[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023088777A1 - Compositions comprising polymers, polymers, and their use - Google Patents

Compositions comprising polymers, polymers, and their use Download PDF

Info

Publication number
WO2023088777A1
WO2023088777A1 PCT/EP2022/081476 EP2022081476W WO2023088777A1 WO 2023088777 A1 WO2023088777 A1 WO 2023088777A1 EP 2022081476 W EP2022081476 W EP 2022081476W WO 2023088777 A1 WO2023088777 A1 WO 2023088777A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
polymer
mol
backbone
range
Prior art date
Application number
PCT/EP2022/081476
Other languages
French (fr)
Inventor
Catharina WOHLMUTH
Harald Keller
Philipp HERZOG
Michael Stadler
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Publication of WO2023088777A1 publication Critical patent/WO2023088777A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3788Graft polymers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/22Carbohydrates or derivatives thereof
    • C11D3/221Mono, di- or trisaccharides or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • C11D3/38618Protease or amylase in liquid compositions only
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • C11D3/38627Preparations containing enzymes, e.g. protease or amylase containing lipase
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D2111/00Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
    • C11D2111/10Objects to be cleaned
    • C11D2111/12Soft surfaces, e.g. textile

Definitions

  • compositions comprising polymers, polymers, and their use
  • the present invention is directed towards a composition
  • a composition comprising
  • the present invention is directed to polymers (A) useful for such compositions, and to a process for making such polymers (A).
  • the present invention is directed towards precursors for polymers (A).
  • Laundry detergents have to fulfil several requirements. They need to remove all sorts of soiling from laundry, for example all sorts of pigments, clay, fatty soil, and dyestuffs including dyestuff from food and drinks such as red wine, tea, coffee, and fruit including berry juices. Laundry detergents also need to exhibit a certain storage stability. Especially laundry detergents that are liquid or that contain hygroscopic ingredients often lack a good storage stability, e.g., enzymes tend to be deactivated.
  • greying of laundry is still a significant problem.
  • the greying is assigned to redeposition of soil during washing.
  • specific native or modified polysaccharides such as polysaccharides treated with gaseous or liquid SO2 have been developed.
  • Numerous ingredients have been suggested with various structures, see, e.g., WO 2015/091160, EP 3 266 858 A1 and EP 3 226 858 A1 , but still leave room for improvement, and the anti-greying performance of such compounds is still not sufficient. Therefore, there is a continuous need for improved anti-greying agents which can be used in a laundry process. In particular, it is desirable to provide an anti-greying agent which reduces greying of a washed fabric.
  • compositions defined at the outset have been found, hereinafter also referred to as inventive compositions or compositions according to the present invention.
  • inventive compositions contain at least one polymer (A) that comprises several building blocks:
  • Said 30 mol-% refer to the primary amino groups and refer to an average over the entire respective polymer (A).
  • a polymer (A) derived from a backbone (a) with two NH2 groups per molecule for example, a linear polyethylenimine or a linear polypropylene imine, some molecules may be fully converted with lactone, others may be half converted and some may be unreacted.
  • At least 50 mol-% of the primary amino groups are converted.
  • Exampes of backbones (a) are polylysine, polyvinylamines and polyalkyleneimines, for example polyethylenimines and polypropylene imines.
  • Polyalkylene imines used as backbones (a) may have a linear or preferably a branched structure. Branches may be alkylenamino groups such as, but not limited to -CH2-CH2-NH2 groups or (CH2)3-NH2-groups. Longer branches may be, for examples, -(CH2)3-N(CH2CH2CH2NH2)2 or -(CH 2 )2-N(CH 2 CH 2 NH2)2 groups.
  • said backbone (a) is selected from polyvinylamine, branched polyethylenimine, branched polypropylenimine, and polylysine.
  • Polyvinylamine may have an average molecular weight M w in the range of from 500 to 100,000 g/mol, determined by GPC (gel permeation chromatography), preferably with water as eluent. Due to their manufacture, polymerization of N-vinyl formamide followed by saponification, polyvinylamines may have a degree of hydrolysis in the range of from 20 to 100%, for example 80 to 100%, determined by ( 1 H NMR). Preferred are fully hydrolyzed polyvinylamines. Polyvinylamines may have an average of from 2 to 200 primary amino groups per molecule, preferably 25 to 100.
  • polyethylenimine in the context of the present invention does not only refer to poly- ethylenimine homopolymers but also to polyalkylenimines containing NH-CH2-CH2-NH structural elements together with other alkylene diamine structural elements, for example NH-CH2-CH2- CH2-NH structural elements, NH-CH2-CH(CH3)-NH structural elements, NH-(CH2)4-NH structural elements, NH-(CH2)e-NH structural elements or (NH-(CH2)s-NH structural elements but the NH- CH2-CH2- NH structural elements being in the majority with respect to the molar share.
  • Preferred polyethylenimines contain NH-CH2-CH2-NH structural elements being in the majority with respect to the molar share, for example amounting to 60 mol-% or more, more preferably amounting to at least 70 mol-%, referring to all alkylenimine structural elements.
  • the term polyethylenimine refers to those polyalkylenimines that bear only one or zero alkylenimine structural element per molecule that is different from NH-CH2-CH2-NH.
  • the average molecular weight M w of branched polyethylenimines is in the range of from 500 to 100,000 g/mol, preferably up to 50,000 g/mol and more preferably from 800 up to 25,000 g/mol.
  • the average molecular weight M w of branched polyethylenimines may be determined by gel permeation chromatography (GPC), with 1.5 % by weight aqueous formic acid as eluent and cross-linked poly-hydroxyethyl methacrylate as stationary phase.
  • Branched polyethylenimines may have a degree of branching in the range of from 0.30 to 0.75, preferably 0.5 to 0.7, more preferably 0.55 to 0.7, determined by 13 C NMR spectroscopy in D 2 O.
  • the term “branched polyethylenimines” includes polymers that are also termed highly branched polyethylenimines. The degree of branching is calculated as (D + T) I (D + T+ L).
  • D refers to the dendritic (or tertiary) amin groups
  • L (linear) refers to the secondary amino groups
  • Branched polyethylenimines may be obtained by the polymerization of ethylenimine (aziridine).
  • polypropylenimine in the context of the present invention does not only refer to poly- propylenimine homopolymers but also to polyalkylenimines containing NH-CH2-CH2-CH2-NH structural elements or NH-CH2-CH(CH3)-NH structural elements together with other alkylene diamine structural elements, for example NH-CH2-CH2-NH structural elements, NH-(CH 2 )4-NH structural elements, NH-(CH2)e-NH structural elements or (NH-(CH2)a-NH structural elements but the NH-CH2-CH2-CH2-NH structural elements or NH-CH2-CH(CH3)-NH structural elements being in the majority with respect to the molar share.
  • polypropylenimines contain NH-CH2-CH2-CH2-NH or NH-CH2-CH(CH3)-NH structural elements being in the majority with respect to the molar share, for example amounting to 60 mol-% or more, more preferably amounting to at least 70 mol-%, referring to all alkylenimine structural elements.
  • polypropylenimine refers to those polyalkylene imines that bear one or zero alkylenimine structural element per molecule that is different from both NH-CH2-CH2-CH2-NH and NH-CH 2 -CH(CH 3 )-NH.
  • the degree of branching in branched polypropylene imines is in the range of from 0.30 to 0.75, preferably 0.5 to 0.7, more preferably 0.55 to 0.7, determined by 13 C NMR spectroscopy in D2O.
  • Branched polyethylenimines and branched polypropylene imines may bear of from 2 to 200 primary amino groups per molecule, preferred are 4 to 50 primary amino groups.
  • Polylysines are polypeptides preferably bearing an average of 25 to 35 lysine units per molecule.
  • Polylysine may be selected from a-polylysine and E-polylysine, with a-polylysine being preferred.
  • Polylysine may be based on D-lysine and L-lysine and mixtures thereof, the L- enantiomer being preferred. During manufacture, partial racemization may occur but the L- enantiomer is prevailing.
  • polylysine in the context of the present invention includes polypeptides that contain lysine and at least one further amino acid such as alanine, glycine, valine, threonine and the like, with the majority of the amino acids in said polylysine being lysine.
  • said backbone (a) is selected from branched polyethylenimines with an average molecular weight M w in the range of from 500 to 20,000 g/mol.
  • At least 30 mol-% of the primary amino groups of backbone (a) are linked through an amide group to at least one mono-, di- or polysaccharide under formation of an amide group, preferably 40 to 80 mol-%, more preferably 70 to 100 mol-%.
  • Said linkage may be accomplished by conversion of an alkyl ester or a lactone based on a mono-, di- or polysaccharide with said backbone (a).
  • Alkyl esters based on mono-, di- or polysaccharide, for example methyl esters or ethyl esters, based on a sugar acid are formed by esterification of a sugar ester with the respective alkanol.
  • Lactones based on mono-, di- or polysaccharide are formed by intramolecular esterification of a sugar acid, for example of gluconic acid, galacturonic acid, lactobionic acid (4-0-3- galactopyranosyl-D-gluconic acid), mannonic acid, galactonic acid, gluonic acid, and a- heptagluconic acid.
  • the respective naturally occurring feedstock is preferred, thus, e.g., lactones based on D-gluconic acid, D-galacturonic acid, lactobionic acid, L-mannonic acid, D- galactonic acid, D-gluonic acid, and a-D-heptagluconic acid.
  • Example of a lactone based on a polysaccharide is the condensation product of a monocarboxylic acid of maltodextrin.
  • the monocarboxylic acid may be identified by 1 H and 13 C NMR spectroscopy.
  • lactones are glucuronolactone, D-galactono-y-lactone, L- mannonic acid-y-lactone, D-gulono-y-lactone, D-gluconolactone, 6-gluconolactone, and a-D- heptagluconic acid-y-lactone.
  • said lactone is selected from D-gluconolactone and lactobionolactone and the lactone based on monocarboxylic acid of maltodextrin.
  • polymer (A) has an average molecular weight M w in the range from 750 to 350,000 g/mol, preferably 3,000 to 50,000 g/mol.
  • the molecular weight may be determined by GPC with water as eluent.
  • the weight ratio of block (a) to block (b) is in the range of from 1 : 5 to 5 : 1 , for example from 1 : 2 to 2 : 1 .
  • the weight ratio may be steered by selection of the molecular weight of backbone (a) and lactone based on mono-, di- or polysaccharide, respectively.
  • polymer (A) has a Hazen colour number in the range of from 20 to 500, determined in a 10 % weight aqueous solution.
  • polymer (A) has an amine value, measured according to DIN 53240 (2013), in the range of from 10 to 2000, preferably 25 to 700 mg KOH/g polymer (A).
  • Inventive compositions may comprise impurities that stem from the synthesis of polymer (A), for example unreacted lactone based on based on mono-, di- or polysaccharide, respectively, or unreacted backbone (a) especially in embodiments wherein backbone (a) bears less than 5 primary amino groups per molecule, or y- or 5-hydroxycarboxylic acid stemming from hydrolyzed lactone based on mono-, di- or polysaccharide.
  • inventive compositions comprise at least one enzyme.
  • Enzymes are identified by polypeptide sequences (also called amino acid sequences herein).
  • the polypeptide sequence specifies the three-dimensional structure including the “active site” of an enzyme which in turn determines the catalytic activity of the same.
  • Polypeptide sequences may be identified by a SEQ ID NO. According to the World Intellectual Property Office (WIPO) Standard ST.25 (1998) the amino acids herein are represented using three-letter code with the first letter as a capital or the corresponding one letter.
  • Any enzyme according to the invention relates to parent enzymes and/or variant enzymes, both having enzymatic activity.
  • Enzymes having enzymatic activity are enzymatically active or exert enzymatic conversion, meaning that enzymes act on substrates and convert these into products.
  • a “parent” sequence (of a parent protein or enzyme, also called “parent enzyme”) is the starting sequence for introduction of changes (e.g., by introducing one or more amino acid substitutions, insertions, deletions, or a combination thereof) to the sequence, resulting in “variants” of the parent sequences.
  • the term parent enzyme (or parent sequence) includes wild-type enzymes (sequences) and synthetically generated sequences (enzymes) which are used as starting sequences for introduction of (further) changes.
  • enzyme variant or “sequence variant” or “variant enzyme” refers to an enzyme that differs from its parent enzyme in its amino acid sequence to a certain extent. If not indicated otherwise, variant enzyme “having enzymatic activity” means that this variant enzyme has the same type of enzymatic activity as the respective parent enzyme.
  • Amino acid substitutions are described by providing the original amino acid of the parent enzyme followed by the number of the position within the amino acid sequence, followed by the substituted amino acid.
  • Amino acid deletions are described by providing the original amino acid of the parent enzyme followed by the number of the position within the amino acid sequence, followed by *.
  • Amino acid insertions are described by providing the original amino acid of the parent enzyme followed by the number of the position within the amino acid sequence, followed by the original amino acid and the additional amino acid. For example, an insertion at position 180 of lysine next to glycine is designated as “Gly180Glyl_ys” or “G180GK”.
  • alterations or optional substitutions may be indicated in brackets, e.g., Arg170[Tyr, Gly] or Arg170 ⁇ Tyr, Gly ⁇ ; or in short R170 [Y,G] or R170 ⁇ Y, G ⁇ ; or in long R170Y, R170G.
  • EMBOSS European Molecular Biology Open Software Suite
  • %-identity (identical residues / length of the alignment region which is showing the respective sequence of this invention over its complete length) *100.
  • enzyme variants may be described as an amino acid sequence which is at least n% identical to the amino acid sequence of the respective parent enzyme with “n” being an integer between 10 and 100.
  • variant enzymes are at least 70%, at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least
  • Enzymatic activity means the catalytic effect exerted by an enzyme, which usually is expressed as units per milligram of enzyme (specific activity) which relates to molecules of substrate transformed per minute per molecule of enzyme (molecular activity).
  • Variant enzymes may have enzymatic activity according to the present invention when said enzyme variants exhibit at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at 10 least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or 100% of the enzymatic activity of the respective parent enzyme.
  • enzyme is selected from hydrolases, preferably from proteases, amylases, lipases, cellulases, and mannanases.
  • inventive compositions comprise
  • hydrolase (B) at least one hydrolase, hereinafter also referred to as hydrolase (B), preferably selected from lipases, hereinafter also referred to as lipase (B).
  • Lipases refer to enzymes of EC class 3.1.1 (“carboxylic ester hydrolase”).
  • a lipase (B) may have lipase activity (or lipolytic activity; triacylglycerol lipase, EC 3.1.1.3), cutinase activity (EC 3.1.1.74; enzymes having cutinase activity may be called cutinase herein), sterol esterase activity (EC 3.1.1.13) and/or wax-ester hydrolase activity (EC 3.1.1.50).
  • Lipases (B) include those of bacterial or fungal origin.
  • lipase (B) include but are not limited to those sold under the trade names LipolaseTM, LipexTM, LipolexTM and LipocleanTM (Novozymes A/S), PreferenzTM L (DuPont), Lumafast (originally from Genencor) and Lipomax (Gist-Brocades/ now DSM).
  • lipase (B) is selected from the following: lipases from Humicola (synonym Thermomyces), e.g., from H. lanuginosa (T. lanuginosus) as described in EP 258068, EP 305216, WO 92/05249 and WO 2009/109500 or from H. insolens as described in WO 96/13580; lipases derived from Rhizomucor miehei as described in WO 92/05249; lipase from strains of Pseudomonas (some of these now renamed to Burkholderia), e.g., from P. alcal- igenes or P.
  • pseudoalcaligenes EP 218272, WO 94/25578, WO 95/30744, WO 95/35381 , WO 96/00292
  • P. cepacia EP 3313766
  • P. stutzeri G 1372034
  • P. fluorescens Pseudomonas sp. strain SD705 (WO 95/06720 and WO 96/27002)
  • P. wisconsinensis WO 96/12012
  • Pseudomonas mendocina WO 95/14783
  • P. glumae WO 95/35381 , WO 96/00292
  • lipase from Streptomyces griseus WO 2011/150157
  • Suitable lipases (B) include also those which are variants of the above described lipases which have lipolytic activity. Such suitable lipase variants are e.g., those which are developed by methods as disclosed in WO 95/22615, WO 97/04079, WO 97/07202, WO 00/60063, WO 2007/087508, EP 407225 and EP 260105.
  • Suitable lipase variants are e.g., those which are developed by methods as disclosed in WO 95/22615, WO 97/04079, WO 97/07202, WO 00/60063, WO 2007/087508, EP 407225 and EP 260105.
  • Suitable lipases (B) include also those that are variants of the above described lipases which have lipolytic activity.
  • Suitable lipase variants include variants with at least 40 to 100% identity when compared to the full length polypeptide sequence of the parent enzyme as disclosed above.
  • lipase variants having lipolytic activity may be at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91 %, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% identical when compared to the full length polypeptide sequence of the parent enzyme as disclosed above.
  • Lipases (B) have “lipolytic activity”.
  • the methods for determining lipolytic activity are well-known in the literature (see e.g., Gupta et al. (2003), Biotechnol. AppL Biochem. 37, p. 63-71 ).
  • the lipase activity may be measured by ester bond hydrolysis in the substrate para-nitrophenyl palmitate (pNP-Palmitate, C:16) and releases pNP which is yellow and can be detected at 405 nm.
  • lipase (B) is selected from fungal triacylglycerol lipase (EC class 3.1.1.3).
  • Fungal triacylglycerol lipase may be selected from lipases of Thermomyces lanuginosa.
  • at least one Thermomyces lanuginosa lipase is selected from triacylglycerol lipase according to amino acids 1 -269 of SEQ ID NO: 2 of US5869438 and variants thereof having lipolytic activity.
  • Thermomyces lanuginosa lipase may be selected from variants having lipolytic activity which are at least 90%, at least 91 %, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% identical when compared to the full length polypeptide sequence of amino acids 1-269 of SEQ ID NO: 2 of US 5,869,438.
  • Thermomyces lanuginosa lipase may be selected from variants having lipolytic activity comprising conservative mutations only, which do not pertain the functional domain of amino acids 1- 269 of SEQ ID NO: 2 of US 5,869,438.
  • Lipase variants of this embodiment having lipolytic activity may be at least 95%, at least 96%, at least 97%, at least 98% or at least 99% similar when compared to the full length polypeptide sequence of amino acids 1-269 of SEQ ID NO: 2 of US 5,869,438.
  • Thermomyces lanuginosa lipase may be selected from variants having lipolytic activity comprising at least the following amino acid substitutions when compared to amino acids 1-269 of SEQ ID NO: 2 of US 5,869,438: T231 R and N233R.
  • Said lipase variants may further comprise one or more of the following amino acid exchanges when compared to amino acids 1-269 of SEQ ID NO: 2 of US 5,869,438: Q4V, V60S, A150G, L227G, P256K.
  • Thermomyces lanuginosa lipase may be selected from variants having lipolytic activity comprising at least the amino acid substitutions T231 R, N233R, Q4V, V60S, A150G, L227G, P256K within the polypeptide sequence of amino acids 1-269 of SEQ ID NO: 2 of US 5,869,438and are at least 95%, at least 96%, or at least 97% similar when compared to the full length polypeptide sequence of amino acids 1 -269 of SEQ ID NO: 2 of US 5,869,438.
  • Thermomyces lanuginosa lipase may be selected from variants having lipolytic activity comprising the amino acid substitutions T231 R and N233R within amino acids 1-269 of SEQ ID NO: 2 of US5869438 and are at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% similar when compared to the full length polypeptide sequence of amino acids 1-269 of SEQ ID NO: 2 of US 5,869,438.
  • Thermomyces lanuginosa lipase may be a variant of amino acids 1-269 of SEQ ID NO: 2 of US5869438 having lipolytic activity, wherein the variant of amino acids 1-269 of SEQ ID NO: 2 of US 5,869,438is characterized in containing the amino acid substitutions T231 R and N233R. Said lipase may be called Lipex herein.
  • a combination of at least two of the foregoing lipases (B) may be used.
  • lipases (B) are included in inventive composition in such an amount that a finished inventive composition has a lipolytic enzyme activity in the range of from 100 to 0.005 LU/mg, preferably 25 to 0.05 LU/mg of the composition.
  • inventive compositions comprise
  • protease (D) at least one protease (D), hereinafter also referred to as protease (D).
  • At least one protease (D) is selected from the group of serine endopeptidases (EC 3.4.21), most preferably selected from the group of subtilisin type proteases (EC 3.4.21.62).
  • Serine proteases or serine peptidases are characterized by having a serine in the catalytically active site, which forms a covalent adduct with the substrate during the catalytic reaction.
  • a serine protease in the context of the present invention may be selected from the group consisting of chymotrypsin (e.g., EC 3.4.21.1), elastase (e.g., EC 3.4.21.36), elastase (e.g., EC 3.4.21.37 or EC 3.4.21.71), granzyme (e.g., EC 3.4.21.78 or EC 3.4.21.79), kallikrein (e.g., EC 3.4.21.34, EC 3.4.21.35, EC 3.4.21.118, or EC 3.4.21.119,) plasmin (e.g., EC 3.4.21.7), trypsin (e.g., EC 3.4.21.4), thrombin (e.g., EC 3.4.21 .5), and subtilisin.
  • chymotrypsin e.g., EC 3.4.21.1
  • elastase e.g., EC 3.4.21.36
  • subtilisin is also known as subtilopeptidase, e.g., EC 3.4.21 .62, the latter hereinafter also being referred to as “subtilisin”.
  • subtilisin related class of serine proteases shares a common amino acid sequence defining a catalytic triad which distinguishes them from the chymotrypsin related class of serine proteases.
  • Subtilisins and chymotrypsin related serine proteases both have a catalytic triad comprising aspartate, histidine and serine.
  • Proteases are active proteins exerting “protease activity” or “proteolytic activity”. Proteolytic activity is related to the rate of degradation of protein by a protease or proteolytic enzyme in a defined course of time.
  • proteolytic activity may be determined by using Succinyl-Ala-Ala-Pro-Phe-p-nitroanilide (Suc-AAPF-pNA, short AAPF; see e.g., DelMar et al. (1979), Analytical Biochem 99, 316-320) as substrate.
  • Ser-AAPF-pNA Succinyl-Ala-Ala-Pro-Phe-p-nitroanilide
  • pNA is cleaved from the substrate molecule by proteolytic cleavage, resulting in release of yellow color of free pNA which can be quantified by measuring OD405.
  • Proteolytic activity may be provided in units per gram enzyme.
  • 1 U protease may correspond to the amount of protease which sets free 1 pmol folin-positive amino acids and peptides (as tyrosine) per minute at pH 8.0 and 37°C (casein as substrate).
  • Proteases of the subtilisin type may be bacterial proteases originating from a microorganism selected from Bacillus, Clostridium, Enterococcus, Geobacillus, Lactobacillus, Lactococcus, Oceanobacillus, Staphylococcus, Streptococcus, or Streptomyces protease, or a Gram-negative bacterial polypeptide such as a Campylobacter, E. coli, Flavobacterium, Fuso- bacterium, Helicobacter, llyobacter, Neisseria, Pseudomonas, Salmonella, and Ureaplasma.
  • At least one protease (D) is selected from Bacillus alcalophilus, Bacillus amyloliquefaciens, Bacillus brevis, Bacillus circulans, Bacillus clausii, Bacillus coagu- lans, Bacillus firmus, Bacillus gibsonii, Bacillus lautus, Bacillus lentus, Bacillus licheniformis, Bacillus megaterium, Bacillus pumilus, Bacillus sphaericus, Bacillus stearothermophilus, Bacillus subtilis, or Bacillus thuringiensis protease.
  • At least one protease (D) is selected from the following: subtilisin from Bacillus amyloliquefaciens BPN' (described by Vasantha et al. (1984) J. Bacteriol. Volume 159, p. 811-819 and JA Wells et al. (1983) in Nucleic Acids Research, Volume 11 , p. 7911-7925); subtilisin from Bacillus licheniformis (subtilisin Carlsberg; disclosed in EL Smith et al. (1968) in J. Biol Chem, Volume 243, pp. 2184-2191 , and Jacobs et al. (1985) in Nucl. Acids Res, Vol 13, p.
  • subtilisin PB92 original sequence of the alkaline protease PB92 is described in EP 283075 A2; subtilisin 147 and/or 309 (Esperase®, Savinase®, respectively) as disclosed in WO 89/06279; subtilisin from Bacillus lentus as disclosed in WO 91/02792, such as from Bacillus lentus DSM 5483 or the variants of Bacillus lentus DSM 5483 as described in WO 95/23221 ; subtilisin from Bacillus alcalophilus (DSM 11233) disclosed in DE 10064983; subtilisin from Bacillus gibsonii (DSM 14391 ) as disclosed in WO 2003/054184; subtilisin from Bacillus sp.
  • At least one protease (D) has a sequence according to SEQ ID NO:22 as described in EP 1921147, or a protease which is at least 80% identical thereto and has proteolytic activity.
  • said protease is characterized by having amino acid glutamic acid, or aspartic acid, or asparagine, or glutamine, or alanine, or glycine, or serine at position 101 (according to BPN’ numbering) and has proteolytic activity.
  • said protease comprises one or more further substitutions: (a) threonine at position 3 (3T), (b) isoleucine at position 4 (4I), (c) alanine, threonine or arginine at position 63 (63A, 63T, or 63R), (d) aspartic acid or glutamic acid at position 156 (156D or 156E), (e) proline at position 194 (194P), (f) methionine at position 199 (199M), (g) isoleucine at position 205 (205I), (h) aspartic acid, glutamic acid or glycine at position 217 (217D, 217E or 217G), (i) combinations of two or more amino acids according to (a) to (h).
  • At least one protease (D) may be at least 80% identical to SEQ ID NO:22 as described in EP 1921147 and is characterized by comprising one amino acid (according to (a)-(h)) or combinations according to (i) together with the amino acid 101 E, 101 D, 101 N, 101 Q, 101A, 101G, or 101 S (according to BPN’ numbering).
  • said protease is characterized by comprising the mutation (according to BPN' numbering) R101 E, or S3T + V4I + V205I, or R101 E and S3T, V4I, and V205I, or S3T + V4I + V199M + V205I + L217D, and having proteolytic activity.
  • a protease having a sequence according to SEQ ID NO: 22 as described in EP 1921147 with 101 E may be called Lavergy herein.
  • protease according to SEQ ID NO:22 as described in EP 1921147 is characterized by comprising the mutation (according to BPN’ numbering) S3T + V4I + S9R + A15T + V68A + D99S + R101S + A103S + 1104V + N218D, and by having proteolytic activity.
  • compositions may comprise a combination of at least two proteases, preferably selected from the group of serine endopeptidases (EC 3.4.21), more preferably selected from the group of subtilisin type proteases (EC 3.4.21.62) - all as disclosed above.
  • proteases preferably selected from the group of serine endopeptidases (EC 3.4.21), more preferably selected from the group of subtilisin type proteases (EC 3.4.21.62) - all as disclosed above.
  • compositions for example 1 to 2% by weight of protease (D) and 0.1 to 0.5% by weight of lipase (B), both referring to the total weight of the composition.
  • lipase (B) and/or protease (D) is deemed called stable when its enzymatic activity “available in application” equals at least 60% when compared to the initial enzymatic activity before storage.
  • An enzyme may be called stable within this invention if its enzymatic activity available in application is at least 60%, at least 65%, at least 70%, at least
  • an enzyme is stable according to the invention when essentially no loss of enzymatic activity occurs during storage, i.e. loss in enzymatic activity equals 0% when compared to the initial enzymatic activity before storage.
  • loss of enzymatic activity within this invention may mean that the loss of enzymatic activity is less than 30%, less than 25%, less than 20%, less than 15%, less than 10%, less than 9%, less than 8%, less than 7%, less than 6%, less than 5%.
  • inventive compositions comprise
  • anionic surfactant (C) at least one anionic surfactant, hereinafter also being referred to as anionic surfactant (C).
  • anionic surfactants (C) are alkali metal and ammonium salts of Cs-Cis-alkyl sulfates, of Cs-Cis-fatty alcohol polyether sulfates, of sulfuric acid half-esters of ethoxylated C4- Ci2-alkylphenols (ethoxylation: 1 to 50 mol of ethylene oxide/mol), C12-C18 sulfo fatty acid alkyl esters, for example of C12-C18 sulfo fatty acid methyl esters, furthermore of Ci2-Ci8-alkylsulfonic acids and of C-io-Cia-alkylarylsulfonic acids.
  • anionic surfactants (C) are soaps, for example the sodium or potassium salts of stearic acid, oleic acid, palmitic acid, ether carboxylates, and alkylether phosphates.
  • anionic surfactant (C) is selected from compounds according to general formula (I)
  • R 1 n-Cio-Ci8-alkyl, especially with an even number of carbon atoms, for example n-decyl, n- dodecyl, n-tetradecyl, n-hexadecyl, or n-octadecyl, preferably Cio-Ci4-alkyl, and even more preferably n-Ci2-alkyl, x1 being a number in the range of from 1 to 5, preferably 2 to 4 and even more preferably 3.
  • M being selected from alkali metals, preferably potassium and even more preferably sodium.
  • anionic surfactant (C) x1 may be an average number and therefore x1 is not necessarily a whole number, while in individual molecules according to formula (I), x1 denotes a whole number.
  • inventive compositions may contain 0.1 to 60 % by weight of anionic surfactant (C), preferably 5 to 50 % by weight.
  • compositions may comprise ingredients other than the aforementioned.
  • examples are non-ionic surfactants, fragrances, dyestuffs, biocides, preservatives, enzymes, hydrotropes, builders, viscosity modifiers, polymers, buffers, defoamers, and anti-corrosion additives.
  • Preferred inventive compositions may contain one or more non-ionic surfactants.
  • Preferred non-ionic surfactants are alkoxylated alcohols, di- and multiblock copolymers of ethylene oxide and propylene oxide and reaction products of sorbitan with ethylene oxide or propylene oxide, alkyl polyglycosides (APG), hydroxyalkyl mixed ethers and amine oxides.
  • APG alkyl polyglycosides
  • alkoxylated alcohols and alkoxylated fatty alcohols are, for example, compounds of the general formula (II) in which the variables are defined as follows:
  • R 2 is identical or different and selected from hydrogen and linear Ci-Cio-alkyl, preferably in each case identical and ethyl and particularly preferably hydrogen or methyl,
  • R 3 is selected from Cs-C22-alkyl, branched or linear, for example n-CsHi?, n-CioH2i, n-Ci2H25, n-Ci4H29, n-CieH33 or n-CisHs?,
  • R 4 is selected from Ci-Cio-alkyl, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, sec-pentyl, neopentyl, 1 ,2-dimethylpropyl, isoamyl, n-hexyl, isohexyl, sec-hexyl, n-heptyl, n-octyl, 2-ethylhexyl, n-nonyl, n-decyl or isodecyl,
  • the variables e and f are in the range from zero to 300, where the sum of e and f is at least one, preferably in the range of from 3 to 50.
  • e is in the range from 1 to 100 and f is in the range from 0 to 30.
  • compounds of the general formula (II) may be block copolymers or random copolymers, preference being given to block copolymers.
  • alkoxylated alcohols are, for example, compounds of the general formula (III) in which the variables are defined as follows:
  • R 2 is identical or different and selected from hydrogen and linear Ci-Co-alkyl, preferably identical in each case and ethyl and particularly preferably hydrogen or methyl,
  • R 5 is selected from C6-C2o-alkyl, branched or linear, in particular n-CsHi?, n-CioH2i, n-Ci2H25, n-Ci3H27, n-CisHai, n-Cubhg, n-CieH33, n-CieHs?, a is a number in the range from zero to 10, preferably from 1 to 6, b is a number in the range from 1 to 80, preferably from 4 to 20, d is a number in the range from zero to 50, preferably 4 to 25.
  • the sum a + b + d is preferably in the range of from 5 to 100, even more preferably in the range of from 9 to 50.
  • Compounds of the general formula (III a) and (III b) may be block copolymers or random copolymers, preference being given to block copolymers.
  • nonionic surfactants are selected from di- and multiblock copolymers, composed of ethylene oxide and propylene oxide. Further suitable nonionic surfactants are selected from ethoxylated or propoxylated sorbitan esters. Amine oxides or alkyl polyglycosides, espe- cially linear C4-Ci6-alkyl polyglucosides and branched Cs-C-w-alkyl polyglycosides such as compounds of general average formula (IV) are likewise suitable. wherein:
  • R 6 is Ci-C4-alkyl, in particular ethyl, n-propyl or isopropyl,
  • R 7 is -(CH 2 )2-R 6 ,
  • G 1 is selected from monosaccharides with 4 to 6 carbon atoms, especially from glucose and xylose, y1 in the range of from 1.1 to 4, y1 being an average number,
  • non-ionic surfactants are compounds of general formula (V) and (VI)
  • AO is selected from ethylene oxide, propylene oxide and butylene oxide,
  • EO is ethylene oxide, CH2CH2-O,
  • R 8 selected from Cs-Cis-alkyl, branched or linear, and R 5 is defined as above.
  • a 3 O is selected from propylene oxide and butylene oxide, w is a number in the range of from 15 to 70, preferably 30 to 50, w1 and w3 are numbers in the range of from 1 to 5, and w2 is a number in the range of from 13 to 35.
  • Mixtures of two or more different nonionic surfactants selected from the foregoing may also be present.
  • surfactants that may be present are selected from amphoteric (zwitterionic) surfactants and anionic surfactants and mixtures thereof.
  • amphoteric surfactants are those that bear a positive and a negative charge in the same molecule under use conditions.
  • Preferred examples of amphoteric surfactants are so- called betaine-surfactants.
  • Many examples of betaine-surfactants bear one quaternized nitrogen atom and one carboxylic acid group per molecule.
  • a particularly preferred example of amphoteric surfactants is cocamidopropyl betaine (lauramidopropyl betaine).
  • amine oxide surfactants are compounds of the general formula (VII)
  • R 9 is selected from C8-C20- alkyl or C2-C4-alkylene C -C2o-alkylamido and R 10 and R 11 are both methyl.
  • a particularly preferred example is lauryl dimethyl aminoxide, sometimes also called lauramine oxide.
  • a further particularly preferred example is cocamidylpropyl dimethylaminoxide, sometimes also called cocamidopropylamine oxide.
  • inventive compositions may contain 0.1 to 60 % by weight of at least one surfactant, selected from non-ionic surfactants, amphoteric surfactants and amine oxide surfactants.
  • inventive solid detergent compositions for cleaners and especially those for automatic dishwashing do not contain any anionic surfactant.
  • Inventive compositions may contain at least one bleaching agent, also referred to as bleach.
  • Bleaching agents may be selected from chlorine bleach and peroxide bleach, and peroxide bleach may be selected from inorganic peroxide bleach and organic peroxide bleach.
  • Preferred are inorganic peroxide bleaches, selected from alkali metal percarbonate, alkali metal perborate and alkali metal persulfate.
  • organic peroxide bleaches are organic percarboxylic acids, especially organic percarboxylic acids.
  • alkali metal percarbonates especially sodium percarbonates
  • Such coatings may be of organic or inorganic nature. Examples are glycerol, sodium sulfate, silicate, sodium carbonate, and combinations of at least two of the foregoing, for example combinations of sodium carbonate and sodium sulfate.
  • Suitable chlorine-containing bleaches are, for example, 1 ,3-dichloro-5,5-dimethylhydantoin, N-chlorosulfamide, chloramine T, chloramine B, sodium hypochlorite, calcium hypochlorite, magnesium hypochlorite, potassium hypochlorite, potassium dichloroisocyanurate and sodium dichloroisocyanurate.
  • compositions may comprise, for example, in the range from 3 to 10% by weight of chlorine-containing bleach.
  • Inventive compositions may comprise one or more bleach catalysts.
  • Bleach catalysts can be selected from bleach-boosting transition metal salts or transition metal complexes such as, for example, manganese-, iron-, cobalt-, ruthenium- or molybdenum-salen complexes or carbonyl complexes.
  • Manganese, iron, cobalt, ruthenium, molybdenum, titanium, vanadium and copper complexes with nitrogen-containing tripod ligands and also cobalt-, iron-, copper- and rutheni- um-amine complexes can also be used as bleach catalysts.
  • compositions may comprise one or more bleach activators, for example N- methylmorpholinium-acetonitrile salts (“MMA salts”), trimethylammonium acetonitrile salts, N- acylimides such as, for example, N-nonanoylsuccinimide, 1 ,5-diacetyl-2,2-dioxohexahydro- 1 ,3,5-triazine (“DADHT”) or nitrile quats (trimethylammonium acetonitrile salts).
  • MMA salts N- methylmorpholinium-acetonitrile salts
  • DADHT dioxohexahydro- 1 ,3,5-triazine
  • nitrile quats trimethylammonium acetonitrile salts
  • bleach activators are tetraacetylethylenediamine (TAED) and tetraacetylhexylenediamine.
  • TAED tetraacetylethylenediamine
  • fragrances are benzyl salicylate, 2-(4-tert.-butylphenyl) 2-methylpropional, commercially available as Lilial®, and hexyl cinnamaldehyde.
  • dyestuffs are Acid Blue 9, Acid Yellow 3, Acid Yellow 23, Acid Yellow 73, Pigment Yellow 101 , Acid Green 1 , Solvent Green 7, and Acid Green 25.
  • Inventive compositions may contain one or more preservatives or biocides.
  • Biocides and preservatives prevent alterations of inventive liquid detergent compositions due to attacks from microorganisms.
  • examples of biocides and preservatives are BTA (1 ,2,3-benzotriazole), benzalkonium chlorides, 1 ,2-benzisothiazolin-3-one (“BIT”), 2-methyl-2H-isothiazol-3-one conscious“) and 5-chloro-2-methyl-2H-isothiazol-3-one facedCIT“), benzoic acid, sorbic acid, iodopropynyl butylcarbamate (“IPBC”), dichlorodimethylhydantoine (“DCDMH”), bromochlorodimethylhydantoine (“BCDMH”), and dibromodimethylhydantoine (“DBDMH”).
  • BTA 1,2,3-benzotriazole
  • BIT ,2-benzisothiazolin-3-one
  • Examples particularly of interest are the following antimicrobial agents and/or preservatives: 4,4’-dichloro 2-hydroxydiphenyl ether (CAS-No. 3380-30-1 ), further names: 5-chloro-2-(4- chlorophenoxy) phenol, Diclosan, DCPP, which is commercially available as a solution of 30 wt% of 4,4’-dichloro 2-hydroxydiphenyl ether in 1 ,2 propyleneglycol under the trade name Tino- san® HP 100; and
  • 2-Phenoxyethanol (CAS-no. 122-99-6, further names: Phenoxyethanol, Methylphenylglycol, Phenoxetol, ethylene glycol phenyl ether, Ethylene glycol monophenyl ether, Protectol® PE);
  • 2-bromo-2-nitropropane-1 ,3-diol (CAS-No. 52-51-7, further names: 2-bromo-2-nitro-1 ,3- propanediol, Bronopol®, Protectol® BN, Myacide AS);
  • Glutaraldehyde (CAS-No. 111-30-8, further names: 1-5-pentandial, pentane-1 , 5-dial, glutaral, glutardialdehyde, Protectol® GA, Protectol® GA 50, Myacide® GA);
  • Glyoxal (CAS No. 107-22-2; further names: ethandial, oxylaldehyde, 1 ,2-ethandial, Protectol® GL);
  • salts e.g., calcium sorbate, sodium sorbate, Potassium (E,E)-hexa-2,4-dienoate (Potassium Sorbate, CAS No. 24634-61-5);
  • Lactic acid and its salts especially sodium lactate
  • Benzoic acid (CAS No 65-85-0, CAS No. 532-32-1 ) and salts of benzoic acid, e.g., sodium benzoate, ammonium benzoate, calcium benzoate, magnesium benzoate, MEA-benzoate, potassium benzoate;
  • Salicylic acid and its salts e.g., calcium salicylate, magnesium salicylate, MEA salicylate, sodium salicylate, potassium salicylate, TEA salicylate; Benzalkonium chloride, benzalkonium bromide, benzalkonium saccharinate (CAS Nos 8001-54-5, 63449-41-2, 91080-29-4, 68989-01-5, 68424-85-1 , 68391-01-5, 61789-y71-7, 85409-22-9);
  • Didecyldimethylammonium chloride (DDAC, CAS No. 68424-95-3 and CAS No. 7173-51-5);
  • N-(3-aminopropyl)-N-dodecylpropane-1 ,3-diamine (Diamine, CAS No. 2372-82-9);
  • Biocide or preservative may be added to the inventive composition in a concentration of 0.001 to 10% relative to the total weight of the composition.
  • inventive compositions contain 2-phenoxyethanol in a concentration of 0.1 to 2% or 4,4’-dichloro 2-hydroxydiphenyl ether (DCPP) in a concentration of 0.005 to 0.6%.
  • DCPP 4,4’-dichloro 2-hydroxydiphenyl ether
  • the invention thus further pertains to a method of preserving an inventive composition against microbial contamination or growth, which method comprises addition of 2-phenoxyethanol.
  • the invention thus further pertains to a method of providing an antimicrobial effect on textiles after treatment with an inventive composition containing 4,4’-dichloro 2-hydroxydiphenyl ether (DCPP).
  • inventive composition containing 4,4’-dichloro 2-hydroxydiphenyl ether (DCPP) examples include agar-agar, carragene, tragacanth, gum arabic, alginates, pectins, hydroxyethyl cellulose, hydroxypropyl cellulose, starch, gelatin, locust bean gum, crosslinked poly(meth)acrlyates, for example polyacrlyic acid cross-linked with bis-(meth)acrylamide, furthermore silicic acid, clay such as - but not limited to - montmorrilionite, zeolite, dextrin, and casein.
  • Hydrotropes in the context with the present invention are compounds that facilitate the dissolution of compounds that exhibit limited solubility in water.
  • examples of hydrotropes are organic solvents such as ethanol, isopropanol, ethylene glycol, 1 ,2-propylene glycol, and further organic solvents that are water-miscible under normal conditions without limitation.
  • suitable hydrotropes are the sodium salts of toluene sulfonic acid, of xylene sulfonic acid, and of cumene sulfonic acid.
  • polymers other than polymer (A) are especially polyacrylic acid and its respective alkali metal salts, especially its sodium salt.
  • a suitable polymer is in particular polyacrylic acid, preferably with an average molecular weight M w in the range from 2,000 to 40,000 g/mol. preferably 2,000 to 10,000 g/mol, in particular 3,000 to 8,000 g/mol, each partially or fully neutralized with alkali, especially with sodium.
  • Suitable as well are copolymeric polycarboxylates, in particular those of acrylic acid with methacrylic acid and of acrylic acid or methacrylic acid with maleic acid and/or fumaric acid.
  • Polyacrylic acid and its respective alkali metal salts may serve as soil anti-redeposition agents.
  • polymers are polyvinylpyrrolidones (PVP).
  • PVP polyvinylpyrrolidones
  • Polyvinylpyrrolidones may serve as dye transfer inhibitors.
  • polymers are polyethylene terephthalates, polyoxyethylene terephthalates, and polyethylene terephthalates that are end-capped with one or two hydrophilic groups per molecule, hydrophilic groups being selected from CH2CH2CH2-SO3Na, CH2CH(CH2-SO3Na)2, and CH2CH(CH2SO 2 Na)CH2-SO 3 Na.
  • buffers are monoethanolamine and N,N,N-triethanolamine.
  • defoamers are silicones.
  • Inventive compositions are not only good in cleaning soiled laundry with respect to organic fatty soil such as oil.
  • Inventive liquid detergent compositions are very useful for removing non- bleachable stains such as, but not limited to stains from red wine, tea, coffee, vegetables, and various fruit juices like berry juices from laundry. They still do not leave residues on the clothes.
  • a further aspect of the present invention is therefore the use of inventive compositions for laundry care.
  • Laundry care in this context includes laundry cleaning.
  • inventive compositions are useful for hard surface cleaning.
  • a further aspect of the present invention is therefore the use of inventive compositions for hard surface cleaning.
  • composition for hard surface cleaning includes cleaners for home care and for industrial or institutional applications.
  • composition for hard surface cleaning includes compositions for dishwashing, especially hand dishwash and automatic dishwashing and ware-washing, and compositions for hard surface cleaning such as, but not limited to compositions for bathroom cleaning, kitchen cleaning, floor cleaning, descaling of pipes, window cleaning, car cleaning including truck cleaning, furthermore, open plant cleaning, cleaning-in-place, metal cleaning, disinfectant cleaning, farm cleaning, high pressure cleaning, but not laundry detergent compositions.
  • a special embodiment of compositions for hard surface cleaning are automatic dishwashing compositions.
  • compositions for hard surface cleaning and “compositions for hard surface cleaners” are used interchangeably.
  • percentages in the context of ingredients of laundry detergent compositions are percentages by weight and refer to the total solids content of the respective laundry detergent composition.
  • percentages in the context of ingredients of detergent composition for hard surface cleaners are percentages by weight and refer to the total solids content of the detergent composition for hard surface cleaning.
  • compositions when used for automatic dishwashing preferably contain
  • (E) at least one builder component selected from aminopolycarboxylic acids and preferably their alkali metal salts, in the context of the present invention also referred to as complexing agent (E) or sequestrant (E).
  • complexing agent (E) or sequestrant (E) in the context of the present invention also referred to as complexing agent (E) or sequestrant (E).
  • sequestrants and chelating agents are used interchangeably.
  • sequestrants (E) are alkali metal salts of MGDA (methyl glycine diacetic acid), GLDA (glutamic acid diacetic acid), IDS (iminodisuccinate), EDTA, and polymers with complexing groups like, for example, polyethylenimine in which 20 to 90 mole-% of the N-atoms bear at least one CH 2 COO' group, and their respective alkali metal salts, especially their sodium salts, for example MGDA-Naa, GLDA-Na4, or IDS-Na4.
  • Preferred sequestrants are those according to general formula (IX a)
  • M is selected from ammonium and alkali metal cations, same or different, for example cations of sodium, potassium, and combinations of at least two of the foregoing.
  • Ammonium may be substituted with alkyl but non-substituted ammonium NH 4 + is preferred.
  • Preferred examples of alkali metal cations are sodium and potassium and combinations of sodium and potassium, and even more preferred in compound according to general formula (II a) all M are the same and they are all Na; and x2 in formula (II a) is in the range of from zero to 1 .0, or (IX b)
  • said inventive composition contains a combination of at least two of the foregoing, for example a combination of chelating agent according to general formula (IX a) and a chelating agent according to general formula (IX b).
  • a combination of chelating agent according to general formula (IX a) and a chelating agent according to general formula (IX b) are preferred. Even more preferred are chelating agents according to the general formula (IX a).
  • compound according to general formula (IX a) is selected from ammonium or alkali metal salt of racemic MGDA and from ammonium and alkali metal salts of mixtures of L- and D-enantiomers according to formula (IX a), said mixture containing predominantly the respective L-isomer with an enantiomeric excess (ee) in the range of from 5 to 99%, preferably 5 to 95%, more preferably from 10 to 75% and even more preferably from 10 to 66%.
  • compound according to general formula (IX b) is selected from at least one alkali metal salt of a mixture of L- and D- enantiomers according to formula (IX b), said mixture containing the racemic mixture or preferably predominantly the respective L-isomer, for example with an enantiomeric excess (ee) in the range of from 5 to 99%, preferably 15 to 95%.
  • the enantiomeric excess of compound according to general formula (IX a) may be determined by measuring the polarization (polarimetry) or preferably by chromatography, for example by HPLC with a chiral column, for example with one or more cyclodextrins as immobilized phase or with a ligand exchange (Pirkle-brush) concept chiral stationary phase. Preferred is determination of the ee by HPLC with an immobilized optically active amine such as D-penicillamine in the presence of copper(+ll) salt.
  • the enantiomeric excess of compound according to general formula (IX b) salts may be determined by measuring the polarization (polarimetry).
  • compositions are free from phosphate.
  • Free from phosphate should be understood in the context of the present invention as meaning that the content of phosphate and polyphosphate is in sum in the range of from detection level to 1 % by weight, preferably from 10 ppm to 0.2% by weight, determined by gravimetry.
  • inventive compositions contain in the range of from 0.5 to 50% by weight of sequestrant (E), preferably 1 to 35% by weight, referring to the total solids content.
  • inventive compositions may be in bulk form or as unit doses, for example in the form of sachets or pouches.
  • Suitable materials for pouches are water-soluble polymers such as polyvinyl alcohol.
  • inventive compositions are liquid or gel-type at ambient temperature.
  • inventive compositions are solid at ambient temperature, for example powders or tabs.
  • inventive compositions are liquid or gel-type and have a pH value in the range of from 7 to 9, preferably 7.5 to 8.5.
  • their pH value may be in the range of from 7.5 to 11 , determined after dissolving 1 g/100 ml in distilled water and at ambient temperature.
  • inventive compositions are used for hard surfaces like tiles, for example bathroom tiles, their pH value may even be acidic, for example from 3 to 6.
  • inventive compositions are liquid or gel-type and have a total solids content in the range of from 8 to 80%, preferably 10 to 50%, determined by drying under vacuum at 80°C.
  • the invention is directed to a method of improving the cleaning performance of a liquid detergent composition, by adding a polymer (A) according to the invention to a detergent composition preferably comprising at least one lipase and/or at least one protease.
  • improved cleaning performance herein may indicate that polymers (A) provide better, i.e. improved, properties in stain removal under relevant cleaning conditions, when compared to the cleaning performance of a detergent composition lacking polymer (A).
  • “improved cleaning performance” means that the cleaning performance of a detergent comprising polymer (A) and at least one enzyme, preferably at least one hydrolase (B), especially at least one lipase (B) and/or at least one protease (D), is improved when compared to the cleaning performance of a detergent comprising polymer (A) and no enzyme.
  • “improved cleaning performance” means that the cleaning performance of a detergent comprising polymer (A) and an enzyme, preferably hydrolase (B), more preferably lipase (B) and/or protease (D), is improved when compared to the cleaning performance of a detergent comprising at least one enzyme, preferably at least one hydrolase (B), preferably lipase (B) and/or at least one protease (D) and no polymer (A).
  • relevant cleaning conditions refers to the conditions, particularly cleaning temperature, time, cleaning mechanics, suds concentration, type of detergent and water hardness, actually used in laundry machines, automatic dish washers or in manual cleaning processes.
  • Polymers (A) are excellently suited as or for the manufacture of inventive compositions. Polymers (A) show biodegradability.
  • Steps (a) and (0) are described in more detail below.
  • Step (a) includes providing a backbone molecule (a) that is a polymer bearing at least two primary amino groups per molecule.
  • Lactones (b) based on a mono-, di- or polysaccharide have been descried above.
  • the ratio of backbone molecule (a) and lactone (b) is preferably selected in a way that the molar amount of lactone groups corresponds to at least 30 mol-% of the primary amino groups of backbone (a), preferably 40 to 100 mol-%, more preferably 70 to 100 mol-%.
  • Backbone molecule (a) may be provided in bulk. However, the reaction is preferably carried out in solution, and it is advantageous to provide backbone molecule in solution.
  • Suitable solvents are alcohols like, e.g., methanol and ethanol, glycols like ethylene glycol, propylene glycol, and diethylene glycol as well as polyethylene glycol, for example with an average molecular weight M n up to 500 g/mol.
  • DMSO dimethyl sulfoxide
  • NMP N-methyl pyrrolidone
  • DMF dimethyl formamide
  • drying solvents are known, for example distilling DMSO over CaH 2 or converting the water in ethanol to NaOH by sodium metal addition, followed by addition of diethyl phthalate.
  • Step (0) may be carried out at temperatures in the range of from ambient temperature to 120°C. Preferred are 25 to 70°C. In case of solvents like methanol and ethanol, the boiling temperature is the upper limit. Even more preferred are 40 to 65°C.
  • Step (3) may be carried out at a pressure in the range of from 1 to 10 bar (absolute), preferably at ambient pressure.
  • reaction time of step (P) may be in the range of from 0.5 to 12 hours.
  • step (P) work-up steps may be performed such as, but not limited to precipitation of polymer (A), removal of any solvent used, e.g., by distilling it off.
  • the precipitation of polymer (A) may be achieved by the addition of a “non-solvent”, e.g., methanol.
  • Methanol is a very preferred solvent for carrying out step (P) because many backbone molecules (a) and lactones (b) are soluble in methanol but many resultant polymers (A) are not, and unreacted starting materials and methanol may then at least partially be removed by decantation or filtration.
  • the present invention is further illustrated by working examples.
  • the amount and type of amines substituted with residues, such as, for example, backbones (a) and polymers (A) and, optionally, the presence of hydrogen can be determined by identification of primary, secondary and tertiary amino groups in 13 C-NMR, as described for polyethylenimines in Lukovkin G.M. et al.'. Europ. Polymer Journal 1973, 9, 559-565 and St. Pierre T. et al., Geckle M.: ACS Polym. Prep. 1981 , 22, 128-129.
  • Backbone (a.1 ) had an average of 7.8 primary amino groups per molecule.
  • Step (a.1) polyethylenimine with an average molecular weight M w of 800 g/mol (a.1) was provided.
  • Backbone (a.1) had an average of 7.8 primary amino groups per molecule.
  • Step (p.2) A 2-liter glass reactor was charged with 200 g gluconolactone (b.1) and 700g methanol. Under stirring, 115 g (a.1) were added within 10 minutes. The mixture was further stirred for 22 hours at 21-23°C. A polymer precipitated, and the methanol was removed by decantation. The crude product was dried in vacuum at 40°C for 24 hours. 213 g of an off-white solid were obtained as polymer (A.2).
  • Step (a.1) polyethylenimine with an average molecular weight M w of 800 g/mol (a.1) was provided.
  • Backbone (a.1) had an average of 7.8 primary amino groups per molecule.
  • Step ( .3) A 2-liter glass reactor was charged with 200 g gluconolactone (b.1) and 700g methanol. Under stirring, 61 g (a.1) were added within 10 minutes. The mixture was further stirred for 19 hours at 21-23°C. A polymer precipitated, and the methanol was removed by decantation. The crude product was dried in vacuum at 40°C for 20 hours. 175 g of an off-white solid were obtained as polymer (A.3).
  • Step (a.1) polyethylenimine with an average molecular weight M w of 800 g/mol (a.1) was provided.
  • Backbone (a.1) had an average of 7.8 primary amino groups per molecule.
  • Step (3-4) A 500-ml glass reactor was charged with 80 g lactobionolactone (b.2) and 225 g methanol. Under stirring, 24.1 g (a.1) were added within 6 minutes. The mixture was further stirred for 90 minutes at 60°C. A polymer precipitated, and the methanol was removed by decantation. The crude product was dried in vacuum at 60°C for 28 hours. 100g of an off-white solid were obtained as polymer (A.4). 1.5 Synthesis of polymer (A.5)
  • Backbone (a.1 ) had an average of 7.8 primary amino groups per molecule.
  • Step (p.5) A 500-ml glass reactor was charged with 80 g lactobionolactone (b.2) and 225 g methanol. Under stirring, 12.8 g (a.1 ) were added within 11 minutes. The mixture was further stirred for 65 minutes at 60°C. A polymer precipitated, and the methanol was removed by decantation. The crude product is further dried in vacuum at 60°C for 20 hours. 77 g of an off- white solid were obtained as polymer (A.5).
  • Backbone (a.1 ) had an average of 7.8 primary amino groups per molecule.
  • Step (p.6) A 1000-ml glass reactor was charged with 130.7 g lactone (b.3) and 300 g dry DMSO. Under stirring, 14.1 g (a.1 ) were added. The resultant mixture was further stirred for 120 minutes at 60°C. The resultant solution was cooled to ambient temperature and then added to 1 .5 liter of dry methanol. A polymer precipitated and was recovered by filtration, followed by washing with 600 mol dry methanol (3 times). The crude product was dried in vacuum at 60°C for 48 hours. 117.6 g of an off-white solid were obtained as polymer (A.6).
  • Synthesis data of polymers (A) are summarized in Table 1 .
  • the soiled swatches are washed together with cotton ballast fabric (3.5 kg) and 2 soil ballast sheet wfk SBL 2004 (commercially available from wfk Testgewebe GmbH Brueggen) in a Miele Household washing machine Softronic W1935 WTL with cotton short program 30 °C. Washing conditions were 45g test detergent (L.1 , L.2 or L.3) as described above, water hardness 2.5 mmol/L, 30°C, 4-fold determination. After the wash the fabrics are dried in the air. The fabrics were instrumentally assessed before and after wash using the MACH5 multi area color measurement instrument from ColourConsult which gives Lab readings. From these Lab readings, AE values were calculated between unwashed and washed stain.
  • the total level of cleaning was evaluated using color measurements. Reflectance values of the stains on the monitors were measured using a sphere reflectance spectrometer (SF 500 type from Datacolor, USA, wavelength range 360-700nm, optical geometry d/8°) with a UV cutoff filter at 460 nm. In this case, with the aid of the CIE-Lab color space classification, the brightness L *, the value a * on the red - green color axis and the b * value on the yellow - blue color axis, were measured before and after washing and averaged for the respective stains of the monitor. The change of the color value (Delta E, AE) value, defined and calculated automatically by the evaluation color tools on the following formula, is a measure of the achieved cleaning effect. All experiments were repeated three times to provide a representative average number.
  • Stain #1 034KC Chocolate Mousse
  • Stain #2 E-141/1 Lipstick
  • Stain #3 PCH-144 Red Pottery Clay
  • Stain #4 KCH-115 Stanley Clay
  • Stain #5 PH-145 Tennis Court Clay
  • Stain #6 KCH-018 Clay Ground Soil
  • Stain #7 KCH-023 Cherry, all commercially available from CFT, Swissatest or Warwick. 11.2 Laundry cleaning
  • Polymers (A) were added to a laundry liquor comprising either a liquid model composition LC.2 or LC.3, respectively, without polymer (additive dosage of 3% on weight of liquid model detergent (owod)) together with commercially obtained stained fabrics (from Center of Test Materials CFT Vlaardingen. P-H108: Clay, Ground soil, P-H115: Standard Clay; P-H144: Red Pottery Clay; P-H145: tennis Court Clay) and 5g of commercially available soil ballast sheet wfk SBL 2004 (from wfk Testgewebe GmbH Brueggen). Washing conditions were 3 g/L detergent, liquor 250 mL, 30 min, 40°C, 4-fold determination. After wash the fabrics were rinsed and dried.
  • the reference reaches 60% within 14 days.
  • Oxygen uptake of inoculum blank is 20 to 30 mg O2/I and must not be greater than 60 mg O2/I.
  • the pH value measured at the end of the test must be between 6 and 8.5.
  • OECD 301 F is an aerobic test that measures biodegradation of a sewage sample by measuring the consumption of oxygen.
  • 100 mg/L test substance which is the nominal sole source of carbon, was added along with the inoculum (aerated sludge taken from the municipal sewage treatment plant, Mannheim, Germany). This sludge was stirred in a closed flask at a constant temperature (25°C) for 28 days.
  • the consumption of oxygen is determined by measuring the change in pressure in the closed flask using an Oxi TopC.
  • Carbon dioxide evolved was absorbed in a solution of sodium hydroxide. Nitrification inhibitors were added to the flask to prevent consumption of oxygen due to nitrification. The amount of oxygen taken up by the microbial population during biodegradation of the test substance (corrected for uptake by a blank inoculum run in parallel) is expressed as a percentage of ThOD (theoretical oxygen demand, which is measured by the elemental analysis of the com- pound). A positive control glucose/glutamic acid is run along with the test samples for each cabinet as reference.
  • Theoretical oxygen demand Amount of O2 required to oxidize a compound to its final oxidation products. This amount is calculated using the elemental analysis data. % Biodegradation
  • the reference had a biodegradability of more than 60%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Emergency Medicine (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

Compositions comprising (A) at least one polymer comprising (a) a backbone that is derived from a polymer bearing at least two primary amino groups per molecule, (b) of which at least 30 mol-% are linked through an amide group to at least one mono-, di- or polysaccharide.

Description

Compositions comprising polymers, polymers, and their use
The present invention is directed towards a composition comprising
(A) at least one polymer comprising
(a) a backbone that is derived from a polymer bearing at least two primary amino groups per molecule, of which
(b) at least 30 mol-% are linked through an amide group to at least one mono-, di- or polysaccharide.
Furthermore, the present invention is directed to polymers (A) useful for such compositions, and to a process for making such polymers (A). In addition, the present invention is directed towards precursors for polymers (A).
Laundry detergents have to fulfil several requirements. They need to remove all sorts of soiling from laundry, for example all sorts of pigments, clay, fatty soil, and dyestuffs including dyestuff from food and drinks such as red wine, tea, coffee, and fruit including berry juices. Laundry detergents also need to exhibit a certain storage stability. Especially laundry detergents that are liquid or that contain hygroscopic ingredients often lack a good storage stability, e.g., enzymes tend to be deactivated.
Fatty soilings are still a challenge in laundering. Although numerous suggestions for removal have been made - polymers, enzymes, surfactants - solutions that work well are still of interest. It has been suggested to use a lipase to support fat removal but many builders - especially in liquid laundry detergents - do not work well with lipase.
In addition, greying of laundry is still a significant problem. The greying is assigned to redeposition of soil during washing. In order to reduce redeposition of soil, specific native or modified polysaccharides such as polysaccharides treated with gaseous or liquid SO2 have been developed. Numerous ingredients have been suggested with various structures, see, e.g., WO 2015/091160, EP 3 266 858 A1 and EP 3 226 858 A1 , but still leave room for improvement, and the anti-greying performance of such compounds is still not sufficient. Therefore, there is a continuous need for improved anti-greying agents which can be used in a laundry process. In particular, it is desirable to provide an anti-greying agent which reduces greying of a washed fabric.
It was therefore an objective to provide a detergent composition that fulfils the requirements discussed above. Accordingly, the compositions defined at the outset have been found, hereinafter also referred to as inventive compositions or compositions according to the present invention. Inventive compositions contain at least one polymer (A) that comprises several building blocks:
(a) a backbone that is derived from a polymer bearing at least two primary amino groups per molecule, of which
(b) at least 30 mol-% are linked through an amide group to at least one mono-, di- or polysaccharide.
Said 30 mol-% refer to the primary amino groups and refer to an average over the entire respective polymer (A). In a polymer (A) derived from a backbone (a) with two NH2 groups per molecule, for example, a linear polyethylenimine or a linear polypropylene imine, some molecules may be fully converted with lactone, others may be half converted and some may be unreacted.
Preferably, at least 50 mol-% of the primary amino groups are converted.
Exampes of backbones (a) are polylysine, polyvinylamines and polyalkyleneimines, for example polyethylenimines and polypropylene imines.
Polyalkylene imines used as backbones (a) may have a linear or preferably a branched structure. Branches may be alkylenamino groups such as, but not limited to -CH2-CH2-NH2 groups or (CH2)3-NH2-groups. Longer branches may be, for examples, -(CH2)3-N(CH2CH2CH2NH2)2 or -(CH2)2-N(CH2CH2NH2)2 groups.
In one embodiment of the present invention, said backbone (a) is selected from polyvinylamine, branched polyethylenimine, branched polypropylenimine, and polylysine.
Polyvinylamine may have an average molecular weight Mw in the range of from 500 to 100,000 g/mol, determined by GPC (gel permeation chromatography), preferably with water as eluent. Due to their manufacture, polymerization of N-vinyl formamide followed by saponification, polyvinylamines may have a degree of hydrolysis in the range of from 20 to 100%, for example 80 to 100%, determined by (1H NMR). Preferred are fully hydrolyzed polyvinylamines. Polyvinylamines may have an average of from 2 to 200 primary amino groups per molecule, preferably 25 to 100.
The term “polyethylenimine” in the context of the present invention does not only refer to poly- ethylenimine homopolymers but also to polyalkylenimines containing NH-CH2-CH2-NH structural elements together with other alkylene diamine structural elements, for example NH-CH2-CH2- CH2-NH structural elements, NH-CH2-CH(CH3)-NH structural elements, NH-(CH2)4-NH structural elements, NH-(CH2)e-NH structural elements or (NH-(CH2)s-NH structural elements but the NH- CH2-CH2- NH structural elements being in the majority with respect to the molar share. Preferred polyethylenimines contain NH-CH2-CH2-NH structural elements being in the majority with respect to the molar share, for example amounting to 60 mol-% or more, more preferably amounting to at least 70 mol-%, referring to all alkylenimine structural elements. In a special embodiment, the term polyethylenimine refers to those polyalkylenimines that bear only one or zero alkylenimine structural element per molecule that is different from NH-CH2-CH2-NH.
In one embodiment of the present invention, the average molecular weight Mw of branched polyethylenimines is in the range of from 500 to 100,000 g/mol, preferably up to 50,000 g/mol and more preferably from 800 up to 25,000 g/mol. The average molecular weight Mw of branched polyethylenimines may be determined by gel permeation chromatography (GPC), with 1.5 % by weight aqueous formic acid as eluent and cross-linked poly-hydroxyethyl methacrylate as stationary phase.
In one embodiment of the present invention, branched polyethylenimines display a polydispersity Q = Mw/Mn of at least 3.5, preferably in the range of from 3.5 to 10, more preferably in the range of from 4 to 9 and even more preferably from 4.0 to 5.5. In other embodiments of the present invention, branched polyalkylenimines display a polydispersity Q = Mw/Mn of 3.4 at most, for examples in the range of from 1 .1 to 3.0, more preferably in the range of from 1 .3 to 2.5 and even more preferably from 1 .5 to 2.0.
Branched polyethylenimines may have a degree of branching in the range of from 0.30 to 0.75, preferably 0.5 to 0.7, more preferably 0.55 to 0.7, determined by 13C NMR spectroscopy in D2O. In the context of the present invention, the term “branched polyethylenimines” includes polymers that are also termed highly branched polyethylenimines. The degree of branching is calculated as (D + T) I (D + T+ L). In this formula, D refers to the dendritic (or tertiary) amin groups, L (linear) refers to the secondary amino groups and L (linear) to the primary amino groups. Branched polyethylenimines may be obtained by the polymerization of ethylenimine (aziridine). The term “polypropylenimine” in the context of the present invention does not only refer to poly- propylenimine homopolymers but also to polyalkylenimines containing NH-CH2-CH2-CH2-NH structural elements or NH-CH2-CH(CH3)-NH structural elements together with other alkylene diamine structural elements, for example NH-CH2-CH2-NH structural elements, NH-(CH2)4-NH structural elements, NH-(CH2)e-NH structural elements or (NH-(CH2)a-NH structural elements but the NH-CH2-CH2-CH2-NH structural elements or NH-CH2-CH(CH3)-NH structural elements being in the majority with respect to the molar share. Preferred polypropylenimines contain NH-CH2-CH2-CH2-NH or NH-CH2-CH(CH3)-NH structural elements being in the majority with respect to the molar share, for example amounting to 60 mol-% or more, more preferably amounting to at least 70 mol-%, referring to all alkylenimine structural elements. In a special embodiment, polypropylenimine refers to those polyalkylene imines that bear one or zero alkylenimine structural element per molecule that is different from both NH-CH2-CH2-CH2-NH and NH-CH2-CH(CH3)-NH.
Preferably, the degree of branching in branched polypropylene imines is in the range of from 0.30 to 0.75, preferably 0.5 to 0.7, more preferably 0.55 to 0.7, determined by 13C NMR spectroscopy in D2O.
Branched polyethylenimines and branched polypropylene imines may bear of from 2 to 200 primary amino groups per molecule, preferred are 4 to 50 primary amino groups.
Polylysines are polypeptides preferably bearing an average of 25 to 35 lysine units per molecule. Polylysine may be selected from a-polylysine and E-polylysine, with a-polylysine being preferred. Polylysine may be based on D-lysine and L-lysine and mixtures thereof, the L- enantiomer being preferred. During manufacture, partial racemization may occur but the L- enantiomer is prevailing. Furthermore, the term polylysine in the context of the present invention includes polypeptides that contain lysine and at least one further amino acid such as alanine, glycine, valine, threonine and the like, with the majority of the amino acids in said polylysine being lysine.
In one embodiment of the present invention, said backbone (a) is selected from branched polyethylenimines with an average molecular weight Mw in the range of from 500 to 20,000 g/mol.
As indicated above, at least 30 mol-% of the primary amino groups of backbone (a) are linked through an amide group to at least one mono-, di- or polysaccharide under formation of an amide group, preferably 40 to 80 mol-%, more preferably 70 to 100 mol-%. Said linkage may be accomplished by conversion of an alkyl ester or a lactone based on a mono-, di- or polysaccharide with said backbone (a).
Alkyl esters based on mono-, di- or polysaccharide, for example methyl esters or ethyl esters, based on a sugar acid are formed by esterification of a sugar ester with the respective alkanol.
Lactones based on mono-, di- or polysaccharide are formed by intramolecular esterification of a sugar acid, for example of gluconic acid, galacturonic acid, lactobionic acid (4-0-3- galactopyranosyl-D-gluconic acid), mannonic acid, galactonic acid, gluonic acid, and a- heptagluconic acid. The respective naturally occurring feedstock is preferred, thus, e.g., lactones based on D-gluconic acid, D-galacturonic acid, lactobionic acid, L-mannonic acid, D- galactonic acid, D-gluonic acid, and a-D-heptagluconic acid. Example of a lactone based on a polysaccharide is the condensation product of a monocarboxylic acid of maltodextrin. The monocarboxylic acid may be identified by 1H and 13C NMR spectroscopy.
Specific examples of suitable lactones are glucuronolactone, D-galactono-y-lactone, L- mannonic acid-y-lactone, D-gulono-y-lactone, D-gluconolactone, 6-gluconolactone, and a-D- heptagluconic acid-y-lactone.
In one embodiment of the present invention, said lactone is selected from D-gluconolactone and lactobionolactone and the lactone based on monocarboxylic acid of maltodextrin.
In one embodiment of the present invention, polymer (A) has an average molecular weight Mw in the range from 750 to 350,000 g/mol, preferably 3,000 to 50,000 g/mol. The molecular weight may be determined by GPC with water as eluent.
In one embodiment of the present invention, the weight ratio of block (a) to block (b) is in the range of from 1 : 5 to 5 : 1 , for example from 1 : 2 to 2 : 1 . The weight ratio may be steered by selection of the molecular weight of backbone (a) and lactone based on mono-, di- or polysaccharide, respectively.
In one embodiment of the present invention, polymer (A) has a Hazen colour number in the range of from 20 to 500, determined in a 10 % weight aqueous solution.
In one embodiment of the present invention, polymer (A) has an amine value, measured according to DIN 53240 (2013), in the range of from 10 to 2000, preferably 25 to 700 mg KOH/g polymer (A). Inventive compositions may comprise impurities that stem from the synthesis of polymer (A), for example unreacted lactone based on based on mono-, di- or polysaccharide, respectively, or unreacted backbone (a) especially in embodiments wherein backbone (a) bears less than 5 primary amino groups per molecule, or y- or 5-hydroxycarboxylic acid stemming from hydrolyzed lactone based on mono-, di- or polysaccharide.
In one embodiment of the present invention, inventive compositions comprise at least one enzyme. Enzymes are identified by polypeptide sequences (also called amino acid sequences herein). The polypeptide sequence specifies the three-dimensional structure including the “active site” of an enzyme which in turn determines the catalytic activity of the same. Polypeptide sequences may be identified by a SEQ ID NO. According to the World Intellectual Property Office (WIPO) Standard ST.25 (1998) the amino acids herein are represented using three-letter code with the first letter as a capital or the corresponding one letter.
Any enzyme according to the invention relates to parent enzymes and/or variant enzymes, both having enzymatic activity. Enzymes having enzymatic activity are enzymatically active or exert enzymatic conversion, meaning that enzymes act on substrates and convert these into products. The term “enzyme” herein excludes inactive variants of an enzyme.
A “parent” sequence (of a parent protein or enzyme, also called “parent enzyme”) is the starting sequence for introduction of changes (e.g., by introducing one or more amino acid substitutions, insertions, deletions, or a combination thereof) to the sequence, resulting in “variants” of the parent sequences. The term parent enzyme (or parent sequence) includes wild-type enzymes (sequences) and synthetically generated sequences (enzymes) which are used as starting sequences for introduction of (further) changes.
The term “enzyme variant” or “sequence variant” or “variant enzyme” refers to an enzyme that differs from its parent enzyme in its amino acid sequence to a certain extent. If not indicated otherwise, variant enzyme “having enzymatic activity” means that this variant enzyme has the same type of enzymatic activity as the respective parent enzyme.
In describing the variants of the present invention, the nomenclature described as follows is used:
Amino acid substitutions are described by providing the original amino acid of the parent enzyme followed by the number of the position within the amino acid sequence, followed by the substituted amino acid. Amino acid deletions are described by providing the original amino acid of the parent enzyme followed by the number of the position within the amino acid sequence, followed by *. Amino acid insertions are described by providing the original amino acid of the parent enzyme followed by the number of the position within the amino acid sequence, followed by the original amino acid and the additional amino acid. For example, an insertion at position 180 of lysine next to glycine is designated as “Gly180Glyl_ys” or “G180GK”. In cases where a substitution and an insertion occur at the same position, this may be indicated as S99SD+S99A or in short S99AD. In cases where an amino acid residue identical to the existing amino acid residue is inserted, degeneracy in the nomenclature arises. If for example a glycine is inserted after the glycine in the above example this would be indicated by G180GG. Where different alterations can be introduced at a position, the different alterations are separated by a comma, e.g., “Arg170Tyr, Glu” represents a substitution of arginine at position 170 with tyrosine or glutamic acid. Alternatively, different alterations or optional substitutions may be indicated in brackets, e.g., Arg170[Tyr, Gly] or Arg170{Tyr, Gly}; or in short R170 [Y,G] or R170 {Y, G}; or in long R170Y, R170G.
Enzyme variants may be defined by their sequence identity when compared to a parent enzyme. Sequence identity usually is provided as “% sequence identity” or “% identity”. For calculation of sequence identities, in a first step a sequence alignment has to be produced. According to this invention, a pairwise global alignment has to be produced, meaning that two sequences have to be aligned over their complete length, which is usually produced by using a mathematical approach, called alignment algorithm. According to the invention, the alignment is generated by using the algorithm of Needleman and Wunsch (J. Mol. Biol. (1979) 48, p. 443-453). Preferably, the program “NEEDLE” (The European Molecular Biology Open Software Suite (EMBOSS)) is used for the purposes of the current invention, with using the programs default parameter (gap open=10.0, gap extend=0.5 and matrix=EBLOSUM62).
According to this invention, the following calculation of %-identity applies: %-identity = (identical residues / length of the alignment region which is showing the respective sequence of this invention over its complete length) *100.
According to this invention, enzyme variants may be described as an amino acid sequence which is at least n% identical to the amino acid sequence of the respective parent enzyme with “n” being an integer between 10 and 100. In one embodiment, variant enzymes are at least 70%, at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least
85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least
92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical when compared to the full-length amino acid sequence of the parent enzyme, wherein the enzyme variant has enzymatic activity.
“Enzymatic activity” means the catalytic effect exerted by an enzyme, which usually is expressed as units per milligram of enzyme (specific activity) which relates to molecules of substrate transformed per minute per molecule of enzyme (molecular activity). Variant enzymes may have enzymatic activity according to the present invention when said enzyme variants exhibit at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at 10 least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or 100% of the enzymatic activity of the respective parent enzyme.
In one embodiment, enzyme is selected from hydrolases, preferably from proteases, amylases, lipases, cellulases, and mannanases.
In one embodiment of the present invention, inventive compositions comprise
(B) at least one hydrolase, hereinafter also referred to as hydrolase (B), preferably selected from lipases, hereinafter also referred to as lipase (B).
“Lipases”, “lipolytic enzyme”, “lipid esterase”, all refer to enzymes of EC class 3.1.1 (“carboxylic ester hydrolase”). Such a lipase (B) may have lipase activity (or lipolytic activity; triacylglycerol lipase, EC 3.1.1.3), cutinase activity (EC 3.1.1.74; enzymes having cutinase activity may be called cutinase herein), sterol esterase activity (EC 3.1.1.13) and/or wax-ester hydrolase activity (EC 3.1.1.50). Lipases (B) include those of bacterial or fungal origin.
Commercially available lipase (B) include but are not limited to those sold under the trade names Lipolase™, Lipex™, Lipolex™ and Lipoclean™ (Novozymes A/S), Preferenz™ L (DuPont), Lumafast (originally from Genencor) and Lipomax (Gist-Brocades/ now DSM).
In one aspect of the present invention, lipase (B) is selected from the following: lipases from Humicola (synonym Thermomyces), e.g., from H. lanuginosa (T. lanuginosus) as described in EP 258068, EP 305216, WO 92/05249 and WO 2009/109500 or from H. insolens as described in WO 96/13580; lipases derived from Rhizomucor miehei as described in WO 92/05249; lipase from strains of Pseudomonas (some of these now renamed to Burkholderia), e.g., from P. alcal- igenes or P. pseudoalcaligenes (EP 218272, WO 94/25578, WO 95/30744, WO 95/35381 , WO 96/00292), P. cepacia (EP 331376), P. stutzeri (GB 1372034), P. fluorescens, Pseudomonas sp. strain SD705 (WO 95/06720 and WO 96/27002), P. wisconsinensis (WO 96/12012), Pseudomonas mendocina (WO 95/14783), P. glumae (WO 95/35381 , WO 96/00292); lipase from Streptomyces griseus (WO 2011/150157) and S. pristinaespiralis (WO 2012/137147), GDSL-type Streptomyces lipases (WO 2010/065455); lipase from Thermobifida fusca as disclosed in WO 2011/084412; lipase from Geobacillus stearothermophilus as disclosed in WO 2011/084417; Bacillus lipases, e.g., as disclosed in WO 00/60063, lipases from B. subtilis as disclosed in Dartois et al. (1992), Biochemica et Biophysica Acta, 1131 , 253-360 or WO 2011/084599, B. stearothermophilus (JP S64-074992) or B. pumilus (WO 91/16422); lipase from Candida antarctica as disclosed in WO 94/01541 . Suitable lipases (B) include also those which are variants of the above described lipases which have lipolytic activity. Such suitable lipase variants are e.g., those which are developed by methods as disclosed in WO 95/22615, WO 97/04079, WO 97/07202, WO 00/60063, WO 2007/087508, EP 407225 and EP 260105.
Suitable lipase variants are e.g., those which are developed by methods as disclosed in WO 95/22615, WO 97/04079, WO 97/07202, WO 00/60063, WO 2007/087508, EP 407225 and EP 260105.
Suitable lipases (B) include also those that are variants of the above described lipases which have lipolytic activity. Suitable lipase variants include variants with at least 40 to 100% identity when compared to the full length polypeptide sequence of the parent enzyme as disclosed above. In one embodiment lipase variants having lipolytic activity may be at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91 %, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% identical when compared to the full length polypeptide sequence of the parent enzyme as disclosed above.
Lipases (B) have “lipolytic activity”. The methods for determining lipolytic activity are well-known in the literature (see e.g., Gupta et al. (2003), Biotechnol. AppL Biochem. 37, p. 63-71 ). E.g., the lipase activity may be measured by ester bond hydrolysis in the substrate para-nitrophenyl palmitate (pNP-Palmitate, C:16) and releases pNP which is yellow and can be detected at 405 nm.
In one embodiment, lipase (B) is selected from fungal triacylglycerol lipase (EC class 3.1.1.3). Fungal triacylglycerol lipase may be selected from lipases of Thermomyces lanuginosa. In one embodiment, at least one Thermomyces lanuginosa lipase is selected from triacylglycerol lipase according to amino acids 1 -269 of SEQ ID NO: 2 of US5869438 and variants thereof having lipolytic activity.
Thermomyces lanuginosa lipase may be selected from variants having lipolytic activity which are at least 90%, at least 91 %, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% identical when compared to the full length polypeptide sequence of amino acids 1-269 of SEQ ID NO: 2 of US 5,869,438.
Thermomyces lanuginosa lipase may be selected from variants having lipolytic activity comprising conservative mutations only, which do not pertain the functional domain of amino acids 1- 269 of SEQ ID NO: 2 of US 5,869,438. Lipase variants of this embodiment having lipolytic activity may be at least 95%, at least 96%, at least 97%, at least 98% or at least 99% similar when compared to the full length polypeptide sequence of amino acids 1-269 of SEQ ID NO: 2 of US 5,869,438.
Thermomyces lanuginosa lipase may be selected from variants having lipolytic activity comprising at least the following amino acid substitutions when compared to amino acids 1-269 of SEQ ID NO: 2 of US 5,869,438: T231 R and N233R. Said lipase variants may further comprise one or more of the following amino acid exchanges when compared to amino acids 1-269 of SEQ ID NO: 2 of US 5,869,438: Q4V, V60S, A150G, L227G, P256K.
Thermomyces lanuginosa lipase may be selected from variants having lipolytic activity comprising at least the amino acid substitutions T231 R, N233R, Q4V, V60S, A150G, L227G, P256K within the polypeptide sequence of amino acids 1-269 of SEQ ID NO: 2 of US 5,869,438and are at least 95%, at least 96%, or at least 97% similar when compared to the full length polypeptide sequence of amino acids 1 -269 of SEQ ID NO: 2 of US 5,869,438.
Thermomyces lanuginosa lipase may be selected from variants having lipolytic activity comprising the amino acid substitutions T231 R and N233R within amino acids 1-269 of SEQ ID NO: 2 of US5869438 and are at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% similar when compared to the full length polypeptide sequence of amino acids 1-269 of SEQ ID NO: 2 of US 5,869,438.
Thermomyces lanuginosa lipase may be a variant of amino acids 1-269 of SEQ ID NO: 2 of US5869438 having lipolytic activity, wherein the variant of amino acids 1-269 of SEQ ID NO: 2 of US 5,869,438is characterized in containing the amino acid substitutions T231 R and N233R. Said lipase may be called Lipex herein.
In one embodiment of the present invention, a combination of at least two of the foregoing lipases (B) may be used. In one embodiment of the present invention, lipases (B) are included in inventive composition in such an amount that a finished inventive composition has a lipolytic enzyme activity in the range of from 100 to 0.005 LU/mg, preferably 25 to 0.05 LU/mg of the composition. A Lipase Unit (LU) is that amount of lipase which produces 1 pmol of titratable fatty acid per minute in a pH stat, under the following conditions: temperature 30° C.; pH=9.0; substrate is an emulsion of 3.3 wt. % of olive oil and 3.3% gum arabic, in the presence of 13 mmol/l Ca2+ and 20 mmol/l NaCI in 5 mmol/l Tris-buffer.
In one embodiment of the present invention, inventive compositions comprise
(D) at least one protease (D), hereinafter also referred to as protease (D).
In one embodiment, at least one protease (D) is selected from the group of serine endopeptidases (EC 3.4.21), most preferably selected from the group of subtilisin type proteases (EC 3.4.21.62). Serine proteases or serine peptidases are characterized by having a serine in the catalytically active site, which forms a covalent adduct with the substrate during the catalytic reaction. A serine protease in the context of the present invention may be selected from the group consisting of chymotrypsin (e.g., EC 3.4.21.1), elastase (e.g., EC 3.4.21.36), elastase (e.g., EC 3.4.21.37 or EC 3.4.21.71), granzyme (e.g., EC 3.4.21.78 or EC 3.4.21.79), kallikrein (e.g., EC 3.4.21.34, EC 3.4.21.35, EC 3.4.21.118, or EC 3.4.21.119,) plasmin (e.g., EC 3.4.21.7), trypsin (e.g., EC 3.4.21.4), thrombin (e.g., EC 3.4.21 .5), and subtilisin. Subtilisin is also known as subtilopeptidase, e.g., EC 3.4.21 .62, the latter hereinafter also being referred to as “subtilisin”. The subtilisin related class of serine proteases shares a common amino acid sequence defining a catalytic triad which distinguishes them from the chymotrypsin related class of serine proteases. Subtilisins and chymotrypsin related serine proteases both have a catalytic triad comprising aspartate, histidine and serine.
Proteases are active proteins exerting “protease activity” or “proteolytic activity”. Proteolytic activity is related to the rate of degradation of protein by a protease or proteolytic enzyme in a defined course of time.
The methods for analyzing proteolytic activity are well-known in the literature (see e.g., Gupta et al. (2002), Appl. Microbiol. BiotechnoL 60: 381-395). Proteolytic activity may be determined by using Succinyl-Ala-Ala-Pro-Phe-p-nitroanilide (Suc-AAPF-pNA, short AAPF; see e.g., DelMar et al. (1979), Analytical Biochem 99, 316-320) as substrate. pNA is cleaved from the substrate molecule by proteolytic cleavage, resulting in release of yellow color of free pNA which can be quantified by measuring OD405. Proteolytic activity may be provided in units per gram enzyme. For example, 1 U protease may correspond to the amount of protease which sets free 1 pmol folin-positive amino acids and peptides (as tyrosine) per minute at pH 8.0 and 37°C (casein as substrate).
Proteases of the subtilisin type (EC 3.4.21.62) may be bacterial proteases originating from a microorganism selected from Bacillus, Clostridium, Enterococcus, Geobacillus, Lactobacillus, Lactococcus, Oceanobacillus, Staphylococcus, Streptococcus, or Streptomyces protease, or a Gram-negative bacterial polypeptide such as a Campylobacter, E. coli, Flavobacterium, Fuso- bacterium, Helicobacter, llyobacter, Neisseria, Pseudomonas, Salmonella, and Ureaplasma.
In one aspect of the invention, at least one protease (D) is selected from Bacillus alcalophilus, Bacillus amyloliquefaciens, Bacillus brevis, Bacillus circulans, Bacillus clausii, Bacillus coagu- lans, Bacillus firmus, Bacillus gibsonii, Bacillus lautus, Bacillus lentus, Bacillus licheniformis, Bacillus megaterium, Bacillus pumilus, Bacillus sphaericus, Bacillus stearothermophilus, Bacillus subtilis, or Bacillus thuringiensis protease.
In one embodiment of the present invention, at least one protease (D) is selected from the following: subtilisin from Bacillus amyloliquefaciens BPN' (described by Vasantha et al. (1984) J. Bacteriol. Volume 159, p. 811-819 and JA Wells et al. (1983) in Nucleic Acids Research, Volume 11 , p. 7911-7925); subtilisin from Bacillus licheniformis (subtilisin Carlsberg; disclosed in EL Smith et al. (1968) in J. Biol Chem, Volume 243, pp. 2184-2191 , and Jacobs et al. (1985) in Nucl. Acids Res, Vol 13, p. 8913-8926); subtilisin PB92 (original sequence of the alkaline protease PB92 is described in EP 283075 A2); subtilisin 147 and/or 309 (Esperase®, Savinase®, respectively) as disclosed in WO 89/06279; subtilisin from Bacillus lentus as disclosed in WO 91/02792, such as from Bacillus lentus DSM 5483 or the variants of Bacillus lentus DSM 5483 as described in WO 95/23221 ; subtilisin from Bacillus alcalophilus (DSM 11233) disclosed in DE 10064983; subtilisin from Bacillus gibsonii (DSM 14391 ) as disclosed in WO 2003/054184; subtilisin from Bacillus sp. (DSM 14390) disclosed in WO 2003/056017; subtilisin from Bacillus sp. (DSM 14392) disclosed in WO 2003/055974; subtilisin from Bacillus gibsonii (DSM 14393) disclosed in WO 2003/054184; subtilisin having SEQ ID NO: 4 as described in WO 2005/063974; subtilisin having SEQ ID NO: 4 as described in WO 2005/103244; subtilisin having SEQ ID NO: 7 as described in WO 2005/103244; and subtilisin having SEQ ID NO: 2 as described in application DE 102005028295.4.
In one embodiment, at least one protease (D) has a sequence according to SEQ ID NO:22 as described in EP 1921147, or a protease which is at least 80% identical thereto and has proteolytic activity. In one embodiment, said protease is characterized by having amino acid glutamic acid, or aspartic acid, or asparagine, or glutamine, or alanine, or glycine, or serine at position 101 (according to BPN’ numbering) and has proteolytic activity. In one embodiment, said protease comprises one or more further substitutions: (a) threonine at position 3 (3T), (b) isoleucine at position 4 (4I), (c) alanine, threonine or arginine at position 63 (63A, 63T, or 63R), (d) aspartic acid or glutamic acid at position 156 (156D or 156E), (e) proline at position 194 (194P), (f) methionine at position 199 (199M), (g) isoleucine at position 205 (205I), (h) aspartic acid, glutamic acid or glycine at position 217 (217D, 217E or 217G), (i) combinations of two or more amino acids according to (a) to (h).
At least one protease (D) may be at least 80% identical to SEQ ID NO:22 as described in EP 1921147 and is characterized by comprising one amino acid (according to (a)-(h)) or combinations according to (i) together with the amino acid 101 E, 101 D, 101 N, 101 Q, 101A, 101G, or 101 S (according to BPN’ numbering). In one embodiment, said protease is characterized by comprising the mutation (according to BPN' numbering) R101 E, or S3T + V4I + V205I, or R101 E and S3T, V4I, and V205I, or S3T + V4I + V199M + V205I + L217D, and having proteolytic activity. A protease having a sequence according to SEQ ID NO: 22 as described in EP 1921147 with 101 E may be called Lavergy herein.
In one embodiment, protease according to SEQ ID NO:22 as described in EP 1921147 is characterized by comprising the mutation (according to BPN’ numbering) S3T + V4I + S9R + A15T + V68A + D99S + R101S + A103S + 1104V + N218D, and by having proteolytic activity.
Inventive compositions may comprise a combination of at least two proteases, preferably selected from the group of serine endopeptidases (EC 3.4.21), more preferably selected from the group of subtilisin type proteases (EC 3.4.21.62) - all as disclosed above.
It is preferred to use a combination of lipase (B) and protease (D) in compositions, for example 1 to 2% by weight of protease (D) and 0.1 to 0.5% by weight of lipase (B), both referring to the total weight of the composition.
In the context of the present invention, lipase (B) and/or protease (D) is deemed called stable when its enzymatic activity “available in application” equals at least 60% when compared to the initial enzymatic activity before storage. An enzyme may be called stable within this invention if its enzymatic activity available in application is at least 60%, at least 65%, at least 70%, at least
75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least
94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% when compared to the initial enzymatic activity before storage. Subtracting a% from 100% gives the “loss of enzymatic activity during storage” when compared to the initial enzymatic activity before storage. In one embodiment, an enzyme is stable according to the invention when essentially no loss of enzymatic activity occurs during storage, i.e. loss in enzymatic activity equals 0% when compared to the initial enzymatic activity before storage. Essentially no loss of enzymatic activity within this invention may mean that the loss of enzymatic activity is less than 30%, less than 25%, less than 20%, less than 15%, less than 10%, less than 9%, less than 8%, less than 7%, less than 6%, less than 5%.
In one embodiment of the present invention, inventive compositions comprise
(C) at least one anionic surfactant, hereinafter also being referred to as anionic surfactant (C).
Examples of anionic surfactants (C) are alkali metal and ammonium salts of Cs-Cis-alkyl sulfates, of Cs-Cis-fatty alcohol polyether sulfates, of sulfuric acid half-esters of ethoxylated C4- Ci2-alkylphenols (ethoxylation: 1 to 50 mol of ethylene oxide/mol), C12-C18 sulfo fatty acid alkyl esters, for example of C12-C18 sulfo fatty acid methyl esters, furthermore of Ci2-Ci8-alkylsulfonic acids and of C-io-Cia-alkylarylsulfonic acids. Preference is given to the alkali metal salts of the aforementioned compounds, particularly preferably the sodium salts.
Further examples of anionic surfactants (C) are soaps, for example the sodium or potassium salts of stearic acid, oleic acid, palmitic acid, ether carboxylates, and alkylether phosphates.
In a preferred embodiment of the present invention, anionic surfactant (C) is selected from compounds according to general formula (I)
R1-O(CH2CH2O)xi-SO3M (I) wherein
R1 n-Cio-Ci8-alkyl, especially with an even number of carbon atoms, for example n-decyl, n- dodecyl, n-tetradecyl, n-hexadecyl, or n-octadecyl, preferably Cio-Ci4-alkyl, and even more preferably n-Ci2-alkyl, x1 being a number in the range of from 1 to 5, preferably 2 to 4 and even more preferably 3.
M being selected from alkali metals, preferably potassium and even more preferably sodium. In anionic surfactant (C), x1 may be an average number and therefore x1 is not necessarily a whole number, while in individual molecules according to formula (I), x1 denotes a whole number.
In one embodiment of the present invention, inventive compositions may contain 0.1 to 60 % by weight of anionic surfactant (C), preferably 5 to 50 % by weight.
Inventive compositions may comprise ingredients other than the aforementioned. Examples are non-ionic surfactants, fragrances, dyestuffs, biocides, preservatives, enzymes, hydrotropes, builders, viscosity modifiers, polymers, buffers, defoamers, and anti-corrosion additives.
Preferred inventive compositions may contain one or more non-ionic surfactants.
Preferred non-ionic surfactants are alkoxylated alcohols, di- and multiblock copolymers of ethylene oxide and propylene oxide and reaction products of sorbitan with ethylene oxide or propylene oxide, alkyl polyglycosides (APG), hydroxyalkyl mixed ethers and amine oxides.
Preferred examples of alkoxylated alcohols and alkoxylated fatty alcohols are, for example, compounds of the general formula (II)
Figure imgf000016_0001
in which the variables are defined as follows:
R2 is identical or different and selected from hydrogen and linear Ci-Cio-alkyl, preferably in each case identical and ethyl and particularly preferably hydrogen or methyl,
R3 is selected from Cs-C22-alkyl, branched or linear, for example n-CsHi?, n-CioH2i, n-Ci2H25, n-Ci4H29, n-CieH33 or n-CisHs?,
R4 is selected from Ci-Cio-alkyl, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, sec-pentyl, neopentyl, 1 ,2-dimethylpropyl, isoamyl, n-hexyl, isohexyl, sec-hexyl, n-heptyl, n-octyl, 2-ethylhexyl, n-nonyl, n-decyl or isodecyl, The variables e and f are in the range from zero to 300, where the sum of e and f is at least one, preferably in the range of from 3 to 50. Preferably, e is in the range from 1 to 100 and f is in the range from 0 to 30.
In one embodiment, compounds of the general formula (II) may be block copolymers or random copolymers, preference being given to block copolymers.
Other preferred examples of alkoxylated alcohols are, for example, compounds of the general formula (III)
Figure imgf000017_0001
in which the variables are defined as follows:
R2 is identical or different and selected from hydrogen and linear Ci-Co-alkyl, preferably identical in each case and ethyl and particularly preferably hydrogen or methyl,
R5 is selected from C6-C2o-alkyl, branched or linear, in particular n-CsHi?, n-CioH2i, n-Ci2H25, n-Ci3H27, n-CisHai, n-Cubhg, n-CieH33, n-CieHs?, a is a number in the range from zero to 10, preferably from 1 to 6, b is a number in the range from 1 to 80, preferably from 4 to 20, d is a number in the range from zero to 50, preferably 4 to 25.
The sum a + b + d is preferably in the range of from 5 to 100, even more preferably in the range of from 9 to 50.
Compounds of the general formula (III a) and (III b) may be block copolymers or random copolymers, preference being given to block copolymers.
Further suitable nonionic surfactants are selected from di- and multiblock copolymers, composed of ethylene oxide and propylene oxide. Further suitable nonionic surfactants are selected from ethoxylated or propoxylated sorbitan esters. Amine oxides or alkyl polyglycosides, espe- cially linear C4-Ci6-alkyl polyglucosides and branched Cs-C-w-alkyl polyglycosides such as compounds of general average formula (IV) are likewise suitable.
Figure imgf000018_0001
wherein:
R6 is Ci-C4-alkyl, in particular ethyl, n-propyl or isopropyl,
R7 is -(CH2)2-R6,
G1 is selected from monosaccharides with 4 to 6 carbon atoms, especially from glucose and xylose, y1 in the range of from 1.1 to 4, y1 being an average number,
Further examples of non-ionic surfactants are compounds of general formula (V) and (VI)
Figure imgf000018_0002
AO is selected from ethylene oxide, propylene oxide and butylene oxide,
EO is ethylene oxide, CH2CH2-O,
R8 selected from Cs-Cis-alkyl, branched or linear, and R5 is defined as above.
A3O is selected from propylene oxide and butylene oxide, w is a number in the range of from 15 to 70, preferably 30 to 50, w1 and w3 are numbers in the range of from 1 to 5, and w2 is a number in the range of from 13 to 35.
An overview of suitable further nonionic surfactants can be found in EP-A 0 851 023 and in DE- A 198 19 187.
Mixtures of two or more different nonionic surfactants selected from the foregoing may also be present.
Other surfactants that may be present are selected from amphoteric (zwitterionic) surfactants and anionic surfactants and mixtures thereof.
Examples of amphoteric surfactants are those that bear a positive and a negative charge in the same molecule under use conditions. Preferred examples of amphoteric surfactants are so- called betaine-surfactants. Many examples of betaine-surfactants bear one quaternized nitrogen atom and one carboxylic acid group per molecule. A particularly preferred example of amphoteric surfactants is cocamidopropyl betaine (lauramidopropyl betaine).
Examples of amine oxide surfactants are compounds of the general formula (VII)
R9R10R11N^O (VII) wherein R9, R10, and R11 are selected independently from each other from aliphatic, cycloaliphatic or C2-C4-alkylene Cio-C2o-alkylamido moieties. Preferably, R9 is selected from C8-C20- alkyl or C2-C4-alkylene C -C2o-alkylamido and R10 and R11 are both methyl.
A particularly preferred example is lauryl dimethyl aminoxide, sometimes also called lauramine oxide. A further particularly preferred example is cocamidylpropyl dimethylaminoxide, sometimes also called cocamidopropylamine oxide.
In one embodiment of the present invention, inventive compositions may contain 0.1 to 60 % by weight of at least one surfactant, selected from non-ionic surfactants, amphoteric surfactants and amine oxide surfactants.
In a preferred embodiment, inventive solid detergent compositions for cleaners and especially those for automatic dishwashing do not contain any anionic surfactant. Inventive compositions may contain at least one bleaching agent, also referred to as bleach. Bleaching agents may be selected from chlorine bleach and peroxide bleach, and peroxide bleach may be selected from inorganic peroxide bleach and organic peroxide bleach. Preferred are inorganic peroxide bleaches, selected from alkali metal percarbonate, alkali metal perborate and alkali metal persulfate.
Examples of organic peroxide bleaches are organic percarboxylic acids, especially organic percarboxylic acids.
In inventive compositions, alkali metal percarbonates, especially sodium percarbonates, are preferably used in coated form. Such coatings may be of organic or inorganic nature. Examples are glycerol, sodium sulfate, silicate, sodium carbonate, and combinations of at least two of the foregoing, for example combinations of sodium carbonate and sodium sulfate.
Suitable chlorine-containing bleaches are, for example, 1 ,3-dichloro-5,5-dimethylhydantoin, N-chlorosulfamide, chloramine T, chloramine B, sodium hypochlorite, calcium hypochlorite, magnesium hypochlorite, potassium hypochlorite, potassium dichloroisocyanurate and sodium dichloroisocyanurate.
Inventive compositions may comprise, for example, in the range from 3 to 10% by weight of chlorine-containing bleach.
Inventive compositions may comprise one or more bleach catalysts. Bleach catalysts can be selected from bleach-boosting transition metal salts or transition metal complexes such as, for example, manganese-, iron-, cobalt-, ruthenium- or molybdenum-salen complexes or carbonyl complexes. Manganese, iron, cobalt, ruthenium, molybdenum, titanium, vanadium and copper complexes with nitrogen-containing tripod ligands and also cobalt-, iron-, copper- and rutheni- um-amine complexes can also be used as bleach catalysts.
Inventive compositions may comprise one or more bleach activators, for example N- methylmorpholinium-acetonitrile salts (“MMA salts”), trimethylammonium acetonitrile salts, N- acylimides such as, for example, N-nonanoylsuccinimide, 1 ,5-diacetyl-2,2-dioxohexahydro- 1 ,3,5-triazine (“DADHT”) or nitrile quats (trimethylammonium acetonitrile salts).
Further examples of suitable bleach activators are tetraacetylethylenediamine (TAED) and tetraacetylhexylenediamine. Examples of fragrances are benzyl salicylate, 2-(4-tert.-butylphenyl) 2-methylpropional, commercially available as Lilial®, and hexyl cinnamaldehyde.
Examples of dyestuffs are Acid Blue 9, Acid Yellow 3, Acid Yellow 23, Acid Yellow 73, Pigment Yellow 101 , Acid Green 1 , Solvent Green 7, and Acid Green 25.
Inventive compositions may contain one or more preservatives or biocides. Biocides and preservatives prevent alterations of inventive liquid detergent compositions due to attacks from microorganisms. Examples of biocides and preservatives are BTA (1 ,2,3-benzotriazole), benzalkonium chlorides, 1 ,2-benzisothiazolin-3-one (“BIT”), 2-methyl-2H-isothiazol-3-one („MIT“) and 5-chloro-2-methyl-2H-isothiazol-3-one („CIT“), benzoic acid, sorbic acid, iodopropynyl butylcarbamate (“IPBC”), dichlorodimethylhydantoine (“DCDMH”), bromochlorodimethylhydantoine (“BCDMH”), and dibromodimethylhydantoine (“DBDMH”).
Examples particularly of interest are the following antimicrobial agents and/or preservatives: 4,4’-dichloro 2-hydroxydiphenyl ether (CAS-No. 3380-30-1 ), further names: 5-chloro-2-(4- chlorophenoxy) phenol, Diclosan, DCPP, which is commercially available as a solution of 30 wt% of 4,4’-dichloro 2-hydroxydiphenyl ether in 1 ,2 propyleneglycol under the trade name Tino- san® HP 100; and
2-Phenoxyethanol (CAS-no. 122-99-6, further names: Phenoxyethanol, Methylphenylglycol, Phenoxetol, ethylene glycol phenyl ether, Ethylene glycol monophenyl ether, Protectol® PE);
2-bromo-2-nitropropane-1 ,3-diol (CAS-No. 52-51-7, further names: 2-bromo-2-nitro-1 ,3- propanediol, Bronopol®, Protectol® BN, Myacide AS);
Glutaraldehyde (CAS-No. 111-30-8, further names: 1-5-pentandial, pentane-1 , 5-dial, glutaral, glutardialdehyde, Protectol® GA, Protectol® GA 50, Myacide® GA);
Glyoxal (CAS No. 107-22-2; further names: ethandial, oxylaldehyde, 1 ,2-ethandial, Protectol® GL);
2-butyl-benzo[d]isothiazol-3-one (BBIT, CAS No. 4299-07-4); 2-methyl-2H-isothiazol-3-one (MIT, CAS No 2682-20-4); 2-octyl-2H-isothiazol-3-one (OIT, CAS No. 26530-20-1 ); 5-Chloro-2- methyl-2H-isothiazol-3-one (CIT, CMIT, CAS No. 26172-55-4); mixtures of 5-chloro-2-methyl- 2H- isothiazol-3-one (CMIT, EINECS 247-500-7) and 2-methyl-2H-isothiazol-3-one (MIT, EINECS 220-239-6) (Mixture of CMIT/MIT, CAS No. 55965-84-9); 1 ,2-benzisothiazol-3(2H)-one (BIT, CAS No. 2634-33-5); Hexa-2,4-dienoic acid (Sorbic acid, CAS No. 110-44-1 ) and its salts, e.g., calcium sorbate, sodium sorbate, Potassium (E,E)-hexa-2,4-dienoate (Potassium Sorbate, CAS No. 24634-61-5);
Lactic acid and its salts; especially sodium lactate,
L-(+)-lactic acid (CAS No. 79-33-4);
Benzoic acid (CAS No 65-85-0, CAS No. 532-32-1 ) and salts of benzoic acid, e.g., sodium benzoate, ammonium benzoate, calcium benzoate, magnesium benzoate, MEA-benzoate, potassium benzoate;
Salicylic acid and its salts, e.g., calcium salicylate, magnesium salicylate, MEA salicylate, sodium salicylate, potassium salicylate, TEA salicylate; Benzalkonium chloride, benzalkonium bromide, benzalkonium saccharinate (CAS Nos 8001-54-5, 63449-41-2, 91080-29-4, 68989-01-5, 68424-85-1 , 68391-01-5, 61789-y71-7, 85409-22-9);
Didecyldimethylammonium chloride (DDAC, CAS No. 68424-95-3 and CAS No. 7173-51-5);
N-(3-aminopropyl)-N-dodecylpropane-1 ,3-diamine (Diamine, CAS No. 2372-82-9);
Peracetic acid (CAS No. 79-21-0);
Hydrogen peroxide (CAS No. 7722-84-1);
Biocide or preservative may be added to the inventive composition in a concentration of 0.001 to 10% relative to the total weight of the composition. Preferably, inventive compositions contain 2-phenoxyethanol in a concentration of 0.1 to 2% or 4,4’-dichloro 2-hydroxydiphenyl ether (DCPP) in a concentration of 0.005 to 0.6%.
The invention thus further pertains to a method of preserving an inventive composition against microbial contamination or growth, which method comprises addition of 2-phenoxyethanol.
The invention thus further pertains to a method of providing an antimicrobial effect on textiles after treatment with an inventive composition containing 4,4’-dichloro 2-hydroxydiphenyl ether (DCPP). Examples of viscosity modifiers are agar-agar, carragene, tragacanth, gum arabic, alginates, pectins, hydroxyethyl cellulose, hydroxypropyl cellulose, starch, gelatin, locust bean gum, crosslinked poly(meth)acrlyates, for example polyacrlyic acid cross-linked with bis-(meth)acrylamide, furthermore silicic acid, clay such as - but not limited to - montmorrilionite, zeolite, dextrin, and casein.
Hydrotropes in the context with the present invention are compounds that facilitate the dissolution of compounds that exhibit limited solubility in water. Examples of hydrotropes are organic solvents such as ethanol, isopropanol, ethylene glycol, 1 ,2-propylene glycol, and further organic solvents that are water-miscible under normal conditions without limitation. Further examples of suitable hydrotropes are the sodium salts of toluene sulfonic acid, of xylene sulfonic acid, and of cumene sulfonic acid.
Examples of polymers other than polymer (A) are especially polyacrylic acid and its respective alkali metal salts, especially its sodium salt. A suitable polymer is in particular polyacrylic acid, preferably with an average molecular weight Mw in the range from 2,000 to 40,000 g/mol. preferably 2,000 to 10,000 g/mol, in particular 3,000 to 8,000 g/mol, each partially or fully neutralized with alkali, especially with sodium. Suitable as well are copolymeric polycarboxylates, in particular those of acrylic acid with methacrylic acid and of acrylic acid or methacrylic acid with maleic acid and/or fumaric acid. Polyacrylic acid and its respective alkali metal salts may serve as soil anti-redeposition agents.
Further examples of polymers are polyvinylpyrrolidones (PVP). Polyvinylpyrrolidones may serve as dye transfer inhibitors.
Further examples of polymers are polyethylene terephthalates, polyoxyethylene terephthalates, and polyethylene terephthalates that are end-capped with one or two hydrophilic groups per molecule, hydrophilic groups being selected from CH2CH2CH2-SO3Na, CH2CH(CH2-SO3Na)2, and CH2CH(CH2SO2Na)CH2-SO3Na.
Examples of buffers are monoethanolamine and N,N,N-triethanolamine.
Examples of defoamers are silicones.
Inventive compositions are not only good in cleaning soiled laundry with respect to organic fatty soil such as oil. Inventive liquid detergent compositions are very useful for removing non- bleachable stains such as, but not limited to stains from red wine, tea, coffee, vegetables, and various fruit juices like berry juices from laundry. They still do not leave residues on the clothes.
A further aspect of the present invention is therefore the use of inventive compositions for laundry care. Laundry care in this context includes laundry cleaning.
In another aspect, inventive compositions are useful for hard surface cleaning. A further aspect of the present invention is therefore the use of inventive compositions for hard surface cleaning.
In the context of the present invention, the term “composition for hard surface cleaning” includes cleaners for home care and for industrial or institutional applications. The term “composition for hard surface cleaning” includes compositions for dishwashing, especially hand dishwash and automatic dishwashing and ware-washing, and compositions for hard surface cleaning such as, but not limited to compositions for bathroom cleaning, kitchen cleaning, floor cleaning, descaling of pipes, window cleaning, car cleaning including truck cleaning, furthermore, open plant cleaning, cleaning-in-place, metal cleaning, disinfectant cleaning, farm cleaning, high pressure cleaning, but not laundry detergent compositions. A special embodiment of compositions for hard surface cleaning are automatic dishwashing compositions.
In the context of the present invention, the terms “compositions for hard surface cleaning” and “compositions for hard surface cleaners” are used interchangeably.
In the context of the present invention and unless expressly stated otherwise, percentages in the context of ingredients of laundry detergent compositions are percentages by weight and refer to the total solids content of the respective laundry detergent composition. In the context of the present invention and unless expressly stated otherwise, percentages in the context of ingredients of detergent composition for hard surface cleaners are percentages by weight and refer to the total solids content of the detergent composition for hard surface cleaning.
Inventive compositions when used for automatic dishwashing preferably contain
(E) at least one builder component selected from aminopolycarboxylic acids and preferably their alkali metal salts, in the context of the present invention also referred to as complexing agent (E) or sequestrant (E). In the context of the present invention, the terms sequestrants and chelating agents are used interchangeably. Examples of sequestrants (E) are alkali metal salts of MGDA (methyl glycine diacetic acid), GLDA (glutamic acid diacetic acid), IDS (iminodisuccinate), EDTA, and polymers with complexing groups like, for example, polyethylenimine in which 20 to 90 mole-% of the N-atoms bear at least one CH2COO' group, and their respective alkali metal salts, especially their sodium salts, for example MGDA-Naa, GLDA-Na4, or IDS-Na4.
Preferred sequestrants are those according to general formula (IX a)
[CH3-CH(COO)-N(CH2-COO)2]M3-X2HX2 (IX a) wherein M is selected from ammonium and alkali metal cations, same or different, for example cations of sodium, potassium, and combinations of at least two of the foregoing. Ammonium may be substituted with alkyl but non-substituted ammonium NH4 + is preferred. Preferred examples of alkali metal cations are sodium and potassium and combinations of sodium and potassium, and even more preferred in compound according to general formula (II a) all M are the same and they are all Na; and x2 in formula (II a) is in the range of from zero to 1 .0, or (IX b)
[OOC-CH2CH2-CH(COO)-N(CH2-COO)2]M4 X3HX3 (IX b) wherein M is as defined above, and x3 in formula (IX b) is in the range of from zero to 2.0, preferably to 1 .0, or (IX c)
[OOC-CH2-CH(COO)]-N-CH(COO)-CH2-COO]M4-X4HX4 (IX c) wherein M is as defined above, and x4 in formula (IX c) is in the range of from zero to 2.0, preferably to 1 .0.
In one embodiment of the present invention, said inventive composition contains a combination of at least two of the foregoing, for example a combination of chelating agent according to general formula (IX a) and a chelating agent according to general formula (IX b). Chelating agents according to the general formulae (IX a) and (IX b) are preferred. Even more preferred are chelating agents according to the general formula (IX a).
In one embodiment of the present invention, compound according to general formula (IX a) is selected from ammonium or alkali metal salt of racemic MGDA and from ammonium and alkali metal salts of mixtures of L- and D-enantiomers according to formula (IX a), said mixture containing predominantly the respective L-isomer with an enantiomeric excess (ee) in the range of from 5 to 99%, preferably 5 to 95%, more preferably from 10 to 75% and even more preferably from 10 to 66%.
In one embodiment of the present invention, compound according to general formula (IX b) is selected from at least one alkali metal salt of a mixture of L- and D- enantiomers according to formula (IX b), said mixture containing the racemic mixture or preferably predominantly the respective L-isomer, for example with an enantiomeric excess (ee) in the range of from 5 to 99%, preferably 15 to 95%.
The enantiomeric excess of compound according to general formula (IX a) may be determined by measuring the polarization (polarimetry) or preferably by chromatography, for example by HPLC with a chiral column, for example with one or more cyclodextrins as immobilized phase or with a ligand exchange (Pirkle-brush) concept chiral stationary phase. Preferred is determination of the ee by HPLC with an immobilized optically active amine such as D-penicillamine in the presence of copper(+ll) salt. The enantiomeric excess of compound according to general formula (IX b) salts may be determined by measuring the polarization (polarimetry).
Due to the environmental concerns raised in the context with the use of phosphates, it is preferred that advantageous compositions are free from phosphate. "Free from phosphate" should be understood in the context of the present invention as meaning that the content of phosphate and polyphosphate is in sum in the range of from detection level to 1 % by weight, preferably from 10 ppm to 0.2% by weight, determined by gravimetry.
In one embodiment of the present invention, inventive compositions contain in the range of from 0.5 to 50% by weight of sequestrant (E), preferably 1 to 35% by weight, referring to the total solids content.
In order to be suitable as liquid laundry compositions, inventive compositions may be in bulk form or as unit doses, for example in the form of sachets or pouches. Suitable materials for pouches are water-soluble polymers such as polyvinyl alcohol. In a preferred embodiment of the present invention, inventive compositions are liquid or gel-type at ambient temperature. In another preferred embodiment of the present invention, inventive compositions are solid at ambient temperature, for example powders or tabs.
In one embodiment of the present invention, inventive compositions are liquid or gel-type and have a pH value in the range of from 7 to 9, preferably 7.5 to 8.5. In embodiments where inventive compositions are solid, their pH value may be in the range of from 7.5 to 11 , determined after dissolving 1 g/100 ml in distilled water and at ambient temperature. In embodiments where inventive compositions are used for hard surfaces like tiles, for example bathroom tiles, their pH value may even be acidic, for example from 3 to 6.
In one embodiment of the present invention, inventive compositions are liquid or gel-type and have a total solids content in the range of from 8 to 80%, preferably 10 to 50%, determined by drying under vacuum at 80°C.
In one aspect, the invention is directed to a method of improving the cleaning performance of a liquid detergent composition, by adding a polymer (A) according to the invention to a detergent composition preferably comprising at least one lipase and/or at least one protease.
The term "improved cleaning performance" herein may indicate that polymers (A) provide better, i.e. improved, properties in stain removal under relevant cleaning conditions, when compared to the cleaning performance of a detergent composition lacking polymer (A). In one embodiment, “improved cleaning performance” means that the cleaning performance of a detergent comprising polymer (A) and at least one enzyme, preferably at least one hydrolase (B), especially at least one lipase (B) and/or at least one protease (D), is improved when compared to the cleaning performance of a detergent comprising polymer (A) and no enzyme. In one embodiment, “improved cleaning performance” means that the cleaning performance of a detergent comprising polymer (A) and an enzyme, preferably hydrolase (B), more preferably lipase (B) and/or protease (D), is improved when compared to the cleaning performance of a detergent comprising at least one enzyme, preferably at least one hydrolase (B), preferably lipase (B) and/or at least one protease (D) and no polymer (A).
The term "relevant cleaning conditions" herein refers to the conditions, particularly cleaning temperature, time, cleaning mechanics, suds concentration, type of detergent and water hardness, actually used in laundry machines, automatic dish washers or in manual cleaning processes. Polymers (A) are excellently suited as or for the manufacture of inventive compositions. Polymers (A) show biodegradability.
Further described herein is a process for making polymers (A). Said process comprises the steps (a) and ( ):
(a) providing a backbone molecule (a) that is a polymer bearing at least two primary amino groups per molecule,
(0) reacting said backbone molecule with at least one lactone (b) based on a mono-, di- or polysaccharide under formation of an amide group.
Steps (a) and (0) are described in more detail below.
Step (a) includes providing a backbone molecule (a) that is a polymer bearing at least two primary amino groups per molecule.
Backbone molecules (a) have been described above. Lactones (b) based on a mono-, di- or polysaccharide have been descried above.
The ratio of backbone molecule (a) and lactone (b) is preferably selected in a way that the molar amount of lactone groups corresponds to at least 30 mol-% of the primary amino groups of backbone (a), preferably 40 to 100 mol-%, more preferably 70 to 100 mol-%.
Backbone molecule (a) may be provided in bulk. However, the reaction is preferably carried out in solution, and it is advantageous to provide backbone molecule in solution. Suitable solvents are alcohols like, e.g., methanol and ethanol, glycols like ethylene glycol, propylene glycol, and diethylene glycol as well as polyethylene glycol, for example with an average molecular weight Mn up to 500 g/mol. DMSO (dimethyl sulfoxide), NMP (N-methyl pyrrolidone), and DMF (dimethyl formamide). Since water may lead to a hydrolysis of a lactone (b) to yield the respective y- or 6-hydroxyl carboxylic acid and said y- or b-hydroxyl carboxylic acid is usually not sufficiently reactive the presence of water is preferably avoided by using so-called “dry” solvents. Methods of drying solvents are known, for example distilling DMSO over CaH2 or converting the water in ethanol to NaOH by sodium metal addition, followed by addition of diethyl phthalate.
Step (0) may be carried out at temperatures in the range of from ambient temperature to 120°C. Preferred are 25 to 70°C. In case of solvents like methanol and ethanol, the boiling temperature is the upper limit. Even more preferred are 40 to 65°C. Step (3) may be carried out at a pressure in the range of from 1 to 10 bar (absolute), preferably at ambient pressure.
The reaction time of step (P) may be in the range of from 0.5 to 12 hours.
After performance of step (P), work-up steps may be performed such as, but not limited to precipitation of polymer (A), removal of any solvent used, e.g., by distilling it off. The precipitation of polymer (A) may be achieved by the addition of a “non-solvent”, e.g., methanol.
Methanol is a very preferred solvent for carrying out step (P) because many backbone molecules (a) and lactones (b) are soluble in methanol but many resultant polymers (A) are not, and unreacted starting materials and methanol may then at least partially be removed by decantation or filtration.
The present invention is further illustrated by working examples.
The amount and type of amines substituted with residues, such as, for example, backbones (a) and polymers (A) and, optionally, the presence of hydrogen can be determined by identification of primary, secondary and tertiary amino groups in 13C-NMR, as described for polyethylenimines in Lukovkin G.M. et al.'. Europ. Polymer Journal 1973, 9, 559-565 and St. Pierre T. et al., Geckle M.: ACS Polym. Prep. 1981 , 22, 128-129.
13C-NMR spectra were recorded in CDCh with a Bruker AV-401 instrument at ambient temperature. 1H-NMR spectra were recorded in CDCI3 or CD3OD with a Bruker AV-401 instrument at ambient temperature.
Saponification values were determined according to DIN EN ISO 3657: 2013.
I. Syntheses of polymers (A)
1.1 Synthesis of polymer (A.1 )
Step (a.1 ): polyethylenimine with an average molecular weight Mw of 800 g/mol (a.1 ) was provided. Backbone (a.1 ) had an average of 7.8 primary amino groups per molecule.
Step (p.1 ): A 2-liter glass reactor was charged with 200 g gluconolactone (b.1 ) and 700g methanol. Under stirring, 230.5 g (a.1 ) were added within 10 minutes. The mixture was further stirred for 23 hours at 21-23°C. The methanol was then removed by rotary evaporation under vacuum with a bath temperature of 40°C. The crude product was dried in vacuum at 40°C for 65 hours. 387 g of a slightly brown solid were obtained as polymer (A.1).
The structure of the product is confirmed by 1H-NMR in D2O.
1.2 Synthesis of polymer (A.2)
Step (a.1): polyethylenimine with an average molecular weight Mw of 800 g/mol (a.1) was provided. Backbone (a.1) had an average of 7.8 primary amino groups per molecule.
Step (p.2): A 2-liter glass reactor was charged with 200 g gluconolactone (b.1) and 700g methanol. Under stirring, 115 g (a.1) were added within 10 minutes. The mixture was further stirred for 22 hours at 21-23°C. A polymer precipitated, and the methanol was removed by decantation. The crude product was dried in vacuum at 40°C for 24 hours. 213 g of an off-white solid were obtained as polymer (A.2).
1.3 Synthesis of polymer (A.3)
Step (a.1): polyethylenimine with an average molecular weight Mw of 800 g/mol (a.1) was provided. Backbone (a.1) had an average of 7.8 primary amino groups per molecule.
Step ( .3): A 2-liter glass reactor was charged with 200 g gluconolactone (b.1) and 700g methanol. Under stirring, 61 g (a.1) were added within 10 minutes. The mixture was further stirred for 19 hours at 21-23°C. A polymer precipitated, and the methanol was removed by decantation. The crude product was dried in vacuum at 40°C for 20 hours. 175 g of an off-white solid were obtained as polymer (A.3).
1.4 Synthesis of polymer (A.4)
Step (a.1): polyethylenimine with an average molecular weight Mw of 800 g/mol (a.1) was provided. Backbone (a.1) had an average of 7.8 primary amino groups per molecule.
Step (3-4): A 500-ml glass reactor was charged with 80 g lactobionolactone (b.2) and 225 g methanol. Under stirring, 24.1 g (a.1) were added within 6 minutes. The mixture was further stirred for 90 minutes at 60°C. A polymer precipitated, and the methanol was removed by decantation. The crude product was dried in vacuum at 60°C for 28 hours. 100g of an off-white solid were obtained as polymer (A.4). 1.5 Synthesis of polymer (A.5)
Step (a.1 ): polyethylenimine with an average molecular weight Mw of 800 g/mol (a.1 ) was provided. Backbone (a.1 ) had an average of 7.8 primary amino groups per molecule.
Step (p.5): A 500-ml glass reactor was charged with 80 g lactobionolactone (b.2) and 225 g methanol. Under stirring, 12.8 g (a.1 ) were added within 11 minutes. The mixture was further stirred for 65 minutes at 60°C. A polymer precipitated, and the methanol was removed by decantation. The crude product is further dried in vacuum at 60°C for 20 hours. 77 g of an off- white solid were obtained as polymer (A.5).
1.6 Manufacture of polymer (A.6)
1.6.1 Manufacture of a precursor, lactone (b.3)
Step (y.1): A 4-liter glass reactor was charged with 1800 g deionized water, 991.3 g maltodex- trin-DE-19 (with a dextrose equivalent of 19) and 24.6 g NaBr. Under constant stirring (100 rpm), 789 g aqueous solution of sodium hypochlorite (active content = 11 .1 %) was added during 60 min. The pH value of the resulting reaction mixture was kept constant at 8.0 by adding simultaneously 430.3 g aqueous solution of sodium hydroxide (8% NaOH). During addition of the sodium hypochlorite, the temperature was kept between 22°C and 31 °C.
After completion of addition of the sodium hypochlorite and the sodium hydroxide the resultant reaction mixture is stirred for 24 hours at 22°C. Water was partially removed from the reaction mixture by distillation under vacuum at 60°C until a sirup-like liquor was obtained.
A small quantity of the reaction mixture was dried 24 hours in vacuum at 60°C.
Analytics:
1H-NMR in D2O: By the ratio of the signals at 6 = 5.18 ppm and 5 =5.24 ppm a degree of oxidation of appr. 80% was calculated.
13C-NMR in D2O: A new signal at 5 = 178 ppm (assigned to the carboxylate-C) was detected which was not present in the maltodextrin starting material.
Step (5.1 ): A 2-liter glass reactor was charged with 517 g product of step (y.1 ) and diluted with one kg deionized water. 65.7g cation exchanger (Amberlist 15) in its acid form was added to adjust the pH value to 2.0. The cation exchanger was removed by filtration and the water of the filtrate was distilled off in vacuum at 60°C until a solid was obtained. The solid was dried in vacuum at 100°C for 48 hours. An off-white solid (304.0 g) was obtained, lactone (b.3).
Elemental analysis: C: 36.1 %; H: 4.9%; O: 43.0%; Na: 6.2 %; Cl: 5.5%; Br: 1.2% 13C-NMR in De-DMSO: signal at 6 = 171.9 ppm (assigned to the lactone-C) was detected which was not present in the product from step (y.1 ).
Step (a.1 ): polyethylenimine with an average molecular weight Mw of 800 g/mol (a.1 ) was provided. Backbone (a.1 ) had an average of 7.8 primary amino groups per molecule.
Step (p.6): A 1000-ml glass reactor was charged with 130.7 g lactone (b.3) and 300 g dry DMSO. Under stirring, 14.1 g (a.1 ) were added. The resultant mixture was further stirred for 120 minutes at 60°C. The resultant solution was cooled to ambient temperature and then added to 1 .5 liter of dry methanol. A polymer precipitated and was recovered by filtration, followed by washing with 600 mol dry methanol (3 times). The crude product was dried in vacuum at 60°C for 48 hours. 117.6 g of an off-white solid were obtained as polymer (A.6).
Elemental analysis: C: 44.0%; H: 6.6; O: 45.2; N: 3.4; Na: 0.34 %; Cl: 0.38%; Br: 0.12% 13C-NMR in De-DMSO: signal at 5 = 172.8 ppm (assigned to the amide-C) was detected which was not present in (b.3).
Synthesis data of polymers (A) are summarized in Table 1 .
Table 1 : Data of polymers (A)
Figure imgf000032_0001
II. Washing performance (
11.1 Laundry cleaning - full detergency test
The primary wash performance of polymers (A) was tested in the washing machine preparing wash solutions using water of 14°dH hardness (2.5 mmol/L; Ca:Mg:HCO3 4:1 :8) containing 3.0 g/L of the liquid test detergent L.1 , see composition in Table 2, and 2.0% of a polymer (A) according to Table 3. Table 2: Ingredients of base mixture L.1 to L.3 for liquid detergent formulations
Figure imgf000033_0001
Percentages are % by weight
The soiled swatches are washed together with cotton ballast fabric (3.5 kg) and 2 soil ballast sheet wfk SBL 2004 (commercially available from wfk Testgewebe GmbH Brueggen) in a Miele Household washing machine Softronic W1935 WTL with cotton short program 30 °C. Washing conditions were 45g test detergent (L.1 , L.2 or L.3) as described above, water hardness 2.5 mmol/L, 30°C, 4-fold determination. After the wash the fabrics are dried in the air. The fabrics were instrumentally assessed before and after wash using the MACH5 multi area color measurement instrument from ColourConsult which gives Lab readings. From these Lab readings, AE values were calculated between unwashed and washed stain. The higher the AE value, the better is the performance. To better judge on the pure cleaning effect of the respective polymer sample itself, the obtained values are expressed in AAE values vs reference without polymer (A) (baseline correction for plain wash effect of detergent only). The higher the values of AAE are observed the better is the performance, respectively.
The total level of cleaning was evaluated using color measurements. Reflectance values of the stains on the monitors were measured using a sphere reflectance spectrometer (SF 500 type from Datacolor, USA, wavelength range 360-700nm, optical geometry d/8°) with a UV cutoff filter at 460 nm. In this case, with the aid of the CIE-Lab color space classification, the brightness L *, the value a * on the red - green color axis and the b * value on the yellow - blue color axis, were measured before and after washing and averaged for the respective stains of the monitor. The change of the color value (Delta E, AE) value, defined and calculated automatically by the evaluation color tools on the following formula,
Figure imgf000034_0001
is a measure of the achieved cleaning effect. All experiments were repeated three times to provide a representative average number.
Higher Delta E values show better cleaning. To better judge on the pure cleaning effect of the respective polymer sample itself, the obtained values are further expressed in AAE values vs reference without polymer (baseline correction for plain wash effect of detergent only). Again, the higher the values of AAE are observed the better is the performance, respectively. For each stain, a difference of 1 unit can be detected visually by a skilled person. A non-expert can visually detect 2 units easily. The AE values of the formulations and various stains are shown in Table 3.
Table 3. Results of full scale primary detergency (Miele Softronic W1935 WTL) in regular liquid model formulation L.1 on commercially available stains
Figure imgf000034_0002
Stain #1 : 034KC Chocolate Mousse, Stain #2: E-141/1 Lipstick, Stain #3: PCH-144 Red Pottery Clay, Stain #4: KCH-115 Stanley Clay, Stain #5: PH-145 Tennis Court Clay, Stain #6: KCH-018 Clay Ground Soil, Stain #7: KCH-023 Cherry, all commercially available from CFT, Swissatest or Warwick. 11.2 Laundry cleaning
Additionally, the samples were tested in two further liquid model formulations LC.2 and LC.3 with the compositions given above in Table 2, respectively.
Polymers (A) were added to a laundry liquor comprising either a liquid model composition LC.2 or LC.3, respectively, without polymer (additive dosage of 3% on weight of liquid model detergent (owod)) together with commercially obtained stained fabrics (from Center of Test Materials CFT Vlaardingen. P-H108: Clay, Ground soil, P-H115: Standard Clay; P-H144: Red Pottery Clay; P-H145: tennis Court Clay) and 5g of commercially available soil ballast sheet wfk SBL 2004 (from wfk Testgewebe GmbH Brueggen). Washing conditions were 3 g/L detergent, liquor 250 mL, 30 min, 40°C, 4-fold determination. After wash the fabrics were rinsed and dried. The fabrics were instrumentally assessed before and after wash using the MACH5 multi area color measurement instrument from ColourConsult which gives Lab readings. From these Lab readings, AE values were calculated between unwashed and washed stain. The higher the AE value, the better is the performance. To better judge on the pure cleaning effect of the respective polymer sample itself, the obtained values were further expressed in AAE values vs reference without polymer (baseline correction for plain wash effect of detergent only). Again, the higher the values of AAE are observed the better is the performance, respectively.
Table 4. Results of small-scale primary detergency (Launderometer) primary detergency in regular liquid model formulation L.2 on commercially available stains
Figure imgf000035_0001
Stain #3: PCH-144 Red Pottery Clay, stain #5: PH-145 Tennis Court Clay, stain #6: KCH-018
Clay Ground Soil, stain #8 Stanley Clay PCH115 Table 5. Results of small-scale primary detergency (Launderometer) primary detergency in regular liquid model formulation L.3 on commercially available stains
Figure imgf000036_0001
Stain #3: PCH-144 Red Pottery Clay, stain #5: PH-145 Tennis Court Clay, stain #6: KCH-018 Clay Ground Soil, stain #8 Stanley Clay PCH115
III. Biodegradation tests
General: the tests were carried out in accordance with the OECD Guidelines. According to the OECD guidelines a test is valid if:
1 . The reference reaches 60% within 14 days.
2. The difference of the extremes of the test replicates by the end of the test is less than 20%.
3. Oxygen uptake of inoculum blank is 20 to 30 mg O2/I and must not be greater than 60 mg O2/I.
4. The pH value measured at the end of the test must be between 6 and 8.5.
Description of the test method used in the context of the present invention: Biodegradation in sewage was tested in triplicate using the OECD 301 F manometric respirometry method. OECD 301 F is an aerobic test that measures biodegradation of a sewage sample by measuring the consumption of oxygen. To a measured volume of sewage, 100 mg/L test substance, which is the nominal sole source of carbon, was added along with the inoculum (aerated sludge taken from the municipal sewage treatment plant, Mannheim, Germany). This sludge was stirred in a closed flask at a constant temperature (25°C) for 28 days. The consumption of oxygen is determined by measuring the change in pressure in the closed flask using an Oxi TopC. Carbon dioxide evolved was absorbed in a solution of sodium hydroxide. Nitrification inhibitors were added to the flask to prevent consumption of oxygen due to nitrification. The amount of oxygen taken up by the microbial population during biodegradation of the test substance (corrected for uptake by a blank inoculum run in parallel) is expressed as a percentage of ThOD (theoretical oxygen demand, which is measured by the elemental analysis of the com- pound). A positive control glucose/glutamic acid is run along with the test samples for each cabinet as reference.
Calculations: Theoretical oxygen demand: Amount of O2 required to oxidize a compound to its final oxidation products. This amount is calculated using the elemental analysis data. % Biodegradation
Experimental O2 uptake x 100 and divided by the theoretical oxygen demand The results of biodegradability tests are summarized in Table 6.
Table 6: summary of biodegradation tests
Figure imgf000037_0001
In each test, the reference had a biodegradability of more than 60%.

Claims

Patent claims
1 . Composition comprising
(A) at least one polymer comprising
(a) a backbone that is derived from a polymer bearing at least two primary amino groups per molecule, of which
(b) at least 30 mol-% are linked through an amide group to at least one mono-, di- or polysaccharide, and
(B) at least one hydrolase.
2. Composition according to claim 1 wherein said backbone (a) is selected from polyvinylamine, branched polyethylenimine, branched polypropylenimine, and polylysine.
3. Composition according to claim 1 or 2 wherein said backbone (a) is selected from branched polyethylenimines with an average molecular weight Mw in the range of from 500 to 20,000 g/mol.
4. Composition according to any of the preceding claims wherein polymer (A) has an average molecular weight Mw in the range from 750 to 350,000 g/mol.
5. Composition according to any of the preceding claims wherein said mono- or polysaccharide is selected from gluconolactone and lactobionolactone and the condensation product of a monocarboxylic acid of maltodextrin.
6. Use of a composition according to any of the preceding claims for laundry care.
7. Method of preserving a composition according to any of claims 1 to 5 against microbial contamination or growth, which method comprises addition of 2-phenoxyethanol.
8. Method of providing an antimicrobial effect on textiles after treatment with a composition according to any of claims 1 to 5 containing 4,4’-dichloro 2-hydroxydiphenyl ether.
PCT/EP2022/081476 2021-11-22 2022-11-10 Compositions comprising polymers, polymers, and their use WO2023088777A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP21209688 2021-11-22
EP21209688.7 2021-11-22

Publications (1)

Publication Number Publication Date
WO2023088777A1 true WO2023088777A1 (en) 2023-05-25

Family

ID=78725379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/081476 WO2023088777A1 (en) 2021-11-22 2022-11-10 Compositions comprising polymers, polymers, and their use

Country Status (1)

Country Link
WO (1) WO2023088777A1 (en)

Citations (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1372034A (en) 1970-12-31 1974-10-30 Unilever Ltd Detergent compositions
EP0218272A1 (en) 1985-08-09 1987-04-15 Gist-Brocades N.V. Novel lipolytic enzymes and their use in detergent compositions
EP0258068A2 (en) 1986-08-29 1988-03-02 Novo Nordisk A/S Enzymatic detergent additive
EP0260105A2 (en) 1986-09-09 1988-03-16 Genencor, Inc. Preparation of enzymes having altered activity
EP0283075A2 (en) 1987-02-27 1988-09-21 Gist-Brocades N.V. Molecular cloning and expression of genes encoding proteolytic enzymes
EP0305216A1 (en) 1987-08-28 1989-03-01 Novo Nordisk A/S Recombinant Humicola lipase and process for the production of recombinant humicola lipases
JPS6474992A (en) 1987-09-16 1989-03-20 Fuji Oil Co Ltd Dna sequence, plasmid and production of lipase
WO1989006279A1 (en) 1988-01-07 1989-07-13 Novo-Nordisk A/S Mutated subtilisin genes
EP0331376A2 (en) 1988-02-28 1989-09-06 Amano Pharmaceutical Co., Ltd. Recombinant DNA, bacterium of the genus pseudomonas containing it, and process for preparing lipase by using it
EP0407225A1 (en) 1989-07-07 1991-01-09 Unilever Plc Enzymes and enzymatic detergent compositions
WO1991002792A1 (en) 1989-08-25 1991-03-07 Henkel Research Corporation Alkaline proteolytic enzyme and method of production
WO1991016422A1 (en) 1990-04-14 1991-10-31 Kali-Chemie Aktiengesellschaft Alkaline bacillus lipases, coding dna sequences therefor and bacilli which produce these lipases
WO1992005249A1 (en) 1990-09-13 1992-04-02 Novo Nordisk A/S Lipase variants
WO1994001541A1 (en) 1992-07-06 1994-01-20 Novo Nordisk A/S C. antarctica lipase and lipase variants
WO1994025578A1 (en) 1993-04-27 1994-11-10 Gist-Brocades N.V. New lipase variants for use in detergent applications
WO1995006720A1 (en) 1993-08-30 1995-03-09 Showa Denko K.K. Novel lipase, microorganism producing the lipase, process for producing the lipase, and use of the lipase
WO1995014783A1 (en) 1993-11-24 1995-06-01 Showa Denko K.K. Lipase gene and variant lipase
WO1995022615A1 (en) 1994-02-22 1995-08-24 Novo Nordisk A/S A method of preparing a variant of a lipolytic enzyme
WO1995023221A1 (en) 1994-02-24 1995-08-31 Cognis, Inc. Improved enzymes and detergents containing them
WO1995030744A2 (en) 1994-05-04 1995-11-16 Genencor International Inc. Lipases with improved surfactant resistance
WO1995035381A1 (en) 1994-06-20 1995-12-28 Unilever N.V. Modified pseudomonas lipases and their use
WO1996000292A1 (en) 1994-06-23 1996-01-04 Unilever N.V. Modified pseudomonas lipases and their use
WO1996012012A1 (en) 1994-10-14 1996-04-25 Solvay S.A. Lipase, microorganism producing same, method for preparing said lipase and uses thereof
WO1996013580A1 (en) 1994-10-26 1996-05-09 Novo Nordisk A/S An enzyme with lipolytic activity
WO1996027002A1 (en) 1995-02-27 1996-09-06 Novo Nordisk A/S Novel lipase gene and process for the production of lipase with the use of the same
WO1997004079A1 (en) 1995-07-14 1997-02-06 Novo Nordisk A/S A modified enzyme with lipolytic activity
WO1997007202A1 (en) 1995-08-11 1997-02-27 Novo Nordisk A/S Novel lipolytic enzymes
EP0851023A2 (en) 1996-12-23 1998-07-01 Unilever N.V. Machine dishwashing tablets containing a peracid
US5869438A (en) 1990-09-13 1999-02-09 Novo Nordisk A/S Lipase variants
DE19819187A1 (en) 1998-04-30 1999-11-11 Henkel Kgaa Solid dishwasher detergent with phosphate and crystalline layered silicates
WO2000060063A1 (en) 1999-03-31 2000-10-12 Novozymes A/S Lipase variant
DE10064983A1 (en) 2000-12-23 2002-07-18 Henkel Kgaa New subtilisin protease from Bacillus alcalophilus, useful e.g. in washing and cleaning compositions, comprises at positions 230, 256 and 259 amino acids Val, Gly and Asn
WO2003054184A1 (en) 2001-12-20 2003-07-03 Henkel Kommanditgesellschaft Auf Aktien Novel alkali protease formed by bacillus gibsonii (dsm 14393) and washing and cleaning agents containing said novel alkali protease
WO2003055974A2 (en) 2001-12-22 2003-07-10 Henkel Kommanditgesellschaft Auf Aktien Novel alkaline protease from bacillus sp. (dsm 14392) and washing and cleaning products comprising said novel alkaline protease
WO2003056017A2 (en) 2001-12-22 2003-07-10 Henkel Kommanditgesellschaft Auf Aktien Alkaline protease from bacillus sp. (dsm 14390) and washing and cleaning products comprising said alkaline protease
WO2004089321A1 (en) * 2003-04-09 2004-10-21 Unilever Plc Hair treatment compositions
WO2005063974A1 (en) 2003-12-23 2005-07-14 Henkel Kommanditgesellschaft Auf Aktien Novel alkaline protease and washing and cleaning products containing said novel alkaline protease
WO2005103244A1 (en) 2004-04-23 2005-11-03 Henkel Kommanditgesellschaft Auf Aktien Novel alkaline proteases, and detergents and cleaners containing the same
WO2007087508A2 (en) 2006-01-23 2007-08-02 Novozymes A/S Lipase variants
WO2009109500A1 (en) 2008-02-29 2009-09-11 Novozymes A/S Polypeptides having lipase activity and polynucleotides encoding same
EP2106812A2 (en) * 2008-04-04 2009-10-07 NanoMimetics, Inc. Methods of Making and Using Surfactant Polymers
WO2010065455A2 (en) 2008-12-01 2010-06-10 Danisco Us Inc. Enzymes with lipase activity
WO2011084417A1 (en) 2009-12-21 2011-07-14 Danisco Us Inc. Detergent compositions containing geobacillus stearothermophilus lipase and methods of use thereof
WO2011084599A1 (en) 2009-12-21 2011-07-14 Danisco Us Inc. Detergent compositions containing bacillus subtilis lipase and methods of use thereof
WO2011084412A1 (en) 2009-12-21 2011-07-14 Danisco Us Inc. Detergent compositions containing thermobifida fusca lipase and methods of use thereof
WO2011150157A2 (en) 2010-05-28 2011-12-01 Danisco Us Inc. Detergent compositions containing streptomyces griseus lipase and methods of use thereof
WO2012137147A1 (en) 2011-04-08 2012-10-11 Danisco Us, Inc. Compositions
WO2015091160A1 (en) 2013-12-16 2015-06-25 Basf Se Modified polysaccharide for use in laundry detergent and for use as anti-greying agent
EP3226858A1 (en) 2014-12-04 2017-10-11 Procomcure Biotech GmbH Imidazole-based antimicrobial agents
EP3266858A1 (en) 2016-07-05 2018-01-10 Basf Se Anti-greying agent
WO2021165468A1 (en) * 2020-02-21 2021-08-26 Basf Se Alkoxylated polyalkylene imines or alkoxylated polyamines with improved biodegradability

Patent Citations (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1372034A (en) 1970-12-31 1974-10-30 Unilever Ltd Detergent compositions
EP0218272A1 (en) 1985-08-09 1987-04-15 Gist-Brocades N.V. Novel lipolytic enzymes and their use in detergent compositions
EP0258068A2 (en) 1986-08-29 1988-03-02 Novo Nordisk A/S Enzymatic detergent additive
EP0260105A2 (en) 1986-09-09 1988-03-16 Genencor, Inc. Preparation of enzymes having altered activity
EP0283075A2 (en) 1987-02-27 1988-09-21 Gist-Brocades N.V. Molecular cloning and expression of genes encoding proteolytic enzymes
EP0305216A1 (en) 1987-08-28 1989-03-01 Novo Nordisk A/S Recombinant Humicola lipase and process for the production of recombinant humicola lipases
JPS6474992A (en) 1987-09-16 1989-03-20 Fuji Oil Co Ltd Dna sequence, plasmid and production of lipase
WO1989006279A1 (en) 1988-01-07 1989-07-13 Novo-Nordisk A/S Mutated subtilisin genes
EP0331376A2 (en) 1988-02-28 1989-09-06 Amano Pharmaceutical Co., Ltd. Recombinant DNA, bacterium of the genus pseudomonas containing it, and process for preparing lipase by using it
EP0407225A1 (en) 1989-07-07 1991-01-09 Unilever Plc Enzymes and enzymatic detergent compositions
WO1991002792A1 (en) 1989-08-25 1991-03-07 Henkel Research Corporation Alkaline proteolytic enzyme and method of production
WO1991016422A1 (en) 1990-04-14 1991-10-31 Kali-Chemie Aktiengesellschaft Alkaline bacillus lipases, coding dna sequences therefor and bacilli which produce these lipases
WO1992005249A1 (en) 1990-09-13 1992-04-02 Novo Nordisk A/S Lipase variants
US5869438A (en) 1990-09-13 1999-02-09 Novo Nordisk A/S Lipase variants
WO1994001541A1 (en) 1992-07-06 1994-01-20 Novo Nordisk A/S C. antarctica lipase and lipase variants
WO1994025578A1 (en) 1993-04-27 1994-11-10 Gist-Brocades N.V. New lipase variants for use in detergent applications
WO1995006720A1 (en) 1993-08-30 1995-03-09 Showa Denko K.K. Novel lipase, microorganism producing the lipase, process for producing the lipase, and use of the lipase
WO1995014783A1 (en) 1993-11-24 1995-06-01 Showa Denko K.K. Lipase gene and variant lipase
WO1995022615A1 (en) 1994-02-22 1995-08-24 Novo Nordisk A/S A method of preparing a variant of a lipolytic enzyme
WO1995023221A1 (en) 1994-02-24 1995-08-31 Cognis, Inc. Improved enzymes and detergents containing them
EP1921147A2 (en) 1994-02-24 2008-05-14 Henkel Kommanditgesellschaft auf Aktien Improved enzymes and detergents containing them
WO1995030744A2 (en) 1994-05-04 1995-11-16 Genencor International Inc. Lipases with improved surfactant resistance
WO1995035381A1 (en) 1994-06-20 1995-12-28 Unilever N.V. Modified pseudomonas lipases and their use
WO1996000292A1 (en) 1994-06-23 1996-01-04 Unilever N.V. Modified pseudomonas lipases and their use
WO1996012012A1 (en) 1994-10-14 1996-04-25 Solvay S.A. Lipase, microorganism producing same, method for preparing said lipase and uses thereof
WO1996013580A1 (en) 1994-10-26 1996-05-09 Novo Nordisk A/S An enzyme with lipolytic activity
WO1996027002A1 (en) 1995-02-27 1996-09-06 Novo Nordisk A/S Novel lipase gene and process for the production of lipase with the use of the same
WO1997004079A1 (en) 1995-07-14 1997-02-06 Novo Nordisk A/S A modified enzyme with lipolytic activity
WO1997007202A1 (en) 1995-08-11 1997-02-27 Novo Nordisk A/S Novel lipolytic enzymes
EP0851023A2 (en) 1996-12-23 1998-07-01 Unilever N.V. Machine dishwashing tablets containing a peracid
DE19819187A1 (en) 1998-04-30 1999-11-11 Henkel Kgaa Solid dishwasher detergent with phosphate and crystalline layered silicates
WO2000060063A1 (en) 1999-03-31 2000-10-12 Novozymes A/S Lipase variant
DE10064983A1 (en) 2000-12-23 2002-07-18 Henkel Kgaa New subtilisin protease from Bacillus alcalophilus, useful e.g. in washing and cleaning compositions, comprises at positions 230, 256 and 259 amino acids Val, Gly and Asn
WO2003054184A1 (en) 2001-12-20 2003-07-03 Henkel Kommanditgesellschaft Auf Aktien Novel alkali protease formed by bacillus gibsonii (dsm 14393) and washing and cleaning agents containing said novel alkali protease
WO2003056017A2 (en) 2001-12-22 2003-07-10 Henkel Kommanditgesellschaft Auf Aktien Alkaline protease from bacillus sp. (dsm 14390) and washing and cleaning products comprising said alkaline protease
WO2003055974A2 (en) 2001-12-22 2003-07-10 Henkel Kommanditgesellschaft Auf Aktien Novel alkaline protease from bacillus sp. (dsm 14392) and washing and cleaning products comprising said novel alkaline protease
WO2004089321A1 (en) * 2003-04-09 2004-10-21 Unilever Plc Hair treatment compositions
WO2005063974A1 (en) 2003-12-23 2005-07-14 Henkel Kommanditgesellschaft Auf Aktien Novel alkaline protease and washing and cleaning products containing said novel alkaline protease
WO2005103244A1 (en) 2004-04-23 2005-11-03 Henkel Kommanditgesellschaft Auf Aktien Novel alkaline proteases, and detergents and cleaners containing the same
WO2007087508A2 (en) 2006-01-23 2007-08-02 Novozymes A/S Lipase variants
WO2009109500A1 (en) 2008-02-29 2009-09-11 Novozymes A/S Polypeptides having lipase activity and polynucleotides encoding same
EP2106812A2 (en) * 2008-04-04 2009-10-07 NanoMimetics, Inc. Methods of Making and Using Surfactant Polymers
WO2010065455A2 (en) 2008-12-01 2010-06-10 Danisco Us Inc. Enzymes with lipase activity
WO2011084417A1 (en) 2009-12-21 2011-07-14 Danisco Us Inc. Detergent compositions containing geobacillus stearothermophilus lipase and methods of use thereof
WO2011084599A1 (en) 2009-12-21 2011-07-14 Danisco Us Inc. Detergent compositions containing bacillus subtilis lipase and methods of use thereof
WO2011084412A1 (en) 2009-12-21 2011-07-14 Danisco Us Inc. Detergent compositions containing thermobifida fusca lipase and methods of use thereof
WO2011150157A2 (en) 2010-05-28 2011-12-01 Danisco Us Inc. Detergent compositions containing streptomyces griseus lipase and methods of use thereof
WO2012137147A1 (en) 2011-04-08 2012-10-11 Danisco Us, Inc. Compositions
WO2015091160A1 (en) 2013-12-16 2015-06-25 Basf Se Modified polysaccharide for use in laundry detergent and for use as anti-greying agent
EP3226858A1 (en) 2014-12-04 2017-10-11 Procomcure Biotech GmbH Imidazole-based antimicrobial agents
EP3266858A1 (en) 2016-07-05 2018-01-10 Basf Se Anti-greying agent
WO2021165468A1 (en) * 2020-02-21 2021-08-26 Basf Se Alkoxylated polyalkylene imines or alkoxylated polyamines with improved biodegradability

Non-Patent Citations (15)

* Cited by examiner, † Cited by third party
Title
CAS, no. 24634-61-5
CAS, no. 8001-54-5, 63449-41-2, 91080-29-4, 68989-01-5, 684
DARTOIS ET AL., BIOCHEMICA ET BIOPHYSICA ACTA, vol. 1131, 1992, pages 253 - 360
DELMAR ET AL., ANALYTICAL BIOCHEM, vol. 99, 1979, pages 316 - 320
EL SMITH ET AL., J. BIOL CHEM, vol. 243, 1968, pages 2184 - 2191
GUPTA ET AL., APPL. MICROBIOL. BIOTECHNOL, vol. 60, 2002, pages 381 - 395
GUPTA ET AL., BIOTECHNOL. APPL. BIOCHEM., vol. 37, 2003, pages 63 - 71
IRINA PERDIVARA ET AL: "Enhanced electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry of long-chain polysaccharides", RAPID COMMUNICATIONS IN MASS SPECTROMETRY, vol. 22, no. 6, 30 March 2008 (2008-03-30), pages 773 - 782, XP055190402, ISSN: 0951-4198, DOI: 10.1002/rcm.3435 *
JA WELLS ET AL., NUCLEIC ACIDS RESEARCH, vol. 11, 1983, pages 7911 - 7925
JACOBS ET AL., NUCL. ACIDS RES, vol. 13, 1985, pages 8913 - 8926
LUKOVKIN G.M ET AL., EUROP. POLYMER JOURNAL, vol. 9, 1973, pages 559 - 565
NEEDLEMANWUNSCH, J. MOL. BIOL., vol. 48, 1979, pages 443 - 453
PFANNEMUELLER B ET AL: "SYNTHESIS OF HYBRIDS OF NATURAL AND SYNTHETIC POLYMERS AS MODELS FOR POLYSACCHARIDES, STARCH AND GLYCOPROTEINS", MECHANISMS OF SACCHARIDE POLYMERIZATION AND DEPOLYMERIZATION, XX, XX, 1 January 1980 (1980-01-01), pages 413 - 420, XP001120248 *
ST. PIERRE T ET AL., GECKLE M.: ACS POLYM. PREP, vol. 22, 1981, pages 128 - 129
VASANTHA ET AL., J. BACTERIOL, vol. 159, 1984, pages 811 - 819

Similar Documents

Publication Publication Date Title
EP4179053B1 (en) Compositions and their applications
WO2021105330A1 (en) Compositions and polymers useful for such compositions
EP4437074A1 (en) Compositions comprising polymers, polymers, and their use
WO2023061827A1 (en) Compositions comprising polymers, polymers, and their use
CN112805376A (en) Compounds for stabilizing hydrolases in liquids
US20210155754A1 (en) Compositions and polymers useful for such compositions
JP7531965B2 (en) Compounds that stabilize hydrolases in liquids
WO2023088777A1 (en) Compositions comprising polymers, polymers, and their use
WO2024083589A1 (en) Detergent compositions, polymers and methods of manufacturing the same
EP3717611A1 (en) Compositions, their manufacture and use
CN112805377A (en) Compounds for stabilizing amylases in liquids
WO2023148086A1 (en) Compositions comprising polymers, polymers, and their use
EP4437075A1 (en) Compositions comprising polymers, polymers, and their use
EP4168523B1 (en) Compositions and their use
WO2023066741A1 (en) Phosphate-free composition and methods for their manufacture and use
WO2024115754A1 (en) Aqueous compositions containing polyalkoxylates, polyalkoxylates, and use
EP4448705A2 (en) Compositions and their applications
JP2024543103A (en) Compositions containing polymers, polymers, and uses thereof
WO2023198434A1 (en) Compositions, their manufacture and use
WO2022083949A1 (en) Compositions and their use
WO2023193713A1 (en) Modified lysine-based polymer and compositions comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22817586

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE