line is cut off, the reception device compensating the distortion of signals received via the wireless transmission lines as a backup for the wired transmission line, on the basis of the correction functions stored for each transmission line characteristic of the wireless transmission lines.
Description
本発明は、通信システム、通信方法、及び受信装置に関する。
The present invention relates to a communication system, communication method, and receiving device.
無線通信では、送信装置が送信する信号に対して、無線伝送路で生じる波形歪を受信装置が補償して受信する技術が公知である。
In wireless communication, there is a well-known technique in which a receiving device compensates for waveform distortion that occurs in a wireless transmission path for a signal transmitted by a transmitting device and receives the signal.
例えば、非特許文献1には、フェージング伝送路におけるデジタル信号処理に基づいたモデル化により、逐次的に波形歪を補償する補正関数を推定する適応等化アルゴリズムを用いて波形歪を補償する技術が開示されている。
For example, Non-Patent Document 1 discloses a technique for compensating for waveform distortion using an adaptive equalization algorithm that successively estimates a correction function for compensating for waveform distortion by modeling based on digital signal processing in a fading transmission line. disclosed.
しかしながら、従来は、適応等化アルゴリズムを用いるときに遅延が生じることがあり、高速化や高精度化が困難であるという課題があった。
However, in the past, there was a problem that delays sometimes occurred when using adaptive equalization algorithms, making it difficult to increase speed and accuracy.
本発明は、上述した課題を鑑みてなされたものであり、無線通信の伝送容量を大きくしつつ、無線伝送路で生じる波形歪を低遅延で補償することができる通信システム、通信方法、及び受信装置を提供することを目的とする。
The present invention has been made in view of the above-described problems, and a communication system, communication method, and reception system capable of compensating for waveform distortion occurring in a wireless transmission path with low delay while increasing the transmission capacity of wireless communication. The purpose is to provide an apparatus.
本発明の一態様にかかる通信システムは、送信装置から受信装置へ有線伝送路、及び、時間の経過により変化する複数の異なる伝送路特性を有する無線伝送路を介して信号を伝送する通信システムにおいて、前記送信装置が、前記有線伝送路を介して、トレーニング信号を含む信号を前記受信装置へ送信する有線信号送信部と、複数の異なる伝送路特性の前記無線伝送路を介して、トレーニング信号を送信した後に、前記有線伝送路のバックアップとして他の信号を前記受信装置へ送信する無線信号送信部とを有し、前記受信装置が、前記送信装置が前記有線伝送路を介して送信する信号を受信する有線信号受信部と、前記送信装置が複数の異なる伝送路特性の前記無線伝送路を介して送信する信号をそれぞれ受信する無線信号受信部と、前記有線信号受信部が予め受信したトレーニング信号と、前記無線信号受信部が複数の異なる伝送路特性の前記無線伝送路を介して予め受信したトレーニング信号それぞれとを比較して、前記無線信号受信部が受信する信号の歪を補正する補正関数を前記無線伝送路の伝送路特性ごとに予め算出する補正関数算出部と、前記補正関数算出部が算出した補正関数それぞれを前記無線伝送路の伝送路特性ごとに記憶する記憶部と、前記有線伝送路が遮断された場合に、前記記憶部が前記無線伝送路の伝送路特性ごとに記憶している補正関数に基づいて、前記無線信号受信部が受信する信号の歪を補償する等化部とを有することを特徴とする。
A communication system according to an aspect of the present invention is a communication system that transmits a signal from a transmitting device to a receiving device via a wired transmission line and a wireless transmission line having a plurality of different transmission line characteristics that change over time. , the transmission device includes a wired signal transmission unit that transmits a signal including a training signal to the reception device via the wired transmission line; a wireless signal transmitting unit that, after transmission, transmits another signal to the receiving device as a backup of the wired transmission line, wherein the receiving device receives the signal transmitted by the transmitting device via the wired transmission line. a wired signal receiving unit for receiving; a wireless signal receiving unit for respectively receiving signals transmitted by the transmitting device via the wireless transmission paths having different transmission path characteristics; and a training signal received in advance by the wired signal receiving unit. and a correction function for correcting distortion of the signal received by the radio signal receiving unit by comparing each of the training signals received in advance by the radio signal receiving unit via the radio transmission channels having different channel characteristics. a correction function calculation unit that calculates beforehand for each transmission line characteristic of the wireless transmission line; a storage unit that stores each of the correction functions calculated by the correction function calculation unit for each transmission line characteristic of the wireless transmission line; an equalization unit that compensates for distortion of the signal received by the radio signal receiving unit when the transmission line is interrupted, based on the correction function stored in the storage unit for each transmission line characteristic of the radio transmission line and
また、本発明の一態様にかかる通信方法は、送信装置から受信装置へ有線伝送路、及び、時間の経過により変化する複数の異なる伝送路特性を有する無線伝送路を介して信号を伝送する通信方法において、前記受信装置が、前記送信装置から前記有線伝送路を介してトレーニング信号を受信するステップと、前記受信装置が、前記送信装置から複数の異なる伝送路特性の前記無線伝送路を介してトレーニング信号を受信するステップと、前記受信装置が、前記有線伝送路を介して受信したトレーニング信号と、複数の異なる伝送路特性の前記無線伝送路を介して受信したトレーニング信号それぞれとを比較して、その後に複数の異なる伝送路特性の前記無線伝送路を介して受信する信号の歪を補正する補正関数を前記無線伝送路の伝送路特性ごとに算出するステップと、前記受信装置が、算出した補正関数それぞれを前記無線伝送路の伝送路特性ごとに記憶するステップと、前記有線伝送路が遮断された場合に、前記受信装置が、前記無線伝送路の伝送路特性ごとに記憶している補正関数に基づいて、前記有線伝送路のバックアップとして前記無線伝送路を介して受信する信号の歪を補償するステップとを含むことを特徴とする。
Further, a communication method according to an aspect of the present invention is communication in which a signal is transmitted from a transmitting device to a receiving device via a wired transmission line and a wireless transmission line having a plurality of different transmission line characteristics that change over time. In the method, the receiving device receives a training signal from the transmitting device via the wired transmission path; and the receiving device receives training signals from the transmitting device via a plurality of the wireless transmission paths having different transmission path characteristics. a step of receiving a training signal, and the receiving device comparing the training signal received via the wired transmission line with each of the training signals received via the wireless transmission line having different transmission line characteristics. a step of calculating, for each of the wireless transmission channel characteristics, a correction function for correcting distortion of signals received through the wireless transmission channels having a plurality of different transmission channel characteristics; and a step of storing each correction function for each transmission line characteristic of the wireless transmission line; and correction stored by the receiving device for each transmission line characteristic of the wireless transmission line when the wired transmission line is interrupted. compensating for distortion of a signal received via the wireless transmission line as a backup of the wired transmission line, based on the function.
また、本発明の一態様にかかる受信装置は、送信装置が有線伝送路を介して送信する信号を受信する有線信号受信部と、前記送信装置が時間の経過により変化する複数の異なる伝送路特性を有する無線伝送路を介して送信する信号をそれぞれ受信する無線信号受信部と、前記有線信号受信部が予め受信したトレーニング信号と、前記無線信号受信部が複数の異なる伝送路特性の前記無線伝送路を介して予め受信したトレーニング信号それぞれとを比較して、前記無線信号受信部が受信する信号の歪を補正する補正関数を前記無線伝送路の伝送路特性ごとに予め算出する補正関数算出部と、前記補正関数算出部が算出した補正関数それぞれを前記無線伝送路の伝送路特性ごとに記憶する記憶部と、前記有線伝送路が遮断された場合に、前記記憶部が前記無線伝送路の伝送路特性ごとに記憶している補正関数に基づいて、前記無線信号受信部が受信する信号の歪を補償する等化部とを有することを特徴とする。
Further, a receiving device according to an aspect of the present invention includes a wired signal receiving unit that receives a signal transmitted by a transmitting device via a wired transmission line, and a plurality of different transmission line characteristics that change over time in the transmitting device. a training signal received in advance by the wired signal receiving unit, and the wireless transmission with a plurality of different transmission channel characteristics a correction function calculation unit that compares each training signal received in advance via a channel and calculates in advance a correction function for correcting distortion of a signal received by the radio signal reception unit for each transmission channel characteristic of the radio transmission channel; a storage unit for storing each correction function calculated by the correction function calculation unit for each transmission line characteristic of the wireless transmission line; and an equalizer that compensates for distortion of the signal received by the radio signal receiver based on a correction function stored for each transmission path characteristic.
本発明によれば、無線通信の伝送容量を大きくしつつ、無線伝送路で生じる波形歪を低遅延で補償することができる。
According to the present invention, it is possible to compensate for waveform distortion occurring in a wireless transmission line with low delay while increasing the transmission capacity of wireless communication.
以下に、図面を用いて通信システムの一実施形態について説明する。図1は、一実施形態にかかる通信システム1の構成例を示す図である。図1に示すように、通信システム1は、例えば交換機2と交換機3が有線伝送路4及び無線伝送路5を介して相互に通信を行うように構成されている。
An embodiment of the communication system will be described below using the drawings. FIG. 1 is a diagram showing a configuration example of a communication system 1 according to one embodiment. As shown in FIG. 1, the communication system 1 is configured such that exchanges 2 and 3 communicate with each other via a wired transmission line 4 and a wireless transmission line 5, for example.
以下、交換機2を送信装置2と記し、交換機3を受信装置3と記して、送信装置2が受信装置3へユーザ信号を送信する場合を例に説明する。なお、送信装置2は、受信装置3が有する機能を全て備えていてもよい。また、受信装置3は、送信装置2が有する機能を全て備えていてもよい。
In the following, the switch 2 will be referred to as a transmitter 2, the switch 3 will be referred to as a receiver 3, and a case where the transmitter 2 transmits a user signal to the receiver 3 will be described as an example. Note that the transmitting device 2 may have all the functions that the receiving device 3 has. Also, the receiving device 3 may have all the functions that the transmitting device 2 has.
有線伝送路4は、送信装置2と受信装置3との間を例えば海底光ケーブルなどによって接続することにより構成され、双方向通信を可能にしている有線区間である。
The wired transmission line 4 is a wired section that is configured by connecting the transmitting device 2 and the receiving device 3 with, for example, a submarine optical cable and enables two-way communication.
無線伝送路5は、例えばマルチパスとなる時間の経過により変化した複数の異なる伝送路特性の無線伝送路状態51~53(第1無線伝送路状態~第3無線伝送路状態)を含んで双方向通信を可能にしている無線区間である。ここでは、時間の経過により気象や海面の状態が変化(無線伝送路の環境が変化)して伝送路特性が異なる無線伝送路になることを、それぞれ異なる伝送路状態として区別する。例えば、無線伝送路5が3つの異なる伝送路特性の無線伝送路になることを、それぞれ無線伝送路状態51~53として示している。例えば、無線伝送路5は、時間の経過により変化する複数の異なる伝送路特性を有して、有線伝送路4のバックアップ回線として活用される。
The radio transmission line 5 includes a plurality of radio transmission line states 51 to 53 (first radio transmission line state to third radio transmission line state) having different transmission line characteristics that change with the passage of time, for example, becoming multipath. It is a wireless section that enables two-way communication. Here, different transmission path states are defined as different transmission path characteristics due to changes in weather or sea surface conditions (changes in the environment of the wireless transmission path) over time. For example, wireless transmission path states 51 to 53 indicate that the wireless transmission path 5 has three different transmission path characteristics. For example, the wireless transmission line 5 has a plurality of different transmission line characteristics that change over time and is used as a backup line for the wired transmission line 4 .
図2は、送信装置2が有する機能を例示する機能ブロック図である。図2に示すように、送信装置2は、例えば符号化部21、変調部22、発振回路(発信部)23、周波数変換回路24、無線信号送信部25、及び有線信号送信部26を有する。
FIG. 2 is a functional block diagram illustrating the functions of the transmission device 2. As shown in FIG. As shown in FIG. 2, the transmission device 2 has, for example, an encoding section 21, a modulation section 22, an oscillation circuit (transmission section) 23, a frequency conversion circuit 24, a radio signal transmission section 25, and a wired signal transmission section .
