[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023092977A1 - 制备隧穿氧化层和非晶硅薄膜的方法及TOPCon电池 - Google Patents

制备隧穿氧化层和非晶硅薄膜的方法及TOPCon电池 Download PDF

Info

Publication number
WO2023092977A1
WO2023092977A1 PCT/CN2022/096067 CN2022096067W WO2023092977A1 WO 2023092977 A1 WO2023092977 A1 WO 2023092977A1 CN 2022096067 W CN2022096067 W CN 2022096067W WO 2023092977 A1 WO2023092977 A1 WO 2023092977A1
Authority
WO
WIPO (PCT)
Prior art keywords
amorphous silicon
silicon film
oxide layer
tunnel oxide
sccm
Prior art date
Application number
PCT/CN2022/096067
Other languages
English (en)
French (fr)
Inventor
邓明璋
陈浩
孟夏杰
邢国强
Original Assignee
通威太阳能(眉山)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 通威太阳能(眉山)有限公司 filed Critical 通威太阳能(眉山)有限公司
Priority to US18/548,381 priority Critical patent/US20240145611A1/en
Priority to EP22897076.0A priority patent/EP4254519A4/en
Priority to AU2022397987A priority patent/AU2022397987A1/en
Publication of WO2023092977A1 publication Critical patent/WO2023092977A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F10/00Individual photovoltaic cells, e.g. solar cells
    • H10F10/10Individual photovoltaic cells, e.g. solar cells having potential barriers
    • H10F10/17Photovoltaic cells having only PIN junction potential barriers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F71/00Manufacture or treatment of devices covered by this subclass
    • H10F71/10Manufacture or treatment of devices covered by this subclass the devices comprising amorphous semiconductor material
    • H10F71/103Manufacture or treatment of devices covered by this subclass the devices comprising amorphous semiconductor material including only Group IV materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F71/00Manufacture or treatment of devices covered by this subclass
    • H10F71/131Recrystallisation; Crystallization of amorphous or microcrystalline semiconductors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/20Electrodes
    • H10F77/206Electrodes for devices having potential barriers
    • H10F77/211Electrodes for devices having potential barriers for photovoltaic cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the disclosure relates to the field of solar cells, in particular, to a method for preparing a tunnel oxide layer and an amorphous silicon film and a TOPCon cell.
  • N-type tunnel oxide passivating contacts (Tunnel Oxide Passivating Contacts TOPCon) battery is a solar cell based on the tunnel oxide passivating contact technology based on the principle of selective carriers.
  • the main technical route of polysilicon film deposition in the industry is to use low pressure chemical vapor deposition (Low pressure Chemical Vapor Deposition, LPCVD) to deposit tunnel oxide layer and amorphous silicon film, and then use ion implantation or phosphorus diffusion to dope the film Phosphorus-doped polysilicon (poly-si) is formed.
  • PECVD Pullasma Enhanced Chemical Vapor Deposition
  • SiOx poly-si and silicon oxide
  • the disclosure provides a method for preparing a tunnel oxide layer and an amorphous silicon film, comprising: using PECVD equipment, depositing a tunnel oxide layer, an intrinsic amorphous silicon film, and depositing doped Heteromorphous amorphous silicon thin film;
  • the silane flow rate is 2000sccm-2500sccm;
  • the silane flow rate is 2000sccm-2500sccm.
  • the duty ratio of the plasma pulse is 20:(500-600);
  • the duty ratio of the plasma pulse is 20:(500-600).
  • the N 2 O flow rate is 5500 sccm-6500 sccm, and the plasma pulse duty ratio is 20:(900-1000).
  • the doped amorphous silicon thin film after depositing the doped amorphous silicon thin film, it further includes:
  • vacuuming and leak detection are also performed on the PECVD furnace tube.
  • the doped amorphous silicon film is a phosphorus-doped amorphous silicon film.
  • the flow rate of phosphine is 2000 sccm-2500 sccm
  • the flow rate of hydrogen gas is 5000 sccm. ⁇ 5500 sccm.
  • the doped amorphous silicon film is a nitrogen-doped amorphous silicon film, and when depositing the nitrogen-doped amorphous silicon film, the flow rate of methane is 450 sccm-500 sccm, and the flow rate of nitrogen gas is 1500 sccm-2000 sccm .
  • the present disclosure also provides a method for preparing a tunnel oxide layer and an amorphous silicon film, including:
  • PECVD equipment at a deposition temperature of 440°C to 460°C, sequentially deposit a tunnel oxide layer, an intrinsic amorphous silicon film, and a doped amorphous silicon film;
  • the duty ratio of the plasma pulse is 20:(500 ⁇ 600);
  • the duty ratio of the plasma pulse is 20:(500-600).
  • the present disclosure also provides a method for preparing a tunnel oxide layer and an amorphous silicon film, including:
  • the silane flow rate is 2000sccm-2500sccm; the plasma pulse duty ratio is 20:(500 ⁇ 600);
  • the silane flow rate is 2000sccm-2500sccm; the plasma pulse duty ratio is 20:(500-600).
  • the present disclosure also provides a tunnel oxide layer and an amorphous silicon film prepared by any of the above methods.
  • the present disclosure also provides a TOPCon battery, wherein the tunnel oxide layer and the amorphous silicon film of the TOPCon battery are prepared by the method for preparing the tunnel oxide layer and the amorphous silicon film.
  • the present disclosure also provides a TOPCon battery, which comprises the tunnel oxide layer and the amorphous silicon thin film prepared by any one of the above methods.
  • FIG. 1 shows the external view of the passivation contact structure of the TOPCon battery provided in Example 1 under a microscope.
  • FIG. 2 shows the appearance of the passivated contact structure of the TOPCon battery provided in Comparative Example 1 under a microscope.
  • FIG. 3 shows the appearance of the passivated contact structure of the TOPCon battery provided in Comparative Example 2 under a microscope.
  • FIG. 4 shows the appearance of the passivated contact structure of the TOPCon battery provided in Comparative Example 3 under a microscope.
  • FIG. 5 shows the appearance of the passivated contact structure of the TOPCon battery provided in Comparative Example 4 under a microscope.
  • the back of the TOPCon cell has a tunnel oxide passivation contact structure, which consists of a tunnel oxide layer and a doped polysilicon layer, which can significantly reduce the recombination of the metal contact area, and at the same time Good contact performance can greatly improve the efficiency of solar cells.
  • the silicon oxide between the doped polysilicon in the passivation layer and the substrate Si interface reduces the interface state density between the substrate Si and the polysilicon through chemical passivation, and the majority carriers are transported through the oxide layer through the tunneling principle, and the minority carriers It is difficult for electrons to tunnel through the oxide layer due to the existence of potential barriers and polysilicon field effects.
  • the concentration of majority carriers is much higher than that of minority carriers, which reduces the probability of electron-hole recombination and increases the conductivity to form selective contact of majority carriers.
  • the tunnel oxide layer and the amorphous silicon film are deposited by low-pressure chemical vapor deposition (LPCVD), and then the film is doped by ion implantation or phosphorus diffusion.
  • LPCVD low-pressure chemical vapor deposition
  • Phosphorus-doped polysilicon poly-si
  • the battery needs to undergo wet cleaning of the metal impurities introduced by the ion implantation, and then anneal to activate the phosphorus atoms in the poly-Si film, and at the same time repair the damage caused by the ion implantation.
  • phosphorus diffusion doping technology due to the presence of winding in the diffusion process and the winding of the poly-Si film during LPCVD deposition, will lead to whitening of the battery appearance and blackening of the electroluminescence (EL) test, which greatly affects the yield. The process is complicated and the window is narrow.
  • PECVD deposition of poly-si and silicon oxide (SiOx) is smaller, which is conducive to the control of appearance and yield.
