[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023085141A1 - マルテンサイト系ステンレス継目無鋼管、及び、マルテンサイト系ステンレス継目無鋼管の製造方法 - Google Patents

マルテンサイト系ステンレス継目無鋼管、及び、マルテンサイト系ステンレス継目無鋼管の製造方法 Download PDF

Info

Publication number
WO2023085141A1
WO2023085141A1 PCT/JP2022/040601 JP2022040601W WO2023085141A1 WO 2023085141 A1 WO2023085141 A1 WO 2023085141A1 JP 2022040601 W JP2022040601 W JP 2022040601W WO 2023085141 A1 WO2023085141 A1 WO 2023085141A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel pipe
martensitic stainless
seamless steel
less
content
Prior art date
Application number
PCT/JP2022/040601
Other languages
English (en)
French (fr)
Inventor
恭平 神吉
秀樹 高部
克浩 西原
岳文 網野
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to JP2023506139A priority Critical patent/JP7381983B2/ja
Priority to EP22892640.8A priority patent/EP4431621A1/en
Publication of WO2023085141A1 publication Critical patent/WO2023085141A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/085Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron

Definitions

  • the present disclosure relates to a seamless steel pipe and its manufacturing method, and more particularly to a martensitic stainless steel seamless steel pipe and its manufacturing method.
  • Oil wells and gas wells contain corrosive hydrogen sulfide (H 2 S), carbon dioxide (CO 2 ), and the like.
  • H 2 S hydrogen sulfide
  • CO 2 carbon dioxide
  • Cr chromium
  • steel materials with a yield strength of 110 ksi grade 110 to less than 125 ksi, ie, 758 to 862 MPa
  • a yield strength of 125 ksi or more ie, 862 MPa or more
  • sour environment an environment containing hydrogen sulfide and carbon dioxide is referred to as a "sour environment”.
  • oil well steels used in sour environments are required to have excellent corrosion resistance.
  • Patent Document 1 International Publication No. 2006/061881
  • Patent Document 2 International Publication No. 2008/023702
  • Patent Document 3 International Publication No. 2015/178022
  • the oil-well steel material described in Patent Document 1 is a martensitic stainless steel pipe for oil-well use, and has C: 0.005 to 0.1%, Si: 0.05 to 1%, and Mn: 1.0% by mass. 5-5%, P: 0.05% or less, S: 0.01% or less, Cr: 9-13%, Ni: 0.5% or less, Mo: 2% or less, Cu: 2% or less, Al: It contains 0.001 to 0.1%, N: 0.001 to 0.1%, and the balance consists of Fe and impurities, and has a Cr-depleted region under the surface. As a result, this oil well steel material has a high strength of 655 MPa or more, and has high SCC resistance (stress corrosion cracking resistance) even if it has a Cr-deficient region under the surface. and Patent Document 1 disclose.
  • the steel material for oil wells described in Patent Document 2 is a martensitic stainless steel having, in mass %, C: 0.010 to 0.030%, Mn: 0.30 to 0.60%, and P: 0.01%. 040% or less, S: 0.0100% or less, Cr: 10.00-15.00%, Ni: 2.50-8.00%, Mo: 1.00-5.00%, Ti: 0.050 ⁇ 0.250%, V: 0.25% or less, N: 0.07% or less, Si: 0.50% or less, Al: 0.10% or less, and the balance consists of Fe and impurities and satisfies the formula (6.0 ⁇ Ti/C ⁇ 10.1).
  • Patent Document 2 discloses that this oil well steel has a yield strength of 758 to 862 MPa and is excellent in SSC resistance (sulfide stress cracking resistance) among corrosion resistance.
  • the steel material for oil well described in Patent Document 3 is a high-strength stainless steel seamless steel pipe for oil well, which contains Cr and Ni, has a chemical composition satisfying the formula (Cr/Ni ⁇ 5.3), and has a tempered martensite phase. It has a microstructure with the main phase.
  • a phase exhibiting a white color when etched with a Birera corrosive solution has a thickness of 10 to 100 ⁇ m in the thickness direction from the outer surface of the steel pipe, and is dispersed in an area ratio of 50% or more on the outer surface of the steel pipe. It has surface tissue.
  • Patent Document 3 discloses that this steel material for oil wells has a yield strength of 654 MPa or more and is excellent in corrosion resistance.
  • Patent Documents 1 to 3 above propose techniques for achieving both high strength and excellent corrosion resistance.
  • the inner surface of the seamless steel pipe comes into direct contact with the production fluid. Therefore, the inner surface of the seamless steel pipe is particularly required to have corrosion resistance against pitting corrosion and/or crevice corrosion (hereinafter referred to as "pitting corrosion resistance").
  • pitting corrosion resistance corrosion resistance against pitting corrosion and/or crevice corrosion
  • Patent Documents 1 to 3 do not discuss the pitting corrosion resistance of the inner surface of the seamless steel pipe.
  • An object of the present disclosure is to provide a seamless martensitic stainless steel pipe that achieves both high strength and excellent pitting corrosion resistance on the inner surface, and a method for producing the seamless martensitic stainless steel pipe. .
  • the martensitic stainless seamless steel pipe according to the present disclosure is in % by mass, C: 0.030% or less, Si: 1.00% or less, Mn: 1.00% or less, P: 0.030% or less, S: 0.0050% or less, Cr: 11.00 to 14.00%, Ni: 5.00 to 7.50%, Mo: 1.50-4.50%, Cu: 0.50-3.50%, Co: 0.010 to 0.500%, Ti: 0.050 to 0.300%, V: 0.01 to 1.00%, Ca: 0.0005 to 0.0050%, Al: 0.001 to 0.100%, N: 0.0010 to 0.0500%, O: 0.050% or less, W: 0 to 2.00%, Nb: 0 to 0.50%, Mg: 0-0.0050%, Rare earth element: 0 to 0.0050%, B: 0 to 0.0050%, and Balance: Fe and impurities, and satisfies formula (1), a microstructure, in volume percent, consisting of 0-15.0% retained austenite
  • the observation field of view area is an inner surface vicinity region having a rectangular shape with the inner surface of the martensitic stainless steel seamless steel pipe as the upper end, 256 sections in the L direction, and 6 sections in the T direction; the inner surface vicinity region and an inner region adjacent below the inner surface vicinity region; comprising the inner surface vicinity region and a void region adjacent above the inner surface vicinity region, Among all the sections in the inner surface vicinity region, the number ratio of sections with a Cu concentration exceeding 2.0% is defined as the inner surface Cu occupancy OS Cu , When the number ratio of sections with a Cu concentration exceeding 2.0% among all the sections in the internal region is defined as the internal Cu occupancy OI Cu , The inner surface Cu occupancy OS Cu and the internal Cu occupancy OI Cu satisfy formula (2), Martensitic stainless seamless steel pipe. Mo+0.5 ⁇ W ⁇ 2.50 (1) OS Cu /OI Cu ⁇ 1.20 (2) Here, the content of the corresponding
  • a method for manufacturing a martensitic stainless seamless steel pipe includes: The method for producing the martensitic stainless seamless steel pipe, comprising: in % by mass, C: 0.030% or less, Si: 1.00% or less, Mn: 1.00% or less, P: 0.030% or less, S: 0.0050% or less, Cr: 11.00 to 14.00%, Ni: 5.00 to 7.50%, Mo: 1.50-4.50%, Cu: 0.50-3.50%, Co: 0.010 to 0.500%, Ti: 0.050 to 0.300%, V: 0.01 to 1.00%, Ca: 0.0005 to 0.0050%, Al: 0.001 to 0.100%, N: 0.0010 to 0.0500%, O: 0.050% or less, W: 0 to 2.00%, Nb: 0 to 0.50%, Mg: 0-0.0050%, Rare earth element: 0 to 0.0050%, B: 0 to 0.0050%, and Balance: a material preparation step of preparing a material consisting
  • R ⁇ 1-(cross-sectional area perpendicular to the axial direction of the tube after hot working/cross-sectional area perpendicular to the axial direction of the raw material before hot working) ⁇ x 100 (A) (T + 273.15) x (20 + log 10 (t/60)) x (1-[Cu]/100) ⁇ 17200 (B)
  • the content of the corresponding element is substituted for the symbol of the element in formula (1) in terms of % by mass.
  • T is the tempering temperature in degrees Celsius
  • t is the tempering time in minutes
  • [Cu] is the Cu content in the blank in mass %.
  • the martensitic stainless seamless steel pipe according to the present disclosure can achieve both high strength and excellent pitting corrosion resistance on the inner surface. According to the method for producing a martensitic stainless steel seamless pipe according to the present disclosure, it is possible to produce a martensitic stainless seamless steel pipe that achieves both high strength and excellent pitting corrosion resistance on the inner surface.
  • FIG. 1 is a schematic diagram showing an example of microstructure observation in a cross section including the inner surface of a martensitic stainless seamless steel pipe and including the pipe axial direction and the pipe radial direction.
  • FIG. 2 is a schematic diagram showing how the observation visual field area is divided into 256 equal parts in the tube radial direction (L direction) and 256 equal parts in the tube axial direction (T direction), and divided into 65536 sections.
  • FIG. 3 is a schematic diagram showing the relationship between the position of each section in the observation field region in the tube radial direction (T direction) and the average Fe concentration in the tube axial direction (L direction).
  • the present inventors studied a martensitic stainless seamless steel pipe that can achieve both high yield strength and excellent pitting corrosion resistance on the inner surface from the viewpoint of chemical composition.
  • the present inventors found that, in mass %, C: 0.030% or less, Si: 1.00% or less, Mn: 1.00% or less, P: 0.030% or less, S: 0.0050 % or less, Cr: 11.00 to 14.00%, Ni: 5.00 to 7.50%, Mo: 1.50 to 4.50%, Cu: 0.50 to 3.50%, Co: 0 .010-0.500%, Ti: 0.050-0.300%, V: 0.01-1.00%, Ca: 0.0005-0.0050%, Al: 0.001-0.100 %, N: 0.0010 to 0.0500%, O: 0.050% or less, W: 0 to 2.00%, Nb: 0 to 0.50%, Mg: 0 to 0.0050%, rare earth elements : 0 to 0.0050%, B: 0 to 0.0050
  • the present inventors focused on molybdenum (Mo) and tungsten (W) as chemical compositions that improve the pitting corrosion resistance of martensitic stainless seamless steel pipes.
  • Mo forms a solid solution and enhances the pitting corrosion resistance of the seamless steel pipe.
  • W forms a solid solution to improve the pitting corrosion resistance of the seamless steel pipe. That is, the present inventors thought that the pitting corrosion resistance of the seamless steel pipe could be improved by increasing the Mo content and the W content.
  • the martensitic stainless seamless steel pipe according to the present embodiment has the chemical composition and microstructure described above, and the chemical composition satisfies the following formula (1).
  • the martensitic stainless seamless steel pipe according to the present embodiment can achieve both a yield strength of 125 ksi or more and excellent pitting corrosion resistance, provided that other configurations of the present embodiment are satisfied.
  • the content of the corresponding element is substituted for the symbol of the element in formula (1) in terms of % by mass.
  • the present inventors focused on the state of the vicinity of the inner surface of a seamless steel pipe and investigated a method for improving the pitting corrosion resistance of the inner surface.
  • Cu copper
  • the present inventors manufactured various kinds of seamless martensitic stainless steel pipes having the chemical composition described above and in which Cu precipitates were formed in the vicinity of the inner surface, and investigated and studied the pitting corrosion resistance of the inner surface in detail. gone.
  • Fig. 1 is a schematic diagram showing an example of microstructure observation in a cross section including the inner surface of the martensitic stainless seamless steel pipe having the chemical composition described above and including the pipe axial direction and the pipe radial direction.
  • the horizontal direction in the observation visual field region 50 in FIG. 1 corresponds to the tube axial direction
  • the vertical direction corresponds to the tube radial direction.
  • the pipe axial direction of the martensitic stainless seamless steel pipe is also referred to as the "L direction”
  • the pipe radial direction of the martensitic stainless seamless steel pipe is also referred to as the "T direction”.
  • the L-direction length of the observation field region 50 shown in the schematic diagram is 1.0 ⁇ m
  • the T-direction length is 1.0 ⁇ m.
  • the inner surface 10 of the seamless steel pipe is near the center in the T direction and can be confirmed as a line segment extending in the L direction.
  • a person skilled in the art can uniquely identify the inner surface 10 of the seamless steel pipe by the method described later.
  • the portion below the inner surface 10 in FIG. 1 is the martensitic stainless seamless steel pipe.
  • the observation visual field region 50 in FIG. 1 is divided into 256 equal sections in the L direction and 256 equal sections in the T direction, resulting in 65536 sections.
  • the region 20 in Fig. 1 is also referred to as the region near the inner surface of the seamless steel pipe.
  • the inner surface vicinity region 20 is defined as a rectangle having the inner surface 10 as the upper end, 256 sections in the L direction, and 6 sections in the T direction.
  • the region 30 in FIG. 1 is also referred to as the inner region of the seamless steel pipe.
  • the interior region 30 is a rectangle that abuts the interior near-surface region 20 below.
  • Region 40 in FIG. 1 is also referred to as void region.
  • the void region 40 corresponds to a through-hole of the martensitic stainless seamless steel pipe.
  • the observation field region 50 of FIG. 1 consists of the inner surface near region 20, the inner region 30 adjacent to the inner surface near region 20 below, and the void region 40 adjacent to the inner surface near region 20 above.
  • Elemental concentration analysis is performed in each of the 65536 sections of the observation field of view area 50 to identify the concentration of specific metal elements, which will be detailed later, in each section.
  • the ratio of Cu in the obtained specific metal element is obtained in percentage and defined as the Cu concentration in each section.
  • the ratio of the number of sections having a Cu concentration exceeding 2.0% among the sections included in the inner surface neighboring region 20 in the observation field region 50 is defined as the inner surface Cu occupancy OS Cu .
  • the internal Cu occupancy OI Cu is defined as the number ratio of sections having a Cu concentration of more than 2.0% among the sections included in the internal region 30 in the observation visual field region 50 .
  • Fn2 OS Cu /OI Cu .
  • Fn2 is an index indicating the degree of uneven distribution of Cu precipitates in the region 20 near the inner surface. The larger Fn2 is, the more the Cu precipitates are unevenly distributed in the region 20 near the inner surface, and the pitting corrosion resistance of the inner surface can be effectively improved.
  • the inventors of the present invention found that if Fn2 is 1.20 or more in a martensitic stainless seamless steel pipe having the chemical composition described above including formula (1), the inner surface of the seamless steel pipe It has been found that the pitting corrosion resistance is remarkably enhanced.
  • the martensitic stainless seamless steel pipe according to the present embodiment has the above-described chemical composition including the formula (1), and furthermore, the inner surface Cu occupancy OS Cu and the internal Cu occupancy defined as above are OI Cu satisfies the following formula (2).
  • the martensitic stainless seamless steel pipe according to the present embodiment can achieve both high yield strength and excellent pitting corrosion resistance on the inner surface.
  • the gist of the martensitic stainless seamless steel pipe according to the present embodiment completed based on the above knowledge is as follows.
  • a martensitic stainless steel seamless steel pipe in % by mass, C: 0.030% or less, Si: 1.00% or less, Mn: 1.00% or less, P: 0.030% or less, S: 0.0050% or less, Cr: 11.00 to 14.00%, Ni: 5.00 to 7.50%, Mo: 1.50-4.50%, Cu: 0.50-3.50%, Co: 0.010 to 0.500%, Ti: 0.050 to 0.300%, V: 0.01 to 1.00%, Ca: 0.0005 to 0.0050%, Al: 0.001 to 0.100%, N: 0.0010 to 0.0500%, O: 0.050% or less, W: 0 to 2.00%, Nb: 0 to 0.50%, Mg: 0-0.0050%, Rare earth element: 0 to 0.0050%, B: 0 to 0.0050%, and Balance: Fe and impurities, and satisfies formula (1), a microstructure, in volume percent, consisting of 0-15.0% retained austenite,
  • the observation field of view area is an inner surface vicinity region having a rectangular shape with the inner surface of the martensitic stainless steel seamless steel pipe as the upper end, 256 sections in the L direction, and 6 sections in the T direction; the inner surface vicinity region and an inner region adjacent below the inner surface vicinity region; comprising the inner surface vicinity region and a void region adjacent above the inner surface vicinity region, Among all the sections in the inner surface vicinity region, the number ratio of sections with a Cu concentration exceeding 2.0% is defined as the inner surface Cu occupancy OS Cu , When the number ratio of sections with a Cu concentration exceeding 2.0% among all the sections in the internal region is defined as the internal Cu occupancy OI Cu , The inner surface Cu occupancy OS Cu and the internal Cu occupancy OI Cu satisfy formula (2), Martensitic stainless seamless steel pipe. Mo+0.5 ⁇ W ⁇ 2.50 (1) OS Cu /OI Cu ⁇ 1.20 (2) Here, the content of the corresponding
  • [3] A method for producing a martensitic stainless seamless steel pipe according to [1] or [2], in % by mass, C: 0.030% or less, Si: 1.00% or less, Mn: 1.00% or less, P: 0.030% or less, S: 0.0050% or less, Cr: 11.00 to 14.00%, Ni: 5.00 to 7.50%, Mo: 1.50-4.50%, Cu: 0.50-3.50%, Co: 0.010 to 0.500%, Ti: 0.050 to 0.300%, V: 0.01 to 1.00%, Ca: 0.0005 to 0.0050%, Al: 0.001 to 0.100%, N: 0.0010 to 0.0500%, O: 0.050% or less, W: 0 to 2.00%, Nb: 0 to 0.50%, Mg: 0-0.0050%, Rare earth element: 0 to 0.0050%, B: 0 to 0.0050%, and Balance: a material preparation step of preparing a material consisting of Fe and impurities and satisfying formula (1); After
  • a hot working step of manufacturing a mother pipe by carrying out A quenching step of performing quenching on the raw pipe of 3 or more points; a tempering step of performing tempering on the quenched base pipe under conditions that satisfy formula (B); A method for producing a martensitic stainless seamless steel pipe.
  • R ⁇ 1-(cross-sectional area perpendicular to the axial direction of the tube after hot working/cross-sectional area perpendicular to the axial direction of the raw material before hot working) ⁇ x 100 (A) (T + 273.15) x (20 + log 10 (t/60)) x (1-[Cu]/100) ⁇ 17200 (B)
  • T is the tempering temperature in degrees Celsius
  • t is the tempering time in minutes
  • [Cu] is the Cu content in the blank in mass %.
  • [4] A method for producing a martensitic stainless seamless steel pipe according to [3], The material is W: 0.01 to 2.00%, Nb: 0.01 to 0.50%, Mg: 0.0001-0.0050%, Rare earth element: 0.0001 to 0.0050%, and B: containing one or more elements selected from the group consisting of 0.0001 to 0.0050%, A method for producing a martensitic stainless seamless steel pipe.
  • the chemical composition of the martensitic stainless seamless steel pipe according to this embodiment contains the following elements.
  • C 0.030% or less Carbon (C) is inevitably contained. That is, the lower limit of the C content is over 0%. C enhances the hardenability of the steel material and enhances the strength of the steel material. However, if the C content is too high, C tends to combine with Cr to form Cr carbides. As a result, even if the content of other elements is within the range of the present embodiment, the toughness of the steel material is lowered. Therefore, the C content is 0.030% or less.
  • a preferable lower limit of the C content is 0.001%, more preferably 0.003%, and still more preferably 0.005%.
  • a preferable upper limit of the C content is 0.025%, more preferably 0.020%, and still more preferably 0.015%.
  • the C content is preferably as low as possible.
  • Si Silicon
  • the lower limit of the Si content is preferably 0.05%, more preferably 0.10%, still more preferably 0.15%, still more preferably 0.20%.
  • a preferable upper limit of the Si content is 0.70%, more preferably 0.50%, still more preferably 0.45%, still more preferably 0.40%.
  • Mn 1.00% or less Manganese (Mn) is inevitably contained. That is, the lower limit of the Mn content is over 0%. Mn enhances the hardenability of the steel material and enhances the strength of the steel material. However, if the Mn content is too high, Mn forms coarse inclusions and lowers the toughness of the steel material even if the content of other elements is within the range of the present embodiment. Therefore, the Mn content is 1.00% or less.
  • a preferable lower limit of the Mn content is 0.10%, more preferably 0.20%, and still more preferably 0.25%.
  • a preferable upper limit of the Mn content is 0.80%, more preferably 0.60%, and still more preferably 0.50%.
  • Phosphorus (P) is an unavoidable impurity. That is, the lower limit of the P content is over 0%. If the P content is too high, even if the content of other elements is within the range of the present embodiment, P will segregate at the grain boundaries and significantly reduce the toughness of the steel material. Therefore, the P content is 0.030% or less. A preferable upper limit of the P content is 0.025%, more preferably 0.020%. The lower the P content is, the better. However, excessive reduction of the P content greatly increases manufacturing costs. Therefore, considering industrial production, the lower limit of the P content is preferably 0.0001%, more preferably 0.0005%, and still more preferably 0.001%.
  • S 0.0050% or less Sulfur (S) is an unavoidable impurity. That is, the lower limit of the S content is over 0%. If the S content is too high, even if the content of other elements is within the range of the present embodiment, S will segregate at the grain boundaries and significantly reduce the toughness of the steel material. Therefore, the S content is 0.0050% or less.
  • a preferable upper limit of the S content is 0.0040%, more preferably 0.0030%, and still more preferably 0.0020%. It is preferable that the S content is as low as possible. However, drastic reduction of the S content greatly increases manufacturing costs. Therefore, considering industrial production, the preferred lower limit of the S content is 0.0001%, more preferably 0.0002%, and still more preferably 0.0003%.
  • Chromium (Cr) increases the pitting resistance of steel. If the Cr content is too low, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the Cr content is too high, Cr carbides, Cr-containing intermetallics, and Cr oxides are excessively formed. In this case, even if the contents of the other elements are within the range of the present embodiment, the corrosion resistance of the steel material is lowered. Therefore, the Cr content is 11.00-14.00%.
  • a preferable lower limit of the Cr content is 11.05%, more preferably 11.10%, still more preferably 11.50%, still more preferably 11.80%.
  • a preferable upper limit of the Cr content is 13.70%, more preferably 13.50%, still more preferably 13.40%, still more preferably 13.30%.
  • Ni 5.00-7.50%
  • Nickel (Ni) enhances the pitting corrosion resistance of steel materials.
  • Ni is also an austenite-forming element, and converts the microstructure of the steel material to martensite after quenching. If the Ni content is too low, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the Ni content is too high, the above effects will be saturated and the manufacturing cost will increase. Therefore, the Ni content is 5.00-7.50%.
  • a preferable lower limit of the Ni content is 5.10%, more preferably 5.15%, and still more preferably 5.20%.
  • the upper limit of the Ni content is preferably 7.30%, more preferably 7.00%, still more preferably 6.80%, still more preferably 6.60%, still more preferably 6.40 %.
  • Mo Molybdenum
  • Mo enhances the pitting corrosion resistance of steel. If the Mo content is too low, this effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the Mo content is too high, the above effects will be saturated and the manufacturing cost will increase. Therefore, the Mo content is 1.50-4.50%.
  • a preferable lower limit of the Mo content is 1.60%, more preferably 1.70%, still more preferably 1.80%.
  • a preferred upper limit of the Mo content is 4.30%, more preferably 4.10%, still more preferably 3.90%, still more preferably 3.70%.
  • Cu 0.50-3.50% Copper (Cu) precipitates as Cu precipitates in the steel material. If the Cu precipitates are unevenly distributed in the inner surface vicinity region 20 of the seamless steel pipe, the pitting corrosion resistance of the inner surface of the seamless steel pipe is enhanced. Cu precipitates further increase the strength of the steel. If the Cu content is too low, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the Cu content is too high, the strength of the steel material becomes too high, and the corrosion resistance and/or low temperature toughness of the steel material deteriorates, even if the contents of other elements are within the ranges of the present embodiment. Therefore, the Cu content is 0.50-3.50%.
  • a preferable lower limit of the Cu content is 0.60%, more preferably 0.70%, and still more preferably 0.80%.
  • a preferable upper limit of the Cu content is less than 3.50%, more preferably 3.45%, more preferably 3.40%, still more preferably 3.20%.
  • Co 0.010-0.500%
  • Co Cobalt
  • the lower limit of the Co content is preferably 0.015%, more preferably 0.020%, still more preferably 0.030%.
  • a preferable upper limit of the Co content is 0.450%, more preferably 0.400%.
  • Titanium (Ti) combines with C or N to form carbides or nitrides in the steel material.
  • the pinning effect suppresses coarsening of crystal grains and increases the strength of the steel material.
  • Ti forms carbides or nitrides to suppress an excessive increase in strength due to excessive formation of V precipitates (carbides, nitrides, carbonitrides).
  • V precipitates carbides, nitrides, carbonitrides.
  • the pitting corrosion resistance of the steel is enhanced. If the Ti content is too low, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the Ti content is too high, the above effects will saturate and the production cost will increase.
  • the Ti content is 0.050-0.300%.
  • a preferable lower limit of the Ti content is 0.060%, more preferably 0.070%, and still more preferably 0.080%.
  • a preferable upper limit of the Ti content is 0.250%, more preferably 0.200%.
  • V 0.01-1.00% Vanadium (V) forms precipitates (V precipitates) such as carbides, nitrides, and carbonitrides in the steel material to increase the strength of the steel material. If the V content is too low, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the V content is too high, even if the content of the other elements is within the range of the present embodiment, excessive V precipitates are formed and the toughness of the steel decreases. Therefore, the V content is 0.01-1.00%. A preferable lower limit of the V content is 0.02%, more preferably 0.03%. A preferred upper limit of the V content is 0.90%, more preferably 0.80%, still more preferably 0.60%, still more preferably 0.50%.
  • Ca 0.0005-0.0050% Calcium (Ca) renders S in the steel material harmless as sulfides and enhances the hot workability of the steel material. If the Ca content is too low, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the Ca content is too high, even if the contents of other elements are within the ranges of the present embodiment, inclusions in the steel material become coarse and the toughness of the steel material decreases. Therefore, the Ca content is 0.0005-0.0050%.
  • the lower limit of the Ca content is preferably 0.0006%, more preferably 0.0008%, still more preferably 0.0010%.
  • a preferable upper limit of the Ca content is 0.0040%, more preferably 0.0030%.
  • Al 0.001-0.100%
  • Aluminum (Al) deoxidizes steel. If the Al content is too low, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the Al content is too high, even if the content of other elements is within the range of the present embodiment, coarse Al oxides are formed and the toughness of the steel material is lowered. Therefore, the Al content is 0.001-0.100%.
  • a preferable lower limit of the Al content is 0.002%, more preferably 0.003%, and still more preferably 0.005%.
  • a preferable upper limit of the Al content is 0.095%, more preferably 0.090%, and still more preferably 0.085%.
  • Al content in this specification is sol. It means the content of Al (acid-soluble Al).
  • N Nitrogen (N) enhances the corrosion resistance of steel. If the N content is too low, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the N content is too high, coarse Ti nitrides will form even if the content of other elements is within the range of the present embodiment, and the toughness of the steel material will decrease. Therefore, the N content is 0.0010-0.0500%.
  • a preferable lower limit of the N content is 0.0015%, more preferably 0.0020%, and still more preferably 0.0025%.
  • a preferred upper limit of the N content is 0.0450%, more preferably 0.0400%, still more preferably 0.0350%, still more preferably 0.0300%.
  • Oxygen (O) is an unavoidable impurity. That is, the lower limit of the O content is over 0%. O forms oxides and lowers the pitting corrosion resistance of steel materials. Therefore, if the O content is too high, the pitting corrosion resistance of the steel is remarkably lowered even if the content of other elements is within the range of the present embodiment. Therefore, the O content is 0.050% or less.
  • a preferable upper limit of the O content is 0.040%, more preferably 0.030%, and still more preferably 0.020%. It is preferable that the O content is as low as possible. However, drastic reduction of O content increases manufacturing cost. Therefore, considering industrial production, the lower limit of the O content is preferably 0.0005%, more preferably 0.001%.
  • the remainder of the martensitic stainless seamless steel pipe according to this embodiment consists of Fe and impurities.
  • the impurities are those that are mixed from ore, scrap, or the manufacturing environment as raw materials when industrially producing steel materials, and are not intentionally included. It means that it is permissible within a range that does not adversely affect the martensitic stainless steel material due to
  • the martensitic stainless seamless steel pipe according to the present embodiment may further contain W instead of part of Fe.
  • W 0-2.00%
  • Tungsten (W) is an optional element and may not be contained. That is, the W content may be 0%.
  • W stabilizes the passive film in a sour environment and inhibits destruction of the passive film by chloride ions and hydrogen sulfide ions. As a result, the pitting corrosion resistance of the steel is enhanced. If even a small amount of W is contained, the above effect can be obtained to some extent.
  • W content is too high, W will combine with C to form coarse carbides. In this case, even if the content of other elements is within the range of the present embodiment, the pitting corrosion resistance of the steel material is lowered. Therefore, the W content is 0-2.00%.
  • a preferable lower limit of the W content is 0.01%, more preferably 0.03%, and still more preferably 0.05%.
  • a preferable upper limit of the W content is 1.75%, more preferably 1.50%, and still more preferably 1.20%.
  • the martensitic stainless seamless steel pipe according to the present embodiment may further contain Nb instead of part of Fe.
  • Niobium (Nb) is an optional element and may not be contained. That is, the Nb content may be 0%. When included, Nb combines with C and/or N to form Nb carbides, Nb carbonitrides. In this case, the pinning effect suppresses grain coarsening and increases the yield strength of the steel material. If even a small amount of Nb is contained, the above effect can be obtained to some extent. On the other hand, if the Nb content is too high, Nb carbides and/or Nb carbonitrides are excessively produced even if the other element contents are within the range of the present embodiment. As a result, the pitting corrosion resistance of the steel is lowered. Therefore, the Nb content is 0-0.50%. A preferable lower limit of the Nb content is 0.01%, more preferably 0.02%, and still more preferably 0.03%. A preferable upper limit of the Nb content is 0.45%, more preferably 0.40%, and still more preferably 0.35%.
  • the martensitic stainless seamless steel pipe according to the present embodiment may further contain one or more elements selected from the group consisting of Mg, rare earth elements (REM), and B, instead of part of Fe. These elements are optional elements, and all of them improve the hot workability of the steel material.
  • Mg rare earth elements
  • B rare earth elements
  • Mg 0-0.0050%
  • Mg Magnesium
  • the Mg content may be 0%.
  • Mg controls the morphology of inclusions and enhances the hot workability of the steel. If even a small amount of Mg is contained, the above effect can be obtained to some extent. However, if the Mg content is too high, coarse oxides are formed and the toughness of the steel material is lowered even if the content of other elements is within the range of the present embodiment. Therefore, the Mg content is 0-0.0050%.
  • a preferable lower limit of the Mg content is 0.0001%, more preferably 0.0005%, and still more preferably 0.0010%.
  • a preferable upper limit of the Mg content is 0.0045%, more preferably 0.0040%, and still more preferably 0.0035%.
  • Rare earth element 0-0.0050%
  • a rare earth element (REM) is an optional element and may not be contained. That is, the REM content may be 0%. When included, REM, like Mg, controls the morphology of inclusions and enhances the hot workability of the steel. The above effect can be obtained to some extent if REM is contained even in a small amount. However, if the REM content is too high, coarse oxides are formed and the toughness of the steel material is reduced even if the content of other elements is within the range of the present embodiment. Therefore, the REM content is 0-0.0050%.
  • a preferable lower limit of the REM content is 0.0001%, more preferably 0.0005%, and still more preferably 0.0010%.
  • a preferred upper limit for the REM content is 0.0045%, more preferably 0.0040%, and still more preferably 0.0035%.
  • REM refers to scandium (Sc) with atomic number 21, yttrium (Y) with atomic number 39, and lanthanoid (La) with atomic number 57 to atomic number 71.
  • Sc scandium
  • Y yttrium
  • La lanthanoid
  • REM refers to scandium (Sc) with atomic number 21, yttrium (Y) with atomic number 39, and lanthanoid (La) with atomic number 57 to atomic number 71.
  • Y yttrium
  • La lanthanoid
  • REM content in this specification is the total content of these elements.
  • B 0 to 0.0050%
  • Boron (B) is an optional element and may not be contained. That is, the B content may be 0%. When included, B segregates at the austenite grain boundaries to strengthen the grain boundaries and enhance the hot workability of the steel. If even a small amount of B is contained, the above effect can be obtained to some extent. However, if the B content is too high, even if the contents of other elements are within the range of the present embodiment, Cr carbide borides are formed, and the toughness of the steel material is lowered. Therefore, the B content is 0-0.0050%. A preferable lower limit of the B content is 0.0001%, more preferably 0.0002%. A preferred upper limit of the B content is 0.0045%, more preferably 0.0040%, still more preferably 0.0035%, still more preferably 0.0030%.
  • the martensitic stainless seamless steel pipe according to this embodiment has the chemical composition described above and further satisfies the following formula (1). Mo+0.5 ⁇ W ⁇ 2.50 (1)
  • the content of the corresponding element is substituted for the symbol of the element in formula (1) in terms of % by mass.
  • the seamless martensitic stainless steel pipe according to the present embodiment has the chemical composition and microstructure described above, and has an Fn1 of 2.50 or more.
  • the martensitic stainless seamless steel pipe according to the present embodiment can achieve both a yield strength of 125 ksi or more and excellent pitting corrosion resistance, provided that other configurations of the present embodiment are satisfied.
  • a preferred lower limit for Fn1 is 2.60, more preferably 2.70.
  • the upper limit of Fn1 is not particularly limited, but is 4.50, for example.
  • the microstructure of the seamless martensitic stainless steel pipe according to the present embodiment is composed of 0 to 15.0% retained austenite, 0 to 5.0% ferrite, and the balance tempered martensite in terms of volume %.
  • "consisting of retained austenite, ferrite and tempered martensite” means that phases other than retained austenite, ferrite and tempered martensite are negligibly small.
  • the volume fraction of precipitates and inclusions is negligible compared to the volume fractions of retained austenite, ferrite, and tempered martensite. small. That is, the microstructure of the seamless martensitic stainless steel pipe according to the present embodiment may contain minute amounts of precipitates, inclusions, and the like in addition to retained austenite, ferrite, and tempered martensite.
  • the volume fraction of retained austenite is 0 to 15.0%
  • the volume fraction of ferrite is 0 to 5.0%.
  • the balance consists of tempered martensite. That is, in the microstructure of the seamless martensitic stainless steel pipe according to this embodiment, the volume fraction of tempered martensite is 80 to 100.0%. If the volume fraction of retained austenite and ferrite is too high, it becomes difficult to control the mechanical properties of the steel material. On the other hand, the lower limit of the volume fraction of retained austenite and ferrite may be 0%. That is, the martensitic stainless seamless steel pipe according to the present embodiment may have a microstructure consisting only of tempered martensite.
  • the lower limit of the volume fraction of retained austenite in the microstructure may be 1.0% or 2.0%. Furthermore, in the microstructure, the upper limit of the volume fraction of retained austenite may be 13.0% or 10.0%. In this embodiment, the lower limit of the volume fraction of ferrite in the microstructure may be 0.5%. Furthermore, in the microstructure, the upper limit of the ferrite volume fraction may be 3.0% or 2.0%.
  • the volume fraction (%) of retained austenite in the microstructure of the seamless martensitic stainless steel pipe according to the present embodiment can be obtained by the following method.
  • the volume fraction of retained austenite is determined by the X-ray diffraction method.
  • a test piece is prepared from the thickness central portion of a martensitic stainless steel seamless steel pipe.
  • the size of the test piece is not particularly limited, it is, for example, 15 mm ⁇ 15 mm ⁇ 2 mm thick.
  • the thickness direction of the test piece is parallel to the wall thickness (pipe diameter) direction.
  • the (200) plane of the ⁇ phase (ferrite and martensite), the (211) plane of the ⁇ phase, the (200) plane of the ⁇ phase (retained austenite), the (220) plane of the ⁇ phase, The X-ray diffraction intensity of each (311) plane of the ⁇ phase is measured, and the integrated intensity of each plane is calculated.
  • the target of the X-ray diffractometer is Mo (MoK ⁇ ray).
  • V ⁇ 100/ ⁇ 1+(I ⁇ R ⁇ )/(I ⁇ R ⁇ ) ⁇ (I) where I ⁇ is the integrated intensity of the ⁇ phase.
  • R ⁇ is the crystallographically calculated value of the ⁇ phase.
  • I ⁇ is the integrated intensity of the ⁇ phase.
  • R ⁇ is the crystallographically calculated value of the ⁇ phase.
  • R ⁇ on the (200) plane of the ⁇ phase is 15.9
  • R ⁇ on the (211) plane of the ⁇ phase is 29.2
  • R ⁇ on the (200) plane of the ⁇ phase is 35.9. 5.
  • R ⁇ on the (220) plane of the ⁇ phase be 20.8
  • R ⁇ on the (311) plane of the ⁇ phase be 21.8.
  • the volume fraction of retained austenite is the value obtained by rounding the obtained numerical value to the second decimal place.
  • the volume fraction (%) of ferrite in the microstructure of the seamless martensitic stainless steel pipe according to the present embodiment can be obtained by the following method.
  • the volume fraction of ferrite is determined by the point counting method based on ASTM E562 (2019).
  • a test piece is prepared from the thickness central portion of a martensitic stainless steel seamless steel pipe.
  • the test piece is not particularly limited as long as it has an observation surface perpendicular to the rolling (tube axis) direction.
  • the specimen is embedded in resin, and the observation surface polished to a mirror surface is immersed in a Villella corrosive solution (mixture of ethanol, hydrochloric acid, and picric acid) for about 60 seconds to expose the tissue by etching.
  • the etched observation surface is observed for 30 fields of view using an optical microscope.
  • the field of view area is not particularly limited, it is, for example, 0.03 mm 2 per field of view (magnification of 400 times).
  • ferrite and other phases can be distinguished from the contrast by those skilled in the art. Therefore, ferrite in each observation field is specified based on the contrast.
  • the area ratio of the specified ferrite is determined by the point counting method based on ASTM E562 (2019).
  • the arithmetic average value of the ferrite area ratios in the 10 fields of view obtained is defined as the ferrite volume ratio (%).
  • the volume fraction of ferrite is the value obtained by rounding the obtained numerical value to the second decimal place.
  • the martensitic stainless seamless steel pipe according to this embodiment has a yield strength of 862 MPa or more (125 ksi or more). Yield strength as used herein means a 0.2% offset yield strength obtained in a tensile test.
  • the martensitic stainless steel seamless steel pipe according to the present embodiment has the above chemical composition including formula (1) even if it has a yield strength of 125 ksi or more, and by satisfying formula (2) described later, It exhibits excellent pitting corrosion resistance on the inner surface of seamless steel pipes.
  • the upper limit of the yield strength is not particularly limited, but is 1172 MPa, for example.
  • the yield strength of the martensitic stainless seamless steel pipe according to this embodiment can be obtained by the following method.
  • a tensile test piece is produced from the seamless martensitic stainless steel pipe according to this embodiment in accordance with ASTM E8/E8M (2021). Specifically, a round-bar test piece is produced from the thickness central portion of the seamless steel pipe. The size of the round bar test piece is, for example, a diameter of 8.9 mm at the parallel portion and a gauge length of 35.6 mm. If a round bar test piece cannot be produced from a seamless steel pipe, an arc-shaped test piece is produced.
  • the size of the arc-shaped test piece is, for example, the same thickness as the seamless steel pipe, with a width of 25.4 mm and a gauge length of 50.8 mm.
  • the axial direction of the tensile test piece was parallel to the axial direction of the seamless steel pipe.
  • a tensile test was performed at room temperature (24 ⁇ 3°C) in accordance with ASTM E8/E8M (2021), and the obtained 0.2% offset yield strength (MPa) was calculated as the yield strength ( MPa).
  • MPa 0.2% offset yield strength
  • the yield strength is a value obtained by rounding off the obtained numerical value to the first decimal place.
  • the martensitic stainless steel seamless steel pipe according to the present embodiment includes the inner surface of the seamless steel pipe and has a side length of 1.0 ⁇ m extending in the L direction and a side length of 1.0 ⁇ m extending in the T direction.
  • the inner surface vicinity region 20 of the martensitic stainless steel seamless steel pipe has , the number ratio of sections with a Cu concentration exceeding 2.0% is defined as the inner surface Cu occupancy OS Cu , and the number of sections with a Cu concentration exceeding 2.0% in the inner region 30 of the martensitic stainless seamless steel pipe is defined as the internal Cu occupancy OI Cu , the inner surface Cu occupancy OS Cu and the internal Cu occupancy OI Cu satisfy the formula (2).
  • the seamless martensitic stainless steel pipe according to the present embodiment has the above chemical composition including formula (1), a yield strength of 125 ksi or more, and Fn2 of 1.20 or more. As a result, the martensitic stainless seamless steel pipe according to the present embodiment can achieve both high yield strength and excellent pitting corrosion resistance on the inner surface.
  • the martensitic stainless seamless steel pipe according to the present embodiment has a chemical composition that satisfies the formula (1), a yield strength of 862 MPa or more, and Fn2 of 1.20 or more.
  • the preferred lower limit of Fn2 is 1.25, more preferably 1.30.
  • the upper limit of Fn2 is not particularly limited in this embodiment, it is, for example, 5.00.
  • the inner surface Cu occupancy OS Cu and the internal Cu occupancy OI Cu can be obtained by the following method.
  • a thin film test piece for observing the inner surface is produced from the seamless martensitic stainless steel pipe according to the present embodiment.
  • a thin film test piece is produced by focused ion beam (Focused Ion Beam, hereinafter also referred to as “FIB”) processing.
  • FIB focused ion beam
  • the shape of the thin film test piece is not particularly limited as long as an observation surface described later can be obtained.
  • the size of the observation surface of the thin film test piece is, for example, 10 ⁇ m ⁇ 10 ⁇ m, and the thickness of the thin film test piece is, for example, 150 nm.
  • a protective film (so-called deposition film) for protecting the inner surface is further formed on the inner surface.
  • the observation field of view is adjusted so as to include the inner surface of the seamless steel pipe.
  • the observation field region 50 is specified so that the inner surface 10 of the seamless steel pipe is positioned near the center of the observation field region 50 in the T direction and extends in the L direction.
  • the inner surface 10 of the seamless steel pipe is located near the center of the observation field region 50 in the T direction
  • the inner surface 10 of the seamless steel pipe that can be confirmed by observation It means that it is positioned approximately in the center of the observation visual field area 50 in the T direction.
  • the observation visual field region 50 is divided into 5 equal parts in the T direction
  • the inner surface 10 of the seamless steel pipe 10 can be said to be located near the center of the observation visual field area 50 in the T direction.
  • the inner surface 10 of the seamless steel pipe extends in the L direction of the observation field region 50
  • the inner surface 10 of the seamless steel pipe that can be confirmed by observation extends to the observation field region 50. It means that it is approximately parallel to the L direction of the .
  • arbitrary four observation visual fields are specified from the observation surface of the thin film test piece.
  • tissue observation with a transmission electron microscope (hereinafter also referred to as "TEM") for the specified four observation field areas.
  • TEM transmission electron microscope
  • the conditions for tissue observation are not particularly limited, for example, the acceleration voltage is set to 200 kV.
  • the observation visual field region in which the tissue was observed by the TEM was divided into 65536 sections, which were equally divided into 256 sections in the L direction and 256 sections in the T direction.
  • each section is represented by (n, m) with the upper left corner of the observation field region as the origin.
  • n (integer) means the L-direction position in the observation visual field area, with 1 being the left end of the observation visual field area and 256 being the right end.
  • m (integer) means the T-direction position in the observation visual field area, with 1 being the upper end of the observation visual field area and 256 being the lower end.
  • FIG. 2 is a schematic diagram showing how the observation visual field area 50 is divided into 256 equal parts in the L direction and 256 equal parts in the T direction, and divided into 65536 sections.
  • the n-th section from the left end of observation visual field area 50 and the m-th section from the upper end of observation visual field area 50 is expressed as (n, m).
  • the upper left section of the observation visual field area 50 is (1, 1)
  • the upper right section of the observation visual field area 50 is (256, 1)
  • the lower left section of the observation visual field area 50 is
  • the edge segment is (1,256) and the lower rightmost segment of viewing field 50 is (256,256).
  • the inner surface 10 extends in the L direction of the observation visual field area 50 .
  • the observation field region 50 is specified so that the inner surface 10 of the seamless steel pipe that can be confirmed by observation is substantially parallel to the L direction of the observation field region 50 . Therefore, the observation visual field region 50 is specified so that the section in the T direction including the inner surface 10 of the seamless steel pipe that can be confirmed by observation is as small as possible over the entire length in the L direction.
  • the inner surface 10 of the seamless steel pipe according to the present embodiment may be included in 5 sections in the T direction, more preferably in 3 sections in the T direction, over the entire length in the L direction. Most preferably, the inner surface 10 of the seamless steel pipe according to this embodiment is included in one section in the T direction over the entire length in the L direction.
  • EDS Electro Dispersive X-ray Spectroscopy
  • the target elements are quantified as Fe, Cr, Ni, Mo, and Cu.
  • the Fe concentration C Fe (n,m) and the Cu concentration C Cu (n,m) are specified in terms of relative intensities for the section (n,m). Specifically, the Fe concentration C Fe (n, m) and the Cu concentration C Cu (n, m) are defined by the following equations (3) and (4).
  • C Fe (n, m) 100 ⁇ [Fe] (n, m) / ([Fe] (n, m) + [Cr] (n, m) + [Ni] (n, m) + [Mo] (n, m) + [Cu] (n, m) ) (3)
  • C Cu (n, m) 100 ⁇ [Cu] (n, m) / ([Fe] (n, m) + [Cr] (n, m) + [Ni] (n, m) + [Mo] (n, m) + [Cu] (n, m) ) (4) where [Fe] (n, m) , [Cr] (n, m) , [Ni] (n, m) , [Mo] (n, m) and , [Cu] (n, m) are substituted with the detected intensities of Fe, Cr, Ni, Mo, and Cu in the section (n, m) determined by the EDS
  • the inner surface of the seamless steel pipe in the observation field region can be specified.
  • the L-direction average A Fe (m) of the obtained 256 Fe concentrations is plotted against the T-direction position m.
  • FIG. 3 is a schematic diagram showing the relationship between the tube radial direction (T direction) position m of each section in the observation field region and the tube axis direction (L direction) average value A Fe (m) of the Fe concentration.
  • T direction tube radial direction
  • L direction tube axis direction
  • a Fe (m) average value of the Fe concentration.
  • the L-direction average Fe concentration A Fe (m) changes abruptly.
  • the L-direction average Fe concentration A Fe (m) is relatively stable. This is because the Fe concentration differs greatly between the gap region 40 and the inner surface vicinity region 20 in the observation field region, and the Fe content in the inner region 30 is relatively stable.
  • the inner surface of the seamless steel pipe can be specified from the shape of the plot of the L-direction average value A Fe (m) of the Fe concentration with respect to the T-direction position m.
  • a region 100 is specified in which the L-direction average value A Fe (m) of the Fe concentration changes sharply. It is naturally possible for a person skilled in the art to specify the region 100 where the L-direction average value A Fe (m) of the Fe concentration changes sharply.
  • the maximum and minimum values of the L-direction average value A Fe (m) of the Fe concentration in the region 100 are obtained, and the arithmetic average value A Fe-ave thereof is obtained.
  • the region 20 near the inner surface is defined as a rectangle with the inner surface of the martensitic stainless seamless steel pipe as the upper end, 256 sections in the L direction, and 6 sections in the T direction.
  • the upper left end is the section (1, k)
  • the upper right end is the section (256, k)
  • the lower left end is the section (1, k+5 )
  • the lower right corner is the section (256, k+5) is defined as the inner surface vicinity region 20 .
  • the observation visual field region 50 is composed of the inner surface vicinity region 20, the inner region 30, and the gap region 40.
  • the internal region 30 is adjacent to the inner surface vicinity region 20 below the inner surface vicinity region 20 . That is, in this embodiment, the upper left end is section (1, k+6), the upper right end is section (256, k+6), and the lower left end is section (1 , 256) and the lower right corner is the section (256, 256).
  • the void region 40 is adjacent to the inner surface vicinity region 20 above the inner surface vicinity region 20 . That is, in this embodiment, the upper left end is section (1, 1), the upper right end is section (256, 1), and the lower left end is section (1 , k ⁇ 1) and the lower right corner is the section (256, k ⁇ 1) is defined as the void region 40 . As described above, the void regions 40 correspond to the through holes of the martensitic stainless seamless steel pipe.
  • the number ratio of the sections having the Cu concentration exceeding 2.0% is defined as the inner surface Cu occupancy OS Cu .
  • the sections with a Cu concentration C Cu (n, m) exceeding 2.0% are counted,
  • the number ratio to the total number of partitions 1536 is calculated.
  • arbitrary four observation visual field regions are specified from the observation surface of the thin film test piece.
  • the arithmetic average value of the number ratios obtained in the four observation field regions is defined as the inner surface Cu occupancy OS Cu .
  • the inner surface Cu occupancy OS Cu is a value obtained by rounding the obtained numerical value to the second decimal place.
  • the ratio of the number of sections with a Cu concentration exceeding 2.0% to all the sections of the inner region 30 defined as described above is defined as the internal Cu occupancy OI Cu .
  • the internal region 30 is defined as the Cu concentration C Cu (n, m) of all the rectangular sections with the section (1, k+6) as the upper left corner and the section (256, 256) as the lower right corner. Count the compartments in which is more than 2.0%, and determine the number ratio to the total number of compartments.
  • arbitrary four observation visual field regions are specified from the observation surface of the thin film test piece. Therefore, the arithmetic average value of the number ratios obtained in the four observation field regions is defined as the internal Cu occupancy OICu .
  • the internal Cu occupancy OI Cu is a value obtained by rounding the obtained numerical value to the third decimal place.
  • the Fe concentration C 2 Fe is used to specify the inner surface 10 of the seamless steel pipe as described above. Therefore, elements other than Fe (for example, carbon: C, tungsten: W, or platinum: Pt) are preferable for the elements constituting the protective film formed in FIB processing. These elements are used as ordinary vapor deposition elements for thin film specimens on which structural observation is performed by TEM, and those skilled in the art can naturally select and use them.
  • the martensitic stainless seamless steel pipe according to this embodiment has excellent pitting corrosion resistance on the inner surface.
  • excellent pitting corrosion resistance on the inner surface is defined as follows.
  • the pitting potential of the inner surface of the seamless steel pipe is measured to evaluate the pitting corrosion resistance.
  • a test piece for pitting potential measurement is produced from the seamless steel pipe according to the present embodiment.
  • the test piece includes an area of 1.0 cm 2 of the inner surface of the seamless steel pipe as a test surface.
  • the shape of the test piece is not particularly limited as long as it includes the test surface described above.
  • the test piece may have an inner surface area of 1.0 cm 2 or more and a thickness equal to the wall thickness of the seamless steel pipe.
  • the area of the test piece other than the test surface shall be covered with an insulator.
  • the insulator is not particularly limited, and a well-known insulator that can be used in the test environment described later may be used.
  • resin may be used as the insulator.
  • test solution is a 25% by mass sodium chloride aqueous solution whose pH is adjusted to 4.5 with 0.08 g/L sodium hydrogen carbonate.
  • the test solution should be degassed before use.
  • a test piece is immersed in a test solution having a specific liquid volume of 500 mL/cm 2 or more to prepare a test bath.
  • a mixed gas of 0.03 atm H 2 S gas and 10 atm CO 2 gas is pressurized into the autoclave, and the test bath is stirred to create a corrosive environment.
  • the test bath is heated to 175°C.
  • a saturated KCl-Silver Chloride Electrode is used as the Reference Electrode.
  • a platinum electrode is used as a counter electrode.
  • the anodic polarization curve is measured by a potentiostat at a potential sweep rate of 20 mV/min in the anodic direction from the immersion potential. The anode polarization curve is measured until the anode current density reaches 1000 ⁇ A/cm 2 .
  • the potential when the anodic current density reaches 1000 ⁇ A/cm 2 is determined. Similar measurements are performed three times, and the arithmetic average value of the obtained potentials is defined as the pitting corrosion potential V'c1000 (mV). In this embodiment, if the pitting potential V'c1000 defined above is -230 mV or more, the seamless steel pipe is judged to have excellent pitting corrosion resistance on the inner surface.
  • the martensitic stainless seamless steel pipe according to the present embodiment is suitable for oil well seamless steel pipes.
  • Seamless steel pipes for oil wells are, for example, casings, tubings, drill pipes, etc. used for drilling oil wells or gas wells, extracting crude oil or natural gas, and the like.
  • the method for manufacturing the martensitic stainless seamless steel pipe according to the present embodiment includes a material preparation step, a hot working step, and a heat treatment step (quenching step and tempering step).
  • a material preparation step for preparing a material preparation process, a hot working process, and a heat treatment process.
  • the material preparation step a material having the chemical composition described above is prepared.
  • the chemical composition of the material is the same as the chemical composition of the martensitic stainless seamless steel pipe according to this embodiment.
  • the material according to the present embodiment is, in mass%, C: 0.030% or less, Si: 1.00% or less, Mn: 1.00% or less, P: 0.030% or less, S: 0 .0050% or less, Cr: 11.00 to 14.00%, Ni: 5.00 to 7.50%, Mo: 1.50 to 4.50%, Cu: 0.50 to 3.50%, Co : 0.010-0.500%, Ti: 0.050-0.300%, V: 0.01-1.00%, Ca: 0.0005-0.0050%, Al: 0.001-0 .100%, N: 0.0010 to 0.0500%, O: 0.050% or less, W: 0 to 2.00%, Nb: 0 to 0.50%, Mg: 0 to 0.0050%, Rare earth element: 0 to 0.00
  • molten steel having the above chemical composition is produced by a well-known refining method.
  • a cast slab is manufactured by a continuous casting method using the manufactured molten steel.
  • the slab is a slab, bloom, or billet.
  • the molten steel may be used to produce an ingot by an ingot casting method.
  • the slab, bloom or ingot may be hot rolled to produce a billet.
  • a raw material (slab, bloom, or billet) is manufactured by the manufacturing process described above.
  • the prepared material is hot worked.
  • the heating temperature is not particularly limited, it is, for example, 1100 to 1300.degree.
  • a blank pipe (seamless steel pipe) is manufactured by subjecting the raw material extracted from the heating furnace to hot working.
  • piercing-rolling is performed as hot working to manufacture the mother tube.
  • a well-known method can be used for piercing-rolling, and is not particularly limited.
  • the piercing ratio in piercing-rolling is not particularly limited.
  • the piercing-rolled mother tube is further hot-rolled as necessary.
  • the blank tube after piercing-rolling may be stretched-rolled and then shaped-rolled.
  • a mandrel mill or a plug mill may be used in the elongation rolling.
  • the mother tube after piercing-rolling may be stretch-rolled using an elongator mill and then stretch-rolled using a plug mill.
  • a stretch reducer may be used, a sizing mill may be used, or a plurality of these may be used in combination in the constant rolling performed on the mother pipe after stretch rolling.
  • a blank tube is manufactured by the above steps.
  • the cumulative area reduction rate R due to hot working is 40% or more.
  • the “mother pipe after hot working” in formula (A) means the mother pipe after the final hot working is completed.
  • the “material before hot working” in formula (A) means the material before hot working. That is, in the hot working process according to the present embodiment, the cross-sectional area reduction rate R is defined by the cross-sectional area perpendicular to the axial direction of the material changed by the hot working.
  • the cross-sectional reduction rate R in the hot working process is large, a strong shearing force is applied to the inner surface of the mother tube during working, and many precipitation sites for Cu precipitates are formed on the inner surface of the mother tube. As a result, Cu precipitates tend to be unevenly distributed on the inner surface of the manufactured martensitic stainless steel seamless pipe.
  • Fn2 can be set to 1.20 or more in the manufactured martensitic stainless seamless steel pipe. .
  • the cross-sectional reduction rate R it is preferable to set the cross-sectional reduction rate R to 40% or more.
  • the upper limit of the cross-sectional reduction rate R is not particularly limited, but is, for example, 80%.
  • the working time is 15 minutes or less.
  • Processing time means the time from when the material is extracted from the heating furnace to when the final hot working is completed. If the working time is too long, the number of precipitation sites for Cu precipitates on the inner surface of the mother pipe decreases during hot working. As a result, Cu precipitates are less likely to be unevenly distributed on the inner surface of the manufactured martensitic stainless steel seamless pipe.
  • Fn2 can be 1.20 or more in the manufactured martensitic stainless seamless steel pipe.
  • the working time it is preferable to set the working time to 15 minutes or less.
  • a more preferable upper limit of the processing time is 13 minutes, more preferably 10 minutes.
  • the lower limit of the working time is not particularly limited, but is, for example, 5 minutes.
  • the material is pierced and rolled, and then hot rolled as necessary.
  • the raw material may be pierced-rolled, stretch-rolled, and then shaped-rolled.
  • the hot working process according to the present embodiment since the hot working process according to the present embodiment is carried out by combining a plurality of hot rollings, it also includes a conveying process between the plurality of hot rollings.
  • the blank tube may be heated using a reheating furnace or a heating furnace.
  • the working time in the hot working process according to the present embodiment means not only the time for a plurality of hot rollings, but also the total time including the time required for transportation, heating, etc. during the time. In short, in the hot working process according to the present embodiment, the total time required for piercing-rolling, stretching-rolling, shaping-rolling, and other transportation, heating, etc. is 15 minutes or less.
  • the heat treatment process includes a quenching process and a tempering process.
  • the heat treatment process first, the blank tube produced in the hot working process is quenched (quenching process). After quenching, the tube is tempered (tempering step). The quenching process and the tempering process will be described below.
  • quenching In the quenching process, quenching is performed by a well-known method. In the present specification, “quenching” means quenching a blank tube having a point of A3 or higher. Quenching may be performed immediately after hot working without cooling the mother pipe to room temperature after hot working (direct quenching), or before the temperature of the mother pipe after hot working decreases. Quenching may be performed after the tube is brought to the quenching temperature by charging into a heat treatment furnace or a reheating furnace.
  • the quenching temperature is above the A C3 transformation point, eg, 900-1000°C.
  • the quenching temperature means the furnace temperature in the case of using a heat treatment furnace or a reheating furnace, and means the temperature of the outer surface of the mother tube in the case of direct quenching.
  • the time for holding the blank tube at the quenching temperature is not particularly limited, but is, for example, 10 to 120 minutes.
  • the quenching method is not particularly limited, but for example, water cooling.
  • the blank pipe may be immersed in a water tank or an oil tank to be rapidly cooled.
  • the blank pipe may be rapidly cooled by shower cooling or mist cooling by pouring or jetting cooling water against the outer surface and/or the inner surface of the blank pipe.
  • the quenched mother pipe is tempered to adjust the yield strength.
  • the term "tempering” means reheating and holding the quenched mother tube at A c1 point or lower.
  • the tempering temperature is 500° C. to the A c1 transformation point.
  • the tempering time is 10 to 180 minutes.
  • the tempering temperature means the furnace temperature (° C.) in the heat treatment furnace.
  • the tempering time means the time during which the mother tube is held at the tempering temperature.
  • tempering temperature T (°C) and tempering time t (minutes) are adjusted so as to satisfy the following formula (B).
  • the tempering temperature (°C) is substituted for T in the formula (B)
  • the tempering time (minutes) is substituted for t
  • the Cu content (% by mass) of the mother pipe is substituted for [Cu]. be done.
  • FnB (T+273.15) ⁇ (20+log 10 (t/60)) ⁇ (1 ⁇ [Cu]/100).
  • FnB is an index showing the yield strength of the manufactured martensitic stainless seamless steel pipe. If FnB is too large, the desired yield strength may not be obtained. On the other hand, if FnB is set to 17200 or less while satisfying other preferable manufacturing conditions, the produced martensitic stainless seamless steel pipe can stably have a yield strength of 862 MPa or more.
  • FnB it is preferable to set FnB to 17200 or less.
  • the upper limit of FnB is more preferably 17,100, more preferably 17,000.
  • a preferable upper limit of FnB is 16,700 when stably obtaining a yield strength of 965 MPa or more.
  • the lower limit of FnB is not particularly limited, it is 14350, for example.
  • the martensitic stainless steel seamless steel pipe according to the present embodiment can be manufactured by the above steps.
  • the martensitic stainless steel seamless steel pipe may be produced by a method other than the production method described above. Further, the martensitic stainless seamless steel pipe thus produced may be post-treated as necessary. The post-treatment is, for example, descaling to remove oxide scale formed on the surface of the steel material.
  • Table 1 A molten steel having the chemical composition shown in Table 1 was produced.
  • "-" in Table 1 means that the content of the corresponding element was 0% when the numerical values listed in Table 1 were rounded off. Specifically, it means that the W content of Steel No. 3 was 0% by rounding off to the third decimal place. The Nb content of Steel No. 1 was rounded to the third decimal place, meaning that it was 0%. The Mg content, REM content, and B content of Steel No. 1 were rounded to the fifth decimal place, meaning that they were 0%.
  • Table 1 shows the chemical composition described in Table 1 and the Fn1 obtained from the above definition.
  • steel ingots were manufactured by the ingot casting method. An ingot of each steel number was heated at 1250° C. for 3 hours and hot forged to produce a round billet with a diameter of 200 mm.
  • Tables 2 to 4 show the area reduction rate R of hot working (hot rolling) for each test number.
  • a (Acceptable) means that the reduction rate R was 40% or more.
  • the values listed in the section reduction rate R column mean the section reduction rate R (%).
  • Tables 2 to 4 show the time (working time) from the extraction of the round billet from the heating furnace to the end of the final hot working (hot rolling).
  • a (Acceptable) means that the hot working time was 15 minutes or less.
  • NA Not Acceptable
  • Quenching was performed on the blank pipe of each test number. Quenching was performed by reheating the blank tube in a heat treatment furnace and immersing it in a water bath. For each test number, the quenching temperature (furnace temperature of the heat treatment furnace) was 900° C., and the time for holding the quenching temperature was 15 minutes. After quenching, tempering was performed on the blank tube of each test number. Tempering was performed by reheating the quenched tube in a tempering furnace and holding the tube. For each test number, tempering temperature T (° C.), tempering time t (minutes), tempering temperature T (° C.), tempering time t (minutes), Cu content (% by mass) and the above definitions Tables 2 to 4 show the FnB. Through the above manufacturing process, martensitic stainless seamless steel pipes of each test number were manufactured.
  • the observation field of view area of L direction: 1.0 ⁇ m, T direction: 1.0 ⁇ m was divided into 256 equal parts in the L direction and 256 equal parts in the T direction into 65536 sections, and EDS analysis was performed on each section. .
  • the T-direction position of the inner surface in the observation field region was specified by the above-described method, and the inner surface vicinity region and the inner region were specified.
  • the partitions including the identified inner surface vicinity region and the inner region the number ratio of partitions with a Cu concentration exceeding 2.0% is obtained, and the inner surface Cu occupancy OS Cu and the internal Cu occupancy OI Cu are obtained.
  • Fn2 was determined from the determined inner surface Cu occupancy OS Cu , internal Cu occupancy OI Cu , and the above equation (2). Tables 2 to 4 show the obtained inner surface Cu occupancy OS Cu , internal Cu occupancy OI Cu , and Fn2.
  • the seamless steel pipes of test numbers 62 to 64 did not contain Cu, so the inner surface observation test was not performed.
  • a pitting corrosion resistance test was performed on the seamless steel pipes of each test number to determine the pitting potential V'c1000 (mV). Specifically, from the seamless steel pipe of each test number, a test piece for pitting potential measurement, which includes an inner surface area of 1.0 cm 2 or more as a test surface and has the same thickness as the wall thickness of the seamless steel pipe, is prepared. made.
  • the test solution was a pre-degassed 25 mass % sodium chloride aqueous solution whose pH was adjusted to 4.5 with 0.08 g/L sodium bicarbonate.
  • a test piece was immersed in a test solution having a specific liquid volume of 500 mL/cm 2 or more to prepare a test bath. After degassing the test bath, a mixed gas of 0.03 atm H 2 S gas and 10 atm CO 2 gas was pressurized into the autoclave, and the test bath was stirred.
  • the test bath was heated to 175°C.
  • a saturated KCl silver-silver chloride electrode was used as the reference electrode and a platinum electrode was used as the counter electrode.
  • the anodic polarization curve was measured with a potentiostat at a potential sweep rate of 20 mV/min in the anode direction from the immersion potential. From the obtained anodic polarization curve, the potential when the anodic current density reached 1000 ⁇ A/cm 2 was determined. Similar measurements were performed three times, and the arithmetic average value of the obtained potentials was taken as the pitting potential V'c1000 (mV). Tables 2 to 4 show the pitting potential V'c1000 (mV) determined for each test number.
  • these seamless steel pipes had a pitting potential V'c1000 of -230 mV or higher in the pitting corrosion resistance test. That is, these seamless steel pipes had high strength of 862 MPa or more and excellent pitting corrosion resistance on the inner surface.
  • the seamless steel pipes of test numbers 12, 15, 23, 33, 40, 41 and 52 exceeded 17200 in FnB in the manufacturing method.
  • the yield strength of these seamless steel pipes was less than 862 MPa, and the desired strength was not obtained.
  • the FnB of the seamless steel pipes of test numbers 47 and 53 exceeded 17200 in the manufacturing method.
  • these seamless steel pipes had a ferrite volume fraction of more than 5.0% and a yield strength of less than 862 MPa. That is, these seamless steel pipes did not have the desired strength.
  • the Co content of the seamless steel pipe of test number 61 was too low. As a result, the seamless steel pipe had a yield strength of less than 862 MPa, failing to obtain the desired strength.
  • the seamless steel pipes of test numbers 62-64 had too low a Cu content. As a result, these seamless steel pipes had a pitting potential V'c1000 of less than -230 mV in the pitting corrosion resistance test. That is, these seamless steel pipes did not have excellent pitting corrosion resistance on the inner surface.
  • the Fn1 of the seamless steel pipes of test numbers 65 and 66 was too low.
  • the pitting potential V'c1000 was less than -230 mV. That is, this seamless steel pipe did not have excellent pitting corrosion resistance on the inner surface.
  • the seamless steel pipes of test numbers 67 to 72 had a cross-sectional reduction rate R of less than 40% in the manufacturing method. As a result, these seamless steel pipes had Fn2 of less than 1.20. As a result, in the pitting corrosion resistance test, the pitting potential V'c1000 was less than -230 mV. That is, these seamless steel pipes did not have excellent pitting corrosion resistance on the inner surface.
  • the gist of the martensitic stainless seamless steel pipe according to the present embodiment can also be described as follows.
  • a martensitic stainless steel seamless steel pipe in % by mass, C: 0.030% or less, Si: 1.00% or less, Mn: 1.00% or less, P: 0.030% or less, S: 0.0050% or less, Cr: 11.00 to 14.00%, Ni: 5.00 to 7.50%, Mo: 1.50-4.50%, Cu: 0.50-3.50%, Co: 0.010 to 0.500%, Ti: 0.050 to 0.300%, V: 0.01 to 1.00%, Ca: 0.0005 to 0.0050%, Al: 0.001 to 0.100%, N: 0.0010 to 0.0500%, O: 0.050% or less, and Balance: Fe and impurities, and satisfies formula (1A), a microstructure, in volume percent, consisting of 0-15.0% retained austenite, 0-5.0% ferrite, and the balance tempered martensite; Yield strength is 862 MPa or more, When the pipe axial direction of the martensitic stainless steel seamless steel pipe is defined as
  • the observation field of view area is an inner surface vicinity region having a rectangular shape with the inner surface of the martensitic stainless steel seamless steel pipe as the upper end, 256 sections in the L direction, and 6 sections in the T direction; the inner surface vicinity region and an inner region adjacent below the inner surface vicinity region; comprising the inner surface vicinity region and a void region adjacent above the inner surface vicinity region, Among all the sections in the inner surface vicinity region, the number ratio of sections with a Cu concentration exceeding 2.0% is defined as the inner surface Cu occupancy OS Cu , When the number ratio of sections with a Cu concentration exceeding 2.0% among all the sections in the internal region is defined as the internal Cu occupancy OI Cu , The inner surface Cu occupancy OS Cu and the internal Cu occupancy OI Cu satisfy formula (2), Martensitic stainless seamless steel pipe. Mo ⁇ 2.50 (1A) OS Cu /OI Cu ⁇ 1.20 (2) Here, the content of the corresponding element is
  • a martensitic stainless steel seamless steel pipe in % by mass, C: 0.030% or less, Si: 1.00% or less, Mn: 1.00% or less, P: 0.030% or less, S: 0.0050% or less, Cr: 11.00 to 14.00%, Ni: 5.00 to 7.50%, Mo: 1.50-4.50%, Cu: 0.50-3.50%, Co: 0.010 to 0.500%, Ti: 0.050 to 0.300%, V: 0.01 to 1.00%, Ca: 0.0005 to 0.0050%, Al: 0.001 to 0.100%, N: 0.0010 to 0.0500%, and O: 0.050% or less, and further, W: 2.00% or less, Nb: 0.50% or less, Mg: 0.0050% or less, Rare earth element: 0.0050% or less, and B: contains one or more elements selected from the group consisting of 0.0050% or less, balance: Fe and impurities, and satisfies formula (1B), a microstructure, in volume percent,
  • the observation field of view area is an inner surface vicinity region having a rectangular shape with the inner surface of the martensitic stainless steel seamless steel pipe as the upper end, 256 sections in the L direction, and 6 sections in the T direction; the inner surface vicinity region and an inner region adjacent below the inner surface vicinity region; comprising the inner surface vicinity region and a void region adjacent above the inner surface vicinity region, Among all the sections in the inner surface vicinity region, the number ratio of sections with a Cu concentration exceeding 2.0% is defined as the inner surface Cu occupancy OS Cu , When the number ratio of sections with a Cu concentration exceeding 2.0% among all the sections in the internal region is defined as the internal Cu occupancy OI Cu , The inner surface Cu occupancy OS Cu and the internal Cu occupancy OI Cu satisfy formula (2), Martensitic stainless seamless steel pipe. Mo+0.5 ⁇ W ⁇ 2.50 (1B) OS Cu /OI Cu ⁇ 1.20 (2) Here, the content of the
  • [3] A method for producing a martensitic stainless seamless steel pipe according to [1], in % by mass, C: 0.030% or less, Si: 1.00% or less, Mn: 1.00% or less, P: 0.030% or less, S: 0.0050% or less, Cr: 11.00 to 14.00%, Ni: 5.00 to 7.50%, Mo: 1.50-4.50%, Cu: 0.50-3.50%, Co: 0.010 to 0.500%, Ti: 0.050 to 0.300%, V: 0.01 to 1.00%, Ca: 0.0005 to 0.0050%, Al: 0.001 to 0.100%, N: 0.0010 to 0.0500%, O: 0.050% or less, and Balance: a material preparation step of preparing a material consisting of Fe and impurities and satisfying formula (1A); After heating the prepared material in a heating furnace, hot working in which the cross-sectional reduction rate R defined by formula (A) is 40% or more and the hot working time is 15 minutes or less.
  • a hot working step of manufacturing a mother pipe by carrying out A quenching step of performing quenching on the raw pipe of 3 or more points; a tempering step of performing tempering on the quenched base pipe under conditions that satisfy formula (B); A method for producing a martensitic stainless seamless steel pipe.
  • [4] A method for producing a martensitic stainless seamless steel pipe according to [2], in % by mass, C: 0.030% or less, Si: 1.00% or less, Mn: 1.00% or less, P: 0.030% or less, S: 0.0050% or less, Cr: 11.00 to 14.00%, Ni: 5.00 to 7.50%, Mo: 1.50-4.50%, Cu: 0.50-3.50%, Co: 0.010 to 0.500%, Ti: 0.050 to 0.300%, V: 0.01 to 1.00%, Ca: 0.0005 to 0.0050%, Al: 0.001 to 0.100%, N: 0.0010 to 0.0500%, and O: 0.050% or less, and further, W: 2.00% or less, Nb: 0.50% or less, Mg: 0.0050% or less, Rare earth element: 0.0050% or less, and B: contains one or more elements selected from the group consisting of 0.0050% or less, Balance: a material preparation step of preparing a material consisting of Fe and
  • a hot working step of manufacturing a mother pipe by carrying out A quenching step of performing quenching on the raw pipe of 3 or more points; a tempering step of performing tempering on the quenched base pipe under conditions that satisfy formula (B); A method for producing a martensitic stainless seamless steel pipe.
  • R ⁇ 1-(cross-sectional area perpendicular to the axial direction of the tube after hot working/cross-sectional area perpendicular to the axial direction of the raw material before hot working) ⁇ x 100 (A) (T + 273.15) x (20 + log 10 (t/60)) x (1-[Cu]/100) ⁇ 17200 (B)
  • T is the tempering temperature in degrees Celsius
  • t is the tempering time in minutes
  • [Cu] is the Cu content in the blank in mass %.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

高い降伏強度と、内表面における優れた耐孔食性とを両立する。本開示のマルテンサイト系ステンレス継目無鋼管は、明細書に記載の化学組成と、明細書に記載のミクロ組織と、862MPa以上の降伏強度とを有する。管軸方向(L方向)と管径方向(T方向)との長さがいずれも1.0μmであり、L方向に延びる内表面(10)を含む観察視野領域(50)は、内表面近傍領域(20)と、その下方で隣接する内部領域(30)と、空隙領域(40)とからなる。観察視野領域(50)を、L方向に256等分、T方向に256等分した各区画に分割した場合、内表面近傍領域(20)のうち、Cu濃度が2.0%を超える区画の個数割合で定義される内表面Cu占有率OSCuと、内部領域(30)のうち、Cu濃度が2.0%を超える区画の個数割合で定義される内部Cu占有率OICuとが、式(2)を満たす。 OSCu/OICu≧1.20 (2)

Description

マルテンサイト系ステンレス継目無鋼管、及び、マルテンサイト系ステンレス継目無鋼管の製造方法
 本開示は継目無鋼管及びその製造方法に関し、さらに詳しくは、マルテンサイト系ステンレス継目無鋼管及びその製造方法に関する。
 油井やガス井(以下、油井及びガス井を総称して、単に「油井」という)は、腐食性を有する硫化水素(H2S)や炭酸ガス(CO2)等を含有する。ここで、鋼材の耐炭酸ガス腐食性の向上にはクロム(Cr)が有効であることが知られている。そのため、炭酸ガスを多く含む環境の油井では、炭酸ガスの分圧や温度に応じて、API L80 13Cr鋼材(通常の13Cr鋼材)や、C含有量を低減したスーパー13Cr鋼材等に代表される、13質量%程度のCrを含有するマルテンサイト系ステンレス鋼材が使用される。
 近年、油井の深井戸化により、鋼材には耐食性だけでなく、高強度化が求められてきている。たとえば、110ksi級(110~125ksi未満、つまり、758~862MPa未満)、及び、125ksi以上(つまり、862MPa以上)の降伏強度を有する鋼材が求められ始めている。
 ここで、本明細書において、硫化水素及び炭酸ガスを含有する環境を「サワー環境」という。さらに、サワー環境で使用される油井用鋼材には、優れた耐食性が要求される。つまり、近年、高強度と優れた耐食性とを両立する油井用鋼材が求められてきている。
 国際公開第2006/061881号(特許文献1)、国際公開第2008/023702号(特許文献2)、及び、国際公開第2015/178022号(特許文献3)は、高強度と優れた耐食性とを両立する油井用鋼材を提案する。
 特許文献1に記載の油井用鋼材は、油井用マルテンサイト系ステンレス鋼管であって、質量%で、C:0.005~0.1%、Si:0.05~1%、Mn:1.5~5%、P:0.05%以下、S:0.01%以下、Cr:9~13%、Ni:0.5%以下、Mo:2%以下、Cu:2%以下、Al:0.001~0.1%、N:0.001~0.1%を含有し、残部はFe及び不純物からなり、表面下にCr欠乏領域を有する。その結果、この油井用鋼材は、655MPa以上の高強度を有し、表面下にCr欠乏領域を有していても高い耐SCC性(耐応力腐食割れ性:耐Stress Corrosion Cracking性)を有する、と特許文献1には開示されている。
 特許文献2に記載の油井用鋼材は、マルテンサイト系ステンレス鋼であって、質量%で、C:0.010~0.030%、Mn:0.30~0.60%、P:0.040%以下、S:0.0100%以下、Cr:10.00~15.00%、Ni:2.50~8.00%、Mo:1.00~5.00%、Ti:0.050~0.250%、V:0.25%以下、N:0.07%以下と、Si:0.50%以下、Al:0.10%以下のうちの1種以上とを含有し、残部はFe及び不純物からなり、式(6.0≦Ti/C≦10.1)を満たす。この油井用鋼材は、758~862MPaの降伏強度を有し、耐食性のうち耐SSC性(耐硫化物応力割れ性:耐Sulfide Stress Cracking性)に優れる、と特許文献2には開示されている。
 特許文献3に記載の油井用鋼材は、油井用高強度ステンレス継目無鋼管であって、Cr及びNiを含有し、式(Cr/Ni≦5.3)を満たす化学組成と、焼戻しマルテンサイト相を主相とするミクロ組織とを有する。この油井用鋼材は、ビレラ腐食液によるエッチングで白色を呈する相が、鋼管外表面から肉厚方向に10~100μmの厚さを有し、かつ、鋼管外表面に面積率で50%以上分散した表層組織を有する。この油井用鋼材は、降伏強度が654MPa以上であり、耐食性に優れる、と特許文献3には開示されている。
国際公開第2006/061881号 国際公開第2008/023702号 国際公開第2015/178022号
 上記特許文献1~3は、高強度と、優れた耐食性とを両立する技術を提案する。ところで、マルテンサイト系ステンレス継目無鋼管が油井用鋼管として用いられる場合、継目無鋼管の内表面には生産流体が直接接触する。そのため、継目無鋼管の内表面には特に、孔食、及び/又は、すきま腐食に対する耐食性(以下、「耐孔食性」という)が求められる。しかしながら、上記特許文献1~3では、継目無鋼管の内表面における耐孔食性について、検討されていない。
 本開示の目的は、高強度と、内表面における優れた耐孔食性とを両立できる、マルテンサイト系ステンレス継目無鋼管、及び、そのマルテンサイト系ステンレス継目無鋼管の製造方法を提供することである。
 本開示によるマルテンサイト系ステンレス継目無鋼管は、
 質量%で、
 C:0.030%以下、
 Si:1.00%以下、
 Mn:1.00%以下、
 P:0.030%以下、
 S:0.0050%以下、
 Cr:11.00~14.00%、
 Ni:5.00~7.50%、
 Mo:1.50~4.50%、
 Cu:0.50~3.50%、
 Co:0.010~0.500%、
 Ti:0.050~0.300%、
 V:0.01~1.00%、
 Ca:0.0005~0.0050%、
 Al:0.001~0.100%、
 N:0.0010~0.0500%、
 O:0.050%以下、
 W:0~2.00%、
 Nb:0~0.50%、
 Mg:0~0.0050%、
 希土類元素:0~0.0050%、
 B:0~0.0050%、及び、
 残部:Fe及び不純物からなり、かつ、式(1)を満たし、
 ミクロ組織が、体積%で、0~15.0%の残留オーステナイト、0~5.0%のフェライト、及び、残部が焼戻しマルテンサイトからなり、
 降伏強度が、862MPa以上であり、
 前記マルテンサイト系ステンレス継目無鋼管の管軸方向をL方向、前記マルテンサイト系ステンレス継目無鋼管の管径方向をT方向と定義したとき、
 前記L方向に延びる前記マルテンサイト系ステンレス継目無鋼管の内表面を含み、前記L方向に延びる辺の長さが1.0μmであり、前記T方向に延びる辺の長さが1.0μmである正方形の観察視野領域において、
 前記観察視野領域を、前記L方向に256等分し、前記T方向に256等分した65536区画に分割した場合、
 前記観察視野領域は、
 前記マルテンサイト系ステンレス継目無鋼管の内表面を上端とし、前記L方向に256区画であり、前記T方向に6区画の長方形である内表面近傍領域と、
 前記内表面近傍領域と、前記内表面近傍領域の下方で隣接する内部領域と、
 前記内表面近傍領域と、前記内表面近傍領域の上方で隣接する空隙領域と、からなり、
 前記内表面近傍領域中の全ての前記区画のうち、Cu濃度が2.0%を超える区画の個数割合を、内表面Cu占有率OSCuと定義し、
 前記内部領域中の全ての区画のうち、Cu濃度が2.0%を超える区画の個数割合を、内部Cu占有率OICuと定義したとき、
 前記内表面Cu占有率OSCuと、前記内部Cu占有率OICuとが、式(2)を満たす、
 マルテンサイト系ステンレス継目無鋼管。
 Mo+0.5×W≧2.50 (1)
 OSCu/OICu≧1.20 (2)
 ここで、式(1)中の元素記号には、対応する元素の含有量が質量%で代入される。
 本開示によるマルテンサイト系ステンレス継目無鋼管の製造方法は、
 上記マルテンサイト系ステンレス継目無鋼管の製造方法であって、
 質量%で、
 C:0.030%以下、
 Si:1.00%以下、
 Mn:1.00%以下、
 P:0.030%以下、
 S:0.0050%以下、
 Cr:11.00~14.00%、
 Ni:5.00~7.50%、
 Mo:1.50~4.50%、
 Cu:0.50~3.50%、
 Co:0.010~0.500%、
 Ti:0.050~0.300%、
 V:0.01~1.00%、
 Ca:0.0005~0.0050%、
 Al:0.001~0.100%、
 N:0.0010~0.0500%、
 O:0.050%以下、
 W:0~2.00%、
 Nb:0~0.50%、
 Mg:0~0.0050%、
 希土類元素:0~0.0050%、
 B:0~0.0050%、及び、
 残部:Fe及び不純物からなり、かつ、式(1)を満たす素材を準備する、素材準備工程と、
 準備された前記素材に対して、加熱炉で加熱した後、式(A)で定義される断面減少率Rが40%以上であり、かつ、熱間加工時間を15分以下とする熱間加工を実施して素管を製造する熱間加工工程と、
 A3点以上の前記素管に対して、焼入れを実施する焼入れ工程と、
 前記焼入れされた前記素管に対して、式(B)を満たす条件で焼戻しを実施する焼戻し工程と、を備える。
 Mo+0.5×W≧2.50 (1)
 R={1-(熱間加工後の前記素管の管軸方向に垂直な断面積/熱間加工前の前記素材の軸方向に垂直な断面積)}×100 (A)
 (T+273.15)×(20+log10(t/60))×(1-[Cu]/100)≦17200 (B)
 ここで、式(1)中の元素記号には、対応する元素の含有量が質量%で代入される。
 式(B)中のTには焼戻し温度が℃で、tには焼戻し時間が分で、[Cu]には素管のCu含有量が質量%で代入される。
 本開示によるマルテンサイト系ステンレス継目無鋼管は、高強度と、内表面における優れた耐孔食性とを両立できる。本開示によるマルテンサイト系ステンレス継目無鋼管の製造方法によれば、高強度と、内表面における優れた耐孔食性とを両立できるマルテンサイト系ステンレス継目無鋼管を製造することができる。
図1は、マルテンサイト系ステンレス継目無鋼管の内表面を含み、管軸方向及び管径方向を含む断面でのミクロ組織観察の様子の一例を示す模式図である。 図2は、観察視野領域を管径方向(L方向)に256等分、管軸方向(T方向)に256等分し、65536区画に分割した様子を示す模式図である。 図3は、観察視野領域中の各区画の管径方向(T方向)位置と、Fe濃度の管軸方向(L方向)平均値との関係を示す模式図である。
 まず、本発明者らは、高い降伏強度と、内表面における優れた耐孔食性とを両立できるマルテンサイト系ステンレス継目無鋼管について、化学組成の観点から検討した。その結果、本発明者らは、質量%で、C:0.030%以下、Si:1.00%以下、Mn:1.00%以下、P:0.030%以下、S:0.0050%以下、Cr:11.00~14.00%、Ni:5.00~7.50%、Mo:1.50~4.50%、Cu:0.50~3.50%、Co:0.010~0.500%、Ti:0.050~0.300%、V:0.01~1.00%、Ca:0.0005~0.0050%、Al:0.001~0.100%、N:0.0010~0.0500%、O:0.050%以下、W:0~2.00%、Nb:0~0.50%、Mg:0~0.0050%、希土類元素:0~0.0050%、B:0~0.0050%、及び、残部:Fe及び不純物からなるマルテンサイト系ステンレス継目無鋼管であれば、125ksi以上(862MPa以上)の高い降伏強度と、内表面における優れた耐孔食性とを両立できる可能性があると考えた。
 一方、鋼材の強度を高めれば、鋼材の耐食性は低下しやすい傾向がある。そのため、上述の化学組成を有するマルテンサイト系ステンレス継目無鋼管であっても、降伏強度を125ksi以上にまで高めた結果、耐孔食性が低下する場合があった。そこで本発明者らは、上述の化学組成を有するマルテンサイト系ステンレス継目無鋼管について、125ksi以上の降伏強度を維持したまま、耐孔食性を高める手法を種々検討した。その結果、本発明者らは次の知見を得た。
 マルテンサイト系ステンレス継目無鋼管の耐孔食性を高める化学組成として、本発明者らは、モリブデン(Mo)及びタングステン(W)に着目した。Moは固溶して、継目無鋼管の耐孔食性を高める。また、Wは固溶して、継目無鋼管の耐孔食性を高める。すなわち、Mo含有量とW含有量とを高めれば、継目無鋼管の耐孔食性が高められるのではないかと本発明者らは考えた。
 ここで、Fn1=Mo+0.5×Wと定義する。Fn1を高めれば、継目無鋼管の降伏強度を維持したまま、継目無鋼管の耐孔食性を高められる。そこで、本実施形態によるマルテンサイト系ステンレス継目無鋼管では、上述の化学組成とミクロ組織とを有し、かつ、化学組成が次の式(1)を満たす。その結果、本実施形態によるマルテンサイト系ステンレス継目無鋼管は、本実施形態のその他の構成を満たすことを条件に、125ksi以上の降伏強度と、優れた耐孔食性とを両立することができる。
 Mo+0.5×W≧2.50 (1)
 ここで、式(1)中の元素記号には、対応する元素の含有量が質量%で代入される。
 一方、本発明者らの詳細な検討の結果、式(1)を含む上述の化学組成を有するマルテンサイト系ステンレス継目無鋼管であっても、降伏強度が125ksi以上の場合、継目無鋼管の内表面において優れた耐孔食性が得られない場合があることが判明した。そこで本発明者らは、式(1)を含む上述の化学組成を有するマルテンサイト系ステンレス継目無鋼管について、継目無鋼管の内表面の耐孔食性を高める手法について詳細に検討した。
 まず、本発明者らは、継目無鋼管の内表面近傍の状態に着目して、内表面の耐孔食性を高める手法を検討した。その結果、継目無鋼管の内表面近傍の銅(Cu)析出物が、継目無鋼管の内表面の耐孔食性を高める可能性があることが明らかになった。そこで本発明者らは、上述の化学組成を有し、内表面近傍にCu析出物を形成したマルテンサイト系ステンレス継目無鋼管を種々製造し、内表面の耐孔食性について詳細に調査及び検討を行った。
 本発明者らの詳細な検討の結果、上述の化学組成を有するマルテンサイト系ステンレス継目無鋼管では、単にCu析出物を析出させるのではなく、内表面近傍にCu析出物を偏在させることで、内表面の耐孔食性を顕著に高められることが明らかになった。この点について、図面を用いて具体的に説明する。
 図1は、上述の化学組成を有するマルテンサイト系ステンレス継目無鋼管の内表面を含み、管軸方向及び管径方向を含む断面でのミクロ組織観察の様子の一例を示す模式図である。図1の観察視野領域50中の左右方向が管軸方向に相当し、上下方向が管径方向に相当する。本明細書において、マルテンサイト系ステンレス継目無鋼管の管軸方向を「L方向」、マルテンサイト系ステンレス継目無鋼管の管径方向を「T方向」ともいう。図1において、模式図に示す観察視野領域50のL方向長さは1.0μmであり、T方向長さは1.0μmである。
 図1中、継目無鋼管の内表面10は、T方向中央付近であり、L方向に延びる線分として確認できる。継目無鋼管の内表面10は、当業者であれば後述の方法により一義的に特定できる。ここで、図1の内表面10より下方がマルテンサイト系ステンレス継目無鋼管である。さらに、図1の観察視野領域50をL方向に256等分し、T方向に256等分した65536区画に分割する。
 ここで、図1の領域20を、継目無鋼管の内表面近傍領域ともいう。本実施形態において内表面近傍領域20は、内表面10を上端とし、L方向に256区画であり、T方向に6区画である長方形として定義される。さらに、図1の領域30を、継目無鋼管の内部領域ともいう。本実施形態において内部領域30は、内表面近傍領域20と下方で隣接する長方形である。図1の領域40を、空隙領域ともいう。空隙領域40は、マルテンサイト系ステンレス継目無鋼管の貫通孔に相当する。要するに、図1の観察視野領域50は、内表面近傍領域20と、内表面近傍領域20と下方で隣接する内部領域30と、内表面近傍領域20と上方で隣接する空隙領域40とからなる。
 観察視野領域50の65536区画のそれぞれにおいて、元素濃度分析を実施して、各区画における後段で詳述する特定金属元素の濃度を特定する。得られた特定金属元素中のCuの割合を百分率で求め、各区画におけるCu濃度と定義する。本明細書では、観察視野領域50において、内表面近傍領域20が含む区画のうち、Cu濃度が2.0%を超える区画の個数割合を、内表面Cu占有率OSCuと定義する。同様に、本明細書では、観察視野領域50において、内部領域30が含む区画のうち、Cu濃度が2.0%を超える区画の個数割合を、内部Cu占有率OICuと定義する。
 Fn2=OSCu/OICuと定義する。Fn2は、Cu析出物の内表面近傍領域20への偏在度合いを示す指標である。Fn2が大きいほど、Cu析出物が内表面近傍領域20に偏在しており、内表面の耐孔食性を効果的に高めることができる。詳細な検討の結果、本発明者らは、式(1)を含む上述の化学組成を有するマルテンサイト系ステンレス継目無鋼管では、Fn2が1.20以上であれば、継目無鋼管の内表面における耐孔食性が顕著に高まることを見出した。
 したがって、本実施形態によるマルテンサイト系ステンレス継目無鋼管では、式(1)を含む上述の化学組成を有し、さらに、以上のとおりに定義された内表面Cu占有率OSCuと内部Cu占有率OICuとが、次の式(2)を満たす。その結果、本実施形態によるマルテンサイト系ステンレス継目無鋼管は、高い降伏強度と、内表面における優れた耐孔食性とを両立することができる。
 OSCu/OICu≧1.20 (2)
 なお、Cu析出物を内表面近傍領域20へ偏在させた場合に、継目無鋼管の内表面の耐孔食性が高まる理由について、詳細は明らかになっていない。しかしながら、本発明者らは次のように推察している。上述のとおり、油井環境での使用が想定されたマルテンサイト系ステンレス継目無鋼管では、その内部に生産流体が通過する。このとき、継目無鋼管の内表面にはH2Sガスが接触し、Cu硫化物が形成される可能性がある。さらに、Cu析出物はマルテンサイト系ステンレス継目無鋼管の表面に形成される不働態皮膜を強化する可能性がある。そのため、内表面にCu析出物が偏在していれば、Cu硫化物が形成されやすくなり、内表面の耐孔食性が高まるのではないか、と本発明者らは推察している。
 以上の知見に基づいて完成した本実施形態によるマルテンサイト系ステンレス継目無鋼管の要旨は、次のとおりである。
 [1]
 マルテンサイト系ステンレス継目無鋼管であって、
 質量%で、
 C:0.030%以下、
 Si:1.00%以下、
 Mn:1.00%以下、
 P:0.030%以下、
 S:0.0050%以下、
 Cr:11.00~14.00%、
 Ni:5.00~7.50%、
 Mo:1.50~4.50%、
 Cu:0.50~3.50%、
 Co:0.010~0.500%、
 Ti:0.050~0.300%、
 V:0.01~1.00%、
 Ca:0.0005~0.0050%、
 Al:0.001~0.100%、
 N:0.0010~0.0500%、
 O:0.050%以下、
 W:0~2.00%、
 Nb:0~0.50%、
 Mg:0~0.0050%、
 希土類元素:0~0.0050%、
 B:0~0.0050%、及び、
 残部:Fe及び不純物からなり、かつ、式(1)を満たし、
 ミクロ組織が、体積%で、0~15.0%の残留オーステナイト、0~5.0%のフェライト、及び、残部が焼戻しマルテンサイトからなり、
 降伏強度が、862MPa以上であり、
 前記マルテンサイト系ステンレス継目無鋼管の管軸方向をL方向、前記マルテンサイト系ステンレス継目無鋼管の管径方向をT方向と定義したとき、
 前記L方向に延びる前記マルテンサイト系ステンレス継目無鋼管の内表面を含み、前記L方向に延びる辺の長さが1.0μmであり、前記T方向に延びる辺の長さが1.0μmである正方形の観察視野領域において、
 前記観察視野領域を、前記L方向に256等分し、前記T方向に256等分した65536区画に分割した場合、
 前記観察視野領域は、
 前記マルテンサイト系ステンレス継目無鋼管の内表面を上端とし、前記L方向に256区画であり、前記T方向に6区画の長方形である内表面近傍領域と、
 前記内表面近傍領域と、前記内表面近傍領域の下方で隣接する内部領域と、
 前記内表面近傍領域と、前記内表面近傍領域の上方で隣接する空隙領域と、からなり、
 前記内表面近傍領域中の全ての前記区画のうち、Cu濃度が2.0%を超える区画の個数割合を、内表面Cu占有率OSCuと定義し、
 前記内部領域中の全ての区画のうち、Cu濃度が2.0%を超える区画の個数割合を、内部Cu占有率OICuと定義したとき、
 前記内表面Cu占有率OSCuと、前記内部Cu占有率OICuとが、式(2)を満たす、
 マルテンサイト系ステンレス継目無鋼管。
 Mo+0.5×W≧2.50 (1)
 OSCu/OICu≧1.20 (2)
 ここで、式(1)中の元素記号には、対応する元素の含有量が質量%で代入される。
 [2]
 [1]に記載のマルテンサイト系ステンレス継目無鋼管であって、
 W:0.01~2.00%、
 Nb:0.01~0.50%、
 Mg:0.0001~0.0050%、
 希土類元素:0.0001~0.0050%、及び、
 B:0.0001~0.0050%からなる群から選択される1元素以上を含有する、
 マルテンサイト系ステンレス継目無鋼管。
 [3]
 [1]又は[2]に記載のマルテンサイト系ステンレス継目無鋼管の製造方法であって、
 質量%で、
 C:0.030%以下、
 Si:1.00%以下、
 Mn:1.00%以下、
 P:0.030%以下、
 S:0.0050%以下、
 Cr:11.00~14.00%、
 Ni:5.00~7.50%、
 Mo:1.50~4.50%、
 Cu:0.50~3.50%、
 Co:0.010~0.500%、
 Ti:0.050~0.300%、
 V:0.01~1.00%、
 Ca:0.0005~0.0050%、
 Al:0.001~0.100%、
 N:0.0010~0.0500%、
 O:0.050%以下、
 W:0~2.00%、
 Nb:0~0.50%、
 Mg:0~0.0050%、
 希土類元素:0~0.0050%、
 B:0~0.0050%、及び、
 残部:Fe及び不純物からなり、かつ、式(1)を満たす素材を準備する、素材準備工程と、
 準備された前記素材に対して、加熱炉で加熱した後、式(A)で定義される断面減少率Rが40%以上であり、かつ、熱間加工時間を15分以下とする熱間加工を実施して素管を製造する熱間加工工程と、
 A3点以上の前記素管に対して、焼入れを実施する焼入れ工程と、
 前記焼入れされた前記素管に対して、式(B)を満たす条件で焼戻しを実施する焼戻し工程と、を備える、
 マルテンサイト系ステンレス継目無鋼管の製造方法。
 Mo+0.5×W≧2.50 (1)
 R={1-(熱間加工後の前記素管の管軸方向に垂直な断面積/熱間加工前の前記素材の軸方向に垂直な断面積)}×100 (A)
 (T+273.15)×(20+log10(t/60))×(1-[Cu]/100)≦17200 (B)
 ここで、式(1)中の元素記号には、対応する元素の含有量が質量%で代入される。
 式(B)中のTには焼戻し温度が℃で、tには焼戻し時間が分で、[Cu]には素管のCu含有量が質量%で代入される。
 [4]
 [3]に記載のマルテンサイト系ステンレス継目無鋼管の製造方法であって、
 前記素材は、
 W:0.01~2.00%、
 Nb:0.01~0.50%、
 Mg:0.0001~0.0050%、
 希土類元素:0.0001~0.0050%、及び、
 B:0.0001~0.0050%からなる群から選択される1元素以上を含有する、
 マルテンサイト系ステンレス継目無鋼管の製造方法。
 以下、本実施形態によるマルテンサイト系ステンレス継目無鋼管について詳述する。なお、元素に関する「%」は、特に断りがない限り、質量%を意味する。
 [化学組成]
 本実施形態によるマルテンサイト系ステンレス継目無鋼管の化学組成は、次の元素を含有する。
 C:0.030%以下
 炭素(C)は、不可避に含有される。つまり、C含有量の下限は0%超である。Cは鋼材の焼入れ性を高めて、鋼材の強度を高める。しかしながら、C含有量が高すぎれば、CはCrと結合してCr炭化物を生成しやすくなる。その結果、他の元素含有量が本実施形態の範囲内であっても、鋼材の靭性が低下する。したがって、C含有量は0.030%以下である。C含有量の好ましい下限は0.001%であり、さらに好ましくは0.003%であり、さらに好ましくは0.005%である。C含有量の好ましい上限は0.025%であり、さらに好ましくは0.020%であり、さらに好ましくは0.015%である。C含有量はなるべく低い方が好ましい。
 Si:1.00%以下
 ケイ素(Si)は、不可避に含有される。つまり、Si含有量の下限は0%超である。Siは鋼を脱酸する。しかしながら、Si含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の熱間加工性が低下する。したがって、Si含有量は1.00%以下である。Si含有量の好ましい下限は0.05%であり、さらに好ましくは0.10%であり、さらに好ましくは0.15%であり、さらに好ましくは0.20%である。Si含有量の好ましい上限は0.70%であり、さらに好ましくは0.50%であり、さらに好ましくは0.45%であり、さらに好ましくは0.40%である。
 Mn:1.00%以下
 マンガン(Mn)は、不可避に含有される。つまり、Mn含有量の下限は0%超である。Mnは鋼材の焼入れ性を高めて、鋼材の強度を高める。しかしながら、Mn含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、Mnは粗大な介在物を形成して、鋼材の靭性を低下させる。したがって、Mn含有量は1.00%以下である。Mn含有量の好ましい下限は0.10%であり、さらに好ましくは0.20%であり、さらに好ましくは0.25%である。Mn含有量の好ましい上限は0.80%であり、さらに好ましくは0.60%であり、さらに好ましくは0.50%である。
 P:0.030%以下
 燐(P)は、不可避に含有される不純物である。つまり、P含有量の下限は0%超である。P含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、Pが結晶粒界に偏析して、鋼材の靭性を顕著に低下させる。したがって、P含有量は0.030%以下である。P含有量の好ましい上限は0.025%であり、さらに好ましくは0.020%である。P含有量はなるべく低い方が好ましい。しかしながら、P含有量の過剰な低減は、製造コストを大幅に高める。したがって、工業生産を考慮した場合、P含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0005%であり、さらに好ましくは0.001%である。
 S:0.0050%以下
 硫黄(S)は、不可避に含有される不純物である。つまり、S含有量の下限は0%超である。S含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、Sが結晶粒界に偏析して、鋼材の靭性を顕著に低下させる。したがって、S含有量は0.0050%以下である。S含有量の好ましい上限は0.0040%であり、さらに好ましくは0.0030%であり、さらに好ましくは0.0020%である。S含有量はなるべく低い方が好ましい。しかしながら、S含有量の極端な低減は、製造コストを大幅に高める。したがって、工業生産を考慮した場合、S含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0002%であり、さらに好ましくは0.0003%である。
 Cr:11.00~14.00%
 クロム(Cr)は、鋼材の耐孔食性を高める。Cr含有量が低すぎれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、Cr含有量が高すぎれば、Cr炭化物、Crを含有する金属間化合物、及び、Cr酸化物が過剰に形成される。この場合、他の元素含有量が本実施形態の範囲内であっても、鋼材の耐食性が低下する。したがって、Cr含有量は11.00~14.00%である。Cr含有量の好ましい下限は11.05%であり、さらに好ましくは11.10%であり、さらに好ましくは11.50%であり、さらに好ましくは11.80%である。Cr含有量の好ましい上限は13.70%であり、さらに好ましくは13.50%であり、さらに好ましくは13.40%であり、さらに好ましくは13.30%である。
 Ni:5.00~7.50%
 ニッケル(Ni)は、鋼材の耐孔食性を高める。Niはさらに、オーステナイト形成元素であり、焼入れ後の鋼材のミクロ組織をマルテンサイト化する。Ni含有量が低すぎれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、Ni含有量が高すぎれば、上記効果が飽和して、製造コストが高くなる。したがって、Ni含有量は5.00~7.50%である。Ni含有量の好ましい下限は5.10%であり、さらに好ましくは5.15%であり、さらに好ましくは5.20%である。Ni含有量の好ましい上限は7.30%であり、さらに好ましくは7.00%であり、さらに好ましくは6.80%であり、さらに好ましくは6.60%であり、さらに好ましくは6.40%である。
 Mo:1.50~4.50%
 モリブデン(Mo)は、鋼材の耐孔食性を高める。Mo含有量が低すぎれば、他の元素含有量が本実施形態の範囲内であっても、この効果が十分に得られない。一方、Mo含有量が高すぎれば、上記効果が飽和し、製造コストが高くなる。したがって、Mo含有量は1.50~4.50%である。Mo含有量の好ましい下限は1.60%であり、さらに好ましくは1.70%であり、さらに好ましくは1.80%である。Mo含有量の好ましい上限は4.30%であり、さらに好ましくは4.10%であり、さらに好ましくは3.90%であり、さらに好ましくは3.70%である。
 Cu:0.50~3.50%
 銅(Cu)は、鋼材中にCu析出物として析出する。Cu析出物が継目無鋼管の内表面近傍領域20に偏在すれば、継目無鋼管の内表面の耐孔食性を高める。Cu析出物はさらに、鋼材の強度を高める。Cu含有量が低すぎれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、Cu含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の強度が高くなりすぎ、鋼材の耐食性及び/又は低温靭性が低下する。したがって、Cu含有量は0.50~3.50%である。Cu含有量の好ましい下限は0.60%であり、さらに好ましくは0.70%であり、さらに好ましくは0.80%である。Cu含有量の好ましい上限は3.50%未満であり、さらに好ましくは3.45%であり、さらに好ましくは3.40%であり、さらに好ましくは3.20%である。
 Co:0.010~0.500%
 コバルト(Co)は、鋼材の表面に皮膜を形成して、鋼材の耐孔食性を高める。Coはさらに、鋼材の焼入れ性を高め、鋼材の強度を安定化する。Co含有量が低すぎれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、Co含有量が高すぎれば、上記効果が飽和して、製造コストが高くなる。したがって、Co含有量は0.010~0.500%である。Co含有量の好ましい下限は0.015%であり、さらに好ましくは0.020%であり、さらに好ましくは0.030%である。Co含有量の好ましい上限は0.450%であり、さらに好ましくは0.400%である。
 Ti:0.050~0.300%
 チタン(Ti)は、C又はNと結合して、鋼材中に炭化物又は窒化物を形成する。この場合、ピンニング効果により結晶粒の粗大化が抑制され、鋼材の強度が高まる。さらに、Tiが炭化物又は窒化物を形成することにより、V析出物(炭化物、窒化物、炭窒化物)の過剰な生成による強度の過剰な上昇を抑制する。その結果、鋼材の耐孔食性が高まる。Ti含有量が低すぎれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、Ti含有量が高すぎれば、上記効果が飽和して、製造コストが高くなる。Ti含有量が高すぎればさらに、Ti炭化物又はTi窒化物が過剰に生成して、鋼材の靭性が低下する。したがって、Ti含有量は0.050~0.300%である。Ti含有量の好ましい下限は0.060%であり、さらに好ましくは0.070%であり、さらに好ましくは0.080%である。Ti含有量の好ましい上限は0.250%であり、さらに好ましくは0.200%である。
 V:0.01~1.00%
 バナジウム(V)は、鋼材中で炭化物、窒化物、及び炭窒化物等の析出物(V析出物)を形成して、鋼材の強度を高める。V含有量が低すぎれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、V含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、V析出物が過剰に生成して、鋼材の靭性が低下する。したがって、V含有量は0.01~1.00%である。V含有量の好ましい下限は0.02%であり、さらに好ましくは0.03%である。V含有量の好ましい上限は0.90%であり、さらに好ましくは0.80%であり、さらに好ましくは0.60%であり、さらに好ましくは0.50%である。
 Ca:0.0005~0.0050%
 カルシウム(Ca)は、鋼材中のSを硫化物として無害化し、鋼材の熱間加工性を高める。Ca含有量が低すぎれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、Ca含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、鋼材中の介在物が粗大化して、鋼材の靱性が低下する。したがって、Ca含有量は0.0005~0.0050%である。Ca含有量の好ましい下限は0.0006%であり、さらに好ましくは0.0008%であり、さらに好ましくは0.0010%である。Ca含有量の好ましい上限は0.0040%であり、さらに好ましくは0.0030%である。
 Al:0.001~0.100%
 アルミニウム(Al)は、鋼を脱酸する。Al含有量が低すぎれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、Al含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、粗大なAl酸化物が生成し、鋼材の靭性が低下する。したがって、Al含有量は0.001~0.100%である。Al含有量の好ましい下限は0.002%であり、さらに好ましくは0.003%であり、さらに好ましくは0.005%である。Al含有量の好ましい上限は0.095%であり、さらに好ましくは0.090%であり、さらに好ましくは0.085%である。なお、本明細書におけるAl含有量は、sol.Al(酸可溶Al)の含有量を意味する。
 N:0.0010~0.0500%
 窒素(N)は、鋼材の耐食性を高める。N含有量が低すぎれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、N含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、粗大なTi窒化物が生成して、鋼材の靭性が低下する。したがって、N含有量は0.0010~0.0500%である。N含有量の好ましい下限は0.0015%であり、さらに好ましくは0.0020%であり、さらに好ましくは0.0025%である。N含有量の好ましい上限は0.0450%であり、さらに好ましくは0.0400%であり、さらに好ましくは0.0350%であり、さらに好ましくは0.0300%である。
 O:0.050%以下
 酸素(O)は、不可避に含有される不純物である。つまり、O含有量の下限は0%超である。Oは、酸化物を形成して、鋼材の耐孔食性を低下させる。そのため、O含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の耐孔食性が顕著に低下する。したがって、O含有量は0.050%以下である。O含有量の好ましい上限は0.040%であり、さらに好ましくは0.030%であり、さらに好ましくは0.020%である。O含有量はなるべく低い方が好ましい。しかしながら、O含有量の極端な低減は、製造コストを高める。したがって、工業生産を考慮すれば、O含有量の好ましい下限は0.0005%であり、さらに好ましくは0.001%である。
 本実施形態によるマルテンサイト系ステンレス継目無鋼管の残部は、Fe及び不純物からなる。ここで、不純物とは、鋼材を工業的に製造する際に、原料としての鉱石、スクラップ、又は、製造環境などから混入されるものであって、意図的に含有させるものではなく、本実施形態によるマルテンサイト系ステンレス鋼材に悪影響を与えない範囲で許容されるものを意味する。
 [任意元素]
 本実施形態によるマルテンサイト系ステンレス継目無鋼管はさらに、Feの一部に代えて、Wを含有してもよい。
 W:0~2.00%
 タングステン(W)は任意元素であり、含有されなくてもよい。つまり、W含有量は0%であってもよい。含有される場合、Wはサワー環境において不働態皮膜を安定化して、不働態皮膜が塩化物イオンや硫化水素イオンにより破壊されるのを抑制する。その結果、鋼材の耐孔食性が高まる。Wが少しでも含有されれば、上記効果がある程度得られる。一方、W含有量が高すぎれば、WはCと結合して、粗大な炭化物を形成する。この場合、他の元素含有量が本実施形態の範囲内であっても、鋼材の耐孔食性が低下する。したがって、W含有量は0~2.00%である。W含有量の好ましい下限は0.01%であり、さらに好ましくは0.03%であり、さらに好ましくは0.05%である。W含有量の好ましい上限は1.75%であり、さらに好ましくは1.50%であり、さらに好ましくは1.20%である。
 本実施形態によるマルテンサイト系ステンレス継目無鋼管はさらに、Feの一部に代えて、Nbを含有してもよい。
 Nb:0~0.50%
 ニオブ(Nb)は任意元素であり、含有されなくてもよい。つまり、Nb含有量は0%であってもよい。含有される場合、NbはC及び/又はNと結合してNb炭化物、Nb炭窒化物を形成する。この場合、ピンニング効果により結晶粒の粗大化が抑制され、鋼材の降伏強度が高まる。Nbが少しでも含有されれば、上記効果がある程度得られる。一方、Nb含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、Nb炭化物及び/又はNb炭窒化物が過剰に生成する。その結果、鋼材の耐孔食性が低下する。したがって、Nb含有量は0~0.50%である。Nb含有量の好ましい下限は0.01%であり、さらに好ましくは0.02%であり、さらに好ましくは0.03%である。Nb含有量の好ましい上限は0.45%であり、さらに好ましくは0.40%であり、さらに好ましくは0.35%である。
 本実施形態によるマルテンサイト系ステンレス継目無鋼管はさらに、Feの一部に代えて、Mg、希土類元素(REM)、及び、Bからなる群から選択される1元素以上を含有してもよい。これらの元素は任意元素であり、いずれも、鋼材の熱間加工性を高める。
 Mg:0~0.0050%
 マグネシウム(Mg)は任意元素であり、含有されなくてもよい。つまり、Mg含有量は0%であってもよい。含有される場合、Mgは介在物の形態を制御して、鋼材の熱間加工性を高める。Mgが少しでも含有されれば、上記効果がある程度得られる。しかしながら、Mg含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、粗大な酸化物が形成され、鋼材の靱性が低下する。したがって、Mg含有量は0~0.0050%である。Mg含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0005%であり、さらに好ましくは0.0010%である。Mg含有量の好ましい上限は0.0045%であり、さらに好ましくは0.0040%であり、さらに好ましくは0.0035%である。
 希土類元素(REM):0~0.0050%
 希土類元素(REM)は任意元素であり、含有されなくてもよい。つまり、REM含有量は0%であってもよい。含有される場合、REMはMgと同様に、介在物の形態を制御して、鋼材の熱間加工性を高める。REMが少しでも含有されれば、上記効果がある程度得られる。しかしながら、REM含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、粗大な酸化物が形成され、鋼材の靱性が低下する。したがって、REM含有量は0~0.0050%である。REM含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0005%であり、さらに好ましくは0.0010%である。REM含有量の好ましい上限は0.0045%であり、さらに好ましくは0.0040%であり、さらに好ましくは0.0035%である。
 なお、本明細書におけるREMとは、原子番号21番のスカンジウム(Sc)、原子番号39番のイットリウム(Y)、及び、ランタノイドである原子番号57番のランタン(La)~原子番号71番のルテチウム(Lu)からなる群から選択される1種以上の元素である。また、本明細書におけるREM含有量とは、これら元素の合計含有量である。
 B:0~0.0050%
 ホウ素(B)は任意元素であり、含有されなくてもよい。つまり、B含有量は0%であってもよい。含有される場合、Bはオーステナイト粒界に偏析して粒界を強化して、鋼材の熱間加工性を高める。Bが少しでも含有されれば、上記効果がある程度得られる。しかしながら、B含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、Cr炭硼化物が生成して、鋼材の靭性が低下する。したがって、B含有量は0~0.0050%である。B含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0002%である。B含有量の好ましい上限は0.0045%であり、さらに好ましくは0.0040%であり、さらに好ましくは0.0035%であり、さらに好ましくは0.0030%である。
 [式(1)]
 本実施形態によるマルテンサイト系ステンレス継目無鋼管は、上述の化学組成を有し、さらに次の式(1)を満たす。
 Mo+0.5×W≧2.50 (1)
 ここで、式(1)中の元素記号には、対応する元素の含有量が質量%で代入される。
 Fn1(=Mo+0.5×W)を高めれば、継目無鋼管の降伏強度を維持したまま、継目無鋼管の耐孔食性を高められる。そこで、本実施形態によるマルテンサイト系ステンレス継目無鋼管では、上述の化学組成とミクロ組織とを有し、かつ、Fn1を2.50以上とする。その結果、本実施形態によるマルテンサイト系ステンレス継目無鋼管は、本実施形態のその他の構成を満たすことを条件に、125ksi以上の降伏強度と、優れた耐孔食性とを両立することができる。Fn1の好ましい下限は2.60であり、さらに好ましくは2.70である。本実施形態において、Fn1の上限は特に限定されないが、たとえば、4.50である。
 [ミクロ組織]
 本実施形態によるマルテンサイト系ステンレス継目無鋼管のミクロ組織は、体積%で、0~15.0%の残留オーステナイト、0~5.0%のフェライト、及び、残部が焼戻しマルテンサイトからなる。本明細書において、「残留オーステナイト、フェライト、及び、焼戻しマルテンサイトからなる」とは、残留オーステナイト、フェライト、及び、焼戻しマルテンサイト以外の相が無視できるほど少ないことを意味する。たとえば、本実施形態によるマルテンサイト系ステンレス継目無鋼管の化学組成においては、析出物や介在物の体積率は、残留オーステナイト、フェライト、及び、焼戻しマルテンサイトの体積率と比較して、無視できるほど小さい。すなわち、本実施形態によるマルテンサイト系ステンレス継目無鋼管のミクロ組織には、残留オーステナイト、フェライト、及び、焼戻しマルテンサイト以外に、析出物や介在物等を微小量含んでもよい。
 上述のとおり、本実施形態によるマルテンサイト系ステンレス継目無鋼管のミクロ組織において、残留オーステナイトの体積率は0~15.0%であり、かつ、フェライトの体積率は0~5.0%であり、残部は焼戻しマルテンサイトからなる。すなわち、本実施形態によるマルテンサイト系ステンレス継目無鋼管のミクロ組織において、焼戻しマルテンサイトの体積率は80~100.0%である。残留オーステナイト及びフェライトの体積率が高すぎれば、鋼材の機械的特性の制御が困難になる。一方、残留オーステナイト及びフェライトの体積率の下限は、0%であってもよい。すなわち、本実施形態によるマルテンサイト系ステンレス継目無鋼管は、焼戻しマルテンサイトのみからなるミクロ組織を有していてもよい。
 本実施形態では、ミクロ組織において、残留オーステナイトの体積率の下限は1.0%であってもよく、2.0%であってもよい。さらに、ミクロ組織において、残留オーステナイトの体積率の上限は13.0%であってもよく、10.0%であってもよい。本実施形態では、ミクロ組織において、フェライトの体積率の下限は0.5%であってもよい。さらに、ミクロ組織において、フェライトの体積率の上限は3.0%であってもよく、2.0%であってもよい。
 [残留オーステナイトの体積率の測定方法]
 本実施形態によるマルテンサイト系ステンレス継目無鋼管のミクロ組織における、残留オーステナイトの体積率(%)は、以下に示す方法で求めることができる。
 残留オーステナイトの体積率を、X線回折法により求める。具体的には、マルテンサイト系ステンレス継目無鋼管の肉厚中央部から試験片を作製する。試験片の大きさは特に限定されないが、たとえば、15mm×15mm×厚さ2mmである。この場合、試験片の厚さ方向は、肉厚(管径)方向と平行である。作製した試験片を用いて、α相(フェライト及びマルテンサイト)の(200)面、α相の(211)面、γ相(残留オーステナイト)の(200)面、γ相の(220)面、γ相の(311)面の各々のX線回折強度を測定し、各面の積分強度を算出する。
 X線回折強度の測定において、X線回折装置のターゲットをMoとする(MoKα線)。算出後、α相の各面と、γ相の各面との組合せ(2×3=6組)ごとに式(I)を用いて残留オーステナイトの体積率Vγ(%)を算出する。そして、6組の残留オーステナイトの体積率Vγの平均値を、残留オーステナイトの体積率(%)と定義する。
 Vγ=100/{1+(Iα×Rγ)/(Iγ×Rα)} (I)
 ここで、Iαはα相の積分強度である。Rαはα相の結晶学的理論計算値である。Iγはγ相の積分強度である。Rγはγ相の結晶学的理論計算値である。なお、本明細書において、α相の(200)面でのRαを15.9、α相の(211)面でのRαを29.2、γ相の(200)面でのRγを35.5、γ相の(220)面でのRγを20.8、γ相の(311)面でのRγを21.8とする。なお、残留オーステナイトの体積率は、得られた数値の小数第二位を四捨五入した値とする。
 [フェライトの体積率の測定方法]
 本実施形態によるマルテンサイト系ステンレス継目無鋼管のミクロ組織における、フェライトの体積率(%)は、以下に示す方法で求めることができる。
 フェライトの体積率を、ASTM E562(2019)に準拠した点算法により求める。具体的には、マルテンサイト系ステンレス継目無鋼管の肉厚中央部から試験片を作製する。試験片は、圧延(管軸)方向に垂直な観察面を有していればよく、特に限定されない。試験片を樹脂に埋め込み、鏡面に研磨した観察面を、ビレラ腐食液(エタノール、塩酸、ピクリン酸の混合液)に60秒間程度浸漬して、エッチングによる組織現出を行う。エッチングされた観察面を、光学顕微鏡を用いて30視野観察する。視野面積は特に限定されないが、たとえば、1視野あたり0.03mm2(倍率400倍)である。
 各観察視野において、フェライトと、その他の相(残留オーステナイトや焼戻しマルテンサイト)とは、当業者であればコントラストから区別することができる。そのため、各観察視野におけるフェライトを、コントラストに基づいて特定する。特定されたフェライトの面積率を、ASTM E562(2019)に準拠した点算法によって求める。求めた10視野におけるフェライトの面積率の算術平均値を、フェライトの体積率(%)と定義する。なお、フェライトの体積率は、得られた数値の小数第二位を四捨五入した値とする。
 [焼戻しマルテンサイトの体積率の測定方法]
 焼戻しマルテンサイトの体積率(%)を求める場合、次の方法で求めることができる。具体的に、上述のX線回折法で得られた残留オーステナイトの体積率(%)と、上述の点算法で得られたフェライトの体積率(%)とを用いて、マルテンサイト系ステンレス継目無鋼管における、ミクロ組織の焼戻しマルテンサイトの体積率(%)を次の式により求める。
 焼戻しマルテンサイトの体積率(%)=100-{残留オーステナイトの体積率(%)+フェライトの体積率(%)}
 [降伏強度]
 本実施形態によるマルテンサイト系ステンレス継目無鋼管は、862MPa以上(125ksi以上)の降伏強度を有する。本明細書でいう降伏強度は、引張試験で得られた0.2%オフセット耐力を意味する。本実施形態によるマルテンサイト系ステンレス継目無鋼管は、125ksi以上の降伏強度を有していても、式(1)を含む上述の化学組成を有し、後述の式(2)を満たすことで、継目無鋼管の内表面において優れた耐孔食性を示す。本実施形態によるマルテンサイト系ステンレス継目無鋼管において、降伏強度の上限は特に限定されないが、たとえば、1172MPaである。
 本実施形態によるマルテンサイト系ステンレス継目無鋼管の降伏強度は、次の方法で求めることができる。本実施形態によるマルテンサイト系ステンレス継目無鋼管から、ASTM E8/E8M(2021)に準拠して、引張試験片を作製する。具体的には、継目無鋼管の肉厚中央部から、丸棒試験片を作製する。丸棒試験片の大きさは、たとえば、平行部の直径8.9mm、標点距離35.6mmである。継目無鋼管から丸棒試験片を作製できない場合、円弧状試験片を作製する。円弧状試験片の大きさは、たとえば、厚さが継目無鋼管の肉厚と同一であって、幅25.4mm、標点距離50.8mmである。なお、引張試験片の軸方向は、継目無鋼管の管軸方向と平行である。引張試験片を用いて、ASTM E8/E8M(2021)に準拠して、常温(24±3℃)で引張試験を実施して、得られた0.2%オフセット耐力(MPa)を降伏強度(MPa)と定義する。なお、本明細書において降伏強度は、得られた数値の小数第一位を四捨五入した値とする。
 [式(2)]
 本実施形態によるマルテンサイト系ステンレス継目無鋼管は、継目無鋼管の内表面を含み、L方向に延びる辺の長さが1.0μmであり、T方向に延びる辺の長さが1.0μmである正方形の観察視野領域において、観察視野領域を、L方向に256等分し、T方向に256等分した65536区画に分割した場合、マルテンサイト系ステンレス継目無鋼管の内表面近傍領域20のうち、Cu濃度が2.0%を超える区画の個数割合を内表面Cu占有率OSCuと定義し、マルテンサイト系ステンレス継目無鋼管の内部領域30のうち、Cu濃度が2.0%を超える区画の個数割合を内部Cu占有率OICuと定義したとき、内表面Cu占有率OSCuと、内部Cu占有率OICuとが、式(2)を満たす。
 OSCu/OICu≧1.20 (2)
 Fn2(=OSCu/OICu)は、Cu析出物の内表面近傍領域20への偏在度合いを示す指標である。Fn2が大きいほど、Cu析出物が内表面近傍領域20に偏在しており、内表面の耐孔食性を効果的に高めることができる。そこで、本実施形態によるマルテンサイト系ステンレス継目無鋼管では、式(1)を含む上述の化学組成と、125ksi以上の降伏強度とを有し、さらに、Fn2を1.20以上とする。その結果、本実施形態によるマルテンサイト系ステンレス継目無鋼管は、高い降伏強度と、内表面における優れた耐孔食性とを両立することができる。
 したがって、本実施形態によるマルテンサイト系ステンレス継目無鋼管では、式(1)を満たす化学組成と、862MPa以上の降伏強度とを有し、さらに、Fn2を1.20以上とする。本実施形態によるマルテンサイト系ステンレス継目無鋼管において、Fn2の好ましい下限は1.25であり、さらに好ましくは1.30である。本実施形態において、Fn2の上限は特に限定されないが、たとえば、5.00である。
 本実施形態によるマルテンサイト系ステンレス継目無鋼管において、内表面Cu占有率OSCuと内部Cu占有率OICuとは、次の方法で求めることができる。本実施形態によるマルテンサイト系ステンレス継目無鋼管から、内表面観察用の薄膜試験片を作製する。薄膜試験片は、収束イオンビーム(Focused Ion Beam、以下「FIB」ともいう。)加工によって作製する。また、薄膜試験片の形状は、後述する観察面が得られれば特に限定されない。薄膜試験片の観察面の大きさは、たとえば10μm×10μmであり、薄膜試験片の厚さは、たとえば150nmである。FIB加工ではさらに、内表面を保護する保護膜(いわゆるデポジション膜、deposition film)を、内表面上に形成する。
 得られた薄膜試験片の観察面のうち、L方向:1.0μm×T方向:1.0μm=1.0μm2の観察視野領域を特定する。観察視野領域には、継目無鋼管の内表面が含まれるように調整する。好ましくは、図1に示されるように、継目無鋼管の内表面10が観察視野領域50のT方向中央付近に位置し、かつL方向に延びるように、観察視野領域50を特定する。ここで、「継目無鋼管の内表面10が観察視野領域50のT方向中央付近に位置する」とは、観察視野領域50を特定する際、観察で確認できる継目無鋼管の内表面10が、観察視野領域50の概ねT方向中央に位置する程度の意味である。たとえば、観察視野領域50をT方向に5等分した場合、継目無鋼管の内表面10がL方向全長に渡ってT方向上から3番目の領域に収まっていれば、継目無鋼管の内表面10が観察視野領域50のT方向中央付近に位置するといえる。また、「継目無鋼管の内表面10が観察視野領域50のL方向に延びる」とは、観察視野領域50を特定する際、観察で確認できる継目無鋼管の内表面10が、観察視野領域50のL方向と概ね平行である、という程度の意味である。なお、本実施形態では、薄膜試験片の観察面から、任意の4つの観察視野領域を特定する。
 特定された4つの観察視野領域に対して、透過電子顕微鏡(Transmission Electron Microscope:以下、「TEM」ともいう)による組織観察を実施する。組織観察の条件は特に限定されないが、たとえば、加速電圧を200kVとする。
 TEMによる組織観察を実施した観察視野領域を、L方向に256等分、T方向に256等分した、65536区画に分割する。なお、1つの区画は、L方向:4nm×T方向:4nm=16nm2の正方形である。本明細書では、観察視野領域の左上を原点として、各区画を(n,m)で表記する。ここで、n(整数)とは、観察視野領域中のL方向位置を意味し、観察視野領域の左端を1、右端を256とする。同様に、m(整数)とは、観察視野領域中のT方向位置を意味し、観察視野領域の上端を1、下端を256とする。以下、図面を用いて具体的に説明する。
 図2は、観察視野領域50をL方向に256等分、T方向に256等分し、65536区画に分割した様子を示す模式図である。図2を参照して、観察視野領域50の左端からn番目であり、観察視野領域50の上端からm番目の区画を、(n,m)と表記する。図2を参照してさらに、観察視野領域50の左上端の区画は(1,1)であり、観察視野領域50の右上端の区画は(256,1)であり、観察視野領域50の左下端の区画は(1,256)であり、観察視野領域50の右下端の区画は(256,256)である。
 なお、上述のとおり、本実施形態による継目無鋼管では、内表面10が観察視野領域50のL方向に延びている。要するに、本実施形態による継目無鋼管では、観察で確認できる継目無鋼管の内表面10が、観察視野領域50のL方向と概ね平行であるように観察視野領域50を特定する。そのため、観察で確認できる継目無鋼管の内表面10を含むT方向の区画が、L方向全長に渡ってなるべく少なくなるように、観察視野領域50を特定する。たとえば、本実施形態による継目無鋼管の内表面10は、L方向全長に渡って、T方向5区画に含まれていてもよく、さらに好ましくは、T方向3区画に含まれていてもよい。最も好ましくは、本実施形態による継目無鋼管の内表面10は、L方向全長に渡って、T方向1区画に含まれている。
 次に、観察視野領域の各区画に対して、TEMに付属するEDS(エネルギー分散型X線分析、Energy Dispersive X-ray Spectroscopy)による元素濃度分析を行う。なお、対象元素をFe、Cr、Ni、Mo、及び、Cuとして定量する。EDS分析の結果から、区画(n,m)についてFe濃度CFe(n,m)及びCu濃度CCu(n,m)を相対強度で特定する。具体的に、Fe濃度CFe(n,m)及びCu濃度CCu(n,m)は、次の式(3)及び(4)で定義される。
 CFe(n,m)=100×[Fe](n, m)/([Fe](n, m)+[Cr](n, m)+[Ni](n, m)+[Mo](n, m)+[Cu](n, m)) (3)
 CCu(n,m)=100×[Cu](n, m)/([Fe](n, m)+[Cr](n, m)+[Ni](n, m)+[Mo](n, m)+[Cu](n, m)) (4)
 ここで、式(3)及び(4)中の[Fe](n, m)、[Cr](n, m)、[Ni](n, m)、[Mo](n, m)、及び、[Cu](n, m)には、EDS分析で求めた区画(n,m)におけるFe、Cr、Ni、Mo、及び、Cuの検出強度が代入される。
 求めた各区画のFe濃度CFe(n,m)を用いて、観察視野領域における継目無鋼管の内表面を特定することができる。具体的に、たとえば、Fe濃度CFe(n,m)のL方向平均値を求め、そのプロットから求めることもできる。より具体的に、T方向位置mにおける、Fe濃度CFe(1,m)~CFe(256,m)の算術平均値を求め、Fe濃度のL方向平均値AFe(m)と定義する。得られた256個のFe濃度のL方向平均値AFe(m)を、T方向位置mに対してプロットする。
 図3は、観察視野領域中の各区画の管径方向(T方向)位置mと、Fe濃度の管軸方向(L方向)平均値AFe(m)との関係を示す模式図である。図3を参照して、領域100では、Fe濃度のL方向平均値AFe(m)が急激に変化している。図3を参照してさらに、領域100の右側(つまりT方向位置mが正の方向)では、Fe濃度のL方向平均値AFe(m)が比較的安定している。これは、観察視野領域中の、空隙領域40と内表面近傍領域20とでFe濃度が大きく異なり、さらに、内部領域30中のFe含有量が比較的安定しているためである。
 このように、T方向位置mに対するFe濃度のL方向平均値AFe(m)のプロットの形状から、継目無鋼管の内表面を特定することができる。具体的に、図3に示されるように、Fe濃度のL方向平均値AFe(m)が急激に変化する領域100を特定する。Fe濃度のL方向平均値AFe(m)が急激に変化する領域100を特定することは、当業者であれば当然に可能である。次に、領域100におけるFe濃度のL方向平均値AFe(m)の最大値と最小値とを求め、その算術平均値AFe-aveを求める。さらに、領域100において、Fe濃度のL方向平均値AFe(m)の値が最初にAFe-aveを超える場合、そのmを内表面のT方向位置と特定する。より具体的に、内表面のT方向位置をk(整数)とすると、Fe濃度のL方向平均値AFe(m)とAFe-aveとは、次の式(5)及び(6)が成り立つ。
 AFe(k-1)≦AFe-ave (5)
 AFe(k)>AFe-ave (6)
 本実施形態において、内表面近傍領域20は、マルテンサイト系ステンレス継目無鋼管の内表面を上端とし、L方向に256区画であり、T方向に6区画の長方形として定義される。内表面のT方向位置kを用いて言い換えると、本実施形態では、左上端が区画(1,k)であり、右上端が区画(256,k)であり、左下端が区画(1,k+5)であり、右下端が区画(256,k+5)である長方形を、内表面近傍領域20と定義する。
 さらに、観察視野領域50は、内表面近傍領域20と、内部領域30と、空隙領域40とからなる。ここで、内部領域30とは、内表面近傍領域20と、内表面近傍領域20の下方で隣接する。すなわち、内表面のT方向位置kを用いて言い換えると、本実施形態では、左上端が区画(1,k+6)であり、右上端が区画(256,k+6)であり、左下端が区画(1,256)であり、右下端が区画(256,256)である長方形を、内部領域30と定義する。
 同様に、空隙領域40とは、内表面近傍領域20と、内表面近傍領域20の上方で隣接する。すなわち、内表面のT方向位置kを用いて言い換えると、本実施形態では、左上端が区画(1,1)であり、右上端が区画(256,1)であり、左下端が区画(1,k-1)であり、右下端が区画(256,k-1)である長方形を、空隙領域40と定義する。なお、上述のとおり、空隙領域40とは、マルテンサイト系ステンレス継目無鋼管の貫通孔に相当する。
 以上のとおりに定義された内表面近傍領域20の全区画のうち、Cu濃度が2.0%を超える区画の個数割合を、内表面Cu占有率OSCuと定義する。ここで、内表面近傍領域20の全区画とは、L方向:256区画×T方向6区画=1536区画である。区画(1,k)を左上端とし、区画(256,k+5)を右下端とする長方形の全区画のうち、Cu濃度CCu(n,m)が2.0%を超える区画を計数し、総区画数1536に対する個数割合を求める。なお、上述のとおり本実施形態では、薄膜試験片の観察面から、任意の4つの観察視野領域を特定する。したがって、4つの観察視野領域において求めた個数割合の算術平均値を、内表面Cu占有率OSCuと定義する。なお、本明細書において内表面Cu占有率OSCuは、得られた数値の小数第三位を四捨五入した値とする。
 同様に、上述のとおりに定義された内部領域30の全区画のうち、Cu濃度が2.0%を超える区画の個数割合を、内部Cu占有率OICuと定義する。ここで、上述のとおり内部領域30とは、区画(1,k+6)を左上端とし、区画(256,256)を右下端とする長方形の全区画のうち、Cu濃度CCu(n,m)が2.0%を超える区画を計数し、総区画数に対する個数割合を求める。なお、上述のとおり本実施形態では、薄膜試験片の観察面から、任意の4つの観察視野領域を特定する。したがって、4つの観察視野領域において求めた個数割合の算術平均値を、内部Cu占有率OICuと定義する。なお、本明細書において内部Cu占有率OICuは、得られた数値の小数第三位を四捨五入した値とする。
 ここで、上述のとおり、FIB加工では、内表面上に保護膜を形成する。一方、本実施形態では、上述のとおりFe濃度CFeを用いて、継目無鋼管の内表面10を特定する。そのため、FIB加工において形成される保護膜を構成する元素は、Fe以外の元素(たとえば、炭素:C、タングステン:W、又は、白金:Pt)が好ましい。これらの元素は、TEMによる組織観察が実施される薄膜試験片に対して、通常の蒸着元素として用いられており、当業者であれば当然に選択して使用することができる。
 [耐孔食性]
 本実施形態によるマルテンサイト系ステンレス継目無鋼管は、内表面において優れた耐孔食性を有する。本実施形態において、内表面における優れた耐孔食性とは、以下のとおりに定義される。
 本実施形態では、継目無鋼管の内表面の孔食電位を測定し、耐孔食性を評価する。具体的に、本実施形態による継目無鋼管から孔食電位測定用の試験片を作製する。試験片は、継目無鋼管の内表面の面積1.0cm2を試験面として含む。試験片の形状は、上述の試験面を含んでいればよく、特に限定されない。たとえば、試験片は、内表面の面積1.0cm2以上を有し、厚さが継目無鋼管の肉厚と同じであってもよい。試験片のうち、試験面以外の領域を絶縁体で被覆する。ここで、絶縁体は特に限定されず、後述する試験環境において使用可能な周知の絶縁体を用いればよい。絶縁体としてたとえば、樹脂を用いてもよい。
 孔食電位測定用の試験片を用いて電気化学試験を実施して、アノード分極曲線を測定する。具体的に、試験溶液は、0.08g/Lの炭酸水素ナトリウムによりpHを4.5に調整した25質量%塩化ナトリウム水溶液とする。試験溶液は、予め脱気して用いる。試験片をオートクレーブに封入する。オートクレーブにおいて、試験片を比液量500mL/cm2以上の試験溶液に浸漬させ、試験浴とする。試験浴を脱気した後、オートクレーブに0.03atmのH2Sガスと10atmのCO2ガスとの混合ガスを加圧封入し、試験浴を撹拌して腐食環境とする。
 試験浴を175℃に加熱する。電気化学試験では、参照電極(Reference Electrode)として、飽和KCl銀塩化銀電極(Silver-Silver Chloride Electrode)を用いる。さらに、対極として、白金電極を用いる。浸漬電位が安定した後、ポテンショスタットにより、浸漬電位からアノード方向に20mV/分の電位掃引速度で、アノード分極曲線を測定する。なお、アノード分極曲線の測定は、アノード電流密度が1000μA/cm2に達するまで実施する。
 得られたアノード分極曲線から、アノード電流密度が1000μA/cm2に達した際の電位を求める。同様の測定を3回実施して、得られた電位の算術平均値を、孔食電位V′c1000(mV)と定義する。本実施形態では、上記定義による孔食電位V′c1000が-230mV以上であれば、継目無鋼管が内表面における優れた耐孔食性を有すると判断する。
 [継目無鋼管の用途]
 本実施形態によるマルテンサイト系ステンレス継目無鋼管の用途は特に限定されない。本実施形態によるマルテンサイト系ステンレス継目無鋼管は、油井用継目無鋼管に好適である。油井用継目無鋼管はたとえば、油井又はガス井の掘削、原油又は天然ガスの採取等に用いられるケーシング、チュービング、ドリルパイプ等である。
 [製造方法]
 本実施形態によるマルテンサイト系ステンレス継目無鋼管について、その製造方法の一例を説明する。なお、以下に説明する製造方法は一例であって、本実施形態のマルテンサイト系ステンレス継目無鋼管の製造方法はこれに限定されない。つまり、上述の構成を有する本実施形態のマルテンサイト系ステンレス継目無鋼管が製造できれば、以下に説明する製造方法に限定されず、他の製造方法によって製造されてもよい。好ましくは、本実施形態によるマルテンサイト系ステンレス継目無鋼管の製造方法は、素材準備工程と、熱間加工工程と、熱処理工程(焼入れ工程及び焼戻し工程)とを含む。以下、製造方法が素材準備工程と、熱間加工工程と、熱処理工程とを含む場合について詳細に説明する。
 [素材準備工程]
 素材準備工程では、上述の化学組成を有する素材を準備する。ここで、素材の化学組成は、本実施形態によるマルテンサイト系ステンレス継目無鋼管の化学組成と同一である。具体的に、本実施形態による素材は、質量%で、C:0.030%以下、Si:1.00%以下、Mn:1.00%以下、P:0.030%以下、S:0.0050%以下、Cr:11.00~14.00%、Ni:5.00~7.50%、Mo:1.50~4.50%、Cu:0.50~3.50%、Co:0.010~0.500%、Ti:0.050~0.300%、V:0.01~1.00%、Ca:0.0005~0.0050%、Al:0.001~0.100%、N:0.0010~0.0500%、O:0.050%以下、W:0~2.00%、Nb:0~0.50%、Mg:0~0.0050%、希土類元素:0~0.0050%、B:0~0.0050%、及び、残部:Fe及び不純物からなる。素材は、上述の化学組成を有していれば、製造方法は特に限定されない。素材は、製造して準備してもよく、第三者から購入することにより準備してもよい。すなわち、素材を準備する方法は限定されない。
 素材を製造して準備する場合、たとえば、次の方法で製造する。上述の化学組成を有する溶鋼を周知の精錬方法により製造する。製造された溶鋼を用いて連続鋳造法により鋳片を製造する。ここで、鋳片とは、スラブ、ブルーム、又はビレットである。鋳片に代えて、上記溶鋼を用いて造塊法によりインゴットを製造してもよい。必要に応じて、スラブ、ブルーム又はインゴットを熱間圧延して、ビレットを製造してもよい。以上の製造工程により、素材(スラブ、ブルーム、又は、ビレット)を製造する。
 [熱間加工工程]
 熱間加工工程では、準備された素材を熱間加工する。まず、素材を加熱炉で加熱する。加熱温度は特に限定されないが、たとえば、1100~1300℃である。加熱炉から抽出された素材に対して熱間加工を実施して、素管(継目無鋼管)を製造する。具体的に、本実施形態では、熱間加工として穿孔圧延を実施して、素管を製造する。穿孔圧延は、周知の方法を用いることができ、特に限定されない。たとえば、穿孔圧延における、穿孔比は特に限定されない。
 本実施形態による熱間加工工程では、穿孔圧延後の素管に対して、必要に応じてさらに熱間圧延を実施する。具体的に、穿孔圧延後の素管に対して、延伸圧延を実施した後、定形圧延を実施してもよい。この場合、延伸圧延では、マンドレルミルを用いてもよく、プラグミルを用いてもよい。また、必要に応じて、エロンゲータミルを用いた延伸圧延を実施してもよい。さらに、これらを複数組み合わせた延伸圧延を実施してもよい。たとえば、穿孔圧延後の素管に対して、エロンゲータミルを用いた延伸圧延を実施した後、プラグミルを用いた延伸圧延を実施してもよい。延伸圧延後の素管に対して実施する定形圧延では、ストレッチレデューサを用いてもよく、サイジングミルを用いてもよく、これらを複数組み合わせて用いてもよい。以上の工程により、素管を製造する。
 好ましくは、本実施形態による熱間加工工程では、熱間加工による累積の断面減少率Rは40%以上である。断面減少率Rとは、次の式(A)で定義される。
 R={1-(熱間加工後の素管の管軸方向に垂直な断面積/熱間加工前の素材の軸方向に垂直な断面積)}×100 (A)
 なお、式(A)における「熱間加工後の素管」とは、最終の熱間加工が終了した後の素管を意味する。式(A)における「熱間加工前の素材」とは、熱間加工を実施する前の素材を意味する。すなわち、本実施形態による熱間加工工程では、熱間加工によって変化した、素材の軸方向に垂直な断面積によって、断面減少率Rを定義する。
 熱間加工工程における断面減少率Rが大きければ、加工時に素管の内表面に剪断力が強くかかり、素管の内表面にCu析出物の析出サイトが多数形成される。その結果、製造されたマルテンサイト系ステンレス継目無鋼管の内表面において、Cu析出物が偏在しやすくなる。具体的に、他の好ましい製造条件を満たした上で、断面減少率Rを40%以上とすれば、製造されたマルテンサイト系ステンレス継目無鋼管において、Fn2を1.20以上とすることができる。
 したがって、本実施形態による熱間加工工程では、断面減少率Rは40%以上とするのが好ましい。本実施形態による熱間加工工程において、断面減少率Rの上限は特に限定されないが、たとえば、80%である。
 好ましくは、本実施形態による熱間加工工程では、加工時間を15分以下とする。加工時間(分)とは、素材が加熱炉から抽出されてから、最終の熱間加工が終了するまでの時間を意味する。加工時間が長すぎれば、熱間加工中に素管の内表面のCu析出物の析出サイトが減少する。その結果、製造されたマルテンサイト系ステンレス継目無鋼管の内表面において、Cu析出物が偏在しにくくなる。一方、他の好ましい製造条件を満たした上で、加工時間を15分以下とすれば、製造されたマルテンサイト系ステンレス継目無鋼管において、Fn2を1.20以上とすることができる。
 したがって、本実施形態による熱間加工工程では、加工時間を15分以下とするのが好ましい。さらに好ましい加工時間の上限は13分であり、さらに好ましくは10分である。本実施形態による熱間加工工程では、加工時間の下限は特に限定されないが、たとえば、5分である。
 上述のとおり本実施形態による熱間加工工程では、素材に対して穿孔圧延を実施した後、必要に応じて熱間圧延を実施する。具体的には、素材に対して穿孔圧延を実施した後、延伸圧延を実施して、さらに、定形圧延を実施してもよい。また、本実施形態による熱間加工工程では、複数の熱間圧延を組み合わせて実施することから、複数の熱間圧延の間の搬送工程も含む。さらに、必要に応じて、補熱炉や加熱炉を用いて、素管を加熱してもよい。つまり、本実施形態による熱間加工工程における加工時間とは、複数実施する熱間圧延の時間だけでなく、その間の搬送や加熱等に要する時間も含めた合計時間を意味する。要するに、本実施形態による熱間加工工程では、穿孔圧延と、延伸圧延と、定形圧延と、その他搬送や加熱等とにかかる時間の合計が、15分以下であることを意味する。
 [熱処理工程]
 熱処理工程は、焼入れ工程及び焼戻し工程を含む。熱処理工程では、まず、熱間加工工程で製造された素管に対して、焼入れを実施する(焼入れ工程)。焼入れ後の素管に対して、焼戻しを実施する(焼戻し工程)。以下、焼入れ工程と焼戻し工程とについて、それぞれ説明する。
 [焼入れ工程]
 焼入れ工程では、周知の方法で焼入れを実施する。本明細書において、「焼入れ」とは、A3点以上の素管を急冷することを意味する。焼入れは、熱間加工後、素管を常温まで冷却することなく、熱間加工直後に焼入れ(直接焼入れ)を実施してもよいし、熱間加工後の素管の温度が低下する前に熱処理炉又は補熱炉に装入して、素管を焼入れ温度にした後、焼入れを実施してもよい。
 焼入れ温度はAC3変態点以上であり、たとえば、900~1000℃である。ここで、焼入れ温度とは、熱処理炉又は補熱炉を用いる場合は炉温を意味し、直接焼入れの場合は素管の外表面の温度を意味する。熱処理炉又は補熱炉を用いる場合さらに、素管を焼入れ温度で保持する時間は特に限定されないが、たとえば、10~120分である。
 焼入れ方法は特に限定されないが、たとえば、水冷である。水冷による焼入れの方法として、具体的には、水槽又は油槽に素管を浸漬して、急冷してもよい。又は、シャワー冷却又はミスト冷却により、素管の外面及び/又は内面に対して冷却水を注いだり、噴射したりすることにより、素管を急冷してもよい。
 [焼戻し工程]
 焼戻し工程では、焼入れされた素管に焼戻しを実施して、降伏強度を調整する。本明細書において、「焼戻し」とは、焼入れ後の素管をAc1点以下で再加熱して、保持することを意味する。本実施形態による焼戻し工程では、焼戻し温度は、500℃~Ac1変態点とする。本実施形態による焼戻し工程では、焼戻し時間は、10~180分である。本明細書において、焼戻し温度とは、熱処理炉での炉温(℃)を意味する。本明細書において、焼戻し時間とは、焼戻し温度で素管を保持する時間を意味する。
 好ましくは、本実施形態による焼戻し工程では、次の式(B)を満たすように、焼戻し温度T(℃)及び焼戻し時間t(分)を調整する。
 (T+273.15)×(20+log10(t/60))×(1-[Cu]/100)≦17200 (B)
 ここで、式(B)中のTには焼戻し温度(℃)が代入され、tには焼戻し時間(分)が代入され、[Cu]には素管のCu含有量(質量%)が代入される。
 FnB=(T+273.15)×(20+log10(t/60))×(1-[Cu]/100)と定義する。FnBは製造されたマルテンサイト系ステンレス継目無鋼管の降伏強度を示す指標である。FnBが大きすぎれば、所望の降伏強度が得られない場合がある。一方、他の好ましい製造条件を満たした上で、FnBを17200以下とすれば、製造されたマルテンサイト系ステンレス継目無鋼管において、降伏強度を安定して862MPa以上とすることができる。
 したがって、本実施形態による焼戻し工程では、FnBを17200以下とするのが好ましい。さらに好ましいFnBの上限は17100であり、さらにこのましくは17000である。965MPa以上の降伏強度を安定して得ようとする場合のFnBの好ましい上限は16700である。FnBの下限は特に限定されないが、たとえば、14350である。
 以上の工程により、本実施形態によるマルテンサイト系ステンレス継目無鋼管を製造することができる。なお、上述のとおり、上記製造方法以外の方法によって、マルテンサイト系ステンレス継目無鋼管が製造されてもよい。さらに、製造されたマルテンサイト系ステンレス継目無鋼管に対して、必要に応じて、後処理を実施してもよい。後処理は、たとえば、鋼材の表面に形成された酸化スケールを除去するデスケーリングである。以下、実施例によって本発明をさらに具体的に説明する。
 表1に示す化学組成を有する溶鋼を製造した。なお、表1中の「-」は、該当する元素の含有量が、表1に記載されている数値の端数を四捨五入したときに、0%であったことを意味する。具体的に、鋼番号3のW含有量は、小数第三位で四捨五入して、0%であったことを意味する。鋼番号1のNb含有量は、小数第三位で四捨五入して、0%であったことを意味する。鋼番号1のMg含有量、REM含有量、及び、B含有量は、小数第五位で四捨五入して、0%であったことを意味する。また、表1に記載の化学組成と、上述の定義から求めたFn1を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 製造された各鋼番号の溶鋼を用いて、造塊法により鋼塊(インゴット)を製造した。各鋼番号のインゴットを1250℃で3時間加熱して、熱間鍛造を実施して、直径200mmの丸ビレットを製造した。
 各試験番号の丸ビレットを1230℃で加熱した後、熱間加工として熱間圧延を実施して、素管(継目無鋼管)を製造した。各試験番号における、熱間加工(熱間圧延)の断面減少率Rを表2~表4に示す。なお、表2~表4の断面減少率R欄中、「A(Acceptable)」とは、断面減少率Rが40%以上であったことを意味する。表2~表4の断面減少率R欄中、記載される数値は、断面減少率Rの数値(%)を意味する。さらに、丸ビレットを加熱炉より抽出してから、最終の熱間加工(熱間圧延)が終了するまでの時間(加工時間)を表2~表4に示す。なお、表2~表4の熱間加工時間欄中、「A(Acceptable)」とは、熱間加工時間が15分以下であったことを意味する。表2~表4の熱間加工時間欄中、「NA(Not Acceptable)」とは、熱間加工時間が15分を超えたことを意味する。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 各試験番号の素管に対して、焼入れを実施した。焼入れは、素管を熱処理炉で再加熱して、水槽に浸漬することによって実施した。各試験番号の素管について、焼入れ温度(熱処理炉の炉温)は900℃であり、素管を焼入れ温度で保持する時間は15分であった。焼入れ後の各試験番号の素管に対して、焼戻しを実施した。焼戻しは、焼入れ後の素管を焼戻し炉で再加熱して、保持することによって実施した。各試験番号について、焼戻しにおける焼戻し温度T(℃)、焼戻し時間t(分)、及び、焼戻し温度T(℃)と焼戻し時間t(分)とCu含有量(質量%)と上述の定義から求めたFnBを表2~表4に示す。以上の製造工程によって、各試験番号のマルテンサイト系ステンレス継目無鋼管を製造した。
 [評価試験]
 製造された各試験番号の継目無鋼管に対して、引張試験、ミクロ組織観察試験、内表面観察試験、及び、耐孔食性試験を実施した。
 [引張試験]
 各試験番号の継目無鋼管に対して、ASTM E8/E8M(2021)に準拠して、引張試験を実施した。具体的には、各試験番号の継目無鋼管の肉厚中央部から、丸棒引張試験片を作製した。丸棒引張試験片の平行部の直径は8.9mmであり、標点距離は35.6mmであった。丸棒引張試験片の長手方向は、継目無鋼管の圧延方向(管軸方向)と平行であった。各試験番号の丸棒引張試験片を用いて、常温(25℃)、大気中にて引張試験を実施して、0.2%オフセット耐力(MPa)を求めた。求めた0.2%オフセット耐力を降伏強度(MPa)と定義した。得られた各試験番号の降伏強度を、表2~表4の「YS(MPa)」欄に示す。
 [ミクロ組織観察試験]
 各試験番号の継目無鋼管に対して、ミクロ組織体積率測定試験を実施して、残留オーステナイト及びフェライトの体積率を求めた。各試験番号の継目無鋼管について、上述のX線回折法により、残留オーステナイトの体積率(%)を求めた。得られた各試験番号の継目無鋼管における残留オーステナイトの体積率(%)を、表2~表4の「残留γ(%)」欄に示す。さらに、各試験番号の継目無鋼管について、上述のASTM E562(2019)に準拠した点算法により、フェライトの体積率(%)を求めた。得られた各試験番号のフェライトの体積率(%)を、表2~表4の「フェライト(%)」欄に示す。
 [内表面観察試験]
 試験番号62~64を除く、各試験番号の継目無鋼管に対して、内表面観察試験を実施して、内表面Cu占有率OSCuと、内部Cu占有率OICuと、Fn2とを求めた。各試験番号の継目無鋼管について、上述の方法で薄膜試験片を作製し、TEM観察を実施した。TEM観察に供した薄膜試験片はFIB加工によって作製した。FIB加工には、ガリウム(Ga)イオンを用いた。FIB加工に際しては、内表面を保護するため、炭素の保護膜を内表面上に形成した。薄膜試験片における観察面の大きさは10μm×10μmであり、薄膜試験片の厚さは150nmであった。さらに、L方向:1.0μm、T方向:1.0μmの観察視野領域をL方向に256等分、T方向に256等分した65536区画に分割し、各区画に対してEDS分析を実施した。上述の方法で観察視野領域における内表面のT方向位置を特定し、内表面近傍領域と内部領域とを特定した。特定された内表面近傍領域と、内部領域とが含む区画のうち、Cu濃度が2.0%を超える区画の個数割合を求め、内表面Cu占有率OSCuと、内部Cu占有率OICuと定義した。求めた内表面Cu占有率OSCuと、内部Cu占有率OICuと、上述の式(2)とから、Fn2を求めた。求めた内表面Cu占有率OSCuと、内部Cu占有率OICuと、Fn2とを、表2~表4に示す。なお、試験番号62~64の継目無鋼管は、Cuを含有していなかったため、内表面観察試験を実施しなかった。
 [耐孔食性試験]
 各試験番号の継目無鋼管に対して、耐孔食性試験を実施して、孔食電位V′c1000(mV)を求めた。具体的に、各試験番号の継目無鋼管から、内表面の面積1.0cm2以上を試験面として含み、厚さが継目無鋼管の肉厚と同じである孔食電位測定用の試験片を作製した。試験溶液は、予め脱気した、0.08g/Lの炭酸水素ナトリウムによりpHを4.5に調整した25質量%塩化ナトリウム水溶液とした。オートクレーブにおいて、試験片を比液量500mL/cm2以上の試験溶液に浸漬させ、試験浴とした。試験浴を脱気した後、オートクレーブに0.03atmのH2Sガスと10atmのCO2ガスとの混合ガスを加圧封入し、試験浴を撹拌した。
 試験浴を175℃に加熱した。電気化学試験では、参照電極として飽和KCl銀塩化銀電極を用い、対極として白金電極を用いた。浸漬電位が安定した後、ポテンショスタットにより、浸漬電位からアノード方向に20mV/分の電位掃引速度で、アノード分極曲線を測定した。得られたアノード分極曲線から、アノード電流密度が1000μA/cm2に達した際の電位を求めた。同様の測定を3回実施して、得られた電位の算術平均値を、孔食電位V′c1000(mV)とした。各試験番号について、求めた孔食電位V′c1000(mV)を、表2~表4に示す。
 [試験結果]
 表1~表4を参照して、試験番号1~11、13、14、16~22、24~32、34~39、42~46、48~51、及び、54~60の継目無鋼管は、化学組成が適切であり、Fn1が2.50以上であり、製造方法も明細書に記載の好ましい製造方法であった。その結果、これらの継目無鋼管は、降伏強度が862MPa以上であり、ミクロ組織において、残留オーステナイトの体積率が0~15.0%であり、フェライトの体積率が0~5.0%となった。これらの継目無鋼管はさらに、Fn2が1.20以上となった。その結果、これらの継目無鋼管は、耐孔食性試験において、孔食電位V′c1000が-230mV以上となった。すなわち、これらの継目無鋼管は、862MPa以上の高強度と、内表面における優れた耐孔食性を有していた。
 一方、試験番号12、15、23、33、40、41、及び、52の継目無鋼管は、製造方法において、FnBが17200を超えた。その結果、これらの継目無鋼管は、降伏強度が862MPa未満となり、所望の強度が得られなかった。
 試験番号47、及び、53の継目無鋼管は、製造方法において、FnBが17200を超えた。その結果、これらの継目無鋼管は、フェライトの体積率が5.0%を超え、降伏強度が862MPa未満となった。すなわち、これらの継目無鋼管は、所望の強度が得られなかった。
 試験番号61の継目無鋼管は、Co含有量が低すぎた。その結果、この継目無鋼管は、降伏強度が862MPa未満となり、所望の強度が得られなかった。
 試験番号62~64の継目無鋼管は、Cu含有量が低すぎた。その結果、これらの継目無鋼管は、耐孔食性試験において、孔食電位V′c1000が-230mV未満となった。すなわち、これらの継目無鋼管は、内表面における優れた耐孔食性を有していなかった。
 試験番号65及び66の継目無鋼管は、Fn1が低すぎた。その結果、耐孔食性試験において、孔食電位V′c1000が-230mV未満となった。すなわち、この継目無鋼管は、内表面における優れた耐孔食性を有していなかった。
 試験番号67~72の継目無鋼管は、製造方法において、断面減少率Rが40%未満であった。その結果、これらの継目無鋼管は、Fn2が1.20未満となった。その結果、耐孔食性試験において、孔食電位V′c1000が-230mV未満となった。すなわち、これらの継目無鋼管は、内表面における優れた耐孔食性を有していなかった。
 試験番号73~76の継目無鋼管は、製造方法において、熱間加工時間が15分を超えた。その結果、これらの継目無鋼管は、Fn2が1.20未満となった。その結果、耐孔食性試験において、孔食電位V′c1000が-230mV未満となった。すなわち、これらの継目無鋼管は、内表面における優れた耐孔食性を有していなかった。
 以上、本開示の実施の形態を説明した。しかしながら、上述した実施の形態は本開示を実施するための例示に過ぎない。したがって、本開示は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変更して実施することができる。
 10 内表面
 20 内表面近傍領域
 30 内部領域
 40 空隙領域
 50 観察視野領域
 なお、本実施形態によるマルテンサイト系ステンレス継目無鋼管の要旨は、以下のとおりに記載することもできる。
 [1]
 マルテンサイト系ステンレス継目無鋼管であって、
 質量%で、
 C:0.030%以下、
 Si:1.00%以下、
 Mn:1.00%以下、
 P:0.030%以下、
 S:0.0050%以下、
 Cr:11.00~14.00%、
 Ni:5.00~7.50%、
 Mo:1.50~4.50%、
 Cu:0.50~3.50%、
 Co:0.010~0.500%、
 Ti:0.050~0.300%、
 V:0.01~1.00%、
 Ca:0.0005~0.0050%、
 Al:0.001~0.100%、
 N:0.0010~0.0500%、
 O:0.050%以下、及び、
 残部:Fe及び不純物からなり、かつ、式(1A)を満たし、
 ミクロ組織が、体積%で、0~15.0%の残留オーステナイト、0~5.0%のフェライト、及び、残部が焼戻しマルテンサイトからなり、
 降伏強度が、862MPa以上であり、
 前記マルテンサイト系ステンレス継目無鋼管の管軸方向をL方向、前記マルテンサイト系ステンレス継目無鋼管の管径方向をT方向と定義したとき、
 前記L方向に延びる前記マルテンサイト系ステンレス継目無鋼管の内表面を含み、前記L方向に延びる辺の長さが1.0μmであり、前記T方向に延びる辺の長さが1.0μmである正方形の観察視野領域において、
 前記観察視野領域を、前記L方向に256等分し、前記T方向に256等分した65536区画に分割した場合、
 前記観察視野領域は、
 前記マルテンサイト系ステンレス継目無鋼管の内表面を上端とし、前記L方向に256区画であり、前記T方向に6区画の長方形である内表面近傍領域と、
 前記内表面近傍領域と、前記内表面近傍領域の下方で隣接する内部領域と、
 前記内表面近傍領域と、前記内表面近傍領域の上方で隣接する空隙領域と、からなり、
 前記内表面近傍領域中の全ての前記区画のうち、Cu濃度が2.0%を超える区画の個数割合を、内表面Cu占有率OSCuと定義し、
 前記内部領域中の全ての区画のうち、Cu濃度が2.0%を超える区画の個数割合を、内部Cu占有率OICuと定義したとき、
 前記内表面Cu占有率OSCuと、前記内部Cu占有率OICuとが、式(2)を満たす、
 マルテンサイト系ステンレス継目無鋼管。
 Mo≧2.50 (1A)
 OSCu/OICu≧1.20 (2)
 ここで、式(1A)中の元素記号には、対応する元素の含有量が質量%で代入される。
 [2]
 マルテンサイト系ステンレス継目無鋼管であって、
 質量%で、
 C:0.030%以下、
 Si:1.00%以下、
 Mn:1.00%以下、
 P:0.030%以下、
 S:0.0050%以下、
 Cr:11.00~14.00%、
 Ni:5.00~7.50%、
 Mo:1.50~4.50%、
 Cu:0.50~3.50%、
 Co:0.010~0.500%、
 Ti:0.050~0.300%、
 V:0.01~1.00%、
 Ca:0.0005~0.0050%、
 Al:0.001~0.100%、
 N:0.0010~0.0500%、及び、
 O:0.050%以下、を含有し、さらに、
 W:2.00%以下、
 Nb:0.50%以下、
 Mg:0.0050%以下、
 希土類元素:0.0050%以下、及び、
 B:0.0050%以下からなる群から選択される1元素以上を含有し、
 残部:Fe及び不純物からなり、かつ、式(1B)を満たし、
 ミクロ組織が、体積%で、0~15.0%の残留オーステナイト、0~5.0%のフェライト、及び、残部が焼戻しマルテンサイトからなり、
 降伏強度が、862MPa以上であり、
 前記マルテンサイト系ステンレス継目無鋼管の管軸方向をL方向、前記マルテンサイト系ステンレス継目無鋼管の管径方向をT方向と定義したとき、
 前記L方向に延びる前記マルテンサイト系ステンレス継目無鋼管の内表面を含み、前記L方向に延びる辺の長さが1.0μmであり、前記T方向に延びる辺の長さが1.0μmである正方形の観察視野領域において、
 前記観察視野領域を、前記L方向に256等分し、前記T方向に256等分した65536区画に分割した場合、
 前記観察視野領域は、
 前記マルテンサイト系ステンレス継目無鋼管の内表面を上端とし、前記L方向に256区画であり、前記T方向に6区画の長方形である内表面近傍領域と、
 前記内表面近傍領域と、前記内表面近傍領域の下方で隣接する内部領域と、
 前記内表面近傍領域と、前記内表面近傍領域の上方で隣接する空隙領域と、からなり、
 前記内表面近傍領域中の全ての前記区画のうち、Cu濃度が2.0%を超える区画の個数割合を、内表面Cu占有率OSCuと定義し、
 前記内部領域中の全ての区画のうち、Cu濃度が2.0%を超える区画の個数割合を、内部Cu占有率OICuと定義したとき、
 前記内表面Cu占有率OSCuと、前記内部Cu占有率OICuとが、式(2)を満たす、
 マルテンサイト系ステンレス継目無鋼管。
 Mo+0.5×W≧2.50 (1B)
 OSCu/OICu≧1.20 (2)
 ここで、式(1B)中の元素記号には、対応する元素の含有量が質量%で代入される。
 [3]
 [1]に記載のマルテンサイト系ステンレス継目無鋼管の製造方法であって、
 質量%で、
 C:0.030%以下、
 Si:1.00%以下、
 Mn:1.00%以下、
 P:0.030%以下、
 S:0.0050%以下、
 Cr:11.00~14.00%、
 Ni:5.00~7.50%、
 Mo:1.50~4.50%、
 Cu:0.50~3.50%、
 Co:0.010~0.500%、
 Ti:0.050~0.300%、
 V:0.01~1.00%、
 Ca:0.0005~0.0050%、
 Al:0.001~0.100%、
 N:0.0010~0.0500%、
 O:0.050%以下、及び、
 残部:Fe及び不純物からなり、かつ、式(1A)を満たす素材を準備する、素材準備工程と、
 準備された前記素材に対して、加熱炉で加熱した後、式(A)で定義される断面減少率Rが40%以上であり、かつ、熱間加工時間を15分以下とする熱間加工を実施して素管を製造する熱間加工工程と、
 A3点以上の前記素管に対して、焼入れを実施する焼入れ工程と、
 前記焼入れされた前記素管に対して、式(B)を満たす条件で焼戻しを実施する焼戻し工程と、を備える、
 マルテンサイト系ステンレス継目無鋼管の製造方法。
 Mo≧2.50 (1A)
 R={1-(熱間加工後の前記素管の管軸方向に垂直な断面積/熱間加工前の前記素材の軸方向に垂直な断面積)}×100 (A)
 (T+273.15)×(20+log10(t/60))×(1-[Cu]/100)≦17200 (B)
 ここで、式(1A)中の元素記号には、対応する元素の含有量が質量%で代入される。
 式(B)中のTには焼戻し温度が℃で、tには焼戻し時間が分で、[Cu]には素管のCu含有量が質量%で代入される。
 [4]
 [2]に記載のマルテンサイト系ステンレス継目無鋼管の製造方法であって、
 質量%で、
 C:0.030%以下、
 Si:1.00%以下、
 Mn:1.00%以下、
 P:0.030%以下、
 S:0.0050%以下、
 Cr:11.00~14.00%、
 Ni:5.00~7.50%、
 Mo:1.50~4.50%、
 Cu:0.50~3.50%、
 Co:0.010~0.500%、
 Ti:0.050~0.300%、
 V:0.01~1.00%、
 Ca:0.0005~0.0050%、
 Al:0.001~0.100%、
 N:0.0010~0.0500%、及び、
 O:0.050%以下、を含有し、さらに、
 W:2.00%以下、
 Nb:0.50%以下、
 Mg:0.0050%以下、
 希土類元素:0.0050%以下、及び、
 B:0.0050%以下からなる群から選択される1元素以上を含有し、
 残部:Fe及び不純物からなり、かつ、式(1B)を満たす素材を準備する、素材準備工程と、
 準備された前記素材に対して、加熱炉で加熱した後、式(A)で定義される断面減少率Rが40%以上であり、かつ、熱間加工時間を15分以下とする熱間加工を実施して素管を製造する熱間加工工程と、
 A3点以上の前記素管に対して、焼入れを実施する焼入れ工程と、
 前記焼入れされた前記素管に対して、式(B)を満たす条件で焼戻しを実施する焼戻し工程と、を備える、
 マルテンサイト系ステンレス継目無鋼管の製造方法。
 Mo+0.5×W≧2.50 (1B)
 R={1-(熱間加工後の前記素管の管軸方向に垂直な断面積/熱間加工前の前記素材の軸方向に垂直な断面積)}×100 (A)
 (T+273.15)×(20+log10(t/60))×(1-[Cu]/100)≦17200 (B)
 ここで、式(1B)中の元素記号には、対応する元素の含有量が質量%で代入される。
 式(B)中のTには焼戻し温度が℃で、tには焼戻し時間が分で、[Cu]には素管のCu含有量が質量%で代入される。

Claims (4)

  1.  マルテンサイト系ステンレス継目無鋼管であって、
     質量%で、
     C:0.030%以下、
     Si:1.00%以下、
     Mn:1.00%以下、
     P:0.030%以下、
     S:0.0050%以下、
     Cr:11.00~14.00%、
     Ni:5.00~7.50%、
     Mo:1.50~4.50%、
     Cu:0.50~3.50%、
     Co:0.010~0.500%、
     Ti:0.050~0.300%、
     V:0.01~1.00%、
     Ca:0.0005~0.0050%、
     Al:0.001~0.100%、
     N:0.0010~0.0500%、
     O:0.050%以下、
     W:0~2.00%、
     Nb:0~0.50%、
     Mg:0~0.0050%、
     希土類元素:0~0.0050%、
     B:0~0.0050%、及び、
     残部:Fe及び不純物からなり、かつ、式(1)を満たし、
     ミクロ組織が、体積%で、0~15.0%の残留オーステナイト、0~5.0%のフェライト、及び、残部が焼戻しマルテンサイトからなり、
     降伏強度が、862MPa以上であり、
     前記マルテンサイト系ステンレス継目無鋼管の管軸方向をL方向、前記マルテンサイト系ステンレス継目無鋼管の管径方向をT方向と定義したとき、
     前記L方向に延びる前記マルテンサイト系ステンレス継目無鋼管の内表面を含み、前記L方向に延びる辺の長さが1.0μmであり、前記T方向に延びる辺の長さが1.0μmである正方形の観察視野領域において、
     前記観察視野領域を、前記L方向に256等分し、前記T方向に256等分した65536区画に分割した場合、
     前記観察視野領域は、
     前記マルテンサイト系ステンレス継目無鋼管の内表面を上端とし、前記L方向に256区画であり、前記T方向に6区画の長方形である内表面近傍領域と、
     前記内表面近傍領域と、前記内表面近傍領域の下方で隣接する内部領域と、
     前記内表面近傍領域と、前記内表面近傍領域の上方で隣接する空隙領域と、からなり、
     前記内表面近傍領域中の全ての前記区画のうち、Cu濃度が2.0%を超える区画の個数割合を、内表面Cu占有率OSCuと定義し、
     前記内部領域中の全ての区画のうち、Cu濃度が2.0%を超える区画の個数割合を、内部Cu占有率OICuと定義したとき、
     前記内表面Cu占有率OSCuと、前記内部Cu占有率OICuとが、式(2)を満たす、
     マルテンサイト系ステンレス継目無鋼管。
     Mo+0.5×W≧2.50 (1)
     OSCu/OICu≧1.20 (2)
     ここで、式(1)中の元素記号には、対応する元素の含有量が質量%で代入される。
  2.  請求項1に記載のマルテンサイト系ステンレス継目無鋼管であって、
     W:0.01~2.00%、
     Nb:0.01~0.50%、
     Mg:0.0001~0.0050%、
     希土類元素:0.0001~0.0050%、及び、
     B:0.0001~0.0050%からなる群から選択される1元素以上を含有する、
     マルテンサイト系ステンレス継目無鋼管。
  3.  請求項1又は請求項2に記載のマルテンサイト系ステンレス継目無鋼管の製造方法であって、
     質量%で、
     C:0.030%以下、
     Si:1.00%以下、
     Mn:1.00%以下、
     P:0.030%以下、
     S:0.0050%以下、
     Cr:11.00~14.00%、
     Ni:5.00~7.50%、
     Mo:1.50~4.50%、
     Cu:0.50~3.50%、
     Co:0.010~0.500%、
     Ti:0.050~0.300%、
     V:0.01~1.00%、
     Ca:0.0005~0.0050%、
     Al:0.001~0.100%、
     N:0.0010~0.0500%、
     O:0.050%以下、
     W:0~2.00%、
     Nb:0~0.50%、
     Mg:0~0.0050%、
     希土類元素:0~0.0050%、
     B:0~0.0050%、及び、
     残部:Fe及び不純物からなり、かつ、式(1)を満たす素材を準備する、素材準備工程と、
     準備された前記素材に対して、加熱炉で加熱した後、式(A)で定義される断面減少率Rが40%以上であり、かつ、熱間加工時間を15分以下とする熱間加工を実施して素管を製造する熱間加工工程と、
     A3点以上の前記素管に対して、焼入れを実施する焼入れ工程と、
     前記焼入れされた前記素管に対して、式(B)を満たす条件で焼戻しを実施する焼戻し工程と、を備える、
     マルテンサイト系ステンレス継目無鋼管の製造方法。
     Mo+0.5×W≧2.50 (1)
     R={1-(熱間加工後の前記素管の管軸方向に垂直な断面積/熱間加工前の前記素材の軸方向に垂直な断面積)}×100 (A)
     (T+273.15)×(20+log10(t/60))×(1-[Cu]/100)≦17200 (B)
     ここで、式(1)中の元素記号には、対応する元素の含有量が質量%で代入される。
     式(B)中のTには焼戻し温度が℃で、tには焼戻し時間が分で、[Cu]には素管のCu含有量が質量%で代入される。
  4.  請求項3に記載のマルテンサイト系ステンレス継目無鋼管の製造方法であって、
     前記素材は、
     W:0.01~2.00%、
     Nb:0.01~0.50%、
     Mg:0.0001~0.0050%、
     希土類元素:0.0001~0.0050%、及び、
     B:0.0001~0.0050%からなる群から選択される1元素以上を含有する、
     マルテンサイト系ステンレス継目無鋼管の製造方法。
PCT/JP2022/040601 2021-11-09 2022-10-31 マルテンサイト系ステンレス継目無鋼管、及び、マルテンサイト系ステンレス継目無鋼管の製造方法 WO2023085141A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023506139A JP7381983B2 (ja) 2021-11-09 2022-10-31 マルテンサイト系ステンレス継目無鋼管、及び、マルテンサイト系ステンレス継目無鋼管の製造方法
EP22892640.8A EP4431621A1 (en) 2021-11-09 2022-10-31 Martensitic stainless steel seamless pipe and method for producing martensitic stainless steel seamless pipe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021182232 2021-11-09
JP2021-182232 2021-11-09

Publications (1)

Publication Number Publication Date
WO2023085141A1 true WO2023085141A1 (ja) 2023-05-19

Family

ID=86335849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040601 WO2023085141A1 (ja) 2021-11-09 2022-10-31 マルテンサイト系ステンレス継目無鋼管、及び、マルテンサイト系ステンレス継目無鋼管の製造方法

Country Status (3)

Country Link
EP (1) EP4431621A1 (ja)
JP (1) JP7381983B2 (ja)
WO (1) WO2023085141A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006061881A1 (ja) 2004-12-07 2006-06-15 Sumitomo Metal Industries, Ltd. 油井用マルテンサイト系ステンレス鋼管
WO2008023702A1 (fr) 2006-08-22 2008-02-28 Sumitomo Metal Industries, Ltd. Acier inoxydable martensitique
WO2015178022A1 (ja) 2014-05-21 2015-11-26 Jfeスチール株式会社 油井用高強度ステンレス継目無鋼管およびその製造方法
WO2020067247A1 (ja) * 2018-09-27 2020-04-02 日本製鉄株式会社 マルテンサイトステンレス鋼材
WO2020071344A1 (ja) * 2018-10-02 2020-04-09 日本製鉄株式会社 マルテンサイト系ステンレス継目無鋼管
WO2021206080A1 (ja) * 2020-04-07 2021-10-14 日本製鉄株式会社 マルテンサイト系ステンレス継目無鋼管
WO2021210564A1 (ja) * 2020-04-13 2021-10-21 日本製鉄株式会社 マルテンサイト系ステンレス鋼材、及び、マルテンサイト系ステンレス鋼材の製造方法
WO2022075406A1 (ja) * 2020-10-08 2022-04-14 日本製鉄株式会社 マルテンサイト系ステンレス鋼材

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006061881A1 (ja) 2004-12-07 2006-06-15 Sumitomo Metal Industries, Ltd. 油井用マルテンサイト系ステンレス鋼管
WO2008023702A1 (fr) 2006-08-22 2008-02-28 Sumitomo Metal Industries, Ltd. Acier inoxydable martensitique
WO2015178022A1 (ja) 2014-05-21 2015-11-26 Jfeスチール株式会社 油井用高強度ステンレス継目無鋼管およびその製造方法
WO2020067247A1 (ja) * 2018-09-27 2020-04-02 日本製鉄株式会社 マルテンサイトステンレス鋼材
WO2020071344A1 (ja) * 2018-10-02 2020-04-09 日本製鉄株式会社 マルテンサイト系ステンレス継目無鋼管
WO2021206080A1 (ja) * 2020-04-07 2021-10-14 日本製鉄株式会社 マルテンサイト系ステンレス継目無鋼管
WO2021210564A1 (ja) * 2020-04-13 2021-10-21 日本製鉄株式会社 マルテンサイト系ステンレス鋼材、及び、マルテンサイト系ステンレス鋼材の製造方法
WO2022075406A1 (ja) * 2020-10-08 2022-04-14 日本製鉄株式会社 マルテンサイト系ステンレス鋼材

Also Published As

Publication number Publication date
JPWO2023085141A1 (ja) 2023-05-19
EP4431621A1 (en) 2024-09-18
JP7381983B2 (ja) 2023-11-16

Similar Documents

Publication Publication Date Title
EP3670693B1 (en) High-strength stainless steel seamless pipe for oil country tubular goods, and method for manufacturing same
JP4911266B2 (ja) 高強度油井用ステンレス鋼及び高強度油井用ステンレス鋼管
JP6787483B2 (ja) マルテンサイトステンレス鋼材
JP6226081B2 (ja) 高強度ステンレス継目無鋼管およびその製造方法
EP2832881B1 (en) Stainless steel for oil wells and stainless steel pipe for oil wells
WO2020067247A1 (ja) マルテンサイトステンレス鋼材
JP5804232B1 (ja) マルテンサイト系Cr含有鋼及び油井用鋼管
EP2865777A1 (en) High-strength stainless steel seamless pipe having excellent corrosion resistance for oil well, and method for manufacturing same
JP6372070B2 (ja) フェライト・マルテンサイト二相鋼及び油井用鋼管
JP7425360B2 (ja) マルテンサイト系ステンレス鋼材、及び、マルテンサイト系ステンレス鋼材の製造方法
EP4286542A1 (en) Martensite stainless steel material
EP4424850A1 (en) Martensitic stainless steel round bar
JP2017014543A (ja) 油井用ステンレス鋼及び油井用ステンレス鋼管
WO2016079922A1 (ja) 油井用高強度ステンレス継目無鋼管の製造方法
WO2023085141A1 (ja) マルテンサイト系ステンレス継目無鋼管、及び、マルテンサイト系ステンレス継目無鋼管の製造方法
JP7364993B1 (ja) 鋼材
WO2023204294A1 (ja) 鋼材
WO2024063108A1 (ja) マルテンサイト系ステンレス鋼材

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023506139

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22892640

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18702426

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022892640

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022892640

Country of ref document: EP

Effective date: 20240610