[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023001617A1 - Abgasreinigungssystem zur reinigung von abgasen von benzinmotoren - Google Patents

Abgasreinigungssystem zur reinigung von abgasen von benzinmotoren Download PDF

Info

Publication number
WO2023001617A1
WO2023001617A1 PCT/EP2022/069288 EP2022069288W WO2023001617A1 WO 2023001617 A1 WO2023001617 A1 WO 2023001617A1 EP 2022069288 W EP2022069288 W EP 2022069288W WO 2023001617 A1 WO2023001617 A1 WO 2023001617A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
materials
substrate
gpf
twc1
Prior art date
Application number
PCT/EP2022/069288
Other languages
English (en)
French (fr)
Inventor
Jan Schoenhaber
Joerg-Michael Richter
Carolin BRAUN
Tim PALM
Original Assignee
Umicore Ag & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Umicore Ag & Co. Kg filed Critical Umicore Ag & Co. Kg
Priority to US18/580,496 priority Critical patent/US20240318587A1/en
Priority to EP22748323.7A priority patent/EP4373613A1/de
Priority to CN202280050326.8A priority patent/CN117751012A/zh
Publication of WO2023001617A1 publication Critical patent/WO2023001617A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0093Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are of the same type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • B01D53/9477Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on separate bricks, e.g. exhaust systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/101Three-way catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/202Alkali metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2065Cerium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/91NOx-storage component incorporated in the catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2370/00Selection of materials for exhaust purification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction

Definitions

  • Exhaust gas cleaning system for cleaning exhaust gases from gasoline engines
  • the present invention is aimed at cleaning exhaust gases from an internal combustion engine operated predominantly with a stoichiometric fuel mixture.
  • the exhaust system has 4 cleaning functions in a specific sequence.
  • a close-coupled TWC1 three-way catalytic converter
  • GPF petrol particle filter
  • TWC2 three-way catalytic converter
  • the system also has a nitrogen oxide storage functionality.
  • Exhaust gases from internal combustion engines operated with predominantly (>50% of the operating time) a stoichiometric air/fuel mixture e.g. Gasoline engines that run on gasoline or natural gas, for example, are cleaned in conventional processes with the help of three-way catalytic converters (TWC).
  • TWC three-way catalytic converters
  • combustion air ratio l (A/F ratio; air/fuel ratio) relates the air mass rriL.tats actually available for combustion to the stoichiometric air mass mi_,st:
  • the catalytically active materials used in the three-way catalysts are usually platinum group metals, in particular platinum, palladium and rhodium, which are present on g-alumina as the carrier material, for example.
  • three-way catalytic converters contain oxygen storage materials, for example cerium/zirconium mixed oxides. In the latter, cerium oxide, a rare earth metal oxide responsible for the Oxygen storage is a basic component. In addition to zirconium oxide and cerium oxide, these materials can contain additional components such as other rare earth metal oxides or alkaline earth metal oxides. Oxygen storage materials are activated by bringing on catalytically active materials such as platinum group metals and thus also serve as a carrier material for the platinum group metals.
  • Such catalytically active materials and their ingredients are applied to flow-through substrates, for example, using a coating process. After the substrates have been dried and calcined, they can be installed in the exhaust system.
  • Flow substrates are made of ceramic materials such as silicon carbide, aluminum titanate and cordierite and have been tried and tested for a long time. They are made up of a large number of parallel channels formed by porous walls. The channels are open at both ends of the flow-through substrate. The exhaust gas thus flows from the inlet area to the outlet area, contacting the catalytically active material applied to the walls.
  • the exhaust gas from such combustion engines also contains the finest particles (PM), which result from the incomplete combustion of the fuel and essentially consist of soot.
  • PM finest particles
  • the particles in the exhaust gas of stoichiometrically operated combustion engines, such as Otto engines are very small and have an average particle size of less than 1 ⁇ m. Typical particle sizes are in the range from 10 nm to 200 nm. Furthermore, the amount of particles emitted is very small and ranges from 2 mg/km to 4 mg/km.
  • particle filters made of ceramic materials such as silicon carbide, aluminum titanate and cordierite have long been proven. These are made up of a large number of parallel channels formed by porous walls.
  • the channels are mutually closed at one of the two ends of the filter, thus forming channels A, open on the first side of the filter and closed on the second side of the filter, and channels B, closed on the first side of the filter and are open on the second side of the filter.
  • the exhaust gas flowing into channels A for example, can only leave the filter again via channels B and must flow through the porous walls between channels A and B for this purpose.
  • the particles retained and the exhaust gas cleaned are referred to as wall flow filters.
  • the wall flow filter can be provided with catalytically active coatings that reduce the ignition temperature of soot. It is already known to apply such coatings to the porous walls between the channels (so-called on-wall coating) or to introduce them into the porous walls (so-called in-wall coating).
  • EP1657410A2 already describes a combination of both types of coating, i. h part of the catalytically active material is present in the porous walls and another part on the porous walls.
  • an exhaust system for cleaning exhaust gases of a predominantly stoichiometrically operated internal combustion engine having a close-coupled TWC1 on a flow-through substrate, a GPF attached downstream of the TWC1 as a wall-flow filter and downstream of the GPF another TWC2 on a flow-through substrate, and the system additionally materials for having temporary storage of nitrogen oxides in a separate coating, this additional material being selected from the group consisting of K2O, Na 2 0, CaO, BaO, MgO, SrO, CeÜ2, ZrÜ2, cerium mixed oxides, zeolites or mixtures thereof, this If more than 50% by weight of the material is present in the coating, it is extremely surprising and advantageous to achieve the objectives set.
  • the establishment of a separate nitrogen oxide storage function in the system presented above represents an optimal combination of four functional exhaust gas cleaning components, which allows compliance with future exhaust gas limits and also opens up the possibility of realizing a high degree of total precious metal reduction in the system.
  • the additional nitrogen oxide storage oxide function allows nitrogen oxides to be stored temporarily if conversion of the nitrogen oxides via the three-way catalytic converters cannot be ensured at the respective operating point, for example if the operating temperature is too low or there is not enough reducing agent. These temporarily stored nitrogen oxides can then be stored during suitable operating states, i.e. if a sufficient temperature and sufficient reducing agent are guaranteed, be released and implemented. As a result, cold-start emissions of NOx in particular can be effectively reduced.
  • the storage capacity of the materials used for nitrogen oxides can be determined according to the procedure mentioned in the experimental part.
  • the nitrogen oxide storage capability or capacity referred to in the context of this invention is specified as the quotient of the stored mass of nitrogen oxide per liter of substrate volume installed
  • Materials for temporarily storing nitrogen oxides are those that are capable of temporarily storing at least 25 mg NO x per L substrate volume, preferably 50 mg NO x per L substrate volume, and most preferably 75 mg NO x per L substrate volume. These are supplied to the system added in a separate coating. Materials that are already used in the existing catalytic converters in the system and are also able to temporarily store nitrogen oxides should not be taken into account in this regard. They are excluded from the claimed definition (materials that temporarily store nitrogen oxides). For example, cerium or cerium-zirconium mixed oxides are also used in the TWCs, which are also able to temporarily store nitrogen oxides. However, these substances are only able to do so to a limited extent, for example due to their structure or the detailed composition.
  • These substances can regularly store less than the amounts of nitrogen oxides specified above.
  • the limit value defined above sufficiently ensures differentiation from a conventional system having a TWC1-GPF-TWC2, so that the claim according to the invention relates exclusively to a corresponding system having TWC1-GPF-TWC2, in addition to those already in the catalytic converters
  • the materials present in the system that temporarily store nitrogen oxides were added in a separate coating.
  • the term “temporary” is understood according to the invention to mean that the storable material can store nitrogen oxides in certain operating states of the exhaust system and, among other things, releases them again or no longer absorbs them. This is the case in classic nitrogen storage catalysts (NSC), which are able to store nitrogen oxides in a certain temperature range and then desorb the nitrogen oxides and reduce them to nitrogen through brief regeneration with a reducing environment.
  • NSC classic nitrogen storage catalysts
  • the materials to be preferably used are referred to the relevant literature (WO2020058265A1; EP3695902A1; WO2018069199A1).
  • the materials that temporarily store nitrogen oxides can also preferably be those that store the nitrogen oxides at a certain temperature and release them again at elevated temperatures without reduction, e.g. as NO2. These are referred to as passive nitrogen oxide absorbers (passive NOx absorbers; PNA).
  • the former preferably takes place in a temperature range of 25-150 °C, more preferably 25-175 °C and very preferably 25-200 °C.
  • the emission of the nitrogen oxides (more is emitted net than stored) preferably takes place above a temperature of 300.degree. C., more preferably 350.degree. C. and very preferably 400.degree.
  • Such materials are well known to those skilled in the art (US2019120109AA; US2018318763AA; US2015266002AA; WO2019134958A1; US2021162382AA).
  • the storage materials are associated with noble metals that catalyze the oxidation of NO to NO2. These are in particular the noble metals Pt and / or Pd, individually or together in a specific weight ratio of 1:10-10:1, more preferably 1:8-8:1 and very preferably 1:6-6:1 in the nitrogen oxide storage materials are present.
  • the actual materials that temporarily store the nitrogen oxides are well known to those skilled in the art.
  • those are used that are selected from the group consisting of K 2 O, Na 2 O, CaO, BaO, MgO, SrO, CeO 2 , ZrO 2 , cerium mixed oxides (in particular with Al 2 O 3 or zirconium oxide), zeolites or mixtures thereof .
  • alkaline earth metal oxides such as BaO, CaO, SrO and/or cerium oxide and/or cerium mixed oxides, in particular cerium zirconium mixed oxides, to be mentioned in this context.
  • CeO 2 and/or BaO are very particularly preferred.
  • nitrate nitrate
  • Materials which temporarily store nitrogen oxides which contain more than 0.05, more preferably more than 0.1 and very preferably more than 0.15 mg of nitrogen oxides calculated as NO2 per g of material are able to store (for determination see below). These materials, which temporarily store nitrogen oxides, are present in sufficient quantities in the exhaust system.
  • a value of 100-500 g/l, preferably 125-450 g/l and very preferably 150-400 g/l substrate volume has proven to be the preferred amount for the coating which contains the storing materials.
  • the material that temporarily stores the nitrogen oxides can be distributed in the exhaust gas cleaning system on one or on the already existing units.
  • the corresponding material can be present in zones or layers separate from the catalytically active materials that may already be present on one or more substrates.
  • Any nitrogen oxides released by the TWC1 can support the soot burn-off in the downstream GPF (so-called CRT ® reaction).
  • CRT ® reaction When using classic nitrogen oxide storage catalyst materials, the nitrogen oxide storage can also be easily regenerated by enriching the exhaust gas on the engine side.
  • the TWC1 with the functionality of an NSC and the downstream GPF can possibly be regenerated together by raising the exhaust gas temperature, e.g. the NSC can be desulfurized and the GPF freed from soot (see DE10023439A1)
  • the material temporarily storing the nitrogen oxides can also be arranged on a separate flow-through substrate.
  • This flow-through substrate KAT
  • KAT can be arranged in the exhaust gas cleaning system according to aspects known to those skilled in the art (see FIGS. 1-3).
  • An arrangement is preferred in which the KAT is arranged behind the TWC1 and preferably in front of the GPF.
  • the advantages are the same as mentioned above for the obliteration of the corresponding material on the TWC1.
  • the KAT is arranged at a distance of 30-150 cm, preferably 30-100 cm and most preferably 30-50 cm downstream of the outlet of the TWC1.
  • the KAT has a relatively high washcoat loading in g/L, ranging from 100-500 g/L, preferably 125-450 g/L and very preferably 150-400 g/L.
  • TWC1, GPF, TWC2, KAT individual substrates of the exhaust gas cleaning system according to the invention
  • the individual substrates of the exhaust gas cleaning system according to the invention are in a specific ratio to one another with regard to the size of the volume that they occupy. So is from Advantage if the TWC1 occupies a proportion of the volume of the overall system which is between 20 and 50% by volume, preferably 30-40% by volume.
  • the GPF should have a volume fraction of 20-60% by volume, preferably 25-55% by volume, based on the total system.
  • the proportion of TWC2 in the overall system should be 10-40% by volume, preferably 15-35% by volume.
  • the KAT comprising the material for temporarily storing nitrogen oxides has a proportion of preferably 5-30% by volume, more preferably 10-30% by volume of the total volume of the substrates in the exhaust gas cleaning system understood the external dimensions of the substrates of TWC1, GPF, TWC2 and KAT.
  • materials capable of storing oxygen are also added to the materials that temporarily store nitrogen oxides.
  • the latter are the oxygen storage materials typically used in TWCs. These act to provide a more oxygen-rich environment that is beneficial for the oxidation of NO to NO2.
  • Corresponding materials are described, inter alia, in EP2007682A1, EP 1921044 A2, US6468941B1, US6585944B1 and US20050282698A1. Cerium oxides, cerium-zirconium mixed oxides or cerium or cerium-zirconium mixed oxides doped with La, Y, Pr, Nd are preferably considered in this regard.
  • the amount of oxygen-storing material can be measured by a person skilled in the art, but should preferably not be less than 0.2 g/g 0.3 g/g based on the total weight of the materials temporarily storing nitrogen oxides.
  • TWC1 and TWC2 are modern three-way catalytic converters.
  • the person skilled in the art knows which ones he would use for the present purpose (see e.g. WO2019121994A1, WO2019121995A1, WO9535152A1, WO2008000449A2, EP0885650A2,
  • EP1046423A2 EP1726359A1, EP1541220A1, EP1900416B1, EP3045226A1,
  • Three-way catalysts essentially consist of the components precious metal, high-surface area carrier oxide and oxygen storage material.
  • the oxygen storage materials are in particular those in which cerium/zirconium/rare earth metal mixed oxides occur.
  • rare earth metal oxides are lanthanum oxide, yttrium oxide, praseodymium oxide, neodymium oxide, samarium oxide and mixtures of one or more of these metal oxides.
  • lanthana, yttrium oxide and a mixture of lanthana and yttrium oxide is very particularly preferred in this connection.
  • high-surface area, temperature-stable oxides are usually aluminum oxides, silicon oxides, zirconium oxides or titanium oxides or mixtures thereof.
  • Active aluminum oxide in particular is known to the person skilled in the art in this context. It designates net in particular ⁇ -aluminum oxide with a surface area of 100 to 200 m 2 /g. Active aluminum oxide has been widely described in the literature and is available on the market. It usually contains silicon oxide or lanthanum oxide as a stabilizer in an amount of up to 10% by weight, based on the aluminum oxide.
  • Three-way catalysts usually contain metals from the platinum group, such as Pt, Pd and Rh, as catalytically active components, with Pd and Rh being particularly preferred.
  • the catalytically active metals are often deposited in highly dispersed form on the high-surface oxides and/or the oxygen storage materials. It is particularly preferred if the noble metals are pre-fixed on the oxygen storage material before this is mixed with the other components in the coating mixture.
  • Zoned or layered embodiments are now the norm for TWCs.
  • at least TWC1 has a 2-layer structure, preferably as described in EP3247493A1.
  • the three-way catalysts are preferably applied to a flow-through substrate by a coating step familiar to those skilled in the art.
  • Flow-through substrates are conventional catalyst supports made of metal (corrugated carrier, e.g. WO17153239A1, WO16057285A1, WO15121910A1 and literature cited therein) or ceramic materials be able. Refractory ceramics such as cordierite, silicon carbide or aluminum titanate, etc. are preferably used.
  • the number of channels per area is characterized by the cell density, which is usually between 300 and 900 cells per square inch (cpsi).
  • the wall thickness of the canal walls is between 0.5 - 0.05 mm for ceramics.
  • the TWC1 is preferably installed close to the engine. This means that there is only a distance of 1-40 cm between the turbocharger and the inlet-side face of the TWC1.
  • the catalytic converter TWC1 is installed 2 - 30 cm and very preferably 3 - 20 cm away from the turbocharger.
  • the GPF can be installed at some distance from the TWC1, eg in the underbody of the vehicle. However, an embodiment in which the GPF is installed very close to the outlet end of the TWC1 is preferred.
  • the distance between the outlet-side end face of the TWC1 and the GPF is preferably 1-60 cm, more preferably 2-50 cm and very preferably 3-40 cm.
  • the TWC2 is either installed directly after the filter in a position close to the engine, or comes in the underbody of the vehicle in the exhaust system. As a result, the temperature load on this TWC differs from that of TWC1. For this reason, the two TWCs can differ in some characteristics.
  • the TWC2 preferably has a lower washcoat loading than the TWC1.
  • the TWC1 consists of at least 2-4 different three-way catalyst layers or zones, while the TWC2 preferably consists of at least 1-2 three-way catalyst layers or zones.
  • the TWCs show a usual washcoat loading. This is preferably 100-400 g/l, more preferably 125-375 g/l and very preferably 150-325 g/l.
  • the washcoat loading in g/L of TWC1 is greater than that of TWC2, in particular by a factor of between 1.25-4, more preferably 1.5-3 in g/L on the TWC1 preferably greater than on the TWC2, in particular by a factor of 1.25-20, more preferably 1.5-10.
  • the GPF is in the form of a wall flow filter. All ceramic materials customary in the prior art can be used as wall-flow filters. Porous wall-flow filter substrates made of cordierite, silicon carbide or aluminum titanate are preferably used. These wall-flow filter substrates have inflow and outflow channels, with the outflow-side ends of the inflow channels and the inflow-side ends of the outflow channels being offset from one another and sealed with gas-tight “plugs”.
  • the exhaust gas to be cleaned which flows through the filter substrate, is forced to pass through the porous wall between the inlet and outlet channels, which results in an excellent particle filter effect.
  • the filtration properties for particles can be designed through the porosity, pore/radius distribution and thickness of the wall.
  • the catalyst material can be applied to the porous walls of the inflow and outflow channels in the form of the coating suspension according to the invention.
  • the porosity of the wall flow filter is usually more than 40%, generally from 40% to 75%, especially from 45% to 70% [measured according to DIN 66133 - latest version on the filing date].
  • the average pore size (diameter) is at least 3 ⁇ m, e.g. from 3 ⁇ m to 34 ⁇ m, preferably more than 5 ⁇ m, in particular from 5 ⁇ m to 28 ⁇ m or from 7 ⁇ m to 22 ⁇ m [measured according to DIN 66134, latest version on the filing date].
  • the GPF can be used uncoated, with a dry powder coating or with an optionally additional coating produced using wet technology (EP3595796A1, WO2020200394A1,
  • the GPF has a higher noble metal concentration in g/L substrate volume than the TWC2.
  • the KAT also has a higher precious metal concentration in g/L substrate volume than the TWC2.
  • both of the above-mentioned embodiments can also occur reciprocally.
  • the TWC2 can be designed in such a way that it only has rhodium as the noble metal.
  • the washcoat load is 10-200 g/l, preferably 20-175 g/l and very preferably 25-150 g/l. This means that the washcoat loading g/L of the CAT preferably exceeds that of the GPF. It is advantageous if the function for temporarily storing nitrogen oxides on a separate flow-through substrate (KAT) has a larger washcoat loading in g/L than the GPF.
  • EHC Electrode heated catalyst
  • TWC1, GPF, TWC2 or KAT catalyst substrates
  • TWC1 Due to its positioning in the system, this is the first to reach working temperature. Therefore, the use of electricity is the lowest here, which is extremely preferred with regard to hybrid applications, because the battery can be saved.
  • Corresponding EHC systems in hybrid vehicles are known to those skilled in the art (US8776500BB).
  • a so-called hydrocarbon trap can be located in the exhaust gas cleaning system according to the invention.
  • the HCT absorbs the emitted hydrocarbons from the exhaust gas at low temperatures of less than 200° C., preferably less than 250° C. (net absorption).
  • the HCT can be associated with an oxidation catalyst. Platinum and/or palladium and/or rhodium come into consideration as such.
  • As configurations and materials for the HCT those from US20190351397AA, US20190351398AA or US20190351393AA come into question in particular. Zeolites such as beta exchanged with a transition metal such as iron or copper are most preferably used as the storage material.
  • a system according to the invention which additionally has a catalyst for reducing emissions of NH3 (ammonia slip catalyst; ASC).
  • ASC ammonia slip catalyst
  • This is preferably used in the rear part of the system according to the invention, particularly preferably on the TWC2.
  • This has the task of reducing ammonia, which is formed when nitrogen oxides are overreduced. With oxidizing agents such as oxygen or other nitrogen oxides, ammonia can be converted into harmless nitrogen via this catalyst.
  • Such catalysts are well known to those skilled in the art (EP3484602B1).
  • the ASC can also reside on the filter (EP3298252A1).
  • Also subject of the present invention is a method for cleaning exhaust gases from a predominantly stoichiometrically operated internal combustion engine, in which the exhaust gas is passed through an exhaust gas cleaning system according to one of the preceding claims.
  • the preferred and alternative embodiments specified for the system also apply mutatis mutandis to the method
  • the system according to the invention also allows the reduction of so-called secondary pollutants, such as NH 3 , N 2 O and others.
  • the close-coupled arrangement of the TWC1 enables very high conversion rates for the emission-relevant pollutants CO, HC and NOx.
  • the additional TWC2 can have a supporting effect and help to ensure the high conversion rates of CO, HC and NOx, especially at operating points with high loads and exhaust gas mass flows.
  • Fig. 2 Shows a KAT according to the invention in the position in front of the TWC2.
  • Fig. 3 shows a KAT according to the invention in the position close to the engine.
  • Fig 4 Determination of the nitrogen oxide storage capacity
  • Figure 5 Average bag emissions for THC/NMHC/CO/NOx of the two exhaust aftertreatment systems TWC-GPF-TWC and TWC-GPF-TWC+KAT in comparison.
  • the nitrogen oxide storage capability/capacity is determined experimentally in a flow tube reactor.
  • a drill core is taken as a test specimen from the area of the catalyst substrate whose nitrogen oxide storage capacity is to be determined.
  • a drill core with a diameter of 1 inch and a length of 3 inches is preferably taken as the test specimen.
  • the drill core is inserted into the flow tube reactor and subjected to rich/lean cycles of 10 seconds each at a temperature of 650 °C in a gas atmosphere of 500 ppm nitrogen monoxide, 7% by volume oxygen, 10% by volume water, 10% by volume carbon dioxide , 50 ppm hydrocarbons (propane/propene 17/33) and the remainder nitrogen in the lean phases and a gas atmosphere of 500 ppm nitrogen monoxide, 55000 ppm carbon monoxide, 1% by volume oxygen, 10% by volume water, 10% by volume carbon dioxide, 50 ppm hydrocarbons (propane/propene 17/33) and balance nitrogen in the fat phases conditioned at a space velocity of 50000 Ir 1 for 15 minutes.
  • the nitrogen oxide storage capacity is increased by adding a gas mixture of 500 ppm nitrogen monoxide, 8% by volume oxygen , 10% by volume water and 10% by volume carbon dioxide at a space velocity of 30000 h _1 determined. This gas mixture remains switched on until the NOx conversion over the test object is less than 10%.
  • This sequence is also shown in FIG. The value determined in this way represents the maximum storage quantity of the nitrogen storage catalytic converter. It is related to the total substrate volume in the targeted system.
  • a Euro 6 petrol vehicle with a 1.5L DI engine was equipped with an exhaust system artificially aged to end-of-life consisting of a first TWC close to the engine with a catalyst volume of 1.26L (substrate dimensions 118.4mmx114.3mm) and a conventional three-way coating with 1.77 g/L precious metal (0/92/8 Pt/Pd/Rh), an uncoated GPF with 1.39L catalyst volume (substrate dimensions 132.1mmx101.6mm) arranged on the downstream side and a second TWC arranged in the underbody 1.26L catalytic converter volume (substrate dimensions 118.4mmx114.3mm) and a conventional three-way coating with 0.83 g/L precious metal (0/80/20 Pt/Pd/Rh) and driven on a roller dynamometer in an RTS aggressive driving cycle .
  • This system is referred to as a TWC-GPF-TWC reference system and has a total substrate volume of 3.9 L.
  • the emissions of THC, NMHC, CO, NOx, NH 3 and N 2 O were measured, and the measurement technology to be used is known to those skilled in the art . The mean value from several measurements is shown in each case.
  • TWC-GPF-TWC+CAT system compared to that of the TWC-GPF-TWC reference system.
  • TWC2 or TWC2/KAT there is an advantage in terms of nitrogen oxide conversion and, surprisingly, also hydrocarbon emissions for the system according to the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

Die vorliegende Erfindung richtet sich auf die Reinigung von Abgasen eines überwiegend mit stöchiometrischem Kraftstoffgemisch betriebenen Verbrennungsmotors. Das Abgassystem weist insbesondere 4 Reinigungsfunktionen in einer bestimmten Reihenfolge auf. Ein motornaher TWC1 (Dreiwegkatalysator) wird gefolgt von einem GPF (Benzinpartikelfilter) und einem dahinter angeordneten weiteren TWC2. Das System weist zusätzlich eine stickoxidspeichernde Funktionalität auf.

Description

Abgasreinigungssystem zur Reinigung von Abgasen von Benzinmotoren
Beschreibung
Die vorliegende Erfindung richtet sich auf die Reinigung von Abgasen eines überwie- gend mit stöchiometrischem Kraftstoffgemisch betriebenen Verbrennungsmotors. Das Abgassystem weist insbesondere 4 Reinigungsfunktionen in einer bestimmten Reihen folge auf. Ein motornaher TWC1 (Drei-Wege-Katalysator) wird gefolgt von einem GPF (Benzinpartikelfilter) und einem dahinter angeordneten weiteren TWC2. Das System weist zusätzlich eine stickoxidspeichernde Funktionalität auf. Abgase von mit überwiegend (>50% der Betriebszeit) stöchiometrischem Luft/Kraftstoff- Gemisch betriebenen Verbrennungsmotoren, also z. B. mit Benzin oder Erdgas betrie bene Ottomotoren, werden in herkömmlichen Verfahren mit Hilfe von Drei-Wege-Kata- lysatoren (three-way-catalyst; TWC) gereinigt. Diese sind in der Lage, die drei wesentli chen gasförmigen Schadstoffe des Motors, nämlich Kohlenwasserstoffe, Kohlenmono- xid und Stickoxide, gleichzeitig zu unschädlichen Komponenten umzusetzen. Stöchio metrisch heißt, dass im Mittel genau so viel Luft zur Verbrennung des im Zylinder vor handenen Kraftstoffs zur Verfügung steht, wie für eine vollständige Verbrennung benö tigt wird. Das Verbrennungsluftverhältnis l (A/F-Verhältnis; Luft/Kraftstoffverhältnis) setzt die tatsächlich für eine Verbrennung zur Verfügung stehende Luftmasse rriL.tats ins Verhältnis zur stöchiometrischen Luftmasse mi_,st:
Figure imgf000002_0001
Ist l < 1 (z. B. 0,9) bedeutet dies „Luftmangel“, man spricht von einem fetten Abgasge misch, l > 1 (z. B. 1,1) bedeutet „Luftüberschuss“ und das Abgasgemisch wird als mager bezeichnet. Die Aussage l = 1,1 bedeutet, dass 10% mehr Luft vorhanden ist, als zur stöchiometrischen Reaktion notwendig wäre.
Als katalytisch aktive Materialien werden in den Drei-Wege-Katalysatoren in der Regel Platingruppenmetalle, insbesondere Platin, Palladium und Rhodium eingesetzt, die bei spielsweise auf g-Aluminiumoxid als Trägermaterial vorliegen. Daneben enthalten Drei- wege-Katalysatoren Sauerstoffspeichermaterialien, beispielsweise Cer/Zirkonium- Mischoxide. In letzteren stellt Ceroxid, ein Seltenerdmetalloxid, die für die Sauerstoffspeicherung grundlegende Komponente dar. Neben Zirkoniumoxid und Cer oxid können diese Materialien zusätzliche Bestandteile wie weitere Seltenerdmetalloxide oder Erdalkalimetalloxide enthalten. Sauerstoffspeichermaterialien werden durch Auf bringen von katalytisch aktiven Materialien wie Platingruppenmetallen aktiviert und die nen somit auch als Trägermaterial für die Platingruppenmetalle.
Derartige katalytisch aktive Materialien samt Inhaltsstoffen werden durch einen Be schichtungsprozess auf z.B. Durchflusssubstrate aufgebracht. Nach dem Trocknen und Kalzinieren der Substrate können diese in das Abgassystem eingebaut werden. Durch flusssubstrate sind aus keramischen Materialien, wie z.B. Siliciumcarbid, Aluminiumtita- nat und Cordierit aufgebaut und seit längerem bewährt. Sie sind aus einer Vielzahl von parallelen Kanälen aufgebaut, die durch poröse Wände gebildet werden. Die Kanäle sind an beiden Enden des Durchflusssubstrats offen. Das Abgas fließt so vom Einlassbereich zum Auslassbereich und kontaktiert dabei das auf den Wänden aufgebrachte katalytisch aktive Material.
Neben den gasförmigen Schadstoffen enthält das Abgas von derartigen Verbrennungs motoren aber auch feinste Partikel (PM), die aus der unvollständigen Verbrennung des Kraftstoffs resultieren und im Wesentlichen aus Ruß bestehen. Im Unterschied zur Par tikelemission von Dieselmotoren sind die Partikel im Abgas stöchiometrisch betriebener Verbrennungsmotoren, wie Ottomotoren, sehr klein und weisen eine durchschnittliche Partikelgröße kleiner 1 pm auf. Typische Partikelgrößen liegen im Bereich von 10 nm bis 200 nm. Des Weiteren ist die emittierte Partikelmenge sehr gering und bewegt sich im Bereich von 2 mg/km bis 4 mg/km.
Im Bereich der Reinigung von Abgas von mager betriebenen Motoren, also insbeson dere von Dieselmotoren, haben sich Partikelfilter aus keramischen Materialien, wie z.B. Siliciumcarbid, Aluminiumtitanat und Cordierit seit längerem bewährt. Diese sind aus ei ner Vielzahl von parallelen Kanälen aufgebaut, die durch poröse Wände gebildet wer den. Die Kanäle sind wechselseitig an einem der beiden Enden des Filters verschlossen, so dass Kanäle A gebildet werden, die an der ersten Seite des Filters offen und auf der zweiten Seite des Filters verschlossen sind, sowie Kanäle B, die an der ersten Seite des Filters verschlossen und auf der zweiten Seite des Filters offen sind. Das beispielsweise in die Kanäle A einströmende Abgas kann den Filter nur über die Kanäle B wieder ver lassen, und muss zu diesem Zweck durch die porösen Wände zwischen den Kanälen A und B durchfließen. Beim Durchtritt des Abgases durch die Wand werden die Partikel zurückgehalten und das Abgas gereinigt. Bei derartigen Aggregaten spricht man von Wandflussfiltern.
Die so zurückgehaltenen Partikel müssen nachfolgend abgebrannt bzw. oxidiert werden, um ein Verstopfen des Filters bzw einen inakzeptablen Anstieg des Gegendrucks des Abgassystems zu verhindern. Zu diesem Zweck kann beispielsweise das Wandflussfilter mit katalytisch aktiven Beschichtungen versehen werden, die die Zündtemperatur von Ruß herabsetzen. Es ist bereits bekannt, solche Beschichtungen auf die porösen Wände zwischen den Kanälen aufzubringen (sogenannte auf-Wand-Beschichtung) oder in die porösen Wände einzubringen (sogenannte in-Wand-Beschichtung). Die EP1657410A2 beschreibt auch bereits eine Kombination beider Beschichtungsarten, d. h ein Teil des katalytisch aktiven Materials liegt in den porösen Wänden und ein anderer Teil auf den porösen Wänden vor.
Das Konzept, Partikel mittels Wandflussfiltern aus dem Abgas zu entfernen, ist bereits auf die Reinigung von Abgas von mit stöchiometrischem Luft/Kraftstoff-Gemisch betrie benen Verbrennungsmotoren übertragen worden, siehe zum Beispiel die EP2042226A2 (gasoline particle filter; GPF) Gemäß deren Lehre trägt ein Wandflussfilter zwei überei nander angeordnete Schichten, wobei eine in der porösen Wand und die andere auf der porösen Wand angeordnet sein kann.
Die europäische Abgasgesetzgebung sieht seit Inkrafttreten der Stufe Euro 6c ab Sep tember 2017 Abgasmessungen unter realen Bedingungen auf der Straße vor (Real Dri- ving Emissions; RDE) Je nach Fahrbedingungen können dadurch deutlich höhere An forderungen an den Katalysator entstehen, insbesondere im Hinblick auf die dynamische Umsetzung von Kohlenmonoxid und Stickoxiden. In den momentan gültigen Abgasnor men müssen die Schadstoffe wie HC, CO, NOx und Partikel die Grenzwerte der Euro 6d-Norm unter RDE-Bedingungen auch für alle Neufahrzeuge einhalten. Hinzu kommt, dass ein gewisser C02-Flottengrenzwert nicht überschritten werden sollte. Insbesondere auch im Hinblick auf die Sekundäremissionen wie N2O und NH3 werde zukünftige Ab gasnormen in Europa und der Welt werden sicherlich noch anspruchsvollere Anforde rungen an die Verbrennungsmotoren und deren Abgasaufbereitung stellen.
Es ist davon auszugehen, dass für derartige Normen einfache Katalysatoren und/oder Filter nicht mehr ausreichend sind. Daher werden auch im Bereich der überwiegend stö chiometrisch betriebenen Verbrennungsmotoren komplexere Abgassysteme Einzug hal ten müssen. Exemplarisch sei auf die EP3639919A1 verwiesen, in der ein Abgassystem bestehend aus einem ersten TWC gefolgt von einem GPF und einem weiteren TWC abstromseitig vom GPF vorgeschlagen wurde Mittels dieser Systeme muss es dann gewährleistet werden, eine ausreichende katalytische Aktivität und Filtrationseffizienz mit einem möglichst geringen Abgasgegendruck zu kombinieren. Insbesondere der Ab gasgegendruck eines entsprechenden Systems führt zu einem erhöhten Verbrauch an Kraftstoff, was sich negativ auf die C02-Performance auswirkt.
Es besteht daher weiterhin ein Bedarf an Abgasreinigungssystemen für überwiegend mit stöchiometrischen Kraftstoffgemischen betriebenen Verbrennungsmotoren, die im Stande sind, alle erforderlichen schädlichen Bestandteile des Abgases dieser Motoren in höchst möglicher Weise zu beseitigen und dabei einen möglichst geringen Mehrver brauch an Kraftstoff bedingen.
Diese und weitere sich aus dem Stand der Technik für den Fachmann ergebenden Auf gaben werden von einem Abgassystem gemäß vorliegender Erfindung gelöst. Dadurch, dass man ein Abgasreinigungssystem zur Reinigung von Abgasen eines überwiegend stöchiometrisch betriebenen Verbrennungsmotors aufweisend einen motornahen TWC1 auf einem Durchflusssubstrat, einen abstromseitig zum TWC1 angebrachten GPF als Wandflussfilter und abstromseitig zum GPF einen weiteren TWC2 auf einem Durchfluss substrat angibt, und das System zusätzlich Materialien zum temporären Speichern von Stickoxiden in einer separaten Beschichtung aufweist, wobei dieses zusätzliche Material ausgewählt ist aus der Gruppe bestehend aus K2O, Na20, CaO, BaO, MgO, SrO, CeÜ2, ZrÜ2, Cer-Mischoxide, Zeolithe oder deren Mischungen, wobei dieses Material zu mehr als 50 Gew.-% in der Beschichtung vorhanden ist, gelangt man äußerst überraschend und vorteilhaft zur Lösung der gestellten Aufgaben.
Die Etablierung einer separaten Stickoxidspeicherfunktion in dem oben dargestellten System stellt eine optimale Kombination von vier funktionalen Abgasreinigungskompo nenten dar, die zukünftige Abgasgrenzwerte einzuhalten erlaubt und darüber hinaus die Möglichkeit eröffnet, ein hohes Maß an Gesamtedelmetallreduktion im System zu reali sieren. Durch die zusätzliche Stickoxidspeicheroxidfunktion können Stickoxide temporär gespeichert werden, wenn eine Umsetzung der Stickoxide über die Dreiwege-Katalysa- toren im jeweiligen Betriebspunkt nicht sichergestellt werden kann, beispielsweise bei zu geringer Betriebstemperatur oder zu wenig Reduktionsmittel Diese temporär gespei cherten Stickoxide können dann während geeigneter Betriebszustände, also wenn eine ausreichende Temperatur und ausreichend Reduktionsmittel gewährleistet werden, freigesetzt und umgesetzt werden. Dadurch können insbesondere Kaltstartemissionen von NOx wirkungsvoll verringert werden.
Die Speicherfähigkeit der eingesetzten Materialien für Stickoxide kann nach Maßgabe der im experimentellen Teil erwähnten Vorgehensweise bestimmt werden. Die im Rah men dieser Erfindung angesprochene Stickoxidspeicherfähigkeit bzw. -kapazität wird als Quotient aus gespeicherter Masse Stickoxid pro Liter verbautem Substratvolumen an gegeben
Materialien zum temporären Speichern von Stickoxiden sind solche, die im Stande sind, mindestens 25 mg NOx pro L Substratvolumen, vorzugsweise 50 mg NOx pro L Sub stratvolumen und ganz bevorzugt 75 mg NOx pro L Substratvolumen temporär zu spei chern Diese werden dem System in einer separaten Beschichtung zugefügt. Materia lien, welche schon in den vorhandenen Katalysatoren im System eingesetzt sind, und auch in der Lage sind, Stickoxide temporär zu speichern, sollen diesbezüglich nicht be rücksichtigt werden. Sie sind von der anspruchsgemäßen Definition (Stickoxide tempo rär speichernde Materialien) ausgeschlossen. Z.B. werden in den TWCs auch Cer- oder Cer-Zirkonmischoxide verwendet, die ebenfalls im Stande sind, Stickoxide temporär zu speichern. Allerdings sind diese Stoffe z.B aufgrund der Struktur oder der näheren Zu sammensetzung dazu nur untergeordnet in der Lage. Es können durch diese Stoffe re gelmäßig weniger als die oben angegebenen Mengen an Stickoxiden eingespeichert werden. Durch den oben definierten Grenzwert wird eine Abgrenzung zu einem her kömmlichen System aufweisend einen TWC1 - GPF- TWC2 ausreichend sichergestellt, so dass der erfindungsgemäße Anspruch sich ausschließlich auf ein entsprechendes System aufweisend TWC1 - GPF- TWC2 bezieht, dem zusätzlich zu den schon in den Katalysatoren des Systems vorhandenen Materialien noch Stickoxide temporär spei cherndes Material in einer separaten Beschichtung zugefügt wurde.
Unter dem Begriff „temporär“ wird erfindungsgemäß verstanden, dass das speicherfä hige Material in bestimmten Betriebszuständen des Abgassystems Stickoxide einspei chern kann und unter anderen diese wieder abgibt bzw. keine mehr aufnimmt. Dies ist in klassischen Stickoxidspeicherkatalysatoren (nitrogen storage catalyst; NSC) der Fall, welche in einem bestimmten Temperaturbereich Stickoxide zu speichern im Stande sind und anschließend durch kurzzeitige Regeneration mit einer reduzierend wirkenden Um gebung die Stickoxide desorbieren und zu Stickstoff reduzieren. Bzgl der Wirkungsweise und den vorzugsweise einzusetzenden Materialien wird auf die einschlä gige Literatur verwiesen (W02020058265A1 ; EP3695902A1; WO2018069199A1).
Bei den Stickoxide temporär speichernden Materialen kann es sich aber auch vorzugs weise um solche handeln, die bei einer bestimmten Temperatur die Stickoxide einspei chern und bei erhöhten Temperaturen ohne Reduktion z.B. als NO2 wieder abgeben. Diese werden als passive Stickoxidabsorber bezeichnet (passive NOx absorber; PNA) Ersteres erfolgt bevorzugt in einem Temperaturbereich von 25 - 150 °C, mehr bevorzugt 25 - 175 °C und ganz bevorzugt 25 - 200 °C. Die Abgabe der Stickoxide (es wird netto mehr abgegeben als eingespeichert) erfolgt vorzugsweise oberhalb einer Temperatur von 300 °C, mehr bevorzugt 350 °C und ganz bevorzugt 400 °C. Derartige Materialien sind dem Fachmann hinlänglich bekannt (US2019120109AA; US2018318763AA; US2015266002AA; WO2019134958A1 ;US2021162382AA).
Sowohl bei den NSCs als auch bei den PNAs ist es bevorzugt, wenn die Speichermate rialien mit NO2 in Kontakt kommen. Dieses kann leichter eingespeichert werden, z.B in Form der Nitrate, als beispielsweise NO. Demzufolge ist es von Vorteil, wenn die Mate rialien zum temporären Speichern von Stickoxiden ebenfalls Katalysatoren zur Oxidation von NO zu NO2 aufweist. Hier kommen für den Fachmann verschiedene Ausführungs formen in Betracht In der Regel werden die Speichermaterialien mit der Oxidation von NO zu NO2 katalysierende Edelmetallen vergesellschaftet. Dies sind insbesondere die Edelmetalle Pt und/oder Pd, die einzeln oder zusammen in einem bestimmten Gewichts verhältnis von 1:10 - 10:1, mehr bevorzugt 1:8 - 8:1 und ganz bevorzugt 1:6 - 6:1 in den Stickoxidspeichermaterialien vorhanden sind.
Die eigentlichen, die Stickoxide temporär speichernden Materialen sind dem Fachmann hinlänglich bekannt. Vorliegend kommen solche zum Einsatz, die ausgewählt sind aus der Gruppe bestehend aus K20, Na20, CaO, BaO, MgO, SrO, Ce02, ZrÜ2, Cer- Mischoxide (insbesondere mit AI2O3 oder Zirkonoxid), Zeolithe oder deren Mischungen. Bevorzugt sind Erdalkalimetalloxide, wie BaO, CaO, SrO und/oder Ceroxid und/oder Cermischoxide, insbesondere Cerzirkonmischoxide, in diesem Zusammenhang zu nen nen Ganz besonders bevorzugt sind CeÜ2 und/oder BaO. Viele dieser Materialien be sitzen eine entsprechend gute Bindung für Nitrat (NO3 ). Sie sind im Stande, den ge nannten oben angegebenen Minimalwert für die Stickoxidspeicherung bei nicht über die Maßen großer Beladung zu bewerkstelligen. Vorzugsweise werden Stickoxide temporär speichernde Materialen eingesetzt, welche mehr als 0,05, weiter bevorzugt mehr als 0,1 und ganz bevorzugt mehr als 0,15 mg Stickoxide gerechnet als NO2 pro g Material zu speichern im Stande sind (Bestimmung siehe hinten). Diese, die Stickoxide temporär speichernden Materialen sind in einer ausreichenden Menge im Abgassystem vorhan den. Als bevorzugte Menge für die Beschichtung, die die speichernden Materialien ent hält, hat sich ein Wert von 100 - 500 g/L, vorzugsweise 125 - 450 g/L und ganz bevorzugt 150 - 400 g/L Substratvolumen erwiesen.
Das die Stickoxide temporär speichernde Material kann im Abgasreinigungssystem auf einem oder den schon vorhandenen Aggregaten verteilt werden. Hierbei kann das ent sprechende Material im Verhältnis zu den ggf. schon vorhandenen katalytisch aktiven Materialien in Zonen oder Schichten getrennt zu diesen auf einem oder mehreren Subs traten vorliegen. Als solches bietet es sich an, das die Stickoxide temporär speichernde Material überwiegend auf den ersten TWC1 zu verorten. Die evt. vom TWC1 freigesetz ten Stickoxide können den Rußabbrand im abstromseitigen GPF unterstützen (soge nannte CRT®-Reaktion) Gleichfalls kann bei Einsatz von klassischen Stickoxidspeicher katalysatormaterialien eine Regeneration des Stickoxidspeichers durch motorseitiges Anfetten des Abgas leicht vorgenommen werden. Hierdurch kann der TWC1 mit der Funktionalität eines NSC und der abstromseitige GPF durch Anheben der Abgastempe ratur evt. zusammen regeneriert werden, z.B. kann der NSC entschwefelt und der GPF vom Ruß befreit werden (siehe DE10023439A1)
Alternativ aber bevorzugt kann das die Stickoxide temporär speichernde Material jedoch auch auf einem separaten Durchflusssubstrat angeordnet sein. Hierbei kann dieses Durchflusssubstrat (KAT) nach dem Fachmann bekannten Gesichtspunkten im Abgas reinigungssystem angeordnet werden (siehe Fig. 1 - 3). Bevorzugt ist eine Anordnung, bei der KAT hinter dem TWC1 und vorzugsweise vor dem GPF angeordnet ist. Die Vor teile sind die gleichen wie oben für die Verödung des entsprechenden Materials auf den TWC1 genannten. Insbesondere scheint es von Vorteil zu sein, wenn der KAT in einer Entfernung von 30 - 150 cm, vorzugsweise 30 - 100 cm und ganz bevorzugt 30 - 50 cm abstromseitig zum Ausgang des TWC1 angeordnet ist.
Der KAT weist eine relativ hohe Washcoatbeladung in g/L auf, die von 100 - 500 g/L, bevorzugt 125 - 450 g/L und ganz bevorzugt 150 - 400 g/L reicht. Generell hat es sich als vorteilhaft erwiesen, wenn die einzelnen Substrate des erfindungsgemäßen Abgas reinigungssystems (TWC1, GPF, TWC2, KAT) hinsichtlich der Größe des Volumens, dass sie einnehmen, in einem bestimmten Verhältnis zueinander stehen. So ist von Vorteil, wenn der TWC1 einen Anteil des Volumens am Gesamtsystem einnimmt, wel cher zwischen 20 und 50 Vol -%, bevorzugt 30 - 40 Vol -% liegt. Das GPF sollte einen Volumenanteil von 20 - 60 Vol.-%, bevorzugt 25 - 55 Vol -% bezogen auf das Gesamt system aufweisen. Gleichfalls sollte der Anteil von TWC2 am Gesamtsystem 10 - 40 Vol.-%, bevorzugt 15- 35 Vol.-% betragen. Der KAT aufweisend das Material zum tem porären Speichern von Stickoxiden besitzt einen Anteil von vorzugsweise 5-30 Vol.-%, mehr bevorzugt 10 - 30 Vol -% an dem Gesamtvolumen der Substrate im Abgasreini gungssystem Unter Gesamtsystem wird hier die Summe der Volumina berechnet aus den Außenmaßen der Substrate von TWC1, GPF, TWC2 und KAT verstanden.
Es kann ebenfalls von Vorteil sein, wenn den Stickoxide temporär speichernden Materi alien auch solche zugefügt werden, die befähigt sind, Sauerstoff zu speichern. Letzteres sind die in den TWCs in der Regel eingesetzten Sauerstoffspeichermaterialien. Diese bewirken die Bereitstellung einer sauerstoffreicheren Umgebung, die für die Oxidation von NO zu NO2 vorteilhaft ist. Entsprechende Materialien sind u.a. in der EP2007682A1 , EP 1921044 A2 US6468941B1, US6585944B1 und US20050282698A1 beschrieben. Vorzugsweise kommen diesbezüglich Ceroxide, Cer-Zirkonmischoxide oder mit La, Y, Pr, Nd dotierte Cer bzw. Cer-Zirkonmischoxide in Betracht Die Menge an Sauerstoff speicherndem Material kann vom Fachmann bemessen werden, sollte aber nicht unter 0,2 g/g, vorzugsweise 0,3 g/g bezogen auf das Gesamtgewicht der Stickoxide temporär speichernden Materialien eingesetzt werden.
TWC1 und TWC2 sind moderne Drei-Wege-Katalysatoren. Der Fachmann weiß, welche er für den vorliegenden Zweck einsetzen würde (siehe z.B. WO2019121994A1, WO2019121995A1 , W09535152A1, W02008000449A2, EP0885650A2,
EP1046423A2, EP1726359A1, EP1541220A1, EP1900416B1, EP3045226A1,
W02009012348A1 und EP1974809B1) Drei-Wege-Katalysatoren bestehen im Wesent lichen aus den Komponenten Edelmetall, hochoberflächiges Trägeroxid und Sauerstoff speichermaterial. Die Sauerstoffspeichermaterialien sind insbesondere solche, in denen Cer/Zirkonium/Seltenerdmetall-Mischoxiden Vorkommen. Als Seltenerdmetalloxid kom men beispielsweise Lanthanoxid, Yttriumoxid, Praseodymoxid, Neodymoxid, Samari umoxid und Mischungen von einem oder mehreren dieser Metalloxide in Betracht Be vorzugt sind Lanthanoxid, Yttriumoxid, Neodymoxid und Mischungen von einem oder mehreren dieser Metalloxide. Besonders bevorzugt sind Lanthanoxid, Yttriumoxid und ganz besonders bevorzugt ist eine Mischung von Lanthanoxid und Yttriumoxid in diesem Zusammenhang. Als Trägeroxid kommen für den Fachmann hochoberflächige, temperaturstabile Oxide in Betracht In der Regel sind dies Aluminiumoxide, Silizi umoxide, Zirkonoxide oder Titanoxide oder Mischungen derselben. Insbesondere akti ves Aluminiumoxid ist dem Fachmann in diesem Zusammenhang bekannt. Es bezeich net insbesondere y-Aluminiumoxid mit einer Oberfläche von 100 bis 200 m2/g. Aktives Aluminiumoxid ist in der Literatur vielfach beschrieben und am Markt erhältlich. Es ent hält in der Regel Siliziumoxid oder Lanthanoxid als Stabilisator in einer Menge von bis zu 10 Gew -% bezogen auf das Aluminiumoxid. Drei-Wege-Katalysatoren enthalten als katalytisch aktive Komponenten zumeist Metalle der Platingruppe, wie Pt, Pd und Rh, wobei Pd und Rh besonders bevorzugt sind. Die katalytisch aktiven Metalle sind häufig hochdispers auf den hochoberflächigen Oxiden und/oder den Sauerstoffspeichermateri alien abgeschieden. Besonders bevorzugt ist es, wenn die Edelmetalle auf dem Sauer stoffspeichermaterial vorfixiert werden, bevor dieses mit den übrigen Bestandteilen in die Beschichtungsmischung vermengt wird. Bei den TWCs sind gezonte oder geschich tete Ausführungsformen mittlerweile der Normalfall In einer bevorzugten Ausführungs form besitzt zumindest der TWC1 einen 2-Schichtaufbau, vorzugsweise wie in EP3247493A1 beschrieben.
Die Drei-Wege-Katalysatoren werden durch einen dem Fachmann geläufigen Beschich tungsschritt vorzugsweise auf ein Durchflusssubstrat aufgebracht Durchflusssubstrate sind im Stand der Technik übliche Katalysatorträger, die aus Metall (corrugated carrier, z.B. W017153239A1, WO16057285A1, WO15121910A1 und darin zitierte Literatur) oder keramischen Materialien bestehen können. Bevorzugt werden feuerfeste Kerami ken wie zum Beispiel Cordierit, Siliziumcarbit oder Aluminiumtitanat etc eingesetzt. Die Anzahl der Kanäle pro Fläche wird durch die Zelldichte charakterisiert, welche üblicher Weise zwischen 300 und 900 Zellen pro Quadrat inch (cells per square inch, cpsi) liegt. Die Wanddicke der Kanalwände beträgt bei Keramiken zwischen 0,5 - 0,05 mm.
Der TWC1 ist erfindungsgemäß vorzugsweise motornah verbaut. Dies bedeutet, dass zwischen dem Turbolader und der einlassseitigen Stirnfläche des TWC1 lediglich 1 -40 cm Entfernung liegen. Bevorzugt ist der Katalysator TWC1 2 - 30 cm und ganz bevor zugt 3 - 20 cm vom Turbolader entfernt verbaut. Der GPF kann in einigem Abstand vom TWC1, z.B. im Unterboden des Fahrzeugs verbaut werden. Bevorzugt ist jedoch Aus führungsform, in der der GPF recht nahe am auslassseitigen Ende des TWC1 verbaut wird. Bevorzugt ist der Abstand zwischen auslassseitiger Stirnfläche des TWC1 und GPF 1 - 60 cm, mehr bevorzugt 2 - 50 cm und ganz bevorzugt 3 - 40 cm. Der TWC2 ist entweder direkt nach dem Filter in einer motornahen Position verbaut, oder kommt im Unterboden des Fahrzeugs im Abgassystem zum Einsatz. Dadurch ist die Temperatur belastung dieses TWCs eine andere als die des TWC1. Aus diesem Grund können sich die beiden TWCs in einigen Charakteristika voneinander unterscheiden. Bevorzugt weist der TWC2 eine geringere Washcoatbeladung als der TWC1 auf. Bevorzugt besteht der TWC1 aus mindestens 2-4 verschiedenen Drei-Wege-Katalysatorschichten oder Zonen, während der TWC2 bevorzugt aus mindestens 1-2 Drei-Wege-Katalysatorschichten oder Zonen besteht. Die TWCs weisen eine übliche Washcoatbeladung auf. Diese liegt vorzugsweise bei 100-400 g/L, mehr bevorzugt 125-375 g/L und ganz bevorzugt 150 - 325 g/L. In einerweiteren Ausführungsform hat es sich als vorteilhaft erwiesen, wenn die Washcoatbeladung in g/L des TWC1 größer ist als die des TWC2, insbesondere um einen Faktor zwischen 1,25 - 4, mehr bevorzugt 1,5 - 3. Zudem ist die Edelmetallkon zentration in g/L auf dem TWC1 bevorzugt größer als auf dem TWC2, insbesondere um einen Faktor 1 ,25 - 20, mehr bevorzugt 1,5 - 10.
Der GPF hat die Form eines Wandflussfilters. Als Wandflussfilter können alle im Stand der Technik üblichen keramischen Materialien eingesetzt werden. Bevorzugt werden po röse Wandflussfiltersubstrate aus Cordierit, Siliziumcarbid oder Aluminiumtitanat einge setzt. Diese Wandflussfiltersubstrate weisen An- und Abströmkanäle auf, wobei jeweils die abströmseitigen Enden der Anströmkanäle und die anströmseitigen Enden der Ab strömkanäle gegeneinander versetzt mit gasdichten „Stopfen“ verschlossen sind. Hier bei wird das zu reinigende Abgas, das das Filtersubstrat durchströmt, zum Durchtritt durch die poröse Wand zwischen An- und Abströmkanal gezwungen, was eine exzel lente Partikelfilterwirkung bedingt. Durch die Porosität, Poren-/Radienverteilung, und Di cke der Wand kann die Filtrationseigenschaft für Partikel ausgelegt werden. Das Kata lysatormaterial kann in Form der erfindungsgemäßen Beschichtungssuspension auf die porösen Wände der An- und Abströmkanäle aufgetragen werden. Die Porosität der Wandflussfilter beträgt in der Regel mehr als 40%, generell von 40% bis 75%, besonders von 45% bis 70% [gemessen nach DIN 66133 - neueste Fassung am Anmeldetag]. Die durchschnittliche Porengröße (Durchmesser) beträgt wenigstens 3 pm, z.B. von 3 pm bis 34 pm, bevorzugt mehr als 5 pm, insbesondere von 5 pm bis 28 pm oder von 7 pm bis 22 pm [gemessen nach DIN 66134 neueste Fassung am Anmeldetag].
Der GPF kann unbeschichtet, mit einer trockenen Pulverbeschichtung oder mit einer ggf. zusätzlichen, naßtechnisch hergestellten Beschichtung versehen im erfindungsgemä ßen System zum Einsatz kommen (EP3595796A1, W02020200394A1 ,
W02020200397A1). Entsprechende naßtechnisch hergestellte Filter mit verbesserter Filterwirkung werden in der WO2019121375A1 bzw. W02020200398A1 vorgestellt. Al ternativ oder kumulativ kommt ebenfalls die Beschichtung mit einem trockenen Pulver in Betracht (siehe hierzu z.B. DE102018108346A1, US8277880B2). In erster Linie wird hierdurch ebenfalls die Filtrationseffizienz des Filters verbessert, ohne den Abgasgegen druck des Filters über die Maßen zu verschlechtern. Der GPF kann jedoch auch eine katalytische Beschichtung beherbergen. In der Regel wird es sich dabei vorliegend um eine Beschichtung mit einem Drei-Wege-Katalysator handeln. Die Zusammensetzung entspricht den oben erfolgten Ausführungen. Somit können alle Aggregate im erfin dungsgemäßen Abgasreinigungssystem katalytisch aktive Edelmetalle der oben ange gebenen Provenienz aufweisen. In einer vorteilhafte Ausführungsform hat der GPF da bei eine höhere Edelmetallkonzentration in g/L Substratvolumen als der TWC2. Sofern vorhanden besitzt auch der KAT eine höhere Edelmetallkonzentration in g/L Substratvo lumen als der TWC2. Beide genannten Ausführungsformen können je nach Anwen dungsfall jedoch auch reziprok gesehen Vorkommen. In einem besonderen Fall kann der TWC2 so ausgebildet sein, dass er lediglich Rhodium als Edelmetall aufweist.
Sofern der GPF mit einer Beschichtung versehen ist, so liegt die Washcoatbeladung bei 10 - 200 g/L, vorzugsweise 20- 175 g/L und ganz bevorzugt 25- 150 g/L. Damit über trifft die Washcoatbeladung g/L des KAT vorzugsweise diejenige des GPFs. Dabei ist es von Vorteil, wenn die Funktion zum temporären Speichern von Stickoxiden unterge bracht auf einem separaten Durchflusssubstrat (KAT) eine größere Washcoatbeladung in g/L aufweist als der GPF.
„Electrically heated catalyst“ (EHC) sind spezielle Katalysatorkörper, die durch das An legen einer Stromquelle erwärmt werden können. Der Vorteil derartiger Systeme liegt darin, dass Betriebszustände des Abgasreinigungssystems vermieden werden, in denen die Katalysatoren aufgrund niedriger Temperaturen nicht oder nicht mehr ausreichend aktiv sind. Solche Betriebszustände existieren im Wesentlichen, wenn das Fahrzeug erst kürzlich gestartet wurde. Durch schnelles elektrisches Aufheizen der Katalysatorsub strate, können die darauf befindlichen Katalysatoren auf Umsetzungstemperatur ge bracht werden und so der Ausstoß unumgesetzter Schadstoffe verringert werden. Vor liegend ist es besonders vorteilhaft, wenn zumindest eines der im System vorhandenen Katalysatorsubstrate (TWC1 , GPF, TWC2 oder KAT) ein elektrisch beheizbares Substrat ist. Ganz bevorzugt ist, wenn dies der TWC1 ist. Dieser ist aufgrund seiner Positionie rung im System als erstes auf Arbeitstemperatur. Daher ist der Einsatzes von Strom hier am geringsten, was gerade im Hinblick auf hybride Anwendung äußerst bevorzugt ist, da die Batterie geschont werden kann. Entsprechende EHC-Systeme in Hybridvehikeln sind dem Fachmann bekannt (US8776500BB).
Um die Schadstoffe, welche in den Kaltlaufbedingungen vom Fahrzeug emittiert werde, weiter zu reduzieren, kann sich im erfindungsgemäßen Abgasreinigungssystem eine so genannte Kohlenwasserstofffalle (hydrocarbon trap; HCT) befinden. Die HCT nimmt aus dem Abgas die emittierten Kohlenwasserstoffe bei niedrigen Temperaturen von weniger als 200°C, vorzugsweise weniger als 250°C auf (Nettoaufnahme). Die HCT kann mit einem Oxidationskatalysator vergesellschaftet sein. Als solches kommen Platin und/oder Palladium und/oder Rhodium in Frage Als Ausgestaltungen und Materialien für die HCT kommen insbesondere solche aus der US20190351397AA, US20190351398AA oder US20190351393AA in Frage. Als Speichermaterial werden äußerst vorzugsweise Zeo lithe wie Beta, die mit einem Übergangsmetall wie Eisen oder Kupfer ausgetauscht sind, verwendet.
Ebenfalls vorteilhaft ist ein erfindungsgemäßes System, welches zusätzlich einen Kata lysator zur Verminderung der Emissionen von NH3 aufweist (ammonia slip catalyst; ASC). Dieser kommt vorzugsweise im hinteren Teil des erfindungsgemäßen Systems, besonders bevorzugt auf dem TWC2 zum Einsatz Dieser hat die Aufgabe, Ammoniak, welches bei der Überreduktion von Stickoxiden gebildet wird, zu vermindern. Mit Oxida tionsmitteln, wie z.B. Sauerstoff oder weiteren Stickoxiden, kann Ammoniak über diesem Katalysator in unschädlichen Stickstoff umgewandelt werden. Derartige Katalysatoren sind dem Fachmann hinlänglich bekannt (EP3484602B1). Der ASC kann auch auf dem Filter beheimatet sein (EP3298252A1).
Ebenfalls Gegenstand der vorliegenden Erfindung bildet ein Verfahren zur Reinigung von Abgasen eines überwiegend stöchiometrisch betriebenen Verbrennungsmotors, bei dem das Abgas über ein Abgasreinigungssystem nach einem der vorhergehenden An sprüche geleitet wird. Die für das System benannten bevorzugten und alternativen Aus führungsformen gelten mutatis mutandis auch für das Verfahren
Mit dem Abgassystem und dem vorgestellten Verfahren gemäß vorliegender Erfindung ist es möglich, die Abgasgrenzwerte zukünftiger noch strengerer Abgasnormen einhal- ten zu können. Neben den Standardwerten wie HC, CO, NOx und Ruß erlaubt das er findungsgemäße System auch die Reduzierung sogenannter sekundärer Schadstoffe, wie z.B. NH3, N2O und andere. Im Speziellen die motornahe Anordnung des TWC1 er möglicht sehr hohe Umsatzraten für die emissionsrelevanten Schadstoffe CO, HC und NOx. Der zusätzliche TWC2 kann ggf. unterstützend wirken und vor allen in Betriebs punkten mit hoher Last und Abgasmassenströmen helfen, die hohen Konversionsraten von CO, HC und NOx sicherzustellen. Die Verwendung des Partikelfilters hingegen, führt zu signifikanten Abscheideraten von Ruß, sodass die gegebenen Emissionsgrenzwerte sicher eingehalten werden können. Dem Fachmann ist hinlänglich bekannt, dass klassi sche Dreiwegekatalysatoren in den entsprechenden Temperaturregimen und Motorbe triebspunkten Stickoxide nicht vollständig reduzieren können. Schließlich wird durch Ver wendung von Stickoxide temporär speichernden Materialien, z.B. in einem separaten Katalysatorsubstrat (KAT) sichergestellt, dass vor allem im Kaltstart gebildete Stickoxide zusätzlich signifikant reduziert werden können. Damit ist ein solches System prädesti niert dafür in Automobilen eingesetzt zu werden, die zukünftige strenge Abgasgrenz werte für eine Zulassung einhalten müssen.
Figuren:
Fig. 1 : Zeigt ein erfindungsgemäßes mit KAT in der finalen Position
Fig 2: Zeigt ein erfindungsgemäßes mit KAT in der Position vor dem TWC2.
Fig 3: Zeigt ein erfindungsgemäßes mit KAT in der motornahen Position. Fig 4: Bestimmung der Stickoxidspeicherfähigkeit
Figur 5: Gemittelte Beutelemissionen für THC/NMHC/CO/NOx der beiden Abgasnach behandlungssysteme TWC-GPF-TWC und TWC-GPF-TWC+KAT im Vergleich.
Beispiele:
Bestimmung der Stickoxidspeicherfähigkeit:
Die Stickoxidspeicherfähigkeit/-kapazität wird experimentell in einem Strömungsrohrre- aktor bestimmt. Aus dem Bereich des Katalysatorsubstrats, dessen Stickoxidspeicher kapazität bestimmt werden soll, wird ein Bohrkern als Prüfling entnommen. Bevorzugt wird ein Bohrkern mit 1 Zoll Durchmesser und 3 Zoll Länge als Prüfling entnommen. Der Bohrkern wird in den Strömungsrohrreaktor eingesetzt und bei einer Temperatur von 650 °C Fett-/Magerzyklen von jeweils 10 Sekunden mit in einer Gasatmosphäre aus 500 ppm Stickstoffmonoxid, 7 Vol-% Sauerstoff, 10 Vol -% Wasser, 10 Vol-% Kohlen stoffdioxid, 50 ppm Kohlenwasserstoffe (Propan/Propen 17/33) und Rest Stickstoff in den Magerphasen und einer Gasatmosphäre aus 500 ppm Stickstoffmonoxid, 55000 ppm Kohlenstoffmonooxid, 1 Vol-% Sauerstoff, 10 Vol.-% Wasser, 10 Vol-% Kohlenstoff dioxid, 50 ppm Kohlenwasserstoffe (Propan/Propen 17/33) und Rest Stickstoff in den Fettphasen mit einer Raumgeschwindigkeit von 50000 Ir1 für 15 Minuten konditioniert. Anschließend folgen 10 Fett-Magerzyklen von jeweils 10 Sekunden bei 650°C mit einer Raumgeschwindigkeit von 30000 Ir1 und einer Gasatmosphäre aus 0 ppm Stickstoffmo noxid, 1 Vol-% Sauerstoff, 0 Vol.-% Wasser, 0 Vol-% Kohlenstoffdioxid, 0 ppm Kohlen wasserstoffe und Rest Stickstoff in den Magerphasen und einer Gasatmosphäre aus 0 ppm Stickstoffmonoxid, 20000 ppm Kohlenstoffmonooxid, 0 Vol-% Sauerstoff, 0 Vol.-
% Wasser, 0 Vol-% Kohlenstoffdioxid, 0 ppm Kohlenwasserstoffe (Propan/Propen 17/33) und Rest Stickstoff in den Fettphasen Anschließend wird unter Stickstoff bei ei ner Raumgeschwindigkeit von 50000 Ir1 auf eine Temperatur von 350°C abgekühlt. An schließend folgt eine Konditionierung von 3 Fett-Magerzyklen von jeweils 20 Sekunden bei 350°C mit einer Raumgeschwindigkeit von 35000 Ir1 und einer Gasatmosphäre aus 0 ppm Stickstoffmonoxid, 1 Vol-% Sauerstoff, 0 Vol.-% Wasser, 0 Vol-% Kohlenstoffdi oxid, 0 ppm Kohlenwasserstoffe und Rest Stickstoff in den Magerphasen und einer Gas atmosphäre aus 0 ppm Stickstoffmonoxid, 20000 ppm Kohlenstoffmonooxid, 0 Vol-% Sauerstoff, 0 Vol -% Wasser, 0 Vol-% Kohlenstoffdioxid, 0 ppm Kohlenwasserstoffe (Propan/Propen 17/33) und Rest Stickstoff in den Fettphasen Anschließend wird unter Stickstoff bei einer Raumgeschwindigkeit von 50000 Ir1 auf eine Temperatur von 250°C abgekühlt und nach Stabilisierung der Temperatur die Stickoxidspeicherfähigkeit durch Aufschalten eines Gasgemisches aus 500 ppm Stickstoffmonooxid, 8 vol -% Sauerstoff, 10 Vol -% Wasser und 10 Vol-% Kohlenstoffdioxid bei einer Raumgeschwindigkeit von 30000 h_1 bestimmt. Dieses Gasgemisch bleibt so lange aufgeschaltet, bis der NOx-Um- satz über den Prüfling kleiner als 10% beträgt. Diese Sequenz ist auch in Figur 4 abge bildet. Der so bestimmte Wert stellt die maximale Speichermenge des Stickstoffspeicher katalysators dar. Sie wird mit dem Gesamtsubstratvolumen im anvisierten System in Re- lation gesetzt.
Experimentelle Daten:
Ein Euro 6 Benzinfahrzeug mit 1,5L Dl Motor wurde mit einem künstlich auf End-of-Life- gealterten Abgassystem bestehend aus einem ersten motornahen TWC mit 1 ,26L Kata- lysatorvolumen (Substratdimensionen 118, 4mmx114,3mm) und einer konventionellen Dreiwege-Beschichtung mit 1 ,77 g/L Edelmetall (0/92/8 Pt/Pd/Rh), einem abströmseitig angeordneten, unbeschichteten GPF mit 1,39L Katalysatorvolumen (Substratdimensio nen 132,1mmx101,6mm) und einem im Unterboden angeordneten, zweiten TWC mit 1,26L Katalysatorvolumen (Substratdimensionen 118, 4mmx114,3mm) und einer kon- ventionellen Dreiwege-Beschichtung mit 0,83 g/L Edelmetall (0/80/20 Pt/Pd/Rh) und auf einem Rollenprüfstand in einem RTS aggressiven Fahrzyklus gefahren. Dieses System wird als TWC-GPF-TWC Referenzsystem bezeichnet und hat ein Gesamtsubstratvolu men von 3,9L Dabei wurden die Emissionen THC, NMHC, CO, NOx, NH3 und N2O ge messen, die dafür zu verwendende Messtechnik ist dem Fachmann bekannt. Dargestellt ist jeweils der Mittelwert aus mehreren Messungen.
Dem gegenüber gestellt wurde ein System nach den hier genannten Patentansprüchen. Dazu wurde dasselbe Euro 6 Benzinfahrzeug mit 1,5L Dl Motor mit einem künstlich auf End-of-Life-gealterten Abgassystem bestehend aus einem ersten motornahen TWC mit 1,26L Katalysatorvolumen (Substratdimensionen 118, 4mmx114,3mm) und einer kon- ventionellen Dreiwege-Beschichtung mit 1 ,77 g/L Edelmetall (0/92/8 Pt/Pd/Rh), einem abströmseitig angeordneten, unbeschichteten GPF mit 1 ,39L Katalysatorvolumen (Sub stratdimensionen 132,1mmx101,6mm), einem im Unterboden angeordneten zweiten TWC mit 0,63L Katalysatorvolumen (Substratdimensionen 118,4mmx57,2mm) und einer konventionellen Dreiwege-Beschichtung mit 0,83 g/L Edelmetall (0/80/20 Pt/Pd/Rh) und einem abströmseitig davon angeordneten KAT mit 0,50L Katalysatorvolumen (Substrat dimensionen 105,7mmx57,2mm) und einer Beschichtung, die zusätzlich temporär Stick oxide speichern kann, mit 1,34 g/L Edelmetall (79/8/13 Pt/Pd/Rh) und auf einem Rollen prüfstand in einem RTS aggressive Fahrzyklus gefahren. TWC-GPF-TWC+KAT Systems verglichen mit dem des TWC-GPF-TWC Referenzsystems. Bei gleichem Volu men des TWC2 bzw. TWC2/KAT in beiden Systemen ergibt sich ein Vorteil hinsichtlich der Stickoxidumsetzung und überraschender Weise auch der Kohlenwasserstoffemissi onen für das erfindungsgemäße System.

Claims

Patentansprüche
1. Abgasreinigungssystem zur Reinigung von Abgasen eines überwiegend stöchio metrisch betriebenen Verbrennungsmotors aufweisend einen motornahen TWC1 auf einem Durchflusssubstrat, einen abstromseitig zum TWC1 angebrachten GPF und abstromseitig zum GPF einen weiteren TWC2 auf einem Durchfluss substrat, dadurch gekennzeichnet, dass das System zusätzlich Materialien zum temporären Speichern von Stickoxiden in einer separaten Beschichtung aufweist, wobei dieses zusätzliche Material ausge- wählt ist aus der Gruppe bestehend aus K2O, Na20, CaO, BaO, MgO, SrO,
CeÜ2, ZrÜ2, Cer-Mischoxide Zeolithe oder deren Mischungen, wobei dieses Ma terial zu mehr als 50 Gew.-% in der Beschichtung vorhanden ist.
2. System nach Anspruch 1, dadurch gekennzeichnet, dass die Materialien zum temporären Speichern von Stickoxiden ebenfalls Katalysato ren zur Oxidation von NO zu NO2 aufweist.
3. System nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Beschichtung, die die Stickoxid speichernden Materialien enthält in einer Menge von 100 - 500 g/L Substratvolumen vorhanden ist.
4. System nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Materialien zum temporären Speichern von Stickoxiden auf einem separaten Durchflusssubstrat angeordnet ist.
5. System nach Anspruch 4, dadurch gekennzeichnet, dass das Substrat mit den Materialien zum temporären Speichern von Stickoxiden eine Anteil von 5-30 Vol.-% an dem Gesamtvolumen der Substrate im Abgas reinigungssystem ausmacht.
6. System nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass das Substrat mit den Materialien zum temporären Speichern von Stickoxiden eine größere Washcoatbeladung in g/L aufweist als der GPF.
7. System nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Washcoatbeladung in g/L des TWC1 größer ist als die des TWC2.
8. System nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Edelmetallkonzentration in g/L des TWC1 größer ist als die des TWC2.
9. System nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mindestens ein Substrat elektrisch beheizbar ist.
10. System nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der GPF eine filtrationssteigernde Beschichtung aufweist.
11. Verfahren zur Reinigung von Abgasen eines überwiegend stöchiometrisch betrie benen Verbrennungsmotors, bei dem das Abgas über ein Abgasreinigungssys tem nach einem der vorhergehenden Ansprüche geleitet wird.
PCT/EP2022/069288 2021-07-21 2022-07-11 Abgasreinigungssystem zur reinigung von abgasen von benzinmotoren WO2023001617A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/580,496 US20240318587A1 (en) 2021-07-21 2022-07-11 Exhaust gas purification system for purifying exhaust gases of internal combustion engines
EP22748323.7A EP4373613A1 (de) 2021-07-21 2022-07-11 Abgasreinigungssystem zur reinigung von abgasen von benzinmotoren
CN202280050326.8A CN117751012A (zh) 2021-07-21 2022-07-11 用于净化内燃机的废气的废气净化系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102021118801.6 2021-07-21
DE102021118801.6A DE102021118801A1 (de) 2021-07-21 2021-07-21 Abgasreinigungssystem zur Reinigung von Abgasen von Benzinmotoren

Publications (1)

Publication Number Publication Date
WO2023001617A1 true WO2023001617A1 (de) 2023-01-26

Family

ID=82748223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/069288 WO2023001617A1 (de) 2021-07-21 2022-07-11 Abgasreinigungssystem zur reinigung von abgasen von benzinmotoren

Country Status (5)

Country Link
US (1) US20240318587A1 (de)
EP (1) EP4373613A1 (de)
CN (1) CN117751012A (de)
DE (1) DE102021118801A1 (de)
WO (1) WO2023001617A1 (de)

Citations (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995035152A1 (en) 1994-06-17 1995-12-28 Engelhard Corporation Layered catalyst composite
EP0885650A2 (de) 1997-06-20 1998-12-23 Degussa Aktiengesellschaft Abgasreinigungskatalysator für Verbrennungsmotoren mit zwei katalytisch aktiven Schichten auf einem Tragkörper
EP1046423A2 (de) 1999-04-23 2000-10-25 Degussa-Hüls Aktiengesellschaft Mehrschichtiger Edelmetall-enthaltender Autoabgaskatalysator und seine Herstellung
DE10023439A1 (de) 2000-05-12 2001-11-22 Dmc2 Degussa Metals Catalysts Verfahren zur Entfernung von Stickoxiden und Rußpartikeln aus dem mageren Abgas eines Verbrennungsmotors und Abgasreinigungssystem hierfür
US6468941B1 (en) 2000-10-17 2002-10-22 Delphi Technologies, Inc. Niobium containing zirconium-cerium based soild solutions
US6585944B1 (en) 2000-10-17 2003-07-01 Delphi Technologies, Inc. Enhancement of the OSC properties of Ce-Zr based solid solutions
EP1541220A1 (de) 2003-12-11 2005-06-15 Delphi Technologies, Inc. Abgasbehandlungseinrichtung und Verfahren zu deren Herstellung
US20050282698A1 (en) 2004-06-22 2005-12-22 Southward Barry W Particulate filter device and exhaust treatment system, and methods of regenerating the same
EP1657410A2 (de) 2004-11-11 2006-05-17 Cataler Corporation Filterkatalysator
EP1726359A1 (de) 2005-05-27 2006-11-29 Cataler Corporation Abgasreinigungskatalysator
WO2008000449A2 (de) 2006-06-29 2008-01-03 Umicore Ag & Co. Kg Dreiweg-katalysator
EP1921044A2 (de) 2006-10-12 2008-05-14 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Auf Zirkonium-Cerium-Yttrium basierendes Mischoxid und Herstellungsverfahren dafür
EP2007682A1 (de) 2006-03-21 2008-12-31 Rhodia Recherches et Technologies Zusammensetzung auf basis von zirconiumoxid und ceroxid mit hoher reproduzierbarkeit und stabiler spezifischer oberfläche, herstellungsverfahren und verwendung bei der behandlung von abgasen
WO2009012348A1 (en) 2007-07-19 2009-01-22 Basf Catalysts Llc Multilayered catalyst compositions
EP2042226A2 (de) 2007-09-27 2009-04-01 Umicore AG & Co. KG Entfernung von Partikeln aus dem Abgas von mit überwiegend stöchiometrischen Luft/Kraftstoff-Gemisch betriebenen Verbrennungsmotoren
EP1974809B1 (de) 2007-03-19 2010-09-29 Umicore AG & Co. KG Doppelschichtiger Dreiweg-Katalysator
DE102010046762A1 (de) * 2009-09-29 2011-03-31 Ford Global Technologies, LLC, Dearborn System und Verfahren zum Regenerieren eines Partikelfilters
EP1900416B1 (de) 2006-09-06 2011-04-27 Mazda Motor Corporation System zur katalytischen Abgasumwandlung
US8277880B2 (en) 2010-04-22 2012-10-02 Ngk Insulators, Ltd. Method for manufacturing plugged honeycomb structure
US8776500B2 (en) 2012-03-27 2014-07-15 GM Global Technology Operations LLC System and method for hydrocarbon adsorber regeneration in a hybrid vehicle
US20150132188A1 (en) * 2012-06-18 2015-05-14 Johnson Matthey Public Limited Company Combined particulate filter and hydrocarbon trap
WO2015121910A1 (ja) 2014-02-12 2015-08-20 新日鉄住金マテリアルズ株式会社 触媒担持用基材
US20150266002A1 (en) 2014-03-21 2015-09-24 SDCmaterials, Inc. Compositions for passive nox adsorption (pna) systems and methods of making and using same
WO2016057285A1 (en) 2014-10-06 2016-04-14 Corning Incorporated Honeycomb filter article and methods thereof
EP3045226A1 (de) 2015-01-19 2016-07-20 Umicore AG & Co. KG Doppelschichtiger Dreiweg-Katalysator mit verbesserter Alterungsstabilität
WO2017082563A1 (ko) * 2015-11-10 2017-05-18 희성촉매 주식회사 화학양론적 작동 가솔린 엔진용 배기정화촉매
DE102017102393A1 (de) * 2016-02-18 2017-08-24 GM Global Technology Operations LLC Dedizierte steuersysteme und verfahren der abgasrückführung
WO2017153239A1 (en) 2016-03-09 2017-09-14 Haldor Topsøe A/S Preparation method of a non-woven fibrous material-based honeycomb catalyst
US20170274321A1 (en) * 2014-10-21 2017-09-28 Basf Corporation Emissions treatment systems with twc catalysts and scr-hct catalysts
EP3298252A1 (de) 2015-05-19 2018-03-28 Haldor Topsøe A/S Verfahren, multifunktionsfilter und system zur entfernung von partikeln und schadstoffverbindungen aus motorabgasen
WO2018069199A1 (de) 2016-10-10 2018-04-19 Umicore Ag & Co. Kg Katalysatoranordnung
US20180318763A1 (en) 2015-10-30 2018-11-08 Umicore Ag & Co. Kg Compositions for Passive NOx Adsorption PNA Systems and Methods of Making and Using Same
US20190120109A1 (en) 2017-10-20 2019-04-25 Umicore Ag & Co. Kg Passive nitrogen oxide adsorber catalyst
WO2019121994A1 (de) 2017-12-19 2019-06-27 Umicore Ag & Co. Kg Mehrschichtiger dreiwegekatalysator
WO2019134958A1 (de) 2018-01-05 2019-07-11 Umicore Ag & Co. Kg Passiver stickoxid-adsorber
DE102018108346A1 (de) 2018-04-09 2019-10-10 Umicore Ag & Co. Kg Beschichteter Wandflussfilter
US20190353067A1 (en) * 2018-05-18 2019-11-21 Umicore Ag & Co. Kg Exhaust treatment systems and methods involving oxygen supplementation and hydrocarbon trapping
US20190351398A1 (en) 2018-05-18 2019-11-21 Umicore Ag & Co. Kg Hydrocarbon trap catalyst
US20190351397A1 (en) 2018-05-18 2019-11-21 Umicore Ag & Co. Kg Hydrocarbon trap catalyst
US20190351393A1 (en) 2018-05-18 2019-11-21 Umicore Ag & Co. Kg Hydrocarbon trap catalyst
EP3595796A1 (de) 2018-05-09 2020-01-22 Umicore Ag & Co. Kg Verfahren zum beschichten eines wandflussfilters
EP3484602B1 (de) 2016-07-14 2020-02-19 Umicore AG & Co. KG Vanadiumeinfangendes scr-system
WO2020058265A1 (de) 2018-09-17 2020-03-26 Umicore Ag & Co. Kg Katalysator zur reduktion von stickoxiden
EP3639919A1 (de) 2018-10-18 2020-04-22 Umicore Ag & Co. Kg Abgasreinigungssystem für einen benzinmotor
EP3639908A1 (de) * 2018-10-18 2020-04-22 Umicore Ag & Co. Kg Abgasreinigungssystem für einen benzinmotor
EP3695902A1 (de) 2019-02-18 2020-08-19 Umicore Ag & Co. Kg Katalysator zur reduktion von stickoxiden
WO2020200394A1 (de) 2019-03-29 2020-10-08 Umicore Ag & Co. Kg Katalytisch aktives partikelfilter
WO2020200398A1 (de) 2019-03-29 2020-10-08 Umicore Ag & Co. Kg Katalytisch aktives partikelfilter
WO2020200397A1 (de) 2019-03-29 2020-10-08 Umicore Ag & Co. Kg Katalytisch aktives partikelfilter
US20210162382A1 (en) 2017-08-31 2021-06-03 Umicore Ag & Co. Kg Palladium/zeolite-based passive nitrogen oxide adsorber catalyst for purifying exhaust gas

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004176589A (ja) * 2002-11-26 2004-06-24 Toyota Motor Corp 排ガス浄化装置
JP5061861B2 (ja) * 2007-11-21 2012-10-31 トヨタ自動車株式会社 内燃機関の制御装置
PL2318673T3 (pl) 2008-02-05 2020-03-31 Basf Corporation Układy obróbki emisji w silniku benzynowym mające wychwytywacze cząstek stałych
US8926926B2 (en) * 2009-11-25 2015-01-06 GM Global Technology Operations LLC Exhaust particulate management for gasoline-fueled engines
EP2650042B2 (de) * 2012-04-13 2020-09-02 Umicore AG & Co. KG Schadstoffminderungssystem für Benzinfahrzeuge
CN105637189B (zh) * 2013-10-03 2021-11-16 优美科股份公司及两合公司 废气后处理系统
DE102014204682A1 (de) * 2014-03-13 2015-10-01 Umicore Ag & Co. Kg Katalysatorsystem zur Reduzierung von Schadgasen aus Benzinverbrennungsmotoren
US10124322B2 (en) * 2015-02-11 2018-11-13 Umicore Ag & Co. Kg Lean NOx traps, trapping materials, washcoats, and methods of making and using the same
EP3274087A4 (de) * 2015-03-26 2018-11-07 BASF Corporation Abgasbehandlungssystem
JP6458159B2 (ja) * 2015-09-24 2019-01-23 本田技研工業株式会社 内燃機関の排気浄化システム
KR101855769B1 (ko) * 2016-09-20 2018-05-09 현대자동차 주식회사 배기 시스템 및 질소산화물 탈착 제어 방법

Patent Citations (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995035152A1 (en) 1994-06-17 1995-12-28 Engelhard Corporation Layered catalyst composite
EP0885650A2 (de) 1997-06-20 1998-12-23 Degussa Aktiengesellschaft Abgasreinigungskatalysator für Verbrennungsmotoren mit zwei katalytisch aktiven Schichten auf einem Tragkörper
EP1046423A2 (de) 1999-04-23 2000-10-25 Degussa-Hüls Aktiengesellschaft Mehrschichtiger Edelmetall-enthaltender Autoabgaskatalysator und seine Herstellung
DE10023439A1 (de) 2000-05-12 2001-11-22 Dmc2 Degussa Metals Catalysts Verfahren zur Entfernung von Stickoxiden und Rußpartikeln aus dem mageren Abgas eines Verbrennungsmotors und Abgasreinigungssystem hierfür
US6468941B1 (en) 2000-10-17 2002-10-22 Delphi Technologies, Inc. Niobium containing zirconium-cerium based soild solutions
US6585944B1 (en) 2000-10-17 2003-07-01 Delphi Technologies, Inc. Enhancement of the OSC properties of Ce-Zr based solid solutions
EP1541220A1 (de) 2003-12-11 2005-06-15 Delphi Technologies, Inc. Abgasbehandlungseinrichtung und Verfahren zu deren Herstellung
US20050282698A1 (en) 2004-06-22 2005-12-22 Southward Barry W Particulate filter device and exhaust treatment system, and methods of regenerating the same
EP1657410A2 (de) 2004-11-11 2006-05-17 Cataler Corporation Filterkatalysator
EP1726359A1 (de) 2005-05-27 2006-11-29 Cataler Corporation Abgasreinigungskatalysator
EP2007682A1 (de) 2006-03-21 2008-12-31 Rhodia Recherches et Technologies Zusammensetzung auf basis von zirconiumoxid und ceroxid mit hoher reproduzierbarkeit und stabiler spezifischer oberfläche, herstellungsverfahren und verwendung bei der behandlung von abgasen
WO2008000449A2 (de) 2006-06-29 2008-01-03 Umicore Ag & Co. Kg Dreiweg-katalysator
EP1900416B1 (de) 2006-09-06 2011-04-27 Mazda Motor Corporation System zur katalytischen Abgasumwandlung
EP1921044A2 (de) 2006-10-12 2008-05-14 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Auf Zirkonium-Cerium-Yttrium basierendes Mischoxid und Herstellungsverfahren dafür
EP1974809B1 (de) 2007-03-19 2010-09-29 Umicore AG & Co. KG Doppelschichtiger Dreiweg-Katalysator
WO2009012348A1 (en) 2007-07-19 2009-01-22 Basf Catalysts Llc Multilayered catalyst compositions
EP2042226A2 (de) 2007-09-27 2009-04-01 Umicore AG & Co. KG Entfernung von Partikeln aus dem Abgas von mit überwiegend stöchiometrischen Luft/Kraftstoff-Gemisch betriebenen Verbrennungsmotoren
DE102010046762A1 (de) * 2009-09-29 2011-03-31 Ford Global Technologies, LLC, Dearborn System und Verfahren zum Regenerieren eines Partikelfilters
US8277880B2 (en) 2010-04-22 2012-10-02 Ngk Insulators, Ltd. Method for manufacturing plugged honeycomb structure
US8776500B2 (en) 2012-03-27 2014-07-15 GM Global Technology Operations LLC System and method for hydrocarbon adsorber regeneration in a hybrid vehicle
US20150132188A1 (en) * 2012-06-18 2015-05-14 Johnson Matthey Public Limited Company Combined particulate filter and hydrocarbon trap
WO2015121910A1 (ja) 2014-02-12 2015-08-20 新日鉄住金マテリアルズ株式会社 触媒担持用基材
US20150266002A1 (en) 2014-03-21 2015-09-24 SDCmaterials, Inc. Compositions for passive nox adsorption (pna) systems and methods of making and using same
WO2016057285A1 (en) 2014-10-06 2016-04-14 Corning Incorporated Honeycomb filter article and methods thereof
US20170274321A1 (en) * 2014-10-21 2017-09-28 Basf Corporation Emissions treatment systems with twc catalysts and scr-hct catalysts
EP3247493A1 (de) 2015-01-19 2017-11-29 Umicore AG & Co. KG Doppelschichtiger dreiweg-katalysator mit verbesserter alterungsstabilitaet
EP3045226A1 (de) 2015-01-19 2016-07-20 Umicore AG & Co. KG Doppelschichtiger Dreiweg-Katalysator mit verbesserter Alterungsstabilität
EP3298252A1 (de) 2015-05-19 2018-03-28 Haldor Topsøe A/S Verfahren, multifunktionsfilter und system zur entfernung von partikeln und schadstoffverbindungen aus motorabgasen
US20180318763A1 (en) 2015-10-30 2018-11-08 Umicore Ag & Co. Kg Compositions for Passive NOx Adsorption PNA Systems and Methods of Making and Using Same
WO2017082563A1 (ko) * 2015-11-10 2017-05-18 희성촉매 주식회사 화학양론적 작동 가솔린 엔진용 배기정화촉매
DE102017102393A1 (de) * 2016-02-18 2017-08-24 GM Global Technology Operations LLC Dedizierte steuersysteme und verfahren der abgasrückführung
WO2017153239A1 (en) 2016-03-09 2017-09-14 Haldor Topsøe A/S Preparation method of a non-woven fibrous material-based honeycomb catalyst
EP3484602B1 (de) 2016-07-14 2020-02-19 Umicore AG & Co. KG Vanadiumeinfangendes scr-system
WO2018069199A1 (de) 2016-10-10 2018-04-19 Umicore Ag & Co. Kg Katalysatoranordnung
US20210162382A1 (en) 2017-08-31 2021-06-03 Umicore Ag & Co. Kg Palladium/zeolite-based passive nitrogen oxide adsorber catalyst for purifying exhaust gas
US20190120109A1 (en) 2017-10-20 2019-04-25 Umicore Ag & Co. Kg Passive nitrogen oxide adsorber catalyst
WO2019121994A1 (de) 2017-12-19 2019-06-27 Umicore Ag & Co. Kg Mehrschichtiger dreiwegekatalysator
WO2019121375A1 (de) 2017-12-19 2019-06-27 Umicore Ag & Co. Kg Katalytisch aktives partikelfilter
WO2019121995A1 (de) 2017-12-19 2019-06-27 Umicore Ag & Co. Kg Einschichtiger dreiwegekatalysator
WO2019134958A1 (de) 2018-01-05 2019-07-11 Umicore Ag & Co. Kg Passiver stickoxid-adsorber
DE102018108346A1 (de) 2018-04-09 2019-10-10 Umicore Ag & Co. Kg Beschichteter Wandflussfilter
EP3595796A1 (de) 2018-05-09 2020-01-22 Umicore Ag & Co. Kg Verfahren zum beschichten eines wandflussfilters
US20190351393A1 (en) 2018-05-18 2019-11-21 Umicore Ag & Co. Kg Hydrocarbon trap catalyst
US20190351397A1 (en) 2018-05-18 2019-11-21 Umicore Ag & Co. Kg Hydrocarbon trap catalyst
US20190351398A1 (en) 2018-05-18 2019-11-21 Umicore Ag & Co. Kg Hydrocarbon trap catalyst
US20190353067A1 (en) * 2018-05-18 2019-11-21 Umicore Ag & Co. Kg Exhaust treatment systems and methods involving oxygen supplementation and hydrocarbon trapping
WO2020058265A1 (de) 2018-09-17 2020-03-26 Umicore Ag & Co. Kg Katalysator zur reduktion von stickoxiden
EP3639919A1 (de) 2018-10-18 2020-04-22 Umicore Ag & Co. Kg Abgasreinigungssystem für einen benzinmotor
EP3639908A1 (de) * 2018-10-18 2020-04-22 Umicore Ag & Co. Kg Abgasreinigungssystem für einen benzinmotor
EP3695902A1 (de) 2019-02-18 2020-08-19 Umicore Ag & Co. Kg Katalysator zur reduktion von stickoxiden
WO2020200394A1 (de) 2019-03-29 2020-10-08 Umicore Ag & Co. Kg Katalytisch aktives partikelfilter
WO2020200398A1 (de) 2019-03-29 2020-10-08 Umicore Ag & Co. Kg Katalytisch aktives partikelfilter
WO2020200397A1 (de) 2019-03-29 2020-10-08 Umicore Ag & Co. Kg Katalytisch aktives partikelfilter

Also Published As

Publication number Publication date
CN117751012A (zh) 2024-03-22
EP4373613A1 (de) 2024-05-29
DE102021118801A1 (de) 2023-01-26
US20240318587A1 (en) 2024-09-26

Similar Documents

Publication Publication Date Title
EP3727653B1 (de) Katalytisch aktives partikelfilter
DE69730539T2 (de) Abgasreinigungsanlage einer Brennkraftmaschine und Katalysator zum Reinigen des Abgases einer Brennkraftmaschine
EP1961933B1 (de) Katalytisch aktiviertes Dieselpartikelfilter mit Ammoniak-Sperrwirkung
DE102010002425B4 (de) Filter
EP1911506B1 (de) Stickoxidspeicherkatalysator mit abgesenkter Entschwefelungstemperatur
DE69430329T2 (de) Abgasreinigung
DE69606292T2 (de) Dieselmotorabgasreinigungssystem
DE102014105736A1 (de) Motor mit Fremdzündung und Abgassystem, das ein katalysiertes in Zonen beschichtetes Filtersubstrat umfasst
DE60123977T2 (de) Abgassystem für brennkraftmaschinen mit magergemischverbrennung
DE102013207415A1 (de) Filtersubstrat, das einen Dreiwegekatalysator umfasst
DE102014104748A1 (de) Filtersubstrat, das einen Dreiwegekatalysator umfasst.
EP2038046A2 (de) Dreiweg-katalysator
DE10308288A1 (de) Verfahren zur Entfernung von Stickoxiden aus dem Abgas eines mager betriebenen Verbrennungsmotors und Abgasreinigungsanlage hierzu
DE102010056223A1 (de) Abgassystem für einen Fahrzeugverbrennungsmotor mit Fremdzündung
WO2018172299A1 (de) Katalytisch aktives partikelfilter
EP3126646B1 (de) Regenerationsverfahren für abgasnachbehandlungssysteme
DE602004001262T2 (de) Katalysator und Verfahren zur Abgasreinigung
WO2001083087A1 (de) Verfahren und vorrichtung zur abgasreinigung
DE112014004876T5 (de) Katalysatorvorrichtung für Abgasreinigung und Verfahren für Abgasreinigung
DE69830267T2 (de) Motor mit System zur Abgasreinigung
DE60205036T2 (de) Abgasleitung für verbrennungsmotor
WO2023001863A1 (de) Abgasreinigungssystem zur reinigung von abgasen von benzinmotoren
WO2023001617A1 (de) Abgasreinigungssystem zur reinigung von abgasen von benzinmotoren
WO2023001865A1 (de) Abgasreinigungssystem zur reinigung von abgasen von benzinmotoren
WO2023198574A1 (de) Abgassystem für überwiegend stöchiometrisch betriebene verbrennungsmotoren aufweisend einen katalysator zur verminderung der ammoniakemissionen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22748323

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280050326.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18580496

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022748323

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022748323

Country of ref document: EP

Effective date: 20240221