符号化部21は、ユーザ信号を符号化し、符号化したユーザ信号を変調部22に対して出力する。また、符号化部21は、例えば無線伝送路5で生じる信号の歪を補償するための参照信号(トレーニング信号)を符号化し、変調部22に対して出力する。
The encoding unit 21 encodes the user signal and outputs the encoded user signal to the modulation unit 22 . The encoding unit 21 also encodes a reference signal (training signal) for compensating for signal distortion occurring on the radio transmission line 5 , for example, and outputs the reference signal to the modulation unit 22 .
変調部22は、符号化部21から入力されたユーザ信号を変調し、変調したユーザ信号を周波数変換回路24及び有線信号送信部26に対して出力する。また、変調部22は、符号化部21から入力された参照信号(トレーニング信号)を周波数変換回路24及び有線信号送信部26に対して出力する。
The modulation section 22 modulates the user signal input from the encoding section 21 and outputs the modulated user signal to the frequency conversion circuit 24 and the wired signal transmission section 26 . The modulation section 22 also outputs the reference signal (training signal) input from the encoding section 21 to the frequency conversion circuit 24 and the wired signal transmission section 26 .
発振回路23は、信号の送信に用いる基準周波数の信号を発振により生成し、生成した基準周波数の信号を周波数変換回路24及び有線信号送信部26に対して出力する。
The oscillation circuit 23 oscillates to generate a reference frequency signal used for signal transmission, and outputs the generated reference frequency signal to the frequency conversion circuit 24 and the wired signal transmission section 26 .
周波数変換回路24は、発振回路23から入力された信号(基準周波数の信号)を用いて、変調部22から入力された信号の周波数を所定の周波数に変換し、周波数を変換した信号を無線信号送信部25に対して出力する。例えば、周波数変換回路24は、基準周波数の信号(例えば10MHzの信号)を用いて、中間周波数の信号(例えば140MHz帯の信号)を無線搬送波周波数の信号(例えば6GHz帯の信号)に変換する。
The frequency conversion circuit 24 uses the signal (reference frequency signal) input from the oscillation circuit 23 to convert the frequency of the signal input from the modulation unit 22 to a predetermined frequency, and converts the frequency-converted signal into a radio signal. Output to the transmission unit 25 . For example, the frequency conversion circuit 24 uses a reference frequency signal (eg, a 10 MHz signal) to convert an intermediate frequency signal (eg, a 140 MHz band signal) into a radio carrier frequency signal (eg, a 6 GHz band signal).
無線信号送信部25は、例えばRF(radio frequency)部250及びアンテナ252を有し、無線伝送路5(図1)を介して受信装置3へ信号を送信する。例えば、RF部250は、送信アンプ及びフィルタ等を備え、周波数変換回路24が周波数変換した信号を、アンテナ252を介して送信する。
The radio signal transmission unit 25 has, for example, an RF (radio frequency) unit 250 and an antenna 252, and transmits signals to the reception device 3 via the radio transmission line 5 (Fig. 1). For example, the RF unit 250 includes a transmission amplifier, a filter, etc., and transmits the signal frequency-converted by the frequency conversion circuit 24 via the antenna 252 .
また、無線信号送信部25は、複数の異なる伝送路特性の無線伝送路5を介して、トレーニング信号を送信した後に、有線伝送路4のバックアップとして他の信号を受信装置3へ送信する。
Also, after transmitting the training signal via a plurality of wireless transmission paths 5 having different transmission path characteristics, the wireless signal transmission unit 25 transmits another signal to the receiving device 3 as a backup for the wired transmission path 4 .
有線信号送信部26は、発振回路23から入力された信号を用いて、変調部22から入力されたトレーニング信号を含む信号を、有線伝送路4を介して受信装置3へ送信する。また、有線信号送信部26は、発振回路23から入力された信号を基準周波数の信号として、有線伝送路4を介して受信装置3へ送信する。
The wired signal transmission unit 26 uses the signal input from the oscillation circuit 23 to transmit the signal including the training signal input from the modulation unit 22 to the reception device 3 via the wired transmission line 4 . Also, the wired signal transmission unit 26 transmits the signal input from the oscillation circuit 23 to the receiving device 3 via the wired transmission line 4 as a signal of the reference frequency.
図3は、一実施形態にかかる受信装置3が有する機能を例示する機能ブロック図である。図3に示すように、受信装置3は、例えば有線信号受信部30、発振回路(発信部)31、同期部32、無線信号受信部33、周波数変換回路34、AD変換器(A/D)35、推定部36、補正関数算出部37、解析部38、パターン化部39、記憶部40、切替部41、等化部42、復号部43、及び制御部44を有する。
FIG. 3 is a functional block diagram illustrating functions of the receiving device 3 according to one embodiment. As shown in FIG. 3, the receiving device 3 includes, for example, a wired signal receiving section 30, an oscillator circuit (transmitting section) 31, a synchronization section 32, a radio signal receiving section 33, a frequency conversion circuit 34, an AD converter (A/D). 35, an estimation unit 36, a correction function calculation unit 37, an analysis unit 38, a patterning unit 39, a storage unit 40, a switching unit 41, an equalization unit 42, a decoding unit 43, and a control unit 44.
有線信号受信部30は、送信装置2が有線伝送路4を介して送信する信号を受信し、受信した信号を同期部32及び推定部36に対して出力する。例えば、有線信号受信部30は、有線伝送路4の空き容量を活用して、トレーニング信号を含む信号を受信する。また、有線信号受信部30は、送信装置2が送信した基準周波数の信号を受信する。
The wired signal receiver 30 receives a signal transmitted by the transmitter 2 via the wired transmission line 4 and outputs the received signal to the synchronizer 32 and the estimator 36 . For example, the wired signal receiving unit 30 utilizes the free space of the wired transmission line 4 to receive signals including training signals. Also, the wired signal receiving unit 30 receives the signal of the reference frequency transmitted by the transmitting device 2 .
発振回路31は、信号の受信に用いる基準信号を発振により生成し、生成した基準信号を同期部32に対して出力する。
The oscillation circuit 31 oscillates to generate a reference signal used for signal reception, and outputs the generated reference signal to the synchronization unit 32 .
同期部32は、発振回路31から入力された信号(基準信号)を、有線信号受信部30が受信した基準周波数の信号に同期させ、周波数変換回路34に対して出力する。
The synchronization unit 32 synchronizes the signal (reference signal) input from the oscillation circuit 31 with the reference frequency signal received by the wired signal reception unit 30 and outputs the signal to the frequency conversion circuit 34 .
無線信号受信部33は、アンテナ330及びRF部332を有し、複数の異なる伝送路特性の無線伝送路5を介して信号を受信する。具体的には、アンテナ330は、無線伝送路5を介した信号を受信する。RF部332は、受信アンプ及びAGC(automatic gain control)等を備え、アンテナ330を介して受信した信号を周波数変換回路34に対して出力する。
The radio signal receiving section 33 has an antenna 330 and an RF section 332, and receives signals via a plurality of radio transmission lines 5 having different transmission line characteristics. Specifically, antenna 330 receives a signal via wireless transmission line 5 . The RF unit 332 includes a reception amplifier, AGC (automatic gain control), etc., and outputs a signal received via the antenna 330 to the frequency conversion circuit 34 .
周波数変換回路34は、同期部32から入力された基準信号を用いて、無線信号受信部33から入力された信号の周波数を所定の周波数に変換し、周波数を変換した信号をAD変換器35に対して出力する。例えば、周波数変換回路34は、基準周波数の信号(例えば10MHzの信号)を用いて、無線搬送波周波数の信号(例えば6GHz帯の信号)を中間周波数の信号(例えば140MHz帯の信号)に変換する。
The frequency conversion circuit 34 uses the reference signal input from the synchronization unit 32 to convert the frequency of the signal input from the radio signal reception unit 33 into a predetermined frequency, and sends the frequency-converted signal to the AD converter 35. Output for For example, the frequency conversion circuit 34 uses a reference frequency signal (eg, a 10 MHz signal) to convert a radio carrier frequency signal (eg, a 6 GHz band signal) into an intermediate frequency signal (eg, a 140 MHz band signal).
AD変換器35は、周波数変換回路34から入力された信号をAD変換し、推定部36及び解析部38に対して出力する。
The AD converter 35 AD-converts the signal input from the frequency conversion circuit 34 and outputs it to the estimation unit 36 and the analysis unit 38 .
推定部36は、有線信号受信部30から入力されるトレーニング信号を用いて、無線信号受信部33が受信したトレーニング信号それぞれのノッチの数、周波数、及び振幅に基づいて、無線伝送路状態51~53それぞれの伝送路特性を推定し、補正関数算出部37に対して出力する。
Using the training signal input from the wired signal receiving unit 30, the estimating unit 36 estimates the wireless transmission path states 51 to 51 based on the number of notches, frequency, and amplitude of each training signal received by the wireless signal receiving unit 33. 53 is estimated and output to the correction function calculator 37 .
補正関数算出部37は、有線信号受信部30が予め受信したトレーニング信号と、無線信号受信部33が無線伝送路状態51~53それぞれを介して予め受信したトレーニング信号それぞれとを比較する。次に、補正関数算出部37は、無線信号受信部33が受信する信号の歪を補正する補正関数を無線伝送路状態51~53(無線伝送路5の異なる伝送路特性)それぞれに対して予め算出する。
The correction function calculator 37 compares the training signal received in advance by the wired signal receiver 30 with the training signal received in advance by the wireless signal receiver 33 via each of the wireless transmission path states 51 to 53 . Next, the correction function calculator 37 preliminarily sets a correction function for correcting the distortion of the signal received by the wireless signal receiver 33 for each of the wireless transmission channel states 51 to 53 (different transmission channel characteristics of the wireless transmission channel 5). calculate.
つまり、補正関数算出部37は、推定部36が無線伝送路状態51~53それぞれに対して推定した伝送路特性に基づいて、補正関数を無線伝送路状態51~53それぞれに対して算出する。そして、補正関数算出部37は、算出した補正関数をパターン化部39及び切替部41に対して出力する。
That is, the correction function calculation unit 37 calculates correction functions for each of the wireless transmission channel states 51 to 53 based on the transmission channel characteristics estimated by the estimation unit 36 for each of the wireless transmission channel states 51 to 53 . The correction function calculator 37 then outputs the calculated correction function to the patterning unit 39 and the switching unit 41 .
解析部38は、AD変換器35から入力された信号を解析し、解析結果を等化部42及びパターン化部39に対して出力する。
The analysis unit 38 analyzes the signal input from the AD converter 35 and outputs the analysis result to the equalization unit 42 and patterning unit 39 .
図4は、解析部38が解析する信号を模式的に示したグラフである。解析部38は、AD変換器35から入力された信号を周波数領域でスペクトラム解析し、振幅が減衰している箇所(ノッチ)の周波数(ノッチ周波数A)、深さ(ノッチの深さB)、及びピークレベル(振幅C)などを観測して、受信信号の波形歪をパターン化する。
FIG. 4 is a graph schematically showing signals analyzed by the analysis unit 38. FIG. The analysis unit 38 performs spectrum analysis on the signal input from the AD converter 35 in the frequency domain, and determines the frequency (notch frequency A), depth (notch depth B), and the peak level (amplitude C) are observed, and the waveform distortion of the received signal is patterned.
例えば、解析部38は、直接波より反射波の振幅レベルが大きい場合や、反射波の振幅レベルが小さい場合、又は反射波の遅延時間によって、ノッチ周波数、ノッチの深さ、及びピークレベルがフェージング伝搬路の状態により時間的に変化することをそれぞれ歪パターンとして特定する。伝搬路の状態によっては、伝搬される信号波形全体に減衰がかかり、波形ピークの振幅レベルが低下することもある。また、遅延波の数により、ノッチの数も変わる。
For example, when the amplitude level of the reflected wave is higher than that of the direct wave, when the amplitude level of the reflected wave is lower, or when the delay time of the reflected wave causes the notch frequency, notch depth, and peak level to fade. A distortion pattern that changes with time depending on the state of the propagation path is specified. Depending on the state of the propagation path, the entire propagated signal waveform may be attenuated, and the amplitude level of the waveform peak may decrease. Also, the number of notches varies depending on the number of delayed waves.
パターン化部39(図3)は、補正関数算出部37から入力された無線伝送路状態51~53それぞれの補正関数を、解析部38から入力された解析結果を参照してパターンごとに分類し、補正関数をパターンごとに記憶部40に記憶させる。
The patterning unit 39 (FIG. 3) classifies the correction functions of the wireless transmission path states 51 to 53 input from the correction function calculation unit 37 into patterns by referring to the analysis results input from the analysis unit 38. , the correction function is stored in the storage unit 40 for each pattern.
記憶部40は、補正関数をパターンごとに記憶しているデータベース(DB)である。つまり、記憶部40は、補正関数算出部37が算出した補正関数それぞれを無線伝送路状態ごと(無線伝送路5の異なる伝送路特性ごと)に記憶している。
The storage unit 40 is a database (DB) that stores correction functions for each pattern. That is, the storage unit 40 stores each correction function calculated by the correction function calculation unit 37 for each wireless transmission channel state (for each different transmission channel characteristic of the wireless transmission channel 5).
切替部41は、制御部44の制御に応じて、記憶部40が記憶している補正関数のいずれか、又は、補正関数算出部37から入力された補正関数を等化部42に対して出力する。
The switching unit 41 outputs one of the correction functions stored in the storage unit 40 or the correction function input from the correction function calculation unit 37 to the equalization unit 42 under the control of the control unit 44. do.
例えば、切替部41は、有線伝送路4が信号を伝送しているとき(有線伝送路4が有効の場合)には、補正関数算出部37から入力された補正関数を等化部42に対して出力する。また、切替部41は、有線伝送路4が信号を伝送しないとき(有線伝送路4が遮断等により無効の場合)には、記憶部40が記憶している補正関数のいずれかを等化部42に対して出力する。
For example, when the wired transmission line 4 is transmitting a signal (when the wired transmission line 4 is enabled), the switching unit 41 sends the correction function input from the correction function calculation unit 37 to the equalization unit 42. output. Further, when the wired transmission line 4 does not transmit a signal (when the wired transmission line 4 is disabled due to interruption or the like), the switching unit 41 selects one of the correction functions stored in the storage unit 40 as the equalization unit. 42.
等化部42は、切替部41から入力された補正関数を用いて、解析部38から入力された信号の歪を補償し、歪を補償した信号を復号部43に対して出力する。例えば、等化部42は、有線伝送路4が遮断された場合に、記憶部40が無線伝送路の異なる伝送路特性ごとに記憶している補正関数に基づいて、無線信号受信部33が受信する信号の歪を補償する。
The equalization unit 42 uses the correction function input from the switching unit 41 to compensate for the distortion of the signal input from the analysis unit 38 and outputs the distortion-compensated signal to the decoding unit 43 . For example, when the wired transmission line 4 is cut off, the equalization unit 42 causes the wireless signal receiving unit 33 to receive the Compensate for signal distortion.
復号部43は、等化部42から入力された信号を復号し、ユーザ信号として出力する。
The decoding unit 43 decodes the signal input from the equalization unit 42 and outputs it as a user signal.
制御部44は、受信装置3を構成する各部を制御する。例えば、制御部44は、有線信号受信部30が出力する信号に基づいて、有線伝送路4が有効であるか否かを判定し、切替部41を制御する。
The control unit 44 controls each unit that configures the receiving device 3 . For example, the control unit 44 determines whether the wired transmission line 4 is valid based on the signal output by the wired signal receiving unit 30 and controls the switching unit 41 .
なお、上述した送信装置2及び受信装置3それぞれが有する各機能は、それぞれ一部又は全部がPLD(Programmable Logic Device)やFPGA(Field Programmable Gate Array)等のハードウェアによって構成されてもよいし、CPU等のプロセッサが実行するプログラムとして構成されてもよい。
In addition, each function of the above-described transmitting device 2 and receiving device 3 may be partially or entirely configured by hardware such as PLD (Programmable Logic Device) or FPGA (Field Programmable Gate Array), It may be configured as a program executed by a processor such as a CPU.
例えば、送信装置2及び受信装置3は、それぞれコンピュータとプログラムを用いて実現することができ、プログラムを記憶媒体に記録することも、ネットワークを通して提供することも可能である。
For example, the transmitting device 2 and the receiving device 3 can each be realized using a computer and a program, and the program can be recorded on a storage medium or provided through a network.
次に、受信装置3の動作例について説明する。図5は、一実施形態にかかる受信装置3の主要な動作例を模式的に示す図である。図5に示すように、受信装置3は、送信装置2から有線伝送路4を介してトレーニング信号を受信する(S100)。
Next, an operation example of the receiving device 3 will be described. FIG. 5 is a diagram schematically showing a main operation example of the receiving device 3 according to one embodiment. As shown in FIG. 5, the receiving device 3 receives a training signal from the transmitting device 2 via the wired transmission line 4 (S100).
次に、受信装置3は、例えば海上伝搬路において気象の影響で海面の波の状態が異なる無線伝送路状態51~53それぞれを介して、送信装置2からトレーニング信号を受信する(S102)。
Next, the receiving device 3 receives the training signal from the transmitting device 2 via each of the radio transmission channel states 51 to 53, which have different wave conditions on the sea surface due to the influence of the weather, for example, on the ocean channel (S102).
次に、受信装置3は、有線伝送路4を介して受信したトレーニング信号と、無線伝送路状態51~53それぞれを介して受信したトレーニング信号それぞれとを比較して、その後に無線伝送路状態51~53それぞれを介して受信する信号の歪を補正する補正関数を無線伝送路状態ごとに算出する(S104)。
Next, the receiving device 3 compares the training signal received via the wired transmission line 4 with the training signal received via each of the wireless transmission line states 51 to 53, and then compares the wireless transmission line state 51. 53 are calculated for each wireless transmission path state (S104).
次に、受信装置3は、算出した補正関数それぞれを無線伝送路状態ごとに記憶部40に記憶する(S106)。
Next, the receiving device 3 stores each calculated correction function in the storage unit 40 for each wireless transmission path state (S106).
そして、受信装置3は、有線伝送路4が遮断された場合には、無線伝送路状態ごとに記憶している補正関数に基づいて、有線伝送路4のバックアップとして無線伝送路5を介して受信する信号の歪を補償する(S108)。
Then, when the wired transmission line 4 is cut off, the receiving device 3 receives via the wireless transmission line 5 as a backup of the wired transmission line 4 based on the correction function stored for each state of the wireless transmission line. Compensate the distortion of the signal to be transmitted (S108).
このように、一実施形態にかかる受信装置3は、有線伝送路4が遮断された場合に、記憶部40が無線伝送路状態ごとに記憶している補正関数に基づいて、無線信号受信部33が受信する信号の歪を補償するので、無線通信の伝送容量を大きくしつつ、無線伝送路5で生じる信号の波形歪を低遅延で補償することができる。
As described above, when the wired transmission line 4 is cut off, the receiving device 3 according to one embodiment can perform compensates for the distortion of the received signal, it is possible to compensate for the waveform distortion of the signal generated in the wireless transmission line 5 with a low delay while increasing the transmission capacity of the wireless communication.
また、一実施形態にかかる通信システム1は、無線区間のフェージングによる波形歪を補正するトレーニング信号を、有線伝送路4を介して送信するので、無線区間における主信号の伝送容量を大きくすることができる。
In addition, since the communication system 1 according to one embodiment transmits a training signal for correcting waveform distortion due to fading in the wireless section via the wired transmission line 4, it is possible to increase the transmission capacity of the main signal in the wireless section. can.
1・・・通信システム、2・・・送信装置、3・・・受信装置、4・・・有線伝送路、5・・・無線伝送路、21・・・符号化部、22・・・変調部、23・・・発振回路、24・・・周波数変換回路、25・・・無線信号送信部、26・・・有線信号送信部、30・・・有線信号受信部、31・・・発振回路、32・・・同期部、33・・・無線信号受信部、34・・・周波数変換回路、35・・・AD変換器、36・・・推定部、37・・・補正関数算出部、38・・・解析部、39・・・パターン化部、40・・・記憶部、41・・・切替部、42・・・等化部、43・・・復号部、44・・・制御部、51~53・・・無線伝送路状態(第1無線伝送路状態~第3無線伝送路状態)、250・・・RF部、252・・・アンテナ、330・・・アンテナ、332・・・RF部
DESCRIPTION OF SYMBOLS 1...Communication system, 2...Transmitter, 3...Receiver, 4...Wired transmission path, 5...Wireless transmission path, 21...Encoder, 22...Modulation Part 23 Oscillation circuit 24 Frequency conversion circuit 25 Wireless signal transmission unit 26 Wired signal transmission unit 30 Wired signal reception unit 31 Oscillation circuit , 32... synchronization unit, 33... radio signal reception unit, 34... frequency conversion circuit, 35... AD converter, 36... estimation unit, 37... correction function calculation unit, 38 ... analysis section, 39 ... patterning section, 40 ... storage section, 41 ... switching section, 42 ... equalization section, 43 ... decoding section, 44 ... control section, 51 to 53... Radio transmission channel state (first radio transmission channel state to third radio transmission channel state), 250... RF section, 252... Antenna, 330... Antenna, 332... RF Department
Claims (8)
- 送信装置から受信装置へ有線伝送路、及び、時間の経過により変化する複数の異なる伝送路特性を有する無線伝送路を介して信号を伝送する通信システムにおいて、
前記送信装置は、
前記有線伝送路を介して、トレーニング信号を含む信号を前記受信装置へ送信する有線信号送信部と、
複数の異なる伝送路特性の前記無線伝送路を介して、トレーニング信号を送信した後に、前記有線伝送路のバックアップとして他の信号を前記受信装置へ送信する無線信号送信部と
を有し、
前記受信装置は、
前記送信装置が前記有線伝送路を介して送信する信号を受信する有線信号受信部と、
前記送信装置が複数の異なる伝送路特性の前記無線伝送路を介して送信する信号をそれぞれ受信する無線信号受信部と、
前記有線信号受信部が予め受信したトレーニング信号と、前記無線信号受信部が複数の異なる伝送路特性の前記無線伝送路を介して予め受信したトレーニング信号それぞれとを比較して、前記無線信号受信部が受信する信号の歪を補正する補正関数を前記無線伝送路の伝送路特性ごとに予め算出する補正関数算出部と、
前記補正関数算出部が算出した補正関数それぞれを前記無線伝送路の伝送路特性ごとに記憶する記憶部と、
前記有線伝送路が遮断された場合に、前記記憶部が前記無線伝送路の伝送路特性ごとに記憶している補正関数に基づいて、前記無線信号受信部が受信する信号の歪を補償する等化部と
を有することを特徴とする通信システム。 In a communication system that transmits a signal from a transmitter to a receiver via a wired transmission path and a wireless transmission path having a plurality of different transmission path characteristics that change over time,
The transmitting device
a wired signal transmission unit that transmits a signal including a training signal to the receiving device via the wired transmission line;
a wireless signal transmission unit configured to transmit another signal to the receiving device as a backup of the wired transmission line after transmitting a training signal via the wireless transmission lines having different transmission line characteristics;
The receiving device
a wired signal receiver that receives a signal transmitted by the transmission device via the wired transmission path;
a radio signal receiving unit that receives signals transmitted by the transmitting device via a plurality of radio transmission paths having different transmission path characteristics;
the training signal received in advance by the wired signal receiving unit and the training signal received in advance by the wireless signal receiving unit via a plurality of the wireless transmission paths having different transmission path characteristics, and the wireless signal receiving unit A correction function calculation unit that calculates in advance a correction function for correcting distortion of a signal received by for each transmission channel characteristic of the wireless transmission channel;
a storage unit that stores each correction function calculated by the correction function calculation unit for each transmission line characteristic of the wireless transmission line;
When the wired transmission line is interrupted, the distortion of the signal received by the wireless signal receiving unit is compensated based on the correction function stored in the storage unit for each transmission line characteristic of the wireless transmission line. A communication system, comprising: a conversion unit; - 前記受信装置は、
前記無線信号受信部が受信したトレーニング信号それぞれのノッチの数、周波数、及び振幅に基づいて、前記無線伝送路の伝送路特性ごとに伝送路特性を推定する推定部
をさらに有し、
前記補正関数算出部は、
前記推定部が前記無線伝送路の伝送路特性ごとに推定した伝送路特性に基づいて、補正関数を前記無線伝送路の伝送路特性ごとに算出すること
を特徴とする請求項1に記載の通信システム。 The receiving device
an estimating unit for estimating channel characteristics for each channel characteristic of the wireless channel based on the number of notches, frequency, and amplitude of each training signal received by the wireless signal receiving unit;
The correction function calculator,
The communication according to claim 1, wherein the estimator calculates a correction function for each transmission line characteristic of each wireless transmission line based on the transmission line characteristic estimated for each transmission line characteristic of each wireless transmission line. system. - 前記送信装置は、
信号の送信に用いる基準周波数の信号を、前記有線信号送信部が前記受信装置へ送信し、
前記受信装置は、
前記有線信号送信部が送信した基準周波数の信号を前記有線信号受信部が受信し、
信号の受信に用いる基準信号を、前記有線信号受信部が受信した基準周波数の信号に同期させる同期部
をさらに有することを特徴とする請求項1又は2に記載の通信システム。 The transmitting device
The wired signal transmission unit transmits a signal of a reference frequency used for signal transmission to the reception device,
The receiving device
The wired signal receiving unit receives the signal of the reference frequency transmitted by the wired signal transmitting unit,
3. The communication system according to claim 1, further comprising a synchronization unit that synchronizes a reference signal used for signal reception with the signal of the reference frequency received by the wired signal reception unit. - 送信装置から受信装置へ有線伝送路、及び、時間の経過により変化する複数の異なる伝送路特性を有する無線伝送路を介して信号を伝送する通信方法において、
前記受信装置が、前記送信装置から前記有線伝送路を介してトレーニング信号を受信するステップと、
前記受信装置が、前記送信装置から複数の異なる伝送路特性の前記無線伝送路を介してトレーニング信号を受信するステップと、
前記受信装置が、前記有線伝送路を介して受信したトレーニング信号と、複数の異なる伝送路特性の前記無線伝送路を介して受信したトレーニング信号それぞれとを比較して、その後に複数の異なる伝送路特性の前記無線伝送路を介して受信する信号の歪を補正する補正関数を前記無線伝送路の伝送路特性ごとに算出するステップと、
前記受信装置が、算出した補正関数それぞれを前記無線伝送路の伝送路特性ごとに記憶するステップと、
前記有線伝送路が遮断された場合に、前記受信装置が、前記無線伝送路の伝送路特性ごとに記憶している補正関数に基づいて、前記有線伝送路のバックアップとして前記無線伝送路を介して受信する信号の歪を補償するステップと
を含むことを特徴とする通信方法。 In a communication method for transmitting a signal from a transmitting device to a receiving device via a wired transmission line and a wireless transmission line having a plurality of different transmission line characteristics that change over time,
a step in which the receiving device receives a training signal from the transmitting device via the wired transmission line;
a step in which the receiving device receives training signals from the transmitting device via a plurality of the wireless transmission channels having different channel characteristics;
The receiving device compares the training signal received via the wired transmission line with each of the training signals received via the wireless transmission line having a plurality of different transmission line characteristics, and then a plurality of different transmission lines. a step of calculating a correction function for correcting distortion of a signal received via the characteristic wireless transmission line for each transmission line characteristic of the wireless transmission line;
a step in which the receiving device stores each calculated correction function for each transmission channel characteristic of the wireless transmission channel;
When the wired transmission line is interrupted, the receiving device uses the wireless transmission line as a backup for the wired transmission line based on a correction function stored for each transmission line characteristic of the wireless transmission line. and compensating for distortion in a signal received. - 前記受信装置が、前記無線伝送路を介して受信したトレーニング信号それぞれのノッチの数、周波数、及び振幅に基づいて、前記無線伝送路ごとに伝送路特性を推定するステップをさらに含み、
前記受信装置が、補正関数を算出するときに、前記無線伝送路の伝送路特性ごとに推定した伝送路特性に基づいて、補正関数を前記無線伝送路の伝送路特性ごとに算出すること
を特徴とする請求項4に記載の通信方法。 The receiving device further comprising a step of estimating transmission channel characteristics for each wireless transmission channel based on the number of notches, frequency, and amplitude of each training signal received via the wireless transmission channel,
wherein, when calculating the correction function, the receiving device calculates the correction function for each transmission line characteristic of the wireless transmission line based on the transmission line characteristic estimated for each transmission line characteristic of the wireless transmission line. The communication method according to claim 4, wherein - 前記受信装置が、前記送信装置が信号の送信に用いる基準周波数の信号を、前記有線伝送路を介して受信するステップと、
前記受信装置が、信号の受信に用いる基準信号を、受信した基準周波数の信号に同期させるステップと
をさらに含むことを特徴とする請求項4又は5に記載の通信方法。 a step in which the receiving device receives, via the wired transmission line, a signal of a reference frequency used for signal transmission by the transmitting device;
6. The communication method according to claim 4 or 5, further comprising the step of synchronizing the reference signal used for signal reception by the receiving device with the received signal of the reference frequency. - 送信装置が有線伝送路を介して送信する信号を受信する有線信号受信部と、
前記送信装置が時間の経過により変化する複数の異なる伝送路特性を有する無線伝送路を介して送信する信号をそれぞれ受信する無線信号受信部と、
前記有線信号受信部が予め受信したトレーニング信号と、前記無線信号受信部が複数の異なる伝送路特性の前記無線伝送路を介して予め受信したトレーニング信号それぞれとを比較して、前記無線信号受信部が受信する信号の歪を補正する補正関数を前記無線伝送路の伝送路特性ごとに予め算出する補正関数算出部と、
前記補正関数算出部が算出した補正関数それぞれを前記無線伝送路の伝送路特性ごとに記憶する記憶部と、
前記有線伝送路が遮断された場合に、前記記憶部が前記無線伝送路の伝送路特性ごとに記憶している補正関数に基づいて、前記無線信号受信部が受信する信号の歪を補償する等化部と
を有することを特徴とする受信装置。 a wired signal receiving unit that receives a signal transmitted by the transmitting device via a wired transmission line;
a radio signal receiving unit that receives signals transmitted by the transmitting device via a plurality of radio transmission paths having different transmission path characteristics that change over time;
the training signal received in advance by the wired signal receiving unit and the training signal received in advance by the wireless signal receiving unit via a plurality of the wireless transmission paths having different transmission path characteristics, and the wireless signal receiving unit A correction function calculation unit that calculates in advance a correction function for correcting distortion of a signal received by for each transmission channel characteristic of the wireless transmission channel;
a storage unit that stores each correction function calculated by the correction function calculation unit for each transmission line characteristic of the wireless transmission line;
When the wired transmission line is interrupted, the distortion of the signal received by the wireless signal receiving unit is compensated based on the correction function stored in the storage unit for each transmission line characteristic of the wireless transmission line. and a receiver. - 前記無線信号受信部が受信したトレーニング信号それぞれのノッチの数、周波数、及び振幅に基づいて、前記無線伝送路の伝送路特性ごとに伝送路特性を推定する推定部
をさらに有し、
前記補正関数算出部は、
前記推定部が前記無線伝送路の伝送路特性ごとに推定した伝送路特性に基づいて、補正関数を前記無線伝送路の伝送路特性ごとに算出すること
を特徴とする請求項7に記載の受信装置。 an estimating unit for estimating channel characteristics for each channel characteristic of the wireless channel based on the number of notches, frequency, and amplitude of each training signal received by the wireless signal receiving unit;
The correction function calculator,
8. The reception according to claim 7, wherein the estimator calculates a correction function for each transmission channel characteristic of each wireless transmission channel based on the transmission channel characteristics estimated for each transmission channel characteristic of each wireless transmission channel. Device.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/027326 WO2023002601A1 (en) | 2021-07-21 | 2021-07-21 | Communication system, communication method, and reception device |
JP2023536291A JPWO2023002601A1 (en) | 2021-07-21 | 2021-07-21 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/027326 WO2023002601A1 (en) | 2021-07-21 | 2021-07-21 | Communication system, communication method, and reception device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023002601A1 true WO2023002601A1 (en) | 2023-01-26 |
Family
ID=84979052
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/027326 WO2023002601A1 (en) | 2021-07-21 | 2021-07-21 | Communication system, communication method, and reception device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2023002601A1 (en) |
WO (1) | WO2023002601A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003333008A (en) * | 2002-05-10 | 2003-11-21 | Sony Corp | Communication system and its method, receiving apparatus and its method, communication apparatus and its method, and program |
JP2017195435A (en) * | 2016-04-18 | 2017-10-26 | 日本電信電話株式会社 | Network access system, and control device therefor, channel backup control method and program |
-
2021
- 2021-07-21 JP JP2023536291A patent/JPWO2023002601A1/ja active Pending
- 2021-07-21 WO PCT/JP2021/027326 patent/WO2023002601A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003333008A (en) * | 2002-05-10 | 2003-11-21 | Sony Corp | Communication system and its method, receiving apparatus and its method, communication apparatus and its method, and program |
JP2017195435A (en) * | 2016-04-18 | 2017-10-26 | 日本電信電話株式会社 | Network access system, and control device therefor, channel backup control method and program |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023002601A1 (en) | 2023-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100547748B1 (en) | System and Method for Improving the Performance of Adaptive Antenna Array in Moving Objects | |
US4083009A (en) | High reliability diversity communications system | |
US6411649B1 (en) | Adaptive channel tracking using pilot sequences | |
EP2041585B1 (en) | Systems and methods for providing millimeter wave signal improvements | |
EP1042874B1 (en) | A unified antenna diversity switching system for tdma-based telephones | |
CA2076061A1 (en) | Method of forming a channel estimate for a time-varying radio channel | |
US20180294826A1 (en) | Radio transceiver and radio communication system | |
Rappaport et al. | Performance of decision feedback equalizers in simulated urban and indoor radio channels | |
WO2023002601A1 (en) | Communication system, communication method, and reception device | |
US20020086648A1 (en) | Method and system for optimization of switched-diversity performance | |
US8761282B2 (en) | Receiver and receiving method | |
US20050149835A1 (en) | Outage predictor for communication link | |
JP7268727B2 (en) | Wireless communication device, wireless communication system and wireless communication method | |
KR100757471B1 (en) | Communication system transmitting and receiving communication signal having intra-guard-interval | |
RU2626335C1 (en) | Method and device for adaptive radio communication | |
EP1338111B1 (en) | Selection of channel model based on the received training sequence | |
Kondo et al. | Linear predictive transmitter diversity for microcellular TDMA/TDD mobile radio system | |
KR100425611B1 (en) | Communication terminal and radio communication method | |
CA2625394C (en) | Method and system for data reception with decreased bit error rate | |
JPH07312590A (en) | Method for selecting antenna of diversity | |
KR100486523B1 (en) | Repeater for frequency change hopping type of mobile telecommunication system | |
JP2017028362A (en) | Transmission reception device | |
FI103445B (en) | Transmission procedure and radio system | |
US20240356603A1 (en) | Method and/or device for reporting quantized values for a channel state information quantity | |
WO2023032160A1 (en) | Wireless communication system, wireless communication method, and wireless communication transmission device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21950951 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023536291 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21950951 Country of ref document: EP Kind code of ref document: A1 |