WO2023096829A1 - Stream listening cache updater - Google Patents
Stream listening cache updater Download PDFInfo
- Publication number
- WO2023096829A1 WO2023096829A1 PCT/US2022/050360 US2022050360W WO2023096829A1 WO 2023096829 A1 WO2023096829 A1 WO 2023096829A1 US 2022050360 W US2022050360 W US 2022050360W WO 2023096829 A1 WO2023096829 A1 WO 2023096829A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- information
- user
- application
- cache
- request
- Prior art date
Links
- 238000000034 method Methods 0.000 claims abstract description 163
- 230000009471 action Effects 0.000 claims description 177
- 230000003993 interaction Effects 0.000 claims description 120
- 238000010801 machine learning Methods 0.000 claims description 66
- 230000008859 change Effects 0.000 claims description 37
- 238000012544 monitoring process Methods 0.000 claims description 20
- 230000015654 memory Effects 0.000 claims description 13
- 230000004048 modification Effects 0.000 claims description 13
- 238000012986 modification Methods 0.000 claims description 13
- 230000006399 behavior Effects 0.000 claims description 9
- 230000003111 delayed effect Effects 0.000 claims description 6
- 230000008569 process Effects 0.000 abstract description 32
- 238000012545 processing Methods 0.000 description 11
- 238000013459 approach Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 238000013473 artificial intelligence Methods 0.000 description 4
- 238000013528 artificial neural network Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000012552 review Methods 0.000 description 4
- 230000006403 short-term memory Effects 0.000 description 4
- 238000004590 computer program Methods 0.000 description 3
- 238000013527 convolutional neural network Methods 0.000 description 3
- 238000013135 deep learning Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000010606 normalization Methods 0.000 description 3
- 238000011176 pooling Methods 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 238000013526 transfer learning Methods 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 230000000306 recurrent effect Effects 0.000 description 2
- 238000003491 array Methods 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000007175 bidirectional communication Effects 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000006854 communication Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000007477 logistic regression Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 238000007637 random forest analysis Methods 0.000 description 1
- 238000012706 support-vector machine Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/95—Retrieval from the web
- G06F16/957—Browsing optimisation, e.g. caching or content distillation
- G06F16/9574—Browsing optimisation, e.g. caching or content distillation of access to content, e.g. by caching
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F12/00—Accessing, addressing or allocating within memory systems or architectures
- G06F12/02—Addressing or allocation; Relocation
- G06F12/08—Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
- G06F12/0802—Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches
- G06F12/0862—Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches with prefetch
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F12/00—Accessing, addressing or allocating within memory systems or architectures
- G06F12/02—Addressing or allocation; Relocation
- G06F12/08—Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
- G06F12/0802—Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches
- G06F12/0891—Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches using clearing, invalidating or resetting means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2212/00—Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
- G06F2212/46—Caching storage objects of specific type in disk cache
- G06F2212/465—Structured object, e.g. database record
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2212/00—Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
- G06F2212/60—Details of cache memory
- G06F2212/6026—Prefetching based on access pattern detection, e.g. stride based prefetch
Definitions
- aspects of the disclosure relate generally to exchanging information between networked devices.
- Service providers store data for later retrieval by consumers. Often the data is received via one or more data streams describing events related to consumers (e.g., medical records from visits, network authentication attempts, and/or transactions with merchants). To balance consumers' requests for their data, service providers segment how consumers' data is stored to lessen the processing burden on any one storage system and also to reduce the response time to the consumer because in-memory cache is much faster to access than retrieving the data from the data store (also referred to as persistent storage). For example, in addition to sending data, from a single data store, to consumers based on their requests for their data, some service providers separately cache the data in a separate cache.
- some service providers separately cache the data in a separate cache.
- TTL time-to-live
- the service providers' other storage systems bear more of the burden providing data to consumers. Due to the spiky nature of consumer demand for data, the service providers using shorter TTLs need to expand the capabilities of their other storage systems to be ready for the spikes in consumer demand for data.
- aspects described herein may address these and other problems, and generally improve how data may be provided to consumers.
- service providers may be able to reduce overengineering their storage systems while maintaining the ability to timely deliver information to consumers, thus providing better consumer experiences using their services.
- the improved services may be at least based on modifying how received data is stored in an application cache.
- the cache may be refreshed based on data from the service provider's data store and also refreshed based on data from one or more data streams.
- Other aspects may comprise caching information from the data streams in the application cache for all application users and/or may limit the caching of information to only those application users with information currently in the application cache.
- Further aspects may comprise improving how applications, provided by a service provider for accessing the consumers' data, interact with the cache and the service provider's data stores.
- By efficiently storing current data in a cache timely data may be provided to consumers with decreasing a processing burden on the service provider's data stores and, thus, improve overall experiences for the service provider's consumers.
- a computer-implemented method may comprise receiving, by a server and from an application, a request for first information associated with a user and storing the first information in an application cache, wherein the application cache assigns a time-to-live value to the first information.
- the method may further comprise monitoring a data stream of incoming information, detecting second information in the data stream associated with the user, wherein the second information comprises a change to the first information.
- the method may further comprise storing, based on the detecting the second information, the second information in the application cache, wherein the second information overwrites the first information and refreshes the time-to-live value, receiving, from the application, a request for the second information associated with the user, and sending, to the application, the second information.
- a computer- implemented method may comprise receiving, at a data store, a data stream comprising information in fields; receiving, at a server, the data stream; determining, at the server and from the fields in the data stream, one or more time-to-live (TTL) values associated with the fields; and storing, in an application cache, the information and the one or more TTL values associated with the information, wherein the one or more TTL values are based on one or more fields of the information.
- TTL time-to-live
- the computer-implemented method may also comprise deleting, based on an expiration of a first TTL value associated with first information, the first information from the application cache; receiving, from an application, a request for the first information of a first field, related to a user, and second information of a second field, related to the user; determining, at the application cache, that the second information of the second field, of the user, is currently stored in the application cache; and sending, based on a determination that the second information in the second field of the user is currently stored in the application cache, the second information to the application.
- the method may comprise receiving, from an application, user interaction information; predicting, using a machine-learning model trained on previous interactions of previous users with their applications and with call centers and based on the received user interaction information, information expected to be needed by a call center when responding to an inquiry from the user; and populating a call center cache based on a prediction for the user.
- the method may also comprise storing, in an application cache and with a time-to-live value, first information for the application; monitoring a data stream of incoming information; detecting second information in the data stream; and storing, based on the detecting the second information, the second information in the application cache, wherein the second information overwrites the first information and refreshes the time-to-live value.
- the method may further comprise receiving interactions between the call center and the user; and retraining, based on the interactions between the call center and the user and based on the previous interactions of the previous users with their applications and with the call centers, the machine-learning model.
- the method may comprise receiving, from an application, user interaction information; predicting, using a machine-learning model trained on previous interactions of previous users with their applications and with call centers and based on the received user interaction information, a likelihood of a user of the application to contact a call center with an inquiry from the user; and populating a call center cache based on a prediction for the user to contact a call center.
- the method may further comprise authenticating the user based on the prediction for the user; storing, in an application cache and with a time-to-live value, first information for the application; monitoring a data stream of incoming information; detecting second information in the data stream; and storing, based on the detecting the second information, the second information in the application cache, wherein the second information overwrites the first information and refreshes the time-to-live value.
- the method may further comprise receiving interactions between the call center and the user; and retraining, based on the interactions between the call center and the user and based on the previous interactions of the previous users with their applications and with the call centers, the machine-learning model.
- a computer-implemented process may include receiving, by a server and from an application, first information from an application cache associated with the application.
- the process may include prepopulating a first action cache with at least some of the first information received from the application cache, receiving a first request, by the server and from the application, a first request comprising a request for performing a first action, and performing the first action.
- the process may include prepopulating, with second information and based on the performance of the first action, a second action cache with at least some of the first information from the first action cache, receiving a second request, by the server and from the application, a second request comprising a request for performing a second action, determining, by the server and based on the second information in the prepopulated second cache, whether to perform the second action, and based on a determination to perform the second action, performing the second action.
- the method may additionally include storing the first information in the first action cache, wherein the first action assigns a time-to-live value to the first information and deleting, at an expiration of the time-to-live value of the first information, the first information from the first action cache.
- the method may include determining, based on receiving the first request from the application, whether to perform the first action, wherein performing the first action is based on a determination to perform the first action.
- the method may include receiving, by the server and from the application, a third request comprising a request for performing the first action, determining, by the server and based on the first information in the prepopulated first action cache, whether to perform the third request's first action, and based on a determination to not perform the third request's first action, denying the third request.
- the first action may include opening a new account, and the first action cache may include a cache of information from which a determination of whether the first request for the first action is fraudulent.
- the second action may include performing a new transaction, and the second action cache may include a cache of information from which a determination of whether the second request for the second action is fraudulent.
- the method may further include monitoring a data stream of incoming information, detecting user-specific information in the data stream associated with a user associated with the application, wherein the user-specific information may include a change to application information in an application cache associated with the application, storing, based on the detecting the user-specific information, the user-specific information in the application cache, wherein the user-specific information overwrites existing user-specific information and refreshes a time-to-live value associated with the user-specific information in the application cache, receiving, from the application, a request for the user-specific information associated with the user, and sending, to the application, the user-specific information.
- the method may further include detecting second user-specific information in the data stream associated with the user, wherein the second user-specific information may include information not currently stored in the application cache, and storing, based on the detecting the second user-specific information, the second user-specific information in the application cache, wherein the second user-specific information receives a second time-to-live value, wherein the receiving the request for the user-specific information may include receiving a request for the user-specific information and the second user-specific information, and wherein sending the user-specific information may include sending, to the application, the user-specific information and the second user-specific information.
- the method may include receiving, from the application, a request for third user-specific information associated with the user, determining the application cache does not currently store the third user-specific information, receiving, from the server, the third user-specific information and a third time-to-live value, storing, in the application cache, the third userspecific information and the third time-to-live value, and sending, to the application, the third user-specific information.
- a system of one or more computers may be configured to perform particular operations or actions by virtue of having software, firmware, hardware, or a combination of them installed on the system that in operation causes or cause the system to perform the actions.
- One or more computer programs may be configured to perform particular operations or actions by virtue of including instructions that, when executed by data processing apparatus, cause the apparatus to perform the actions.
- corresponding apparatus, systems, and computer-readable media are also within the scope of the disclosure.
- FIG. 1 depicts an example of a computing device and system architecture that may be used in implementing one or more aspects of the disclosure in accordance with one or more illustrative aspects discussed herein;
- FIG. 2 depicts a block diagram of an environment in which systems and/or methods described herein may be implemented
- FIG. 3 depicts a block diagram showing various process flows for updating an application cache
- FIG. 4 shows various examples of how data changes based on whether a stream listening cache service is used
- FIGs. 5-7 depict examples of processes for updating application caches using data from data streams
- FIG. 8 depicts an example content in a data stream and the assignment of TTLs
- FIG. 9 depicts an example of using a machine-learning model to predict issues of users to be addressed by a call center
- FIG. 10 depicts an example of using a machine-learning model to predict when users are likely to contact a call center.
- FIG. 11 depicts a block diagram showing various process flows for using interactions associated with a first cache to prepopulate a second cache.
- the term “unit” and “module”, for example, may refer to a component that exerts at least one function or operation, and may be realized in hardware or software, or may be realized by combination of hardware and software.
- terms such as “...unit”, “...module” described in the specification mean a unit for performing at least one function or operation, which may be implemented as hardware or software, or as a combination of hardware and software.
- expression "at least one of a, b, and c" may include 'a only', 'b only', 'c only', 'a and b', 'a and c', 'b and c', and/or 'all of a, b, and c'.
- aspects discussed herein may relate to methods and techniques for storing incoming data from one or more data streams in an application cache while also storing the data in one or more data stores.
- One or more aspects may generally relate to improving how constantly changing data is provided to a user.
- Content of a data store changes over time.
- one or more stream listening services may subscribe to the stream of changes from the data store.
- stream data may also flow from a source to the data store, where the stream being received by the data store may also be received by the stream listening service.
- the stream data includes different types of information (transaction IDs, card numbers, account numbers, user names, merchant names, etc.).
- the information stored in the application cache may be used to prepopulate other caches.
- a user's interactions with their account may be used to prepopulate a cache related to monitoring different account interactions.
- the application queries an application cache for the user's information. If the information is in the application cache, the application provides the information to the user. If the information is not in the application cache, the application queries a data store for the information. At least some of the information received from the data store is provided to the user and at least some of the information is stored in the application cache. TTL values may be assigned to the information stored in the application cache. Upon expiration of the TTL values, the associated information stored in the application cache may be deleted.
- event history including medical history, financial transactions, shopping history, and/or any status and/or history relating to the user
- the application queries an application cache for the user's information. If the information is in the application cache, the application provides the information to the user. If the information is not in the application cache, the application queries a data store for the information. At least some of the information received from the data store is provided to the user and at least some of the information is stored in the application cache. TTL values may be assigned to the information stored in the application cache. Upon expiration of the TTL
- the application again queries the application cache. If the information still resides in the application cache, the information may be provided to the user. If the information is not in the application cache (e.g., never previously in the application cache or previously in the application cache but deleted as its associated TTL had expired and the information deleted), the application queries the data store for the information.
- One or more aspects described herein include updating the information stored in the application cache from the incoming data stream and/or data streams as opposed to solely updating the application cache from the data store.
- the application cache may be subscribed to a service configured to listen to data streams for information relevant to the individual users.
- the listening service receives information relevant to a user, the service may determine a TTL value or values for the information and forward the information and the TTL value or values to the application cache.
- a user may check the user's account balance using the application.
- the application may determine that the current account balance is not currently stored in the application cache and request the current account balance from the data store.
- the application cache may receive a current account balance from the data store and provide the current account balance to the user.
- the stream listening service may detect a transaction related to the user (e.g., via matching a user identification, account identification, or the like).
- the stream listening service may forward information relating to the transaction to the application cache, e.g., a transaction amount.
- the application cache may determine an updated account balance by subtracting the transaction amount from the account balance stored in the application cache.
- the application cache may update the stored account balance with the newly calculated account balance. Also, the TTL value may be refreshed to extend its lifetime.
- the user's interactions with the application cache may be used by a first machine learning model to predict one or more issues for handling by a call center and prepopulate a cache of the call center with the user's information. Additionally or alternatively, the user's interactions with the application cache may be used by a second machine learning model to predict if, and when, the user is likely to contact a call center and, based on that prediction, modify an authentication procedure used by the call center to authenticate the user. Additionally or alternatively, the user's interactions with the user's account may be used by a third machine learning model to predict possible future user actions and prepopulate another cache based on those predictions.
- Some of the advantages described herein include improving the timeliness of information stored in the application cache. Other advantages include reducing the quantity of queries sent to the data store to obtain users' information. Further advantages may include prepopulating other caches based on a users' interactions with the application and/or their account.
- the application may also be augmented using artificial intelligence.
- the artificial intelligence may comprise one or more machine learning models.
- the one or more machine learning models may comprise a neural network, such as a convolutional neural network (CNN), a recurrent neural network, a recursive neural network, a long short-term memory (LSTM), a gated recurrent unit (GRU), an unsupervised pre-trained network, a space invariant artificial neural network, a generative adversarial network (GAN), or a consistent adversarial network (CAN), such as a cyclic generative adversarial network (C-GAN), a deep convolutional GAN (DC-GAN), GAN interpolation (GAN-INT), GAN-CLS, a cyclic-CAN (e.g., C-CAN), or any equivalent thereof.
- CNN convolutional neural network
- LSTM long short-term memory
- GRU gated recurrent unit
- CAN consistent adversarial network
- C-GAN cyclic
- the neural network may be trained using supervised learning, unsupervised learning, back propagation, transfer learning, stochastic gradient descent, learning rate decay, dropout, max pooling, batch normalization, long short-term memory, skip-gram, or any equivalent deep learning technique.
- the machine learning model may comprise one or more decisions trees, a support vector machine, logistic regression, random forest, or equivalents thereof.
- the artificial intelligence may be trained to review and/or analyze (e.g., scrape) the records stored in one or more existing caches of one or more users and, to the extent relevant, if, and when, those users contacted call centers.
- the artificial intelligence may be used to identify the parties and/or processes, authenticate relationships across accounts, digitally verify data from shared sources, validate compliance with laws and regulations, and/or identify potential fraud.
- the one or more machine learning models may be trained using supervised learning, unsupervised learning, back propagation, transfer learning, stochastic gradient descent, learning rate decay, dropout, max pooling, batch normalization, long short-term memory, skip-gram, or any equivalent deep learning technique.
- the one or more machine learning models may be exported and/or deployed to prepopulate one or more caches, predict when events are likely to occur, and/or assist in the authentication of account-related events. For instance, the predictions from a machine-learning model may be used to analyze and/or review records associated with account-related events to reduce the risk associated with that account and/or other accounts.
- the machine learning models may be existing machine learning models.
- the machine learning models may be proprietary models.
- the machine learning models may be modified existing machine learning models such that the machine learning models become proprietary.
- the machine learning models may be trained using different parameters, such as back propagation, transfer learning, stochastic gradient descent, learning rate decay, dropout, max pooling, batch normalization, long short-term memory, skip-gram, and/or any equivalent deep learning technique. Using this information, the machine-learning models may be trained or even further trained to refine the machine learning models.
- FIG. 1 illustrates one example of a computing device 101 that may be used to implement one or more illustrative aspects discussed herein.
- the computing device 101 may, in some embodiments, implement one or more aspects of the disclosure by reading and/or executing instructions and performing one or more actions based on the instructions.
- the computing device 101 may represent, be incorporated in, and/or include various devices such as a desktop computer, a computer server, a mobile device (e.g., a laptop computer, a tablet computer, a smart phone, any other types of mobile computing devices, and the like), and/or any other type of data processing device.
- a desktop computer e.g., a desktop computer, a computer server, a mobile device (e.g., a laptop computer, a tablet computer, a smart phone, any other types of mobile computing devices, and the like), and/or any other type of data processing device.
- the computing device 101 may, in some embodiments, operate in a standalone environment. In others, the computing device 101 may operate in a networked environment. As shown in FIG. 1, various network nodes 101, 105, 107, and 109 may be interconnected via a network 103, such as the Internet. Other networks may also or alternatively be used, including private intranets, corporate networks, LANs, wireless networks, personal networks (PAN), and the like. Network 103 is for illustration purposes and may be replaced with fewer or additional computer networks.
- a local area network (LAN) may have one or more of any known LAN topologies and may use one or more of a variety of different protocols, such as Ethernet.
- Devices 101, 105, 107, 109, and other devices may be connected to one or more of the networks via twisted pair wires, coaxial cable, fiber optics, radio waves, or other communication media. Additionally or alternatively, the computing device 101 and/or the network nodes 105, 107, and 109 may be a server hosting one or more databases. [0040] As seen in FIG. 1, the computing device 101 may include a processor 111, RAM 113, ROM 115, network interface 117, input/output interfaces 119 (e.g., keyboard, mouse, display, printer, etc.), and memory 121.
- Processor 111 may include one or more computer processing units (CPUs), graphical processing units (GPUs), and/or other processing units such as a processor adapted to perform computations associated with database operations.
- Input/output 119 may include a variety of interface units and drives for reading, writing, displaying, and/or printing data or files. Input/output 119 may be coupled with a display such as display 120.
- Memory 121 may store software for configuring computing device 101 into a special purpose computing device in order to perform one or more of the various functions discussed herein.
- Memory 121 may store operating system software 123 for controlling overall operation of the computing device 101, control logic 125 for instructing the computing device 101 to perform aspects discussed herein, database creation and manipulation software 127 and other applications 129.
- Control logic 125 may be incorporated in and may be a part of database creation and manipulation software 127.
- the computing device 101 may include two or more of any and/or all of these components (e.g., two or more processors, two or more memories, etc.) and/or other components and/or subsystems not illustrated here.
- Devices 105, 107, 109 may have similar or different architecture as described with respect to the computing device 101.
- Those of skill in the art will appreciate that the functionality of the computing device 101 (or device 105, 107, 109) as described herein may be spread across multiple data processing devices, for example, to distribute processing load across multiple computers, to segregate transactions based on geographic location, user access level, quality of service (QoS), etc.
- devices 101, 105, 107, 109, and others may operate in concert to provide parallel computing features in support of the operation of control logic 125 and/or software 127.
- One or more aspects discussed herein may be embodied in computer-usable or readable data and/or computer-executable instructions, such as in one or more program modules, executed by one or more computers or other devices as described herein.
- program modules include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types when executed by a processor in a computer or other device.
- the modules may be written in a source code programming language that is subsequently compiled for execution, or may be written in a scripting language such as (but not limited to) Python or JavaScript.
- the computer executable instructions may be stored on a computer readable medium such as a hard disk, optical disk, removable storage media, solid-state memory, RAM, etc.
- the functionality of the program modules may be combined or distributed as desired in various embodiments.
- the functionality may be embodied in whole or in part in firmware or hardware equivalents such as integrated circuits, field programmable gate arrays (FPGA), and the like.
- Particular data structures may be used to more effectively implement one or more aspects discussed herein, and such data structures are contemplated within the scope of computer executable instructions and computer-usable data described herein.
- Various aspects discussed herein may be embodied as a method, a computing device, a data processing system, or a computer program product. Having discussed several examples of computing devices which may be used to implement some aspects as discussed further below, discussion will now turn to a method for listening to data streams.
- FIG. 2 is a block diagram of an environment in which systems and/or methods described herein may be implemented.
- the environment may include servers 201 and 202 and a computing device 203 connected by a network 204.
- the devices, servers, and network may be interconnected via wired connections, wireless connections, or a combination of wired and wireless connections.
- the server 201 may be directed toward receiving files relating to activities from computing device 203 and then sending the files to server 202 for processing.
- the network 204 may include one or more wired and/or wireless networks.
- network 204 may include a cellular network (e.g., a long-term evolution (LTE) network, a code division multiple access (CDMA) network, a 3G network, a 4G network, a 5G network, another type of next generation network, etc.), a public land mobile network (PLMN), a local area network (LAN), a wide area network (WAN), a metropolitan area network (MAN), a telephone network (e.g., the Public Switched Telephone Network (PSTN)), a private network, an ad hoc network, an intranet, the Internet, a fiber optic-based network, a cloud computing network, or the like, and/or a combination of these or other types of networks.
- LTE long-term evolution
- CDMA code division multiple access
- 3G Third Generation
- 4G fourth generation
- 5G 5G network
- PLMN public land mobile network
- PLMN public land mobile network
- LAN local
- FIG. 2 The number and arrangement of devices and networks shown in FIG. 2 are provided as an example. In practice, there may be additional devices and/or networks, fewer devices and/or networks, different devices and/or networks, or differently arranged devices and/or networks than those shown in FIG. 2. Furthermore, two or more servers shown in FIG. 2 may be implemented within a single server, or a single server shown in FIG. 2 may be implemented as multiple, distributed servers or in a cloud-based computing environment. Additionally, or alternatively, a set of devices (e.g., one or more devices) of the environment 203 may perform one or more functions described as being performed by another set of devices of the environment. Network 204 may be represented as a single network but may comprise combinations of other networks or subnetworks.
- a data stream may be received by server 201, where server 201 is a data store for received information.
- the data stream may also be received by server 202.
- Server 202 may also store a cache for a user application (e.g., referred to herein as an "application cache").
- the server 202 may parse the incoming data stream and, where relevant for users using applications that rely on the server 202's application cache, the server 202 may extract information from the data stream, determine one or more TTL values to be stored with the information, and store the extracted information and the TTL values for access by the users' application.
- the application may request information first from the application cache in server 202.
- a query for the information may be sent to server 201 , the data store for information received for the incoming data stream.
- the information from server 201 may be both sent to the computing device 203 and stored in the application cache in 202.
- TTLs may be generated by either the server 201, the sever 202, or a combination of each of servers 201 and 202.
- a process of listening to a data stream and updating an application cache is described herein. For purposes of explanation, the process is described in the following sections: Updating Application Cache from a Data Stream; Processes for Updating Application Caches from Data Streams; Processes for Prepopulating a Call Center Cache; and Processes for Prepopulating a Cache based on Previous Account Interactions.
- FIG. 3 depicts a block diagram showing various process flows for updating an application cache.
- FIG. 3 comprises a data store 301 configured to store users' information. As users interact with other entities, those interactions are received and stored in the data store 301.
- An event data stream 302 may be subscribed to by a stream listening cache service 307.
- the event data stream 302 may comprise events, such as, visiting a doctor and a user's medical record being updated, visiting a financial institution and securing a loan, making a purchase at a merchant, or the like. The type and quantity of events is not limited.
- the event data stream 302 is shown generally as path A and path B.
- the event data stream 302 may comprise single events pertaining to a single user and/or multiple events of multiple users and/or any combination thereof. For instance, the event data stream 302 may comprise information in one or more fields where the information identifies an account identification, a transaction type, a transaction amount or change amount, and/or other information that describes the one or more events.
- FIG. 3 also shows a client device 304 (e.g., device 101) receiving user's input (e.g., via path D).
- the client device 304 may include an application 305 executing in one or more processors of the client device 304.
- the user may request the application 305 to obtain the user's current account balance based on a quantity of recent transactions (e.g., events) made by the user.
- the application 305 first attempts to obtain information (e.g., via path E) from an application cache 306.
- the application cache 306 may reside inside one or more servers and/or someplace else (e.g., in a cloud-accessible storage). Information available in the application cache 306 is sent to the application via path F.
- the application 305 requests (via path H) the missing information from the data store 301. Additionally or alternatively, the application cache 306 may request the missing information from the data store 301. Information from the data store 301 may be sent to the application 305 via path I and the information (from either the application cache 306, the data store 301, or a combination of the application cache 306 and the data store 301). [0049] As described herein, one or more aspects relate to separately listening to the event data stream 302 and providing parsed stream data to the application cache 306. As shown in FIG. 3, a stream listening cache service 307 (e.g., provided by a separate server - for instance, server 202 of FIG.
- a stream listening cache service 307 e.g., provided by a separate server - for instance, server 202 of FIG.
- the stream listening cache service 307 may process all streamed data or may process only a subset of the streamed data. In an example where only a subset of the streamed data from the event stream 302 is processed, the stream listening cache service 307 may receive (e.g., via path K) user information 308 from the application cache 306 regarding information currently stored in the application cache 306.
- the dataset describing the user information 308 may be a complete copy of the data in the current application cache, may be a dataset that identifies, for each user, which fields of information and/or types of information are currently stored in the application cache (e.g., account balance, most recent transaction, loan information, account information, etc.), and/or may be a dataset that identifies the users that have current data in the application cache 306.
- the stream listening cache service 307 may listen specifically for data in the event data stream 302 that relates to the user information 308.
- the stream listening cache service 307 may extract the information from the event data stream 302, determine one or more TTL values for the extracted information, and send (via path C) the extracted information and the one or more TTL values for storage in the application cache 306.
- the application cache 306 may replace existing values with new values from the extracted information from the stream listening cache service 307, may additionally store the new values from the extracted information from the stream listening cache service 307 while retaining existing values in the application cache 306 for the user, and/or may calculate replacement values based on adjusting existing values using the new values from the extracted information from the stream listening cache service 307.
- the application cache 306 may receive (as a new value from the extracted information from the stream listening cache service 307) a transaction amount.
- the application cache 306 may subtract the transaction amount from the existing account balance, resulting in a new account balance.
- the actual account balance was not received as part of the information from the data stream but was calculated based on the transaction amount from the data stream and the existing account balance stored in the application cache 306.
- the calculation of the replacement values may occur in the stream listening cache service 307 (e.g., where the actual values from the application cache 306 are received with the user information 308 and the stream listening cache service 307 subtracts the detected transaction amount from the event data stream 302 from the received account balance from the application cache 306).
- the stream listening cache service 307 may not receive user information 308 and rather process all information for all users and provide that information to the application cache 306. Additionally or alternatively, the stream listening cache service 307 may have a separate list of users of the application 305 and, based on event stream data 302 relating to users on that separate list of users, may extract the relevant information from the event data stream 302 and forward it to the application cache 306.
- the information received by the application cache 306 from the stream listening service 307 may be assigned a single TTL value (e.g., assigning the same TTL value for each of the user's name, account number, transaction identification, merchant, transaction amount, account balance, etc.) such that, at the expiration of the TTL value, all information in the application cache associated with that TTL value is deleted.
- the information received may be assigned different TTL values (e.g., assigning different TTL values for each of the user's name, account number, transaction amount, and/or account balance, etc.).
- the TTLs may be assigned fixed TTLs based on the type of information. For example, the information may be delimited as content in separate fields and the TTLs assigned to the content based on the fields.
- first content in an "account number" field may be assigned a first TTL and second content an "account balance" field may be assigned a second TTL, where the first TTL is different from the second TTL.
- the TTLs may be assigned to the information based on the origin of the information. For instance, information received from a first data stream may be assigned one TTL and information received from a second data stream may be assigned another TTL, where the two TTLs are different.
- information received from the data store may be assigned one TTL and information received from a data stream may be assigned another TTL, where the data store-assigned TTL and the data stream listener service-assigned TTL are different.
- the stream listening cache service 307 may determine one or more TTL values for the records.
- One TTL value may be assigned for each parsed record.
- one or more fields of a parsed record may receive a first TTL value and other fields of the parsed record may receive other TTL values that are different in length or duration from the first TTL value.
- the application cache 306 may determine and/or update TTL values for information stored in the application cache 306. For instance, where a replacement account balance is determined in the application cache 306, the application cache 306 may generate a new TTL value for the replacement account balance and/or update an existing TTL value to extend its life.
- FIG. 4 provides four examples of how data is provided to application 305 based on whether application cache 306 includes a value associated with a user and whether the stream listening cache service 307 exists.
- an event 302 occurs that changes modifies data associated with a user from a first value to a second value. For example, a user purchases a product from a merchant and the user's account balance changes based on the transaction.
- the rows corresponding to the events are identified as "Event/Event Result" as the data that may be available in the event data stream 302 of FIG.
- Example 3 may be an actual value (e.g., a transaction ID number, merchant name, a transaction amount, etc.) from the event, may be a value that, when combined with other information, is a resulting value (e.g., a remaining balance - calculated from subtracting a transaction amount from a customer's existing balance, a remaining amount left on a mortgage and/or lien, etc.), and/or a combination of actual values and calculated values.
- Example 401 describes interactions between a data store 301, an application cache 306, and an application 305 in which no stream listening cache service 307 is used and no initial value is present in the application cache 306.
- Example 402 describes interactions between the data store 301, the application cache 306, and the application 305 in which a stream listening cache service 307 is used and no initial value is present in the application cache 306.
- Example 403 describes interactions between the data store 301, the application cache 306, and the application 305 in which no stream listening cache service 307 is used and an initial value is present in the application cache 306.
- Example 404 describes interactions between the data store 301, the application cache 306, and the application 305 in which a stream listening cache service 307 is used and an initial value is present in the application cache 306.
- an initial value of XYZ (e.g., an initial account balance of the user) is stored in the data store 301. Because the user has not recently requested the value from data store in a while, any cached value in the application cache 306 has already been deleted - e.g., because of the expiration of an associate TTL value. In example 401, the stream listening cache service 307 is not used.
- An event 302 occurs that affects that initial value XYZ (e.g., the user purchases a product having a cost that, when subtracted from value XYZ, results in value QR).
- the event data stream includes a change that, when processed by the data store 301, results in a new value QR.
- a user controls the application 305 on the client device 304 to obtain information regarding the user's account. The application 305 first attempts (via path
- the application 305 requests the information, via path H, from the data store 301 and receives it via path I.
- the application 305 provides the information to the user via path G. Because the application cache 306 did not have any information of the user, the application 305 obtained the most current information (value QR) from the data store 301 and provided it to the user.
- the stream listening cache service 307 exists, e.g., stream listening cache service 307, of FIG. 3, configured to receive the event data stream 302, via path B, and provide information and TTL values, via path C, to the application cache 306.
- the initial value of XYZ e.g., an initial account balance of the user
- the user has not recently requested the value from data store in a while, any cached value in the application cache 306 has already been deleted - e.g., because of the expiration of an associate TTL value.
- An event 302 occurs that affects that initial value XYZ (e.g., the user purchases a product having a cost that, when subtracted from value XYZ, results in value QR).
- the event data stream includes a change that, when processed by the data store 301, results in a new value QR.
- the stream listening cache service responds to the event 302 by forwarding the event/event result QR, along with one or more TTL values, to the application cache 306.
- the value stored in application cache is QR. Additionally or alternatively, information may be forwarded to the application cache that prompts the application cache to query the data store 301 for additional information to determine the resulting value QR.
- a user controls the application 305 on the client device 304 to obtain information regarding the user's account.
- the application 305 first attempts (via path E) to obtain the information from the application cache 306. Because the stream listening cache service forwarded information to the application cache 306 that resulted in value QR being stored (directly or via additional interactions with the data store 301), the application cache 306 has the value QR and is able to provide it to the application 305.
- the example 402 with the stream listening cache service provides the benefit of reducing the quantity of queries sent from the application cache 306 to the data store 301 for information.
- no stream listening cache service exists.
- An initial value LMN is stored in both the data store 301 and in the application cache 306.
- a user may have recently queried the application 305 for information.
- the application 305 obtained value LMN from the data store 301 and provided it to both the user and the application cache 306 (along with one or more TTL values).
- a new event is received with the event/event result value XY and is stored in the data store 301.
- a user controls the application 305 on the client device 304 to obtain information regarding the user's account.
- the application 305 first attempts (via path E) to obtain the information from the application cache 306.
- the application cache 306 Because the application cache 306 already has value LMN and the TTL value or values have not expired, the application cache 306 provides the value LMN to the application 305. However, the actual event/event value is XY and is only stored in the data store 301. Eventually, once the TTL value or values expire and the user subsequently operates the application, the application queries the data store 301 for the value and provides it to the user. In other words, the user may be initially provided incorrect information but will eventually receive the correct information. While the time delay between receiving the incorrect information and the correct information may be small (e.g. 5 minutes, an hour, etc.), users may become frustrated based on the lack of the application 305 to consistently provide correct data.
- any new event containing values not already in the application cache 306 will appear as fresh (and accurate) values (based on example 401) while the information changed during the call will be stale (based on example 403) because of the information existing in the application cache 306 while fresher information exists in the data store 301.
- the stream listening cache service 307 exists.
- An initial value LMN is stored in both the data store 301 and in the application cache 306.
- a user may have recently queried the application 305 for information.
- the application 305 obtained value LMN from the data store 301 and provided it to both the user and the application cache 306 (along with one or more TTL values).
- a new event is received with the event/event result value XY and the value XY is stored in the data store 301.
- the stream listening cache service responds to the event 302 by forwarding the event/event result XY, along with one or more TTL values, to the application cache 306.
- the value stored in application cache is XY. Additionally or alternatively, information may be forwarded to the application cache that prompts the application cache to query the data store 301 for additional information to determine the resulting value QR.
- a user controls the application 305 on the client device 304 to obtain information regarding the user's account.
- the application 305 first attempts (via path E) to obtain the information from the application cache 306. Because the application cache 306 already has value XY and the TTL value or values, associated with the value XY have not expired, the application cache 306 provides the value XY to the application 305.
- FIGs. 5-7 depict examples of processes for updating application caches using data from data streams.
- a stream listening cache service receives user information in step 500 and an event data stream in step 501.
- the stream listening cache service may not receive user information 500 but instead have a predefined list of users and/or may process an event stream for all users. It is appreciated that step 500 may be included or not included as desired.
- the stream listening cache service parses information from the data stream. The parsing of step 502 may be based on the combination of the user information of step 500 and the event data stream of step 501 or may be based on the event data stream 501 and possibly including other information.
- the stream listening cache service assigns TTL values based on the types of values in the parsed information.
- the stream listening cache service sends, to an application cache, information and associated TTL values.
- the application cache stores the information and the TTL values.
- an application receives a request for information from a user.
- the application determines whether the information currently exists in the application cache. If the information exists in the application cache, then, in step 508, the information is sent to the user, for instance, via an application controlling a display to display the received information.
- the application and/or the application cache requests, in step 509, the information from the data store.
- the information is received from the data store.
- the information may be received with one or more TTL values (as data 511).
- the application and/or the application cache may determine (in step 512) one or more TTLs to store with the received information.
- the information and the one or more TTLs are stored in the application cache. At the expiration of a TTL, the information associated with that TTL is deleted from the application cache.
- the application and/or the data store may monitor a user's activities in step 517 and, based on those activities, predict in step 518 that the user may be interested in obtaining information using the application. Based on that determination, the application may request updated information from the data store to prepare for the possible user request for information. Additionally or alternatively, the data store may proactively forward information to the application and/or to the application cache for satisfying the user's request for information.
- a stream listening cache service receives user information in step 600 and an event data stream in step 601.
- the stream listening cache service may not receive user information 600 but instead have a predefined list of users and/or may process an event stream for all users. It is appreciated that step 600 may be included or not included as desired.
- the stream listening cache service parses information from the data stream, for instance, to extract information relating to one or more specific users. The parsing of step 602 may be based on the combination of the user information of step 600 and the event data stream of step 601 or may be based on the event data stream 601 and possibly including other information.
- the stream listening cache service may assign, based on a type or types of information received, one or more TTL values to the information.
- the stream listening cache service sends, to an application cache, information and the associated TTLs.
- the application cache stores the information and the assigned TTLs.
- an application receives a user request for information.
- the application determines, in step 607, whether the information exists in the application cache. If the information exists in the application cache, then, in step 608, the information is sent to the user, for instance, via an application controlling a display to display the received information. [0064] If the information does not currently exist in the application cache, the application and/or the application cache requests, in step 609, the information from the data store.
- the information is received from the data store and forwarded to the user in step 608.
- the information may be received with one or more TTL values (as data 611).
- the application and/or the application cache may determine (in step 612) one or more TTLs to store with the received information.
- the information and the one or more TTLs are stored in the application cache.
- the stream listening cache service may filter the information parsed from the data stream based on types of information and only assign, in step 603, TTLs to information relating to selected types.
- the stream listening cache service may determine, in step 615, whether a user-specific filter exists for various data types. For instance, a user may desire that identification information relating to the user and merchants be stored in the application cache but not want financial amounts be stored in the application cache. If the stream listening cache service determines, in step 615, that no userspecific filter has been set, then the stream listening cache service assigns, in step 603, TTL values to information relating to the information. If the stream listening cache service determines, in step 615, that a user-specific filter has been set, then the stream listening cache service filters, in step 616, the information by the desired types and then assigns, in step 603, TTL values to the filtered information.
- FIG. 7 depicts a process of responding to a user request for information where the information stored in the application cache may or may not be stale. For instance, the TTL value assigned to the information in the application cache may be about to expire (within a few seconds, within a few minutes, and the like). Because the value stored in the application cache may be different from a current value stored in the data store, the application attempts to update the value from the data store.
- an application receives a request for information. The request may be similar to the request received in step 606 in FIG. 6.
- the application determines whether the information exists in the application cache.
- the application cache may attempt to obtain one or more incremental changes that have occurred since the value was last updated. For instance, changes to values may originate outside of the data stream or data streams.
- the application cache may be operating in a delta-type environment 702 in which it attempts to obtain one or more delta changes (changes since a previous point) and apply those changes to the value in the application cache.
- the application and/or application cache requests the delta changes from the data store.
- the delta changes are received from the data store.
- the value in the application cache is updated based on the delta changes from the data store.
- the updated value is provided to the user.
- the TTL value associated with the updated value may be updated as well and/or the TTL value may be permitted to expire and force the application to obtain fresh data from the data store the next time the user operates the application to obtain the user's data.
- FIG. 8 depicts an example content in a data stream and the assignment of TTLs.
- the data stream is represented as a streaming table 801 with records ⁇ Record A, Record B, and Record CJwith data arranged in fields ⁇ user identification, user name, updated account balance, transaction amount, transaction declined, behavior change, and transaction identification ⁇ . Additional and/or fewer records and/or fields may be used as desired.
- Table 802 comprises the fields and TTL values for the fields. Some TTL values may be the same as some TTL values and different for other TTL values.
- the data stream 801 may be parsed, TTL values from table 802 assigned, and combined in table 803 data to be sent to an application cache for a user (e.g., the user related to Record A of the three records of data stream 801).
- a computer-implemented method may comprise receiving, by a server and from an application, a request for first information associated with a user and storing the first information in an application cache, wherein the application cache assigns a time-to-live value to the first information.
- the method may further comprise monitoring a data stream of incoming information, detecting second information in the data stream associated with the user, wherein the second information comprises a change to the first information.
- the method may further comprise storing, based on the detecting the second information, the second information in the application cache, wherein the second information overwrites the first information and refreshes the time-to-live value, receiving, from the application, a request for the second information associated with the user, and sending, to the application, the second information.
- the computer-implemented method may further comprise detecting third information in the data stream associated with the user, wherein the third information comprises information not currently stored in the application cache, and storing, based on the detecting the third information, the third information in the application cache, wherein the third information receives a second time-to-live value.
- the request may include a request for the second information and the third information. Both the second information and the third information may be sent to the user.
- the method may further comprise receiving, from the application, a request for third information associated with the user, determining the application cache does not currently store the third information, receiving, from the server, the third information and a second time-to-live value, storing, in the application cache, the third information and the second time-to-live value, and sending, to the application, the third information.
- a computer-implemented method may comprise receiving, at a data store, a data stream comprising information in fields; receiving, at a server, the data stream; determining, at the server and from the fields in the data stream, one or more time-to- live (TTL) values associated with the fields; and storing, in an application cache, the information and the one or more TTL values associated with the information, wherein the one or more TTL values are based on one or more fields of the information.
- TTL time-to- live
- the computer- implemented method may also comprise deleting, based on an expiration of a first TTL value associated with first information, the first information from the application cache; receiving, from an application, a request for the first information of a first field, related to a user, and second information of a second field, related to the user; determining, at the application cache, that the second information of the second field, of the user, is currently stored in the application cache; and sending, based on a determination that the second information in the second field of the user is currently stored in the application cache, the second information to the application.
- the method may further comprise determining, at the server and from the data stream, a third field comprises third information; determining, at the server, a fourth field is currently stored; updating, based on the third information, the fourth field; and storing an updated TTL value associated the fourth field.
- the third information may be associated with a change in an account balance of the user, the fourth field may be an account balance, and updating the current account balance of the fourth field may result in an updated account balance.
- the method may comprise determining, at the application cache, that the first information, of the user, is not currently stored in the application cache; sending, to the data store and based on a determination that the first information of the user is not currently stored in the application cache, a request for the first information in the first field associated with the user; receiving, from the data store, the first information associated with the first field; determining, based on the first field, a second TTL value for the first information received from the data store; storing, in the application cache, the first information in the first field and the second TTL value; and sending the first information to the application.
- the first TTL value and the second TTL value may be the same while, in other examples, they may be different.
- the lifespan of a TTL value may be determined by determining, from a table and for the first field, the first TTL value associated with the first field; and determining, from the table and for the second field, a second TTL value associated with the second field.
- a third field in the data stream may be determined and, based on a determination of the third field in the data stream, the process may send, to the data store, a request for fourth information, associated with the user, in a fourth field.
- the method may further comprise receiving, from the data store, the fourth information, associated with the user, in the fourth field; determining, based on the fourth field, a second TTL value for the fourth information received from the data store; storing, in the application cache, the fourth information and the second TTL value; receiving, from the application, a request for the fourth information; and sending, to the application, the fourth information.
- the third field may indicate a transaction associated with the user has been declined, a change in behavior of the user, or a change in an account balance of an account associated with the user.
- the fourth field may comprise a most recent transaction associated with an account of the user.
- the method may further comprise determining, at the server and based on the fields in the data stream, updated second information is being received; and determining, from the data stream, that the updated second information has been received in its entirety.
- the sending the second information to the application may be delayed until after a determination that the entirety of the updated second information has been received by the application cache.
- the method may further comprise receiving, at the application cache and for the user, a modification of the one or more TTL values to be associated with the fields from the data stream.
- the determining the one or more TTL values may comprise determining, based on the modification of the one or more TTL values for the user, one or more modified TTL values, for the information of the user, associated with the fields, and the storing the information and the one or more TTL values may comprise storing, in the application cache, the information, of the user, and the one or more modified TTL values.
- An apparatus may comprise one or more processors; and memory storing instructions that, when executed by the one or more processors, cause the apparatus to receive a data stream, wherein the data stream comprises information in fields; determine, from the fields in the data stream, time-to-live (TTL) values associated with the fields; store, in an application cache, the information and TTL values associated with the fields of the information; and delete, from the application cache, with a first TTL value associated with first information, and the first TTL value having expired, the first information from the application cache.
- TTL time-to-live
- the instructions may further cause the apparatus to receive, from an application, a request, wherein the request is for the first information of a first field, related to a user, and for second information of a second field, related to the user; determine that the first information, of the user, is not currently stored in the application cache and that the second information, of the user, is currently stored in the application cache; send, to a data store and based on a determination that the first information of the user is not currently stored in the application cache, a request for the first information associated with the user; receive, from the data store, the first information associated with the user; and send, to the application, based on a determination that the second information of the user is currently stored in the application cache and based on the received first information, the first information and the second information.
- the instructions may further cause the apparatus to determine, based on the first field, a second TTL value for the first information received from the data store and store, in the application cache, the first information in the first field and the second TTL value.
- the first and second TTL values may be the same or different.
- the instructions may further cause the apparatus to determine, from the data stream, a third field comprising third information; determine a fourth field is currently stored; update, based on the third information, the current account balance in the fourth field to an updated account balance; and store an updated TTL value associated with the updated account balance in the fourth field.
- the instructions may cause the apparatus to determine a third field in the data stream; based on a determination of the third field in the data stream, send a request for fourth information, associated with the user, in a fourth field; receive the fourth information, associated with the user, in the fourth field; determine, based on the fourth field, a second TTL value for the received fourth information; store the fourth information and the second TTL value; receive, from the application, a request for the fourth information; and send, to the application, the fourth information.
- the fourth field may comprise a most recent transaction associated with an account of the user.
- the third field may indicate a transaction associated with the user has been declined, a change in behavior of the user, or a change in an account balance of an account associated with the user.
- the third information may be associated with a change in an account balance of the user
- the fourth field may comprise a current account balance
- the instructions may cause the apparatus to update, based on the third information, the current account balance of the fourth field, resulting in an updated account balance.
- a non-transitory media storing instructions that, when executed by one or more processors, cause the one or more processors to perform steps comprising receiving, at a data store, a data stream comprising information in fields; receiving, at a server, the data stream; determining, from a table, a first TTL value associated with a first field of the fields and a second TTL value associated with a second field of the fields, wherein the first TTL value and the second TTL value are different; storing, in the application cache, first information in the first field and the first TTL value and second information in the second field and the second TTL value; and deleting, from the application cache and upon expiration of the first TTL value associated with the first stored information, the first stored information.
- the steps may further comprise receiving, from an application, a request for the first information, related to a user, and for the second information of the second field, related to the user; determining, at the application cache, that the second information of the second field, of the user, is currently stored in the application cache; and sending, based on a determination that the second information in the second field of the user is currently stored in the application cache, the second information to the application.
- FIG. 9 depicts an example of using a machine-learning model to predict issues of users to be addressed by a call center.
- Steps 501-506 and 508 of FIG. 9 correspond to steps 501-506 and 508, respectively, of FIG. 5.
- the application cache retrieves any needed information from the data store.
- the retrieval may comprise any of the approaches described herein including, but not limited to the approaches of FIGs. 5-7.
- the application sends information regarding how the user has interacted with the application to a provider of the user's account (e.g., a bank, financial institution, merchant, and the like).
- a trained machine-learning model is provided with the user's interactions with the application.
- the machine learning model predicts the subject matter and/or the information needed by the call center to respond to the user's inquiry.
- a call center cache may be populated (via step 903) with information relating to the predictions from step 902.
- the individual or individuals responding to the specific user's inquiry address the specific user in step 904.
- the results and/or resolution of the specific user's inquiry may be forwarded from step 904 to step 905 where the machine learning model is further trained to improve its ability to predict if, and when, a user will contact the call center.
- the resulting newly trained machine learning model may be used to predict future information needed for call centers in step 902 based on future interactions of users with their applications.
- FIG. 10 depicts an example of using a machine-learning model to predict when users are likely to contact a call center.
- Steps 501-506 and 508 of FIG. 10 correspond to steps 501-506 and 508, respectively, of FIG. 5.
- the application cache retrieves any needed information from the data store.
- the retrieval may comprise any of the approaches described herein including, but not limited to the approaches of FIGs. 5-7.
- the application sends information regarding how the user has interacted with the application to a provider of the user's account (e.g., a bank, financial institution, merchant, and the like).
- a trained machine-learning model is provided with the user's interactions with the application.
- the machine learning model predicts when the user is expected to call and, possibly, the subject matter of the user's inquiry. Based on that prediction in step 1002, a call center cache may be populated (via step 1003) with information relating to the predictions from step 1002 including the likelihood a user will contact the call center based on the user's interactions with the application.
- the degree of authentication required by the user may be modified based on whether the user was predicted to contact the call center in step 1002.
- the system receives an inquiry from the user.
- the inquiry may include a chat request, a telephone call, a video call, email, other instant message, and/or contact via other medium or even in person at a physical location of the provider of the user's account. If the user's inquiry was predicted (determined in step 1005), the user may be authenticated in step 1006 using a lower authentication threshold (e.g., verifying one or two security items - e.g., last four digits of a social security number, home zip code, etc.).
- a lower authentication threshold e.g., verifying one or two security items - e.g., last four digits of a social security number, home zip code, etc.
- the results of the authentication in step 1006 and/or the user's inquiry may be provided to the machine-learning model and the machine learning model retrained in step 1007 using the new information. If the user's inquiry was not predicted (from step 1005), the user may be authenticated in step 1008 using a higher authentication threshold (e.g., verifying three or more security items). The number of security items per threshold is variable and may be increased or decreased as desired. The results of the authentication in step 1008 and/or the user's inquiry may be provided to the machine-learning model and the machine learning model retrained in step 1007 using the new information.
- a higher authentication threshold e.g., verifying three or more security items.
- the number of security items per threshold is variable and may be increased or decreased as desired.
- a computer-implemented method may comprise receiving, from an application, user interaction information; predicting, using a machine-learning model trained on previous interactions of previous users with their applications and with call centers and based on the received user interaction information, information expected to be needed by a call center when responding to an inquiry from the user; and populating a call center cache based on a prediction for the user.
- the method may also comprise storing, in an application cache and with a time-to-live value, first information for the application; monitoring a data stream of incoming information; detecting second information in the data stream; and storing, based on the detecting the second information, the second information in the application cache, wherein the second information overwrites the first information and refreshes the time- to-live value.
- the method may further comprise receiving interactions between the call center and the user; and retraining, based on the interactions between the call center and the user and based on the previous interactions of the previous users with their applications and with the call centers, the machine-learning model.
- the computer-implemented method may further comprise detecting third information in the data stream associated with the user, wherein the third information comprises information not currently stored in the application cache, and storing, based on the detecting the third information, the third information in the application cache, wherein the third information receives a second time-to-live value.
- the request may include a request for the second information and the third information. Both the second information and the third information may be sent to the user.
- the method may further comprise receiving, from the application, a request for third information associated with the user, determining the application cache does not currently store the third information, receiving, from the server, the third information and a second time-to-live value, storing, in the application cache, the third information and the second time-to-live value, and sending, to the application, the third information.
- a computer-implemented method may comprise receiving, from an application, user interaction information; predicting, using a machine-learning model trained on previous interactions of previous users with their applications and with call centers and based on the received user interaction information, information expected to be needed by a call center when responding to an inquiry from the user; and populating a call center cache based on a prediction for the user.
- the method may also comprise receiving, from the application, a request for first information associated with the user; storing the first information in an application cache, wherein the application cache assigns a time-to-live value to the first information; monitoring a data stream of incoming information; detecting second information in the data stream; and storing, based on the detecting the second information, the second information in the application cache, wherein the second information overwrites the first information and refreshes the time-to-live value.
- the method may further comprise receiving interactions between the call center and the user; and retraining, based on the interactions between the call center and the user and based on the previous interactions of the previous users with their applications and with the call centers, the machine-learning model.
- the method may further comprise determining, at the server and from the data stream, a third field comprises third information; determining, at the server, a fourth field is currently stored; updating, based on the third information, the fourth field; and storing an updated TTL value associated the fourth field.
- the third information may be associated with a change in an account balance of the user, the fourth field may be an account balance, and updating the current account balance of the fourth field may result in an updated account balance.
- the method may comprise determining, at the application cache, that the first information, of the user, is not currently stored in the application cache; sending, to the data store and based on a determination that the first information of the user is not currently stored in the application cache, a request for the first information in the first field associated with the user; receiving, from the data store, the first information associated with the first field; determining, based on the first field, a second TTL value for the first information received from the data store; storing, in the application cache, the first information in the first field and the second TTL value; and sending the first information to the application.
- the first TTL value and the second TTL value may be the same while, in other examples, they may be different.
- the lifespan of a TTL value may be determined by determining, from a table and for the first field, the first TTL value associated with the first field; and determining, from the table and for the second field, a second TTL value associated with the second field.
- a third field in the data stream may be determined and, based on a determination of the third field in the data stream, the process may send, to the data store, a request for fourth information, associated with the user, in a fourth field.
- the method may further comprise receiving, from the data store, the fourth information, associated with the user, in the fourth field; determining, based on the fourth field, a second TTL value for the fourth information received from the data store; storing, in the application cache, the fourth information and the second TTL value; receiving, from the application, a request for the fourth information; and sending, to the application, the fourth information.
- the third field may indicate a transaction associated with the user has been declined, a change in behavior of the user, or a change in an account balance of an account associated with the user.
- the fourth field may comprise a most recent transaction associated with an account of the user.
- the method may further comprise determining, at the server and based on the fields in the data stream, updated second information is being received; and determining, from the data stream, that the updated second information has been received in its entirety.
- the sending the second information to the application may be delayed until after a determination that the entirety of the updated second information has been received by the application cache.
- the method may further comprise receiving, at the application cache and for the user, a modification of the one or more TTL values to be associated with the fields from the data stream.
- the determining the one or more TTL values may comprise determining, based on the modification of the one or more TTL values for the user, one or more modified TTL values, for the information of the user, associated with the fields, and the storing the information and the one or more TTL values may comprise storing, in the application cache, the information, of the user, and the one or more modified TTL values.
- An apparatus may comprise one or more processors; and memory storing instructions that, when executed by the one or more processors, cause the apparatus to receive, from an application, user interaction information; predict, using a machine-learning model trained on previous interactions of previous users with their applications and with call centers and based on the received user interaction information, information expected to be needed by a call center when responding to an inquiry from the user; and populate a call center cache based on a prediction for the user.
- the instructions may further cause the apparatus to store, in an application cache and with a time-to-live value, first information for the application; monitor a data stream of incoming information; detect second information in the data stream; and store, based on the detecting the second information, the second information in the application cache, wherein the second information overwrites the first information and refreshes the time-to-live value.
- the apparatus may further comprise instructions to determine, based on the first field, a second TTL value for the first information received from the data store; and store, in the application cache, the first information in the first field and the second TTL value.
- the instructions may further cause the apparatus to determine, based on the first field, a second TTL value for the first information received from the data store and store, in the application cache, the first information in the first field and the second TTL value.
- the first and second TTL values may be the same or different.
- the instructions may further cause the apparatus to determine, from the data stream, a third field comprising third information; determine a fourth field is currently stored; update, based on the third information, the current account balance in the fourth field to an updated account balance; and store an updated TTL value associated with the updated account balance in the fourth field.
- the instructions may cause the apparatus to determine a third field in the data stream; based on a determination of the third field in the data stream, send a request for fourth information, associated with the user, in a fourth field; receive the fourth information, associated with the user, in the fourth field; determine, based on the fourth field, a second TTL value for the received fourth information; store the fourth information and the second TTL value; receive, from the application, a request for the fourth information; and send, to the application, the fourth information.
- the fourth field may comprise a most recent transaction associated with an account of the user.
- the third field may indicate a transaction associated with the user has been declined, a change in behavior of the user, or a change in an account balance of an account associated with the user.
- the third information may be associated with a change in an account balance of the user
- the fourth field may comprise a current account balance
- the instructions may cause the apparatus to update, based on the third information, the current account balance of the fourth field, resulting in an updated account balance.
- a non-transitory media storing instructions that, when executed by one or more processors, cause the one or more processors to perform steps comprising receiving, at a data store, a data stream comprising information in fields; receiving, at a server, the data stream; determining, from a table, a first TTL value associated with a first field of the fields and a second TTL value associated with a second field of the fields, wherein the first TTL value and the second TTL value are different; storing, in the application cache, first information in the first field and the first TTL value and second information in the second field and the second TTL value; and deleting, from the application cache and upon expiration of the first TTL value associated with the first stored information, the first stored information.
- the steps may further comprise receiving, from an application, a request for the first information, related to a user, and for the second information of the second field, related to the user; determining, at the application cache, that the second information of the second field, of the user, is currently stored in the application cache; and sending, based on a determination that the second information in the second field of the user is currently stored in the application cache, the second information to the application.
- a computer-implemented method may comprise receiving, from an application, user interaction information; predicting, using a machine-learning model trained on previous interactions of previous users with their applications and with call centers and based on the received user interaction information, a likelihood of a user of the application to contact a call center with an inquiry from the user; and populating a call center cache based on a prediction for the user to contact a call center.
- the method may further comprise authenticating the user based on the prediction for the user; storing, in an application cache and with a time-to-live value, first information for the application; monitoring a data stream of incoming information; detecting second information in the data stream; and storing, based on the detecting the second information, the second information in the application cache, wherein the second information overwrites the first information and refreshes the time-to-live value.
- the method may further comprise receiving interactions between the call center and the user; and retraining, based on the interactions between the call center and the user and based on the previous interactions of the previous users with their applications and with the call centers, the machine-learning model.
- the computer-implemented method may further comprise detecting third information in the data stream associated with the user, wherein the third information comprises information not currently stored in the application cache, and storing, based on the detecting the third information, the third information in the application cache, wherein the third information receives a second time-to-live value.
- the request may include a request for the second information and the third information. Both the second information and the third information may be sent to the user.
- the method may further comprise receiving, from the application, a request for third information associated with the user, determining the application cache does not currently store the third information, receiving, from the server, the third information and a second time-to-live value, storing, in the application cache, the third information and the second time-to-live value, and sending, to the application, the third information.
- a computer-implemented method may comprise receiving, from an application, user interaction information; predicting, using a machine-learning model trained on previous interactions of previous users with their applications and with call centers and based on the received user interaction information, a likelihood of a user of the application to contact a call center with an inquiry from the user; and populating a call center cache based on a prediction for the user to contact a call center.
- the method may further comprise authenticating the user based on the prediction for the user; receiving, from the application, a request for first information associated with the user; storing, in the application cache and with a time-to-live value, first information for the application; monitoring a data stream of incoming information; detecting second information in the data stream; and storing, based on the detecting the second information, the second information in the application cache, wherein the second information overwrites the first information and refreshes the time-to-live value.
- the method may further comprise receiving interactions between the call center and the user; and retraining, based on the interactions between the call center and the user and based on the previous interactions of the previous users with their applications and with the call centers, the machine-learning model.
- the method may further comprise determining, at the server and from the data stream, a third field comprises third information; determining, at the server, a fourth field is currently stored; updating, based on the third information, the fourth field; and storing an updated TTL value associated the fourth field.
- the third information may be associated with a change in an account balance of the user, the fourth field may be an account balance, and updating the current account balance of the fourth field may result in an updated account balance.
- the method may comprise determining, at the application cache, that the first information, of the user, is not currently stored in the application cache; sending, to the data store and based on a determination that the first information of the user is not currently stored in the application cache, a request for the first information in the first field associated with the user; receiving, from the data store, the first information associated with the first field; determining, based on the first field, a second TTL value for the first information received from the data store; storing, in the application cache, the first information in the first field and the second TTL value; and sending the first information to the application.
- the first TTL value and the second TTL value may be the same while, in other examples, they may be different.
- the lifespan of a TTL value may be determined by determining, from a table and for the first field, the first TTL value associated with the first field; and determining, from the table and for the second field, a second TTL value associated with the second field.
- a third field in the data stream may be determined and, based on a determination of the third field in the data stream, the process may send, to the data store, a request for fourth information, associated with the user, in a fourth field.
- the method may further comprise receiving, from the data store, the fourth information, associated with the user, in the fourth field; determining, based on the fourth field, a second TTL value for the fourth information received from the data store; storing, in the application cache, the fourth information and the second TTL value; receiving, from the application, a request for the fourth information; and sending, to the application, the fourth information.
- the third field may indicate a transaction associated with the user has been declined, a change in behavior of the user, or a change in an account balance of an account associated with the user.
- the fourth field may comprise a most recent transaction associated with an account of the user.
- the method may further comprise determining, at the server and based on the fields in the data stream, updated second information is being received; and determining, from the data stream, that the updated second information has been received in its entirety.
- the sending the second information to the application may be delayed until after a determination that the entirety of the updated second information has been received by the application cache.
- the method may further comprise receiving, at the application cache and for the user, a modification of the one or more TTL values to be associated with the fields from the data stream.
- the determining the one or more TTL values may comprise determining, based on the modification of the one or more TTL values for the user, one or more modified TTL values, for the information of the user, associated with the fields, and the storing the information and the one or more TTL values may comprise storing, in the application cache, the information, of the user, and the one or more modified TTL values.
- An apparatus may comprise one or more processors; and memory storing instructions that, when executed by the one or more processors, cause the apparatus to receive, from an application, user interaction information; predict, using a machine-learning model trained on previous interactions of previous users with their applications and with call centers and based on the received user interaction information, a likelihood of a user of the application to contact a call center with an inquiry from the user; and populate a call center cache based on a prediction for the user to contact a call center.
- the apparatus may further comprise instructions that cause the apparatus to authenticate the user based on the prediction for the user; store, in an application cache and with a time-to-live value, first information for the application; monitor a data stream of incoming information; detect second information in the data stream; and store, based on the detecting the second information, the second information in the application cache, wherein the second information overwrites the first information and refreshes the time-to-live value.
- the instructions may cause the apparatus to receive interactions between the call center and the user; and retrain, based on the interactions between the call center and the user and based on the previous interactions of the previous users with their applications and with the call centers, the machine-learning model.
- a non-transitory media storing instructions that, when executed by one or more processors, cause the one or more processors to perform steps comprising receiving, from the application, user interaction information; and predicting, using a machine-learning model trained on previous interactions of previous users with their applications and with call centers and based on the received user interaction information, whether the user is expected to contact a call center; populating a call center cache based on a prediction for the user.
- the method may further comprise receiving an inquiry from the user; determining, based on the prediction from the machine-learning model and from the inquiry by the user, an authentication level to be used when authenticating the user; based on a determination of the authentication level, authenticating the user to the call center using the determined authentication level; receiving interactions between the call center and the user; and retraining, based on the interactions between the call center and the user and based on the previous interactions of the previous users with their applications and with the call centers, the machine-learning model.
- FIG. 11 depicts a block diagram showing various process flows for using interactions associated with a first cache to prepopulate a second cache.
- FIG. 11 pertains generally to prepopulating one cache based on events that populated another cache.
- Steps 501-506 and 508 of FIG. 9 correspond to steps 501-506 and 508, respectively, of FIG. 11.
- the application cache retrieves any needed information from the data store.
- the retrieval may comprise any of the approaches described herein including, but not limited to the approaches of FIGs. 5-7.
- information from the application cache is prepopulated into a first action fraud determination cache.
- step 1102 the system receives a first action request from a user, where the first action request of step 1102 corresponds to the first action fraud determination cache that was prepopulated in step 1101.
- step 1103 the system reviews the first action request (from step 1102) using the prepopulated first action fraud cache (from step 1101).
- step 1104 the first action is approved or denied. If denied, the denial is provided to the user in step 1105.
- step 1105 the system prepopulates a second action fraud determination cache is step 1106. Also, if approved, the approval is provided to the user in step 1107.
- step 1108 the system receives a request for a second action from the user. Based on the request for the second action from step 1108 and the prepopulated second action fraud determination cache from step 1106, the system reviews the second action request in step 1109.
- a use case associated with FIG. 11 includes addressing actions that, while related to each other, may be handled separately - e.g., checking for fraud in opening a new account may be independent from checking for fraud in conducting a transaction using an existing account. For example, when a fraudster acquires an authorized user's phone running the application, the fraudster may attempt to open multiple accounts based on the user's existing account. Opening a first new account may result in the population of a new account fraud determination cache. The opening of the second and additional accounts may access the content in the new account fraud determination cache, thus reducing the time for whether any second or subsequent new account requests are from the authorized user.
- FIG. 11 uses the prepopulation of the first action cache (in step 1101) to prepopulate a second action cache (in step 1106) even though both caches may be accessed independently of each other.
- a computer-implemented process may include receiving, by a server and from an application, first information from an application cache associated with the application.
- the process may include prepopulating a first action cache with at least some of the first information received from the application cache, receiving a first request, by the server and from the application, a first request comprising a request for performing a first action, and performing the first action.
- the process may include prepopulating, with second information and based on the performance of the first action, a second action cache with at least some of the first information from the first action cache, receiving a second request, by the server and from the application, a second request comprising a request for performing a second action, determining, by the server and based on the second information in the prepopulated second cache, whether to perform the second action, and based on a determination to perform the second action, performing the second action.
- the method may additionally include storing the first information in the first action cache, wherein the first action assigns a time-to-live value to the first information and deleting, at an expiration of the time-to-live value of the first information, the first information from the first action cache.
- the method may include determining, based on receiving the first request from the application, whether to perform the first action, wherein performing the first action is based on a determination to perform the first action.
- the method may include receiving, by the server and from the application, a third request comprising a request for performing the first action, determining, by the server and based on the first information in the prepopulated first action cache, whether to perform the third request's first action, and based on a determination to not perform the third request's first action, denying the third request.
- the first action may include opening a new account, and the first action cache may include a cache of information from which a determination of whether the first request for the first action is fraudulent.
- the second action may include performing a new transaction, and the second action cache may include a cache of information from which a determination of whether the second request for the second action is fraudulent.
- the method may further include monitoring a data stream of incoming information, detecting user-specific information in the data stream associated with a user associated with the application, wherein the user-specific information may include a change to application information in an application cache associated with the application, storing, based on the detecting the user-specific information, the user-specific information in the application cache, wherein the user-specific information overwrites existing user-specific information and refreshes a time-to-live value associated with the user-specific information in the application cache, receiving, from the application, a request for the user-specific information associated with the user, and sending, to the application, the user-specific information.
- the method may further include detecting second user-specific information in the data stream associated with the user, wherein the second user-specific information may include information not currently stored in the application cache, and storing, based on the detecting the second user-specific information, the second user-specific information in the application cache, wherein the second user-specific information receives a second time-to-live value, wherein the receiving the request for the user-specific information may include receiving a request for the user-specific information and the second user-specific information, and wherein sending the user-specific information may include sending, to the application, the user-specific information and the second user-specific information.
- the method may include receiving, from the application, a request for third user-specific information associated with the user, determining the application cache does not currently store the third user-specific information, receiving, from the server, the third user-specific information and a third time-to-live value, storing, in the application cache, the third userspecific information and the third time-to-live value, and sending, to the application, the third user-specific information.
- Some implementations described herein relate to an apparatus comprising one or more processors and memory storing instructions that when executed by the one or more processors cause the apparatus to populate an application cache with user-specific information from a data stream.
- the apparatus may be configured to receive, by a server and from an application, first information from an application cache associated with the application, wherein the first information may include at least some of the user-specific information.
- the apparatus may be configured to prepopulate a first action cache with at least some of the first information received from the application cache.
- the apparatus may be configured to receive a first request, by the server and from the application, a first request comprising a request for performing a first action.
- the apparatus may be configured to perform the first action.
- the apparatus may be configured to prepopulate, with second information and based on the performance of the first action, a second action cache with at least some of the first information from the first action cache.
- the apparatus may be configured to receive a second request, by the server and from the application, a second request comprising a request for performing a second action.
- the apparatus may be configured to determine, by the server and based on the second information in the prepopulated second cache, whether to perform the second action.
- the apparatus may be configured to, based on a determination to perform the second action, perform the second action.
- the apparatus may further include instructions to further cause the apparatus to store the first information in the first action cache, wherein the first action assigns a time-to-live value to the first information and delete, at an expiration of the time-to-live value of the first information, the first information from the first action cache.
- the apparatus may further include instructions to further cause the apparatus to determine, based on receiving the first request from the application, whether to perform the first action, wherein performance of the first action is based on a determination to perform the first action.
- the apparatus may further include instructions to further cause the apparatus to receive, by the server and from the application, a third request comprising a request for performing the first action, determine, by the server and based on the first information in the prepopulated first action cache, whether to perform the third request's first action, and based on a determination to not perform the third request's first action, denying the third request.
- the first action may include opening a new account.
- the first action cache may include a cache of information from which a determination of whether the first request for the first action is fraudulent.
- the second action may include performing a new transaction.
- the second action cache may include a cache of information from which a determination of whether the second request for the second action is fraudulent.
- the apparatus may further include instructions to further cause the apparatus to monitor the data stream for incoming information, detect new user-specific information in the data stream associated with a user associated with the application, wherein the new user-specific information may include a change to user-specific information in the application cache associated with the application, store, based on the detecting the userspecific information, the user-specific information in the application cache, wherein the userspecific information overwrites existing user-specific information and refreshes a time-to-live value associated with the user-specific information in the application cache, receive, from the application, a request for the user-specific information associated with the user, and send, to the application, the user-specific information.
- the apparatus may further include instructions to further cause the apparatus to detect second user-specific information in the data stream associated with the user, wherein the second user-specific information may include information not currently stored in the application cache, and store, based on the detecting the second user-specific information, the second user-specific information in the application cache, wherein the second user-specific information receives a second time-to-live value.
- the receiving the request for the user-specific information may include receiving a request for the user-specific information and the second user-specific information.
- the sending the user-specific information may include sending, to the application, the user-specific information and the second user-specific information.
- the apparatus may further include instructions to further cause the apparatus to receive, from the application, a request for third user-specific information associated with the user, determine the application cache does not currently store the third user-specific information, receive, from the server, the third user-specific information and a third time-to-live value, store, in the application cache, the third user-specific information and the third time-to-live value, and send, to the application, the third user-specific information.
- the time-to-live value, the second time-to-live value, and the time-to-live value may be different from each other.
- One more non-transitory media may store instructions that, when executed by one or more processors, cause the one or more processors to perform steps comprising receiving, by a server and from an application, first information from an application cache associated with the application, prepopulating a first action cache with at least some of the first information received from the application cache, receiving a first request, by the server and from the application, a first request comprising a request for performing a first action, determining, based on receiving the first request from the application, whether to perform the first action, based on a determination to perform the first action, performing the first action, prepopulating, with second information and based on the performance of the first action, a second action cache with at least some of the first information from the first action cache, receiving a second request, by the server and from the application, a second request comprising a request for performing a second action, determining, by the server and based on the second information in the prepopulated second cache, whether to perform the second action, and based on a determination to perform
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Databases & Information Systems (AREA)
- Data Mining & Analysis (AREA)
- Information Transfer Between Computers (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22830650.2A EP4437433A1 (en) | 2021-11-23 | 2022-11-18 | Stream listening cache updater |
CA3238953A CA3238953A1 (en) | 2021-11-23 | 2022-11-18 | Stream listening cache updater |
US18/415,153 US20240314218A1 (en) | 2021-11-23 | 2024-01-17 | Stream Listening Cache Updater |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/533,773 US11695696B2 (en) | 2021-11-23 | 2021-11-23 | Prepopulation of caches |
US17/533,773 | 2021-11-23 | ||
US17/533,618 | 2021-11-23 | ||
US17/533,618 US11916787B2 (en) | 2021-11-23 | 2021-11-23 | Stream listening cache updater |
US17/538,327 | 2021-11-30 | ||
US17/538,769 | 2021-11-30 | ||
US17/538,769 US11855770B2 (en) | 2021-11-23 | 2021-11-30 | Authentication control based on previous actions |
US17/538,327 US11765252B2 (en) | 2021-11-23 | 2021-11-30 | Prepopulation of call center cache |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/533,618 Continuation US11916787B2 (en) | 2021-11-23 | 2021-11-23 | Stream listening cache updater |
US17/538,327 Continuation US11765252B2 (en) | 2021-11-23 | 2021-11-30 | Prepopulation of call center cache |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/415,153 Continuation US20240314218A1 (en) | 2021-11-23 | 2024-01-17 | Stream Listening Cache Updater |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023096829A1 true WO2023096829A1 (en) | 2023-06-01 |
Family
ID=84627557
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2022/050360 WO2023096829A1 (en) | 2021-11-23 | 2022-11-18 | Stream listening cache updater |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023096829A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040128346A1 (en) * | 2001-07-16 | 2004-07-01 | Shmuel Melamed | Bandwidth savings and qos improvement for www sites by catching static and dynamic content on a distributed network of caches |
US20120271852A1 (en) * | 2004-06-30 | 2012-10-25 | Eric Russell Fredricksen | System and Method of Accessing a Document Efficiently Through Multi-Tier Web Caching |
US20150319261A1 (en) * | 2014-04-30 | 2015-11-05 | Webroot Inc. | Smart Caching Based on Reputation Information |
WO2017210123A1 (en) * | 2016-06-01 | 2017-12-07 | Home Box Office, Inc., | Cached data expiration and refresh |
-
2022
- 2022-11-18 WO PCT/US2022/050360 patent/WO2023096829A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040128346A1 (en) * | 2001-07-16 | 2004-07-01 | Shmuel Melamed | Bandwidth savings and qos improvement for www sites by catching static and dynamic content on a distributed network of caches |
US20120271852A1 (en) * | 2004-06-30 | 2012-10-25 | Eric Russell Fredricksen | System and Method of Accessing a Document Efficiently Through Multi-Tier Web Caching |
US20150319261A1 (en) * | 2014-04-30 | 2015-11-05 | Webroot Inc. | Smart Caching Based on Reputation Information |
WO2017210123A1 (en) * | 2016-06-01 | 2017-12-07 | Home Box Office, Inc., | Cached data expiration and refresh |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11900267B2 (en) | Methods and systems for configuring communication decision trees based on connected positionable elements on canvas | |
US11539716B2 (en) | Online user behavior analysis service backed by deep learning models trained on shared digital information | |
US20230196210A1 (en) | Utilizing machine learning models to predict client dispositions and generate adaptive automated interaction responses | |
US20200175522A1 (en) | Predicting online customer service requests based on clickstream key patterns | |
US20230409565A1 (en) | Data aggregation with microservices | |
US11645386B2 (en) | Systems and methods for automated labeling of subscriber digital event data in a machine learning-based digital threat mitigation platform | |
US20240414110A1 (en) | Utilizing machine learning models to generate interactive digital text threads with personalized digital text reply options | |
US11593406B2 (en) | Dynamic search parameter modification | |
US20240364814A1 (en) | Utilizing machine learning models to generate interactive digital text threads with personalized agent escalation digital text reply options | |
US11855770B2 (en) | Authentication control based on previous actions | |
US11916787B2 (en) | Stream listening cache updater | |
US11695696B2 (en) | Prepopulation of caches | |
US20240314218A1 (en) | Stream Listening Cache Updater | |
WO2023096829A1 (en) | Stream listening cache updater | |
US11354733B2 (en) | External entity cross-relational dynamic matching system | |
US20240163275A1 (en) | Network intrusion detection in a large-scale authenication scenario | |
US20230377004A1 (en) | Systems and methods for request validation | |
US20220172215A1 (en) | Fraud prediction service | |
CN111931035B (en) | Business recommendation methods, devices and equipment | |
US11431848B2 (en) | Machine-learning system for incoming call driver prediction | |
CA3057010A1 (en) | Method and system for proactively increasing customer satisfaction | |
US12079811B2 (en) | Digital policy criteria integration for making determinations within an inter-network facilitation system | |
WO2025017754A1 (en) | Method and system for identifying root cause of call failures in a network | |
CN118945270A (en) | Call strategy method, device, equipment and medium based on predicting user behavior |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22830650 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 3238953 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022830650 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022830650 Country of ref document: EP Effective date: 20240624 |