  • Tubular PECVD on the back of the TOPCon battery often causes severe film bursting on the surface after depositing amorphous silicon.
  • the film burst area will form a recombination center, resulting in poor passivation performance in this area, thereby reducing the open circuit voltage of the TOPCon battery. Affect the photoelectric conversion efficiency of the battery.
  • the mechanism of the film burst phenomenon in the amorphous silicon film prepared by PECVD is that there are more hydrogen atoms in the amorphous silicon layer.
  • the hydrogen atoms will form hydrogen gas. Released and unable to overflow the film, resulting in the occurrence of the bursting film phenomenon.
  • the disclosure provides a PECVD-based method for preparing a tunnel oxide layer and an amorphous silicon film and a TOPCon battery. It aims to improve the film bursting problem that is easy to occur when depositing amorphous silicon thin films.
  • a method for preparing a tunnel oxide layer and an amorphous silicon film mainly comprising: using PECVD equipment, depositing a tunnel oxide layer, an intrinsic amorphous silicon film, and depositing a doped amorphous silicon film in sequence at a deposition temperature of 440°C to 460°C. crystalline silicon film.
  • the film When the deposition temperature is set at 440°C to 460°C, the film is relatively dense, and hydrogen atoms are released during the subsequent annealing process, which greatly improves the problem of film bursting.
  • the flow rate of silane is 2000sccm ⁇ 2500sccm; it can reduce the growth rate of the film, let more hydrogen atoms overflow from the film, and prevent hydrogen atoms from being stored inside the film. Effectively improve the phenomenon of film explosion caused by the accumulation of hydrogen atoms to form hydrogen gas during the post-annealing process.
  • the furnace tube of the PECVD equipment is vacuumed and leak-checked; then the temperature is raised to the deposition temperature for depositing the tunnel oxide layer.
  • the deposition temperature for depositing the tunnel oxide layer, the intrinsic amorphous silicon film and the doped amorphous silicon film is 440°C-460°C, for example, the deposition temperature can be 443°C-457°C, 445°C- 455°C or 448°C to 452°C, such as 440°C, 442°C, 445°C, 450°C, 453°C, 456°C, 458°C, 460°C, etc.
  • the deposition temperature at 440°C to 460°C.
  • the temperature is relatively high and the film is relatively dense.
  • the hydrogen atoms are released well, which greatly improves the problem of film explosion. .
  • the flow rate of laughing gas (N 2 O) is 5500 sccm-6500 sccm
  • the duty ratio of the plasma pulse is 20:(900-1000).
  • the flow rate of laughing gas can be 5700sccm-6300sccm, 5900sccm-6200sccm or 6000sccm-6100sccm, such as 5500sccm, 5600sccm, 6000sccm, 6200sccm, 6300sccm, 6500sccm and so on.
  • the plasma pulse duty cycle may be 20:(910-990), 20:(930-980) or 20:(940-960), such as 20:900, 20:950, 20:1000 and so on.
  • silane (SiH 4 ) and hydrogen (H 2 ) are introduced, and the plasma is turned on to deposit an intrinsic amorphous silicon film; in an embodiment of the present disclosure, the silane flow rate is 2000 sccm-2500 sccm; H 2 The flow rate is 5000sccm-5500sccm.
  • the silane flow rate is 2100 sccm-2400 sccm, 2150 sccm-2350 sccm, or 2200 sccm-2300 sccm, such as 2000 sccm, 2100 sccm, 2200 sccm, 2300 sccm, 2400 sccm, 2500 sccm, and so on.
  • the H2 flow is 5100sccm-5400sccm, 5150sccm-5350sccm or 5200sccm-5300sccm, such as 5000sccm, 5100sccm, 5200sccm, 5300sccm, 5400sccm, 5500sccm.
  • the time for depositing the intrinsic amorphous silicon film can be set according to the thickness, for example, the deposition time can be 7-10 min.
  • the silane flow rate is 2000sccm-2500sccm; it can reduce the growth rate of intrinsic amorphous silicon, allowing more hydrogen atoms to overflow from the film, avoiding the storage of hydrogen atoms in the film Internally, it can effectively improve the phenomenon of membrane explosion caused by the accumulation of hydrogen atoms to form hydrogen gas during the post-annealing process.
  • the plasma pulse duty ratio is 20:(500-600), for example, 20:(520-580), 20:(530-570) or 20:(540 ⁇ 560), such as 20:500, 20:510, 20:520, 20:530, 20:540, 20:550, 20:560, 20:570, 20:580, 20:590, 20 :600 etc.
  • Adjusting the plasma pulse duty ratio to 20:(500-600) can reduce the growth rate of the intrinsic amorphous silicon film, and can also improve the phenomenon of film explosion caused by the accumulation of hydrogen atoms to form hydrogen gas during the later annealing process.
  • the doped amorphous silicon film is deposited.
  • the doped amorphous silicon film can be a phosphorus-doped amorphous silicon film or a nitrogen-doped amorphous silicon film; it can be selected according to requirements.
  • depositing a phosphorus-doped amorphous silicon film mainly includes the following steps: feeding silane (SiH 4 ), phosphine (PH 3 ) and hydrogen (H 2 ), and starting plasma to deposit a doped amorphous silicon film;
  • the H 2 flow rate is 5000 sccm-5500 sccm;
  • the phosphine (PH 3 ) flow rate is 2000 sccm-2500 sccm;
  • the silane flow rate is 2000 sccm-2500 sccm;
  • the plasma pulse duty ratio is 20:(500-600), for example, silane
  • the flow rate may be, for example, 2100 sccm-2400 sccm, 2150 sccm-2350 sccm, or 2200 sccm-2300 sccm, such as 2000 sccm, 2100 sccm, 2200 sccm, 2300 sccm, 2400
  • the growth rate of the film can be reduced, which is conducive to the overflow of hydrogen atoms, and reduces the generation of hydrogen gas during the annealing process, thereby reducing the risk of film explosion. occur.
  • the plasma pulse duty ratio can be, for example, 20:(515-595), 20:(530-570) or 20:(540-560) , such as 20:500, 20:510, 20:520, 20:530, 20:540, 20:550, 20:560, 20:570, 20:580, 20:590, 20:600 and so on.
  • Adjusting the plasma pulse duty ratio to 20:(500-600) in the process of depositing the doped amorphous silicon thin film can improve the phenomenon of film explosion caused by the accumulation of hydrogen atoms to form hydrogen gas in the later annealing process.
  • depositing a nitrogen-doped amorphous silicon film mainly includes the following steps: feeding silane (SiH 4 ), methane (CH 4 ) and nitrogen (N 2 ), and starting the plasma to deposit a doped amorphous silicon film;
  • the flow rate of silane is 2000 sccm-2500 sccm
  • the flow rate of methane is 450 sccm-500 sccm
  • the flow rate of nitrogen gas is 1500 sccm-2000 sccm.
  • the plasma pulse duty ratio is 20:(500 ⁇ 600).
  • the silane flow rate can be, for example, 2100 sccm-2400 sccm, 2150 sccm-2350 sccm or 2250 sccm-2300 sccm, such as 2000 sccm, 2100 sccm, 2200 sccm, 2300 sccm, 2400 sccm, 2500 sccm and so on.
  • the flow rate of methane may be, for example, 460 sccm-490 sccm, 465 sccm-475 sccm or 470 sccm-480 sccm, such as 450 sccm, 460 sccm, 480 sccm, 490 sccm, 500 sccm, etc.
  • the nitrogen flow may be, for example, 1600 seem-1900 seem, 1650 seem-1850 seem, or 1700 seem-1800 seem, such as 1500 seem, 1600 seem, 1700 seem, 1800 seem, 1900 seem, 2000 seem or the like.
  • the plasma pulse duty cycle can be, for example, 20:(510-590), 20:(520-580) or 20:(540-560), such as 20:500, 20:510, 20:520, 20:530 , 20:540, 20:550, 20:560, 20:570, 20:580, 20:590, 20:600, etc.
  • adjusting the silane flow rate to 2000sccm-2500sccm can reduce the growth rate of the film, facilitate the overflow of hydrogen atoms, reduce the generation of hydrogen gas during the annealing process, and reduce the occurrence of film explosion.
  • Adjusting the plasma pulse duty ratio to 20:(500-600) can improve the phenomenon of membrane explosion caused by the accumulation of hydrogen atoms to form hydrogen gas during the later annealing process.
  • Annealing is performed after depositing the doped amorphous silicon film.
  • the annealing gas atmosphere is nitrogen (N 2 ) or oxygen (O 2 )
  • the annealing temperature is 600°C-1000°C
  • the annealing time is 20- 60 minutes.
  • the annealing temperature may be, for example, 650°C-950°C, 700°C-900°C, or 750°C-850°C, such as 600°C, 700°C, 800°C, 900°C, 1000°C, and the like.
  • oxygen can oxidize amorphous silicon to produce masked silicon oxide.
  • the film is prepared based on PECVD equipment.
  • the silane flow rate during the deposition of the intrinsic amorphous silicon film and the doped amorphous silicon film By adjusting the silane flow rate during the deposition of the intrinsic amorphous silicon film and the doped amorphous silicon film, the hydrogen atoms in the film can be prevented from agglomerating into hydrogen gas during the subsequent annealing process, which can effectively improve the film explosion. Phenomenon.
  • the plasma pulse duty ratio is 20:(500-600) during the process of depositing intrinsic amorphous silicon thin film and doped amorphous silicon thin film; membrane phenomenon.
  • the present disclosure also provides a method for preparing a tunnel oxide layer and an amorphous silicon film, including:
  • the deposition temperature for depositing the tunnel oxide layer is 440°C-460°C; when depositing the intrinsic amorphous silicon film ,
  • the plasma pulse duty ratio is 20:(500 ⁇ 600).
  • the duty ratio of the plasma pulse is 20:(500-600).
  • the silane flow rate can be 2000-3000 sccm.
  • the present disclosure also provides a method for preparing a tunnel oxide layer and an amorphous silicon film, including: using PECVD equipment to sequentially deposit a tunnel oxide layer, an intrinsic amorphous silicon film, and a doped amorphous silicon film;
  • the silane flow rate is 2000sccm-2500sccm;
  • the plasma pulse duty ratio is 20:(500-600);
  • the silane flow rate is 2000sccm-2500sccm;
  • the ratio is 20:(500 ⁇ 600).
  • the deposition temperature for depositing the tunnel oxide layer may be 400-460°C.
  • the tunneling oxide layer at a deposition temperature of 440°C-460°C is conducive to the formation of a dense film.
  • hydrogen atoms are better released, which greatly improves the problem of film explosion.
  • the plasma pulse duty ratio is 20: (500-600), which can reduce the growth rate of intrinsic amorphous silicon thin films and also improve post-annealing During the process, hydrogen atoms gather to form hydrogen gas and the phenomenon of membrane explosion occurs.
  • the present disclosure also provides a tunnel oxide layer and an amorphous silicon film prepared by the above method.
  • the present disclosure also provides a TOPCon battery, wherein the tunnel oxide layer and the amorphous silicon film of the TOPCon battery are prepared by the method for preparing the tunnel oxide layer and the amorphous silicon film.
  • the present disclosure also provides a TOPCon battery, comprising the tunnel oxide layer and the amorphous silicon film prepared by the above method.
  • the structure obtained based on the method for preparing the tunneling oxide layer and the amorphous silicon thin film of the present disclosure can effectively improve the film explosion problem, therefore, the film explosion problem of the corresponding TOPCon battery is also correspondingly improved; its electrical performance can be effectively improved.
  • comparative example 1-comparative example 4 before preparing the passivation contact structure of TOPCon battery, all carry out texturing, boron expansion and alkali polishing by the following processes, comprising the following steps:
  • Texture making adopt N-type silicon chip, adopt 1wt% lye to carry out texturing and adopt hydrogen peroxide and alkali to clean silicon chip;
  • Alkali polishing Use a chain-type HF machine to remove the BSG with boron expansion on the back, and then transfer it to a slot-type alkali polishing machine by a robot to remove the p-n junctions on the back and edges.
  • This embodiment provides a method for preparing a passivated contact structure of a TOPCon battery, which mainly includes the following steps:
  • N 2 O is fed, wherein the N 2 O flow rate is 6000 sccm, the time is 3 min, and the plasma pulse duty ratio is 20:1000.
  • Deposit phosphorus-doped amorphous silicon film pass silane SiH 4 , PH 3 and hydrogen H 2 , and turn on the plasma.
  • the SiH 4 flow rate is 2000 sccm
  • the PH 3 flow rate is 2000 sccm
  • the H 2 flow rate is 5000 sccm
  • the time is 25 min
  • the plasma pulse duty ratio is 20:500.
  • Annealing heat preservation in N 2 atmosphere at 900°C for 30 minutes; the thickness of the polysilicon film after annealing is 100nm.
  • Figure 1 shows the appearance of the passivated contact structure of a TOPCon cell under a microscope.
  • This comparative example provides a kind of preparation method of the passivation contact structure of TOPCon battery, mainly comprises the following steps:
  • SiH 4 silane
  • H 2 hydrogen
  • the SiH 4 flow rate is 3000 sccm
  • the H 2 flow rate is 5000 sccm
  • the time is 7 min
  • the plasma pulse duty ratio is 20:400.
  • SiH 4 silane
  • PH 3 phosphine
  • H 2 hydrogen
  • Annealing heat preservation in N 2 atmosphere at 900°C for 30 minutes; the thickness of the polysilicon film after annealing is 100nm.
  • Figure 2 shows the appearance of the silicon wafer cell after annealing under a microscope.
  • This comparative example provides a kind of preparation method of the passivation contact structure of TOPCon battery, please refer to embodiment 1, the difference between comparative example 2 and comparative example 1 is that in step 4) and step 5) the plasma pulse duty cycle is 20:600.
  • the time for depositing intrinsic amorphous silicon in step 4) is increased to 9min36s, and the time for depositing phosphorus-doped amorphous silicon in step 5) is 30min.
  • Figure 3 shows the appearance of the silicon wafer cell after annealing under the microscope.
  • This comparative example provides a kind of preparation method of the passivation contact structure of TOPCon cell, please refer to embodiment 1, the difference of comparative example 3 and embodiment 1 is, in step 2) silicon wafer is placed in the furnace tube of PECVD, then heats up to 460°C.
  • Figure 4 shows the appearance of the silicon wafer cell after annealing under the microscope.
  • This embodiment provides a method for preparing a passivated contact structure of a TOPCon battery. Please refer to Example 1.
  • the difference between Comparative Example 4 and Example 1 is that the flow rate of SiH in step 4) and step 5 ) is 2000 sccm.
  • FIG. 5 shows the appearance of the silicon wafer cell after annealing under a microscope.
  • Comparative Example 1-Comparative Example 4 is single Adjust the deposition temperature of the deposition tunnel oxide layer to 460°C, single adjustment to deposit intrinsic amorphous silicon film and doped amorphous silicon film, SiH 4 flow rate to 2000sccm, single adjustment section to deposit intrinsic amorphous silicon film and doped amorphous silicon film
  • the plasma pulse duty ratio of silicon thin films is 20:600; it is beneficial to slow down the problem of film explosion; and the time for depositing intrinsic amorphous silicon is adjusted to 9min36s, and the time for depositing phosphorus-doped amorphous silicon is 30min; there are also It is beneficial to improve the problem of film bursting; compared with Comparative Example 1-Comparative Example 4, the problem of film bursting in Example 1 of the present disclosure is effectively improved. It is illustrated that the method provided by the present disclosure is beneficial
  • the disclosure provides a method for preparing a tunnel oxide layer and an amorphous silicon film and a TOPCon battery.
  • the thin film obtained by the disclosed method is relatively dense, and in the subsequent annealing process, the hydrogen atoms are better released, which greatly improves the problem of membrane explosion.
  • the thin film provided by the present disclosure avoids the storage of hydrogen atoms inside the thin film, effectively Improve the film bursting phenomenon caused by the accumulation of hydrogen atoms to form hydrogen in the later annealing process; the structure obtained based on the method for preparing the tunnel oxide layer and the amorphous silicon thin film in the present disclosure effectively improves the film bursting problem and can effectively improve its electrical properties, so Has excellent industrial application performance.

Landscapes

  • Photovoltaic Devices (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

本公开涉及太阳电池领域,具体而言,涉及一种制备隧穿氧化层和非晶硅薄膜的方法及TOPCon电池。制备隧穿氧化层和非晶硅薄膜的方法,包括:使用PECVD设备,在沉积温度为440℃~460℃下依次沉积隧穿氧化层、本征非晶硅薄膜以及沉积掺杂非晶硅薄膜;沉积本征非晶硅薄膜时和沉积掺杂非晶硅薄膜时,硅烷流量为2000sccm~2500sccm。前述方法得到的薄膜较为致密,在后续退火过程中,氢原子有较好的释放,极大程度地改善了爆膜的问题。调整硅烷流量可以降低薄膜的生长速度,让更多的氢原子从薄膜中溢出,避免氢原子储存于薄膜内部,有效改善后期退火过程中氢原子聚集形成氢气而发生爆膜现象。

Description

制备隧穿氧化层和非晶硅薄膜的方法及TOPCon电池
相关申请的交叉引用
本公开要求于2021年11月26日提交中国专利局的申请号为CN202111420983.0、名称为“制备隧穿氧化层和非晶硅薄膜的方法及TOPCon电池”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及太阳电池领域,具体而言,涉及一种制备隧穿氧化层和非晶硅薄膜的方法及TOPCon电池。
背景技术
N型隧穿氧化层钝化接触(Tunnel Oxide Passivating Contacts TOPCon)电池,是一种基于选择性载流子原理的隧穿氧化层钝化接触技术的太阳能电池。行业内多晶硅薄膜沉积的主要技术路线是采用低压化学气相沉积法(Low pressure Chemical Vapor Deposition,LPCVD)沉积隧穿氧化层和非晶硅薄膜,然后采用离子注入或磷扩散的方式对薄膜进行掺杂形成磷掺杂的多晶硅(poly-si)。
近些年基于管式PECVD(Plasma Enhanced Chemical Vapor Deposition)沉积技术的TOPCon电池制备工艺和镀膜设备开始出现,相比于LPCVD技术,PECVD沉积poly-si和氧化硅(SiOx)绕镀更小,有利于外观和良率的控制,且能够同时将TOPCon电池背面隧穿氧化层薄膜、本征非晶硅薄膜、磷掺杂的非晶硅薄膜及背面氧化硅掩膜层的沉积四步工序合在一台机器的一根管完成,精简了工序步骤,设备利用率高,具有更高的量产优势。
但是管式PECVD沉积非晶硅薄膜时易出现的爆膜问题。
发明内容
本公开提供一种制备隧穿氧化层和非晶硅薄膜的方法,包括:使用PECVD设备,在沉积温度为440℃~460℃下依次沉积隧穿氧化层、本征非晶硅薄膜以及沉积掺杂非晶硅薄膜;
其中,沉积本征非晶硅薄膜时,硅烷流量为2000sccm~2500sccm;
沉积掺杂非晶硅薄膜时,硅烷流量为2000sccm~2500sccm。
在本公开的一些实施方式中,沉积本征非晶硅薄膜时,等离子体脉冲占空比为20:(500~600);
沉积掺杂非晶硅薄膜时,等离子体脉冲占空比为20:(500~600)。
在本公开的一些实施方式中,沉积隧穿氧化层时,N 2O流量为5500sccm ~6500sccm,等离子体脉冲占空比为20:(900~1000)。
在本公开的一些实施方式中,沉积掺杂非晶硅薄膜之后还包括:
在氮气或氧气气氛下,温度600℃~1000℃下,退火20-60分钟。
在本公开的一些实施方式中,沉积隧穿氧化层之前,还包括对PECVD的炉管进行抽真空和检漏处理。
在本公开的一些实施方式中,所述掺杂非晶硅薄膜为掺磷非晶硅薄膜,沉积所述掺磷非晶硅薄膜时,磷烷的流量为2000sccm~2500sccm,氢气的流量为5000sccm~5500sccm。
在本公开的一些实施方式中,所述掺杂非晶硅薄膜为掺氮非晶硅薄膜,沉积所述掺氮非晶硅薄膜时,甲烷的流量为450sccm-500sccm,氮气流量为1500sccm-2000sccm。
本公开还提供一种制备隧穿氧化层和非晶硅薄膜的方法,包括:
使用PECVD设备,在沉积温度为440℃~460℃下依次沉积隧穿氧化层、本征非晶硅薄膜以及沉积掺杂非晶硅薄膜;
其中,沉积本征非晶硅薄膜时,等离子体脉冲占空比为20:(500~600);
沉积掺杂非晶硅薄膜时,等离子体脉冲占空比为20:(500~600)。
本公开还提供一种制备隧穿氧化层和非晶硅薄膜的方法,包括:
使用PECVD设备依次沉积隧穿氧化层、本征非晶硅薄膜以及沉积掺杂非晶硅薄膜;
其中,沉积本征非晶硅薄膜时,硅烷流量为2000sccm-2500sccm;等离子体脉冲占空比为20:(500~600);
沉积掺杂非晶硅薄膜时,硅烷流量为2000sccm-2500sccm;等离子体脉冲占空比为20:(500~600)。
本公开还提供一种隧穿氧化层和非晶硅薄膜,由上文中任一方法制备获得。
本公开还提供一种TOPCon电池,TOPCon电池的隧穿氧化层和非晶硅薄膜通过上述的制备隧穿氧化层和非晶硅薄膜的方法制得。
本公开还提供一种TOPCon电池,所述TOPCon电池包括由上文中任一项所述方法制备得到的隧穿氧化层和非晶硅薄膜。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本公开的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1示出了实施例1提供的显微镜下的TOPCon电池的钝化接触结构的外观图。
图2示出了对比例1提供的显微镜下的TOPCon电池的钝化接触结构的外观图。
图3示出了对比例2提供的显微镜下的TOPCon电池的钝化接触结构的外观图。
图4示出了对比例3提供的显微镜下的TOPCon电池的钝化接触结构的外观图。
图5示出了对比例4提供的显微镜下的TOPCon电池的钝化接触结构的外观图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将对本公开实施例中的技术方案进行清楚、完整地描述。实施例中未注明条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
TOPCon电池的背面具有隧穿氧化层钝化接触结构,隧穿氧化层钝化接触结构由一层隧穿氧化层和一层掺杂多晶硅层组成,可以显著降低金属接触区域的复合,同时兼具良好的接触性能,能够极大地提升太阳能电池的效率。钝化层中的掺杂多晶硅与基底Si界面间的氧化硅通过化学钝化降低基底Si与多晶硅之间的界面态密度,多数载流子通过隧穿原理通过氧化层实现输运,少数载流子则由于势垒以及多晶硅场效应的存在难以隧穿通过该氧化层。在重掺多晶硅中,多数载流子浓度远高于少数载流子,降低电子空穴复合几率的同时,也增加了电导率形成多数载流子的选择性接触。
隧穿氧化层钝化接触结构在制备过程中,主要是采用低压化学气相沉积法(LPCVD)沉积隧穿氧化层和非晶硅薄膜,然后采用离子注入或磷扩散的方式对薄膜进行掺杂形成磷掺杂的多晶硅(poly-si)。
对于离子注入技术,电池需要经过湿法清洗离子注入引入的金属杂质,后再经过退火激活poly-Si薄膜中的磷原子,同时修复离子注入引起的损伤。而磷扩散掺杂技术,由于扩散过程中存在绕扩和LPCVD沉积时的poly-Si薄膜绕度,会导致电池外观发白和电致发光(EL)测试发黑,极大地影响了良率,工艺复杂且窗口较窄。近年,基于管式PECVD沉积技术的开始兴起,PECVD沉积poly-si和氧化硅(SiOx)绕镀更小,有利于外观和良率的控制。
TOPCon电池背面使用管式PECVD在沉积完非晶硅后表面经常会出现严重 的爆膜现象,爆膜区域会形成复合中心,导致该区域的钝化性能较差,从而降低TOPCon电池的开路电压,影响电池的光电转换效率。
申请人发现,PECVD制备的非晶硅薄膜出现爆膜现象的机理是由于非晶硅层中有较多的氢原子,在由非晶硅转化为多晶硅的高温退火过程中,氢原子会形成氢气释放而无法溢出薄膜外,导致爆膜现象的发生。
本公开提供一种基于PECVD的制备隧穿氧化层和非晶硅薄膜的方法及TOPCon电池。其旨在改善沉积非晶硅薄膜时易出现的爆膜问题。
下面对本公开实施方式的制备隧穿氧化层和非晶硅薄膜的方法及TOPCon电池进行说明。
一种制备隧穿氧化层和非晶硅薄膜的方法,主要包括:使用PECVD设备,在沉积温度为440℃~460℃下依次沉积隧穿氧化层、本征非晶硅薄膜以及沉积掺杂非晶硅薄膜。
将沉积温度设定为440℃~460℃,薄膜较为致密,在后续退火过程中,氢原子有较好的释放,极大程度地改善了爆膜的问题。在沉积本征非晶硅薄膜、掺杂非晶硅薄膜时,硅烷流量为2000sccm~2500sccm;可以降低薄膜的生长速度,让更多的氢原子从薄膜中溢出,避免氢原子储存于薄膜内部,有效改善后期退火过程中氢原子聚集形成氢气而发生爆膜现象。
在制备隧穿氧化层和非晶硅薄膜之前,先对PECVD设备的炉管进行抽真空和检漏处理;然后升温至沉积隧穿氧化层的沉积温度。
在本公开中,沉积隧穿氧化层、本征非晶硅薄膜以及沉积掺杂非晶硅薄膜的沉积温度为440℃~460℃,例如,沉积温度可以为443℃~457℃、445℃~455℃或448℃~452℃,诸如440℃、442℃、445℃、450℃、453℃、456℃、458℃、460℃等等。
将沉积温度设定为440℃~460℃,在沉积过程中,温度相对较高,薄膜较为致密,在后续退火过程中,氢原子有较好的释放,极大程度地改善了爆膜的问题。
升温至沉积温度后,通入笑气(N 2O)开始沉积本征非晶硅薄膜。作为示例性地,笑气(N 2O)的流量为5500sccm~6500sccm,等离子体脉冲占空比为20:(900~1000)。例如,笑气的流量可以为5700sccm~6300sccm、5900sccm~6200sccm或6000sccm~6100sccm,诸如5500sccm、5600sccm、6000sccm、6200sccm、6300sccm、6500sccm等等。例如,等离子体脉冲占空比可以为20:(910~990)、20:(930~980)或20:(940~960),诸如20:900、20:950、20:1000等等。
沉积完隧穿氧化层后,通入硅烷(SiH 4)和氢气(H 2),并开启等离子体沉积本征非晶硅薄膜;在本公开的实施方式中,硅烷流量为2000sccm~2500sccm; H 2流量为5000sccm-5500sccm。例如,硅烷流量为2100sccm~2400sccm、2150sccm~2350sccm或2200sccm~2300sccm,诸如2000sccm、2100sccm、2200sccm、2300sccm、2400sccm、2500sccm等等。例如,H 2流量为5100sccm-5400sccm、5150sccm-5350sccm或5200sccm-5300sccm,诸如5000sccm、5100sccm、5200sccm、5300sccm、5400sccm、5500sccm。沉积本征非晶硅薄膜的时间可以根据厚度进行设定,例如,沉积的时间可以为7-10min。
在本公开中,沉积本征非晶硅薄膜过程中,硅烷流量为2000sccm~2500sccm;可以降低本征非晶硅的生长速度,让更多的氢原子从薄膜中溢出,避免氢原子储存于薄膜内部,有效改善后期退火过程中氢原子聚集形成氢气而发生爆膜现象。
在一些实施方式中,沉积本征非晶硅薄膜过程中,等离子体脉冲占空比为20:(500~600),例如可以为20:(520~580)、20:(530~570)或20:(540~560),诸如20:500、20:510、20:520、20:530、20:540、20:550、20:560、20:570、20:580、20:590、20:600等等。
调整等离子体脉冲占空比为20:(500~600),可以降低本征非晶硅薄膜的生长速度,同样也可以改善后期退火过程中氢原子聚集形成氢气而发生爆膜现象。
沉积完本征非晶硅薄膜后,沉积掺杂非晶硅薄膜。掺杂非晶硅薄膜可以为掺磷非晶硅薄膜或者掺氮非晶硅薄膜;可以根据需求进行选择。
例如,沉积掺磷非晶硅薄膜,主要包括以下步骤:通入硅烷(SiH 4)、磷烷(PH 3)和氢气(H 2),并开启等离子体沉积掺杂非晶硅薄膜;在本实施方式中,H 2流量为5000sccm-5500sccm;磷烷(PH 3)的流量为2000sccm~2500sccm;硅烷流量为2000sccm~2500sccm;等离子体脉冲占空比为20:(500~600),例如,硅烷流量可以为例如2100sccm~2400sccm、2150sccm~2350sccm或2200sccm~2300sccm,诸如2000sccm、2100sccm、2200sccm、2300sccm、2400sccm、2500sccm等等。
在沉积掺杂非晶硅薄膜的过程中,对于硅烷流量为2000sccm~2500sccm的实施方式而言,可以降低薄膜的生长速率,有利于氢原子溢出,降低退火过程中氢气的生成从而减少爆膜的发生。
在一些实施方式中,沉积掺杂非晶硅薄膜的过程中,等离子体脉冲占空比例如可以为例如20:(515~595)、20:(530~570)或20:(540~560),诸如20:500、20:510、20:520、20:530、20:540、20:550、20:560、20:570、20:580、20:590、20:600等等。
调整沉积掺杂非晶硅薄膜过程中等离子体脉冲占空比为20:(500~600),可以改善后期退火过程中氢原子聚集形成氢气而发生爆膜现象。
例如,沉积掺氮非晶硅薄膜,主要包括以下步骤:通入硅烷(SiH 4)、甲烷(CH 4)和氮气(N 2),并开启等离子体沉积掺杂非晶硅薄膜;在本实施方式中,硅烷流量为2000sccm~2500sccm;甲烷的流量为450sccm-500sccm,氮气流量为1500sccm-2000sccm。等离子体脉冲占空比为20:(500~600)。
例如,沉积掺氮非晶硅薄膜过程中,硅烷流量可以为例如2100sccm~2400sccm、2150sccm~2350sccm或2250sccm~2300sccm,诸如2000sccm、2100sccm、2200sccm、2300sccm、2400sccm、2500sccm等等。甲烷的流量可以为例如460sccm-490sccm、465sccm-475sccm或470sccm-480sccm,诸如450sccm、460sccm、480sccm、490sccm、500sccm等等。氮气流量可以为例如1600sccm-1900sccm、1650sccm-1850sccm或1700sccm-1800sccm,诸如1500sccm、1600sccm、1700sccm、1800sccm、1900sccm、2000sccm等等。例如等离子体脉冲占空比可以为例如20:(510~590)、20:(520~580)或20:(540~560),诸如20:500、20:510、20:520、20:530、20:540、20:550、20:560、20:570、20:580、20:590、20:600等等。
在沉积掺氮非晶硅薄膜过程中,调节硅烷流量为2000sccm~2500sccm,可以降低薄膜的生长速率,有利于氢原子溢出,降低退火过程中氢气的生成从而减少爆膜的发生。调节等离子体脉冲占空比为20:(500~600),可以改善后期退火过程中氢原子聚集形成氢气而发生爆膜现象。
沉积完掺杂非晶硅薄膜后进行退火,在本公开的实施方式中,退火气体氛围为氮气(N 2)或氧气(O 2),退火温度为600℃-1000℃,退火时间为20-60分钟。例如,退火温度可以为例如650℃-950℃、700℃-900℃或750℃-850℃,诸如600℃、700℃、800℃、900℃、1000℃等等。
对于退火气氛为氧气的实施方式而言,氧气可以氧化非晶硅生产掩膜氧化硅。
需要说明的是,在本公开的其他实施方式中,退火过程中的参数可选用其他数据;不限于上述退火温度和退火时间。
本公开实施方式提供的制备隧穿氧化层和非晶硅薄膜的方法至少具有以下优点:
基于PECVD设备制备膜,通过调节沉积本征非晶硅薄膜和掺杂非晶硅薄膜过程中的硅烷流量,可以避免在后续退火过程中薄膜中的氢原子聚集为氢气,可以有效改善爆膜的现象。
在一些实施方式中,通过调节调节沉积本征非晶硅薄膜和掺杂非晶硅薄膜过程中等离子体脉冲占空比为20:(500~600);可以降低薄膜的生长速率,进而改善爆膜现象。
本公开还提供一种制备隧穿氧化层和非晶硅薄膜的方法,包括:
使用PECVD设备依次沉积隧穿氧化层、本征非晶硅薄膜以及沉积掺杂非晶硅薄膜;其中,沉积隧穿氧化层的沉积温度为440℃-460℃;沉积本征非晶硅薄膜时,等离子体脉冲占空比为20:(500~600)。沉积掺杂非晶硅薄膜时,等离子体脉冲占空比为20:(500~600)。在该方法中,硅烷流量可以为2000-3000sccm。
本公开还提供一种制备隧穿氧化层和非晶硅薄膜的方法,包括:使用PECVD设备依次沉积隧穿氧化层、本征非晶硅薄膜以及沉积掺杂非晶硅薄膜;其中,沉积本征非晶硅薄膜时,硅烷流量为2000sccm-2500sccm;等离子体脉冲占空比为20:(500~600);沉积掺杂非晶硅薄膜时,硅烷流量为2000sccm-2500sccm;等离子体脉冲占空比为20:(500~600)。在该方法中,沉积隧穿氧化层的沉积温度可以为400-460℃。
相应地,在沉积温度为440℃-460℃下沉积隧穿氧化层,有利于形成致密的薄膜,在后续退火过程中,氢原子有较好的释放,极大程度地改善了爆膜的问题。在沉积本征非晶硅薄膜和掺杂非晶硅薄膜时,等离子体脉冲占空比为20:(500~600),可以降低本征非晶硅薄膜的生长速度,同样也可以改善后期退火过程中氢原子聚集形成氢气而发生爆膜现象。
本公开还提供一种隧穿氧化层和非晶硅薄膜,由上述方法制备获得。
本公开还提供一种TOPCon电池,TOPCon电池的隧穿氧化层和非晶硅薄膜通过上述的制备隧穿氧化层和非晶硅薄膜的方法制得。
本公开还提供一种TOPCon电池,包括由上述方法制备得到的隧穿氧化层和非晶硅薄膜。
基于本公开的制备隧穿氧化层和非晶硅薄膜的方法得到的结构有效改善了爆膜问题,因此,对应的TOPCon电池的爆膜问题也得到相应的改善;可以有效提高其电学性能。
实施例
以下结合实施例对本公开的特征和性能作进一步的详细描述。
实施例1、对比例1-对比例4的实施例而言,在制备TOPCon电池的钝化接触结构之前均通过以下工艺进行制绒、硼扩和碱抛,包括以下步骤为:
(1)制绒:采用N型硅片,采用1wt%的碱液进行制绒和采用双氧水和碱进行清洗硅片;
(2)硼扩:进入硼扩散炉,利用BCl 3在900-1050℃扩散形成p-n结;
(3)碱抛:采用链式HF机去除背面硼扩绕度的BSG,再通过机械手转入槽式碱抛机,去除背面和边缘p-n结。
实施例1
本实施例提供一种TOPCon电池的钝化接触结构的制备方法,主要包括以下步骤:
1)对PECVD的炉管进行抽真空和检漏处理,将硅片至于PECVD的炉管内,随后升温到440℃。
2)沉积隧穿SiO 2薄膜:通入N 2O,其中N 2O流量为6000sccm,时间为3min,等离子体脉冲占空比为20:1000。
3)沉积本征非晶硅薄膜:通入SiH 4和H 2,并开启等离子体;其中,SiH 4流量是2000sccm,H 2流量是5000sccm,时间为8min,等离子体脉冲占空比为20:500。
4)沉积掺磷非晶硅薄膜:通入硅烷SiH 4、PH 3和氢气H 2,并开启等离子体。其中SiH 4流量是2000sccm,PH 3流量是2000sccm,H 2流量是5000sccm,时间为25min,等离子体脉冲占空比为20:500。
5)退火:在N 2气氛、温度为900℃下保温30分钟;退火后的多晶硅薄膜厚度为100nm。
图1示出了显微镜下的TOPCon电池的钝化接触结构的外观图。
对比例1
本对比例提供一种TOPCon电池的钝化接触结构的制备方法,主要包括以下步骤:
1)对PECVD的炉管进行抽真空和检漏处理,将硅片至于PECVD的炉管内,随后升温到440℃。
2)沉积隧穿SiO 2薄膜:通入一定量的笑气(N 2O),其中N 2O流量为6000sccm,时间为3min,等离子体脉冲占空比为20:1000。
3)沉积本征非晶硅薄膜:通入一定量的硅烷(SiH 4)和氢气(H 2),并开启等离子体。其中SiH 4流量是3000sccm,H 2流量是5000sccm,时间为7min,等离子体脉冲占空比为20:400。
4)沉积掺磷非晶硅薄膜:通入一定量的硅烷(SiH 4)、磷烷(PH 3)和氢气(H 2),并开启等离子体。其中SiH 4流量是3000sccm,PH 3流量是2000sccm,H 2流量是5000sccm,时间为20min,等离子体脉冲占空比为20:400。
5)退火:在N 2气氛、温度为900℃下保温30分钟;退火后的多晶硅薄膜厚度为100nm。
图2示出了显微镜下的退火后硅片电池的外观图。
对比例2
本对比例提供一种TOPCon电池的钝化接触结构的制备方法,请参阅实施 例1,对比例2与对比例1的区别在于,步骤4)和步骤5)中等离子体脉冲占空比均为20:600。
步骤4)中沉积本征非晶硅的时间增为9min36s,步骤5)中沉积掺磷非晶硅时间为30min。
图3示出了显微镜下的退火后硅片电池的外观图。
对比例3
本对比例提供一种TOPCon电池的钝化接触结构的制备方法,请参阅实施例1,对比例3与实施例1的区别在于,步骤2)中将硅片至于PECVD的炉管内,随后升温到460℃。
图4示出了显微镜下的退火后硅片电池的外观图。
对比例4
本实施例提供一种TOPCon电池的钝化接触结构的制备方法,请参阅实施例1,对比例4与实施例1的区别在于,步骤4)和步骤5)中SiH 4流量是2000sccm。
图5示出了显微镜下的退火后硅片电池的外观图。
从实施例1、对比例1-对比例4、图1-图5可以看出:在制备TOPCon电池的钝化接触结构的过程中,相比于对比例1,对比例1-对比例4单一调节沉积隧穿氧化层的沉积温度为460℃、单一调节沉积本征非晶硅薄膜和掺杂非晶硅薄膜SiH 4流量为2000sccm、单一调节节沉积本征非晶硅薄膜和掺杂非晶硅薄膜的等离子体脉冲占空比均为20:600;有利于减缓爆膜的问题;且调节沉积本征非晶硅的时间增为9min36s,且沉积掺磷非晶硅时间为30min;也有利于改善爆膜的问题;与对比例1-对比例4相比,本公开的实施例1的爆膜问题得到有效改善。说明本公开提供的方法有利于降低隧穿氧化层钝化接触结构的爆膜的问题。
以上所述仅为本公开可选的实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
工业实用性
本公开提供一种制备隧穿氧化层和非晶硅薄膜的方法及TOPCon电池。由本公开方法得到的薄膜较为致密,在后续退火过程中,氢原子有较好的释放,极大程度地改善了爆膜的问题,同时本公开提供的薄膜避免了氢原子储存于薄膜内部,有效改善后期退火过程中氢原子聚集形成氢气而发生爆膜现象;基于本公开的制备隧穿氧化层和非晶硅薄膜的方法得到的结构有效改善了爆膜问题,可以有效提高其电学性能,因此具有优异的工业应用性能。

Claims (12)

  1. 一种制备隧穿氧化层和非晶硅薄膜的方法,其特征在于,包括:使用PECVD设备,在沉积温度为440℃~460℃下依次沉积隧穿氧化层、本征非晶硅薄膜以及沉积掺杂非晶硅薄膜;
    其中,沉积本征非晶硅薄膜时,硅烷流量为2000sccm~2500sccm;
    沉积掺杂非晶硅薄膜时,硅烷流量为2000sccm~2500sccm。
  2. 根据权利要求1所述的制备隧穿氧化层和非晶硅薄膜的方法,其特征在于,
    沉积本征非晶硅薄膜时,等离子体脉冲占空比为20:(500~600);
    沉积掺杂非晶硅薄膜时,等离子体脉冲占空比为20:(500~600)。
  3. 根据权利要求1或2所述的制备隧穿氧化层和非晶硅薄膜的方法,其特征在于,沉积隧穿氧化层时,N 2O流量为5500sccm~6500sccm,等离子体脉冲占空比为20:(900~1000)。
  4. 根据权利要求1-3中任一项所述的制备隧穿氧化层和非晶硅薄膜的方法,其特征在于,沉积掺杂非晶硅薄膜之后还包括:
    在氮气或氧气气氛下,温度600℃~1000℃下,退火20-60分钟。
  5. 根据权利要求1-4中任一项所述的制备隧穿氧化层和非晶硅薄膜的方法,其特征在于,沉积隧穿氧化层之前,还包括对PECVD的炉管进行抽真空和检漏处理。
  6. 根据权利要求1-5任一项所述的制备隧穿氧化层和非晶硅薄膜的方法,其特征在于,
    所述掺杂非晶硅薄膜为掺磷非晶硅薄膜,沉积所述掺磷非晶硅薄膜时,磷烷的流量为2000sccm~2500sccm,氢气的流量为5000sccm~5500sccm。
  7. 根据权利要求1-5任一项所述的制备隧穿氧化层和非晶硅薄膜的方法,其特征在于,
    所述掺杂非晶硅薄膜为掺氮非晶硅薄膜,沉积所述掺氮非晶硅薄膜时,甲烷的流量为450sccm-500sccm,氮气流量为1500sccm-2000sccm。
  8. 一种制备隧穿氧化层和非晶硅薄膜的方法,其特征在于,包括:
    使用PECVD设备,在沉积温度为440℃~460℃下依次沉积隧穿氧化层、本征非晶硅薄膜以及沉积掺杂非晶硅薄膜;
    其中,沉积本征非晶硅薄膜时,等离子体脉冲占空比为20:(500~600);
    沉积掺杂非晶硅薄膜时,等离子体脉冲占空比为20:(500~600)。
  9. 一种制备隧穿氧化层和非晶硅薄膜的方法,其特征在于,包括:
    使用PECVD设备依次沉积隧穿氧化层、本征非晶硅薄膜以及沉积掺杂非晶 硅薄膜;
    其中,沉积本征非晶硅薄膜时,硅烷流量为2000sccm-2500sccm;等离子体脉冲占空比为20:(500~600);
    沉积掺杂非晶硅薄膜时,硅烷流量为2000sccm-2500sccm;等离子体脉冲占空比为20:(500~600)。
  10. 一种隧穿氧化层和非晶硅薄膜,由权利要求1-9中任一方法制备获得。
  11. 一种TOPCon电池,其特征在于,所述TOPCon电池的隧穿氧化层和非晶硅薄膜通过权利要求1-9任一项所述的制备隧穿氧化层和非晶硅薄膜的方法制得。
  12. 一种TOPCon电池,其特征在于,所述TOPCon电池包括由权利要求1-9中任一项所述方法制备得到的隧穿氧化层和非晶硅薄膜。
PCT/CN2022/096067 2021-11-26 2022-05-30 制备隧穿氧化层和非晶硅薄膜的方法及TOPCon电池 WO2023092977A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/548,381 US20240145611A1 (en) 2021-11-26 2022-05-30 Method for preparing tunnel oxide layer and amorphous silicon thin film, and topcon cell
EP22897076.0A EP4254519A4 (en) 2021-11-26 2022-05-30 METHOD FOR PRODUCING A TUNNEL OXIDE LAYER AND AN AMORPHOUS SILICON THIN FILM AND TOPCON CELL
AU2022397987A AU2022397987A1 (en) 2021-11-26 2022-05-30 Method for preparing tunnel oxide layer and amorphous silicon thin film, and topcon cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111420983.0 2021-11-26
CN202111420983.0A CN116190498B (zh) 2021-11-26 2021-11-26 制备隧穿氧化层和非晶硅薄膜的方法及TOPCon电池

Publications (1)

Publication Number Publication Date
WO2023092977A1 true WO2023092977A1 (zh) 2023-06-01

Family

ID=86440780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/096067 WO2023092977A1 (zh) 2021-11-26 2022-05-30 制备隧穿氧化层和非晶硅薄膜的方法及TOPCon电池

Country Status (5)

Country Link
US (1) US20240145611A1 (zh)
EP (1) EP4254519A4 (zh)
CN (1) CN116190498B (zh)
AU (1) AU2022397987A1 (zh)
WO (1) WO2023092977A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116995110B (zh) * 2023-07-31 2024-02-27 江苏润阳世纪光伏科技有限公司 一种N型TOPCon电池的制备方法
CN117248199A (zh) * 2023-11-17 2023-12-19 常州亿晶光电科技有限公司 一种防止爆膜的pecvd沉积非晶硅的方法
CN118431342A (zh) * 2024-04-25 2024-08-02 环晟光伏(江苏)有限公司 Topcon电池及其制备方法
CN118610311B (zh) * 2024-06-20 2025-01-28 环晟光伏(江苏)有限公司 一种TOPCon电池隧穿氧化层的制备方法及TOPCon电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5648293A (en) * 1993-07-22 1997-07-15 Nec Corporation Method of growing an amorphous silicon film
CN112349816A (zh) * 2020-11-19 2021-02-09 江苏大学 一种基于PECVD技术的高效低成本N型TOPCon电池的制备方法
CN112736159A (zh) * 2020-12-31 2021-04-30 三江学院 一种选择性多晶硅厚度与掺杂浓度电池结构的制备方法
CN113035969A (zh) * 2021-02-04 2021-06-25 江苏杰太光电技术有限公司 一种TOPCon电池梯度掺杂非晶硅钝化结构及制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140213016A1 (en) * 2013-01-30 2014-07-31 Applied Materials, Inc. In situ silicon surface pre-clean for high performance passivation of silicon solar cells
CN108183149A (zh) * 2017-12-27 2018-06-19 安徽银欣新能源科技有限公司 一种太阳能电池片的生产方法
CN111354838B (zh) * 2019-12-27 2022-07-15 晶澳(扬州)太阳能科技有限公司 太阳能电池及其制备方法、n型掺杂硅膜的处理方法
CN111584667A (zh) * 2020-06-09 2020-08-25 山西潞安太阳能科技有限责任公司 一种新型N型晶硅TOPCon电池结构及其制备工艺
CN112420881B (zh) * 2020-11-19 2022-04-12 常州大学 TOPCon电池中氧化硅和掺杂非晶硅膜层的制备方法
CN113675295B (zh) * 2021-07-12 2022-07-26 深圳市捷佳伟创新能源装备股份有限公司 PECVD制备硅片复合膜的方法和TOPCon电池的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5648293A (en) * 1993-07-22 1997-07-15 Nec Corporation Method of growing an amorphous silicon film
CN112349816A (zh) * 2020-11-19 2021-02-09 江苏大学 一种基于PECVD技术的高效低成本N型TOPCon电池的制备方法
CN112736159A (zh) * 2020-12-31 2021-04-30 三江学院 一种选择性多晶硅厚度与掺杂浓度电池结构的制备方法
CN113035969A (zh) * 2021-02-04 2021-06-25 江苏杰太光电技术有限公司 一种TOPCon电池梯度掺杂非晶硅钝化结构及制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4254519A4 *

Also Published As

Publication number Publication date
CN116190498B (zh) 2024-04-16
EP4254519A4 (en) 2024-08-07
EP4254519A1 (en) 2023-10-04
AU2022397987A1 (en) 2023-09-21
CN116190498A (zh) 2023-05-30
US20240145611A1 (en) 2024-05-02

Similar Documents

Publication Publication Date Title
WO2023092977A1 (zh) 制备隧穿氧化层和非晶硅薄膜的方法及TOPCon电池
WO2023071329A1 (zh) TOPCon电池及其制备方法和电器设备
CN108963005B (zh) 一种新型复合结构全背面异质结太阳电池及制备方法
CN110197855A (zh) 用于Topcon电池制作的poly-Si绕镀的去除方法
CN114597267B (zh) 一种TOPCon电池及其制备方法
CN114520276B (zh) 钝化接触电池及其制备工艺
CN115132884B (zh) 一种异质结太阳能电池的制作方法
CN114864751B (zh) 太阳电池及其制备方法
CN115394863A (zh) 一种太阳电池及其制备方法
CN113611756A (zh) 一种N型TOPCon电池及其制备方法
CN114023635A (zh) 一种提效降本的太阳能电池硼扩散方法
CN115692545A (zh) 一种提升PECVD路线N型TOPCon电池多晶硅活性磷掺杂浓度的方法
CN114583016A (zh) 一种TOPCon电池及其制备方法
CN112466960A (zh) 太阳能电池结构及其制备方法
CN114335237B (zh) 一种晶体硅太阳能电池的制备方法及晶体硅太阳能电池
CN117133834A (zh) 一种联合钝化背接触电池的短流程制备方法及其应用
CN116799095A (zh) 钝化接触电池及其制备方法
CN117352589B (zh) 一种改善TOPCon电池背面钝化接触结构的方法
CN114267753A (zh) 一种TOPCon太阳能电池及其制备方法、光伏组件
CN116093180B (zh) 太阳电池及其制备方法
CN117457777A (zh) 一种太阳能电池及其制备方法与应用
CN114944434B (zh) 晶体硅太阳能电池及其制备方法、光伏组件
CN112768565B (zh) 一种钝化接触结构制备方法和具有钝化接触结构的晶体硅
CN114497245A (zh) 硼掺杂选择性发射极、制备方法及n型太阳能电池
US20080092951A1 (en) Method for Passivating Crystal Silicon Surfaces

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897076

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022897076

Country of ref document: EP

Effective date: 20230630

WWE Wipo information: entry into national phase

Ref document number: 18548381

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022397987

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2022397987

Country of ref document: AU

Date of ref document: 20220530

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE