[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023000798A1 - 一种通信方法和装置 - Google Patents

一种通信方法和装置 Download PDF

Info

Publication number
WO2023000798A1
WO2023000798A1 PCT/CN2022/093794 CN2022093794W WO2023000798A1 WO 2023000798 A1 WO2023000798 A1 WO 2023000798A1 CN 2022093794 W CN2022093794 W CN 2022093794W WO 2023000798 A1 WO2023000798 A1 WO 2023000798A1
Authority
WO
WIPO (PCT)
Prior art keywords
network element
data flow
information
characteristic information
control plane
Prior art date
Application number
PCT/CN2022/093794
Other languages
English (en)
French (fr)
Inventor
李汉成
周汉
蒋成堃
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023000798A1 publication Critical patent/WO2023000798A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present application relates to the communication field, and in particular, to a communication method and device.
  • 5G system 5G system, 5GS
  • control plane delay sensitive network time sensitive network, TSN
  • application function, AF application function, AF
  • time sensitive communication and time synchronization function network element time sensitive communication and time synchronization function network element
  • TSCTSF time sensitive communication and time synchronization function network element
  • PCF policy control function
  • the TSC assistance container includes information such as the direction of data flow, the cycle of the message, the amount of data in the cycle, and the time when the message arrives at 5GS.
  • the SMF calculates the time when the message arrives at the radio access network (RAN) according to the time when the message arrives at the 5GS and the delay information of the 5GS, and combines other information in the TSC assistance container to generate time-sensitive communication assistance information ( time sensitive communication assistance information, TSCAI), so as to configure TSCAI on the RAN.
  • TSN AF can calculate the time when the message reaches 5GS according to the information provided by the external network control network element, and TSCTSF can receive the time when the message arrives at 5GS from AF.
  • the 5GS control plane when the 5GS control plane creates RAN auxiliary information, it depends on the accurate arrival time of the message at the 5GS. However, the time at which the message arrives at the 5GS is obtained from the external network control plane network element or AF. If the external network control plane network element or AF cannot determine the time when the packet arrives at the 5GS, or the time information provided is inaccurate, the RAN auxiliary information calculated by the 5GS will be inaccurate. At this time, the 5G system cannot proceed based on this information Deterministic transfer.
  • This application provides a communication method and device.
  • the 5GS control plane cannot obtain the characteristics of the data flow from the external network control equipment or AF
  • the characteristics of the data flow are obtained through the detection of the first network element and reported to the 5GS to assist the 5GS in determining the scheduling information. , to achieve deterministic transmission, thereby ensuring the reliability of the business.
  • a communication method includes: a first network element receives indication information from a control plane network element, and the indication information is used to instruct the first network element to detect data flow characteristics; the first network element according to the indication The information detects the characteristics of the data flow and determines the characteristic information of the data flow.
  • the characteristic information of the data flow includes at least one of the following items: the time information of the arrival of the data flow, the information of the data flow cycle, and the information of the amount of data in the data flow cycle; the first The network element sends the characteristic information of the data flow to the network element of the control plane, and the characteristic information of the data flow is used for the network element of the control plane to determine the scheduling information of the data flow.
  • the first network element may include one of the following contents: UE/DS-TT, RAN or UPF/NW-TT, which will not be described in detail below.
  • control plane network element may include one of the following: session management network element SMF, policy control network element PCF, application function network element AF, network opening function network element NEF, time-sensitive communication and time synchronization function network element TSCTSF.
  • the information of the period of the data flow may refer to the sending period of the sending end, or may refer to the detection period configured by the receiving end.
  • the period of the data stream may also refer to: the UPF itself is configured to perform periodic detection, that is, the UPF's own detection period.
  • the time stamp information may be the time when the UPF receives the message, or it may be the time stamp in the user message inserted by the UPF into the GPRS tunnel protocol for the user layer after the UPF parses the user message. plane, GTP-U) packet header before sending it to the RAN.
  • GTP-U plane
  • the characteristic information of the data flow is used for the control plane network element to determine the scheduling information of the data flow.
  • the characteristic information of the data flow can be used for the control plane network element to create the scheduling information of the data flow, or the characteristics of the data flow
  • the information can also be used by the control plane network element to update (also can be understood as "modify") the scheduling information of the data flow.
  • the first network element (UE or UPF or RAN) can detect and report the characteristics of the data flow, and when the 5GS control plane cannot obtain the characteristics of the data flow from the external network control device or AF, through the first The network element detects and obtains the flow characteristics of the data, and assists the 5GS to create or update the scheduling information to ensure the end-to-end deterministic transmission of the user, thereby ensuring the service experience of the user.
  • the indication information is specifically used to indicate one or more of the following: characteristics of the data stream to be detected, identification information of the data stream to be detected, Threshold for feature updates of data streams to be detected.
  • the indication information in this application may also clearly indicate the characteristics of the data flow to be detected, the identification information of the data flow to be detected, and the threshold for updating the characteristics of the data flow to be detected, so that the data flow of the first network element Feature detection is more flexible and accurate, thereby ensuring service reliability.
  • the first network element when the indication information is used to indicate a threshold for updating the characteristics of the data flow to be detected, the first network element sends the The characteristic information of the data flow, including: if the first network element determines that the characteristic of the data flow changes and exceeds the threshold, the first network element sends the updated data flow to the control plane network element characteristic information.
  • the indication information indicates the threshold value of the data flow feature update to be detected
  • the first network element determines that the data flow feature changes and exceeds the threshold value, it can send the updated update to the control plane network element.
  • the feature information of the data stream avoids frequent reporting of information, reduces signaling interaction, and improves information processing efficiency.
  • the first network element is a radio access network RAN
  • the method further includes: the RAN receives a downlink message from a user plane functional network element UPF, The downlink message includes the time stamp information indicated by the UPF; the first network element detects the characteristics of the data flow according to the indication information, including: the RAN according to the received downlink message Timestamp information detects characteristics of the data stream.
  • the first network element is a radio access network RAN
  • the method further includes: the RAN receives an uplink message from a user equipment UE; the first network element A network element detecting the characteristic of the data flow according to the indication information includes: the RAN detecting the characteristic of the data flow according to the time when the uplink message of the UE is scheduled.
  • the RAN can detect the characteristics of the data flow for the uplink message or the downlink message, and then report it to the 5GS to assist the 5GS in determining the scheduling information and achieve deterministic transmission, thereby ensuring the reliability of the service .
  • the first network element sending the feature information of the data flow to the control plane network element includes: the first network element sends Layer NAS signaling sends the characteristic information of the data flow to the control plane network element, or; the first network element sends the characteristic information of the data flow through a service provided by the control plane network element, or; the second network element A network element sends the characteristic information of the data flow to a control plane network element that has subscribed to the characteristic information of the data flow, or; the first network element sends the characteristic information of the data flow to the first device, and the data flow
  • the characteristic information of the data flow is sent by the first device through the service provided by the control plane network element, or; the characteristic information of the data flow is sent by the first device to the control plane network element that has subscribed to the flow characteristic information of the data flow .
  • the first device may be, for example: a user plane function network element UPF.
  • the first network element may adopt multiple information reporting methods for the characteristic information of the data flow, which improves the flexibility of information reporting while realizing deterministic transmission.
  • the first network element is a user equipment UE and a user plane function network element UPF
  • the UE communicates through an Ethernet session
  • the first network element sends
  • the sending of the characteristic information of the data flow by the control plane network element includes: the UE sends the characteristic information of the data flow to the UPF through the Ethernet management protocol; the UPF sends the characteristic information of the data flow through the service provided by the control plane network element The characteristic information of the data flow, or; the first network element sends the characteristic information of the data flow to a control plane network element that has subscribed to the characteristic information of the data flow.
  • the present application also considers the scenario of an Ethernet session.
  • the UE can use the Ethernet packet to send the characteristics of the data flow, avoiding the need to create an IP session for sending the characteristics of the data flow.
  • the scheduling information of the data flow includes one or more of the following: time-sensitive communication auxiliary information TSCAI, time information for sending packets by the first network element, service Quality QoS parameter information.
  • the scheduling information created or updated by 5GS may include time-sensitive communication auxiliary information TSCAI, time information of the first network element sending a message, and quality of service QoS parameter information.
  • TSCAI time-sensitive communication auxiliary information
  • 5GS creates or updates scheduling information through the characteristic information of the data stream, which can guarantee the end-to-end deterministic transmission of users, thereby realizing the reliability of user services.
  • the first network element includes one of the following: user equipment UE, radio access network element RAN, user plane function network element UPF; the The control plane network elements include one of the following: session management network element SMF, policy control network element PCF, application function network element AF, network opening function network element NEF, time-sensitive communication and time synchronization function network element TSCTSF.
  • a communication method includes: a control plane network element sends indication information to a first network element, where the indication information is used to instruct the first network element to detect data flow characteristics; the The network element of the control plane receives characteristic information of the data flow from the first network element, and the characteristic information of the data flow includes at least one of the following items: arrival time information of the data flow, information of the sending cycle of the data flow, the Information about the amount of data in the data flow sending period; the control plane network element determines the scheduling information of the data flow according to the characteristic information of the data flow.
  • control plane network element in a possible implementation manner, can create data flow scheduling information according to the characteristic information of the data flow; in another possible implementation manner, the control plane network element card can create data flow scheduling information according to the data flow
  • the feature information updates also can be understood as "modifying" the scheduling information of the data flow.
  • the first network element (UE or UPF or RAN) can detect and report the characteristics of the data flow.
  • the 5GS control plane cannot obtain the characteristics of the data flow from the external network control device or AF
  • the first The network element can detect the flow characteristics of the obtained data and send it to the 5GS (for example, the control plane network element), so that the 5GS can create or update the scheduling information to ensure the end-to-end deterministic transmission of the user, thereby ensuring the service experience of the user.
  • the indication information is specifically used to indicate one or more of the following: characteristics of the data flow to be detected, identification information of the data flow to be detected, Threshold for feature updates of data streams to be detected.
  • the indication information in this application may also clearly indicate the characteristics of the data flow to be detected, the identification information of the data flow to be detected, and the threshold for updating the characteristics of the data flow to be detected, so that the data flow of the first network element Feature detection is more flexible and accurate, thereby ensuring service reliability.
  • the scheduling information of the data flow includes one or more of the following: time-sensitive communication auxiliary information TSCAI, time information for sending packets by the first network element, service Quality QoS parameter information.
  • the scheduling information created or updated by 5GS may include time-sensitive communication auxiliary information TSCAI, time information of the first network element sending a message, and quality of service QoS parameter information.
  • TSCAI time-sensitive communication auxiliary information
  • 5GS creates or updates scheduling information through the characteristic information of the data stream, which can guarantee the end-to-end deterministic transmission of users, thereby realizing the reliability of user services.
  • the receiving the feature information of the data flow by the control plane network element from the first network element includes: Signaling receives the feature information of the data flow from the first network element, or; the control plane network element provides a service for receiving the feature information of the data flow, or the control plane network element sends the first network element The element or the first device subscribes to the feature information of the data stream.
  • the first device may be, for example: a user plane function network element UPF.
  • the first network element is a user plane function network element UPF
  • the control plane network element receives a data stream from the first network element
  • the characteristic information includes: the control plane network element provides a service for receiving the characteristic information of the data flow, or the control plane network element subscribes to the first network element for the characteristic information of the data flow.
  • the first network element can adopt multiple information reporting methods for the characteristic information of the data flow, and the corresponding control plane network element can adopt multiple information receiving methods. While achieving deterministic transmission, it also improves information reporting. flexibility.
  • the first network element includes one of the following: user equipment UE, radio access network element RAN, user plane function network element UPF; the The control plane network elements include one of the following: session management network element SMF, policy control network element PCF, application function network element AF, network opening function network element NEF, time-sensitive communication and time synchronization function network element TSCTSF.
  • a communication device may be a first network element, for example, a user equipment UE, a radio access network device RAN, or a user plane function network element UPF.
  • the device can also be a chip.
  • the apparatus has a function of implementing the first network element in any possible implementation manner in the first aspect above. This function may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • a communication device which may be a control plane network element, for example, a session management network element SMF, a policy control network element PCF, an application function network element AF, a network opening function network element NEF, and a time-sensitive communication and time synchronization function network element TSCTSF.
  • the device can also be a chip.
  • the device has the function of implementing the control plane network element in any possible implementation manner in the first aspect above. This function may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • a communication device including a processor.
  • the processor is coupled with the memory, and may be used to execute instructions in the memory, so as to realize the function of the first network element in any possible implementation manner in the first aspect above, where the first network element may be, for example, a user equipment UE.
  • the device further includes a memory.
  • the device further includes a communication interface, and the processor is coupled to the communication interface.
  • the device is a first network element.
  • the communication interface may be a transceiver, or an input/output interface.
  • the device is a chip configured in the first network element.
  • the communication interface may be an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a communication device including a processor.
  • the processor is coupled with the memory, and can be used to execute instructions in the memory, so as to implement the function of the control plane network element in any possible implementation manner in the second aspect above, where the control plane network element may be, for example, an SMF.
  • the device further includes a memory.
  • the device further includes a communication interface, and the processor is coupled to the communication interface.
  • the device is a control plane network element.
  • the communication interface may be a transceiver, or an input/output interface.
  • the device is a chip configured in a control plane network element.
  • the communication interface may be an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a processor including: an input circuit, an output circuit, and a processing circuit.
  • the processing circuit is configured to receive a signal through the input circuit and transmit a signal through the output circuit, so that the processor executes any one of the above-mentioned first to second aspects or any possible one of any aspect method in the implementation.
  • the above-mentioned processor can be a chip
  • the input circuit can be an input pin
  • the output circuit can be an output pin
  • the processing circuit can be a transistor, a gate circuit, a flip-flop, and various logic circuits.
  • the input signal received by the input circuit may be received and input by, for example but not limited to, the receiver
  • the output signal of the output circuit may be, for example but not limited to, output to the transmitter and transmitted by the transmitter
  • the circuit may be the same circuit, which is used as an input circuit and an output circuit respectively at different times.
  • the embodiment of the present application does not limit the specific implementation manners of the processor and various circuits.
  • an apparatus including a processor and a memory.
  • the processor is used to read instructions stored in the memory, and can receive signals through the receiver and transmit signals through the transmitter, so as to execute any one of the first to second aspects or any possible implementation of any aspect method in .
  • processors there are one or more processors, and one or more memories.
  • the memory may be integrated with the processor, or the memory may be set separately from the processor.
  • the memory can be a non-transitory (non-transitory) memory, such as a read-only memory (read only memory, ROM), which can be integrated with the processor on the same chip, or can be respectively arranged in different On the chip, the embodiment of the present application does not limit the type of the memory and the configuration of the memory and the processor.
  • a non-transitory memory such as a read-only memory (read only memory, ROM)
  • ROM read only memory
  • a related data interaction process such as sending indication information may be a process of outputting indication information from a processor
  • receiving capability information may be a process of receiving input capability information from a processor.
  • processed output data may be output to the transmitter, and input data received by the processor may be from the receiver.
  • the transmitter and the receiver may be collectively referred to as a transceiver.
  • the device in the above-mentioned eighth aspect may be a chip, and the processor may be implemented by hardware or by software.
  • the processor When implemented by hardware, the processor may be a logic circuit, an integrated circuit, etc.; when implemented by software , the processor may be a general-purpose processor, implemented by reading software codes stored in a memory, the memory may be integrated in the processor, or be located outside the processor and exist independently.
  • a computer program product includes: a computer program (also referred to as code, or an instruction), which, when the computer program is executed, causes the computer to perform the above-mentioned first to first aspects.
  • a computer program also referred to as code, or an instruction
  • a computer-readable medium stores a computer program (also referred to as code, or an instruction), and when it is run on a computer, it causes the computer to execute the above-mentioned first aspect to A method in any one of the second aspects or any one of the possible implementations of any one of the aspects.
  • a computer program also referred to as code, or an instruction
  • a chip system including a processor, configured to call and run a computer program from a memory, so that a device installed with the chip system executes any one of the above-mentioned first to second aspects or any one of them.
  • a system in a twelfth aspect, includes the device in the third aspect and the device in the fourth aspect.
  • FIG. 1 is a schematic diagram of a network framework applicable to this application.
  • Figure 2 is a schematic diagram of a user plane architecture for deterministic transmission in a 5G system.
  • Fig. 3 is a schematic diagram of configuration of deterministic transmission scheduling information in a 5G system.
  • FIG. 4 is a schematic flow chart of a communication method 400 provided in this application.
  • FIG. 5 is a schematic flow chart of a communication method 500 provided in this application.
  • FIG. 6 is a schematic diagram of features of the detected data stream provided in the present application.
  • FIG. 7 is a schematic diagram of a reporting method of data flow characteristics provided by the present application.
  • FIG. 8 is a schematic flow chart of a communication method 800 provided in this application.
  • FIG. 9 is a schematic flow chart of a communication method 900 provided in this application.
  • FIG. 10 is a schematic flow chart of a communication method 1000 provided in this application.
  • Fig. 11 is a schematic flow chart of the communication device 100 provided in this application.
  • Fig. 12 is a schematic flow chart of the communication device 200 provided by the present application.
  • the wireless communication systems mentioned in the embodiments of the present application include but are not limited to: global system of mobile communication (GSM) system, long term evolution (long term evolution, LTE) frequency division duplex (frequency division duplex, FDD) system , LTE time division duplex (time division duplex, TDD), LTE system, advanced long-term evolution (LTE-Advanced, LTE-A) system, next-generation communication system (for example, 6G communication system), integration of multiple access systems system, or evolved system.
  • GSM global system of mobile communication
  • LTE long term evolution
  • LTE frequency division duplex
  • FDD frequency division duplex
  • FDD frequency division duplex
  • LTE time division duplex time division duplex
  • LTE-A advanced long-term evolution
  • next-generation communication system for example, 6G communication system
  • integration of multiple access systems system or evolved system.
  • the technical solution provided by this application can also be applied to machine type communication (machine type communication, MTC), inter-machine communication long-term evolution technology (Long Term Evolution-machine, LTE-M), device to device (device to device, D2D) network , machine to machine (machine to machine, M2M) network, Internet of things (internet of things, IoT) network or other networks.
  • MTC machine type communication
  • LTE-M inter-machine communication long-term evolution technology
  • D2D device to device
  • machine to machine machine to machine
  • M2M machine to machine
  • IoT Internet of things
  • the IoT network may include, for example, the Internet of Vehicles.
  • the communication methods in the Internet of Vehicles system are collectively referred to as vehicle to other devices (vehicle to X, V2X, X can represent anything), for example, the V2X can include: vehicle to vehicle (vehicle to vehicle, V2V) communication, vehicle and Infrastructure (vehicle to infrastructure, V2I) communication, vehicle to pedestrian (vehicle to pedestrian, V2P) or vehicle to network (vehicle to network, V2N) communication, etc.
  • vehicle to vehicle vehicle to vehicle
  • V2V vehicle to vehicle
  • V2I vehicle to infrastructure
  • V2P vehicle to pedestrian
  • V2N vehicle to network
  • the terminal equipment involved in the embodiments of the present application may include various access terminals, mobile equipment, user terminals or user devices with wireless communication functions.
  • the terminal device may be a user equipment (user equipment, UE), for example, a mobile phone (mobile phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal device, an augmented reality (augmented reality, AR) terminal equipment, etc.
  • Terminal equipment can also be wireless terminals in industrial control (industrial control), machine type communication (machine type communication, MTC) terminals, customer premise equipment (CPE), wireless terminals in self-driving , wireless terminals in remote medical, wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, smart home ), cellular phones, cordless phones, session initiation protocol (session initiation protocol, SIP) phones, wireless local loop (wireless local loop, WLL) stations, personal digital assistants (personal digital assistant, PDA), handheld phones with wireless communication capabilities Devices, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in 5G networks or terminal devices in public land mobile networks (PLMN) that will evolve in the future, etc.
  • industrial control industrial control
  • machine type communication machine type communication
  • CPE customer premise equipment
  • wireless terminals in self-driving wireless terminals in remote medical
  • wireless terminals in smart grid wireless terminals in transportation safety
  • wireless terminals in smart city, smart home
  • the network system architecture related to the embodiment of the present application is introduced below with reference to FIG. 1 .
  • FIG. 1 is a system architecture diagram applicable to the embodiment of the present application.
  • the network architecture includes user equipment UE, access network equipment (R)AN, and core network elements.
  • the core network includes user plane network elements and control plane network elements.
  • the user plane network element is mainly responsible for packet forwarding, quality of service (QoS) control, billing information statistics, etc.
  • the control plane NE is mainly responsible for service process interaction, delivering data packet forwarding policies and QoS control policies to the user plane NEs.
  • the network architecture may specifically include the following network elements:
  • Wireless access network radio access network, RAN
  • the access network that realizes the access network function based on wireless communication technology can be called a radio access network.
  • the wireless access network can manage wireless resources, provide access services for terminals, and complete the forwarding of control signals and user data between terminals and the core network.
  • the wireless access network device involved in this application may be a device with a wireless transceiver function.
  • the wireless access network device may be a device that provides wireless communication function services, and is usually located on the network side, including but not limited to: a next-generation base station (gNodeB, gNB) in a fifth-generation (5th generation, 5G) communication system, a sixth-generation The next generation base station in the 6th generation (6G) mobile communication system, the base station in the future mobile communication system or the access node in the WiFi system, etc., the evolved node B (evolved node B, eNB) in the LTE system, wireless Network controller (radio network controller, RNC), node B (node B, NB), base station controller (base station controller, BSC), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (base band unit, BBU), transmission reception point (transmission reception point, TRP), transmission point (transmitting point, TP), base transcei
  • the access network device may include a centralized unit (centralized unit, CU) node, or a distributed unit (distributed unit, DU) node, or a RAN device including a CU node and a DU node, or a control plane CU Node and user plane CU node, and RAN equipment of DU node.
  • the access network device provides services for the cell, and the user equipment communicates with the base station through the transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell.
  • the cell may be a cell corresponding to the base station (for example, a base station). It can belong to a macro base station, or it can belong to a base station corresponding to a small cell.
  • the small cell here can include: a metro cell, a micro cell, a pico cell, and a femto cell ( Femto cell), etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • the wireless access network device can be a macro base station, a micro base station or an indoor station, or a relay node or a donor node, a device that provides wireless communication services for user equipment in a V2X communication system, a cloud wireless access network ( Cloud radio access network (CRAN) wireless controllers, relay stations, vehicle-mounted devices, wearable devices, and network devices in future evolution networks.
  • CRAN Cloud radio access network
  • the embodiment of the present application does not limit the specific technology and specific equipment form adopted by the radio access network equipment.
  • Authentication server function authentication server function, AUSF
  • network element mainly used for user authentication, etc.
  • Access and mobility management function network element (access and mobility management function, AMF): mainly used for mobility management and access management, etc., and can be used to implement the mobility management entity (mobility management entity, MME) function Functions other than session management, such as lawful interception or access authorization (or authentication). In the embodiment of the present application, it can be used to implement functions of access and mobility management network elements.
  • AMF access and mobility management function
  • MME mobility management entity
  • Session management function network element (session management function, SMF): mainly used for session management, IP address allocation and management of terminal equipment, selection and management of user plane functions, policy control, or endpoints of charging function interfaces and downlink data notification etc. In the embodiment of the present application, it can be used to realize the function of the session management network element.
  • Policy control network element Policy control function, PCF: a unified policy framework for guiding network behavior, providing policy rule information for control plane functional network elements (such as AMF, SMF network elements, etc.).
  • Application function network element (Application function, AF): It is used for data routing affected by the application, accessing network opening function network elements, or interacting with the policy framework for policy control, etc.
  • Unified data management network element used for unified data management, 5G user data management, processing user identification, access authentication, registration, or mobility management, etc.
  • User plane function It can be used for packet routing and forwarding, or quality of service (QoS) processing of user plane data.
  • User data can be accessed to a data network (data network, DN) through this network element.
  • data network data network, DN
  • it can be used to realize the functions of the user plane network element.
  • Network slice selection function network element used to manage information related to network slices.
  • Data network a network used to provide data transmission.
  • DN data network
  • a network of an operator's business an Internet (Internet) network, a business network of a third party, and the like.
  • the above network architecture also includes network repository function (NRF): used to store the description information of network functional entities and the services they provide, and to support service discovery, network element entity discovery and other functions; network open function network Element (network exposure function, NEF): used to securely expose services and capabilities provided by the 3rd Generation Partnership Project (3GPP) network function to the outside.
  • NEF network exposure function
  • UDR Unified data storage function network element
  • control plane network elements in the network architecture can also include time sensitive communication and time synchronization function network elements (time sensitive communication and time synchronization function, TSCTSF), which can be used to control the 5G system (5G system , 5GS) for deterministic transmission-related configuration.
  • time sensitive communication and time synchronization function time sensitive communication and time synchronization function, TSCTSF
  • the N1 interface is an interface between the terminal device and the control plane of the core network, and is used to transmit non-access stratum (non access stratum, NAS) signaling.
  • the N2 interface is the interface between the RAN and the AMF network element, which is used for sending NAS messages, etc.;
  • the N3 interface is the interface between the RAN and the UPF network element, and is used to transmit the data of the user plane;
  • the N4 interface is the SMF network element and the UPF network
  • the interface between elements is used to transmit information such as the tunnel identification information of the N3 connection, data cache indication information, and downlink data notification messages, and can also be used to configure policies for the UPF.
  • the above-mentioned network architecture applied to the embodiment of the present application is only an example of a network architecture described from the perspective of a traditional point-to-point architecture and a service-oriented architecture, and the network architecture applicable to the embodiment of the present application is not limited thereto. Any network architecture capable of implementing the functions of the foregoing network elements is applicable to this embodiment of the present application.
  • each network element is just an example, and this application does not rule out the situation that each network element has another name and the functions of each network element are merged in the future. With the evolution of technology, any device or network element capable of realizing the functions of the above network elements falls within the scope of protection of the present application.
  • the name of the interface between network elements in FIG. 1 is just an example, and the name of the interface in a specific implementation may be another name, which is not specifically limited in this application.
  • the name of the message (or signaling) transmitted between the above network elements is only an example, and does not constitute any limitation on the function of the message itself.
  • Time-sensitive network (time-sensitive network, TSN) is a series of enhanced technical standards that support time-sensitive business forwarding developed by the IEEE working group based on standard Ethernet, and can be applied to various Ethernets that support low-latency and time-synchronized data transmission Network protocols, such as: audio and video transmission, industrial control, Internet of Vehicles and smart grid and many other industries.
  • the 3rd generation partnership project (3GPP) draws on the TSN standard defined by IEEE to define the 5G TSN logical bridge
  • the architecture uses the entire 5G network as a bridge in the TSN network to complete the networking and interconnection with the TSN network.
  • the 5G system has expanded the following three functional modules:
  • Device-side TSN translator used to connect to the TSN system on the terminal side.
  • DS-TT can be deployed together with UE or independently.
  • NW-TT Network-side TSN translator
  • Delay-sensitive network application function network element TSN application function, TSN AF: the centralized network configuration (centralized network configuration, CNC) controller used to connect to the TSN network, usually can be an independent network element.
  • the 5GS user plane can also independently provide deterministic transmission capabilities (that is, 5GS is not in the TSN network). At this time, the user plane may not have DS-TT and/or NW-TT, which is not limited in this application.
  • FIG. 2 is a schematic diagram of the user plane architecture for deterministic transmission in the 5G system.
  • the architecture shown in Figure 2 includes DSTT/UE, RAN, and UPF/NW-TT.
  • the 5GS user plane provides a definite delay 5GS delay (5GS delay) between DS-TT and NW-TT (that is, the delay of data flow at the ingress and egress of 5GS).
  • 5GS delay may include delay between DS-TT and UE, delay between UE and RAN (for example, radio access network packet delay budget (RAN packet delay budget, RAN PDB)), RAN and UPF/ Delay between NW-TT (for example, core network packet delay budget (core network PDB, CN PDB)).
  • RAN packet delay budget radio access network packet delay budget
  • NW-TT for example, core network packet delay budget (core network PDB, CN PDB)
  • the 5GS delay can also be the delay between two DS-TTs, for example, the 5GS delay is the delay between two terminal devices. At this time, the 5GS delay may be the delay between each of the two DS-TTs and the UPF/NW-TT. This application does not limit the specific definition of 5GS delay.
  • the 5GS control plane (for example, SMF, PCF) can obtain the time when the data flow reaches 5GS, and then determine the RAN deterministic transmission according to the time when the data flow reaches 5GS and the 5GS delay introduced above Assistance information, that is, time sensitive communication assistance information (time sensitive communication assistance information, TSCAI), and send the TSCAI to the RAN. Afterwards, the RAN can forward the message based on the TSCAI information.
  • the TSCAI includes data flow direction (for example, uplink message or downlink message), message period, data amount in the period, and time when the message arrives at the RAN.
  • the time when the message reaches the RAN refers to the time when the message is sent from the UE to the RAN.
  • the calculation method of the time when the uplink message reaches the RAN can be: the time when the message arrives at 5GS (that is, the time to reach DS-TT/UE) + UE-DS-TT residence delay; for the downlink message, the message arrival time It refers to the time when the RAN receives the message from the UPF.
  • the calculation method of the time when the downlink message arrives at the RAN can be: the time when the message arrives at the 5GS (that is, the time when the message arrives at the UPF/UE) + CN PDB delay.
  • the 5GS control plane TSN AF or TSCTSF can send a time-sensitive communication auxiliary container (TSC assistance container) to the SMF through the PCF, which contains the direction of the data flow (for example, uplink message or downlink message), Information such as the period of the message, the amount of data in the period, and the time when the message arrives at 5GS.
  • TSC assistance container contains the direction of the data flow (for example, uplink message or downlink message), Information such as the period of the message, the amount of data in the period, and the time when the message arrives at 5GS.
  • SMF calculates the time when the message arrives at RAN according to the time when the message arrives at 5GS and the delay information of 5GS, and combines other information in the TSC assistance container to generate TSCAI and configure it to RAN.
  • TSN AF can calculate the time when the message arrives at 5GS according to the information provided by the external network control network element, and TSCTSF can receive the time when the message arrives at 5GS from AF, for example, AF can directly send it to TSCTSF, or AF can send it to TSCTSF through NEF .
  • the 5GS control plane can also send the time when the message arrives at 5GS to the corresponding user plane network element (for example, DS-TT/UE or NW-TT/UPF), and the 5GS control plane can also send the message according to the time when the message arrives at 5GS And 5GS user plane delay, calculate the time when the message is sent from 5GS and configure it to the corresponding user plane network element (for example, NW-TT/UPF or DS-TT/UE).
  • the user plane network element can forward the message according to the corresponding configuration, so as to realize end-to-end deterministic transmission.
  • the 5GS control plane creates RAN auxiliary information and possibly determines the time when the message is sent from the 5GS, it depends on the time when the message arrives at the 5GS accurately, and the time when the message arrives at the 5GS is obtained from the external network control plane network element or AF acquired. If the external network control plane network element or AF cannot determine the time when the message arrives at 5GS, or the time information provided is inaccurate, the RAN auxiliary information calculated by 5GS and the possible calculated time when the message is sent from 5GS will be inaccurate Therefore, 5GS cannot perform deterministic transmission according to this information.
  • the reasons why the external network control plane NE or AF cannot determine the time when the message arrives at 5GS, or the time information provided is inaccurate, can be for example: the message sending device cannot send the message according to the determined time; or the message has passed Arrive at 5GS after transmission with indeterminate delay.
  • this application provides a communication method.
  • the 5GS control plane cannot obtain the characteristics of the data flow from the external network control device or AF, the characteristics of the data flow are obtained through the detection of the first network element, and reported to the 5GS to assist the 5GS Determine scheduling information to achieve deterministic transmission, thereby ensuring service reliability.
  • the mentioned first network element may include one of the following contents: UE/DS-TT, RAN or UPF/NW-TT, which will not be described in detail below.
  • control plane network element may include one of the following contents: SMF, PCF, AF, NEF, TSCTSF.
  • the sent message may be sent to the AMF first, and then the AMF sends the message to the RAN or UE/DS-TT, which will not be described in detail below.
  • the technical solution of this application is also applicable to the following application scenarios, as an example of a scenario: If the message sending end, (for example, an external device connected to DS-TT/UE) cannot send the message precisely according to the specified time (for example, the external device cannot send all the packets in this period with the specified starting time of the hour as the cycle, or the external device cannot send all the packets in the current period with a period of 10ms, or the external device cannot send all the packets in this period with a period of 10ms, or the external device cannot All packets in this period are sent in the first 1 ms of the period, etc.), but the business itself has periodic characteristics, and the deviation of the packets sent by the sender in different periods is not large; as an example of another scenario: if the packet Although the delay from the sender to the 5GS (for example, DS-TT/UE) is not fixed, it will not exceed a certain maximum delay.
  • the delay from the sender to the 5GS for example, DS-TT/UE
  • the 5GS (for example, the first network element) can determine a packet arrival time by itself, regard the packet as arriving at the 5GS at a certain time, and then perform determinism based on the determined packet arrival time at the 5GS transmission.
  • FIG. 4 is a schematic flowchart of a communication method 400 provided by the present application. The method in FIG. 4 includes:
  • the first network element receives indication information from the control plane network element, and the indication information is used to instruct the first network element to detect data flow characteristics.
  • the indication information may indicate one or more of the following contents: for example, the characteristics of the data flow to be detected, the identification information of the data flow to be detected, and the update threshold of the characteristics of the data flow to be detected .
  • Step 402 the first network element detects the feature of the data flow according to the indication information, and determines the feature information of the data flow.
  • the characteristic information of the data flow includes at least one of the following items: for example, the arrival time information of the data flow, the information of the period of the data flow, and the information of the amount of data in the period of the data flow.
  • the information of the period of the data flow may refer to the sending period of the sending end, or may refer to the detection period configured by the receiving end.
  • the period of the data stream may also refer to: the UPF itself is configured to perform periodic detection, that is, the UPF's own detection period.
  • the RAN can receive the downlink message through the UPF, and the downlink message includes the time stamp information indicated by the UPF, and the RAN can receive the downlink message according to the received downlink message.
  • the timestamp information in the text detects the characteristics of the data stream.
  • the timestamp information may be the time when the UPF receives the message, or it may be that the UPF inserts the timestamp in the user message into the GPRS tunnel protocol (GPRS tunnel protocol for user level) after analyzing the user message.
  • the user plane, GTP-U the user plane, GTP-U
  • the first network element is the RAN
  • the RAN can receive the uplink message from the UE
  • the RAN detects the characteristics of the data flow according to the time when the UE's uplink message is scheduled.
  • Step 403 the first network element sends characteristic information of the data flow to the network element of the control plane, and the characteristic information of the data flow is used for the network element of the control plane to determine scheduling information of the data flow.
  • the characteristic information of the data flow is used for the control plane network element to determine the scheduling information of the data flow.
  • the characteristic information of the data flow is used for the control plane network element to create the scheduling information of the data flow, or the data flow
  • the characteristic information is used for the control plane network element to update the scheduling information of the data flow.
  • the scheduling information of the data flow may include one or more of the following: for example, time-sensitive communication auxiliary information TSCAI, time information for sending a message by the first network element, and QoS parameter information.
  • the first network element when the indication information is used to indicate the threshold of the data flow feature update to be detected, if the first network element determines that the data flow feature changes and exceeds the threshold, the first network element may report to the control plane network element Send the characteristic information of the updated data flow.
  • the first network element may send the feature information of the data flow to the control plane network element through non-access stratum NAS signaling.
  • the first network element may send the characteristic information of the data flow through the service provided by the network element of the control plane, or; Send the characteristic information of the data flow.
  • the first network element may send the characteristic information of the data flow to the first device, and the first device then sends the characteristic information of the data flow through a service provided by the network element on the control plane, or;
  • a device may send characteristic information of a data flow to a control plane network element that has subscribed to the characteristic information of the data flow.
  • the first device may be, for example, a UPF network element.
  • the first network element can be UE and UPF, the UE can communicate through the Ethernet session, and the UE can send the characteristic information of the data flow to the UPF through the Ethernet management protocol,
  • the UPF sends the characteristic information of the data flow through the service provided by the network element of the control plane (it can also be reported by extending the interface between the existing SMF and the UPF), or; the first network element can send the characteristic information of the subscribed data flow
  • the first network element (UE or UPF or RAN) can detect and report the characteristics of the data flow, and when the 5GS control plane cannot obtain the characteristics of the data flow from the external network control device or AF, through the first network element A network element detects and obtains the flow characteristics of the data, and assists the 5GS to create or update scheduling information to ensure end-to-end deterministic transmission of users, thereby ensuring user service experience.
  • FIG. 5 is a schematic flowchart of a communication method 500 provided by the present application.
  • the uplink data transmission is taken as an example (for example, data is sent from the UE side to the UPF side), and the SMF is used as the control network element as an example.
  • the method of Figure 5 includes:
  • step 501 the SMF determines that the data flow needs to perform flow characteristic detection, and determines the identification information of the data flow.
  • the method for the SMF to determine that the data flow needs to perform flow feature detection may be, for example: the SMF may receive the data flow rule from the PCF, and determine the deterministic transmission of the data flow or need to create TSCAI information according to the data flow rule (For example, the data flow rule contains periodic information, but does not include the time when the packet flow arrives at 5GS, or the data flow rule contains jitter requirements), and then the SMF determines that flow feature detection is required.
  • the SMF may receive the data flow rule from the PCF, and determine the deterministic transmission of the data flow or need to create TSCAI information according to the data flow rule (For example, the data flow rule contains periodic information, but does not include the time when the packet flow arrives at 5GS, or the data flow rule contains jitter requirements), and then the SMF determines that flow feature detection is required.
  • the purpose of the flow feature detection is to obtain the feature information of the data flow through the first network element detection.
  • the feature information of the data flow may include one or more of the following information: arrival time of the data flow, cycle of the data flow, data volume in the cycle of the data flow, and the like.
  • the control plane can create TSCAI or 5GS egress scheduling information based on flow feature information, which can assist the user plane in forwarding and scheduling, and help achieve deterministic transmission.
  • the identification information of the data flow may be used to identify the data flow that needs to be detected by the flow feature.
  • the identification information of the data stream may further include identification information of information assisting in stream feature detection.
  • the identification information of the data flow in the present application can be, for example: flow identification (QoS flow identity, QFI), address information of the data flow, message characteristics, virtual local area network (virtual local area network, VLAN) information, cycle information of the data flow , data flow jitter requirements, data flow delay requirements, etc.
  • step 502 the SMF sends indication information #1 to the first network element, for instructing the first network element to perform data flow feature detection.
  • the first network element receives the indication information.
  • the indication information #1 does not indicate the characteristics of the data flow to be detected, then the first network element may also use a default value (for example, the default detection flow arrival time), or a known parameter, etc. , to determine the characteristics of the data stream to be detected.
  • the indication information #1 may also indicate the characteristics of the data stream to be detected. That is to say, the indication information #1 may directly indicate to the first network element the characteristics of the data flow to be detected.
  • the feature of the data stream (which may also be understood as the type of the feature of the data stream) may be, for example, at least one of the following: arrival time of the data stream, period of the data stream, and data volume within the period.
  • the indication information #1 may also indicate identification information of the data stream. That is to say, the indication information #1 may directly indicate to the first network element the data flow that needs to perform data flow feature detection.
  • the indication information #1 may also indicate a threshold value for updating the data stream feature.
  • a threshold value for updating the data stream feature.
  • the first network element checks the characteristics of the data flow, if the change of the characteristics of the data flow exceeds a threshold value, it can report, thereby avoiding frequent reporting of the characteristics of the data flow.
  • the threshold value (which can also be understood as the type of the threshold value) may be, for example: a threshold value of the arrival time of the data flow, a threshold value of the data flow period, a threshold value of the data amount in the period, and the like.
  • the indication information #1 indicates the characteristics of the data flow to be detected, the characteristics of the actually detected data flow may also be more than the characteristics of the indicated data flow. Therefore, if the indication information #1 indicates both the data stream feature to be detected and the threshold value for updating the data stream feature, it does not need to be defined that the type of stream feature detection is completely consistent with the type of the threshold value. For example, if the detected flow arrival time is indicated, and the indicated threshold value is the threshold value of the cycle, then when the detected cycle change is greater than the threshold value, the detected flow arrival time can be reported, and the updated cycle value can also be reported.
  • Step 503 the first network element detects the characteristics of the data flow.
  • the first network element may detect the feature of the data flow according to the indication of indication information #1.
  • the UE/DS-TT or UPF/NW-TT may detect the characteristics of the data flow.
  • UE/DS-TT or UPF/NW-TT may detect the characteristics of the data flow according to the time of receiving the packet, or analyze the timestamp in the packet.
  • the RAN detects characteristics of the data flow. For example, for the upstream flow, if the forwarding delay between the UE and DS-TT is relatively fixed, the RAN can detect the characteristics of the data flow according to the time when the packet is received from the UE; for another example, for the downstream flow, if the RAN and UPF network elements The delay of the N3 interface (used to transmit user plane data) between them is relatively fixed, and the RAN can detect the characteristics of the data flow according to the time of receiving the message from the UPF.
  • the foregoing steps 501 and 502 may not be performed, and at this time, the first network element may detect the characteristics of the data flow according to local information.
  • the UE/DS-TT may determine that the data flow corresponding to a certain application needs to perform data flow feature detection according to application requirements, and then perform the data flow feature detection and reporting process.
  • the method for the first network element to detect the characteristics of the data flow may be, for example, the UE/DS-TT monitors the time when the uplink message is received. Assuming that n messages have been received accumulatively and the cumulative time is T, then use T/DS-TT (n-1) is used as the cycle length of the message, and an arbitrary time (for example, t 0 ) is used as the starting time. Each cycle is defined by the above-mentioned determined cycle length, and the arrival time of the message in each cycle is detected, and the latest arrival time of the message in different cycles is determined as the message arrival time. As shown in Figure 6, the time of the fifth message in the cycle is later than other messages in their respective cycles, therefore, the first network element can use the relative time of the fifth message in the cycle as the cycle report The time when the text arrives at the 5GS.
  • the UPF can add the time when the message is received or the timestamp information in the parsed message in the form of a timestamp To the GPRS tunnel protocol for the user plane (GTP-U) packet header at the user level (the GTP-U protocol is used to forward packets between UPF and RAN, that is, to add GTP-U packet headers to the outside of user packets , and then send it), after the RAN receives the message, it detects the characteristics of the data flow according to the timestamp in the GTP-U header; for the uplink message, the RAN can detect the characteristics of the data flow according to the time when it schedules the UE's message .
  • GTP-U user plane
  • the present application does not limit the specific method for the first network element to detect the characteristics of the data flow, and the above method for detecting the characteristics of the data flow is only an example.
  • Step 504 the first network element reports characteristic information of the data flow.
  • the first network element may report the characteristic information of the data flow after determining the characteristic of the data flow.
  • the first network element may report the characteristic of the data flow and so on when the characteristic of the subsequent data flow changes and exceeds a threshold value.
  • the first network element may report the characteristic information of the detected data flow in the following three ways.
  • the first network element may report the characteristic information of the data flow through the cell.
  • the UE may report through NAS signaling, or the UPF may report through the N4 interface, or the RAN may report through the N2 interface. That is, the UE or the UPF or the RAN sends the feature information of the data flow to the SMF, and then the SMF can optionally send it to the PCF, or to the NEF, or to the TSCTSF, or to the AF.
  • Method 2 The first network element reports the characteristic information of the data flow through the service interface.
  • the UE may report the characteristic information of the data flow through the service-based interface that receives information with the SMF (or PCF/NEF/AF/TSCTSF). It may also be that the SMF (or PCF/NEF/AF/TSCTSF) subscribes the feature information of the data flow to the UE, and the UE sends the feature information of the data flow to the subscribed network element when detecting the feature of the data flow.
  • SMF or PCF/NEF/AF/TSCTSF
  • Mode 3 The first network element reports the feature information of the data flow through the service interface agent.
  • the UPF creates a service interface with the SMF (or PCF/NEF/AF/TSCTSF) on behalf of the UE, and reports the characteristic information of the data flow. It can also be that SMF (or PCF/NEF/AF/TSCTSF) subscribes to the UPF for the characteristic information of the data flow. After the UE detects the characteristics of the data flow and sends it to the UPF, the UPF sends the information of the data flow to the subscribed network element. characteristic information.
  • Step 505 the SMF creates or updates scheduling information of the data flow according to the characteristic information of the reported data flow.
  • the scheduling information of the data flow may include one or more of the following, for example, time-sensitive communication auxiliary information TSCAI, time information for sending a message by the first network element, quality of service QoS parameter information, and the like.
  • the SMF can create/modify data flow forwarding rules according to the characteristic information of the data flow reported by the first network element, such as TSCAI, sending time, QoS parameter information, etc., so as to perform deterministic transmission.
  • the first network element (UE or UPF or RAN) can detect and report the characteristics of the data flow, and when the 5GS control plane cannot obtain the characteristics of the data flow from the external network control device or AF, through the first network element A network element detects and obtains the flow characteristics of the data, and assists the 5GS to create or update scheduling information to ensure end-to-end deterministic transmission of users, thereby ensuring user service experience.
  • FIG. 8 is a schematic flow chart of a communication method 800 provided by an embodiment of the present application.
  • the method 800 includes:
  • the first network element determines the characteristics of the data flow, and reference may be made to steps 501 to 503 in the method 500, which will not be repeated here.
  • Step 804 the first network element sends information #1 to the SMF through NAS signaling, and the information #1 includes characteristic information of the data flow.
  • the first network element reports the detected characteristic information of the data flow to the SMF through NAS signaling.
  • the SMF receives the information including the characteristics of the data flow.
  • the UE/DS-TT can send the NAS signaling to the AMF through the N1 interface.
  • the NAS signaling contains the characteristic information of the data flow, and then the AMF sends it to SMF; or if the RAN detects the characteristics of the data flow, the RAN sends the NAS signaling to the AMF through the N2 interface.
  • the NAS signaling contains the characteristic information of the data flow, and then the AMF sends it to the SMF; or if it is the UPF detection data
  • the UPF sends the characteristic information of the data flow to the SMF through signaling through the N4 interface.
  • step 805 may also be executed, and the SMF creates or modifies the TSCAI according to the received characteristic information including the data flow.
  • Step 806 the SMF sends the created TSCAI to the RAN. It can also be understood that the SMF configures the created or modified TSCAI to the RAN.
  • step 805 and step 806 may not be performed.
  • the SMF executes step 807, and the SMF sends the characteristic information of the data flow to the PCF/NEF/AF/TSCTSF, triggering the creation or modification of the TSCAI using the existing process.
  • the SMF can send the feature information of the data flow to the PCF, and the PCF sends it to the NEF/AF/TSCTSF.
  • the NEF/AF/TSCTSF sends the feature information including the data flow to the SMF, and the SMF updates the TSCAI.
  • the NEF/AF/TSCTS can trigger the existing process to create or modify the TSCAI, for example, the SMF updates the TSCAI.
  • the TSCTSF can send the characteristic information of the data flow to the PCF, and then send the TSC assistance Container to the SMF through the PCF, which includes the direction of the data flow (uplink/downlink), the period of the message, the amount of data in the period, Information such as the time when the message arrives at the 5GS (for example, the time when the message arrives at the RAN).
  • SMF calculates the time when the message arrives at RAN according to the time when the message arrives at 5GS and the delay information of 5GS, and generates TSCAI in combination with other information in the TSC assistance container, and configures it to RAN.
  • step 807 may still be performed after performing steps 805 and 806, and the SMF may still send the feature information of the data flow to the PCF/NEF/AF/TSCTSF.
  • the SMF since the SMF has already sent the updated TSCAI to the RAN in step 805 and step 806, therefore, in step 807, the SMF may not need to trigger the existing process to update the TSCAI, that is, step 808 does not need to be performed.
  • the first network element can detect the characteristics of the data flow, and send the characteristics of the data flow through cell reporting, which can assist the 5GS to create or update the scheduling information of the data flow, and ensure the end-to-end certainty of the user transmission, so as to guarantee the service experience of users.
  • the first network element sends the characteristics of the data flow by means of cell reporting, and the SMF can create or update the TSCAI while receiving the characteristic information of the data flow, which reduces the signaling interaction process; the SMF can also send the characteristics of the data flow Information is sent to PCF/NEF/AF/TSCTSF to create or update TSCAI through existing processes, thereby reducing process modifications.
  • FIG. 9 is a schematic flow chart of a communication method 900 provided by the embodiment of the present application.
  • the first network element detects the characteristics of the data flow, it can pass PCF/NEF/TSCTSF/AF
  • the provided service interface sends the characteristic information of the data stream and uses IP for communication.
  • the first network element reports, two methods are provided, one is that UE/DS-TT, RAN, UPF directly report, and the other is that UE/DS-TT or RAN sends data streams to UPF (It can be understood as indirect reporting).
  • the UPF acts as an interface agent to report the characteristics of the data flow to the PCF/NEF/TSCTSF/AF, thereby triggering TSCAI update or 5GS scheduling information update.
  • the method 800 includes:
  • step 901 is optionally included, where the first network element acquires address information of the 5GS.
  • the address information of NEF/PCF/TSCTSF/AF is provided to the first network element during the session creation process; or for the indirect reporting method, if the first The network element is UE/DS-TT or RAN, which can provide address information of UPF to UE/DS-TT or RAN, and provide address information of NEF/PCF/TSCTSF/AF to UPF.
  • the above address information may be directly configured on the first network element.
  • Step 902 the first network element determines characteristic information of the data flow.
  • Step 903a the first network element sends the feature information of the data flow to the NEF/PCF/TSCTSF/AF, and the information includes the feature information of the data flow.
  • the first network element may use the address information of the PCF/NEF/TSCTSF/AF obtained in step 901 to report the characteristic information of the data flow through the service interface.
  • Step 903b the first network element sends the characteristic information of the data flow to the UPF.
  • the UPF receives the feature information of the data flow.
  • the characteristic of the data flow may be sent to the address of the UPF obtained in step 901 .
  • the feature information of the data flow may be a self-defined message format, or a message format of a service provided by PCF/NEF/TSCTSF/AF.
  • step 903c the UPF forwards the characteristic information of the data flow to the PCF/NEF/TSCTSF/AF.
  • UPF can establish a connection with PCF/NEF/TSCTSF/AF, and forward the characteristic information of the data flow through the service provided by PCF/NEF/TSCTSF/AF.
  • Step 904 after the NEF/AF/TSCTSF obtains the feature information of the data flow, it may trigger the process of creating or modifying the TSCAI.
  • the existing process can be used to create or modify the TSCAI
  • the TSCTSF sends the characteristic information of the data flow to the PCF, and then sends the TSC assistance Container to the SMF through the PCF, which includes the direction of the data flow (uplink/downlink) and the period of the message , the amount of data in the period, the time when the message arrives at 5GS and other information.
  • SMF calculates the time when the message arrives at RAN according to the time when the message arrives at 5GS and the delay information of 5GS, and generates TSCAI in combination with other information in the TSC assistance container, and configures it to RAN.
  • the first network element can detect the characteristics of the data flow, and report the characteristic information of the data flow through the service interface, which can assist the 5GS to create or update the scheduling information of the data flow, and ensure the end-to-end deterministic transmission of the user , so as to ensure the service experience of users.
  • the first network element can directly use the service provided by the PCF/NEF/TSCTSF/AF to report the characteristics of the data flow, which reduces the modification and definition of signaling.
  • the first network element can directly use the service provided by the PCF/NEF/AF/TSCTSF, which requires the first network element to use IP for communication.
  • the UE/DS-TT may use an Ethernet session for communication, and if the method 900 is adopted, the UE/DS-TT will be required to use an IP session for communication.
  • FIG. 10 is a schematic flow chart of a communication method 1000 provided by an embodiment of the present application. In this embodiment, based on the steps in method 500, after the first network element detects the characteristics of the data flow, PCF/NEF can be used through an Ethernet session.
  • the service provided by /AF/TSCTSF reports the characteristic information of the data flow.
  • the method includes:
  • Step 1010 create an Ethernet session for the UE, and create a management data flow.
  • an Ethernet session can be created for the UE based on an existing process, and the method for creating a management flow can be, for example:
  • the SMF indicates to the UE and/or the UPF the identification of the management flow, or the SMF indicates to the UE and/or the UPF the characteristics of the management flow (for example, the destination address of the data flow, the VLAN of the data flow, the type, etc.); in another implementation manner, the UE and/or UPF can use default information (for example, adopting the 802.3ah protocol as the management flow) or local configuration to determine the information of the sent Ethernet message.
  • Step 1020 the first network element determines the characteristics of the data flow.
  • step 1030 is also included, if the Ethernet management flow used for sending the flow characteristic information needs to be negotiated, then the interaction process between the UE and the UPF is completed.
  • Step 1040 the UE may send the characteristic information of the data flow to the UPF through the Ethernet message.
  • the UPF receives the message.
  • the UE may send the characteristics of the data flow through a custom field of the Ethernet management protocol 802.3ah message.
  • step 1050 the UPF forwards the feature information of the data flow to the PCF/NEF/TSCTSF/AF.
  • the UPF is pre-configured with address information of the PCF/NEF/AF/TSCTSF, or the UPF obtains the address information of the PCF/NEF/AF/TSCTSF through query.
  • the UPF uses the service provided by the PCF/NEF/TSCTSF/AF corresponding to the obtained address information to send the characteristic information of the data flow.
  • Step 1060 after the NEF/AF/TSCTSF obtains the feature information of the data flow, it can trigger the process of creating or modifying the TSCAI.
  • TSCAI can be created or modified using existing processes.
  • the TSCTSF can send the characteristic information of the data flow to the PCF, and then send the TSC assistance Container to the SMF through the PCF, which includes the direction of the data flow (uplink/downlink), the cycle of the message, the amount of data in the cycle, and the arrival of the message to 5GS time and other information.
  • SMF calculates the time when the message arrives at RAN according to the time when the message arrives at 5GS and the delay information of 5GS, and generates TSCAI in combination with other information in the TSC assistance container, and configures it to RAN.
  • the first network element can detect the characteristics of the data flow, report the characteristic information of the data flow through the service proxy interface, assist the 5GS to create or update the scheduling information of the data flow, and ensure the end-to-end deterministic transmission of the user , so as to ensure the service experience of users.
  • the UE can use the Ethernet packet to send the feature of the data stream, avoiding creating an IP session for sending the feature of the data stream.
  • words such as “first” and “second” are used to describe the same functions and functions that are basically the same. item or similar items.
  • the first information and the second information are only for distinguishing different information, and the sequence thereof is not limited.
  • words such as “first” and “second” do not limit the number and execution order, and words such as “first” and “second” do not necessarily limit the difference.
  • one or more of the following refers to any combination of these items, including any combination of single or plural items.
  • one or more of a, b, or c may mean: a, b, c; a and b; a and c; b and c; or a and b and c.
  • a, b, c can be single or multiple.
  • the communication method provided by the embodiment of the present application is described in detail with reference to FIG. 4 to FIG. 10 .
  • the following describes the device provided by the embodiment of the present application with reference to FIG. 11 and FIG. 12 . It should be understood that the descriptions of the device embodiments correspond to the descriptions of the method embodiments. Therefore, for details that are not described in detail, reference may be made to the method embodiments above. For brevity, details are not repeated here.
  • each node such as a terminal device or a network device, includes a corresponding hardware structure and/or software module for performing each function.
  • each node such as a terminal device or a network device
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software drives hardware depends on the specific application and design constraints of the technical solution. Those skilled in the art may use different methods to implement the described functions for each specific application, but such implementation should not be regarded as exceeding the scope of the present application.
  • the embodiment of the present application may divide the terminal device or the terminal device into functional modules according to the above method examples.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic, and is only a logical function division, and there may be other division methods in actual implementation. In the following, description will be made by taking the division of each functional module corresponding to each function as an example.
  • Fig. 11 is a schematic block diagram of an apparatus 100 according to an embodiment of the present application.
  • the apparatus 100 may include: a transceiver unit 110 and a processing unit 120 .
  • the apparatus 100 may be the first network element in the above method embodiment, for example, UE, RAN, UPF, or it may be used to implement the first network element in the above method embodiment function chip.
  • the device 100 may correspond to the first network element in the method 400, method 500, method 800, method 900, and method 1000 according to the embodiment of the present application, and the device 100 may execute the method 400 and the method of the embodiment of the present application Steps corresponding to the first network element in 500, method 800, method 900, and method 1000. It should be understood that the specific process for each unit to perform the above corresponding steps has been described in detail in the above method embodiments, and for the sake of brevity, details are not repeated here.
  • the device includes a transceiver unit and a processing unit, the transceiver unit is used to receive indication information, the indication information is used to instruct the first network element to detect data flow characteristics;
  • the indication information detects the characteristics of the data flow, and determines the characteristic information of the data flow, and the characteristic information of the data flow includes at least one of the following items: the time information of the arrival of the data flow, and the information of the period of the data flow .
  • Information about the amount of data in the period of the data flow; the transceiver unit is further configured to send characteristic information of the data flow, and the characteristic information of the data flow is used for the control plane network element to determine scheduling information of the data flow.
  • the device is a radio access network RAN
  • the transceiver unit is further configured to receive a downlink message
  • the downlink message includes timestamp information indicated by the UPF
  • the processing unit is used to Detecting the characteristics of the data flow according to the indication information includes: the processing unit is configured to detect the characteristics of the data flow according to the time stamp information in the received downlink message.
  • the device is a radio access network RAN
  • the transceiver unit is further configured to receive an uplink message
  • the processing unit is configured to detect the characteristics of the data flow according to the indication information, including: the The processing unit is configured to detect the characteristics of the data flow according to the time when the uplink message is scheduled.
  • the transceiver unit is configured to send the feature information of the data flow to the control plane network element through non-access stratum NAS signaling, or; the transceiver unit is configured to provide the control plane network element with Send the characteristic information of the data flow through the service, or; the transceiver unit is used to send the characteristic information of the data flow to the control plane network element that has subscribed to the characteristic information of the data flow, or; the transceiver unit is used to send the characteristic information of the data flow to The first device sends the characteristic information of the data flow, and the characteristic information of the data flow is sent by the first device through the service provided by the control plane network element, or; the characteristic information of the data flow is the first Sent by the device to the control plane NEs that have subscribed to the data flow feature information.
  • the device communicates through an Ethernet session, and the transceiver unit is used to send the characteristic information of the data flow, including: the device is used to send the characteristic information of the data flow through an Ethernet management protocol; The device is used to send the characteristic information of the data flow through the service provided by the network element of the control plane, or; the device sends the characteristic information of the data flow to the network element of the control plane that has subscribed to the characteristic information of the data flow.
  • the device 100 can be the control plane network element in the above method embodiment, for example, SMF, PCF, AF, NEF, TSCTSF, or it can be used to implement the control plane network element in the above method embodiment A chip that functions as a surface network element.
  • the device 100 may correspond to the control plane network element in the method 400, method 500, method 800, method 900, and method 1000 according to the embodiment of the present application, and the device 100 may execute the method 400 and the method 1000 of the embodiment of the present application. 500 , steps corresponding to the control plane network element in method 800 , method 900 , and method 1000 . It should be understood that the specific process for each unit to perform the above corresponding steps has been described in detail in the above method embodiments, and for the sake of brevity, details are not repeated here.
  • the transceiver unit is used to send indication information, and the indication information is used to instruct the first network element to detect the characteristics of the data flow; the transceiver unit is used to receive the characteristic information of the data flow, and the data flow
  • the feature information includes at least one of the following items: the arrival time information of the data stream, the information of the sending cycle of the data stream, and the information of the amount of data in the sending cycle of the data stream; the processing unit is configured to The characteristic information of determines the scheduling information of the data flow.
  • the scheduling information of the data flow includes one or more of the following: time-sensitive communication auxiliary information TSCAI, time information for sending a packet by the first network element, and quality of service (QoS) parameter information.
  • TSCAI time-sensitive communication auxiliary information
  • QoS quality of service
  • the transceiving unit is configured to receive characteristic information of the data flow, comprising: the transceiving unit is configured to receive the characteristic information of the data flow from a first network element through non-access stratum NAS signaling, or The transceiver unit is configured to provide a service for receiving the characteristic information of the data flow, or the control plane network element subscribes to the first network element or the first device for the characteristic information of the data flow.
  • the transceiver unit is used to receive the feature information of the data stream, including: the device receives the feature information of the data stream by providing a service for receiving the feature information of the data stream, or the device subscribes to The feature information of the data stream is to receive the feature information of the data stream.
  • FIG. 7 is a schematic block diagram of an apparatus 200 provided by an embodiment of the present application.
  • the apparatus 200 includes: at least one processor 220 .
  • the processor 220 is coupled with the memory for executing instructions stored in the memory to send signals and/or receive signals.
  • the device 200 further includes a memory 230 for storing instructions.
  • the apparatus 200 further includes a transceiver 210, and the processor 220 controls the transceiver 210 to send signals and/or receive signals.
  • processor 220 and the memory 230 may be combined into one processing device, and the processor 220 is configured to execute the program codes stored in the memory 230 to implement the above functions.
  • the memory 230 may also be integrated in the processor 220 , or be independent of the processor 220 .
  • the transceiver 210 may include a transceiver (or a receiver) and a transmitter (or a transmitter).
  • the transceiver may further include antennas, and the number of antennas may be one or more.
  • the transceiver 210 may be a communication interface or an interface circuit.
  • the transceiver 210 in the device 200 may correspond to the transceiver unit 110 in the device 100
  • the processor 220 in the device 200 may correspond to the processing unit 120 in the device 200 .
  • each step of the above method can be completed by an integrated logic circuit of hardware in a processor or an instruction in the form of software.
  • the steps of the methods disclosed in connection with the embodiments of the present application may be directly implemented by a hardware processor, or implemented by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware. To avoid repetition, no detailed description is given here.
  • the processor in the embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above-mentioned method embodiment may be completed by an integrated logic circuit of hardware in a processor or an instruction in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (digital signal processor, DSP), an application-specific integrated circuit (application-specific integrated circuit, ASIC), a field-programmable gate array (field-programmable gate array, FPGA) or Other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field-programmable gate array
  • Other programmable logic devices discrete gate or transistor logic devices, discrete hardware components.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM), which acts as external cache memory.
  • RAM random access memory
  • static RAM static random access memory
  • dynamic RAM dynamic random access memory
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory direct ram-bus RAM, DR RAM
  • direct ram-bus RAM direct ram-bus RAM
  • the present application also provides a computer program product, on which computer program code is stored, and when the computer program code is run on the computer, the computer is made to execute method 400 and method 500 , method 800, method 900, and method 1000 in any one embodiment.
  • the present application also provides a computer-readable medium, the computer-readable medium stores program code, and when the program code is run on the computer, the computer is made to execute the method 400, the method 500, The method in any one of the method 800, method 900, and method 1000 embodiments.
  • the present application further provides a system, which includes the foregoing apparatus or equipment.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disc, SSD)) etc.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a high-density digital video disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk (solid state disc, SSD)
  • the network-side equipment in each of the above device embodiments corresponds to the terminal equipment and the network-side equipment or terminal equipment in the method embodiments, and the corresponding modules or units perform corresponding steps, for example, the communication unit (transceiver) executes the receiving method in the method embodiments. Or the step of sending, other steps besides sending and receiving may be performed by a processing unit (processor). For the functions of the specific units, reference may be made to the corresponding method embodiments. Wherein, there may be one or more processors.
  • a component may be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and the computing device can be components.
  • One or more components can reside within a process and/or thread of execution and a component can be localized on one computer and/or distributed between two or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on a signal having one or more packets of data (e.g., data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet via a signal interacting with other systems). Communicate through local and/or remote processes.
  • packets of data e.g., data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet via a signal interacting with other systems.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法和装置,该方法包括:用户面网元从控制面网元接收指示信息,用户面网元根据指示信息对数据流的特征进行检测,并确定数据流的特征信息,用户面网元将数据流的特征信息发送给控制面网元,该数据流的特征信息可以用于控制面网元确定数据流的调度信息。实现了确定性传输,保障业务的可靠性和用户的业务体验。

Description

一种通信方法和装置
本申请要求于2021年7月23日提交中国专利局、申请号为202110839960.7、申请名称为“一种通信方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,具体地,涉及一种通信方法和装置。
背景技术
目前,5G系统(5G system,5GS)控制面时延敏感网络(time sensitive network,TSN)应用功能网元(application function,AF)或时间敏感通信和时间同步功能网元(time sensitive communication and time synchronization function,TSCTSF)通过策略控制网元(policy control function,PCF)向会话管理功能网元(session management,SMF)发送时间敏感通信辅助容器(TSC assistance container)。其中,TSC assistance container中包含了数据流方向、报文的周期、周期内的数据量、报文到达5GS的时间等信息。之后,SMF根据报文到达5GS的时间以及5GS的时延信息计算报文到达无线接入网(radio access network,RAN)的时间,并且结合TSC assistance container中的其他信息生成时间敏感通信辅助信息(time sensitive communication assistance information,TSCAI),从而将TSCAI配置到RAN上。其中,TSN AF可以根据外部网络控制网元提供的信息计算报文到达5GS的时间,TSCTSF可以从AF接收报文到达5GS的时间。
由上可知,5GS控制面创建RAN辅助信息时,依赖于报文准确到达5GS的时间,然而,报文到达5GS的时间是从外部网络控制面网元或者AF获得的。如果外部网络控制面网元或者AF无法确定报文到达5GS的时间,或者提供的时间信息不准确时,5GS计算出的RAN辅助信息将是不准确的,此时,5G系统不能按照该信息进行确定性传输。
发明内容
本申请提供一种通信方法和装置,在5GS控制面无法从外部网络控制设备或者AF获得数据流特征时,通过第一网元检测获得数据流的特征,并且上报给5GS,辅助5GS确定调度信息,实现确定性传输,从而保障业务的可靠性。
第一方面,提供了一种通信方法,该方法包括:第一网元从控制面网元接收指示信息,指示信息用于指示第一网元进行数据流特征的检测;第一网元根据指示信息检测数据流的特征,并确定数据流的特征信息,数据流的特征信息至少包括以下一项:数据流到达的时间信息、数据流周期的信息、数据流周期内数据量的信息;第一网元向控制面网元发送数据流的特征信息,所述数据流的特征信息用于所述控制面网元确定数据流的调度信息。
本申请中,第一网元可以包括以下内容中的一项:UE/DS-TT、RAN或者UPF/NW-TT, 以下不再赘述。
本申请中,控制面网元可以包括以下内容中的一项:会话管理网元SMF、策略控制网元PCF、应用功能网元AF、网络开放功能网元NEF、时间敏感通信和时间同步功能网元TSCTSF。
本申请中,数据流周期的信息可以指发送端的发送周期,也可以指接收端配置的检测周期。例如,如果UPF接收到数据流时,该数据流的周期也可以是指:UPF自己配置成周期性检测,即,UPF自己的检测周期。
本申请中,时间戳信息可能是UPF接收到报文的时间,也可能是UPF解析用户报文后,将用户报文中的时间戳插入在用户层面的GPRS隧道协议(GPRS tunnel protocol for the user plane,GTP-U)包头中的时间,之后再将其发送给RAN。
本申请中,数据流的特征信息用于控制面网元确定数据流的调度信息,具体地,数据流的特征信息可以用于控制面网元创建数据流的调度信息,或者,数据流的特征信息也可以用于控制面网元更新(也可以理解为“修改”)数据流的调度信息。
根据本申请提供的方法,第一网元(UE或者UPF或者RAN)能够对数据流的特征进行检测和上报,在5GS控制面无法从外部网络控制设备或者AF获得数据流特征时,通过第一网元检测获得数据的流特征,并且辅助5GS创建或更新调度信息,保障用户端到端的确定性传输,从而保障用户的业务体验。
结合第一方面,在第一方面的某些实施方式中,所述指示信息具体用于指示以下内容的一项或者多项:待检测的数据流的特征、待检测的数据流的标识信息、待检测的数据流特征更新的阈值。
基于上述技术方案,本申请中指示信息也可以明确指示待检测的数据流的特征、待检测的数据流的标识信息、待检测的数据流特征更新的阈值,使得第一网元的数据流的特征检测更加灵活、准确,从而保障业务的可靠性。
结合第一方面,在第一方面的某些实施方式中,所述指示信息用于指示待检测的数据流特征更新的阈值时,所述第一网元向所述控制面网元发送所述数据流的特征信息,包括:如果所述第一网元确定所述数据流特征发生变化并超过所述阈值时,所述第一网元向所述控制面网元发送更新后的数据流的特征信息。
基于上述技术方案,如果指示信息中指示了待检测的数据流特征更新的阈值,第一网元确定所述数据流特征发生变化并超过所述阈值时,可以向控制面网元发送更新后的数据流的特征信息,从而避免信息的频繁上报,减少信令交互,提高信息处理效率。
结合第一方面,在第一方面的某些实施方式中,所述第一网元为无线接入网RAN,所述方法还包括:所述RAN从用户面功能网元UPF接收下行报文,所述下行报文中包含所述UPF指示的时间戳信息;所述第一网元根据所述指示信息检测所述数据流的特征,包括:所述RAN根据接收的所述下行报文中的时间戳信息检测所述数据流的特征。
结合第一方面,在第一方面的某些实施方式中,所述第一网元为无线接入网RAN,所述方法还包括:所述RAN从用户设备UE接收上行报文;所述第一网元根据所述指示信息检测所述数据流的特征,包括:所述RAN根据调度所述UE的上行报文的时间检测所述数据流的特征。
基于上述技术方案,本申请中针对上行报文或者下行报文,RAN可以分别进行数据 流特征的检测,并且后续上报给5GS,辅助5GS确定调度信息,实现确定性传输,从而保障业务的可靠性。
结合第一方面,在第一方面的某些实施方式中,所述第一网元向所述控制面网元发送所述数据流的特征信息,包括:所述第一网元通过非接入层NAS信令向所述控制面网元发送所述数据流的特征信息,或者;所述第一网元通过控制面网元提供的服务发送所述数据流的特征信息,或者;所述第一网元向已订阅数据流流特征信息的控制面网元发送所述数据流的特征信息,或者;所述第一网元向第一设备发送所述数据流的特征信息,所述数据流的特征信息是所述第一设备通过控制面网元提供的服务发送的,或者;所述数据流的特征信息是所述第一设备向已订阅数据流流特征信息的控制面网元发送的。
本申请中,第一设备例如可以是:用户面功能网元UPF。
基于上述技术方案,本申请中,对于数据流的特征信息第一网元可以采用多种信息上报方式,在实现确定性传输的同时,还提高了信息上报的灵活性。
结合第一方面,在第一方面的某些实施方式中,所述第一网元为用户设备UE和用户面功能网元UPF,所述UE通过以太会话进行通信,所述第一网元向所述控制面网元发送所述数据流的特征信息,包括:所述UE通过以太管理协议向所述UPF发送所述数据流的特征信息;所述UPF通过控制面网元提供的服务发送所述数据流的特征信息,或者;所述第一网元向已订阅数据流流特征信息的控制面网元发送所述数据流的特征信息。
基于上述技术方案,本申请中,还考虑了以太会话的场景,此时,可以由UE使用以太报文发送数据流的特征,避免另外创建用于发送数据流特征的IP会话。
结合第一方面,在第一方面的某些实施方式中,所述数据流的调度信息包括以下一项或者多项:时间敏感通信辅助信息TSCAI、第一网元发送报文的时间信息、服务质量QoS参数信息。
基于上述技术方案,本申请中,5GS所创建或更新的调度信息可以包括时间敏感通信辅助信息TSCAI、第一网元发送报文的时间信息、服务质量QoS参数信息。本申请,5GS通过数据流的特征信息创建或更新调度信息,可以保障用户端到端的确定性传输,从而实现用户业务的可靠性。
结合第一方面,在第一方面的某些实施方式中,所述第一网元包括以下内容中的一项:用户设备UE、无线接入网元RAN、用户面功能网元UPF;所述控制面网元包括以下内容中的一项:会话管理网元SMF、策略控制网元PCF、应用功能网元AF、网络开放功能网元NEF、时间敏感通信和时间同步功能网元TSCTSF。
第二方面,提供了一种通信方法,该方法包括:控制面网元向第一网元发送指示信息,所述指示信息用于指示所述第一网元进行数据流特征的检测;所述控制面网元从所述第一网元接收数据流的特征信息,所述数据流的特征信息至少包括以下一项:所述数据流到达的时间信息、所述数据流发送周期的信息、所述数据流发送周期内数据量的信息;所述控制面网元根据所述数据流的特征信息确定所述数据流的调度信息。
本申请中,在一种可能的实现方式中,控制面网元可以根据数据流的特征信息创建数据流的调度信息;在另一种可能的实现方式中,控制面网元卡可以根据数据流的特征信息更新(也可以理解为“修改”)数据流的调度信息。
根据本申请所提供的方法,第一网元(UE或者UPF或者RAN)能够对数据流的特 征进行检测和上报,在5GS控制面无法从外部网络控制设备或者AF获得数据流特征时,第一网元可以检测获得数据的流特征,发送给5GS(例如,控制面网元),从而使得5GS可以创建或更新调度信息,保障用户端到端的确定性传输,从而保障用户的业务体验。
结合第二方面,在第二方面的某些实现方式中,所述指示信息具体用于指示以下内容的一项或者多项:待检测的数据流的特征、待检测的数据流的标识信息、待检测的数据流特征更新的阈值。
基于上述技术方案,本申请中指示信息也可以明确指示待检测的数据流的特征、待检测的数据流的标识信息、待检测的数据流特征更新的阈值,使得第一网元的数据流的特征检测更加灵活、准确,从而保障业务的可靠性。
结合第二方面,在第二方面的某些实现方式中,所述数据流的调度信息包括以下一项或者多项:时间敏感通信辅助信息TSCAI、第一网元发送报文的时间信息、服务质量QoS参数信息。
基于上述技术方案,本申请中,5GS所创建或更新的调度信息可以包括时间敏感通信辅助信息TSCAI、第一网元发送报文的时间信息、服务质量QoS参数信息。本申请,5GS通过数据流的特征信息创建或更新调度信息,可以保障用户端到端的确定性传输,从而实现用户业务的可靠性。
结合第二方面,在第二方面的某些实现方式中,所述控制面网元从所述第一网元接收数据流的特征信息,包括:所述控制面网元通过非接入层NAS信令从所述第一网元接收所述数据流的特征信息,或者;所述控制面网元通过提供接收所述数据流的特征信息的服务,或者所述控制面网元向第一网元或第一设备订阅所述数据流的特征信息。
本申请中,第一设备例如可以是:用户面功能网元UPF。
结合第二方面,在第二方面的某些实现方式中,其特征在于,所述第一网元为用户面功能网元UPF,所述控制面网元从所述第一网元接收数据流的特征信息,包括:所述控制面网元通过提供接收所述数据流的特征信息的服务,或者所述控制面网元向第一网元订阅所述数据流的特征信息。
基于上述技术方案,对于数据流的特征信息第一网元可以采用多种信息上报方式,对应的控制面网元可以采用多种信息接收方式,在实现确定性传输的同时,还提高了信息上报的灵活性。
结合第二方面,在第二方面的某些实现方式中,所述第一网元包括以下内容中的一项:用户设备UE、无线接入网元RAN、用户面功能网元UPF;所述控制面网元包括以下内容中的一项:会话管理网元SMF、策略控制网元PCF、应用功能网元AF、网络开放功能网元NEF、时间敏感通信和时间同步功能网元TSCTSF。
第三方面,提供了一种通信装置,该装置可以是第一网元,例如,用户设备UE、无线接入网设备RAN或者用户面功能网元UPF。该装置也可以是芯片。该装置具有实现上述第一方面中任意可能的实现方式中第一网元的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
第四方面,提供了一种通信装置,该装置可以是控制面网元,例如,会话管理网元SMF、策略控制网元PCF、应用功能网元AF、网络开放功能网元NEF、时间敏感通信和 时间同步功能网元TSCTSF。该装置也可以是芯片。该装置具有实现上述第一方面中任意可能的实现方式中控制面网元的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
第五方面,提供了一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面中任意可能的实现方式中第一网元的功能,第一网元例如可以是用户设备UE。可选地,该装置还包括存储器。可选地,该装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该装置为第一网元。当该装置为第一网元时,该通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该装置为配置于第一网元中的芯片。当该装置为配置于终端设备中的芯片时,该通信接口可以是输入/输出接口。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第六方面,提供了一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第二方面中任意可能的实现方式中控制面网元的功能,控制面网元例如可以是SMF。可选地,该装置还包括存储器。可选地,该装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该装置为控制面网元。当该装置为控制面网元时,该通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该装置为配置于控制面网元中的芯片。当该装置为配置于终端设备中的芯片时,该通信接口可以是输入/输出接口。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第七方面,提供了一种处理器,包括:输入电路、输出电路和处理电路。所述处理电路用于通过所述输入电路接收信号,并通过所述输出电路发射信号,使得所述处理器执行上述第一方面至第二方面中任一方面或任一方面中任一种可能实现方式中的方法。
在具体实现过程中,上述处理器可以为芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
第八方面,提供了一种装置,包括处理器和存储器。该处理器用于读取存储器中存储的指令,并可通过接收器接收信号,通过发射器发射信号,以执行第一方面至第二方面中任一方面或者任一方面中任一种可能实现方式中的方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
在具体实现过程中,存储器可以为非瞬时性(non-transitory)存储器,例如只读存储 器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
应理解,相关的数据交互过程例如发送指示信息可以为从处理器输出指示信息的过程,接收能力信息可以为处理器接收输入能力信息的过程。具体地,处理输出的数据可以输出给发射器,处理器接收的输入数据可以来自接收器。其中,发射器和接收器可以统称为收发器。
上述第八方面中的装置可以是芯片,该处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
第九方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行上述第一方面至第二方面中任一方面或任一方面中任一种可能实现方式中的方法。
第十方面,提供了一种计算机可读介质,所述计算机可读介质存储有计算机程序(也可以称为代码,或指令),当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中任一方面或任一方面中任一种可能实现方式中的方法。
第十一方面,提供了一种芯片系统,包括处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片系统的设备执行上述第一方面至第二方面任一方面或任一方面中任一种可能实现方式中的方法。
第十二方面,提供了一种系统,所述系统包括第三方面涉及的装置、第四方面涉及的装置。
附图说明
图1是本申请适用的网络框架示意图。
图2是5G系统实现确定性传输用户面架构示意图。
图3是5G系统确定性传输调度信息配置的示意图。
图4是本申请提供的通信方法400的示意性流程图。
图5是本申请提供的通信方法500的示意性流程图。
图6是本申请提供的检测数据流的特征的示意图。
图7是本申请提供的数据流特征上报方式的示意图。
图8是本申请提供的通信方法800的示意性流程图。
图9是本申请提供的通信方法900的示意性流程图。
图10是本申请提供的通信方法1000的示意性流程图。
图11是本申请提供的通信装置100的示意性流程图。
图12是本申请提供的通信装置200的示意性流程图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例提及的无线通信系统包括但不限于:全球移动通信(global system of  mobile communication,GSM)系统、长期演进(long term evolution,LTE)频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、LTE系统、先进的长期演进(LTE-Advanced,LTE-A)系统、下一代通信系统(例如,6G通信系统)、多种接入系统的融合系统,或演进系统。
本申请提供的技术方案还可以应用于机器类通信(machine type communication,MTC)、机器间通信长期演进技术(Long Term Evolution-machine,LTE-M)、设备到设备(device to device,D2D)网络、机器到机器(machine to machine,M2M)网络、物联网(internet of things,IoT)网络或者其他网络。其中,IoT网络例如可以包括车联网。其中,车联网系统中的通信方式统称为车到其他设备(vehicle to X,V2X,X可以代表任何事物),例如,该V2X可以包括:车辆到车辆(vehicle to vehicle,V2V)通信,车辆与基础设施(vehicle to infrastructure,V2I)通信、车辆与行人之间的通信(vehicle to pedestrian,V2P)或车辆与网络(vehicle to network,V2N)通信等。
本申请实施例中所涉及到的终端设备可以包括各种具有无线通信功能的接入终端、移动设备、用户终端或用户装置。例如,终端设备可以为用户设备(user equipment,UE),例如,手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备等。终端设备也可是工业控制(industrial control)中的无线终端、机器类型通信(machine type communication,MTC)终端、客户终端设备(customer premise equipment,CPE)、无人驾驶(self-driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等。
下面结合图1介绍本申请实施例涉及网络系统架构。
图1是本申请实施例适用的系统架构图,如图所示,该网络架构包含用户设备UE,接入网设备(R)AN以及核心网网元。核心网包含用户面网元和控制面网元。用户面网元主要负责分组数据包的转发、服务质量(quality of service,QoS)控制、计费信息统计等。控制面网元主要负责业务流程交互、向用户面网元下发数据包转发策略、QoS控制策略等。该网络架构具体可以包括下列网元:
1、无线接入网(radio access network,RAN):基于无线通信技术实现接入网络功能的接入网可以称为无线接入网。无线接入网能够管理无线资源,为终端提供接入服务,进而完成控制信号和用户数据在终端和核心网之间的转发。
本申请所涉及的无线接入网设备可以是具有无线收发功能的设备。该无线接入网设备可以是提供无线通信功能服务的设备,通常位于网络侧,包括但不限于:第五代(5th generation,5G)通信系统中的下一代基站(gNodeB,gNB)、第六代(6th generation,6G)移动通信系统中的下一代基站、未来移动通信系统中的基站或WiFi系统中的接入节点等,LTE系统中的演进型节点B(evolved node B,eNB)、无线网络控制器(radio network  controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),传输接收点(transmission reception point,TRP)、发射点(transmitting point,TP)、基站收发台(base transceiver station,BTS)等。在一种网络结构中,该接入网设备可以包括集中单元(centralized unit,CU)节点、或分布单元(distributed unit,DU)节点、或包括CU节点和DU节点的RAN设备、或者控制面CU节点和用户面CU节点,以及DU节点的RAN设备。接入网设备为小区提供服务,用户设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与基站进行通信,该小区可以是基站(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(small cell)对应的基站,这里的小小区可以包括:城市小区(metro cell)、微小区(micro cell)、微微小区(pico cell)、毫微微小区(femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。无线接入网设备可以是宏基站,也可以是微基站或室内站,还可以是中继节点或施主节点,V2X通信系统中的为用户设备提供无线通信服务的设备、云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、中继站、车载设备、可穿戴设备以及未来演进网络中的网络设备等。本申请的实施例对无线接入网设备所采用的具体技术和具体设备形态不做限定。
2、认证服务功能(authentication server function,AUSF)网元:主要用于用户鉴权等。
3、接入和移动性管理功能网元(access and mobility management function,AMF):主要用于移动性管理和接入管理等,可以用于实现移动性管理实体(mobility management entity,MME)功能中除会话管理之外的其它功能,例如,合法监听、或接入授权(或鉴权)等功能。在本申请实施例中,可用于实现接入和移动管理网元的功能。
4、会话管理功能网元(session management function,SMF):主要用于会话管理、终端设备的IP地址分配和管理、选择和管理用户平面功能、策略控制、或收费功能接口的终结点以及下行数据通知等。在本申请实施例中,可用于实现会话管理网元的功能。
5、策略控制网元(policy control function,PCF):用于指导网络行为的统一策略框架,为控制平面功能网元(例如AMF,SMF网元等)提供策略规则信息等。
6、应用功能网元(application function,AF):用于进行应用影响的数据路由,接入网络开放功能网元,或,与策略框架交互进行策略控制等。
7、统一数据管理网元(unified data management,UDM):用于统一数据管理、5G用户数据管理、处理用户标识、接入鉴权、注册、或移动性管理等。
8、用户面功能网元(user plane function,UPF):可用于分组路由和转发、或用户面数据的服务质量(quality of service,QoS)处理等。用户数据可通过该网元接入到数据网络(data network,DN)。在本申请实施例中,可用于实现用户面网元的功能。
9、网络切片选择功能网元(network slice selection function,NSSF):用于管理网络切片相关的信息。
10、数据网络(data network,DN):用于提供传输数据的网络。例如,运营商业务的网络、因特(Internet)网、第三方的业务网络等。
另外,上述网络架构还包括网络存储功能网元(network repository function,NRF):用于保存网络功能实体以及其提供服务的描述信息,以及支持服务发现,网元实体发现等 功能;网络开放功能网元(network exposure function,NEF):用于安全地向外部开放由第三代合作伙伴计划(3GPP)网络功能提供的业务和能力等。统一数据存储功能网元(unified data repository,UDR),用于UDM存储订阅数据或读取订阅数据以及PCF存储策略数据或者读取策略数据。
需要说明的是,该网络架构中的控制面网元还可以包括时间敏感通信和时间同步功能网元(time sensitive communication and time synchronization function,TSCTSF),该网元可以用于对5G系统(5G system,5GS)进行确定性传输相关的配置。
在该网络架构中,N1接口为终端设备和核心网控制面之间的接口,用于传递非接入层(non access stratum,NAS)信令。N2接口为RAN和AMF网元的接口,用于NAS消息的发送等;N3接口为RAN和UPF网元之间的接口,用于传输用户面的数据等;N4接口为SMF网元和UPF网元之间的接口,用于传输例如N3连接的隧道标识信息,数据缓存指示信息,以及下行数据通知消息等信息,还可以用于对UPF进行策略配置等。
应理解,上述应用于本申请实施例的网络架构仅是举例说明的从传统点到点的架构和服务化架构的角度描述的网络架构,适用本申请实施例的网络架构并不局限于此,任何能够实现上述各个网元的功能的网络架构都适用于本申请实施例。
需要说明的是,本申请中,各个网元的名称只是一个示例,本申请不排除以后各个网元为其它名称,以及各个网元之间的功能合并的情况。随着技术的演进,任何能够实现上述各个网元的功能的设备或者网元,都在本申请的保护范围之内。
应理解,图1中的各个网元之间的接口名称只是一个示例,具体实现中接口的名称可能为其他的名称,本申请对此不作具体限定。此外,上述各个网元之间的所传输的消息(或信令)的名称也仅仅是一个示例,对消息本身的功能不构成任何限定。
为了便于理解本申请的技术方案,下面结合图2和图3对本申请涉及的用户端到端的确定性传输进行简单的介绍。
时间敏感网络(time-sensitive network,TSN)是由IEEE工作组基于标准以太网制定的支持时间敏感业务转发的系列增强技术标准,可应用于各种支持低延时及基于时间同步数据传输的以太网协议,例如:音视频传输、工业控制、车联网和智能电网等诸多行业。
为满足无线接入网络支持应用TSN技术的确定性工业网络互联的需求,第三代合作伙伴计划(the 3rd generation partnership project,3GPP)借鉴了IEEE定义的TSN标准,定义了5G TSN逻辑网桥的架构,将整个5G网络作为TSN网络中的网桥,完成与TSN网络的组网以及互联互通。为了实现5G TSN逻辑网桥和TSN网络的对接,5G系统扩展了如下3个功能模块:
(1)终端侧TSN转换器(device-side TSN translator,DS-TT):用于连接终端侧的TSN系统,DS-TT可以是和UE合一部署,也可以是独立部署。
(2)网络侧TSN转换器(network-side TSN translator,NW-TT):用于连接网络侧的TSN系统,通常为UPF中的一个功能模块。NW-TT可以是和UPF合一部署,也可以是独立部署。
(3)时延敏感网络应用功能网元(TSN application function,TSN AF):用于连接TSN网络的集中网络配置(centralized network configuration,CNC)控制器,通常可以为一个独立的网元。
应理解,5GS用户面也可以独立提供确定性传输能力(即5GS不在TSN网络中),这时用户面可以没有DS-TT和/或NW-TT,本申请不做限定。
图2是5G系统实现确定性传输用户面架构示意图,图2所示的架构中包括DSTT/UE、RAN和UPF/NW-TT。5GS用户面提供DS-TT和NW-TT之间(即数据流在5GS入口和出口的时延)的确定时延5GS时延(5GS delay)。5GS时延可以包括DS-TT和UE之间的时延、UE和RAN之间的时延(例如,无线接入网分组时延预算(RAN packet delay budget,RAN PDB))、RAN和UPF/NW-TT之间的时延(例如,核心网分组时延预算(core network PDB,CN PDB))。5GS时延也可以是两个DS-TT之间的时延,例如,5GS时延是两个终端设备之间的时延。此时,5GS时延可以是两个DS-TT各自和UPF/NW-TT之间的时延。本申请不限定5GS时延的具体定义。
下面结合图3简单描述一下,目前5G系统确定性传输调度信息的过程。
如图3所示,现有技术中,5GS控制面(例如,SMF、PCF)可以获得数据流到达5GS的时间,之后根据数据流到达5GS的时间以及前面介绍的5GS时延确定RAN确定性传输辅助信息,即,时间敏感通信辅助信息(time sensitive communication assistance information,TSCAI),并将TSCAI发送到RAN。之后,RAN可以基于TSCAI信息转发报文。TSCAI中包含数据流方向(例如,上行报文,或下行报文)、报文的周期、周期内的数据量、报文到达RAN的时间。对于上行报文,报文到达RAN的时间是指报文从UE向RAN发出时的时间。上行报文到达RAN的时间的计算方式可以是:报文到达5GS的时间(即到达DS-TT/UE的时间)+UE-DS-TT驻留时延;对于下行报文,报文到达时间是指RAN接收到来自UPF的报文的时间。下行报文到达RAN的时间的计算方式可以是:报文到达5GS的时间(即到达UPF/UE的时间)+CN PDB时延。
如图3所示,5GS控制面TSN AF或TSCTSF可以通过PCF向SMF发送时间敏感的通信辅助容器(TSC assistance container),其中包含了数据流的方向(例如,上行报文或下行报文)、报文的周期、周期内的数据量、报文到达5GS的时间等信息。之后,SMF根据报文到达5GS的时间以及5GS的时延信息计算报文到达RAN的时间,并结合TSC assistance container中的其他信息生成TSCAI配置到RAN。其中,TSN AF可以根据外部网络控制网元提供的信息计算报文到达5GS的时间,TSCTSF可以从AF接收报文到达5GS的时间,例如,AF可以直接发送给TSCTSF,或者AF通过NEF发送给TSCTSF。
另外,5GS控制面也可以将报文到达5GS的时间发送给对应的用户面网元(例如,DS-TT/UE或者NW-TT/UPF),5GS控制面还可以根据报文到达5GS的时间及5GS用户面时延,计算报文从5GS发出的时间并配置到对应的用户面网元(例如,NW-TT/UPF或者DS-TT/UE)。进而用户面网元可以根据相应的配置进行报文的转发,实现端到端的确定性传输。
由上可知,5GS控制面创建RAN辅助信息以及可能的确定报文从5GS发出的时间时,依赖于报文准确到达5GS的时间,而报文到达5GS的时间是从外部网络控制面网元或者AF获得的。如果外部网络控制面网元或者AF无法确定报文到达5GS的时间,或者提供的时间信息不准确时,5GS计算出的RAN辅助信息以及可能的计算的报文从5GS发出的时间将是不准确的,进而5GS不能按照该信息进行确定性传输。外部网络控制面网元或者AF无法确定报文到达5GS的时间,或者提供的时间信息不准确的原因,可以是例如: 报文发送设备不能够按照确定的时间发送报文;或者报文经过了时延不确定的传输后到达5GS。
有鉴于此,本申请提供了一种通信方法,在5GS控制面无法从外部网络控制设备或者AF获得数据流特征时,通过第一网元检测获得数据流的特征,并且上报给5GS,辅助5GS确定调度信息,实现确定性传输,从而保障业务的可靠性。
本申请中,为了便于描述,以DS-TT和UE合一部署以及NW-TT和UPF合一部署为例进行介绍。
本申请中,所提及的第一网元可以包括以下内容中的一项:UE/DS-TT、RAN或者UPF/NW-TT,以下不再赘述。
本申请中,所提及的控制面网元可以包括以下内容中的一项:SMF、PCF、AF、NEF、TSCTSF。
本申请中,SMF在向RAN、UE/DS-TT发送消息时,发送的消息可以先发送到AMF,再由AMF发送给RAN或者UE/DS-TT,以下不再赘述。
本申请的技术方案也适用于下面这些应用场景,作为一个场景示例:如果报文发送端,(例如,连接到DS-TT/UE的外部设备)虽然不能精确的按照指定的时间发送报文(例如,外部设备不能以指定以整点为周期的起始时间发送本周期内的所有报文,或者外部设备不能以周期为10ms发送本周期内的所有报文,或者外部设备不能以每个周期内的第1ms发送本周期内的所有报文等),但业务本身有周期性特征,并且发送端不同周期内发送报文的偏差并不大的场景;作为另一个场景的示例:如果报文从发送端发送后到达5GS(例如,DS-TT/UE)经过的时延虽然不固定,但不会超过某个最大时延。
在类似的这些场景下,5GS(例如,第一网元)可以自己确定一个报文到达时间,将报文视为在确定时间到达5GS,进而根据确定后的报文到达5GS的时间进行确定性传输。
图4是本申请提供的一种通信方法400的示意性流程图,图4的方法包括:
步骤401,第一网元从控制面网元接收指示信息,指示信息用于指示第一网元进行数据流特征的检测。
在一种可能的实现方式中,指示信息可以指示以下内容的一项或者多项:例如,待检测的数据流的特征、待检测的数据流的标识信息、待检测的数据流特征更新的阈值。
步骤402,第一网元根据指示信息检测数据流的特征,并确定所述数据流的特征信息。
本申请中,数据流的特征信息至少包括以下一项:例如,数据流到达的时间信息、数据流周期的信息、数据流周期内数据量的信息。
其中,本申请中,数据流周期的信息可以指发送端的发送周期,也可以指接收端配置的检测周期。例如,如果UPF接收到数据流时,该数据流的周期也可以是指:UPF自己配置成周期性检测,即,UPF自己的检测周期。
在一种可能的实现方式中,对于下行报文,第一网元为RAN时,RAN可以UPF接收下行报文,该下行报文中包含UPF指示的时间戳信息,RAN可以根据接收的下行报文中的时间戳信息检测数据流的特征。
其中,本申请中,时间戳信息可能是UPF接收到报文的时间,也可能是UPF解析用户报文后,将用户报文中的时间戳插入在用户层面的GPRS隧道协议(GPRS tunnel protocol for the user plane,GTP-U)包头中的时间,之后再将其发送给RAN。
在另一种可能的实现方式中,对于上行报文,第一网元为RAN,RAN可以UE接收上行报文,RAN根据调度UE的上行报文的时间检测数据流的特征。
步骤403,第一网元向控制面网元发送数据流的特征信息,所述数据流的特征信息用于所述控制面网元确定数据流的调度信息。
本申请中,数据流的特征信息用于控制面网元确定数据流的调度信息,具体地可以是:数据流的特征信息用于控制面网元创建数据流的调度信息,或者,数据流的特征信息用于控制面网元更新数据流的调度信息。
本申请中,数据流的调度信息可以包括以下一项或者多项:例如,时间敏感通信辅助信息TSCAI、第一网元发送报文的时间信息、服务质量QoS参数信息。
在一些实施例中,指示信息用于指示待检测的数据流特征更新的阈值时,如果第一网元确定数据流特征发生变化并超过所述阈值时,第一网元可以向控制面网元发送更新后的数据流的特征信息。
在一种可能的实现方式中,第一网元可以通过非接入层NAS信令向所述控制面网元发送所述数据流的特征信息。
在另一种可能的实现方式中,第一网元可以通过控制面网元提供的服务发送数据流的特征信息,或者;第一网元可以向已订阅数据流流特征信息的控制面网元发送数据流的特征信息。
在另一种可能的实现方式中,第一网元可以向第一设备发送数据流的特征信息,第一设备再通过控制面网元提供的服务发送所述数据流的特征信息,或者;第一设备可以向已订阅数据流流特征信息的控制面网元发送数据流的特征信息。
本申请中,该第一设备,例如可以是UPF网元。
在另一种可能的实现方式中,对与以太会话的场景,第一网元可以为UE和UPF,UE可以通过以太会话进行通信,UE可以通过以太管理协议向UPF发送数据流的特征信息,UPF再通过控制面网元提供的服务(也可以是扩展现有的SMF和UPF之间的接口进行上报)发送数据流的特征信息,或者;第一网元可以向已订阅数据流流特征信息的控制面网元发送数据流的特征信息
根据本实施例提供的方法,第一网元(UE或者UPF或者RAN)能够对数据流的特征进行检测和上报,在5GS控制面无法从外部网络控制设备或者AF获得数据流特征时,通过第一网元检测获得数据的流特征,并且辅助5GS创建或更新调度信息,保障用户端到端的确定性传输,从而保障用户的业务体验。
图5是本申请提供的一种通信方法500的示意性流程图,本实施例以上行数据传输为例(例如,数据从UE侧发往UPF侧),以SMF为控制网元为例,说明确定的数据流在UPF/NW-TT出口的调度策略。图5的方法包括:
步骤501,SMF确定数据流需要进行流特征检测,并确定数据流的标识信息。
在一种可能的实现方式中,SMF确定数据流需要进行流特征检测的方法例如可以是:SMF可以从PCF接收数据流规则,根据数据流规则确定对数据流进行确定性传输或需要创建TSCAI信息(例如,数据流规则中包含了周期信息,但未包含报文流到达5GS的时间,或者数据流规则中包含抖动需求),进而SMF确定需要进行流特征检测。
本申请中,流特征检测的目的是通过第一网元检测获得数据流的特征信息。例如,数 据流的特征信息可以包括以下信息的一项或者多项:数据流到达时间、数据流的周期、数据流周期内的数据量等。控制面可以根据流特征信息创建TSCAI或5GS出口调度信息,可以辅助用户面进行转发、调度,有助于实现确定性传输。
本申请中,数据流的标识信息可以用于标识需要进行流特征检测的数据流。可选的,数据流的标识信息还可以包括辅助进行流特征检测的信息的标识信息。本申请中的数据流的标识信息例如可以是:流标识(QoS flow identity,QFI)、数据流的地址信息、报文特征、虚拟局域网(virtual local area network,VLAN)信息、数据流的周期信息、数据的流抖动需求、数据流的时延需求等。
步骤502,SMF向第一网元发送指示信息#1,用于指示第一网元进行数据流特征检测。对应的,第一网元接收该指示信息。
在一些实施方式中,该指示信息#1中没有指示需要检测的数据流特征,那么第一网元也可以根据业务需要,或者默认值(例如,默认检测流到达时间),或者已知参数等,确定需要检测的数据流的特征。
在一些实施方式中,该指示信息#1中还可以指示需要检测的数据流的特征。也就是说,该指示信息#1可以直接向第一网元指示需要检测的数据流的特征。数据流的特征(也可以理解为,数据流特征的类型)例如可以是以下内容的至少一项:数据流到达时间、数据流的周期、周期内的数据量。
在一些实施方式中,可选的,该指示信息#1中还可以指示数据流的标识信息。也就是说,该指示信息#1可以直接向第一网元指示需要进行数据流特征检测的数据流。
在一些实施方式中,可选的,该指示信息#1中还可以指示数据流特征更新的门限值。本申请中,第一网元在检查数据流特征时,如果数据流特征的变化超过门限值,可以进行上报,从而避免频繁的数据流特征上报。该门限值(也可以理解为,门限值的类型)例如可以是:数据流到达时间的门限值、数据流周期的门限值、周期内数据量的门限值等。
如果该指示信息#1指示了需要检测的数据流的特征,实际检测的数据流的特征也可以多于指示的数据流的特征。因此,如果该指示信息#1同时指示需要检测的数据流特征和数据流特征更新的门限值时,也不需要限定流特征检测的类型和门限值的类型完全一致。例如,指示检测流到达时间,而指示的门限值为周期的门限值,那么在检测的周期变动大于门限值时,上报检测的流到达时间,还可以上报更新的周期值。
需要说明的是,本申请中上述所述检测的数据流的特征仅仅是示例性的,不限定于列举的类型。
步骤503,第一网元检测数据流的特征。
在一种可能的实现方式中,第一网元可以根据指示信息#1的指示检测数据流的特征。
作为一个示例,针对上行数流或者下行数据流,可以是UE/DS-TT或者UPF/NW-TT检测数据流的特征。例如,可以是UE/DS-TT或者UPF/NW-TT根据接收报文的时间,或者解析报文中的时间戳来检测数据流的特征。
作为另一个示例,可以是RAN检测数据流的特征。例如,对于上行流,如果UE的和DS-TT的转发时延比较固定,RAN可以根据从UE接收报文的时间来检测数据流的特征;又例如,对于下行流,如果RAN和UPF网元之间的N3接口(用于传输用户面的数据)的时延比较固定,RAN可以根据从UPF接收报文的时间来检测数据流的特征。
在另一种可能的实现方式中,可以不执行上述步骤501和步骤502,此时,第一网元可以根据本地信息检测数据流的特征。
作为一个示例,UE/DS-TT可以根据应用需求,确定某个应用对应的数据流需要进行数据流特征检测,然后,进行数据流的特征检测和上报过程。
本申请中,第一网元检测数据流的特征的方法例如可以是,UE/DS-TT监测接收到上行报文的时间,假设累计接收n个报文,累计时长为T,那么使用T/(n-1)作为报文的周期长度,并将某个任意时刻(例如,t 0)做为起始时间。以上述确定的周期长度界定每个周期,并且检测每个周期内报文到达的时间,将报文在不同周期内最晚到达的时间确定为报文到达时间。如图6所示,第5个报文在周期内的时间较其他报文在各自的周期内晚,因此,第一网元可以将第5个报文在周期内的相对时间作为周期内报文到达5GS的时间。
如果由RAN检测数据流的特征,对于下行报文,为了避免RAN感知用户报文的内容,UPF可以将接收到报文的时间或者解析出的报文中的时间戳信息以时间戳的形式添加到用户层面的GPRS隧道协议(GPRS tunnel protocol for the user plane,GTP-U)包头中(UPF和RAN之间转发报文时使用的是GTP-U协议,即将用户报文外部添加GTP-U包头,之后进行发送),之后RAN接收到报文后,根据GTP-U包头中的时间戳检测数据流的特征;对于上行报文,RAN可以根据其调度UE的报文的时间检测数据流的特征。
需要说明的是,本申请不限定第一网元检测数据流的特征的具体方法,上述数据流的特征的检测方法仅仅是一个示例。
步骤504,第一网元上报数据流的特征信息。
例如,第一网元可以在确定数据流的特征后,上报数据流的特征信息。又例如,第一网元可以在后续数据流的特征发生变化并超过门限值时,上报数据流的特征等等。
如图7所示,本申请中,第一网元可以通过下述三种方式上报检测到的数据流的特征信息。
方式一:第一网元可以通过信元上报数据流的特征信息。
例如,UE可以通过NAS信令上报,或者UPF通过N4接口上报,或者RAN通过N2接口上报。即,UE或者UPF或者RAN将数据流的特征信息发送到SMF,之后可选由SMF发送到PCF,或者发送到NEF,或者发送到TSCTSF,或者发送到AF。
方式二:第一网元通过服务化接口上报数据流的特征信息。
例如,UE可以使用与SMF(也可以是:PCF/NEF/AF/TSCTSF)之间接收信息的服务化接口上报数据流的特征信息。也可以是SMF(也可以是:PCF/NEF/AF/TSCTSF)向UE订阅数据流的特征信息,UE在检测到数据流的特征时向订阅的网元发送数据流的特征信息。
方式三:第一网元通过服务化接口代理上报数据流的特征信息。
例如,UPF代理UE创建和SMF(也可以是PCF/NEF/AF/TSCTSF)之间的服务化接口,上报数据流的特征信息。也可以是SMF(也可以是:PCF/NEF/AF/TSCTSF)向UPF订阅数据流的特征信息,UE在检测到数据流的特征并发送给UPF后,UPF向订阅的网元发送数据流的特征信息。
步骤505,SMF根据上报数据流的特征信息,创建或更新数据流的调度信息。
本申请中,数据流的调度信息可以包括以下一项或多项,例如,时间敏感通信辅助信 息TSCAI、第一网元发送报文的时间信息、服务质量QoS参数信息等。
例如,SMF可以根据第一网元上报的数据流的特征信息,创建/修改数据流转发规则,例如,TSCAI、发送时间、QoS参数信息等,从而进行确定性传输。
根据本实施例提供的方法,第一网元(UE或者UPF或者RAN)能够对数据流的特征进行检测和上报,在5GS控制面无法从外部网络控制设备或者AF获得数据流特征时,通过第一网元检测获得数据的流特征,并且辅助5GS创建或更新调度信息,保障用户端到端的确定性传输,从而保障用户的业务体验。
下面各个实施例就上述三种数据流特征的上报方式进行详细说明。
图8是本申请实施例提供的通信方法800的示意性流程图,本实施例中基于方法500中的步骤在第一网元检测到数据流的特征后,可以通过信令向SMF发送数据流的特征,进而触发TSCAI更新或者5GS调度信息的更新,方法800包括:
步骤801~步骤803中第一网元确定数据流的特征,可以参照方法500中的步骤501~步骤503,此处不再赘述。
步骤804,第一网元通过NAS信令向SMF发送信息#1,信息#1中包括数据流的特征信息。
例如,第一网元通过NAS信令向SMF上报检测到的数据流的特征信息。对应的,SMF接收该包含数据流的特征的信息。
例如,如果是UE/DS-TT检测数据流的特征,则UE/DS-TT可以通过N1接口将NAS信令发送给AMF,该NAS信令中包含数据流的特征信息,之后由AMF发送给SMF;或者如果是RAN检测数据流的特征,则RAN通过N2接口将NAS信令发送给AMF,该NAS信令中包含数据流的特征信息,之后由AMF发送给SMF;或者如果是UPF检测数据流的特征,则UPF通过N4接口通过信令将数据流的特征信息发送给SMF。
在一些实施例中,可选的,还可以执行步骤805,SMF根据接收到的包含数据流的特征信息创建或者修改TSCAI。步骤806,SMF将创建的TSCAI发送给RAN。也可以理解为,SMF向RAN配置创建或修改的TSCAI。
在一些实施例中,也可以不执行步骤805和步骤806。此时,SMF接收到上报的数据流的特征信息后,执行步骤807,SMF将数据流的特征信息发送给PCF/NEF/AF/TSCTSF,触发采用现有流程创建或者修改TSCAI。具体地,SMF可以将数据流的特征信息发送给PCF,由PCF发送给NEF/AF/TSCTSF。步骤808,NEF/AF/TSCTSF向SMF发送包含数据流的特征信息,SMF更新TSCAI。即,一旦,NEF/AF/TSCTS收到数据流的特征信息便可触发现有流程创建或者修改TSCAI,例如,SMF更新TSCAI。作为一个示例,可以由TSCTSF将数据流的特征信息发送给PCF,之后通过PCF向SMF发送TSC assistance Container,其中包含了数据流方向(上行/下行)、报文的周期、周期内的数据量、报文到达5GS(例如,报文到达RAN的时间)的时间等信息。之后SMF根据报文到达5GS的时间以及5GS的时延信息计算报文到达RAN的时间,结合TSC assistance container中的其他信息生成TSCAI,并配置到RAN。
在一些实施例中,在执行步骤805和步骤806的情况下仍然可以继续执行步骤807,SMF仍然可以将数据流的特征信息发送给PCF/NEF/AF/TSCTSF。但是,鉴于步骤805和步骤806中SMF已经将更新的TSCAI发送给RAN,因此,步骤807中,SMF可以无须 触发现有流程更新TSCAI,即,无须执行步骤808。
根据本实施例提供的方法,第一网元可以检测数据流的特征,通过信元上报的方式发送数据流的特征,可以辅助5GS创建或更新数据流的调度信息,保障用户端到端的确定性传输,从而保障用户的业务体验。并且,第一网元通过信元上报的方式发送数据流的特征,SMF可以在接收数据流的特征信息的同时,创建或者更新TSCAI,减少了信令交互过程;SMF也可以将数据流的特征信息发送给PCF/NEF/AF/TSCTSF,通过现有流程创建或更新TSCAI,从而减少流程修改。
图9是本申请实施例提供的通信方法900的示意性流程图,本实施例中基于方法500中的步骤在第一网元检测到数据流的特征后,可以通过PCF/NEF/TSCTSF/AF提供的服务化接口发送数据流的特征信息,使用IP进行通信。本实施例中第一网元上报时,提供了两种方式,一种是UE/DS-TT、RAN、UPF直接上报,另一种是UE/DS-TT或RAN向UPF发送数据流的特征(可以理解为间接上报),由UPF作为接口代理,向PCF/NEF/TSCTSF/AF上报数据流的特征,进而触发TSCAI更新或者5GS调度信息的更新,方法800包括:
在一些实施例中,可选的包括步骤901,第一网元获取5GS的地址信息。
在一种可能的实现方式中,例如,对于上述直接上报的方式,在会话创建过程中向第一网元提供NEF/PCF/TSCTSF/AF的地址信息;或者对于间接上报的方式,如果第一网元是UE/DS-TT或RAN,可以向UE/DS-TT或RAN提供UPF的地址信息,而向UPF提供NEF/PCF/TSCTSF/AF的地址信息。在另一种可能的实现方式中,在第一网元上可以直接配置上述地址信息。
步骤902,第一网元确定数据流的特征信息。
具体地,本步骤中第一网元确定数据流的特征的方式,可以参见方法500中的步骤501~步骤503的,此处不再赘述。
1)对于直接上报的方式,执行步骤903a。
步骤903a,第一网元向NEF/PCF/TSCTSF/AF发送数据流的特征信息,该信息中包含数据流的特征信息。
例如,第一网元可以使用步骤901中获得的PCF/NEF/TSCTSF/AF的地址信息,通过服务化接口,上报数据流的特征信息。
2)对于间接上报的方式,执行步骤903b~903c。
步骤903b,第一网元向UPF发送数据流的特征信息。对应的,UPF接收数据流的特征信息。
例如,如果第一网元是UE/DS-TT或RAN,可以向步骤901中获得的UPF的地址发送数据流的特征。其中,数据流的特征信息可以是自定义消息格式,也可以是PCF/NEF/TSCTSF/AF提供的服务的消息格式。
步骤903c,UPF向PCF/NEF/TSCTSF/AF转发数据流的特征信息。
例如,UPF作为代理,可以创建与PCF/NEF/TSCTSF/AF之间的连接,通过PCF/NEF/TSCTSF/AF提供的服务转发数据流的特征信息。
步骤904,NEF/AF/TSCTSF获得数据流的特征信息后,可以触发创建或者修改TSCAI的流程。
例如,可以采用现有流程创建或者修改TSCAI,由TSCTSF将数据流的特征信息发送 给PCF,之后通过PCF向SMF发送TSC assistance Container,其中包含了数据流方向(上行/下行)、报文的周期、周期内的数据量、报文到达5GS的时间等信息。之后SMF根据报文到达5GS的时间以及5GS的时延信息计算报文到达RAN的时间,结合TSC assistance container中的其他信息生成TSCAI,并配置到RAN。
根据本实施例提供的方法,第一网元可以检测数据流的特征,通过服务化接口上报数据流的特征信息,可以辅助5GS创建或更新数据流的调度信息,保障用户端到端的确定性传输,从而保障用户的业务体验。并且,第一网元可以直接使用PCF/NEF/TSCTSF/AF提供的服务,上报数据流的特征,减少了对信令的修改和定义。
在图9的方法900中,第一网元可以直接使用PCF/NEF/AF/TSCTSF提供的服务,这要求第一网元使用IP进行通信。然而,现有技术中,UE/DS-TT有可能使用以太会话进行通信,如果采用方法900,将要求UE/DS-TT另外使用一个IP会话进行通信。图10是本申请实施例提供的通信方法1000的示意性流程图,本实施例中基于方法500中的步骤在第一网元检测到数据流的特征后,可以通过以太会话,使用PCF/NEF/AF/TSCTSF提供的服务上报数据流的特征信息。该方法包括:
步骤1010,为UE创建以太会话,并创建一条管理数据流。
例如,可以基于现有流程为UE创建以太会话,创建管理流的方法例如可以是:
在一种实现方式中,SMF向UE和/或UPF指示管理流的标识,或者SMF向UE和/或UPF指示管理流的特征(例如,数据流的目的地址、数据流的VLAN、以太会话的类型等);在另一种实现方式中,UE和/或UPF可以使用默认信息(例如,采用802.3ah协议作为管理流)或本地配置来确定发送的以太报文的信息。
步骤1020,第一网元确定数据流的特征。
具体地,本步骤中第一网元确定数据流的特征的方式,可以参见方法500中的步骤501~步骤503的,此处不再赘述。
在一些实施例中,可选的,还包括步骤1030,如果用于发送流特征信息的以太管理流需要进行协商,则完成UE和UPF交互过程。
步骤1040,UE可以通过以太报文向UPF发送数据流的特征信息。对应的,UPF接收该报文。
例如,UE可以通过以太管理协议802.3ah的报文的自定义字段发送数据流的特征。
步骤1050,UPF向PCF/NEF/TSCTSF/AF转发数据流的特征信息。
本实施例中,UPF预配置有PCF/NEF/AF/TSCTSF的地址信息,或者UPF通过查询获得PCF/NEF/AF/TSCTSF地址信息。UPF作为代理,使用获得的地址信息对应的PCF/NEF/TSCTSF/AF提供的服务,发送数据流的特征信息。
步骤1060,NEF/AF/TSCTSF获得数据流的特征信息后,可以触发创建或者修改TSCAI的流程。
例如,可以采用现有流程创建或者修改TSCAI。可以由TSCTSF将数据流的特征信息发送给PCF,之后通过PCF向SMF发送TSC assistance Container,其中包含了数据流方向(上行/下行)、报文的周期、周期内的数据量、报文到达5GS的时间等信息。之后SMF根据报文到达5GS的时间以及5GS的时延信息计算报文到达RAN的时间,结合TSC assistance container中的其他信息生成TSCAI,并配置到RAN。
根据本实施例提供的方法,第一网元可以检测数据流的特征,通过服务化代理接口上报数据流的特征信息,辅助5GS创建或更新数据流的调度信息,保障用户端到端的确定性传输,从而保障用户的业务体验。并且,对于使用以太会话的UE,可以由UE使用以太报文发送数据流的特征,避免另外创建用于发送数据流特征的IP会话。
需要说明的是,本申请中的为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。例如,第一信息和第二信息仅仅是为了区分不同的信息,并不对其先后顺序进行限定。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
本申请实施例中,“以下一项或多项”“至少一项”或其类似表达,是指的这些项中的任意组合,包括单项或复数项的任意组合。例如,a,b,或c中的一项或多项,可以表示:a,b,c;a和b;a和c;b和c;或a和b和c。其中a,b,c可以是单个,也可以是多个。
可以理解,在本申请中,“如果…时”、“如果”均指在某种客观情况下装置会做出相应的处理,并非是限定时间,且也不要求装置实现时一定要有判断的动作,也不意味着存在其它限定。
以上,结合图4至图10详细说明了本申请实施例提供的通信的方法。下面结合图11和图12介绍本申请实施例提供装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
上述主要从各个节点之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个节点,例如终端设备或者网络设备,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对终端设备或者终端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明。
图11是本申请实施例提供装置100的示意性框图。如图所示,该装置100可以包括:收发单元110和处理单元120。
在一种可能的设计中,该装置100可以是上文方法实施例中的第一网元,例如,UE、RAN、UPF,也可以是用于实现上文方法实施例中第一网元的功能的芯片。应理解,该装置100可对应于根据本申请实施例的方法400、方法500、方法800、方法900、方法1000中的第一网元,该装置100可以执行本申请实施例的方法400、方法500、方法800、方法900、方法1000中的第一网元所对应的步骤。应理解,各单元执行上述相应步骤的具 体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
具体地,该装置包括收发单元和处理单元,所述收发单元用于接收指示信息,所述指示信息用于指示所述第一网元进行数据流特征的检测;所述处理单元用于根据所述指示信息检测所述数据流的特征,并确定所述数据流的特征信息,所述数据流的特征信息至少包括以下一项:所述数据流到达的时间信息、所述数据流周期的信息、所述数据流周期内数据量的信息;所述收发单元还用于发送所述数据流的特征信息,所述数据流的特征信息用于所述控制面网元确定数据流的调度信息。
在一些实施例中,所述装置为无线接入网RAN,所述收发单元还用于接收下行报文,所述下行报文中包含所述UPF指示的时间戳信息;所述处理单元用于根据所述指示信息检测所述数据流的特征,包括:所述处理单元用于根据接收的所述下行报文中的时间戳信息检测所述数据流的特征。
在一些实施例中,所述装置为无线接入网RAN,所述收发单元还用于接收上行报文;所述处理单元用于根据所述指示信息检测所述数据流的特征,包括:所述处理单元用于根据调度所述上行报文的时间检测所述数据流的特征。
在一些实施例中,所述收发单元用于通过非接入层NAS信令向所述控制面网元发送所述数据流的特征信息,或者;所述收发单元用于通过控制面网元提供的服务发送所述数据流的特征信息,或者;所述收发单元用于向已订阅数据流流特征信息的控制面网元发送所述数据流的特征信息,或者;所述收发单元用于向第一设备发送所述数据流的特征信息,所述数据流的特征信息是所述第一设备通过控制面网元提供的服务发送的,或者;所述数据流的特征信息是所述第一设备向已订阅数据流流特征信息的控制面网元发送的。
在一些实施例中,所装置通过以太会话进行通信,所述收发单元用于发送所述数据流的特征信息,包括:所述装置用于通过以太管理协议发送所述数据流的特征信息;所述装置用于通过控制面网元提供的服务发送所述数据流的特征信息,或者;所述装置向已订阅数据流流特征信息的控制面网元发送所述数据流的特征信息。
在一种可能的设计中,该装置100可以是上文方法实施例中的控制面网元,例如,SMF、PCF、AF、NEF、TSCTSF,也可以是用于实现上文方法实施例中控制面网元的功能的芯片。应理解,该装置100可对应于根据本申请实施例的方法400、方法500、方法800、方法900、方法1000中的控制面网元,该装置100可以执行本申请实施例的方法400、方法500、方法800、方法900、方法1000中的控制面网元所对应的步骤。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
具体地,所述收发单元用于发送指示信息,所述指示信息用于指示所述第一网元进行数据流特征的检测;所述收发单元用于接收数据流的特征信息,所述数据流的特征信息至少包括以下一项:所述数据流到达的时间信息、所述数据流发送周期的信息、所述数据流发送周期内数据量的信息;所述处理单元用于根据所述数据流的特征信息确定所述数据流的调度信息。
在一些实施例中,所述数据流的调度信息包括以下一项或者多项:时间敏感通信辅助信息TSCAI、第一网元发送报文的时间信息、服务质量QoS参数信息。
在一些实施例中,所述收发单元用于接收数据流的特征信息,包括:所述收发单元用 于通过非接入层NAS信令从第一网元接收所述数据流的特征信息,或者;所述收发单元用于通过提供接收所述数据流的特征信息的服务,或者所述控制面网元向第一网元或第一设备订阅所述数据流的特征信息。
在一些实施例中,所述收发单元用于接收数据流的特征信息,包括:所述装置通过提供接收所述数据流的特征信息的服务,接收数据流的特征信息,或者,所述装置订阅所述数据流的特征信息,接收数据流的特征信息。
图7是本申请实施例提供的装置200的示意性框图。如图所示,该装置200包括:至少一个处理器220。该处理器220与存储器耦合,用于执行存储器中存储的指令,以发送信号和/或接收信号。可选地,该装置200还包括存储器230,用于存储指令。可选的,该装置200还包括收发器210,处理器220控制收发器210发送信号和/或接收信号。
应理解,上述处理器220和存储器230可以合成一个处理装置,处理器220用于执行存储器230中存储的程序代码来实现上述功能。具体实现时,该存储器230也可以集成在处理器220中,或者独立于处理器220。
还应理解,收发器210可以包括收发器(或者称,接收机)和发射器(或者称,发射机)。收发器还可以进一步包括天线,天线的数量可以为一个或多个。收发器210有可以是通信接口或者接口电路。
具体的,该装置200中的收发器210可以对应于装置100中的收发单元110,该装置200中的处理器220可对应于装置200中的处理单元120。
应理解,各收发器处理器执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application-specific integrated circuit,ASIC)、现场可编程门阵列(field-programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包 括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch-link DRAM,SLDRAM)和直接内存总线随机存取存储器(direct ram-bus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品上存储有计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行方法400、方法500、方法800、方法900、方法1000实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行方法400、方法500、方法800、方法900、方法1000实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的装置或设备。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disc,SSD))等。
上述各个装置实施例中网络侧设备与终端设备和方法实施例中的网络侧设备或终端设备对应,由相应的模块或单元执行相应的步骤,例如通信单元(收发器)执行方法实施例中接收或发送的步骤,除发送、接收外的其它步骤可以由处理单元(处理器)执行。具体单元的功能可以参考相应的方法实施例。其中,处理器可以为一个或多个。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在 进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所述领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (30)

  1. 一种通信方法,其特征在于,包括:
    第一网元从控制面网元接收指示信息,所述指示信息用于指示所述第一网元进行数据流特征的检测;
    所述第一网元根据所述指示信息检测所述数据流的特征,并确定所述数据流的特征信息,所述数据流的特征信息至少包括以下一项:所述数据流到达的时间信息、所述数据流周期的信息、所述数据流周期内数据量的信息;
    所述第一网元向所述控制面网元发送所述数据流的特征信息,所述数据流的特征信息用于所述控制面网元确定数据流的调度信息。
  2. 根据权利要求1所述的方法,其特征在于,所述指示信息具体用于指示以下内容的一项或者多项:待检测的数据流的特征、待检测的数据流的标识信息、待检测的数据流特征更新的阈值。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一网元为无线接入网RAN,所述方法还包括:
    所述RAN从用户面功能网元UPF接收下行报文,所述下行报文中包含所述UPF指示的时间戳信息;
    所述第一网元根据所述指示信息检测所述数据流的特征,包括:
    所述RAN根据接收的所述下行报文中的时间戳信息检测所述数据流的特征。
  4. 根据权利要求1或2所述的方法,其特征在于,所述第一网元为无线接入网RAN,所述方法还包括:
    所述RAN从用户设备UE接收上行报文;
    所述第一网元根据所述指示信息检测所述数据流的特征,包括:
    所述RAN根据调度所述UE的上行报文的时间检测所述数据流的特征。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述第一网元向所述控制面网元发送所述数据流的特征信息,包括:
    所述第一网元通过非接入层NAS信令向所述控制面网元发送所述数据流的特征信息,或者;
    所述第一网元通过控制面网元提供的服务发送所述数据流的特征信息,或者;所述第一网元向已订阅数据流流特征信息的控制面网元发送所述数据流的特征信息,或者;
    所述第一网元向第一设备发送所述数据流的特征信息,所述数据流的特征信息是所述第一设备通过控制面网元提供的服务发送的,或者;所述数据流的特征信息是所述第一设备向已订阅数据流流特征信息的控制面网元发送的。
  6. 根据权利要求1至4中任一项所述的方法,其特征在于,所述第一网元为用户设备UE和用户面功能网元UPF,所述UE通过以太会话进行通信,所述第一网元向所述控制面网元发送所述数据流的特征信息,包括:
    所述UE通过以太管理协议向所述UPF发送所述数据流的特征信息;
    所述UPF通过控制面网元提供的服务发送所述数据流的特征信息,或者;所述第一 网元向已订阅数据流流特征信息的控制面网元发送所述数据流的特征信息。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述数据流的调度信息包括以下一项或者多项:时间敏感通信辅助信息TSCAI、第一网元发送报文的时间信息、服务质量QoS参数信息。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,
    所述第一网元包括以下内容中的一项:用户设备UE、无线接入网元RAN、用户面功能网元UPF;
    所述控制面网元包括以下内容中的一项:会话管理网元SMF、策略控制网元PCF、应用功能网元AF、网络开放功能网元NEF、时间敏感通信和时间同步功能网元TSCTSF。
  9. 一种通信方法,其特征在于,包括:
    控制面网元向第一网元发送指示信息,所述指示信息用于指示所述第一网元进行数据流特征的检测;
    所述控制面网元从所述第一网元接收数据流的特征信息,所述数据流的特征信息至少包括以下一项:所述数据流到达的时间信息、所述数据流发送周期的信息、所述数据流发送周期内数据量的信息;
    所述控制面网元根据所述数据流的特征信息确定所述数据流的调度信息。
  10. 根据权利要求9所述的方法,其特征在于,所述指示信息具体用于指示以下内容的一项或者多项:待检测的数据流的特征、待检测的数据流的标识信息、待检测的数据流特征更新的阈值。
  11. 根据权利要求9或10所述的方法,其特征在于,所述数据流的调度信息包括以下一项或者多项:时间敏感通信辅助信息TSCAI、第一网元发送报文的时间信息、服务质量QoS参数信息。
  12. 根据权利要求9至11中任一项所述的方法,其特征在于,所述控制面网元从所述第一网元接收数据流的特征信息,包括:
    所述控制面网元通过非接入层NAS信令从所述第一网元接收所述数据流的特征信息,或者;
    所述控制面网元通过提供接收所述数据流的特征信息的服务,或者所述控制面网元向第一网元或第一设备订阅所述数据流的特征信息。
  13. 根据权利要求9至11中任一项所述的方法,其特征在于,所述第一网元为用户面功能网元UPF,所述控制面网元从所述第一网元接收数据流的特征信息,包括:
    所述控制面网元通过提供接收所述数据流的特征信息的服务,或者所述控制面网元向第一网元订阅所述数据流的特征信息。
  14. 根据权利要求9至13中任一项所述的方法,其特征在于,
    所述第一网元包括以下内容中的一项:用户设备UE、无线接入网元RAN、用户面功能网元UPF;
    所述控制面网元包括以下内容中的一项:会话管理网元SMF、策略控制网元PCF、应用功能网元AF、网络开放功能网元NEF、时间敏感通信和时间同步功能网元TSCTSF。
  15. 一种通信装置,其特征在于,包括:收发单元和处理单元,
    所述收发单元用于接收指示信息,所述指示信息用于指示所述第一网元进行数据流特 征的检测;
    所述处理单元用于根据所述指示信息检测所述数据流的特征,并确定所述数据流的特征信息,所述数据流的特征信息至少包括以下一项:所述数据流到达的时间信息、所述数据流周期的信息、所述数据流周期内数据量的信息;
    所述收发单元还用于发送所述数据流的特征信息,所述数据流的特征信息用于所述控制面网元确定数据流的调度信息。
  16. 根据权利要求15所述的装置,其特征在于,所述指示信息具体用于指示以下内容的一项或者多项:待检测的数据流的特征、待检测的数据流的标识信息、待检测的数据流特征更新的阈值。
  17. 根据权利要求15或16所述的装置,其特征在于,所述装置为无线接入网RAN,
    所述收发单元还用于接收下行报文,所述下行报文中包含所述UPF指示的时间戳信息;
    所述处理单元用于根据所述指示信息检测所述数据流的特征,包括:
    所述处理单元用于根据接收的所述下行报文中的时间戳信息检测所述数据流的特征。
  18. 根据权利要求15或16所述的装置,其特征在于,所述装置为无线接入网RAN,
    所述收发单元还用于接收上行报文;
    所述处理单元用于根据所述指示信息检测所述数据流的特征,包括:
    所述处理单元用于根据调度所述上行报文的时间检测所述数据流的特征。
  19. 根据权利要求15至18中任一项所述的装置,其特征在于,所述收发单元用于发送所述数据流的特征信息,包括:
    所述收发单元用于通过非接入层NAS信令向所述控制面网元发送所述数据流的特征信息,或者;
    所述收发单元用于通过控制面网元提供的服务发送所述数据流的特征信息,或者;所述收发单元用于向已订阅数据流流特征信息的控制面网元发送所述数据流的特征信息,或者;
    所述收发单元用于向第一设备发送所述数据流的特征信息,所述数据流的特征信息是所述第一设备通过控制面网元提供的服务发送的,或者;所述数据流的特征信息是所述第一设备向已订阅数据流流特征信息的控制面网元发送的。
  20. 根据权利要求15至18中任一项所述的装置,其特征在于,所装置通过以太会话进行通信,所述收发单元用于发送所述数据流的特征信息,包括:
    所述装置用于通过以太管理协议发送所述数据流的特征信息;
    所述装置用于通过控制面网元提供的服务发送所述数据流的特征信息,或者;所述装置向已订阅数据流流特征信息的控制面网元发送所述数据流的特征信息。
  21. 根据权利要求15至20中任一项所述的装置,其特征在于,所述数据流的调度信息包括以下一项或者多项:时间敏感通信辅助信息TSCAI、第一网元发送报文的时间信息、服务质量QoS参数信息。
  22. 根据权利要求15至21中任一项所述的装置,其特征在于,
    所述装置包括以下内容中的一项:用户设备UE、无线接入网元RAN、用户面功能网元UPF;
    所述控制面网元包括以下内容中的一项:会话管理网元SMF、策略控制网元PCF、应用功能网元AF、网络开放功能网元NEF、时间敏感通信和时间同步功能网元TSCTSF。
  23. 一种通信装置,其特征在于,包括:收发单元和处理单元,
    所述收发单元用于发送指示信息,所述指示信息用于指示所述第一网元进行数据流特征的检测;
    所述收发单元用于接收数据流的特征信息,所述数据流的特征信息至少包括以下一项:所述数据流到达的时间信息、所述数据流发送周期的信息、所述数据流发送周期内数据量的信息;
    所述处理单元用于根据所述数据流的特征信息确定所述数据流的调度信息。
  24. 根据权利要求23所述的装置,其特征在于,所述指示信息具体用于指示以下内容的一项或者多项:待检测的数据流的特征、待检测的数据流的标识信息、待检测的数据流特征更新的阈值。
  25. 根据权利要求23或24所述的装置,其特征在于,所述数据流的调度信息包括以下一项或者多项:时间敏感通信辅助信息TSCAI、第一网元发送报文的时间信息、服务质量QoS参数信息。
  26. 根据权利要求23至25中任一项所述的装置,其特征在于,所述收发单元用于接收数据流的特征信息,包括:
    所述收发单元用于通过非接入层NAS信令从第一网元接收所述数据流的特征信息,或者;
    所述收发单元用于通过提供接收所述数据流的特征信息的服务,或者所述控制面网元向第一网元或第一设备订阅所述数据流的特征信息。
  27. 根据权利要求23至25中任一项所述的装置,其特征在于,所述收发单元用于接收数据流的特征信息,包括:
    所述装置通过提供接收所述数据流的特征信息的服务,接收数据流的特征信息,或者,所述装置订阅所述数据流的特征信息,接收数据流的特征信息。
  28. 根据权利要求23至27中任一项所述的装置,其特征在于,
    所述装置包括以下内容中的一项:会话管理网元SMF、策略控制网元PCF、应用功能网元AF、网络开放功能网元NEF、时间敏感通信和时间同步功能网元TSCTSF;
    所述第一网元包括以下内容中的一项:用户设备UE、无线接入网元RAN、用户面功能网元UPF。
  29. 一种通信装置,其特征在于,包括至少一个处理器,所述至少一个处理器用于执行存储器中存储的计算机程序,以使得所述装置实现如权利要求1至8中或9至14中任一项所述的方法。
  30. 一种通信系统,其特征在于,包括如权利要求1至8中或8至14中任一项所述的装置。
PCT/CN2022/093794 2021-07-23 2022-05-19 一种通信方法和装置 WO2023000798A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110839960.7A CN115696372A (zh) 2021-07-23 2021-07-23 一种通信方法和装置
CN202110839960.7 2021-07-23

Publications (1)

Publication Number Publication Date
WO2023000798A1 true WO2023000798A1 (zh) 2023-01-26

Family

ID=84979887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/093794 WO2023000798A1 (zh) 2021-07-23 2022-05-19 一种通信方法和装置

Country Status (2)

Country Link
CN (1) CN115696372A (zh)
WO (1) WO2023000798A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111436084A (zh) * 2019-02-13 2020-07-21 维沃移动通信有限公司 辅助信息上报方法及装置、通信设备
WO2020200432A1 (en) * 2019-04-02 2020-10-08 Nokia Solutions And Networks Oy Communication control mechanism for time sensitive traffic
CN112787838A (zh) * 2019-11-08 2021-05-11 华为技术有限公司 一种通信方法、装置及系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111436084A (zh) * 2019-02-13 2020-07-21 维沃移动通信有限公司 辅助信息上报方法及装置、通信设备
WO2020200432A1 (en) * 2019-04-02 2020-10-08 Nokia Solutions And Networks Oy Communication control mechanism for time sensitive traffic
CN112787838A (zh) * 2019-11-08 2021-05-11 华为技术有限公司 一种通信方法、装置及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, NOKIA, NOKIA SHANGHAI BELL: "Support time domain", 3GPP DRAFT; C3-213164, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. CT WG3, no. E-Meeting; 20210519 - 20210528, 12 May 2021 (2021-05-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052010487 *

Also Published As

Publication number Publication date
CN115696372A (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
WO2023284584A1 (zh) 通信方法和装置
WO2023011210A1 (zh) 一种获取边缘服务的方法和装置
WO2023280121A1 (zh) 一种获取边缘服务的方法和装置
US11968565B2 (en) User plane information reporting method and apparatus
US12096219B2 (en) Communication method, terminal device and network device
US11259362B2 (en) Method for repeatedly transmitting data and device
US11877251B2 (en) Time synchronization method, electronic device and storage medium
JP2024512430A (ja) アンテナ切り換えおよびキャリア切り換えのための探測参照信号構成
EP3962157B1 (en) Mdbv determining methods and apparatuses
US20240292348A1 (en) Methods and apparatus for bandwidth efficient configuration of time synchronization services in 5g systems
WO2022170798A1 (zh) 确定策略的方法和通信装置
CN116866981A (zh) 通信方法和装置
WO2023116240A1 (zh) 通信方法和装置
WO2023000798A1 (zh) 一种通信方法和装置
US20240162955A1 (en) Beamforming for multiple-input multiple-output (mimo) modes in open radio access network (o-ran) systems
WO2022245644A1 (en) Time-sensitive networking support over sidelink
WO2021208817A1 (zh) 网络资源控制的方法及设备
CN118741642A (zh) 通信方法和通信装置
JP2024538904A (ja) 帯域幅部分切り替え遅延導出
CN118592082A (zh) 下行链路中的新空口(nr)多播和广播服务(mbs)控制和数据的接收
CN117480765A (zh) 用于边缘应用服务器(eas)部署的计费的系统和信息
CN118945731A (zh) 通信方法及装置
CN118975387A (zh) 用于在免授权频带中操作的侧链路系统的物理侧链路反馈信道(psfch)和同步信道
CN116548016A (zh) 用于5g系统的服务功能链化策略
CN117560693A (zh) 通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22844965

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22844965

Country of ref document: EP

Kind code of ref document: A1