WO2023090197A1 - Wiring board and method for manufacturing same - Google Patents
Wiring board and method for manufacturing same Download PDFInfo
- Publication number
- WO2023090197A1 WO2023090197A1 PCT/JP2022/041489 JP2022041489W WO2023090197A1 WO 2023090197 A1 WO2023090197 A1 WO 2023090197A1 JP 2022041489 W JP2022041489 W JP 2022041489W WO 2023090197 A1 WO2023090197 A1 WO 2023090197A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- seed layer
- conductive layer
- seed
- wiring board
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 57
- 238000004519 manufacturing process Methods 0.000 title claims description 32
- 239000003990 capacitor Substances 0.000 claims abstract description 42
- 238000005530 etching Methods 0.000 claims abstract description 37
- 238000000059 patterning Methods 0.000 claims abstract description 5
- 239000000758 substrate Substances 0.000 claims description 49
- 230000015572 biosynthetic process Effects 0.000 abstract description 18
- 238000009713 electroplating Methods 0.000 abstract description 11
- 238000007747 plating Methods 0.000 description 30
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 23
- 239000011521 glass Substances 0.000 description 22
- 239000010949 copper Substances 0.000 description 20
- 229910052802 copper Inorganic materials 0.000 description 19
- 239000010408 film Substances 0.000 description 18
- 229920002120 photoresistant polymer Polymers 0.000 description 17
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 16
- 229910052751 metal Inorganic materials 0.000 description 16
- 239000002184 metal Substances 0.000 description 16
- 229910052759 nickel Inorganic materials 0.000 description 12
- 238000004544 sputter deposition Methods 0.000 description 12
- 239000010936 titanium Substances 0.000 description 11
- 229910052719 titanium Inorganic materials 0.000 description 9
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 7
- 239000000654 additive Substances 0.000 description 7
- 239000007864 aqueous solution Substances 0.000 description 7
- 239000004020 conductor Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 229910052741 iridium Inorganic materials 0.000 description 5
- 238000007772 electroless plating Methods 0.000 description 4
- 229910016570 AlCu Inorganic materials 0.000 description 3
- -1 AlSiCu Inorganic materials 0.000 description 3
- 229910000789 Aluminium-silicon alloy Inorganic materials 0.000 description 3
- 229910000881 Cu alloy Inorganic materials 0.000 description 3
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 229910052763 palladium Inorganic materials 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 229910052707 ruthenium Inorganic materials 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 238000003486 chemical etching Methods 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000004040 coloring Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 238000007733 ion plating Methods 0.000 description 2
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229910052703 rhodium Inorganic materials 0.000 description 2
- 239000010948 rhodium Substances 0.000 description 2
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000001771 vacuum deposition Methods 0.000 description 2
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 238000006124 Pilkington process Methods 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 229910052454 barium strontium titanate Inorganic materials 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- AOWKSNWVBZGMTJ-UHFFFAOYSA-N calcium titanate Chemical compound [Ca+2].[O-][Ti]([O-])=O AOWKSNWVBZGMTJ-UHFFFAOYSA-N 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000003280 down draw process Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000007500 overflow downdraw method Methods 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000006089 photosensitive glass Substances 0.000 description 1
- 238000007372 rollout process Methods 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/30—Stacked capacitors
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/16—Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
Definitions
- the present invention relates to a wiring board and its manufacturing method.
- a multilayer wiring board using a glass material as a core board (hereinafter referred to as a "glass circuit board”, etc.) is often used as an interposer.
- a glass circuit board hereinafter referred to as a "glass circuit board”, etc.
- thin film capacitors having an MIM structure Metal Insulator Metal in which a dielectric is sandwiched between a lower electrode layer and an upper electrode layer are formed as part of the passive circuit inside the substrate.
- Patent Document 1 a substrate having an insulating surface, a first conductive layer disposed on the substrate, the first portion having a first thickness and a second thickness less than the first thickness. a first conductive layer including a second portion adjacent to the first portion; a first insulating layer spaced from the second portion and disposed on the first portion; and a second conductive layer disposed opposite the first portion.
- Patent Document 1 discloses providing a step in the vicinity of the boundary between the first conductive layer and the first insulating layer in order to relieve the stress in the first conductive layer of the MIM.
- one typical method for manufacturing a wiring board comprises: a substrate having an insulating surface; a first seed layer disposed on the substrate; a first conductive layer disposed over the first conductive layer; a first insulating layer disposed over the first conductive layer; a second seed layer disposed over the first insulating layer; A wiring board having a second conductive layer disposed above the layer, Patterning the first seed layer by etching includes etching using an etch mask wider than the first conductive layer in at least one direction.
- one typical wiring board of the present invention is a substrate having an insulating surface;
- a wiring board including the following layers (1) to (5), (1) a first seed layer disposed on the substrate; (2) a first conductive layer disposed above the first seed layer; and (3) a first insulating layer disposed above the first conductive layer.
- FIG. 1 is a cross-sectional view showing a basic structure to which the present invention is directed.
- FIG. 2 is a cross-sectional view for explaining the step of forming the first conductive layer.
- FIG. 3 is a cross-sectional view for explaining the step of forming the first conductive layer.
- FIG. 4 is a cross-sectional view for explaining the step of forming the first conductive layer.
- FIG. 5 is a cross-sectional view for explaining the step of forming the first conductive layer.
- FIG. 6 is a cross-sectional view for explaining side etching in a conventional example.
- FIG. 7 is a cross-sectional view for explaining the step of forming the second conductive layer in the embodiment.
- FIG. 1 is a cross-sectional view showing a basic structure to which the present invention is directed.
- FIG. 2 is a cross-sectional view for explaining the step of forming the first conductive layer.
- FIG. 3 is a cross-sectional view for explaining the step of forming
- FIG. 8 is a cross-sectional view for explaining the step of forming the second conductive layer in the embodiment.
- FIG. 9 is a cross-sectional view for explaining the process of forming the MIM structure.
- FIG. 10 is a cross-sectional view for explaining the etching process of the first seed layer.
- FIG. 11 is a cross-sectional view illustrating a wiring board on which MIM capacitors are formed.
- FIG. 12 is a cross-sectional view of a wiring board formed on a multilayer wiring board.
- 13A and 13B are cross-sectional views for explaining the formation process of the second embodiment.
- 14A and 14B are cross-sectional views for explaining the formation process of the second embodiment.
- 15A and 15B are cross-sectional views for explaining the formation process of the second embodiment.
- 16A and 16B are cross-sectional views for explaining the formation process of the second embodiment.
- 17A and 17B are cross-sectional views for explaining the formation process of the second embodiment.
- the term “surface” may refer not only to the surface of the plate-like member, but also to the interface between the layers included in the plate-like member that is substantially parallel to the surface of the plate-like member.
- the terms “upper surface” and “lower surface” refer to the upper or lower surface of the drawing when a plate-like member or a layer included in the plate-like member is illustrated.
- the “upper surface” and “lower surface” may also be referred to as “first surface” and "second surface”.
- the “side surface” means a surface of a plate-like member or a layer included in the plate-like member or a portion of the thickness of the layer. Furthermore, a part of a surface and a side surface may be collectively referred to as an "end”. Moreover, “upper” means the vertically upward direction when the plate-like member or layer is placed horizontally. Further, “upward” and “downward” opposite to this are sometimes referred to as “Z-axis positive direction” and “Z-axis negative direction”, and horizontal directions are referred to as “X-axis direction” and "Y-axis direction”. It is sometimes called “direction”.
- planar shape and “planar view” mean the shape when a surface or layer is viewed from above, that is, from the positive direction to the negative direction of the z-axis.
- cross-sectional shape and “cross-sectional view” mean the shape of a plate-like member or layer cut in a specific direction and viewed from the horizontal direction.
- core means the core of a face or layer, but not the periphery.
- central direction means a direction from the periphery of a surface or layer toward the center of the planar shape of the surface or layer.
- FIG. 1 shows a substrate 1 having an insulating surface, a first seed layer 3 arranged on the substrate 1, a first conductive layer 4 arranged above the first seed layer 3, and the first conductive layer 4 arranged above the first seed layer 3.
- a first insulating layer 6 disposed above one conductive layer 4; a second seed layer 8 disposed above said first insulating layer 6; a second seed layer 8 disposed above said second seed layer 8; 2 is a cross-sectional view of a wiring board having a conductive layer 9;
- the first conductive layer 4 serves as the lower electrode of the MIM
- the first insulating layer 6 serves as the dielectric layer of the MIM
- the second conductive layer 9 serves as the upper electrode of the MIM
- the substrate 1 configure MIM capacitors at
- the substrate 1 is desirably made of transparent glass having optical transparency. There are no particular restrictions on the composition of the glass or the blending ratio of each component contained in the glass, and the method of manufacturing the glass. Examples of glass include alkali-free glass, alkali glass, borosilicate glass, quartz glass, sapphire glass, and photosensitive glass, but any glass material containing silicate as a main component may be used. Furthermore, other so-called glass materials may be used.
- the thickness of the glass substrate is preferably 1 mm or less, but more preferably 0.1 mm or more and 0.8 mm or less in consideration of the ease of the glass through-hole forming process and the handling during manufacturing.
- Examples of the method for manufacturing a glass substrate include a float method, a down-draw method, a fusion method, an up-draw method, a roll-out method, and the like.
- the coefficient of linear expansion of the glass is preferably -1 ppm/K or more and 15.0 ppm/K or less. The reason for this is that if the concentration is -1 ppm/K or less, it becomes difficult to select the glass material itself, and it cannot be manufactured at a low cost. On the other hand, when it is 15.0 ppm/K or more, the difference in thermal expansion coefficient from other layers is large, and the reliability is lowered. Moreover, when a silicon chip is mounted on the substrate 1, the connection reliability with the silicon chip is lowered.
- the linear expansion coefficient of glass is more preferably 0.5 ppm/K or more and 8.0 ppm/K or less, and still more preferably 1.0 ppm/K or more and 4.0 ppm/K or less.
- a functional film such as an antireflection film or an IR cut filter may be formed in advance on the glass substrate.
- functions such as strength imparting, antistatic imparting, coloring, and texture control may be imparted.
- these functional films include a hard coat film for imparting strength, an antistatic film for imparting antistatic properties, an optical filter film for coloring, and an antiglare and light scattering film for texture control. Not as long.
- deposition techniques such as vapor deposition, sputtering, and wet methods are used.
- the metal layer forming the first seed layer 3 functions as a power supply layer for electrolytic plating in the formation of wiring in the semi-additive method.
- the seed metal layer provided directly above the substrate 1 and on the inner wall of the through hole formed in the substrate 1 is formed by, for example, sputtering or CVD, and includes Cu, Ni, Al, Ti, Cr, Mo, W, Ta, Au, Ir, Ru, Pd, Pt, AlSi, AlSiCu, AlCu, NiFe, ITO, IZO, AZO, ZnO, PZT, TiN, Cu 3 N 4 , Cu alloys alone or in combination are used .
- An electroless plating layer (electroless copper plating, electroless nickel plating, etc.) may be formed over the first seed layer 3 of the present disclosure.
- the upper surface of the substrate 1 and the first insulating layer 6 is subjected to the electrical properties, manufacturability and cost considerations. Considering this, it is desirable to form the adhesion layer 2 from titanium deposited by a sputtering method.
- the lower adhesion layer 5 has the function of improving the adhesion between the first conductive layer, which is the lower electrode, and the dielectric layer, and the upper adhesion layer 7 improves the adhesion between the dielectric layer and the seed metal layer. It has the function of improving
- the material of the lower adhesion layer and the upper adhesion layer is Ti, for example.
- Ti is superior in terms of adhesion, electrical conductivity, ease of manufacture, and cost.
- the thickness of the lower adhesion layer and the upper adhesion layer is, for example, 10 nm or more and 1 ⁇ m or less. If it is less than 10 nm, the adhesion strength may be insufficient. If the thickness exceeds 1 ⁇ m, in the manufacturing process to be described later, not only does the film formation take too long to impede mass production, but there is a possibility that the process of removing unnecessary portions will take even more time.
- the thicknesses of the lower adhesion layer and the upper adhesion layer are more preferably 10 nm or more and 500 nm or less. Although the thicknesses of the lower adhesion layer and the upper adhesion layer may be different, it is preferable that they have the same thickness in order to simplify the structure. Further, if the adhesion between the lower electrode and the dielectric layer is sufficient, the lower adhesion layer may be omitted. If the adhesion between the dielectric layer and the seed metal layer is sufficient, the upper adhesion layer may be omitted.
- the adhesion layer 2, the first seed layer 3, and the first conductive layer 4 formed on the substrate 1 can be used as wiring for circuit formation in regions on the substrate 1 other than where MIM capacitors are formed.
- the total thickness of the titanium and copper layers is preferably 5 ⁇ m or less because it is advantageous for fine wiring formation by the semi-additive method. If the thickness is more than 5 ⁇ m, it is difficult to form fine wiring with a pitch of 30 ⁇ m or less.
- electrolytic copper plating is desirable because it is simple and inexpensive and has good electrical conductivity, considering that it is also used as a circuit. However, in addition to electrolytic copper plating, electrolytic nickel plating, electrolytic chrome plating, electrolytic Pd plating, electrolytic gold plating, electrolytic rhodium plating, electrolytic iridium plating, and the like may be used.
- the dielectric layer which is the first insulating layer 6, should be selected from alumina, silica, silicon nitride, tantalum oxide, titanium oxide, calcium titanate, barium titanate, and strontium titanate from the viewpoint of insulation and dielectric constant. can be done.
- the thickness of the dielectric layer is desirably 10 nm or more and 5 ⁇ m or less. If the thickness of the dielectric layer is 10 nm or less, the insulating properties cannot be maintained and the function as a capacitor cannot be exhibited. If the thickness of the dielectric layer is 5 ⁇ m or more, it takes too much time to form the film, which not only impedes mass production, but also takes more time in the process of removing unnecessary portions. More preferably, it is 50 nm or more and 1 ⁇ m or less.
- the second seed layer 8 is a power supply layer for forming the upper electrode, which is the second conductive layer of the capacitor, by a semi-additive method.
- the second seed layer 8 is made of, for example, Cu, Ni, Al, Ti, Cr, Mo, W, Ta, Au, Ir, Ru, Pd, Pt, AlSi, AlSiCu, AlCu, NiFe, a Cu alloy alone or in combination. can be applied. Copper is desirable because it can be easily removed by etching later.
- the thickness of the seed metal layer is desirably 50 nm or more and 5 ⁇ m or less.
- the thickness of the seed metal layer is less than 50 nm, there is a possibility that poor conduction will occur in the subsequent electroplating process. If the thickness of the seed metal layer exceeds 5 ⁇ m, it will take a long time to remove it by etching.
- the thickness of the seed metal layer is more preferably 100 nm or more and 500 nm or less.
- the upper electrode which is the second conductive layer 9, is an electrolytic plating layer.
- Electrolytic copper plating is desirable because it is simple, inexpensive, and has good electrical conductivity. However, in addition to electrolytic copper plating, electrolytic nickel plating, electrolytic chrome plating, electrolytic Pd plating, electrolytic gold plating, electrolytic rhodium plating, electrolytic iridium plating, and the like may be used.
- the thickness of the upper electrode is desirably 3 ⁇ m or more and 30 ⁇ m or less. If the thickness is less than 3 ⁇ m, the circuit may disappear depending on the etching process after the upper electrode is formed.
- the electrolytic copper plating thickness exceeds 30 ⁇ m, it is necessary to form a resist layer with a thickness of 30 ⁇ m or more, which increases manufacturing costs. Furthermore, since the resist resolution is lowered, it becomes difficult to form fine wiring with a pitch of 30 ⁇ m or less. More preferably, it is 5 ⁇ m or more and 25 ⁇ m or less. More desirably, the thickness is 10 ⁇ m or more and 20 ⁇ m or less.
- FIGS. 2 to 6 a conventional example of manufacturing a wiring board having an MIM capacitor structured as shown in FIG. 1 will be described.
- an adhesion layer 2 and a first seed layer 3 are formed above a substrate 1 having an insulating surface, and a pattern of a resist 11 is formed thereon.
- the first conductive layer 4 is formed by electrolytic plating using the first seed layer 3 as a power supply layer.
- the resist 11 is removed, and as shown in FIG. 5, unnecessary portions of the adhesion layer 2 and the first seed layer 3 are removed using the first conductive layer 4 as an etching mask.
- the first insulating layer 6 as the dielectric layer is formed.
- the seed layer 8 is formed, power is supplied to the second seed layer to form the second conductive layer 9 that will serve as the upper electrode.
- the upper adhesion layer 7 and the second seed layer 8 are formed by a sputtering method, the sputter coating on the side wall of the first conductive layer 4, which is the lower electrode layer, will not adhere to the first conductive layer 4. Much depends on the shape of the end. Therefore, as shown in FIG.
- the adhesion layer 2 and the first seed layer 3 are etched using the first conductive layer 4 as an etching mask as shown in FIG.
- This will adversely affect the precision and yield of the capacitor.
- the smoothness of the interface between the lower electrode and the dielectric can be maintained, and short-circuiting of capacitors due to surface roughness and variations in capacitance due to variations in electrode surface area can be reduced. Therefore, it is possible to improve the yield of the capacitor and to stably manufacture the capacitor.
- Step 1 Since Steps 1 to 6 in the first embodiment are the same as in the conventional example, they will be explained with reference to FIGS. 2 to 4.
- FIG. 1 although not shown in FIGS. 2 to 11 and FIGS. 13 to 17, the substrate 1 may have a through hole penetrating from the upper surface of the substrate 1 to the lower surface.
- the cross-sectional shape and diameter of the through hole may be, for example, a shape in which the diameter of the central portion is narrower than the top diameter and the bottom diameter of the through hole, or a shape in which the bottom diameter is smaller than the top diameter. Further, the shape may be such that the diameter of the central portion is larger than the top and bottom diameters of the through hole.
- Step 2 Next, as shown in FIG. 2, when the surface of the substrate 1 and through holes are formed, the adhesion layer 2 and the first seed layer 3 are also formed in the through holes.
- the adhesion layer 2 and the first seed layer 3 act as power supply layers for electroplating in the wiring forming process in the semi-additive method.
- the steps of forming the adhesion layer 2 and the first seed layer 3 include forming titanium as the adhesion layer 2 on the substrate 1 by sputtering, then forming a copper layer as the first seed layer 3 by sputtering, and then forming a copper layer. Additionally, an additional metal layer is preferably formed by electroless plating.
- the electroless plating layer may be electroless copper plating or electroless nickel plating, but electroless nickel plating is preferable because it has good adhesion to the glass, titanium, or copper layer. If the nickel plating layer is too thick, it may become difficult to form fine wiring. Further, the adhesion may be lowered due to the increase in film stress. Therefore, the electroless nickel plating thickness is preferably 1 ⁇ m or less. Moreover, it is more preferably 0.5 ⁇ m or less, and still more preferably 0.3 ⁇ m or less.
- the electroless nickel plating film may contain phosphorus, which is a co-deposit derived from the reducing agent, and sulfur, lead, bismuth, and the like contained in the electroless nickel plating solution.
- Step 3 Subsequently, as shown in FIG. 2, a pattern of resist 11 is formed above the first seed layer.
- a layer of the resist 11 is formed on the entire surface of the first seed layer.
- a negative dry film resist, a negative liquid resist, and a positive liquid resist can be used as the resist, but the negative photoresist is preferable because the formation of the resist layer is simple and inexpensive.
- Step 4 a pattern for forming a desired conductor circuit layer is formed on the photoresist layer by a known photolithographic method. That is, the pattern of the resist 11 is aligned so that the portion where the conductor circuit layer is to be formed later is exposed, and patterning is realized by exposure and development.
- the thickness of the resist layer depends on the thickness of the conductive circuit layer, it is preferably 5 ⁇ m or more and 25 ⁇ m or less. If the thickness is less than 5 ⁇ m, the electroplated layer, which will be the conductive circuit layer, cannot be increased to 5 ⁇ m or more, and the connection reliability of the circuit may be lowered. If the thickness is more than 25 ⁇ m, it becomes difficult to form fine wiring with a pitch of 30 ⁇ m or less. Thus, a substrate having a photoresist pattern formed thereon is obtained.
- Step 5 Subsequently, by supplying power to the first seed layer and immersing it in a plating solution, an electrolytic plating layer, which is a first conductive layer that will later become a conductive circuit layer, is formed on the upper surface of the first seed layer where the photoresist pattern is not formed. to form
- Step 6 Subsequently, the unnecessary photoresist pattern is removed to expose the first conductive layer and the first seed layer 3 as shown in FIG.
- the method for removing the resist 11 is not limited to any particular method, for example, the resist 11 can be peeled off with an alkaline aqueous solution.
- Step 7 Subsequently, as shown in FIG. 7, a lower adhesion layer 5, a first insulating layer 6, an upper adhesion layer 7, and a second seed layer 8 are sequentially formed over the entire surface of the lower electrode, which is the first conductive layer 4.
- Form deposits Methods for forming the above layers include a vacuum deposition method, a sputtering method, an ion plating method, an MBE method, a laser abrasion method, and a CVD method, but are not limited by this embodiment.
- the lower adhesion layer 5 under the first insulating layer 6 has the function of improving the adhesion between the first insulating layer 6 and the first conductive layer 4 .
- the lower adhesion layer 5 may be omitted.
- the first insulating layer and the second seed layer are formed without etching the first seed layer. Therefore, when the second seed layer is formed, it is possible to suppress abnormal throwing power of the second seed layer. As a result, the second conductive layer can also be stably formed.
- the second seed layer functions as a power feeding layer for forming the upper electrode of the capacitor by a semi-additive method.
- a pattern of resist 11 is formed on the upper surface of the second seed layer 8 in a region other than where the second conductive layer 9 is to be formed.
- the formation of the pattern of the resist 11 can be performed by the same method as the photoresist pattern described above.
- the opening region of the pattern of the resist 11 is formed so as to be inside the first conductive layer 4 (lower electrode). is formed inside the first conductive layer 4 (lower electrode).
- Step 9 Subsequently, power is supplied to the second seed layer to form the second conductive layer 9 (upper electrode) by electroplating.
- Step 10 Subsequently, the pattern of the resist 11 is removed.
- the removal of the photoresist pattern can be carried out by using a known alkaline aqueous solution.
- a pattern of resist 11 is formed so as to surround the second conductive layer 9 (upper electrode).
- the formation of the pattern of the resist 11 can be performed by the same method as the photoresist pattern described above.
- the non-opening region of the photoresist pattern is formed so as to be outside the upper electrode and inside the first conductor layer (lower electrode). It is formed so as to be inside the first conductive layer 4 (lower electrode) except for the portion of .
- etching is performed so that the end surfaces of the second seed layer 8, the upper adhesion layer 7, the first insulating layer 6, and the lower adhesion layer 5 are outside the second conductive layer and inside the first conductive layer, respectively, A MIM capacitor structure is formed.
- Step 12 The removal of unnecessary portions of the second seed layer 8 and the upper adhesion layer 7 is not limited to being performed in this step. 7 may be removed. By doing so, the area of the first insulating layer 6 on the outer surface of the MIM capacitor device is increased, and current leakage from the side surface between the upper electrode and the lower electrode can be suppressed.
- Step 13 Subsequently, the pattern of the resist 11 is removed.
- the removal of the photoresist pattern can be carried out by using a known alkaline aqueous solution.
- a pattern of resist 11 is again formed so as to surround first conductive layer 4 as well. That is, the pattern of the resist 11 is formed such that the pattern of the resist 11 becomes an etching mask wider than the first conductive layer in at least one width direction (the direction in the xy plane perpendicular to the z-axis). That is, the width of the etching mask, which is wider than the first conductive layer, corresponds to the width of the first seed layer 3 in the MIM capacitor.
- the non-opening region of the photoresist pattern is formed so as to be outside the lower electrode, and even in a plan view in the stacking direction, the first conductive layer 4 is formed except for the portion of the connection line to the outside of the MIM capacitor. (lower electrode).
- the relationship between the width b in the xy plane (horizontal direction) of the resist 11 in at least one direction and the width a in the xy plane of the first conductive layer (lower electrode) in the same direction is, of course, as follows.
- Expression (1) is satisfied.
- a and b satisfy the following formula (2).
- "(ba)/2" indicates the width difference between the first conductive layer (lower electrode) 4 and the resist 11 on one side.
- the reason why the upper limit of the width difference on one side is set to 50 ⁇ m is that if it is larger than this, the pattern design is restricted.
- the height c of the adhesion layer 2 and the first seed layer 3 in the z-axis direction (total thickness of the two layers) satisfies the following formula (3).
- the reason why the lower limit of c is set to 50 nm in Equation (3) is that 50 nm is required as the minimum value for the adhesion layer 2 and the first seed layer 3 to function as power supply layers.
- the reason why the upper limit of c is set to 5 ⁇ m is that the wiring width that can be formed is restricted when the seed layer is etched.
- a, b, and c satisfy the following formula (4).
- Step 15 Subsequently, the exposed portion of the first seed layer is removed.
- the electroless Ni layer, the copper layer, and the titanium layer can be removed sequentially by chemical etching.
- the type of etchant is appropriately selected according to the metal species to be removed, and the removal method is not limited to the methods described in the present disclosure.
- Step 16 Subsequently, when the pattern of the resist 11 is removed. As shown in FIG. 11, a wiring substrate having MIM capacitors formed thereon can be formed. The removal of the photoresist pattern can be carried out by using a known alkaline aqueous solution. A capacitor is formed by the above steps.
- Step 17 Thereafter, as shown in FIG. 12, an insulating resin layer 12 and via holes 13 are formed on the wiring board.
- a multilayer wiring board is formed by repeatedly forming a laminated conductor circuit layer and an insulating resin layer.
- the conductor circuit and laminated structure on the wiring substrate can be formed using a known semi-additive method or subtractive method.
- a wiring board according to the present disclosure may have laminated conductor circuit layers, external connection terminals, and solder balls on one side, or may have both sides as a modification. Further, semiconductor chips and chip parts may be mounted.
- step 6 of the first embodiment shown in FIG. 4 is followed by step 20, described below.
- Step 20 After step 6 of the first embodiment, as shown in FIG. 13, a pattern of resist 11 is formed so as to surround the first conductive layer.
- the resist pattern can be formed by the same method as the resist pattern described above. In this case, the non-opening region of the resist pattern is formed so as to be outside the lower electrode, and even in a plan view in the stacking direction, the first conductive layer 4 ( bottom electrode).
- the length b of the resist 11 in the xy plane, the length a of the first conductive layer (lower electrode) in the xy plane in the same direction, and the height of the adhesion layer 2 and the first seed layer 3 in the z-axis direction is the same as described in step 14 in the first embodiment.
- Step 21 Subsequently, the first seed layer 3 and the adhesion layer 2 are removed using the pattern of the resist 11 as an etching mask.
- the first seed layer 3 and the adhesion layer 2 can be removed by chemically etching the electroless Ni layer, the copper layer, and the titanium layer sequentially.
- the type of etchant is appropriately selected depending on the metal species to be removed, and is not limited at all.
- Step 22 Subsequently, by removing the pattern of the resist 11, the cross section shown in FIG. 14 can be obtained.
- the removal of the resist 11 can be performed by a known method of removing and peeling with an alkaline aqueous solution.
- Step 23 Subsequently, as shown in FIG. 15, the lower adhesion layer 5, the first insulating layer 6, the upper adhesion layer 5, the first insulating layer 6, and the upper adhesion layer are formed over the entire surface of the lower electrode, which is the first conductive layer 4, in the same manner as in step 7 of the first embodiment.
- a layer 7 and a second seed layer 8 are sequentially deposited.
- Methods for forming the above layers include a vacuum deposition method, a sputtering method, an ion plating method, an MBE method, a laser abrasion method, and a CVD method, but are not limited by this embodiment.
- the lower adhesion layer 5 under the first insulating layer 6 has the function of improving the adhesion between the first insulating layer 6 and the first conductive layer 4 . However, if the adhesion between the first insulating layer 6 and the first conductive layer 4 is sufficient, the lower adhesion layer 5 may be omitted.
- the second seed layer functions as a power feeding layer for forming the upper electrode of the capacitor by a semi-additive method.
- a pattern of resist 11 is formed in a region other than where the second conductive layer 9 is to be formed.
- the formation of the pattern of the resist 11 can be performed by the same method as the photoresist pattern described above.
- the opening region of the pattern of the resist 11 is formed so as to be inside the first conductive layer 4 (lower electrode). is formed inside the first conductive layer 4 (lower electrode).
- Step 25 Subsequently, power is supplied to the second seed layer to form the second conductive layer 9 (upper electrode) by electroplating.
- Step 26 Subsequently, the pattern of the resist 11 is removed.
- the removal of the photoresist pattern can be carried out by using a known alkaline aqueous solution.
- a pattern of resist 11 is formed so as to surround the second conductive layer 9 (upper electrode).
- the formation of the pattern of the resist 11 can be performed by the same method as the photoresist pattern described above.
- the non-opening region of the photoresist pattern is formed so as to be outside the upper electrode and inside the first conductor layer (lower electrode). It is formed so as to be inside the first conductive layer 4 (lower electrode) except for the portion of . It is desirable to form them so that they are on the outside and inside, respectively.
- Step 28 Subsequently, as in step 12, unnecessary portions of the second seed layer 8, the upper adhesion layer 7, the first insulating layer 6, and the lower adhesion layer 5 are removed using the pattern of the resist 11 as a mask.
- the removal of the second seed layer 8, the upper adhesion layer 7, the first insulating layer, and the lower adhesion layer 5 can be carried out using known methods such as chemical etching and dry etching. A different removal method may be employed for each layer, or the same removal method may be applied to all layers.
- the pattern of the resist 11 is formed inside the first conductive layer 4 (lower electrode). It is formed so as to remain only inside one conductive layer (lower electrode).
- the unnecessary portions of the second seed layer and the upper adhesion layer 7 may be removed by etching using the second conductive layer 9 (upper electrode) as a mask immediately after the step 27, even if they are not removed in the step 28. Also good. By doing so, the area of the first insulating layer on the outer surface of the MIM capacitor device is increased, and current leakage from the side surface between the upper electrode and the lower electrode can be suppressed.
- Step 29 Subsequently, when the pattern of the resist 11 is removed.
- a wiring substrate having MIM capacitors formed thereon can be formed as shown in FIG.
- the removal of the resist pattern can be carried out by using a known alkaline aqueous solution.
- a capacitor is formed by the above steps.
- step 29 in the second embodiment are the same as in the first embodiment, so descriptions thereof are omitted.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Parts Printed On Printed Circuit Boards (AREA)
Abstract
Description
本発明は、配線基板及びその製造方法に関する。 The present invention relates to a wiring board and its manufacturing method.
ガラス材料をコア基板として用いた多層配線基板(以下、「ガラス回路基板」等と称する。)がインターポーザとして多用されている。これらの多層配線基板においては、受動回路の一部として、基板内部に、誘電体を下部電極層と上部電極層で挟持するMIM構造(Metal Insulator Metal)を有する薄膜キャパシタが形成されていることがある。 A multilayer wiring board using a glass material as a core board (hereinafter referred to as a "glass circuit board", etc.) is often used as an interposer. In these multilayer wiring substrates, thin film capacitors having an MIM structure (Metal Insulator Metal) in which a dielectric is sandwiched between a lower electrode layer and an upper electrode layer are formed as part of the passive circuit inside the substrate. be.
特許文献1においては、「絶縁表面を有する基板と、前記基板上に配置された第1導電層であって、第1厚さを有する第1部分および当該第1厚さよりも薄い第2厚さを有し当該第1部分に隣接する第2部分を含む第1導電層と、前記第2部分から離隔して前記第1部分上に配置された第1絶縁層と、前記第1絶縁層に対して前記第1部分とは反対側に配置された第2導電層と、を備える、配線基板」が開示されている。
In
絶縁基板上にMIMキャパシタを形成する際には、まず、第1シード層を設け、第1シード層を用いてめっき等により第1導電層を設けて、これをキャパシタの下部電極としている。そして、当該下部電極の上方に絶縁層を設け、更に、絶縁層の上方に第2シード層と第2シード層を用いてめっきにより第2導電層をさらに設けて上部電極としている。
このような第1導電層-絶縁層-第2導電層のキャパシタにおいては、一般に導電層と誘電体層では熱膨張係数に違いがあるため、キャパシタに応力ひずみが発生することがある。
このため、特許文献1では、MIMの第1導電層における応力を緩和するために、第1導電層と第1絶縁層との境界付近に段差を設けることを開示している。
When forming an MIM capacitor on an insulating substrate, first, a first seed layer is provided, and a first conductive layer is provided by plating or the like using the first seed layer, and this is used as a lower electrode of the capacitor. An insulating layer is provided above the lower electrode, and a second conductive layer is further provided above the insulating layer by plating using a second seed layer and the second seed layer to form an upper electrode.
In such a first conductive layer-insulating layer-second conductive layer capacitor, since there is generally a difference in thermal expansion coefficient between the conductive layer and the dielectric layer, stress strain may occur in the capacitor.
Therefore,
しかし、シード層を用いて下部電極や上部電極を形成するキャパシタにおいては、シード層の膜厚が薄いことから、サイドエッチングが発生しやすい。そして、サイドエッチングが発生した箇所に第2シード層をスパッタリングなどの手法を用いて形成すると第2シード層が不完全に形成される可能性が高い。
そこで、本発明では、シード層にサイドエッチングが発生しないような配線基板及びその製造技術を提供することを目的とする。
However, in a capacitor in which a seed layer is used to form a lower electrode and an upper electrode, side etching is likely to occur because the film thickness of the seed layer is thin. If the second seed layer is formed on the side-etched portion by using a technique such as sputtering, there is a high possibility that the second seed layer will be incompletely formed.
SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a wiring substrate and a manufacturing technique for the wiring substrate in which side etching does not occur in the seed layer.
上記の課題を解決するために、代表的な本発明の配線基板の製造方法の一つは、表面が絶縁性を有する基板と、前記基板上に配置される第1シード層と、前記シード層の上方に配置される第1導電層と、前記第1導電層の上方に配置される第1絶縁層と、前記第1絶縁層の上方に配置される第2シード層と、前記第2シード層の上方に配置される第2導電層と、を有する配線基板において、
前記第1シード層をエッチングによってパターン化する工程が、少なくとも1の方向において前記第1導電層よりも幅の大きなエッチングマスクを用いてエッチングを行なうものである。
In order to solve the above problems, one typical method for manufacturing a wiring board according to the present invention comprises: a substrate having an insulating surface; a first seed layer disposed on the substrate; a first conductive layer disposed over the first conductive layer; a first insulating layer disposed over the first conductive layer; a second seed layer disposed over the first insulating layer; A wiring board having a second conductive layer disposed above the layer,
Patterning the first seed layer by etching includes etching using an etch mask wider than the first conductive layer in at least one direction.
また、上記の課題を解決するために、代表的な本発明の配線基板の一つは、
表面が絶縁性を有する基板と、
以下の(1)から(5)の層を含む配線基板において、
(1)前記基板上に配置される第1シード層
(2)前記第1シード層の上方に配置される第1導電層
(3)前記第1導電層の上方に配置される第1絶縁層
(4)前記第1絶縁層の上方に配置される第2シード層
(5)前記第2シード層の上方に配置される第2導電層
前記(1)から(5)の層はMIMキャパシタを構成しており、
前記MIMキャパシタにおける第1導電層よりも幅の大きな前記MIMキャパシタにおける前記第1シード層の水平方向の幅をbとし、前記第1導電層の水平方向における幅をaとした場合に、
a及びbは、以下の式(2)を満たす。
50nm≦(b-a)/2≦50μm・・・・・・・(2)
In order to solve the above problems, one typical wiring board of the present invention is
a substrate having an insulating surface;
In a wiring board including the following layers (1) to (5),
(1) a first seed layer disposed on the substrate; (2) a first conductive layer disposed above the first seed layer; and (3) a first insulating layer disposed above the first conductive layer. (4) a second seed layer disposed above the first insulating layer; (5) a second conductive layer disposed above the second seed layer. consists of
When b is the horizontal width of the first seed layer in the MIM capacitor, which is wider than the first conductive layer of the MIM capacitor, and a is the horizontal width of the first conductive layer,
a and b satisfy the following formula (2).
50 nm≦(b−a)/2≦50 μm (2)
本発明によれば、シード層にサイドエッチングが発生しないような配線基板及びその製造方法を提供することができる。
上記した以外の課題、構成および効果は、以下の実施をするための形態における説明により明らかにされる。
According to the present invention, it is possible to provide a wiring substrate and a method of manufacturing the wiring substrate in which side etching does not occur in the seed layer.
Problems, configurations, and effects other than those described above will be clarified by the description in the following embodiments.
以下、図面を参照して、本発明の対象とする基本構造、従来例による製造方法、本発明の第1の実施形態、第2の実施形態等について説明する。なお、これらの開示により本発明が限定されるものではない。また、図面の記載において、同一部分には同一の符号を付して示している。
同一あるいは同様の機能を有する構成要素が複数ある場合には、同一の符号に異なる添字を付して説明する場合がある。また、これらの複数の構成要素を区別する必要がない場合には、添字を省略して説明する場合がある。
図面において示す各構成要素の位置、大きさ、形状、範囲などは、発明の理解を容易にするため、実際の位置、大きさ、形状、範囲などを表していない場合がある。このため、本発明は、必ずしも、図面に開示された位置、大きさ、形状、範囲などに限定されない。
A basic structure to which the present invention is applied, a manufacturing method according to a conventional example, a first embodiment, a second embodiment, etc. of the present invention will be described below with reference to the drawings. However, the present invention is not limited by these disclosures. Moreover, in the description of the drawings, the same parts are denoted by the same reference numerals.
When there are a plurality of components having the same or similar functions, they may be described with the same reference numerals and different suffixes. Further, when there is no need to distinguish between these constituent elements, the subscripts may be omitted in the description.
The position, size, shape, range, etc. of each component shown in the drawings may not represent the actual position, size, shape, range, etc., in order to facilitate understanding of the invention. As such, the present invention is not necessarily limited to the locations, sizes, shapes, extents, etc., disclosed in the drawings.
なお、本開示において、「面」とは、板状部材の面のみならず、板状部材に含まれる層について、板状部材の面と略平行な層の界面も指すことがある。また、「上面」、「下面」とは、板状部材や板状部材に含まれる層を図示した場合の、図面上の上方又は下方に示される面を意味する。なお、「上面」、「下面」については、「第1面」、「第2面」と称することもある。 In the present disclosure, the term "surface" may refer not only to the surface of the plate-like member, but also to the interface between the layers included in the plate-like member that is substantially parallel to the surface of the plate-like member. In addition, the terms "upper surface" and "lower surface" refer to the upper or lower surface of the drawing when a plate-like member or a layer included in the plate-like member is illustrated. The "upper surface" and "lower surface" may also be referred to as "first surface" and "second surface".
また、「側面」とは、板状部材や板状部材に含まれる層における面や層の厚みの部分を意味する。さらに、面の一部及び側面を合わせて「端部」ということがある。
また、「上方」とは、板状部材又は層を水平に載置した場合の垂直上方の方向を意味する。さらに、「上方」及びこれと反対の「下方」については、これらを「Z軸プラス方向」、「Z軸マイナス方向」ということがあり、水平方向については、「X軸方向」、「Y軸方向」ということがある。
In addition, the “side surface” means a surface of a plate-like member or a layer included in the plate-like member or a portion of the thickness of the layer. Furthermore, a part of a surface and a side surface may be collectively referred to as an "end".
Moreover, "upper" means the vertically upward direction when the plate-like member or layer is placed horizontally. Further, "upward" and "downward" opposite to this are sometimes referred to as "Z-axis positive direction" and "Z-axis negative direction", and horizontal directions are referred to as "X-axis direction" and "Y-axis direction". It is sometimes called "direction".
また、「平面形状」、「平面視」とは、上方からつまりz軸の正方向から負方向に向かって面又は層を視認した場合の形状を意味する。さらに、「断面形状」、「断面視」とは、板状部材又は層を特定の方向で切断した場合の水平方向から視認した場合の形状を意味する。
さらに、「中心部」とは、面又は層の周辺部ではない中心部を意味する。そして、「中心方向」とは、面又は層の周辺部から面又は層の平面形状における中心に向かう方向を意味する。
Further, "planar shape" and "planar view" mean the shape when a surface or layer is viewed from above, that is, from the positive direction to the negative direction of the z-axis. Furthermore, the terms "cross-sectional shape" and "cross-sectional view" mean the shape of a plate-like member or layer cut in a specific direction and viewed from the horizontal direction.
Further, "core" means the core of a face or layer, but not the periphery. The term "central direction" means a direction from the periphery of a surface or layer toward the center of the planar shape of the surface or layer.
[基本構造]
まず、図1を参照して、本発明の製造方法の前提とするMIMキャパシタを有する配線基板の基本構造について説明する。
図1は、表面が絶縁性を有する基板1と、前記基板1上に配置される第1シード層3と、前記第1シード層3の上方に配置される第1導電層4と、前記第1導電層4の上方に配置される第1絶縁層6と、前記第1絶縁層6の上方に配置される第2シード層8と、前記第2シード層8の上方に配置される第2導電層9とを有する配線基板の断面図である。
図1の配線基板において、第1導電層4は、MIMの下部電極となり、第1絶縁層6はMIMの誘電体層、第2導電層9は、MIMの上部電極となって、基板1上にMIMキャパシタを構成する。
[Basic structure]
First, with reference to FIG. 1, the basic structure of a wiring board having MIM capacitors, which is the premise of the manufacturing method of the present invention, will be described.
FIG. 1 shows a
In the wiring substrate of FIG. 1, the first
<各要素の説明>
以下では本発明の製造方法の前提とするMIMキャパシタの各要素の材質、形状等について詳細に説明する。
(基板)
基板1は、光透過性を有する透明のガラスを材料としたものが望ましい。ガラスの成分またはガラスに含有される各成分の配合比率、更にガラスの製造方法は特に限定されない。
例えば、ガラスとしては、無アルカリガラス、アルカリガラス、ホウ珪酸ガラス、石英ガラス、サファイアガラス、感光性ガラス等が挙げられるが、ケイ酸塩を主成分とするいずれのガラス材料を用いてもよい。
さらに、その他のいわゆるガラス材料を用いても良い。ただし、本開示の基板1に半導体を実装して用いる場合は、無アルカリガラスを用いるのが望ましい。
また、ガラス基板の厚さは1mm以下が好ましいが、ガラスの貫通孔形成プロセスの容易性や製造時のハンドリング性を考慮して、より好ましくは0.1mm以上、0.8mm以下である。
<Description of each element>
The material, shape, etc. of each element of the MIM capacitor, which is the premise of the manufacturing method of the present invention, will be described below in detail.
(substrate)
The
Examples of glass include alkali-free glass, alkali glass, borosilicate glass, quartz glass, sapphire glass, and photosensitive glass, but any glass material containing silicate as a main component may be used.
Furthermore, other so-called glass materials may be used. However, when a semiconductor is mounted on the
The thickness of the glass substrate is preferably 1 mm or less, but more preferably 0.1 mm or more and 0.8 mm or less in consideration of the ease of the glass through-hole forming process and the handling during manufacturing.
ガラス基板の製造方法としては、フロート法、ダウンドロー法、フュージョン法、アップドロー法、ロールアウト法等が挙げられるが、いずれの方法によって作製されたガラス材料を用いてもよく、本実施形態のものに限定されない。ガラスの線膨張係数は-1ppm/K以上15.0ppm/K以下であることが望ましい。
その理由として、-1ppm/K以下である場合、ガラス材料自体を選定することが困難となり安価に作成できない。一方、15.0ppm/K以上である場合、他層との熱膨張係数の差異が大きく信頼性が低下する。また、基板1にシリコンチップを実装する場合は、シリコンチップとの接続信頼性が低下する。
なお、ガラスの線膨張係数は、より好ましくは0.5ppm/K以上、8.0ppm/K以下、更に好ましくは1.0ppm/K以上、4.0ppm/K以下であることが望ましい。
ガラス基板には予め反射防止膜またはIRカットフィルタ等の機能膜が形成されていてもよい。また、強度付与、帯電防止付与、着色、テクスチャー制御等の機能が付与されても良い。これら機能膜の例として、強度付与にはハードコート膜、帯電防止付与については、帯電防止膜、着色については、光学フィルタ膜、テクスチャー制御においては、アンチグレア、光散乱膜等が挙げられるが、この限りではない。これら機能膜の形成方法としては、蒸着、スパッタリング法、ウエット方式等の成膜技術が用いられる。
Examples of the method for manufacturing a glass substrate include a float method, a down-draw method, a fusion method, an up-draw method, a roll-out method, and the like. not limited to The coefficient of linear expansion of the glass is preferably -1 ppm/K or more and 15.0 ppm/K or less.
The reason for this is that if the concentration is -1 ppm/K or less, it becomes difficult to select the glass material itself, and it cannot be manufactured at a low cost. On the other hand, when it is 15.0 ppm/K or more, the difference in thermal expansion coefficient from other layers is large, and the reliability is lowered. Moreover, when a silicon chip is mounted on the
The linear expansion coefficient of glass is more preferably 0.5 ppm/K or more and 8.0 ppm/K or less, and still more preferably 1.0 ppm/K or more and 4.0 ppm/K or less.
A functional film such as an antireflection film or an IR cut filter may be formed in advance on the glass substrate. In addition, functions such as strength imparting, antistatic imparting, coloring, and texture control may be imparted. Examples of these functional films include a hard coat film for imparting strength, an antistatic film for imparting antistatic properties, an optical filter film for coloring, and an antiglare and light scattering film for texture control. Not as long. As a method for forming these functional films, deposition techniques such as vapor deposition, sputtering, and wet methods are used.
(第1シード層)
第1シード層3を構成する金属層はセミアディティブ工法における配線形成用において、電解めっきの給電層として作用する。
基板1の直上及び基板1に形成された貫通孔内壁に設けられるシード金属層は、例えば、スパッタ法、またはCVD法によって形成され、例えば、Cu、Ni、Al、Ti、Cr、Mo、W、Ta、Au、Ir、Ru、Pd、Pt、AlSi、AlSiCu、AlCu、NiFe、ITO、IZO、AZO、ZnO、PZT、TiN、Cu3N4、Cu合金単体もしくは複数組み合わせたものが用いられている。
本開示の第1シード層3の上方に無電解めっき層(無電解銅めっき、無電解ニッケルめっき等)が形成されてもよい。
(First seed layer)
The metal layer forming the
The seed metal layer provided directly above the
An electroless plating layer (electroless copper plating, electroless nickel plating, etc.) may be formed over the
(密着層)
本開示の実施形態では、基板1や第1絶縁層6の上方にシード層を形成する前に、基板1や第1絶縁層6の上面に、電気特性、製造の容易性の観点及びコスト面を考慮して、スパッタリング法によって被着されたチタンを密着層2として形成することが望ましい。
キャパシタにおいて、下部密着層5は、下部電極である第1導電層と誘電体層との密着性を向上させる機能を有し、上部密着層7は、誘電体層とシード金属層との密着性を向上させる機能を有している。下部密着層及び上部密着層の材質は、例えばTiである。この他、例えばCu、Ni、Al、Cr、Mo、W、Ta、Au、Ir、Ru、Pd、Pt、AlSi、AlSiCu、AlCu、NiFe、Cu合金単体もしくは複数組み合わせたものを用いてもよい。Tiは、密着性、電気伝導性、製造の容易性の観点及びコスト面から優れている。
(Adhesion layer)
In the embodiments of the present disclosure, prior to forming a seed layer over the
In the capacitor, the
下部密着層及び上部密着層の厚さは例えば、10nm以上1μm以下であることが望ましい。10nm未満である場合、密着強度が不十分となる虞がある。1μmを超える場合、後述する製造工程において、成膜時間がかかりすぎて量産性に欠けるばかりでなく、不要部分を除去する工程でさらに時間がかかる虞がある。下部密着層及び上部密着層の厚さは、より好ましくは10nm以上、500nm以下であることが望ましい。
下部密着層及び上部密着層はそれぞれ厚さが異なってもよいが、構造上単純になるため同厚であることが望ましい。また、下部電極と誘電体層との密着が十分である場合は、下部密着層はなくてもかまわない。誘電体層とシード金属層との密着が十分である場合は、上部密着層はなくてもかまわない。
It is desirable that the thickness of the lower adhesion layer and the upper adhesion layer is, for example, 10 nm or more and 1 μm or less. If it is less than 10 nm, the adhesion strength may be insufficient. If the thickness exceeds 1 μm, in the manufacturing process to be described later, not only does the film formation take too long to impede mass production, but there is a possibility that the process of removing unnecessary portions will take even more time. The thicknesses of the lower adhesion layer and the upper adhesion layer are more preferably 10 nm or more and 500 nm or less.
Although the thicknesses of the lower adhesion layer and the upper adhesion layer may be different, it is preferable that they have the same thickness in order to simplify the structure. Further, if the adhesion between the lower electrode and the dielectric layer is sufficient, the lower adhesion layer may be omitted. If the adhesion between the dielectric layer and the seed metal layer is sufficient, the upper adhesion layer may be omitted.
(配線)
基板1上に形成される密着層2、第1シード層3及び第1導電層4は、MIMキャパシタが形成される以外の基板1上の領域では、回路形成のための配線として用いることができる。回路として用いるためには、チタンと銅層の合計の膜厚は、セミアディティブ法による微細な配線形成に有利なことから5μm以下とするのが望ましい。5μmより厚い場合ピッチ30μm以下の微細配線形成が困難である。
第1導電層の形成方法としては、回路としても用いることを考慮すれば、電解銅めっきであることが簡便かつ安価であり、電気伝導性が良好であることから望ましい。しかし、電解銅めっきの他、電解ニッケルめっき、電解クロムめっき、電解Pdめっき、電解金めっき、電解ロジウムめっき、電解イリジウムめっき等であっても良い。
(wiring)
The
As a method for forming the first conductive layer, electrolytic copper plating is desirable because it is simple and inexpensive and has good electrical conductivity, considering that it is also used as a circuit. However, in addition to electrolytic copper plating, electrolytic nickel plating, electrolytic chrome plating, electrolytic Pd plating, electrolytic gold plating, electrolytic rhodium plating, electrolytic iridium plating, and the like may be used.
(第1絶縁層)
第1絶縁層6である誘電体層は、絶縁性、比誘電率の観点からアルミナ、シリカ、シリコンナイトライド、タンタルオキサイド、酸化チタン、チタン酸カルシウム、チタン酸バリウム、チタン酸ストロンチウムから選択することができる。
誘電体層の厚さは、10nm以上5μm以下であることが望ましい。誘電体層の厚さが、10nm以下である場合、絶縁性を保つことができずにキャパシタとしての機能が発現しない。誘電体層の厚さが、5μm以上の場合、成膜時間がかかりすぎて量産性に欠けるばかりでなく、不要部分を除去する工程でさらに時間がかかってしまう。より好ましくは50nm以上、1μm以下であることが望ましい。
(First insulating layer)
The dielectric layer, which is the first insulating
The thickness of the dielectric layer is desirably 10 nm or more and 5 μm or less. If the thickness of the dielectric layer is 10 nm or less, the insulating properties cannot be maintained and the function as a capacitor cannot be exhibited. If the thickness of the dielectric layer is 5 μm or more, it takes too much time to form the film, which not only impedes mass production, but also takes more time in the process of removing unnecessary portions. More preferably, it is 50 nm or more and 1 μm or less.
(第2シード層)
第2シード層8はキャパシタの第2導電層である上部電極をセミアディティブ法で形成するための給電層である。第2シード層8は例えばCu、Ni、Al、Ti、Cr、Mo、W、Ta、Au、Ir、Ru、Pd、Pt、AlSi、AlSiCu、AlCu、NiFe、Cu合金単体もしくは複数組み合わせたものを適用することができる。後のエッチング除去が簡便となるためは、銅であることが望ましい。
シード金属層の厚さは、50nm以上、5μm以下であることが望ましい。シード金属層の厚さが、50nm未満である場合、続く電解めっき工程において通電不良が発生する可能性がある。シード金属層の厚さが、5μmを超えると、エッチング除去に時間がかかってしまう。シード金属層の厚さが、より好ましくは100nm以上500nm以下が望ましい。
(Second seed layer)
The
The thickness of the seed metal layer is desirably 50 nm or more and 5 μm or less. If the thickness of the seed metal layer is less than 50 nm, there is a possibility that poor conduction will occur in the subsequent electroplating process. If the thickness of the seed metal layer exceeds 5 μm, it will take a long time to remove it by etching. The thickness of the seed metal layer is more preferably 100 nm or more and 500 nm or less.
(第2導電層)
第2導電層9である上部電極は、電解めっき層である。電解銅めっきであることが簡便で安価で、電気伝導性が良好であることから望ましい。しかし、電解銅めっきの他、電解ニッケルめっき、電解クロムめっき、電解Pdめっき、電解金めっき、電解ロジウムめっき、電解イリジウムめっき等であっても良い。
上部電極の厚さ(電解銅めっきの厚さ)は3μm以上、30μm以下であることが望ましい。3μm未満の場合、上部電極を形成した後のエッチング処理によっては回路が消失してしまう虞がある。さらに回路の接続信頼性、電気伝導性が低下する危険性がある。電解銅めっき厚が30μmを超えると、30μm厚以上のレジスト層を形成する必要があり、製造コストがかかる。さらにはレジスト解像性が低下することから、ピッチ30μm以下の微細な配線形成が困難となってしまう。より好ましくは5μm以上、25μm以下であることが望ましい。さらに望ましくは10μm以上、20μm以下であることが望ましい。
(Second conductive layer)
The upper electrode, which is the second
The thickness of the upper electrode (thickness of electrolytic copper plating) is desirably 3 μm or more and 30 μm or less. If the thickness is less than 3 μm, the circuit may disappear depending on the etching process after the upper electrode is formed. Furthermore, there is a danger that the connection reliability and electrical conductivity of the circuit will be lowered. If the electrolytic copper plating thickness exceeds 30 μm, it is necessary to form a resist layer with a thickness of 30 μm or more, which increases manufacturing costs. Furthermore, since the resist resolution is lowered, it becomes difficult to form fine wiring with a pitch of 30 μm or less. More preferably, it is 5 μm or more and 25 μm or less. More desirably, the thickness is 10 μm or more and 20 μm or less.
[従来例における製造方法]
次に、図2から6を参照して、図1に示したような構造のMIMキャパシタを有する配線基板を製造する場合の従来例について説明する。
まず図2に示すように、表面が絶縁性を有する基板1の上方に、密着層2及び第1シード層3を形成し、その上にレジスト11のパターンを形成する。
次に、図3に示すように、第1シード層3を給電層として、電解めっきにより第1導電層4を形成する。
次に、図4に示すように、レジスト11を除去し、図5に示すように、第1導電層4をエッチングマスクとして、密着層2及び第1シード層3の不要な部分を除去する。
しかし、上述の製造方法を採用すると、図6のXに示すように、第1導電層4の端部周辺の領域において、密着層2及び第1シード層3のサイドエッチングが発生することがある。密着層2及び第1シード層3は、膜厚が小さいため、x方向のエッチングの進行速度が速く、サイドエッチングを防止することは極めて難しい。
[Manufacturing method in conventional example]
Next, with reference to FIGS. 2 to 6, a conventional example of manufacturing a wiring board having an MIM capacitor structured as shown in FIG. 1 will be described.
First, as shown in FIG. 2, an
Next, as shown in FIG. 3, the first
Next, as shown in FIG. 4, the resist 11 is removed, and as shown in FIG. 5, unnecessary portions of the
However, when the above-described manufacturing method is adopted, side etching of the
MIM構造の製造工程において、下部電極である第1導電層4の作製後には、誘電体層となる第1絶縁層6を形成し、第1絶縁層6の上方に上部密着層7及び第2シード層8を形成した後に、第2シード層に給電して、上部電極となる第2導電層9を作成する。
この際、上部密着層7及び第2シード層8をスパッタリング法にて形成する場合には、下部電極層である第1導電層4の側壁へのスパッタ皮膜の付きまわりは第1導電層4の端部の形状に大きく依存する。
このため、図6に示したように、密着層2及び第1シード層3のサイドエッチングが発生すると、スパッタリングによる皮膜の付きまわりが不十分となり、第2シード層8が不連続に形成されることとなる。この結果、電解めっきによる第2導電層9の形成時に給電がされず、めっき皮膜が形成されない不具合が発生する。
In the manufacturing process of the MIM structure, after forming the first
At this time, when the
Therefore, as shown in FIG. 6, when the
さらに、図6に示すような第1導電層4をエッチングマスクとして密着層2及び第1シード層3のエッチングを行うと、第1導電層4の上側表面の平滑性が損なわれることとなり、MIMキャパシタの精度や歩留まり等に悪影響を及ぼすこととなる。この点、本開示の実施態様によれば、下部電極と誘電体界面の平滑性を維持でき、表面荒れに起因するキャパシタのショートや、電極表面積のバラつきに起因する容量のバラつきを低減できる。このため、キャパシタの歩留まりを向上することが可能であり、安定的に作製することができる。
Furthermore, if the
[第1の実施形態]
上記のような従来の製造方法の課題を解決するため、本発明の第1の実施形態については、以下に記述する製造方法を採用する。
以下、図2~図4及び図7~図11を参照して第1の実施形態について説明する。
[First embodiment]
In order to solve the problems of the conventional manufacturing method as described above, the first embodiment of the present invention adopts the manufacturing method described below.
The first embodiment will be described below with reference to FIGS. 2 to 4 and 7 to 11. FIG.
(工程1)
第1の実施形態における工程1~工程6については、従来例と同一であるため、図2~図4を参照して説明する。
まず、基板1は、図2~図11、図13~17は図示されていないが、基板1の上側表面から下側表面に貫通する貫通孔を有することができる。貫通孔の断面形状や径は、例えば貫通孔のトップ径とボトム径よりも中央部の径が狭くなるような形状でもよく、また、トップ径に対しボトム径が小さい形状等でもよい。更に、貫通孔のトップ径とボトム径よりも中央部の径が広くなるような形状でもよい。
(Step 1)
Since
First, although not shown in FIGS. 2 to 11 and FIGS. 13 to 17, the
(工程2)
次に、図2に示されているように、基板1の表面及び貫通孔が形成されている場合には、貫通孔内にも密着層2及び第1シード層3を形成する。これら密着層2及び第1シード層3は、セミアディティブ工法における配線形成工程において、電解めっきの給電層として作用する。
密着層2及び第1シード層3の形成工程は、基板1に密着層2としてチタンをスパッタリング法により形成し、その後に、第1シード層3として、銅層をスパッタリング法により形成し、更にその後に、無電解めっきにより、金属層を付加形成するのが望ましい。チタン、銅層をスパッタリング法のみで形成すると、貫通孔の内壁に金属皮膜が均一に形成することができない場合がある。このため、無電解めっき法によって金属層を増強することが望ましい。無電解めっき層は無電解銅めっき、無電解ニッケルめっきが挙げられるが、ガラスあるいはチタン、銅層との密着性がよいことから無電解ニッケルめっきが望ましい。
ニッケルめっき層が厚過ぎると、微細な配線形成が困難となる場合がある。また、膜応力増加によって、密着性が低下する場合もある。そのため、無電解ニッケルめっき厚は1μm以下が望ましい。また、より好ましくは、0.5μm以下であり、さらに好ましくは0.3μm以下である。
また、無電解ニッケルめっき皮膜には還元剤に由来する共析物であるリンや、無電解ニッケルめっき液中に含まれる硫黄や鉛やビスマス等が含まれていてもよい。以上の工程を経て、貫通孔が形成されたガラス基板上にシード金属層が形成された基板が得られる。
(Step 2)
Next, as shown in FIG. 2, when the surface of the
The steps of forming the
If the nickel plating layer is too thick, it may become difficult to form fine wiring. Further, the adhesion may be lowered due to the increase in film stress. Therefore, the electroless nickel plating thickness is preferably 1 μm or less. Moreover, it is more preferably 0.5 μm or less, and still more preferably 0.3 μm or less.
In addition, the electroless nickel plating film may contain phosphorus, which is a co-deposit derived from the reducing agent, and sulfur, lead, bismuth, and the like contained in the electroless nickel plating solution. Through the above steps, a substrate having a seed metal layer formed on a glass substrate having through holes is obtained.
(工程3)
続いて、図2に示されるように、第1シード層の上方にレジスト11によるパターンを形成する。レジスト11によるパターンの形成方法は、まず、第1シード層上の全面にレジスト11の層を形成する。採用するレジストは、ネガ型ドライフィルムレジスト、ネガ型液状レジスト、ポジ型液状レジストが挙げられるが、レジスト層の形成が簡便でかつ安価であるためネガ型フォトレジストであることが望ましい。
(Step 3)
Subsequently, as shown in FIG. 2, a pattern of resist 11 is formed above the first seed layer. In the pattern forming method using the resist 11, first, a layer of the resist 11 is formed on the entire surface of the first seed layer. A negative dry film resist, a negative liquid resist, and a positive liquid resist can be used as the resist, but the negative photoresist is preferable because the formation of the resist layer is simple and inexpensive.
(工程4)
続いて、フォトレジスト層に所望の導体回路層を形成するためのパターンを公知のフォトリソグラフィー法によって形成する。すなわち、レジスト11のパターンは後の導体回路層が形成される部分が露出するように位置あわせを行い、露光、現像処理することによってパターニングを実現する。レジスト層の厚みは、導体回路層の厚みにも依存するが、好ましくは5μm以上、25μm以下であることが望ましい。5μmより薄い場合、導体回路層となる電解めっき層を5μm以上に増膜できなくなり、回路の接続信頼性が低下する可能性がある。25μmより厚くなる場合、ピッチ30μm以下の微細配線を形成することが困難となる。これによって、フォトレジストパターンが形成された基板を得る。
(Step 4)
Subsequently, a pattern for forming a desired conductor circuit layer is formed on the photoresist layer by a known photolithographic method. That is, the pattern of the resist 11 is aligned so that the portion where the conductor circuit layer is to be formed later is exposed, and patterning is realized by exposure and development. Although the thickness of the resist layer depends on the thickness of the conductive circuit layer, it is preferably 5 μm or more and 25 μm or less. If the thickness is less than 5 μm, the electroplated layer, which will be the conductive circuit layer, cannot be increased to 5 μm or more, and the connection reliability of the circuit may be lowered. If the thickness is more than 25 μm, it becomes difficult to form fine wiring with a pitch of 30 μm or less. Thus, a substrate having a photoresist pattern formed thereon is obtained.
(工程5)
続いて、第1シード層に給電し、メッキ液に浸漬することによって、フォトレジストパターンが形成されていない第1シード層の上面に、後に導体回路層となる第1導電層である電解めっき層を形成する。
(Step 5)
Subsequently, by supplying power to the first seed layer and immersing it in a plating solution, an electrolytic plating layer, which is a first conductive layer that will later become a conductive circuit layer, is formed on the upper surface of the first seed layer where the photoresist pattern is not formed. to form
(工程6)
続いて、不要となったフォトレジストパターンを除去し、図4に示すように、第1導電層と第1シード層3を露出させる。なお、レジスト11の除去方法は、何ら特定の方法に限定されるものではないが、例えば、アルカリ水溶液によって剥離除去することができる。
(Step 6)
Subsequently, the unnecessary photoresist pattern is removed to expose the first conductive layer and the
(工程7)
続いて、図7に示すように、第1導電層4である下部電極上の全面に渡り、下部密着層5、第1絶縁層6、上部密着層7、及び、第2シード層8を順次堆積形成する。上記層の成膜方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、MBE法、レーザブレーション法、CVD法が挙げられるが、本実施形態により限定されない。
第1絶縁層6の下層にある下部密着層5は、第1絶縁層6と第1導電層4の密着性を向上させる機能を有する。しかし、第1絶縁層6と第1導電層4の密着性が十分である場合は、下部密着層5は無くても構わない。
本実施形態においては、第1導電層形成後に、第1シード層をエッチングすることなく、第1絶縁層及び第2シード層などを形成している。このため、第2シード層を形成する際に、第2シード層の付きまわり性の異常を抑制することができる。その結果、第2導電層についても安定して形成することができる。
なお、第2シード層はキャパシタの上部電極をセミアディティブ法で形成するための給電層として機能する。
(Step 7)
Subsequently, as shown in FIG. 7, a
The
In this embodiment, after forming the first conductive layer, the first insulating layer and the second seed layer are formed without etching the first seed layer. Therefore, when the second seed layer is formed, it is possible to suppress abnormal throwing power of the second seed layer. As a result, the second conductive layer can also be stably formed.
The second seed layer functions as a power feeding layer for forming the upper electrode of the capacitor by a semi-additive method.
(工程8)
続いて、図8に示すように、第2シード層8の上面にレジスト11のパターンを第2導電層9を形成する以外の領域に形成する。レジスト11のパターンの形成は、前述したフォトレジストパターンと同じ方法で行うことができる。この場合、レジスト11のパターンの開口領域は第1導電層4(下部電極)より内側となるように形成し、積層方向における平面視においても、MIMキャパシタの外部への接続線の部分を除いては、第1導電層4(下部電極)内側になるように形成する。
(Step 8)
Subsequently, as shown in FIG. 8, a pattern of resist 11 is formed on the upper surface of the
(工程9)
続いて、第2シード層に給電して電解めっき法によって第2導電層9(上部電極)を形成する。
(Step 9)
Subsequently, power is supplied to the second seed layer to form the second conductive layer 9 (upper electrode) by electroplating.
(工程10)
続いて、レジスト11のパターンを除去する。フォトレジストパターンの除去は公知方法のアルカリ水溶液で除去剥離処理を行うことができる。
(Step 10)
Subsequently, the pattern of the resist 11 is removed. The removal of the photoresist pattern can be carried out by using a known alkaline aqueous solution.
(工程11)
続いて、図9に示すように、第2導電層9(上部電極)を囲むようにレジスト11のパターンを形成する。レジスト11のパターンの形成は、前述したフォトレジストパターンと同じ方法で行うことができる。この場合、フォトレジストパターンの非開口領域は上部電極より外側、かつ第1導体層(下部電極)の内側となるように形成し、積層方向における平面視においても、MIMキャパシタの外部への接続線の部分を除いては、第1導電層4(下部電極)内側になるように形成する。
これによって、第2シード層8、上部密着層7、第1絶縁層6、下部密着層5の端面がそれぞれ第2導電層の外側、かつ第1導電層の内側になるようにエッチングを行い、MIMキャパシタ構造を形成する。
(Step 11)
Subsequently, as shown in FIG. 9, a pattern of resist 11 is formed so as to surround the second conductive layer 9 (upper electrode). The formation of the pattern of the resist 11 can be performed by the same method as the photoresist pattern described above. In this case, the non-opening region of the photoresist pattern is formed so as to be outside the upper electrode and inside the first conductor layer (lower electrode). It is formed so as to be inside the first conductive layer 4 (lower electrode) except for the portion of .
Thus, etching is performed so that the end surfaces of the
(工程12)
なお、第2シード層8および上部密着層7の不要部分の除去は本工程で実施することに限定されず、例えば工程11の前に上部電極をマスクとして、第2シード層8および上部密着層7の不要部分が除去されても良い。このようにすると、MIMキャパシタデバイスの外表面における第1絶縁層6の面積が大きくなり、上部電極および下部電極間の側面からの電流のリークなどを抑制することができる。
(Step 12)
The removal of unnecessary portions of the
(工程13)
続いて、レジスト11のパターンを除去する。フォトレジストパターンの除去は公知方法のアルカリ水溶液で除去剥離処理を行うことができる。
(Step 13)
Subsequently, the pattern of the resist 11 is removed. The removal of the photoresist pattern can be carried out by using a known alkaline aqueous solution.
(工程14)
続いて、図10に示されるように、再度、レジスト11のパターンを第1導電層4も取り囲むように形成する。つまり、レジスト11のパターンが、少なくとも1の幅方向(z軸に直行するxy平面における方向)において、前記第1導電層よりも幅の大きなエッチングマスクとなるようにレジスト11のパターンを形成する。
すなわち、前記第1導電層よりも幅の大きなエッチングマスクの幅は、MIMキャパシタにおける第1シード層3の幅に相当する幅となる。この場合、フォトレジストパターンの非開口領域は下部電極より外側となるように形成し、積層方向における平面視においても、MIMキャパシタの外部への接続線の部分を除いては、第1導電層4(下部電極)の外側になるように形成される。
(Step 14)
Subsequently, as shown in FIG. 10, a pattern of resist 11 is again formed so as to surround first
That is, the width of the etching mask, which is wider than the first conductive layer, corresponds to the width of the
より具体的には、少なくとも一方向におけるレジスト11のxy平面(水平方向)における幅bと、同方向における第1導電層(下部電極)のxy平面における幅aとの関係は、当然に以下の式(1)を満たすこととなる。
[数1]
a<b・・・・・・・・・・・・・・・・・・・・・(1)
さらに、a、bは以下の式(2)を満たすことが望ましい。
[数2]
50nm≦(b-a)/2≦50μm・・・・・・・(2)
なお、数式(2)において、「(b-a)/2」は、第1導電層(下部電極)4とレジスト11の片側における幅の差を示している。この片側における幅の差の上限を50μmとしているのは、これよりも大きいとパターンの設計に制約が生じるためである。
さらに、密着層2と第1シード層3のz軸方向の高さ(2層の厚さの合計)をcは、以下の式(3)を満たすことが望ましい。
[数3]
50nm≦c≦5μm・・・・・・・・・・・・・・(3)
なお、数式(3)においてcの下限を50nmとしているのは、密着層2及び第1シード層3が給電層として機能を果たす最低値として50nmが必要なためである。また、cの上限を5μmとしているのは、シード層エッチング時に、形成できる配線幅に制約を受けるためである。
さらに、a,b,cは以下の式(4)を満たすことが望ましい。
[数4]
0.01≦((b-a)/2)/c≦1000・・・(4)
式(4)を満たす形状であれば、第1導電層(下部電極)の下方にまでサイドエッチングが発生せず、その後の工程において、第2シード層を断線不良がない、十分に安定した状態で形成することが可能となる。
なお、レジストパターンの形成方法は、前述したフォトレジストパターンと同じ方法で行うことができる。
More specifically, the relationship between the width b in the xy plane (horizontal direction) of the resist 11 in at least one direction and the width a in the xy plane of the first conductive layer (lower electrode) in the same direction is, of course, as follows. Expression (1) is satisfied.
[Number 1]
a<b (1)
Furthermore, it is desirable that a and b satisfy the following formula (2).
[Number 2]
50 nm≦(b−a)/2≦50 μm (2)
In equation (2), "(ba)/2" indicates the width difference between the first conductive layer (lower electrode) 4 and the resist 11 on one side. The reason why the upper limit of the width difference on one side is set to 50 μm is that if it is larger than this, the pattern design is restricted.
Furthermore, it is desirable that the height c of the
[Number 3]
50 nm≦c≦5 μm (3)
The reason why the lower limit of c is set to 50 nm in Equation (3) is that 50 nm is required as the minimum value for the
Furthermore, it is desirable that a, b, and c satisfy the following formula (4).
[Number 4]
0.01≦((ba)/2)/c≦1000 (4)
If the shape satisfies the formula (4), side etching does not occur below the first conductive layer (lower electrode), and in subsequent steps, the second seed layer is in a sufficiently stable state without disconnection failure. It is possible to form with
The resist pattern can be formed by the same method as the photoresist pattern described above.
(工程15)
続いて、第1シード層の露出した部分を除去する。
なお、無電解Ni層、銅層、チタン層は、順次化学エッチングにより除去する方法を用いることができる。エッチング液の種類は除去する金属種により適宜選択され、除去方法は、本開示に記載された方法に限定されない。
(Step 15)
Subsequently, the exposed portion of the first seed layer is removed.
The electroless Ni layer, the copper layer, and the titanium layer can be removed sequentially by chemical etching. The type of etchant is appropriately selected according to the metal species to be removed, and the removal method is not limited to the methods described in the present disclosure.
(工程16)
続いて、レジスト11のパターンを除去すると。図11に示すようにMIMキャパシタが形成された配線基板を形成することができる。フォトレジストパターンの除去は公知方法のアルカリ水溶液で除去剥離処理を行うことができる。以上の工程によりキャパシタが形成される。
(Step 16)
Subsequently, when the pattern of the resist 11 is removed. As shown in FIG. 11, a wiring substrate having MIM capacitors formed thereon can be formed. The removal of the photoresist pattern can be carried out by using a known alkaline aqueous solution. A capacitor is formed by the above steps.
(工程17)
その後、図12に示すように、配線基板上に絶縁樹脂層12、ビアホール13を形成する。その後、積層導体回路層と絶縁樹脂層を繰り返して形成することによって多層配線基板が形成される。
なお、配線基板上の導体回路や積層構造は公知のセミアディティブ法あるいはサブトラクティブ法を用いて形成することができる。
さらに多層配線基板を形成した後に外部接続端子を形成することも可能であるし、さらに、外部接続端子にはんだボールを形成することも可能である。
本開示による配線基板は片面に積層導体回路層、外部接続端子、はんだボールがあってもよく、変形例として両面にあっても良い。さらに半導体チップ、チップ部品を搭載してもよい。
(Step 17)
Thereafter, as shown in FIG. 12, an insulating
Incidentally, the conductor circuit and laminated structure on the wiring substrate can be formed using a known semi-additive method or subtractive method.
Further, it is possible to form the external connection terminals after forming the multilayer wiring board, and furthermore, it is possible to form solder balls on the external connection terminals.
A wiring board according to the present disclosure may have laminated conductor circuit layers, external connection terminals, and solder balls on one side, or may have both sides as a modification. Further, semiconductor chips and chip parts may be mounted.
[第2の実施形態]
次に、以下では、図2~図4及び図13~図17を参照して第2の実施形態について説明する。
第2の実施形態においては、工程1から工程6は第1の実施形態と同一であるため、工程1から工程6については、説明を省略する。
第2の実施形態においては、図4に示した第1の実施形態の工程6の後に、以下に説明する工程20を継続する。
[Second embodiment]
Next, a second embodiment will be described below with reference to FIGS. 2 to 4 and 13 to 17. FIG.
In the second embodiment, steps 1 to 6 are the same as those in the first embodiment, so descriptions of
In the second embodiment,
(工程20)
第1の実施形態の工程6の後、図13に示すように、第1導電層を取り囲むようにレジスト11のパターンを形成する。レジストパターンの形成は、前述したレジストパターンと同じ方法で行うことができる。この場合、レジストパターンの非開口領域は下部電極より外側となるように形成し、積層方向における平面視においても、MIMキャパシタの外部への接続線の部分を除いては、第1導電層4(下部電極)の外側になるように形成する。
(Step 20)
After
そして、この場合のレジスト11のxy平面における長さbと、同方向における第1導電層(下部電極)のxy平面における長さa、密着層2と第1シード層3のz軸方向の高さ(2層の厚さの合計)をcの望ましい関係は、第1の実施形態における工程14で記述したものと同様である。
In this case, the length b of the resist 11 in the xy plane, the length a of the first conductive layer (lower electrode) in the xy plane in the same direction, and the height of the
(工程21)
続いて、レジスト11のパターンをエッチングマスクとして第1シード層3、密着層2を除去する。
なお、第1シード層3、密着層2の除去は、無電解Ni層、銅層、チタン層を順次化学エッチングにより除去する方法を用いることができる。エッチング液の種類は除去する金属種により適宜選択され、何ら限定されるものではない。
(Step 21)
Subsequently, the
The
(工程22)
続いて、レジスト11のパターンを除去すると図14に示す断面を得ることができる。
なお、レジスト11の除去は公知方法のアルカリ水溶液で除去剥離処理を行うことができる。
(Step 22)
Subsequently, by removing the pattern of the resist 11, the cross section shown in FIG. 14 can be obtained.
In addition, the removal of the resist 11 can be performed by a known method of removing and peeling with an alkaline aqueous solution.
(工程23)
続いて、図15に示すように、第1の実施態様の工程7と同様に、第1導電層4である下部電極上の全面に渡り、下部密着層5、第1絶縁層6、上部密着層7、及び、第2シード層8を順次堆積形成する。上記層の成膜方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、MBE法、レーザブレーション法、CVD法が挙げられるが、本実施形態により限定されない。
第1絶縁層6の下層にある下部密着層5は、第1絶縁層6と第1導電層4の密着性を向上させる機能を有する。しかし、第1絶縁層6と第1導電層4の密着性が十分である場合は、下部密着層5は無くても構わない。
なお、第2シード層はキャパシタの上部電極をセミアディティブ法で形成するための給電層として機能する。
(Step 23)
Subsequently, as shown in FIG. 15, the
The
The second seed layer functions as a power feeding layer for forming the upper electrode of the capacitor by a semi-additive method.
(工程24)
続いて、図16に示すようにレジスト11のパターンを第2導電層9を形成する以外の領域に形成する。レジスト11のパターンの形成は、前述したフォトレジストパターンと同じ方法で行うことができる。この場合、レジスト11のパターンの開口領域は第1導電層4(下部電極)より内側となるように形成し、積層方向における平面視においても、MIMキャパシタの外部への接続線の部分を除いては、第1導電層4(下部電極)内側になるように形成する。
(Step 24)
Subsequently, as shown in FIG. 16, a pattern of resist 11 is formed in a region other than where the second
(工程25)
続いて、第2シード層に給電して電解めっき法によって第2導電層9(上部電極)を形成する。
(Step 25)
Subsequently, power is supplied to the second seed layer to form the second conductive layer 9 (upper electrode) by electroplating.
(工程26)
続いて、レジスト11のパターンを除去する。フォトレジストパターンの除去は公知方法のアルカリ水溶液で除去剥離処理を行うことができる。
(Step 26)
Subsequently, the pattern of the resist 11 is removed. The removal of the photoresist pattern can be carried out by using a known alkaline aqueous solution.
(工程27)
続いて、図17に示すように、第2導電層9(上部電極)を囲むようにレジスト11のパターンを形成する。レジスト11のパターンの形成は、前述したフォトレジストパターンと同じ方法で行うことができる。この場合、フォトレジストパターンの非開口領域は上部電極より外側、かつ第1導体層(下部電極)の内側となるように形成し、積層方向における平面視においても、MIMキャパシタの外部への接続線の部分を除いては、第1導電層4(下部電極)内側になるように形成する。それぞれ外側、かつ内側になるように形成するのが望ましい。
(Step 27)
Subsequently, as shown in FIG. 17, a pattern of resist 11 is formed so as to surround the second conductive layer 9 (upper electrode). The formation of the pattern of the resist 11 can be performed by the same method as the photoresist pattern described above. In this case, the non-opening region of the photoresist pattern is formed so as to be outside the upper electrode and inside the first conductor layer (lower electrode). It is formed so as to be inside the first conductive layer 4 (lower electrode) except for the portion of . It is desirable to form them so that they are on the outside and inside, respectively.
(工程28)
続いて、工程12と同様に、レジスト11のパターンをマスクとして、第2シード層8、上部密着層7、第1絶縁層6、及び、下部密着層5の不要部分を除去する。第2シード層8、上部密着層7、第1絶縁層、及び、下部密着層5の除去は、化学エッチング法、ドライエッチング法、いずれも公知方法を用いることが実施できる。各層毎で異なった除去方法を採用してもよいし、また、全ての層で同じ方法除去を行ってもよい。
上述したように、レジスト11のパターンは第1導電層4(下部電極)の内側に形成にされているため、レジスト11のパターンをマスクとして不要部分を除去しても、第1絶縁層は第1導電層(下部電極)の内側にのみに残存して形成される。
(Step 28)
Subsequently, as in
As described above, the pattern of the resist 11 is formed inside the first conductive layer 4 (lower electrode). It is formed so as to remain only inside one conductive layer (lower electrode).
なお、第2シード層および上部密着層7の不要部分の除去は、工程28で除去しなくとも、例えば工程27の直後に、第2導電層9(上部電極)をマスクとして、エッチング除去しても良い。このようにすると、MIMキャパシタデバイスの外表面における第1絶縁層の面積が大きくなり、上部電極および下部電極間の側面からの電流のリークなどを抑制することができる。
The unnecessary portions of the second seed layer and the
(工程29)
続いて、レジスト11のパターンを除去すると。第1の実施形態と同様に、図11に示すようにMIMキャパシタが形成された配線基板を形成することができる。レジストパターンの除去は公知方法のアルカリ水溶液で除去剥離処理を行うことができる。以上の工程によりキャパシタが形成される。
(Step 29)
Subsequently, when the pattern of the resist 11 is removed. As in the first embodiment, a wiring substrate having MIM capacitors formed thereon can be formed as shown in FIG. The removal of the resist pattern can be carried out by using a known alkaline aqueous solution. A capacitor is formed by the above steps.
第2の実施形態における工程29以降の工程は、第1の実施形態と同様であるので、説明は省略する。 The steps after step 29 in the second embodiment are the same as in the first embodiment, so descriptions thereof are omitted.
<効果>
従来例の製造方法によってMIMキャパシタを製造した場合には、第1導電層4(下部電極)の下方にサイドエッチングが発生し、第2導電層9(上部電極)が正常に形成されない割合が50%であったが、本開示の第1の実施形態及び第2の実施形態による製造方法を採用すれば、100%の割合で第2導電層9(上部電極)が正常に形成することができ。顕著な改善を見ることができた。
<effect>
When an MIM capacitor is manufactured by the conventional manufacturing method, side etching occurs below the first conductive layer 4 (lower electrode), and the second conductive layer 9 (upper electrode) is not normally formed at a rate of 50%. %, but if the manufacturing methods according to the first and second embodiments of the present disclosure are employed, the second conductive layer 9 (upper electrode) can be normally formed at a rate of 100%. . A noticeable improvement could be seen.
以上、本発明の実施の形態について説明したが、本発明は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更が可能である。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications are possible without departing from the gist of the present invention.
1:基板、2:密着層、3:第1シード層、4:第1導電層、5:下部密着層、6:第1絶縁層、7:上部密着層、8:第2シード層、9:第2導電層、11:レジスト、12:絶縁樹脂層、13:ビアホール 1: substrate, 2: adhesion layer, 3: first seed layer, 4: first conductive layer, 5: lower adhesion layer, 6: first insulating layer, 7: upper adhesion layer, 8: second seed layer, 9 : second conductive layer 11: resist 12: insulating resin layer 13: via hole
Claims (7)
以下の(1)から(5)の層を含む配線基板において、
(1)前記基板上に配置される第1シード層
(2)前記第1シード層の上方に配置される第1導電層
(3)前記第1導電層の上方に配置される第1絶縁層
(4)前記第1絶縁層の上方に配置される第2シード層
(5)前記第2シード層の上方に配置される第2導電層
表面が絶縁性を有する前記基板の上方に前記第1シード層を形成する工程と、
前記第1シード層の上方に前記第1導電層を形成する工程と、
前記第1導電層の上方に前記第1絶縁層を形成する工程と、
前記第1絶縁層の上方に前記第2シード層を形成する工程と、
前記第2シード層の上方に前記第2導電層のパターンを形成する工程と、
前記第2導電層のパターンにレジストパターンによるエッチングマスクを形成して、前記第2シード層、前記第1絶縁層をエッチングする工程と、
前記第1シード層をエッチングする工程と、
を備える配線基板の製造方法。 a substrate having an insulating surface;
In a wiring board including the following layers (1) to (5),
(1) a first seed layer disposed on the substrate; (2) a first conductive layer disposed above the first seed layer; and (3) a first insulating layer disposed above the first conductive layer. (4) a second seed layer disposed above the first insulating layer; (5) a second conductive layer disposed above the second seed layer; forming a seed layer;
forming the first conductive layer over the first seed layer;
forming the first insulating layer over the first conductive layer;
forming the second seed layer over the first insulating layer;
patterning the second conductive layer over the second seed layer;
forming an etching mask with a resist pattern on the pattern of the second conductive layer and etching the second seed layer and the first insulating layer;
etching the first seed layer;
A method of manufacturing a wiring board comprising:
以下の(1)から(5)の層を含む配線基板において、
(1)前記基板上に配置される第1シード層
(2)前記第1シード層の上方に配置される第1導電層
(3)前記第1導電層の上方に配置される第1絶縁層
(4)前記第1絶縁層の上方に配置される第2シード層
(5)前記第2シード層の上方に配置される第2導電層
表面が絶縁性を有する前記基板の上方に前記第1シード層を形成する工程と、
前記第1シード層の上方に前記第1導電層を形成する工程と、
前記第1シード層をエッチングする工程と、
前記第1導電層の上方に前記第1絶縁層を形成する工程と、
前記第1絶縁層の上方に前記第2シード層を形成する工程と、
前記第2シード層の上方に前記第2導電層のパターンを形成する工程と、
前記第2導電層のパターンにレジストパターンによるエッチングマスクを形成して、前記第2シード層、前記第1絶縁層をエッチングする工程と、
を備える配線基板の製造方法。 a substrate having an insulating surface;
In a wiring board including the following layers (1) to (5),
(1) a first seed layer disposed on the substrate; (2) a first conductive layer disposed above the first seed layer; and (3) a first insulating layer disposed above the first conductive layer. (4) a second seed layer disposed above the first insulating layer; (5) a second conductive layer disposed above the second seed layer; forming a seed layer;
forming the first conductive layer over the first seed layer;
etching the first seed layer;
forming the first insulating layer over the first conductive layer;
forming the second seed layer over the first insulating layer;
patterning the second conductive layer over the second seed layer;
forming an etching mask with a resist pattern on the pattern of the second conductive layer and etching the second seed layer and the first insulating layer;
A method of manufacturing a wiring board comprising:
前記(1)から(5)の層はMIMキャパシタを構成しており、
前記第1シード層をエッチングする工程は、少なくとも1の方向において前記MIMキャパシタにおける前記第1導電層よりも幅の大きな前記MIMキャパシタにおける第1シード層の幅に相当するエッチングマスクを用いてエッチングが行われる
配線基板の製造方法。 In the method for manufacturing a wiring board according to claim 1 or 2,
The layers (1) to (5) form an MIM capacitor,
The step of etching the first seed layer includes etching using an etch mask corresponding to the width of the first seed layer in the MIM capacitor that is wider than the first conductive layer in the MIM capacitor in at least one direction. A method of manufacturing a wiring board performed.
前記MIMキャパシタにおける第1導電層よりも幅の大きな前記MIMキャパシタにおける前記第1シード層の水平方向の幅をbとし、前記第1導電層の水平方向における幅をaとした場合に、
a及びbは、以下の式(2)を満たす
配線基板の製造方法。
[数2]
50nm≦(b-a)/2≦50μm・・・・・・・(2) In the method for manufacturing a wiring board according to claim 3,
When b is the horizontal width of the first seed layer in the MIM capacitor, which is wider than the first conductive layer of the MIM capacitor, and a is the horizontal width of the first conductive layer,
a and b are a method of manufacturing a wiring board that satisfies the following formula (2).
[Number 2]
50 nm≦(b−a)/2≦50 μm (2)
前記第1シード層の厚さ(前記第1シード層の下方に下部密着層を備える場合には、前記第1シード層及び前記下部密着層の合計の厚さ)をcとした場合に、a、b及びcは、以下の式(4)を満たす
配線基板の製造方法。
[数4]
0.01≦((b-a)/2)/c≦1000・・・(4) In the method for manufacturing a wiring board according to claim 4,
When the thickness of the first seed layer (the total thickness of the first seed layer and the lower adhesion layer when the lower adhesion layer is provided below the first seed layer) is c, a , b and c satisfy the following formula (4).
[Number 4]
0.01≦((ba)/2)/c≦1000 (4)
以下の(1)から(5)の層を含む配線基板において、
(1)前記基板上に配置される第1シード層
(2)前記第1シード層の上方に配置される第1導電層
(3)前記第1導電層の上方に配置される第1絶縁層
(4)前記第1絶縁層の上方に配置される第2シード層
(5)前記第2シード層の上方に配置される第2導電層
前記(1)から(5)の層はMIMキャパシタを構成しており、
前記MIMキャパシタにおける第1導電層よりも幅の大きな前記MIMキャパシタにおける前記第1シード層の水平方向の幅をbとし、前記第1導電層の水平方向における幅をaとした場合に、
a及びbは、以下の式(2)を満たす
配線基板。
[数2]
50nm≦(b-a)/2≦50μm・・・・・・・(2) a substrate having an insulating surface;
In a wiring board including the following layers (1) to (5),
(1) a first seed layer disposed on the substrate; (2) a first conductive layer disposed above the first seed layer; and (3) a first insulating layer disposed above the first conductive layer. (4) a second seed layer disposed above the first insulating layer; (5) a second conductive layer disposed above the second seed layer. consists of
When b is the horizontal width of the first seed layer in the MIM capacitor, which is wider than the first conductive layer of the MIM capacitor, and a is the horizontal width of the first conductive layer,
a and b are wiring boards that satisfy the following formula (2).
[Number 2]
50 nm≦(b−a)/2≦50 μm (2)
前記第1シード層の厚さ(前記第1シード層の下方に下部密着層を備える場合には、前記第1シード層及び前記下部密着層の合計の厚さ)をcとした場合に、a、b及びcは、以下の式(4)を満たす
配線基板。
[数4]
0.01≦((b-a)/2)/c≦1000・・・(4) In the wiring board according to claim 6,
When the thickness of the first seed layer (the total thickness of the first seed layer and the lower adhesion layer when the lower adhesion layer is provided below the first seed layer) is c, a , b and c are wiring substrates satisfying the following formula (4).
[Number 4]
0.01≦((ba)/2)/c≦1000 (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023561537A JPWO2023090197A1 (en) | 2021-11-18 | 2022-11-08 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-188035 | 2021-11-18 | ||
JP2021188035 | 2021-11-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023090197A1 true WO2023090197A1 (en) | 2023-05-25 |
Family
ID=86396965
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/041489 WO2023090197A1 (en) | 2021-11-18 | 2022-11-08 | Wiring board and method for manufacturing same |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2023090197A1 (en) |
TW (1) | TW202331950A (en) |
WO (1) | WO2023090197A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009188401A (en) * | 2008-02-07 | 2009-08-20 | Ibiden Co Ltd | Printed circuit board with built-in capacitor |
JP2018191003A (en) * | 2016-12-21 | 2018-11-29 | 大日本印刷株式会社 | Through electrode substrate, semiconductor device, and method for manufacturing through electrode substrate |
WO2019244382A1 (en) * | 2018-06-21 | 2019-12-26 | 大日本印刷株式会社 | Wiring substrate and semiconductor device |
JP2021100007A (en) * | 2019-12-19 | 2021-07-01 | Tdk株式会社 | Electronic component and manufacturing method thereof |
-
2022
- 2022-11-08 JP JP2023561537A patent/JPWO2023090197A1/ja active Pending
- 2022-11-08 WO PCT/JP2022/041489 patent/WO2023090197A1/en active Application Filing
- 2022-11-17 TW TW111143916A patent/TW202331950A/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009188401A (en) * | 2008-02-07 | 2009-08-20 | Ibiden Co Ltd | Printed circuit board with built-in capacitor |
JP2018191003A (en) * | 2016-12-21 | 2018-11-29 | 大日本印刷株式会社 | Through electrode substrate, semiconductor device, and method for manufacturing through electrode substrate |
WO2019244382A1 (en) * | 2018-06-21 | 2019-12-26 | 大日本印刷株式会社 | Wiring substrate and semiconductor device |
JP2021100007A (en) * | 2019-12-19 | 2021-07-01 | Tdk株式会社 | Electronic component and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023090197A1 (en) | 2023-05-25 |
TW202331950A (en) | 2023-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7083600B2 (en) | Glass circuit board with built-in capacitor and its manufacturing method | |
TWI765941B (en) | Electronic component and electronic component manufacturing method | |
US10923439B2 (en) | Core substrate, multi-layer wiring substrate, semiconductor package, semiconductor module, copper-clad substrate, and method for manufacturing core substrate | |
US11516911B2 (en) | Glass circuit board and stress relief layer | |
JP7444210B2 (en) | Glass circuit board with built-in capacitor | |
US11756846B2 (en) | Glass core, multilayer circuit board, and method of manufacturing glass core | |
JPWO2005027605A1 (en) | Manufacturing method of double-sided wiring glass substrate | |
JP2018107256A (en) | Glass wiring board, semiconductor package substrate, semiconductor device, and method for manufacturing semiconductor device | |
JP7009958B2 (en) | Manufacturing method of glass substrate with built-in capacitor | |
JP6946745B2 (en) | Glass circuit board and its manufacturing method | |
JP2019114723A (en) | Capacitor built-in glass circuit board and method for manufacturing capacitor built-in glass circuit board | |
WO2023090197A1 (en) | Wiring board and method for manufacturing same | |
JP2019197791A (en) | Capacitor built-in glass substrate and capacitor built-in circuit substrate | |
US20240421059A1 (en) | Wiring substrate and manufacturing method of wiring substrate | |
JP2022190464A (en) | Glass wiring board and manufacturing method of glass wiring board | |
JP2005086026A (en) | Double-sided wiring glass substrate and method for manufacturing the same | |
TW202448236A (en) | Wiring board and manufacturing method therefor | |
JP2024006905A (en) | Multilayer wiring board, method for manufacturing multilayer wiring board, and base material substrate | |
JP2024156373A (en) | Wiring board and manufacturing method thereof | |
WO2023171240A1 (en) | Glass substrate, through-electrode, multilayer wiring substrate, and glass substrate manufacturing method | |
JP2004055593A (en) | Wiring board and its manufacturing method | |
JP2001358166A (en) | Semiconductor device and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22895479 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023561537 Country of ref document: JP |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22895479 Country of ref document: EP Kind code of ref document: A1 |