WO2023097462A1 - 用于车灯的照明装置及其车灯 - Google Patents
用于车灯的照明装置及其车灯 Download PDFInfo
- Publication number
- WO2023097462A1 WO2023097462A1 PCT/CN2021/134466 CN2021134466W WO2023097462A1 WO 2023097462 A1 WO2023097462 A1 WO 2023097462A1 CN 2021134466 W CN2021134466 W CN 2021134466W WO 2023097462 A1 WO2023097462 A1 WO 2023097462A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lighting device
- reflective surface
- light
- led units
- optical system
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 114
- 238000005286 illumination Methods 0.000 claims abstract description 31
- 238000000034 method Methods 0.000 claims description 14
- 239000011248 coating agent Substances 0.000 claims description 5
- 238000000576 coating method Methods 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 238000009826 distribution Methods 0.000 description 22
- 238000010586 diagram Methods 0.000 description 16
- 230000000694 effects Effects 0.000 description 12
- 239000004020 conductor Substances 0.000 description 5
- 230000003044 adaptive effect Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000009434 installation Methods 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
Definitions
- the present application generally relates to lighting devices for vehicle lights.
- the present application also relates to a vehicle lamp comprising the lighting device.
- the Adaptive Driving Beam (ADB, Adaptive Driving Beam) system for car lights can avoid dazzling other vehicles on the road. And was sought after.
- the ADB system detects road vehicle information through cameras or other sensors. After analysis and processing, it adaptively transforms the high beam light shape according to the vehicle position in the front view of the vehicle, so as to control the lighting area and avoid other road users. Causes dazzling headlight lighting system.
- the vehicle headlamps include a light source, a primary optical unit, and a secondary optical unit.
- the primary optical unit is used to emit The light rays gather and generate a light distribution on the light output surface of the primary optical unit.
- the secondary optical unit is used to project this light distribution to image the road in front of the vehicle and illuminate the area in front of the vehicle.
- the ADB system automatically captures other The location of road users, dim or extinguish the light source at the corresponding position to avoid dazzling other road users and ensure vehicle driving safety.
- the inventor of the present application has noticed that in the application of the ADB technology of the known headlights at present, the light emitted by the light source passes through the main optical unit and the secondary optical unit to form a matrix ADB light shape on the road.
- the formed light distribution is not uniform, so that the driving safety of the vehicle is not high enough.
- the car light system of the related art is composed of multiple optical devices, and each optical device will cause light loss due to the transmittance and the Fresnel reflection of the incident surface and the outgoing surface, so the more optical devices, the greater the light loss. More, the more unstable the optical performance, and the more complicated the installation, the higher the requirements for assembly accuracy.
- the ADB system is composed of multiple primary optical systems and their corresponding light sources and secondary optical systems.
- Each primary optical system forms a spot, and multiple primary optical systems form Multiple adjacent light spots form an ADB light shape.
- the on and off of each spot can be controlled by individually turning on and off the controllable light sources.
- the width of the reflective surface of the primary optical system is limited, that is, the width cannot be too small, and the side length of its rectangular outline is 3 mm to 15 mm, thus limiting the number of primary optical systems.
- An exemplary embodiment of the present application provides a lighting device for a vehicle lamp, which may include: a light source including a plurality of LED units arranged side by side in a linear arrangement direction and Can be controlled independently; Primary optical system, this primary optical system has reflective surface, and this reflective surface is configured to reflect the light that is emitted by light source; The light is projected and the projected light is emitted to the front of the lamp, wherein the light source is arranged at the focal line of the reflective surface, and the light emitted by the light source is reflected by the reflective surface to form a primary spot, and wherein the collimating optical system The focal point is set on the reflective surface to image the primary spot to form the illuminated light shape.
- the plurality of LED units (101) can be arranged in one row or n rows, wherein, n ⁇ 2, when the plurality of LED units are arranged in one row, the plurality of The spacing in the arrangement direction of the LED units is the minimum process spacing, and when the plurality of LED units are arranged in n rows, the spacing in the arrangement direction of the plurality of LED units (101) is the minimum process spacing or each LED unit n-1 times the width of the light-emitting surface.
- the plurality of LED units may share one reflective surface.
- the plurality of LED units can be divided into two or more groups, and the collimating optical system can include convex lenses or lens groups or include parabolic reflective surfaces, convex lenses or lens groups or parabolic
- the reflective surface can be provided with a plurality of convex lenses or lens groups or parabolic reflective surfaces in such a way that each of the two or more groups of the plurality of LED units corresponds to a convex lens or lens group or a parabolic reflective surface. Reflective surface.
- the plurality of LED units can be divided into two or more groups, and each of the two or more groups of the plurality of LED units can be made A plurality of reflective surfaces are provided in such a manner that each group corresponds to one reflective surface.
- the collimating optical system may include a convex lens or a lens group or a parabolic reflective surface, and the convex lens or lens group or a parabolic reflective surface may make the two or more of the plurality of LED units Each of the more groups corresponds to one convex lens or lens group or parabolic reflective surface.
- the reflective surface of the primary optical system may be a concave curved surface.
- the reflective surface of the primary optical system may be a unidirectionally stretched concave curved surface.
- the reflective surface of the primary optical system may be a unidirectionally stretched concave surface formed by unidirectionally stretching a parabola or an ellipsoid along a straight line.
- the reflective surface of the primary optical system may be a unidirectionally stretched concave curved surface formed by unidirectionally stretching a broken line whose shape is similar to a parabola or an ellipsoid along a straight line.
- the focal length of the parabola, or the distance between the near focus of the ellipsoid and the vertex of the ellipsoid close to the near focus may be between 0.1 mm and 10 mm.
- the focal length of the parabola, or the distance between the near focus of the ellipsoid and the vertex of the ellipsoid close to the near focus may be between 1 mm and 3 mm.
- the stretching direction of the unidirectionally stretched concave curved surface may be consistent with the arrangement direction of the plurality of LED units.
- the reflective surface of the primary optical system may be formed by metal coating.
- the reflective surface of the primary optical system may be formed by the total reflection surface of the transparent light guide.
- Exemplary embodiments of the present application also provide a vehicle lamp including the lighting device provided according to the foregoing embodiments.
- the lighting device for vehicle lights of the present application by setting the light source at the focal line of the reflective surface and setting the focus of the collimating optical system on the reflective surface, it can be ensured that the irradiated light shape formed by projection in front of the vehicle light has Uniform lighting illuminance with substantially no obvious bright areas and/or dark areas corresponding to the setting of the light source.
- the formed illumination light shape is guaranteed to meet the current national standard "LED Headlights for Automobiles" (GB25991-2010) while ensuring uniform light distribution characteristics.
- LED Headlights for Automobiles GB25991-2010
- FIG. 1 is a schematic perspective view showing a lighting device for a vehicle lamp according to an exemplary embodiment of the present application
- FIG. 2 is a schematic side view showing a lighting device for a vehicle lamp according to an exemplary embodiment of the present application
- FIG. 3 is a screen illuminance diagram when a single LED unit of a light source of a lighting device according to an exemplary embodiment of the present application is turned on;
- FIG. 4 is a screen illuminance diagram when all LED units of a light source of a lighting device according to an exemplary embodiment of the present application are turned on;
- FIG. 5 is a screen illuminance diagram when the middle LED unit of the light source of the lighting device according to an exemplary embodiment of the present application is turned off and the remaining LED units are turned on;
- FIG. 6 is a schematic perspective view showing a lighting device for vehicle lights according to another exemplary embodiment of the present application.
- FIG. 7 is a schematic perspective view showing a lighting device for vehicle lights according to still another exemplary embodiment of the present application.
- FIG. 8 is a schematic perspective view showing a lighting device for vehicle lights according to yet another exemplary embodiment of the present application.
- FIG. 9 is a schematic perspective view showing a lighting device for vehicle lights according to yet another exemplary embodiment of the present application.
- FIG. 10 is a schematic perspective view showing a lighting device for vehicle lights according to yet another exemplary embodiment of the present application.
- 11 to 16 are screen illuminance diagrams respectively showing when different single LED units in a group of LED units of the light source of the lighting device according to an exemplary embodiment of the present application are turned on and the rest of the LED units are turned off;
- 17 is a screen illuminance diagram showing when all LED units in a group of LED units of a light source of a lighting device according to an exemplary embodiment of the present application are turned on;
- 18 to 22 are screen illuminance diagrams respectively showing when different single LED units in another group of LED units of the light source of the lighting device according to an exemplary embodiment of the present application are turned on and the rest of the LED units are turned off;
- 23 is a screen illuminance diagram showing when all the LED units in another group of LED units of the light source of the lighting device according to an exemplary embodiment of the present application are turned on;
- 24 is a screen illuminance diagram showing when all LED units in two groups of LED units of a light source of a lighting device according to an exemplary embodiment of the present application are lit;
- FIG. 25 is a schematic assembled perspective view showing a lighting device for a vehicle lamp according to another exemplary embodiment of the present application.
- 26 is a schematic exploded perspective view showing a lighting device for a vehicle lamp according to an exemplary embodiment of the present application.
- FIG. 27 is a schematic perspective view showing a lighting device for a vehicle lamp according to yet another exemplary embodiment of the present application.
- FIGS. 1 and 2 show schematic diagrams of a lighting device for a vehicle light according to an exemplary embodiment of the present application.
- a lighting device 1 for a vehicle lamp may include a light source 10 , a primary optical system 20 and a collimating optical system 30 .
- the light source 10 may include a plurality of LED units 101 .
- the plurality of LED units 101 may be arranged side by side in a straight arrangement direction.
- Each LED unit of the plurality of LED units 101 can be independently controlled to be lit or dimmed or extinguished.
- a part of the LED units located at the position corresponding to the road user among the plurality of LED units 101 can be dimmed or extinguished to reduce the presence of the road user.
- the lighting illuminance of the irradiated light shape in the area of the road user can avoid dazzling the road user and ensure driving safety.
- the plurality of LED units 101 can be arranged in one row or n rows, where n ⁇ 2, when the plurality of LED units 101 are arranged in a row, the plurality of LED units
- the spacing in the arrangement direction of 101 may be the minimum process spacing, and when the plurality of LED units 101 are arranged in n rows, the spacing in the arrangement direction of the plurality of LED units 101 may be the minimum process spacing or each LED unit n-1 times the width of the light-emitting surface.
- the minimum process pitch may be distributed between 0.01 mm and 0.05 mm according to different processing processes.
- the plurality of LED units 101 may be arranged in three rows, and the spacing in the arrangement direction of the plurality of LED units 101 may be twice the width of the light-emitting surface of each LED unit.
- the light source 10 can be arranged on the installation device 40 , and the light source 10 can be installed in place in the vehicle lamp through the installation device 40 .
- the installation device 40 may adopt any suitable device known in the art, such as a circuit board.
- the light source 10 may be a traditional halogen lamp, a xenon lamp, or a laser lamp.
- the primary optical system 20 may have a reflective surface 201 .
- the reflective surface 201 may be configured to reflect light emitted by the light source 10 .
- all LED units 101 serving as the light source 10 may share one reflective surface 201 .
- the plurality of LED units may be divided into two or more groups, and each of the two or more groups of LED units may be A plurality of reflective surfaces are provided so as to correspond to one reflective surface, respectively.
- a plurality of LED units 101 as a light source 10 can be arranged in a row, and the spacing in the arrangement direction of the plurality of LED units 101 is The minimum process pitch, so that the distance between the plurality of LED units 101 is as small as possible, so as to ensure that the corresponding light spots formed by the plurality of LED units are connected sequentially, so that the formed illumination light shape has uniform illumination illuminance .
- the reflective surface 201 of the primary optical system 20 can be configured as a concave curved surface, preferably a unidirectionally stretched concave curved surface.
- a plurality of LED units 101 arranged side by side in a straight line share a reflective surface 201 in the form of a unidirectional stretched concave curved surface.
- uniaxially stretched concave curved surface refers to a curved surface formed by unidirectionally stretching a concave curve or fold line along a straight line.
- the stretching direction of the concave curve or broken line may be consistent with the arrangement direction of the light sources 10 .
- the concave curve used to form the unidirectionally stretched concave surface can be a parabola or an ellipsoid.
- the reflecting surface 201 of the primary optical system 20 can be formed by combining the parabola Or a unidirectionally stretched concave curved surface formed by unidirectionally stretching an ellipsoid along the normal direction of the plane where the parabola or ellipsoid is located.
- the fold line used to form the unidirectionally stretched concave surface may be a fold line formed by connecting multiple line segments with a shape similar to a parabola or an ellipsoid, and the multiple lines forming the fold line Each endpoint of the line segment is located on the same parabola or ellipsoid.
- the reflective surface 201 of the primary optical system 20 can be formed by placing a fold line approximate to the parabola or ellipsoid along the plane where the fold line is located.
- a unidirectionally stretched concave surface formed by unidirectional stretching in the normal direction of .
- the reflective surface 201 of the primary optical system 20 is obtained by stretching the parabola or ellipsoid along the normal direction of the plane where the parabola or ellipsoid is located. A unidirectional stretched concave surface is formed.
- the light source 10 may be disposed at the focal line of the reflective surface 201 of the primary optical system 20 , and the light emitted by the light source 10 may be reflected by the reflective surface 201 to form a primary light spot.
- the optical axis of the light source 10 that is, the light emitting direction of the light source 10 such as the normal direction of the light emitting surface of the light emitting chip of the LED unit 101 is set toward the reflective surface 201 .
- the optical axis of the light source 10 forms an included angle of 60° to 120° with the light emitting direction of the reflective surface 201 , preferably, the optical axis of the light source 10 is perpendicular to the light emitting direction of the reflective surface 201 .
- the unidirectional stretched concave surface forming the reflective surface 201 is a parabolic concave curve and a broken line whose shape is similar to a parabola, when viewed along the stretching direction of the reflective surface 201, the light emitting surface of the light source 10 can be set at the focus of the parabola.
- the unidirectionally stretched concave surface forming the reflective surface 201 is an ellipsoidal concave curve and a broken line whose shape is similar to the ellipsoidal line, when viewed along the stretching direction of the reflective surface 201, the light emitted by the light source 10 Surfaces can be set at the near focus of the ellipsoid.
- the focal length of the parabola can be set between 0.1mm and 10mm, preferably between 1mm and 10mm. between 3mm.
- the unidirectionally stretched concave surface forming the reflective surface 201 is an ellipsoid-shaped concave curve and a broken line whose shape is similar to the ellipsoid
- the near focus of the ellipsoid and the close focus of the ellipsoid can be
- the distance between the vertices is set between 0.1 mm and 10 mm, preferably between 1 mm and 3 mm.
- the shape parameters of the parabola and ellipsoid are not limited thereto, and other appropriate set values can be adopted according to the actual needs of forming the expected light shape.
- the reflective surface 201 of the primary optical system 20 can be formed by metal coating.
- the reflective surface 201 may be formed by coating aluminum on the concave surface of the uniaxially stretched concave curved surface using aluminum deposition technology.
- the implementation of the reflective surface 201 is not limited thereto, and the reflective surface 201 can be formed by coating a suitable metal on the concave surface of the uniaxially stretched concave surface using any suitable technique.
- the primary optical system 20 of the lighting device for vehicle lights can be formed by a plane mirror.
- the light emitted by the light source 10 after the light emitted by the light source 10 is reflected by the reflective surface 201, it will be projected through the collimating optical system 30 of the lighting device 1 and then emitted to the front of the vehicle lamp, thereby forming a shape on the road ahead of the vehicle.
- the expected illumination light shape (eg, as shown in Figure 4).
- the collimating optical system 30 of the illuminating device 1 can be arranged such that the focus of the collimating optical system 30 is located on the reflective surface 201 to image the primary light spot to form an illumination light shape.
- the focal point of the collimating optical system 30 can be set on the reflective surface 201 at a position close to the light source 10, preferably on the reflective surface 201 and positioned at a position closer to the light source 10 from the reflective surface 201.
- the optical axis of the collimating optical system 30 is parallel to or at an angle to the light emitting direction of the reflecting surface 201, and the angle can be irradiated to the collimating optical system according to the light reflected by the reflecting surface 201. 30. After passing through the collimating optical system 30, it is irradiated onto the road surface as a judgment basis.
- the collimating optical system 30 may include a convex lens or a lens group.
- all LED units 101 serving as the light source 10 may share one convex lens or lens group.
- multiple convex lenses or lens groups may be provided in such a manner that each of the two or more groups of LED units corresponds to a convex lens or lens group.
- the lens group may include a combination of a concave lens and a convex lens.
- a lens group may include two or more lenses.
- collimating optics 30 may be formed from a single convex lens 301 .
- the convex lens 301 of the collimating optical system 30 may be arranged such that the optical axis of the convex lens 301 is perpendicular to the arrangement direction of the plurality of LED units 101 .
- the convex lens 301 of the collimating optical system 30 can be set relative to the reflective surface 201 of the primary optical system 20 so that the focal point of the convex lens 301 is set on the reflective surface 201, so that the reflected surface 201
- the light is projected toward the front of the vehicle light through the convex lens 301 to form a desired illumination light shape in front of the vehicle light, as shown in FIG. 2 .
- the lighting device 1 for vehicle lamps according to the exemplary embodiment of the present application, by disposing the light source 10 at the focal line of the reflecting surface 201 in the form of a unidirectionally stretched concave curved surface, in the unidirectional direction forming the reflecting surface 201 In the plane where the concave curve of the stretched concave surface is located, the light reflected by the reflective surface 201 is substantially parallel to each other.
- the light reflected by the reflective surface 201 is projected by the collimating optical system 30 into parallel outgoing light substantially parallel to the main optical axis.
- the illumination light shape projected in front of the vehicle light has uniform illumination, and there are basically no obvious strong light areas and/or dark areas corresponding to the settings of the light source, as shown in Figure 4.
- the light source 10 is arranged as close as possible to the primary optics
- the reflective surface 201 of the system so as to ensure that the irradiated light shape formed by projection in front of the car lamp has the appropriate lighting illuminance for LED headlights in the current national standard "LED Headlights for Automobiles" (GB25991-2010), and Requirements for ADB function in "Automotive Adaptive Front Lighting System” (GB/T30036-2013ECE R123).
- all the LED units of the light source 10 share a reflective surface 201 in the form of a unidirectionally stretched concave surface, so compared with the case of setting a plurality of reflective devices, in the example according to the present application
- the corresponding light spots formed by the LED units of the light source 10 in the exemplary embodiment are rectangular light spots with clear boundaries on both sides, so there is no redundant light in the corresponding dark area formed when the corresponding LED unit is extinguished, that is, there is no invalid light. light, thereby improving the anti-glare effect.
- the reflection of the light emitted by the light source is realized by only a single reflective surface 201, and the projection of the reflected light is realized by only the convex lens 301, so that according to the present application
- the structure of the lighting device 1 of the embodiment is simple.
- FIG. 3 is a screen illuminance diagram when a single LED unit of the light source 10 of the lighting device 1 according to the exemplary embodiment of the present application is turned on.
- FIG. 4 is a screen illuminance diagram when all LED units of the light source 10 of the lighting device 1 according to the exemplary embodiment of the present application are turned on.
- FIG. 5 is a screen illuminance diagram when the middle LED unit of the light source 10 of the lighting device 1 according to the exemplary embodiment of the present application is turned off and the remaining LED units are turned on.
- the primary optical system 20 and the collimating optical system 30 in the lighting device 1 due to the innovative arrangement of the light source 10, the primary optical system 20 and the collimating optical system 30 in the lighting device 1 according to the present application, the light emitted by the LED unit 101 of the light source 10 passes through the reflective surface of the primary optical system 20 The reflection of 201 forms a primary spot, and then the primary spot is imaged by the convex lens 30 of the collimating optical system 30, and the images formed by adjacent primary spots overlap at least partially, so as shown in FIG. 4 , when according to the example of the present application When all the LED units of the light source 10 of the lighting device 1 according to the exemplary embodiment are turned on, an irradiation light pattern with uniform screen illuminance will be formed in front of the vehicle light.
- FIG. 3 shows an illumination light shape formed when a single LED unit of the lighting device 1 according to the exemplary embodiment of the present application is turned on.
- the width of the light distribution of the formed illumination light shape is D1.
- D2 is about half of D1.
- D2 can be made one-third of D1, etc. by controlling the spacing between adjacent light sources 10 such that adjacent light sources 10 are arranged closer to each other.
- the light distribution formed by the LED units of the light source at least partially overlaps, the light distribution of the entire illumination light shape formed when all the LED units are fully lit is substantially There are no significant dark areas, ie a uniform light distribution is achieved.
- the lighting device 1 according to the present application is dimmed or extinguished at a corresponding position when a part of the LED units are dimmed or extinguished.
- the generated dark area for anti-glare can be relatively small, so that the driver's visual blind area is reduced, and the driving safety of the vehicle is improved. It can be seen from this that the lighting device 1 according to the exemplary embodiment of the present application can realize uniform light distribution with a simple structure, leading to better driving safety of the vehicle.
- one of the parabola and the ellipsoid can be selected as the concave curve forming a unidirectional stretched concave surface according to the actual design requirements, and the parameters of the parabola or ellipsoid, such as focal length, etc. Adjustments are made to achieve the desired irradiated light shape and its light distribution characteristics, as well as to form an appropriate cut-off line. In addition, in some embodiments, by controlling the curvature of the concave curve or changing the angle between the optical axis of the light source 10 and the reflective surface 201 , the illumination light shape projected in front of the vehicle light and its light distribution characteristics can be adjusted.
- the position of the focal point of the collimating optical system 30 can be controlled to change the shape of the illumination light projected in front of the lamp and its light distribution characteristics.
- the collimating The position of the focal point of the optical system 30 is adjusted to be located in front of or behind the reflective surface 201 .
- Fig. 6 is a schematic perspective view showing a lighting device 1' for vehicle lights according to another exemplary embodiment of the present application.
- the lighting device 1' according to the embodiment shown in FIG. 6 differs from the lighting device 1 described above according to the exemplary embodiment shown in FIG. Only the difference between the lighting device 1' and the lighting device 1 will be described below, and the same reference numerals will be used for the same components between the two embodiments and their detailed description will be omitted.
- the collimating optical system 30 may be formed by a parabolic reflective surface 302 .
- the light emitted by the light source 10 is reflected by the reflective surface 201 of the primary optical system 20 , and then reflected by the parabolic reflective surface 302 of the collimating optical system 30 to emerge toward the front of the vehicle light.
- the parabolic reflective surface 302 of the collimating optical system 30 may be arranged relative to the reflective surface 201 of the primary optical system 20 such that the focus of the parabolic reflective surface 302 is set on the reflective surface 201 .
- the parabolic reflective surface 302 may be disposed opposite to the reflective surface 201 to ensure that the light reflected by the reflective surface 201 is reflected toward the front of the lamp, as shown in FIG. 6 .
- the reflective surface 302 of the collimating optical system 30 can be formed as a unidirectional stretched concave surface in the same manner as the reflective surface 201 of the primary optical system 20, but the embodiment of the reflective surface 302 does not limited to this.
- the reflective surface 302 of the collimating optical system 30 is formed as a unidirectional stretched concave surface in the same manner as the reflective surface 201 of the primary optical system 20
- the reflective surface 302 of the collimating optical system 30 can be configured such that: The normal direction of the plane where the concave curve of the uniaxially stretched concave surface forming the reflective surface 302 is located is perpendicular to the arrangement direction of the plurality of LED units 101 .
- the focal point of the reflective surface 302 of the collimating optical system 30 in the illuminating device 1' is set on the reflective surface 201 of the primary optical system 20, the light reflected by the reflective surface 302 toward the front of the lamp is basically parallel.
- FIG. 7 is a schematic perspective view showing a lighting device 1 ′′ for a vehicle lamp according to still another exemplary embodiment of the present application.
- the lighting device 1 ′′ according to the embodiment shown in FIG. 7 differs from the previously described lighting device 1 according to the exemplary embodiment shown in FIG. ” and the difference from the lighting device 1 will be described, and the same reference numerals will be used for the same components between the two embodiments and their detailed description will be omitted.
- the reflective surface of the primary optical system 20 can be formed by the total reflection surface 2020 of the transparent light conductor 202.
- the light conductor 202 can be Made of a transparent material such as polycarbonate or polymethyl methacrylate.
- the transparent light guide 202 is not limited thereto, for example, the transparent light guide 202 may be made of silicone.
- the transparent light guide 202 may include a light incident surface 2022 , a light exit surface 2021 and a total reflection surface 2020 , as shown in FIG. 7 .
- the light emitted by the light source 10 enters the light conductor 202 through the light incident surface 2022 , is reflected by the total reflection surface 2020 and leaves the light conductor 202 through the light exit surface 2021 .
- the total reflection surface 2020 may be an arc-shaped concave surface, but the shape of the concave surface forming the total reflection surface 2020 is not limited thereto.
- the light guide 202 may be arranged such that the extension direction of the axis A-A thereof is consistent with the arrangement direction of the light source 10 . It can be understood that, according to the embodiment of the present application, in order to project and form the desired illumination light shape in front of the vehicle light, the photoconductor 202 can be arranged relative to the collimating optical system 30 such that the focus of the collimating optical system 30 is located on the photoconductor 202 on the fully reflective surface of 2020.
- the photoconductor 202 can also be arranged such that the light source 10 does not substantially form an image on the total reflection surface 201 of the photoconductor 202, that is, so that the light incident surface 2022 of the photoconductor 202 enters the photoconductor 202, and then is reflected by the total reflection surface.
- the lights reflected by 2020 and emitted through the light emitting surface 2021 are substantially parallel to each other. In this way, by cooperating with the collimating optical system 30, desired illumination light shapes as shown in FIGS. 3 to 5 can be obtained.
- Fig. 8 is a schematic perspective view showing a lighting device 1"' for a vehicle lamp according to still another exemplary embodiment of the present application.
- the lighting device 1"' differs from the lighting device 1 in the previous embodiments in that the reflective surface 201 of the primary optical system 20 may have an edge line 2010 for forming a cut-off line.
- the other technical features of the reflective surface 201 are basically the same as those of the lighting device 1 in the foregoing embodiments, and will not be repeated here.
- the cut-off line of the low beam beam shape may be formed by the edge line 2010 . It can be understood that the structure of the edge line 2010 can be any cut-off structure.
- the lighting device 1"' can also realize low-beam lighting. That is, the lighting device 1"' in this embodiment Both can realize low-beam lighting function (when the focus of the collimating optical system 30 is set on the edge line 2010),
- the ADB high beam lighting function can also be realized (when the focus of the collimating optical system 30 is set at other positions on the reflective surface 201 ).
- FIG. 9 is a schematic perspective view showing a lighting device 1"" for a vehicle lamp according to yet another exemplary embodiment of the present application.
- the lighting device 1"" according to the embodiment shown in FIG. 9 is different from the lighting device 1"' in the previous embodiments in that a plurality of LED units 101 as light sources 10 can be arranged in two rows in a matrix shape.
- the spacing between two rows of the plurality of LED units 101 may be the minimum process spacing.
- any one of the two rows of LED units in the plurality of LED units 101 serving as the light source 10 may be disposed at the focal line of the reflective surface 201 .
- the number of light distributions corresponding to a plurality of LED units in the formed illumination light shape can be increased, so that the control precision of the ADB can be improved.
- FIG. 10 is a schematic perspective view showing a lighting device 1""' for a vehicle lamp according to yet another exemplary embodiment of the present application.
- the lighting device 1 ""' according to the embodiment shown in FIG. 10 differs from the previously described lighting device 1 according to the exemplary embodiment shown in FIG. setting. Only the differences between the lighting device 1""' and the lighting device 1 will be described below, and the same reference numerals will be used for the same components between the two embodiments and their detailed description will be omitted.
- LED unit 10107, LED unit 10109, LED unit 10111, another group of LED units includes LED unit 10102, LED unit 10104, LED unit 10106, LED unit 10108, LED unit 10110.
- a plurality of LED units in each group of LED units may be arranged in a row. It should be noted here that, in this context, when LED units are divided into groups in a similar manner, each group of LED units should be regarded as a row of LED units. In other words, in the embodiment shown in FIG. 10, the LED units are arranged in two rows.
- the width of the light-emitting surface of each LED unit may be d, and the spacing in the arrangement direction of the plurality of LED units 101 in each group of LED units may be n- 1 times, that is (n-1)xd, wherein, n is the number of rows of LED units.
- n is 2, therefore, the spacing in the arrangement direction of the plurality of LED units 101 in each group of LED units can be d.
- the width d of the light emitting surface may be about 1 mm, and the pitch is 1 mm.
- the implementation manners of the spacing and the width of the light emitting surface are not limited thereto, and other appropriate values may be adopted according to actual needs.
- the LED units of each row are seamlessly connected in the lateral direction, that is, the direction approximately parallel to the focal line of the reflective surface 201, so that the minimum process pitch does not need to be considered in the lateral direction, so that better It is ensured that the corresponding light spots formed by the LED units are sequentially connected, so that the illumination illuminance of the formed illumination light shape is more uniform.
- two reflective surfaces 301 may be provided in such a manner that each of the two groups of LED units corresponds to one reflective surface.
- Two groups of LED units of the plurality of LED units 101 serving as the light source 10 may be respectively disposed at focal lines of corresponding reflective surfaces of the two reflective surfaces 201 .
- two convex lenses 301 may be provided in such a manner that each of the two groups of LED units corresponds to one convex lens.
- the focal points of the convex lenses of the two convex lenses 301 may be respectively set on corresponding reflective surfaces of the two reflective surfaces 201 .
- the two reflective surfaces 201 may be separate, and the two convex lenses 301 may be connected to each other.
- the arrangement of the reflective surface 201 and the convex lens 301 is not limited thereto, as long as the focus of the convex lens of the two convex lenses 301 is located on the corresponding reflective surface of the two reflective surfaces 201, that is, Can.
- the plurality of LED units 101 may share one reflective surface.
- the lighting device 1""' by dividing a plurality of LED units 101 as the light source 10 into two groups so that each group of the two groups of LED units corresponds to Two reflective surfaces 301 are provided in the form of one reflective surface, and two convex lenses 301 are provided in such a manner that each of the two groups of LED units corresponds to a convex lens, so that a group of LED units of the light source forms
- the light distribution of the irradiated light shape of the light source at least partially overlaps with the light distribution of the irradiated light shape formed by another group of LED units of the light source, which can more ensure that the irradiated light shape formed by projection in front of the vehicle light has uniform illumination illuminance,
- there is basically no obvious strong light area and/or dark area corresponding to the setting of the light source as shown in FIG. 24 .
- FIGS. 11 to 24 respectively show the LED unit 10103 in a group of LED units of the light source 10 of the lighting device 1""' according to the exemplary embodiment of the present application when the LED unit 10101 is turned on and the rest of the LED units are turned off.
- Fig. 17 is a screen illuminance diagram showing when all LED units in a group of LED units of the light source 10 of the lighting device 1""' according to an exemplary embodiment of the present application are turned on.
- FIG. 22 respectively show the LED unit 10102 in another group of LED units of the light source 10 of the lighting device 1""' according to the exemplary embodiment of the present application when the LED unit 10102 is turned on and the rest of the LED units are turned off.
- 23 is a screen illuminance diagram showing when all the LED units in another group of LED units of the light source 10 of the lighting device 1""' according to the exemplary embodiment of the present application are turned on.
- FIG. 24 is a screen illuminance diagram showing when all LED units in two groups of LED units of the light source 10 of the lighting device 1""' according to an exemplary embodiment of the present application are turned on.
- the lighting device 1""' As can be seen from the screen illuminance diagrams in FIGS. 11 to 24 , in the lighting device 1""' according to the exemplary embodiment of the present application, not only the illumination light formed by each LED unit in each group of LED units of the light source
- the light distribution of the shape is at least partially overlapped, and the light distribution of the illumination light shape formed by one group of LED units of the light source and the light distribution of the illumination light shape formed by another group of LED units of the light source are also at least partially overlapped, This makes it possible to more ensure that there is substantially no obvious dark area in the light distribution of the entire illumination light shape formed when all the LED units are fully lit.
- FIGS. 25 and 26 are schematic assembled perspective view showing a lighting device 1""" for vehicle lamps according to another exemplary embodiment of the present application.
- Fig. 26 is a schematic assembly perspective view showing an A schematic exploded perspective view of a lighting device 1""" for vehicle lights.
- the lighting device 1""" may include a light source 10, a reflective surface 201 of the primary optical system 20, a convex lens 301 as the collimating optical system 30, a heat sink 50,
- the heat sink 50 may be configured to dissipate heat from the circuit board 60, the heat sink 50 may have a substantially C-shape open toward the upper side of the heat sink 50, and the heat sink 50 may include an opposite Two side walls and a web connecting the two side walls, wherein each of the two side walls may have a flange, against which the web may be opposite.
- the heat sink 50 may include two holes 501 extending through the web of the heat sink 50 .
- the wiring board 60 may be configured in a substantially plate-like shape.
- Two holes 601 may be provided on the circuit board 60 , and the two holes 601 may extend through the circuit board 60 and be respectively aligned with the two holes 501 .
- the light source 10 may be mounted on the surface of the circuit board 60 facing the bracket 70, for example by any means known in the art.
- the bracket 70 may include a first connection portion 71 and a second connection portion 72, the first connection portion 71 may have a flat portion facing the circuit board 60 to be connected to the circuit board 60, and the first connection The portion 71 may form an angle with a horizontal direction substantially parallel to the front-to-back direction of the lighting device 1""",
- Two holes 701 that are respectively aligned with the two holes 601 may be opened in the first connecting portion 71, for inserting two fasteners 90, such as screws, through the corresponding holes 501 and 601 respectively.
- the heat sink 50 , the circuit board 60 and the bracket 70 are connected together with the hole 701 , and the second connection part 72 can be used for installing and maintaining the reflective surface 201 of the primary optical system 20 .
- the reflective surface 201 may form a part of the bracket 70 and extend between the first connection part 71 and the second connection part 72 in the front and back direction of the lighting device 1""".
- the bracket 70 The two connecting portions 72 include a pair of sitting portions 702 at opposite sides of the reflecting surface 201 in the left-right direction of the illuminating device 1 ′′′′′′. Through-holes 703 are respectively formed in the pair of seating portions 702 . It should be noted that the reflective surface 201 may also be formed on a separate component, which may be connected to the bracket 70 eg by fasteners.
- the supporting member 80 can be configured to install and hold the convex lens 301 as the collimating optical system 30 so that the focal point of the convex lens 301 is located on the reflective surface 201 .
- the support member 80 may have a cuboid shape and define a hollow portion 801 through which light reflected by the reflective surface 201 passes.
- the supporting member 80 may include a pair of lugs 802 at opposite sides of the supporting member 80 in the left-right direction of the lighting device 1""".
- Holes 803 may be respectively opened in the pair of lugs 802, and the holes 803 The positions and orientations can be set to be opposite to the corresponding through holes 703, respectively, so as to connect the bracket 70 and the support member 80 by inserting the two fasteners 100 through the corresponding holes 803 and the through holes 703, respectively. It is understood that the lug 802 and the seat portion 702 can be arranged such that the focal length of the convex lens 301 is allowed to be adjusted so that the focal point of the convex lens 301 is located on the reflective surface 201 .
- the convex lens 301 as the collimating optical system 30 can be mounted to the support 80, for example, in the following manner: the convex lens 301 is machined, such as cut, at the side parts by snap-fitting Inserted into a recess formed in a side portion of the support 80 opposite to the bracket 70 in such a manner.
- the connection method between the convex lens 301 and the supporting member 80 is not limited thereto, as long as the supporting member 80 mounts and holds the convex lens 301 such that the focal point of the convex lens 301 is located on the reflecting surface 201 .
- the light that passes through the hollow portion 801 of the support 80 is projected by the convex lens 301 , while the light that does not pass through the hollow portion 801 is projected by the hollow portion 80 of the support 80 .
- the walls of the portion 80 are shielded so as not to form stray light, thereby improving the uniformity of the illumination illuminance of the irradiated light shape projected in front of the vehicle lamp.
- FIG. 27 is a schematic perspective view showing a lighting device 1"""' for a vehicle lamp according to yet another exemplary embodiment of the present application.
- the lighting device 1 """' according to the embodiment shown in FIG. 27 differs from the aforementioned lighting device 1 according to the exemplary embodiment shown in FIG.
- the difference between the lighting device 1 """' and the lighting device 1 will be described, and the same reference numerals will be used for the same components between the two embodiments and their detailed description will be omitted.
- the reflective surface 201 is unidirectional by placing a fold line whose shape is similar to a parabola or an ellipsoid along the normal direction of the plane where the fold line is located.
- the fold line can be a fold line formed by connecting multiple line segments with a shape similar to a parabola or an ellipsoid, and each endpoint of the multiple line segments forming the fold line All lie on the same parabola or ellipsoid.
- a lighting device 1, 1', 1", 1"', 1"", 1""', 1""” or 1 according to the foregoing exemplary embodiments.
- """' headlights It should be understood that the vehicle light provided by the present application can at least realize the above lighting devices 1, 1', 1", 1"', 1"", 1""', 1""" or 1"""' Various beneficial technical effects described.
- the present application provides a lighting device for a vehicle light and a vehicle light including the lighting device.
- the illuminating device includes a light source, a primary optical system and a collimating optical system.
- the light source includes a plurality of LED units arranged side by side in an arrangement direction in a line and capable of being independently controlled.
- the primary optics has a reflective surface which is designed to reflect light emitted by the light source.
- the collimating optical system is configured to project the light reflected by the reflective surface and emit the projected light toward the front of the vehicle lamp.
- the light source is arranged at the focal line of the reflective surface, the light emitted by the light source is reflected by the reflective surface to form a primary spot, and the focus of the collimating optical system is set on the reflective surface to image the primary spot, Thus forming the irradiated light shape.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Non-Portable Lighting Devices Or Systems Thereof (AREA)
Abstract
用于车灯的照明装置(1,1',1'',1''',1'''',1''''',1'''''',1''''''')以及包括该照明装置的车灯,照明装置(1,1',1'',1''',1'''',1''''',1'''''',1''''''')包括:光源(10),包括多个LED单元(101),多个LED单元(101)沿呈直线的布置方向并排布置并且能够被独立地控制;初级光学系统(20),具有反射面(201,2020),反射面(201,2020)构造成对由光源(10)发射的光进行反射;以及准直光学系统(30),构造成对反射面(201,2020)所反射的光进行投射并且使所投射的光向车灯前方出射,其中,光源(10)设置在反射面(201,2020)的焦线处,由光源(10)发射的光经由反射面(201,2020)的反射形成初级光斑,并且其中,准直光学系统(30)的焦点设置在反射面(201,2020)上,以对初级光斑进行成像,从而形成照射光形。
Description
本申请总体上涉及用于车灯的照明装置。本申请还涉及包括该照明装置的车灯。
本部分提供与本申请有关的背景信息,但是这些信息并不必然构成现有技术。
近来,对车辆行驶安全的要求越来越高,用于车灯的照明技术不断提高,用于车灯的自适应远光(ADB,Adaptive Driving Beam)系统因能够避免给路面其他车辆产生眩目而受到追捧。ADB系统是一种通过摄像头或其他传感器探测路面车辆信息,经过分析和处理后,根据车辆前方视野中的车辆位置自适应变换远光光形,以对照明区域进行控制从而避免对其他道路使用者造成眩目的车灯照明系统。
在目前已知的相关技术中,提供了多种具有ADB系统的车辆前照灯,所述车辆前照灯包括光源、主光学单元、和次级光学单元,主光学单元用于将光源发射的光线汇集并在主光学单元的光输出面上产生光分布,次级光学单元用于对该光分布进行投射以在车辆前方道路上成像并照亮车辆前方区域,其中,ADB系统会自动捕捉其他道路使用者的位置,将相应位置的光源调暗或者熄灭,以避免对其他道路使用者造成眩目,保证车辆驾驶安全性。
发明内容
本部分提供本申请的总体概述,而不是本申请的全部范围或全部特征的全面披露。
本申请的发明人注意到,在目前已知的前照灯的ADB技术的应用中,由光源发射的光线通过主光学单元和次级光学单元等而在道路上所形成的矩阵式ADB光形的光分布存在暗区,也就是说,所形成的光分布不均匀,使得车辆驾驶安全性不够高。此外,相关技术的车灯系统由多个光学器件构成,每个光学器件都会因透过率及入射面和出射面的菲涅尔反射而导致光损失,因而光学器件越多,光损失也越多,光学性能就越不稳定,且安装越复杂,对装配精度的要求也越高。
另外,在已知的一种矩阵式ADB系统中,ADB系统由多个初级光学系统及其对应设置的光源结合次级光学系统组成,每个初级光学系统形成一个光斑,多个初级光学系统形成多个相邻的光斑,从而形成ADB光形。可以通过单独点亮及熄灭可控的光源来控制每个光斑的点亮和熄灭。在该方案中,初级光学系统的反射面宽度受到限制,即宽度不能太小,其矩形轮廓的边长为3mm至15mm,由此就限制了初级光学系统的数量不能太多。另外,基于该方案,在相应的光源被熄灭时,所形成的对应暗区中仍然有光存在,这部分光被称为无效光,这是由于经由多个初级光学系统形成的光斑的两侧存在无效光。无效光的存在使得防眩目效果欠佳,从而影响车辆驾驶安全性。
因此,存在对ADB系统进行改进的空间,以至少解决上述问题中的一者或全部。
本申请的示例性实施方式提供了一种用于车灯的照明装置,该照明装置可以包括:光源,该光源包括多个LED单元,所述多个LED单元沿呈直线的布置方向并排布置并且能够被独立地控制;初级光学系统,该初级光学系统具有反射面,该反射面构造成对由光源发射的光进行反射;以及准直光学系统,该准直光学系统构造成对反射面所反射的光进行投射并且使所投射的光向车灯前方出射,其中,光源设置在反射面的焦线处,由光源发射的光经由反射面的反射形成初级光斑,并且其中,准直光学系统的焦点设置在反射面上,以对初级光斑进行成像,从而形成照射光形。
在一些可选的实施方式中,所述多个LED单元(101)可以布置为一排或n排,其中,n≥2,当所述多个LED单元布置为一排时,所述多个LED单元的布置方向上的间距为最小工艺间距,当所述多个LED单元布置为n排时,所述多个LED单元(101)的布置方向上的间距为最小工艺间距或每个LED单元的发光面宽度的n-1倍。
在一些可选的实施方式中,所述多个LED单元可以共用一个反射面。
在一些可选的实施方式中,所述多个LED单元可以被分成两个或更多个组,准直光学系统可以包括凸透镜或透镜组或者包括抛物面形反射面,凸透镜或透镜组或者抛物面形反射面可以以使所述多个LED单元的所述两个或更多个组中的每个组分别对应一个凸透镜或透镜组或者抛物面形反射面的方式设置多个凸透镜或透镜组或者抛物面形反射面。
在一些可选的实施方式中,所述多个LED单元可以被分成两个或更多个组,并且可以以使所述多个LED单元的所述两个或更多个组中的每个组分别对应一个反射面的方式设置多个反射面。
在一些可选的实施方式中,准直光学系统可以包括凸透镜或透镜组或者包括抛物面形反射面,凸透镜或透镜组或者抛物面形反射面可以以使所述多个LED单元的所述两个或更多个组中的每个组分别对应一个凸透镜或透镜组或者抛物面 形反射面的方式设置多个凸透镜或透镜组或者抛物面形反射面。
在一些可选的实施方式中,初级光学系统的反射面可以为凹曲面。
在一些可选的实施方式中,初级光学系统的反射面可以为单向拉伸凹曲面。
在一些可选的实施方式中,初级光学系统的反射面可以为将抛物线或椭球线沿直线单向拉伸而形成的单向拉伸凹曲面。
在一些可选的实施方式中,初级光学系统的反射面可以为将形状与抛物线或椭球线近似的折线沿直线单向拉伸而形成的单向拉伸凹曲面。
在一些可选的实施方式中,抛物线的焦距、或椭球线的近焦点与椭球线的接近近焦点的顶点之间的距离可以在0.1mm与10mm之间。
在一些可选的实施方式中,抛物线的焦距、或椭球线的近焦点与椭球线的接近近焦点的顶点之间的距离可以在1mm与3mm之间。
在一些可选的实施方式中,单向拉伸凹曲面的拉伸方向可以与所述多个LED单元的布置方向一致。
在一些可选的实施方式中,初级光学系统的反射面可以是通过金属镀膜而形成的。
在一些可选的实施方式中,初级光学系统的反射面可以是由透明光导体的全反射面形成的。
本申请的示例性实施方式还提供了一种包括根据前述实施方式所提供的照明装置的车灯。
根据本申请的用于车灯的照明装置,通过将光源设置在反射面的焦线处并且将准直光学系统的焦点设置在反射面上,能够确保在车灯前方投射形成的照射光形具有均匀的照明照度,而基本不存在明显的与光源的设置相对应的强光区域和/或暗区域。此外,通过设置反射面的合适的焦距或其他形状参数,使得所形成的照射光形在保证均匀光分布特性的情况下确保满足现行的国家标准《汽车用LED前照灯》(GB25991-2010)中关于LED前照灯的照明照度、以及《汽车用自适应前照明系统》(GB/T30036-2013ECE R123)中关于ADB功能的要求。
通过以下参照附图的描述,本申请的实施方式的特征和优点将变得更加容易理解,附图并非按比例绘制,并且一些特征被放大或缩小以显示特定部件的细节,在附图中:
图1是示出了根据本申请的示例性实施方式的用于车灯的照明装置的示意性立体图;
图2是示出了根据本申请的示例性实施方式的用于车灯的照明装置的示意性侧视图;
图3是当根据本申请的示例性实施方式的照明装置的光源的单个LED单元点亮时的屏幕照度图;
图4是当根据本申请的示例性实施方式的照明装置的光源的所有LED单元点亮时的屏幕照度图;
图5是当根据本申请的示例性实施方式的照明装置的光源的中间的LED单元熄灭且其余LED单元点亮时的屏幕照度图;
图6是示出了根据本申请的另一示例性实施方式的用于车灯的照明装置的示意性立体图;
图7是示出了根据本申请的又一示例性实施方式的用于车灯的照明装置的示意性立体图;
图8是示出了根据本申请的再一示例性实施方式的用于车灯的照明装置的示意性立体图;
图9是示出了根据本申请的再另一示例性实施方式的用于车灯的照明装置的示意性立体图;
图10是示出了根据本申请的再又一示例性实施方式的用于车灯的照明装置的示意性立体图;
图11至图16是分别示出了根据本申请的示例性实施方式的照明装置的光源的一组LED单元中的不同的单个LED单元点亮且其余LED单元熄灭时的屏幕照度图;
图17是示出了根据本申请的示例性实施方式的照明装置的光源的一组LED单元中的所有LED单元点亮时的屏幕照度图;
图18至图22是分别示出了根据本申请的示例性实施方式的照明装置的光源的另一组LED单元中的不同的单个LED单元点亮且其余LED单元熄灭时的屏幕照度图;
图23是示出了根据本申请的示例性实施方式的照明装置的光源的另一组LED单元中的所有LED单元点亮时的屏幕照度图;
图24是示出了根据本申请的示例性实施方式的照明装置的光源的两组LED单元中的所有LED单元点亮时的屏幕照 度图;
图25是示出了根据本申请的另外的示例性实施方式的用于车灯的照明装置的示意性组装立体图;
图26是示出了根据本申请的示例性实施方式的用于车灯的照明装置的示意性分解立体图;以及
图27是示出了根据本申请的又一另外的示例性实施方式的用于车灯的照明装置的示意性立体图。
下面将参照附图借助于本申请的示例性实施方式对本申请进行详细描述。应指出的是,以下对本申请的详细描述仅是出于说明的目的,而不是对本申请进行限制。此外,在各个附图中采用相同的附图标记来表示相同的部件。
还应指出的是,为了清楚起见,在说明书和附图中并未描述和示出实际的特定实施方式的所有特征,另外,为了避免不必要的细节模糊了本申请关注的技术方案,在说明书和附图中仅描述和示出了与本申请的技术内容密切相关的布置结构,而省略了与本申请的技术内容关系不大的且本领域技术人员已知的其他细节。
接下来,将参照附图对根据本申请的示例性实施方式的用于车灯的照明装置进行详细地描述。
首先参照图1和图2对根据本申请的示例性实施方式的用于车灯的照明装置进行说明。图1和图2示出了根据本申请的示例性实施方式的用于车灯的照明装置的示意图。
如图1和图2中所示,作为本申请的示例性实施方式的用于车灯的照明装置1可以包括光源10、初级光学系统20和准直光学系统30。
在所示出的示例性实施方式中,光源10可以包括多个LED单元101。所述多个LED单元101可以沿呈直线的布置方向并排布置。所述多个LED单元101中的每个LED单元能够被独立地控制成点亮或调暗或熄灭。当在车辆行驶道路上探测到其他道路使用者时,所述多个LED单元101中的位于与该道路使用者对应的位置处的一部分LED单元可以被调暗或熄灭以减弱存在有该道路使用者的区域中的照射光形的照明照度,从而避免对该道路使用者造成眩目,保证驾驶安全性。
在本申请的一些实施方式中,所述多个LED单元101可以布置为一排或n排,其中n≥2,当所述多个LED单元101布置为一排时,所述多个LED单元101的布置方向上的间距可以为最小工艺间距,当所述多个LED单元101布置为n排时,所述多个LED单元101的布置方向上的间距可以为最小工艺间距或每个LED单元的发光面宽度的n-1倍。在一些实施方式中,最小工艺间距根据不同加工工艺可以分布在0.01mm与0.05mm之间。作为示例而非限制,所述多个LED单元101可以布置为三排,所述多个LED单元101的布置方向上的间距可以为每个LED单元的发光面宽度的2倍。
在本申请的示例性实施方式中,光源10可以布置在安装装置40上,光源10可以通过安装装置40在车灯内安装就位。在本申请的实施方式中,安装装置40可以采用本领域已知的任何合适的装置,例如线路板。
在一些可选的实施方式中,光源10可以是传统的卤素灯、氙气灯,还可以是激光灯。
在本申请的示例性实施方式中,初级光学系统20可以具有反射面201。反射面201可以构造成对由光源10发射的光进行反射。
在本申请的示例性实施方式中,作为光源10的所有LED单元101可以共用一个反射面201。
在本申请的一些可选的实施方式中,所述多个LED单元可以被分成两个或更多个组,并且可以以使LED单元的所述两个或更多个组中的每个组分别对应一个反射面的方式设置多个反射面。
如图1和图2所示,在所示出的示例性实施方式中,作为光源10的多个LED单元101可以布置为一排,并且所述多个LED单元101的布置方向上的间距为最小工艺间距,以使所述多个LED单元101之间的距离尽可能小,进而确保所述多个LED单元所形成的对应光斑依次衔接,从而使得所形成的照射光形具有均匀的照明照度。
在所示出的示例性实施方式中,初级光学系统20的反射面201可以构造为凹曲面,优选地是单向拉伸凹曲面。呈直线地并排布置的多个LED单元101共用一个呈单向拉伸凹曲面形式的反射面201。
在本申请中,术语“单向拉伸凹曲面”指的是将凹形曲线或折线沿一直线单向地拉伸所形成的曲面。
在可选的实施方式中,凹形曲线或折线的拉伸方向可以与光源10的布置方向一致。
应当指出的是,在本申请中,当两个方向被描述为“一致”时,应当理解为:这两个方向是平行的或基本平行的。
根据本申请的一些示例性实施方式,用以形成单向拉伸凹曲面的凹形曲线可以为抛物线或椭球线,在这种情况下,初级光学系统20的反射面201可以是通过将抛物线或椭球线沿着所述抛物线或椭球线所在平面的法向方向单向拉伸而形 成的单向拉伸凹曲面。根据本申请的一些示例性实施方式,用以形成单向拉伸凹曲面的折线可以为将多个线段相连而形成的形状与抛物线或椭球线近似的折线,形成该折线的所述多个线段的每个端点均位于同一抛物线或椭球线上,在这种情况下,初级光学系统20的反射面201可以是通过将形状与抛物线或椭球线近似的折线沿着所述折线所在平面的法向方向单向拉伸而形成的单向拉伸凹曲面。
在图1和图2所示的示例性实施方式中,初级光学系统20的反射面201是通过将抛物线或椭球线沿着所述抛物线或椭球线所在平面的法向方向单向拉伸而形成的单向拉伸凹曲面。
在本申请的示例性实施方式中,光源10可以设置在初级光学系统20的反射面201的焦线处,由光源10发射的光可以经由反射面201的反射形成初级光斑。在本申请的一些实施方式中,光源10的光轴、即光源10的出光方向如LED单元101的发光芯片的发光面的法向朝向反射面201设置。在可选的实施方式中,光源10的光轴与反射面201的出光方向成60度至120度的夹角,优选地,光源10的光轴与反射面201的出光方向垂直。
在形成反射面201的单向拉伸凹曲面为抛物线形凹形曲线以及形状与抛物线近似的折线的实施方式中,当沿着反射面201的拉伸方向观察时,光源10的发光面可以设置在抛物线的焦点处。在形成反射面201的单向拉伸凹曲面为椭球线形凹形曲线以及形状与椭球线近似的折线的实施方式中,当沿着反射面201的拉伸方向观察时,光源10的发光面可以设置在椭球线的近焦点处。
在形成反射面201的单向拉伸凹曲面为抛物线形凹形曲线以及形状与抛物线近似的折线的实施方式中,可以将抛物线的焦距设定在0.1mm与10mm之间,优选地在1mm与3mm之间。在形成反射面201的单向拉伸凹曲面为椭球线形凹形曲线以及形状与椭球线近似的折线的实施方式中,可以将椭球线的近焦点与椭球线的接近近焦点的顶点之间的距离设定在0.1mm与10mm之间,优选地在1mm与3mm之间。然而,应当指出的是,抛物线和椭球线的形状参数并不限于此,可以根据形成预期光形的实际需要而采用其他适当的设定值。
在一些优选的实施方式中,初级光学系统20的反射面201可以通过金属镀膜而形成。在一些实施方式中,反射面201可以是通过使用铝沉积技术将铝覆于单向拉伸凹曲面的凹面上而形成的。然而,应当指出的是,反射面201的实现方式并不限于此,而是可以使用任何适当的技术将合适的金属涂覆于单向拉伸凹曲面的凹面上来形成反射面201。
可以理解,根据本申请的用于车灯的照明装置的初级光学系统20可以由平面镜形成。
在本申请的示例性实施方式中,由光源10发出的光经反射面201反射之后,将经由照明装置1的准直光学系统30投射而向车灯前方出射,从而在车辆前方的道路上形成预期的照射光形(例如,如图4所示)。
在本申请的示例性实施方式中,可以将照明装置1的准直光学系统30设置成使得准直光学系统30的焦点位于反射面201上,以对初级光斑进行成像,从而形成照射光形。在优选的实施方式中,准直光学系统30的焦点可以在反射面201上设置在靠近光源10的位置处,优选地在反射面201上设置在与反射面201的定位成距光源10较近的边缘相距1mm至5mm的位置处。在本申请的一些实施方式中,准直光学系统30的光轴与反射面201的出光方向平行或呈一角度,该角度可以根据反射面201所反射的光线大部分能照射到准直光学系统30、并经过准直光学系统30后照射到路面作为判断依据。
在本申请的示例性实施方式中,准直光学系统30可以包括凸透镜或透镜组。
在一些可选的实施方式中,作为光源10的所有LED单元101可以共用一个凸透镜或透镜组。
在另外一些可选的实施方式中,可以以使LED单元的所述两个或更多个组中的每个组分别对应一个凸透镜或透镜组的方式设置多个凸透镜或透镜组。
在本申请的实施方式中,透镜组可以包括凹透镜和凸透镜的组合。透镜组可以包括两个或更多个透镜。
参照图2,在所示出的示例性实施方式中,准直光学系统30可以由单个凸透镜301形成。在本申请的示例性实施方式中,准直光学系统30的凸透镜301可以设置成使得凸透镜301的光轴与所述多个LED单元101的布置方向垂直。在本申请的实施方式中,准直光学系统30的凸透镜301可以相对于初级光学系统20的反射面201设置成:使得凸透镜301的焦点设置在反射面201上,从而使得反射面201所反射的光经由凸透镜301向车灯前方投射而在车灯前方形成期望的照射光形,如图2中所示。
在根据本申请示例性实施方式的用于车灯的照明装置1中,通过将光源10设置在呈单向拉伸凹曲面形式的反射面201的焦线处,在形成反射面201的单向拉伸凹曲面的凹形曲线所在平面内,由反射面201反射的光基本彼此平行。此外, 通过将准直光学系统30的焦点设置在反射面201上,使得由反射面201反射的光经由准直光学系统30投射成大致平行于主光轴的平行出射光。由此,在本申请的实施方式中,通过将光源10设置在反射面201的焦线处并且将准直光学系统30的焦点设置在反射面201上靠近光源10的位置处的上述构造,能够确保在车灯前方投射形成的照射光形具有均匀的照明照度,而基本不存在明显的与光源的设置相对应的强光区域和/或暗区域,如图4所示。
此外,通过设置形成单向拉伸凹曲面的抛物线的焦距、或者椭球线的近焦点与椭球线的接近近焦点的顶点之间的距离,使得光源10被布置成尽可能地靠近初级光学系统的反射面201,从而确保在车灯前方投射形成的照射光形具有满足现行的国家标准《汽车用LED前照灯》(GB25991-2010)中关于LED前照灯的适当的照明照度、以及《汽车用自适应前照明系统》(GB/T30036-2013ECE R123)中关于ADB功能的要求。另外,根据本申请的示例性实施方式,光源10的所有LED单元共用一个呈单向拉伸凹曲面形式的反射面201,因而相比于设置多个反射装置的情况,在根据本申请的示例性实施方式的光源10的LED单元所形成的对应光斑中,光斑为两侧边界明确的矩形光斑,因而在相应LED单元被熄灭时所形成的对应暗区中没有多余的光线,即不存在无效光,由此改善了防眩目效果。除此之外,在能够获得改善的防眩目效果的同时,通过仅单个反射面201实现对光源发射的光的反射,并且通过仅凸透镜301实现对所反射的光的投射,使得根据本申请的实施方式的照明装置1的结构简单。
接下来,将参照图3至图5对根据本申请的示例性实施方式的照明装置1在车灯前方投射形成的照射光形的光分布特性进行详细说明。
图3是当根据本申请的示例性实施方式的照明装置1的光源10的单个LED单元点亮时的屏幕照度图。图4是当根据本申请的示例性实施方式的照明装置1的光源10的所有LED单元点亮时的屏幕照度图。图5是当根据本申请的示例性实施方式的照明装置1的光源10的中间的LED单元熄灭且其余LED单元点亮时的屏幕照度图。
如前所述,由于根据本申请的照明装置1中光源10、初级光学系统20以及准直光学系统30的创新性设置,由光源10的LED单元101发出的光经由初级光学系统20的反射面201的反射形成初级光斑,再通过准直光学系统30的凸透镜30对初级光斑进行成像,由相邻的初级光斑形成的像至少部分地重叠,因而如图4所示,当根据本申请的示例性实施方式的照明装置1的光源10的所有LED单元点亮时,将在车灯前方形成具有均匀的屏幕照度的照射光形。图3中示出了当根据本申请的示例性实施方式的照明装置1的单个LED单元点亮时所形成的照射光形。如图所示,所形成的照射光形的光分布的宽度为D1。当根据本申请的示例性实施方式对照明装置1的光源10的LED单元进行独立控制,使得中间的LED单元熄灭而其余LED单元点亮时,将在车灯前方形成如图5所示的照射光形,其中,与被熄灭的LED单元相对应地在所形成的照射光形中存在宽度为D2的防眩目用暗区域。在一些实施方式中,D2约为D1的一半。然而,应当指出的是,D2与D1的关系并不限于此。例如,可以通过控制相邻光源10之间的间距使得相邻的光源10布置成彼此更靠近而使得D2为D1的三分之一等。
通过根据本申请的示例性实施方式的上述设置,由于光源的各个LED单元所形成的光分布至少部分地重叠,使得在所有LED单元全部点亮时所形成的整个照射光形的光分布当中基本不存在明显的暗区,即,实现了均匀的光分布。
以此方式,与已知的相关技术中的ADB系统相比,在探测到其他道路使用者的情况下,根据本申请的照明装置1在对应位置处的一部分LED单元被调暗或熄灭时所产生的防眩目用暗区域可以相对较小,从而使得驾驶员的视觉盲区减小,提高了车辆驾驶安全性。由此可见,根据本申请的示例性实施方式的照明装置1能够以简单的结构实现均匀的光分布,使得车辆驾驶安全性更好。
在本申请的实施方式中,可以根据实际设计要求而选择抛物线和椭球线中的一者作为形成单向拉伸凹曲面的凹形曲线,并且可以对抛物线或椭球线的参数例如焦距等进行调整,以实现期望的照射光形及其光分布特性、以及形成适当的明暗截止线。此外,在一些实施方式中,通过控制凹形曲线的曲率、或改变光源10的光轴与反射面201的角度,可以调节在车灯前方投射形成的照射光形及其光分布特性。另外,在一些可选的实施方式中,可以对准直光学系统30的焦点的位置进行控制,以改变在车灯前方投射形成的照射光形及其光分布特性,作为示例,可以将准直光学系统30的焦点的位置调节成位于反射面201前方或后方。
以下,将对根据本申请的一些可选的示例性实施方式的用于车灯的照明装置进行说明。
参照图6,图6是示出了根据本申请的另一示例性实施方式的用于车灯的照明装置1’的示意性立体图。
根据图6中所示的实施方式的照明装置1’与前述根据例如图1所示的示例性实施方式的照明装置1的不同之处在于 准直光学系统30的设置。下面将仅对照明装置1’与照明装置1的不同之处进行说明,对于两种实施方式之间相同的组成部分将使用相同的附图标记并且省略其详细描述。
在图6所示的示例性实施方式中,准直光学系统30可以由抛物面形反射面302形成。在所示出的实施方式中,由光源10发射的光在被初级光学系统20的反射面201反射之后,再经由准直光学系统30的抛物面形反射面302反射而向车灯前方出射。
在本申请的示例性实施方式中,准直光学系统30的抛物面形反射面302可以相对于初级光学系统20的反射面201设置成:使得抛物面形反射面302的焦点设置在反射面201上。
根据本申请的示例性实施方式,抛物面形反射面302可以设置成与反射面201相向,以确保将反射面201所反射的光朝向车灯前方反射,如图6所示。
在一些可选的实施方式中,准直光学系统30的反射面302可以以与初级光学系统20的反射面201相同的方式形成为单向拉伸凹曲面,但反射面302的实施方式并不限于此。
在准直光学系统30的反射面302以与初级光学系统20的反射面201相同的方式形成为单向拉伸凹曲面的实施方式中,准直光学系统30的反射面302可以设置成使得:形成反射面302的单向拉伸凹曲面的凹形曲线所在平面的法线方向与所述多个LED单元101的布置方向垂直。
由于根据本示例性实施方式中的照明装置1’中准直光学系统30的反射面302的焦点设置在初级光学系统20的反射面201上,因而由反射面302向车灯前方反射的光基本平行。
因此,可以理解的是,除前面所提到的准直光学系统30的反射面302的不同设置之外,根据本示例性实施方式中的照明装置1’的其他组成部分的技术特征以及照明装置1’所实现的技术效果可以与前述实施方式的照明装置1基本相同,在此不再赘述。
现在参照图7。图7是示出了根据本申请的又一示例性实施方式的用于车灯的照明装置1”的示意性立体图。
根据图7中所示的实施方式的照明装置1”与前述根据例如图1所示的示例性实施方式的照明装置1的不同之处在于初级光学系统20的设置。下面将仅对照明装置1”与照明装置1的不同之处进行说明,对于两种实施方式之间相同的组成部分将使用相同的附图标记并且省略其详细描述。
在图7所示的示例性实施方式的照明装置1”中,初级光学系统20的反射面可以由透明光导体202的全反射面2020形成。在一些可选的实施方式中,光导体202可以由例如聚碳酸酯或聚甲基丙烯酸甲酯的透明材料制成。然而,应当指出的是,透明光导体202的实施方式并不限于此,例如,透明光导体202可以由硅树脂制成。
在所示出的示例性实施方式中,透明光导体202可以包括光入射面2022、光出射面2021和全反射面2020,如图7中所示。由光源10发射的光经由光入射面2022进入光导体202后,被全反射面2020反射并经由光出射面2021离开光导体202。在可选的实施方式中,全反射面2020可以是呈弧形的凹曲面,但形成全反射面2020的凹曲面的形状并不限于此。
根据本申请的一些可选的实施方式,光导体202可以设置成使得其轴线A-A的延伸方向与光源10的布置方向一致。可以理解的是,根据本申请的实施方式,为了在车灯前方投射形成期望的照射光形,光导体202可以相对于准直光学系统30设置成使得准直光学系统30的焦点位于光导体202的全反射面2020上。此外,光导体202还可以设置成使得光源10基本上不在光导体202的全反射面201上成像,即,使得经由光导体202的光入射面2022入射到光导体202中、进而由全反射面2020反射并经由光出射面2021出射的光基本彼此平行。以此方式,通过与准直光学系统30的协作,可以获得如图3至图5所示的期望照射光形。
因此,可以理解的是,除前面所提到的透明光导体202的不同设置之外,根据本示例性实施方式中的照明装置1”的其他组成部分的技术特征以及照明装置1”所实现的技术效果可以与前述实施方式的照明装置1基本相同,在此不再赘述。
现在参照图8。图8是示出了根据本申请的再一示例性实施方式的用于车灯的照明装置1”’的示意性立体图。
根据图8中所示的实施方式的照明装置1”’与前述实施方式中的照明装置1的不同之处在于,初级光学系统20的反射面201可以具有用于形成明暗截止线的边缘线2010。反射面201的其他技术特征与前述实施方式中的照明装置1基本相同,在此不再赘述。
根据本示例性实施方式,可以通过边缘线2010形成近光光形的明暗截止线。可以理解的是,边缘线2010的结构可 以是任何截止结构。
除了与前述实施方式的照明装置1基本相同的技术效果之外,根据本示例性实施方式的照明装置1”’还可以实现近光照明。也就是说,本实施方式中的照明装置1”’既能实现近光照明功能(准直光学系统30的焦点设置在边缘线2010上时),
也能实现ADB远光照明功能(准直光学系统30的焦点设置在反射面201的其他位置时)。
现在参照图9。图9是示出了根据本申请的再另一示例性实施方式的用于车灯的照明装置1””的示意性立体图。
根据图9中所示的实施方式的照明装置1””与前述实施方式中的照明装置1”’的不同之处在于,作为光源10的多个LED单元101可以布置为两排而呈矩阵形状。在一些实施方式中,所述多个LED单元101的两个排之间的间距可以为最小工艺间距。
在根据本申请的示例性实施方式中,作为光源10的所述多个LED单元101中的两排LED单元中的任一排LED单元可以设置在反射面201的焦线处。
通过布置两排LED单元作为光源10,所形成的照射光形中的与多个LED单元对应的光分布数量可以增加,使得可以提高ADB的控制精度。
可以理解的是,除前面所提到的光源10的不同设置以及上述技术效果之外,根据本示例性实施方式中的照明装置1””的其他组成部分的技术特征以及照明装置1””所实现的技术效果可以与前述实施方式的照明装置1”’基本相同,在此不再赘述。
现在参照图10。图10是示出了根据本申请的再又一示例性实施方式的用于车灯的照明装置1””’的示意性立体图。
根据图10中所示的实施方式的照明装置1””’与前述根据例如图1所示的示例性实施方式的照明装置1的不同之处在于初级光学系统20的设置和准直光学系统30的设置。下面将仅对照明装置1””’与照明装置1的不同之处进行说明,对于两种实施方式之间相同的组成部分将使用相同的附图标记并且省略其详细描述。
在图10所示的示例性实施方式的照明装置1””’中,作为光源10的多个LED单元101被分成两个组,一组LED单元包括LED单元10101、LED单元10103、LED单元10105、LED单元10107、LED单元10109、LED单元10111,另一组LED单元包括LED单元10102、LED单元10104、LED单元10106、LED单元10108、LED单元10110。在可选的实施方式中,每组LED单元中的多个LED单元可以布置为一排。此处应指出的是,在本文中,当LED单元类似于这种方式被分成多个组时,每组LED单元应被看作一排LED单元。换言之,在图10所示出的实施方式中,LED单元是被布置为两排的。
在所示出的示例性实施方式中,每个LED单元的发光面宽度可以为d,并且每组LED单元中的多个LED单元101的布置方向上的间距可以为发光面宽度d的n-1倍、即为(n-1)xd,其中,n为LED单元的排数。在该实施方式中,如上所述、n为2,因此,每组LED单元中的多个LED单元101的布置方向上的间距可以为d。在一些实施方式中,发光面宽度d可以为约1mm,间距为1mm。然而,应当指出的是,间距和发光面宽度的实施方式并不限于此,可以根据实际需要而采用其他适当的值。以此方式,各排的LED单元在横向方向上、即与反射面201的焦线大致平行的方向上是无缝衔接的,因而在横向方向上不需要考虑最小工艺间距,使得能够更好地确保LED单元所形成的对应光斑依次衔接,进而使所形成的照射光形的照明照度更加均匀。
根据本申请的示例性实施方式,可以以使LED单元的所述两个组中的每个组分别对应一个反射面的方式设置两个反射面301。作为光源10的所述多个LED单元101的两组LED单元可以分别设置在所述两个反射面201中的对应的反射面的焦线处。
在本申请的实施方式中,可以以使LED单元的所述两个组中的每个组分别对应一个凸透镜的方式设置两个凸透镜301。在一些实施方式中,所述两个凸透镜301中的凸透镜的焦点可以分别设置在所述两个反射面201中的对应反射面上。
在所示出的实施方式中,所述两个反射面201可以是分开的,并且所述两个凸透镜301可以是连接至彼此的。应当指出的是,反射面201和凸透镜301的设置方式并不限于此,只要设置成使得所述两个凸透镜301中的凸透镜的焦点分别位于所述两个反射面201中的对应反射面上即可。应理解的是,在一些实施方式中,所述多个LED单元101可以共用一个反射面。
在根据本申请示例性实施方式的照明装置1””’中,通过将作为光源10的多个LED单元101分成两个组、以使LED单元的所述两个组中的每个组分别对应一个反射面的方式设置两个反射面301、并且以使LED单元的所述两个组中的每 个组分别对应一个凸透镜的方式设置两个凸透镜301,使得由光源的一组LED单元所形成的照射光形的光分布与由光源的另一组LED单元所形成的照射光形的光分布至少部分地重叠,这更加能够确保在车灯前方投射形成的照射光形具有均匀的照明照度,而基本不存在明显的与光源的设置相对应的强光区域和/或暗区域,如图24所示。
接下来,将参照图11至图24对根据本申请的示例性实施方式的照明装置1””’在车灯前方投射形成的照射光形的光分布特性进行详细说明。图11至图16是分别示出了根据本申请的示例性实施方式的照明装置1””’的光源10的一组LED单元中的LED单元10101点亮且其余LED单元熄灭时、LED单元10103点亮且其余LED单元熄灭时、LED单元10105点亮且其余LED单元熄灭时、LED单元10107点亮且其余LED单元熄灭时、LED单元10109点亮且其余LED单元熄灭时、以及LED单元10111点亮且其余LED单元熄灭时的屏幕照度图。图17是示出了根据本申请的示例性实施方式的照明装置1””’的光源10的一组LED单元中的所有LED单元点亮时的屏幕照度图。图18至图22是分别示出了根据本申请的示例性实施方式的照明装置1””’的光源10的另一组LED单元中的LED单元10102点亮且其余LED单元熄灭时、LED单元10104点亮且其余LED单元熄灭时、LED单元10106点亮且其余LED单元熄灭时、LED单元10108点亮且其余LED单元熄灭时、以及LED单元10110点亮且其余LED单元熄灭时的屏幕照度图。图23是示出了根据本申请的示例性实施方式的照明装置1””’的光源10的另一组LED单元中的所有LED单元点亮时的屏幕照度图。图24是示出了根据本申请的示例性实施方式的照明装置1””’的光源10的两组LED单元中的所有LED单元点亮时的屏幕照度图。
如从图11至图24的屏幕照度图可以看出的,在根据本申请示例性实施方式的照明装置1””’中,不仅光源的每组LED单元中的各个LED单元所形成的照射光形的光分布进行至少部分地重叠,而且光源的一组LED单元所形成的照射光形的光分布与光源的另一组LED单元所形成的照射光形的光分布也进行至少部分地重叠,使得更加能够确保在所有LED单元全部点亮时所形成的整个照射光形的光分布当中基本不存在明显的暗区。
因此,可以理解的是,除前面所提到的初级光学系统20的设置和准直光学系统30的设置之外,根据本示例性实施方式中的照明装置1””’的其他组成部分的技术特征可以与前述实施方式的照明装置1基本相同,在此不再赘述。
现在参照图25和图26。图25是示出了根据本申请的另外的示例性实施方式的用于车灯的照明装置1”””的示意性组装立体图。图26是示出了根据本申请的示例性实施方式的用于车灯的照明装置1”””的示意性分解立体图。
下面将仅对根据图25和图26中所示的实施方式的照明装置1”””与前述实施方式的照明装置1的不同之处进行说明,对于两种实施方式之间相同的组成部分将使用相同的附图标记并且省略其详细描述。
在图25和图26中所示的示例性实施方式中,照明装置1”””可以包括光源10、初级光学系统20的反射面201、作为准直光学系统30的凸透镜301、散热器50、线路板60、支架70以及支承件80,其中,散热器50、线路板60和支架70沿着照明装置1”””的上下方向从上到下依次设置,换言之,支架70设置在线路板60的下侧。
在根据本申请的示例性实施方式中,散热器50可以构造成对线路板60进行散热,散热器50可以呈朝向散热器50的上方敞开的大致C形形状,并且散热器50可以包括相反的两个侧壁以及连接这两个侧壁的腹板,其中,这两个侧壁各自可以具有凸缘,腹板可以与该凸缘相对。散热器50可以包括延伸穿过散热器50的腹板的两个孔501。
在本申请的一些实施方式中,线路板60可以构造为大致板状形状。线路板60上可以设置有两个孔601,这两个孔601可以延伸穿过线路板60并且分别与所述两个孔501对准。在所示出的实施方式中,光源10可以安装在线路板60的面向支架70的表面上,例如通过本领域已知的任何方式安装在线路板60的该表面上。
在根据本申请的实施方式中,支架70可以包括第一连接部71和第二连接部72,第一连接部71可以具有面向线路板60的平坦部分以连接至线路板60,并且第一连接部71可以与大致平行于照明装置1”””的前后方向的水平方向成一角度,
第一连接部71中可以开设有分别与所述两个孔601对准的两个孔701,以用于通过将两个紧固件90、比如螺钉分别插入穿过对应的孔501、孔601和孔701而将散热器50、线路板60和支架70连接在一起,第二连接部72可以用于初级光学系统20的反射面201的安装和保持。在所示出的实施方式中,反射面201可以形成支架70的一部分并且在照明装置1”””的前后方向上在第一连接部71与第二连接部72之间延伸。支架70在第二连接部72的位于反射面201的在照明装置1”””的左右方向上的相反两侧的位置处包括一对坐部702。在所述一对坐部702上分别形成有贯通孔703。应当指出的是,反射面201也可以形成在单独的部件上,该部件可以例如通过紧固件连接至支架70。
在一些实施方式中,支承件80可以设置成用于将作为准直光学系统30的凸透镜301安装并保持成使得凸透镜301的焦点位于反射面201上。支承件80可以呈长方体形状并且限定中空部801以供由反射面201反射的光通过。支承件80 可以在支承件80的位于照明装置1”””的左右方向上的相反侧部处包括一对凸耳802。在所述一对凸耳802中可以分别开设有孔803,孔803的位置和取向可以设置成分别与相应的贯通孔703相对,以用于通过将两个紧固件100分别插入穿过对应的孔803和贯通孔703而将支架70和支承件80连接。应理解的是,凸耳802和坐部702可以设置成使得:允许对凸透镜301的焦距进行调节,以使凸透镜301的焦点位于反射面201上。
在本申请的所示出的实施方式中,作为准直光学系统30的凸透镜301可以例如以下述方式安装至支承件80:凸透镜301在侧部部分处被加工、比如被切割而通过卡扣配合的方式插入到形成于支承件80的与支架70相反的侧部中的凹部中。然而,凸透镜301与支承件80的连接方式并不限于此,只要支承件80将凸透镜301安装并保持成使得凸透镜301的焦点位于反射面201上即可。
在本申请的示例性实施方式中,由反射面201反射的光中的穿过支承件80的中空部801的光被凸透镜301投射,而不穿过中空部801的光被支承件80的中空部80的壁遮挡而不会形成杂散光,由此可以提高在车灯前方投射形成的照射光形的照明照度的均匀性。
因此,可以理解的是,除前面所提到的设置以及上述技术效果之外,根据本示例性实施方式中的照明装置1”””的其他组成部分的技术特征以及照明装置1”””所实现的技术效果可以与前述实施方式的照明装置1基本相同,在此不再赘述。
现在参照图27。图27是示出了根据本申请的又一另外的示例性实施方式的用于车灯的照明装置1”””’的示意性立体图。
根据图27中所示的实施方式的照明装置1”””’与前述根据例如图1所示的示例性实施方式的照明装置1的不同之处在于初级光学系统20的设置。下面将仅对照明装置1”””’与照明装置1的不同之处进行说明,对于两种实施方式之间相同的组成部分将使用相同的附图标记并且省略其详细描述。
在图27中所示的示例性实施方式的照明装置1”””’中,反射面201是通过将形状与抛物线或椭球线近似的折线沿着所述折线所在平面的法向方向单向拉伸而形成的单向拉伸凹曲面。所述折线可以为通过将多个线段相连而形成的形状与抛物线或椭球线近似的折线,形成该折线的所述多个线段的每个端点均位于同一抛物线或椭球线上。
可以理解的是,除前面所提到的初级光学系统20的反射面201的不同设置之外,根据本示例性实施方式中的照明装置1”””’的其他组成部分的技术特征以及照明装置1”””’所实现的技术效果可以与前述实施方式的照明装置1基本相同,在此不再赘述。
根据本申请的示例性实施方式,还提供了包括有根据前述示例性实施方式的照明装置1、1’、1”、1”’、1””、1””’、1”””或1”””’的车灯。应当理解的是,本申请所提供的车灯至少能够实现上面关于照明装置1、1’、1”、1”’、1””、1””’、1”””或1”””’所描述的各种有益技术效果。
虽然已经参照示例性实施方式对本申请进行了描述,但是应当理解,本申请并不限于所描述的实施方式。在不脱离本申请的技术思想的情况下,本领域技术人员可以对示例性实施方式作出各种改变。
在上面对本申请的示例性实施方式的描述中所提及和/或示出的特征可以以相同或类似的方式结合到一个或更多个其他实施方式中、与其他实施方式中的特征相组合或替代其他实施方式中的相应特征。这些经组合或替代所获得的技术方案也应当被视为包括在本申请的范围内。
本申请提供了用于车灯的照明装置以及包括该照明装置的车灯。照明装置包括光源、初级光学系统和准直光学系统。光源包括多个LED单元,所述多个LED单元沿呈直线的布置方向并排布置并且能够被独立地控制。初级光学系统具有反射面,该反射面构造成对由光源发射的光进行反射。准直光学系统构造成对反射面所反射的光进行投射并且使所投射的光向车灯前方出射。在该照明装置中,光源设置在反射面的焦线处,由光源发射的光经由反射面的反射形成初级光斑,并且准直光学系统的焦点设置在反射面上,以对初级光斑进行成像,从而形成照射光形。
可以理解的是,本申请所提供的照明装置和车灯是可以重现的,并且可以用在多种工业应用中。
Claims (16)
- 一种用于车灯的照明装置(1;1’;1”;1”’;1””;1””’;1”””;1”””’),所述照明装置(1;1’;1”;1”’;1””;1””’;1”””;1”””’)包括:光源(10),所述光源(10)包括多个LED单元(101),所述多个LED单元(101)沿呈直线的布置方向并排布置并且能够被独立地控制;初级光学系统(20),所述初级光学系统(20)具有反射面(201;2020),所述反射面(201;2020)构造成对由所述光源(10)发射的光进行反射;以及准直光学系统(30),所述准直光学系统(30)构造成对所述反射面(201;2020)所反射的光进行投射并且使所投射的光向所述车灯前方出射,其中,所述光源(10)设置在所述反射面(201;2020)的焦线处,由所述光源(10)发射的光经由所述反射面(201;2020)的反射形成初级光斑,并且其中,所述准直光学系统(30)的焦点设置在所述反射面(201;2020)上,以对所述初级光斑进行成像,从而形成照射光形。
- 根据权利要求1所述的照明装置(1;1’;1”;1”’;1””;1””’;1”””;1”””’),所述多个LED单元(101)布置为一排或n排,其中,n≥2,当所述多个LED单元(101)布置为一排时,所述多个LED单元(101)的布置方向上的间距为最小工艺间距,当所述多个LED单元(101)布置为n排时,所述多个LED单元(101)的布置方向上的间距为最小工艺间距或每个LED单元的发光面宽度的n-1倍。
- 根据权利要求1或2所述的照明装置(1;1’;1”;1”’;1””;1””’;1”””;1”””’),所述多个LED单元(101)共用一个反射面。
- 根据权利要求3所述的照明装置(1;1’;1”;1”’;1””;1””’;1”””;1”””’),所述多个LED单元(101)被分成两个或更多个组,所述准直光学系统(30)包括凸透镜(301)或透镜组或者包括抛物面形反射面(302),所述凸透镜(301)或透镜组或者所述抛物面形反射面(302)以使所述多个LED单元(101)的所述两个或更多个组中的每个组分别对应一个凸透镜或透镜组或者抛物面形反射面的方式设置多个凸透镜或透镜组或者抛物面形反射面。
- 根据权利要求1或2所述的照明装置(1;1’;1”;1”’;1””;1””’;1”””;1”””’),所述多个LED单元(101)被分成两个或更多个组,并且以使所述多个LED单元(101)的所述两个或更多个组中的每个组分别对应一个反射面的方式设置多个反射面。
- 根据权利要求5所述的照明装置(1;1’;1”;1”’;1””;1””’;1”””;1”””’),所述准直光学系统(30)包括凸透镜(301)或透镜组或者包括抛物面形反射面(302),所述凸透镜(301)或透镜组或者所述抛物面形反射面(302)以使所述多个LED单元(101)的所述两个或更多个组中的每个组分别对应一个凸透镜或透镜组或者抛物面形反射面的方式设置多个凸透镜或透镜组或者抛物面形反射面。
- 根据权利要求1至6中的任一项所述的照明装置(1;1’;1”;1”’;1””;1””’;1”””;1”””’),所述初级光学系统(20)的所述反射面为凹曲面。
- 根据权利要求1至6中的任一项所述的照明装置(1;1’;1”;1”’;1””;1””’;1”””;1”””’),所述初级光学系统(20)的所述反射面为单向拉伸凹曲面。
- 根据权利要求1至6中的任一项所述的照明装置(1;1’;1”;1”’;1””;1””’;1”””;1”””’),所述初级光学系统(20)的所述反射面为将抛物线或椭球线沿直线单向拉伸而形成的单向拉伸凹曲面。
- 根据权利要求1至6中的任一项所述的照明装置(1;1’;1”;1”’;1””;1””’;1”””;1”””’),所述初级光学系统(20)的所述反射面为将形状与抛物线或椭球线近似的折线沿直线单向拉伸而形成的单向拉伸凹曲面。
- 根据权利要求9或10所述的照明装置(1;1’;1”;1”’;1””;1””’;1”””;1”””’),所述抛物线的焦距、或所 述椭球线的近焦点与所述椭球线的接近近焦点的顶点之间的距离在0.1mm与10mm之间。
- 根据权利要求9或10所述的照明装置(1;1’;1”;1”’;1””;1””’;1”””;1”””’),所述抛物线的焦距、或所述椭球线的近焦点与所述椭球线的接近近焦点的顶点之间的距离在1mm与3mm之间。
- 根据权利要求8至12中的任一项所述的照明装置(1;1’;1”;1”’;1””;1””’;1”””;1”””’),所述单向拉伸凹曲面的拉伸方向与所述多个LED单元(101)的布置方向一致。
- 根据权利要求1至13中的任一项所述的照明装置(1;1’;1”;1”’;1””;1””’;1”””;1”””’),所述初级光学系统(20)的所述反射面是通过金属镀膜而形成的。
- 根据权利要求1至6中的任一项所述的照明装置(1;1’;1”;1”’;1””;1””’;1”””;1”””’),所述初级光学系统(20)的所述反射面是由透明光导体(202)的全反射面形成的。
- 一种包括根据权利要求1至15中的任一项所述的照明装置(1;1’;1”;1”’;1””;1””’;1”””;1”””’)的车灯。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2021/134466 WO2023097462A1 (zh) | 2021-11-30 | 2021-11-30 | 用于车灯的照明装置及其车灯 |
CN202180094029.9A CN116897259A (zh) | 2021-11-30 | 2021-11-30 | 用于车灯的照明装置及其车灯 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2021/134466 WO2023097462A1 (zh) | 2021-11-30 | 2021-11-30 | 用于车灯的照明装置及其车灯 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023097462A1 true WO2023097462A1 (zh) | 2023-06-08 |
Family
ID=86611309
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/134466 WO2023097462A1 (zh) | 2021-11-30 | 2021-11-30 | 用于车灯的照明装置及其车灯 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN116897259A (zh) |
WO (1) | WO2023097462A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060171162A1 (en) * | 2005-02-02 | 2006-08-03 | Koito Manufacturing Co., Ltd. | Vehicle headlamp |
JP2007324003A (ja) * | 2006-06-01 | 2007-12-13 | Ichikoh Ind Ltd | 車両用灯具 |
CN108302436A (zh) * | 2017-08-24 | 2018-07-20 | 上海小糸车灯有限公司 | 车灯照明装置、车灯总成及汽车 |
CN210740260U (zh) * | 2019-11-13 | 2020-06-12 | 华域视觉科技(上海)有限公司 | 前照灯模组及车辆 |
CN111373195A (zh) * | 2018-02-08 | 2020-07-03 | 宝马股份公司 | 用于机动车的照明设备 |
CN112413530A (zh) * | 2019-08-23 | 2021-02-26 | 华域视觉科技(上海)有限公司 | 一种微型车灯模组 |
-
2021
- 2021-11-30 WO PCT/CN2021/134466 patent/WO2023097462A1/zh active Application Filing
- 2021-11-30 CN CN202180094029.9A patent/CN116897259A/zh active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060171162A1 (en) * | 2005-02-02 | 2006-08-03 | Koito Manufacturing Co., Ltd. | Vehicle headlamp |
JP2007324003A (ja) * | 2006-06-01 | 2007-12-13 | Ichikoh Ind Ltd | 車両用灯具 |
CN108302436A (zh) * | 2017-08-24 | 2018-07-20 | 上海小糸车灯有限公司 | 车灯照明装置、车灯总成及汽车 |
CN111373195A (zh) * | 2018-02-08 | 2020-07-03 | 宝马股份公司 | 用于机动车的照明设备 |
CN112413530A (zh) * | 2019-08-23 | 2021-02-26 | 华域视觉科技(上海)有限公司 | 一种微型车灯模组 |
CN210740260U (zh) * | 2019-11-13 | 2020-06-12 | 华域视觉科技(上海)有限公司 | 前照灯模组及车辆 |
Also Published As
Publication number | Publication date |
---|---|
CN116897259A (zh) | 2023-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10670214B2 (en) | Vehicle lamp and vehicle having the same | |
US10794559B2 (en) | Vehicle lamp and vehicle having the same | |
US10336239B2 (en) | Vehicle lamp and vehicle having the same | |
US9593818B2 (en) | Vehicular marker lamp | |
US8801242B2 (en) | Light module of motor vehicle for generating spot distribution of high-beam-light distribution and vehicle headlights having such module | |
US6910792B2 (en) | Projection-type vehicular headlamp having improved lateral illumination | |
WO2017104678A1 (ja) | 車両用灯具及び基板 | |
EP2407710B1 (en) | Vehicle lamp | |
US20070230204A1 (en) | Lamp unit of vehicle headlamp | |
US10502387B2 (en) | Smart headlight | |
JPH10217843A (ja) | 車両用前照灯 | |
US11370351B2 (en) | Aiming adjustment method for vehicle headlamp, aiming adjustment mechanism for vehicle headlamp and vehicle headlamp | |
US10578268B2 (en) | Smart headlight | |
KR20040020851A (ko) | 차량용 전조등 | |
CN108375048B (zh) | 车载灯具 | |
JP5097653B2 (ja) | 車両用照明灯具 | |
US5681104A (en) | Mini-projector beam headlamps | |
CN109990247B (zh) | 一种远近光同体式汽车前照灯总成 | |
WO2023097462A1 (zh) | 用于车灯的照明装置及其车灯 | |
WO2020052398A1 (zh) | 一种车灯 | |
WO2021208536A1 (zh) | 初级光学结构、远光照明装置、防炫目远光灯及车辆 | |
WO2021093234A1 (zh) | 光路处理元件、前照灯模组、车灯及车辆 | |
JP2015076319A (ja) | 車両用前照灯 | |
CN114321831B (zh) | 极窄开口远近光一体汽车车灯模组系统 | |
WO2023162906A1 (ja) | 車両用灯具 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21965904 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202180094029.9 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |