[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023083325A1 - 阻燃剂及其应用和耐火型环氧树脂 - Google Patents

阻燃剂及其应用和耐火型环氧树脂 Download PDF

Info

Publication number
WO2023083325A1
WO2023083325A1 PCT/CN2022/131494 CN2022131494W WO2023083325A1 WO 2023083325 A1 WO2023083325 A1 WO 2023083325A1 CN 2022131494 W CN2022131494 W CN 2022131494W WO 2023083325 A1 WO2023083325 A1 WO 2023083325A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
flame retardant
group
compound
preparation
Prior art date
Application number
PCT/CN2022/131494
Other languages
English (en)
French (fr)
Inventor
刘宇宙
叶卓然
Original Assignee
北京深云智合科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京深云智合科技有限公司 filed Critical 北京深云智合科技有限公司
Publication of WO2023083325A1 publication Critical patent/WO2023083325A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/21Cyclic compounds having at least one ring containing silicon, but no carbon in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5435Silicon-containing compounds containing oxygen containing oxygen in a ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/549Silicon-containing compounds containing silicon in a ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant

Definitions

  • the present disclosure relates to the field of resin materials, in particular to a flame retardant and its application, in particular, the present disclosure also relates to a fire-resistant epoxy resin.
  • epoxy resin As a thermosetting resin, epoxy resin (EP) has excellent properties such as chemical corrosion resistance, electrical insulation and strong adhesion, and is widely used in electrical, aerospace, adhesives and construction fields.
  • EP epoxy resin
  • the traditional method is to use halogenated flame retardants to dope epoxy resin to obtain higher flame retardancy, but a large amount of toxic gas is released during the combustion process, which seriously endangers the environment and human health, so the flame retardancy of epoxy resin is useless.
  • Halogen detoxification has become one of the current research hotspots.
  • Organosilicon flame retardants are a kind of anti-melting, high-efficiency, low-toxicity, environmentally friendly halogen-free flame retardants that have only begun to develop in recent years. They have good flame retardancy, smoke suppression and thermal stability, and can also Improve the processability and mechanical properties of materials. In the process of flame retardancy, a cross-linked structure will be formed to prevent the filler from migrating or losing to the surface of the matrix. When burning, a protective layer of -Si-O-C- and -Si-C- bonds will be formed, which is denser than other carbon layer structures. .
  • organosilicon generally does not have a multi-carbon structure, is not easy to form charcoal, and the flame retardant effect is not ideal, so organosilicon usually works synergistically with one or several flame retardants to give full play to their respective advantages.
  • organosilicon flame retardant when phosphorus/silicon flame retardant is used, at high temperature, phosphorus promotes the formation of carbon, and silicon increases the thermal stability of these carbon layers, and when siloxane is used instead of silane, the flame retardancy synergy of phosphorus/silicon two elements is obtained further strengthened.
  • epoxy resin has high curing crosslinking density, high brittleness, low toughness, and insufficient high and low temperature impact resistance, which easily causes internal stress concentration. It causes cracking, loss of coating protection and sealing effect, and damage to internal materials. At the same time, epoxy resin is flammable, which limits its application in the field of electronic products.
  • the present disclosure aims to solve one of the technical problems in the related art at least to a certain extent. For this reason, the embodiment of the present disclosure proposes a flame retardant, the organosilicon structure of the flame retardant contains a multi-carbon structure, which effectively improves the flame retardant effect, and has good compatibility with epoxy resin, and can be applied in epoxy resin.
  • the flame retardant of the embodiment of the present disclosure includes a compound having the general formula shown in formula I,
  • R 1 and R 2 are each independently selected from at least one of optionally substituted C 1-6 alkyl or optionally substituted phenyl
  • R 3 and R 4 are each independently selected from modified groups Substituted C2-10 alkyl, the modifying group is selected from at least one of epoxy, hydroxyl, alkoxy, halogen or eugenol.
  • a multi-carbon structure is introduced into the organosilicon, and the pure organosilicon generally does not have a multi-carbon structure, which is not easy to form charcoal, and the flame retardant effect is not good.
  • Ideal, and the introduction of auxiliary groups in the flame retardant system of the embodiment of the present invention, on the one hand, can increase the compatibility with epoxy resin, on the other hand, the auxiliary groups are easy to form charcoal when burning, and the adjacent silicon Atoms can effectively increase the stability of the carbon layer.
  • the flame retardant of the embodiment of the present disclosure can quickly cross-link the two ring structures in the matrix structure to form a substance with a network structure when heated at high temperature, which improves the thermal stability and char formation of the material, and effectively improves the Flame retardant properties.
  • R and R are each independently selected from trihydroxyalkyl, trimethoxyalkyl, triethoxyalkyl, epoxycyclohexane, allylphosphonate, methyl At least one of allyl acrylate, chloropropyl, and eugenyl.
  • the compound is selected from at least one of the following Compound A, Compound B, Compound C, and Compound D,
  • the preparation method of the flame retardant of the embodiment of the present disclosure comprising: making the organosilicon precursor having the general formula shown in formula II carry out the addition reaction with the C2-10 olefin substituted by the modifying group to obtain the flame retardant , the modifying group is selected from at least one of epoxy group, hydroxyl group, alkoxy group, epoxy group, halogen or eugenol group,
  • R 1 and R 2 are each independently selected from at least one of optionally substituted C 1-6 alkyl or optionally substituted phenyl.
  • a multi-carbon structure is introduced into the organosilicon, and pure organosilicon generally does not have a multi-carbon structure and is not easy to form char , the flame retardant effect is not ideal, and the auxiliary group is introduced in the flame retardant system of the embodiment of the present invention, on the one hand, it can increase the compatibility with epoxy resin, on the other hand, the auxiliary group is easy to form charcoal when burning , adjacent silicon atoms can effectively increase the stability of the carbon layer.
  • the flame retardant of the embodiment of the present disclosure can quickly cross-link the two ring structures in the matrix structure to form a substance with a network structure when heated at high temperature, which improves the thermal stability and char formation of the material, and effectively improves the Flame retardant properties.
  • the C 2-10 alkene substituted by the modifying group is selected from vinyltriethoxysilane, 1,2-epoxy-4-vinylcyclohexane, allyl ethyl phosphate At least one of ester, allyl methacrylate or allyl chloride.
  • the addition reaction is performed in the presence of a catalyst, and the catalyst is selected from at least one of platinum, nickel, iron, cobalt or free radical catalysts.
  • the catalyst is at least one of Karstedt catalyst, platinum oxide, and chloroplatinic acid.
  • the reaction temperature of the addition reaction is 20-70° C.
  • the reaction time is 40-100 h.
  • An embodiment of the present disclosure provides an application of the flame retardant in epoxy resin flame retardancy.
  • the resin includes an epoxy resin matrix and the flame retardant described in the embodiments of the present disclosure.
  • the fire-resistant epoxy resin of the embodiment of the present disclosure includes the flame retardant of the embodiment of the present disclosure, and the flame retardant introduces a multi-carbon structure into the organosilicon , not only enhances the compatibility of flame retardants and epoxy resins, but also makes epoxy resins have excellent flame retardant properties.
  • the mass percentage of the flame retardant is 0.1 to 50%.
  • the epoxy resin matrix includes glycidyl ether epoxy resin, glycidyl ester epoxy resin, glycidyl amine epoxy resin, linear aliphatic epoxy resin or alicyclic epoxy resin at least one of epoxy resins.
  • An embodiment of the present disclosure provides a flame retardant, including a compound having the general formula shown in Formula I,
  • R 1 and R 2 are each independently selected from at least one of optionally substituted C 1-6 alkyl or optionally substituted phenyl
  • R 3 and R 4 are each independently selected from modified groups Substituted C2-10 alkyl, the modifying group is selected from at least one of epoxy, hydroxyl, alkoxy, halogen or eugenol.
  • the flame retardant of the embodiment of the present disclosure introduces a multi-carbon structure into the organosilicon, and the pure organosilicon generally does not have a multi-carbon structure, which is not easy to form charcoal, and the flame retardant effect is not ideal, while the flame retardant system of the embodiment of the present disclosure
  • the auxiliary group is introduced in the method, on the one hand, it can increase the compatibility with epoxy resin, on the other hand, the auxiliary group is easy to form charcoal when burning, and the adjacent silicon atoms can effectively increase the stability of the carbon layer; the implementation of the present disclosure
  • the flame retardant of the example can quickly cross-link the two ring structures in the matrix structure to form a substance with a network structure when heated at high temperature, which improves the thermal stability and char formation of the material, and effectively improves the flame retardant performance. .
  • R and R are each independently selected from trihydroxyalkyl, trimethoxyalkyl, triethoxysilyl, epoxycyclohexane, allyl phosphate ethyl, methyl At least one of allyl acrylate, chloropropyl, and eugenyl.
  • the compound is selected from at least one of compounds A, B, C, and D,
  • the preparation method of the flame retardant of the embodiment of the present disclosure comprising: making the organosilicon precursor having the general formula shown in formula II carry out the addition reaction with the C2-10 olefin substituted by the modifying group to obtain the flame retardant , the modifying group is selected from at least one of epoxy group, hydroxyl group, alkoxy group, epoxy group, halogen or eugenol group,
  • R 1 and R 2 are each independently selected from at least one of optionally substituted C 1-6 alkyl or optionally substituted phenyl.
  • the organosilicon precursor having the general formula II in the embodiment of the present disclosure is the silsesquioxane containing disilhydrogen bond disclosed in CN112409401A, which is obtained by the preparation method disclosed in CN112409401A.
  • the preparation method of the flame retardant of the embodiment of the present disclosure introduces a multi-carbon structure into the organosilicon, and the pure organosilicon generally does not have a multi-carbon structure, which is not easy to form charcoal, and the flame retardant effect is not ideal.
  • the auxiliary group is introduced into the fuel system, on the one hand, it can increase the compatibility with epoxy resin, on the other hand, the auxiliary group is easy to form charcoal when burning, and the adjacent silicon atoms can effectively increase the stability of the charcoal layer;
  • the flame retardant of the embodiment of the present disclosure can quickly cross-link the two ring structures in the matrix structure to form a substance with a network structure when heated at high temperature, which improves the thermal stability and char formation of the material, and effectively improves the Flame retardant
  • the C 2-10 alkene substituted by the modifying group is selected from vinyltriethoxysilane, 1,2-epoxy-4-vinylcyclohexane, allylphosphonic ethyl At least one of ester, allyl methacrylate or allyl chloride.
  • the addition reaction is carried out in the presence of a catalyst
  • the catalyst is selected from at least one of platinum, nickel, iron, cobalt or free radical catalysts, preferably a platinum catalyst, such as Karstedt catalyst, Platinum oxide, chloroplatinic acid, more preferably adopt the catalyst disclosed in CN 109999905 A.
  • the reaction temperature of the addition reaction is preferably 20-70° C., and the reaction time is preferably 40-100 h.
  • An embodiment of the present disclosure provides an application of the flame retardant in epoxy resin flame retardancy.
  • the resin includes an epoxy resin matrix and the flame retardant described in the embodiments of the present disclosure.
  • the fire-resistant epoxy resin of the embodiment of the present disclosure includes the flame retardant of the embodiment of the present disclosure.
  • the flame retardant introduces a multi-carbon structure into the silicone, which not only enhances the compatibility of the flame retardant and the epoxy resin, but also makes the Epoxy resins have excellent flame retardant properties.
  • the mass percentage of the flame retardant is 0.1 to 50%.
  • the fire-resistant epoxy resin in the embodiment of the present disclosure optimizes the amount of flame retardant used. If the content is too small, it cannot play a flame-retardant effect. If the content is too large, it will affect the mechanical properties of the epoxy resin itself, resulting in its compression resistance and tensile strength. Significant decrease in tensile strength.
  • the epoxy resin matrix includes glycidyl ether epoxy resin, glycidyl ester epoxy resin, glycidyl amine epoxy resin, linear aliphatic epoxy resin or alicyclic epoxy resin at least one of epoxy resins.
  • the organosilicon precursor of each embodiment adopts the silsesquioxane shown in II-1, and its preparation method adopts the method disclosed in Patent CN112409401A Example 1,
  • the catalyst adopted in each embodiment is the catalyst disclosed in CN 109999905 A.
  • the epoxy resin in each embodiment adopts bisphenol A (ie, diphenolic propane) type epoxy resin, that is, diphenolic propane glycidyl ether.
  • flame retardant A Put 4.53g of organosilicon precursor and 4g of vinyltriethoxysilane into a 20ml glass bottle, add 1ml of catalyst to the mixture, and react in an oven at 60°C for three days to obtain the following formula: Flame Retardant A
  • Preparation of fire-resistant epoxy resin A Take 6g of epoxy resin A glue into the mold box of planetary mixer, quickly add 0.4g of flame retardant A, stir evenly, weigh 2g of epoxy resin B glue into the mold, and use planetary mixer After stirring uniformly, introduce it into a standard mold, mix evenly, and cure for 24 hours to obtain a fire-resistant epoxy resin A.
  • Preparation of flame retardant B Take 4.53g of organosilicon precursor and 2.5g of 1,2-epoxy-4-vinylcyclohexane into a 20ml glass bottle, and add 1ml of catalyst to the mixture, and react in an oven at 60°C for three days , to obtain the flame retardant B shown in the following formula
  • Preparation of fire-resistant epoxy resin C Take 6g of epoxy resin A glue into the mold box of planetary mixer, quickly add 0.4g of flame retardant C, stir evenly, weigh 2g of epoxy resin B glue into the mold, and use planetary mixer After being uniformly stirred by the instrument, import it into a standard mold, mix evenly, and cure for 24 hours to obtain refractory epoxy resin C.
  • Preparation of flame retardant D Take 4.53g of organosilicon precursor and 2.6g of allyl methacrylate into a 20ml glass bottle, add 1ml of catalyst to the mixing room, and react in an oven at 65°C for three days to obtain the flame retardant shown in the following formula: Fuel D
  • Preparation of refractory epoxy resin D Take 6g of epoxy resin A glue into the mold box of planetary mixer, quickly add 0.4g of flame retardant D, stir evenly, weigh 2g of epoxy resin B glue into the mold, and use planetary mixer After stirring evenly, import it into a standard mold, mix evenly, and cure for 24 hours to obtain refractory epoxy resin D.
  • the preparation method is the same as that of Example 1, the only difference being that the amount of flame retardant A used in the preparation of the fire-resistant epoxy resin is 0.04 g, and the fire-resistant epoxy resin E is prepared.
  • the preparation method is the same as in Example 1, the only difference is that the amount of flame retardant A used in the preparation of the fire-resistant epoxy resin is 0.8 g, and the fire-resistant epoxy resin F is prepared.
  • the preparation method is the same as in Example 1, the only difference being that the flame retardant A is replaced by the organosilicon precursor to prepare the fire-resistant epoxy resin G.
  • the preparation method is the same as in Example 1, the only difference is that no flame retardant A is added to the epoxy resin, and the epoxy resin H is prepared.
  • the flame retardants and epoxy resins prepared in the above examples and comparative examples were tested for flame retardant grades according to "UL94 Flame Retardancy Standards", and were tested according to "GB/T1040.1-2006 Determination of Plastic Tensile Properties", " GB/T 1843-2008 Determination of Izod Impact Strength of Plastics "Test the tensile strength and impact strength of the epoxy resins prepared in the above examples and comparative examples. The test results are shown in Table 1.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • the terms “one embodiment,” “some embodiments,” “example,” “specific examples,” or “some examples” mean a specific feature, structure, material, or feature described in connection with the embodiment or example. Features are included in at least one embodiment or example of the present disclosure. In this specification, the schematic representations of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the described specific features, structures, materials or characteristics may be combined in any suitable manner in any one or more embodiments or examples. In addition, those skilled in the art can combine and combine different embodiments or examples and features of different embodiments or examples described in this specification without conflicting with each other.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Fireproofing Substances (AREA)
  • Epoxy Compounds (AREA)

Abstract

本公开涉及树脂材料领域,具体涉及一种阻燃剂及其应用和耐火型环氧树脂。所述阻燃剂包括具有式(I)所示通式的化合物,其中,R1和R2各自独立地选自任选取代的C1-6烷基或任选取代的苯基中的至少一种,R3和R4各自独立地选自被改性基团取代的C2-10烷基,所述改性基团选自环氧基、羟基、烷氧基、卤素或丁香酚基中的至少一种。

Description

阻燃剂及其应用和耐火型环氧树脂
相关申请的交叉引用
本申请基于申请号为202111354338.3、申请日为2021年11月12日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开涉及树脂材料领域,具体涉及一种阻燃剂及其应用,特别地,本公开还涉及一种耐火型环氧树脂。
背景技术
作为一种热固性树脂,环氧树脂(EP)具有优异的耐化学腐蚀、电绝缘性及强黏结性等性能,广泛应用于电气、航空航天、胶黏剂及建筑等领域。但由于其耐火性能差且在燃烧过程中释放大量烟雾,极大地限制了其在电子器件中的应用。因此,提高环氧树脂的防火安全性具有重要意义。传统方法是利用卤代阻燃剂对环氧树脂进行掺杂从而获得较高的阻燃性能,但燃烧过程中释放出大量的有毒气体严重危害环境和人类健康,因此环氧树脂的阻燃无卤无毒化成为了当前的研究热点之一。
有机硅阻燃剂是近年来才开始发展的一类防熔滴、高效、低毒的环境友好型的无卤阻燃剂,具备良好的阻燃性、抑烟性和热稳定性,还能改善材料的加工性能和机械性能。在阻燃过程中会形成交联结构,防止填料向基体表面迁移或流失,燃烧时会生成-Si-O-C-和-Si-C-键保护层,这种保护层比其它炭层结构更加致密。但有机硅一般都不具有多碳结构,不易成炭,阻燃效果并不理想,所以有机硅通常是与一种或几种阻燃剂协同作用,发挥各自优势。比如,磷/硅阻燃剂使用时,高温下,磷促成炭的生成,硅增加这些炭层的热稳定性,并且用硅氧烷代替硅烷时,磷/硅两元素的阻燃协同作用得到进一步加强。
发明内容
本公开是基于发明人对以下事实和问题的发现和认识做出的:环氧树脂存在固化交联密度高,脆性大,韧性低,以及耐受高低温冲击性能不足,容易引起内应力集中,造成开裂,失去涂层保护及密封效果,以及造成内部材料的破坏,同时环氧树脂易燃,限制其在电子产品领域应用。
本公开旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本公开的实施例提出一种阻燃剂,该阻燃剂的有机硅结构中含有多碳结构,有效提升了阻燃效果,并且同环氧树脂具有良好的相容性,能够应用于环氧树脂中。
本公开实施例的阻燃剂,包括具有式I所示通式的化合物,
Figure PCTCN2022131494-appb-000001
其中,R 1和R 2各自独立地选自任选取代的C 1-6烷基或任选取代的苯基中的至少一种,R 3和R 4各自独立地选自被改性基团取代的C 2-10烷基,所述改性基团选自环氧基、羟基、烷氧基、卤素或丁香酚基中的至少一种。
本公开实施例的阻燃剂带来的优点和技术效果:本发明实施例中,在有机硅中引入多碳结构,单纯的有机硅一般不具有多炭结构,不易成炭,阻燃效果不理想,而在本发明实施例的阻燃剂体系中引入了辅助基团,一方面可以增加与环氧树脂的相容性,另一方面辅助基团在燃烧时容易成炭,相邻的硅原子可有效增加炭层的稳定性。本公开实施例的阻燃剂在高温时母体结构中的两个环状结构在受热时能快速交联生成具有网状结构的物质,提高了材料的热稳定性和成炭性,有效提高了阻燃性能。
在一些实施例中,R 3和R 4各自独立地选自三羟基烷基、三甲氧基烷基、三乙氧基烷基、环氧环己烷、烯丙基磷酸乙酯基、甲基丙烯酸烯丙酯基、氯丙基、丁香酚酯基中的至少一种。
在一些实施例中,所述化合物选自以下化合物A、化合物B、化合物C、化合物D中的至少一种,
化合物A,
Figure PCTCN2022131494-appb-000002
化合物B,
Figure PCTCN2022131494-appb-000003
化合物C,
Figure PCTCN2022131494-appb-000004
化合物D,
Figure PCTCN2022131494-appb-000005
本公开实施例的阻燃剂的制备方法,包括:使具有式II所示通式的有机硅前体与被改性基团取代的C 2-10烯烃进行加成反应得到所述阻燃剂,所述改性基团选自环氧基、羟基、烷氧基、环氧基、卤素或丁香酚基中的至少一种,
Figure PCTCN2022131494-appb-000006
其中,R 1和R 2各自独立地选自任选取代的C 1-6烷基或任选取代的苯基中的至少一种。
本公开实施例的阻燃剂的制备方法带来的优点和技术效果:本发明实施例的方法中,在有机硅中引入多碳结构,单纯的有机硅一般不具有多炭结构,不易成炭,阻燃效果不理想,而在本发明实施例的阻燃剂体系中引入了辅助基团,一方面可以增加与环氧树脂的相容性,另一方面辅助基团在燃烧时容易成炭,相邻的硅原子可有效增加炭层的稳定性。本公开实施例的阻燃剂在高温时母体结构中的两个环状结构在受热时能快速交联生成具有网状结构的物质,提高了材料的热稳定性和成炭性,有效提高了阻燃性能。
在一些实施例中,所述被改性基团取代的C 2-10烯烃选自乙烯基三乙氧基硅烷、1,2-环氧-4-乙烯基环己烷、烯丙基磷酸乙酯、甲基丙烯酸烯丙酯或烯丙基氯中的至少一种。
在一些实施例中,所述加成反应在催化剂存在的条件下进行,所述催化剂选自铂、镍、铁、钴或自由基催化剂中的至少一种。
在一些实施例中,所述催化剂为Karstedt催化剂、氧化铂、氯铂酸中的至少一种。
在一些实施例中,所述加成反应的反应温度为20-70℃,反应时间40-100h。
本公开实施例提供一种所述阻燃剂在环氧树脂阻燃中的应用。
本公开实施例的耐火型环氧树脂,所述树脂包括环氧树脂基体和本公开实施例中所述的阻燃剂。
本公开实施例的耐火型环氧树脂带来的优点和技术效果:本公开实施例的耐火型环氧树脂包括本公开实施例的阻燃剂,阻燃剂在有机硅中引入了多碳结构,不仅增强了阻燃剂与环氧树脂的相容性,而且使环氧树脂具有优异的阻燃性能。
在一些实施例中,以环氧树脂基体总质量为基准,所述阻燃剂的质量百分比为0.1至50%。
在一些实施例中,所述环氧树脂基体包括缩水甘油醚类环氧树脂、缩水甘油酯类环氧树脂、缩水甘油胺类环氧树脂、线型脂肪族类环氧树脂或脂环族类环氧树脂中的至少一种。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例旨在用于解释本公开,而不能理解为对本公开的限制。
相关技术中,张利利等提到通过原位溶胶,凝胶法制备了磷/硅协同阻燃环氧树脂,并测试了其阻燃和热稳定性能。当自制双环笼状四配位硅(CPQS)质量分数达到20%时,环氧树脂的氧指数由19.8%升高到26.5%,垂直燃烧可达到UL94V-0级,表明磷硅复配体系通过凝聚相阻燃机理提高了环氧树脂的阻燃性能(塑料工业,磷/硅复配体系阻燃环氧树脂的协同效应,2006,34(11):46-49)。
本公开实施例提供了一种阻燃剂,包括具有式I所示通式的化合物,
Figure PCTCN2022131494-appb-000007
其中,R 1和R 2各自独立地选自任选取代的C 1-6烷基或任选取代的苯基中的至少一种,R 3和R 4各自独立地选自被改性基团取代的C 2-10烷基,所述改性基团选自环氧基、羟基、烷氧基、卤素或丁香酚基中的至少一种。
本公开实施例的阻燃剂,在有机硅中引入多碳结构,单纯的有机硅一般不具有多炭结构,不易成炭,阻燃效果不理想,而在本公开实施例的阻燃剂体系中引入了辅助基团,一方面可以增加与环氧树脂的相容性,另一方面辅助基团在燃烧时容易成炭,相邻的硅原子可有效增加炭层的稳定性;本公开实施例的阻燃剂在高温时母体结构中的两个环状结构在受热时能快 速交联生成具有网状结构的物质,提高了材料的热稳定性和成炭性,有效提高了阻燃性能。
在一些实施例中,R 3和R 4各自独立地选自三羟基烷基、三甲氧基烷基、三乙氧基硅烷基、环氧环己烷、烯丙基磷酸乙酯基、甲基丙烯酸烯丙酯基、氯丙基、丁香酚酯基中的至少一种。
在一些实施例中,所述化合物选自化合物A、B、C、D中的至少一种,
化合物A,
Figure PCTCN2022131494-appb-000008
化合物B,
Figure PCTCN2022131494-appb-000009
化合物C,
Figure PCTCN2022131494-appb-000010
化合物D,
Figure PCTCN2022131494-appb-000011
本公开实施例的阻燃剂的制备方法,包括:使具有式II所示通式的有机硅前体与被改性基团取代的C 2-10烯烃进行加成反应得到所述阻燃剂,所述改性基团选自环氧基、羟基、烷氧基、环氧基、卤素或丁香酚基中的至少一种,
Figure PCTCN2022131494-appb-000012
其中,R 1和R 2各自独立地选自任选取代的C 1-6烷基或任选取代的苯基中的至少一种。
本公开实施例中的具有式II所示通式的有机硅前体为CN112409401A中公开的含有二硅氢键的倍半硅氧烷,采用CN112409401A公开的制备方法获得。
本公开实施例的阻燃剂的制备方法,在有机硅中引入多碳结构,单纯的有机硅一般不具有多炭结构,不易成炭,阻燃效果不理想,而在本公开实施例的阻燃剂体系中引入了辅助基团,一方面可以增加与环氧树脂的相容性,另一方面辅助基团在燃烧时容易成炭,相邻的硅原子可有效增加炭层的稳定性;本公开实施例的阻燃剂在高温时母体结构中的两个环状结构在受热时能快速交联生成具有网状结构的物质,提高了材料的热稳定性和成炭性,有效提高了阻燃性能
在一些实施例中,所述被改性基团取代的C 2-10烯烃选自乙烯基三乙氧基硅烷、1,2-环氧-4-乙烯基环己烷、烯丙基磷酸乙酯、甲基丙烯酸烯丙酯或烯丙基氯中的至少一种。
在一些实施例中,所述加成反应在催化剂存在的条件下进行,所述催化剂选自铂、镍、铁、钴或自由基催化剂中的至少一种,优选为铂催化剂,如Karstedt催化剂、氧化铂、氯铂酸,更优选为采用CN 109999905 A中所公开的催化剂。
在一些实施例中,所述加成反应的反应温度优选为20至70℃,反应时间优选为40-至100h。
本公开实施例提供一种所述阻燃剂在环氧树脂阻燃中的应用。
本公开实施例的耐火型环氧树脂,所述树脂包括环氧树脂基体和本公开实施例中所述的阻燃剂。
本公开实施例的耐火型环氧树脂包括本公开实施例的阻燃剂,阻燃剂在有机硅中引入了多碳结构,不仅增强了阻燃剂与环氧树脂的相容性,而且使环氧树脂具有优异的阻燃性能。
在一些实施例中,以环氧树脂基体总质量为基准,所述阻燃剂的质量百分比为0.1至50%。本公开实施例的耐火型环氧树脂优选了阻燃剂的用量,含量过少,无法起到阻燃作用,含量过大,则会影响环氧树脂本身的机械性能,导致其抗压和拉伸强度的明显下降。
在一些实施例中,所述环氧树脂基体包括缩水甘油醚类环氧树脂、缩水甘油酯类环氧树脂、缩水甘油胺类环氧树脂、线型脂肪族类环氧树脂或脂环族类环氧树脂中的至少一种。
下面结合实施例详细描述本公开。
各实施例的有机硅前体采用II-1所示的倍半硅氧烷,其制备方法采用专利CN112409401A实施例1公开的方法,
Figure PCTCN2022131494-appb-000013
各实施例中采用的催化剂为CN 109999905 A中所公开的催化剂。
各实施例中的环氧树脂采用双酚A(即二酚基丙烷)型环氧树脂即二酚基丙烷缩水甘油醚。
实施例1
制备阻燃剂A:取4.53g有机硅前体与4g乙烯基三乙氧基硅烷放入20ml玻璃瓶中,并向混合液中加入1ml催化剂,60℃烘箱内反应三天,得到下式所示阻燃剂A
Figure PCTCN2022131494-appb-000014
制备耐火型环氧树脂A:取6g环氧树脂A胶到行星搅拌仪模具盒中,迅速加入0.4g阻燃剂A,搅拌均匀后称取2g环氧树脂B胶到模具中,用行星搅拌仪搅拌均一后导入标准模具,混合均匀,固化24h,制得耐火型环氧树脂A。
实施例2
制备阻燃剂B:取4.53g有机硅前体与2.5g1,2-环氧-4-乙烯基环己烷到20ml玻璃瓶中,并向混合夜中加入1ml催化剂,60℃烘箱内反应三天,得到下式所示阻燃剂B
Figure PCTCN2022131494-appb-000015
制备耐火型环氧树脂B:取6g环氧树脂A胶到行星搅拌仪模具盒中,迅速加入0.4g阻燃剂B,搅拌均匀后称取2g环氧树脂B胶到模具中,用行星搅拌仪搅拌均一后导入标准模 具,混合均匀,固化24h,制得耐火型环氧树脂B。
实施例3
制备阻燃剂C:取4.53g有机硅前体与3.6g烯丙基磷酸乙酯到20ml玻璃瓶中,并向混合夜中加入1ml催化剂,65℃烘箱内反应三天,得到下式所示阻燃剂C
Figure PCTCN2022131494-appb-000016
制备耐火型环氧树脂C:取6g环氧树脂A胶到行星搅拌仪模具盒中,迅速加入0.4g阻燃剂C,搅拌均匀后称取2g环氧树脂B胶到模具中,用行星搅拌仪搅拌均一后导入标准模具,混合均匀,固化24h,制得耐火型环氧树脂C。
实施例4
制备阻燃剂D:取4.53g有机硅前体与2.6g甲基丙烯酸烯丙酯到20ml玻璃瓶中,并向混合夜中加入1ml催化剂,65℃烘箱内反应三天,得到下式所示阻燃剂D
Figure PCTCN2022131494-appb-000017
制备耐火环氧树脂D:取6g环氧树脂A胶到行星搅拌仪模具盒中,迅速加入0.4g阻燃剂D,搅拌均匀后称取2g环氧树脂B胶到模具中,用行星搅拌仪搅拌均一后导入标准模具,混合均匀,固化24h,制得耐火型环氧树脂D。
实施例5
与实施例1的制备方法相同,其区别仅在于,制备耐火环氧树脂中阻燃剂A的用量为0.04g,制备得耐火环氧树脂E。
实施例6
与实施例1的制备方法相同,其区别仅在于,制备耐火环氧树脂中阻燃剂A的用量为0.8g,制备得耐火环氧树脂F。
对比例1
与实施例1的制备方法相同,其区别仅在于,以所述有机硅前体代替阻燃剂A,制备得耐火环氧树脂G。
对比例2
与实施例1的制备方法相同,其区别仅在于,环氧树脂中未添加阻燃剂A,制备得环氧树脂H。
以《UL94阻燃等级规范》对上述实施例和对比例制备的阻燃剂和环氧树脂进行阻燃等级测试,并分别以《GB/T1040.1-2006塑料拉伸性能的测定》、《GB/T 1843-2008塑料悬臂梁冲击强度的测定》对上述实施例和对比例制备的环氧树脂的拉伸强度和冲击强度进行测试,测试结果见表1。
表1
Figure PCTCN2022131494-appb-000018
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本公开的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本公开中,术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (12)

  1. 一种阻燃剂,包括具有式I所示通式的化合物,
    Figure PCTCN2022131494-appb-100001
    其中,R 1和R 2各自独立地选自任选取代的C 1-6烷基或任选取代的苯基中的至少一种,R 3和R 4各自独立地选自被改性基团取代的C 2-10烷基,所述改性基团选自环氧基、羟基、烷氧基、卤素或丁香酚基中的至少一种。
  2. 根据权利要求1所述的阻燃剂,其中,R 3和R 4各自独立地选自三羟基烷基、三甲氧基硅烷基、三乙氧基硅烷基、环氧环己烷、烯丙基磷酸乙酯基、甲基丙烯酸烯丙酯基、氯丙基、丁香酚酯基中的至少一种。
  3. 根据权利要求1所述的阻燃剂,其中所述化合物选自以下化合物A、化合物B、化合物C、化合物D中的至少一种,
    Figure PCTCN2022131494-appb-100002
    Figure PCTCN2022131494-appb-100003
  4. 一种权利要求1至3中任一项所述的阻燃剂的制备方法,包括:使具有式II所示通式的有机硅前体与被改性基团取代的C 2-10烯烃进行加成反应得到所述阻燃剂,所述改性基团选自环氧基、羟基、烷氧基、环氧基、卤素或丁香酚基中的至少一种,
    Figure PCTCN2022131494-appb-100004
    其中,R 1和R 2各自独立地选自任选取代的C 1-6烷基或任选取代的苯基中的至少一种。
  5. 根据权利要求4所述的制备方法,其中,所述被改性基团取代的C 2-10烯烃选自乙烯基三乙氧基硅烷、1,2-环氧-4-乙烯基环己烷、烯丙基磷酸乙酯、甲基丙烯酸烯丙酯或烯丙基氯中的至少一种。
  6. 根据权利要求4所述的制备方法,其中,所述加成反应在催化剂存在的条件下进行,所述催化剂选自铂、镍、铁、钴或自由基催化剂中的至少一种。
  7. 根据权利要求6所述的制备方法,其中,所述催化剂为Karstedt催化剂、氧化铂、氯铂酸中的至少一种。
  8. 根据权利要求4所述的制备方法,其中,所述加成反应的反应温度为20至70℃,反应时间40至100h。
  9. 权利要求1至3中任一项所述的阻燃剂在环氧树脂阻燃中的应用。
  10. 一种耐火型环氧树脂,其中,所述树脂包括环氧树脂基体和权利要求1至3中任一 项所述的阻燃剂。
  11. 根据权利要求10所述的耐火型环氧树脂,其中,以环氧树脂基体总质量为基准,所述阻燃剂的质量百分比为0.1至50%。
  12. 根据权利要求10所述的耐火型环氧树脂,其特征在于,所述环氧树脂基体包括缩水甘油醚类环氧树脂、缩水甘油酯类环氧树脂、缩水甘油胺类环氧树脂、线型脂肪族类环氧树脂或脂环族类环氧树脂中的至少一种。
PCT/CN2022/131494 2021-11-12 2022-11-11 阻燃剂及其应用和耐火型环氧树脂 WO2023083325A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111354338.3 2021-11-12
CN202111354338.3A CN116120634A (zh) 2021-11-12 2021-11-12 一种阻燃剂及其应用和耐火型环氧树脂

Publications (1)

Publication Number Publication Date
WO2023083325A1 true WO2023083325A1 (zh) 2023-05-19

Family

ID=86296047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/131494 WO2023083325A1 (zh) 2021-11-12 2022-11-11 阻燃剂及其应用和耐火型环氧树脂

Country Status (2)

Country Link
CN (1) CN116120634A (zh)
WO (1) WO2023083325A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118165684A (zh) * 2024-04-07 2024-06-11 苏州合邦鑫材科技有限公司 一种高耐热且阻燃性好的环氧树脂组合物及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130320264A1 (en) * 2011-02-18 2013-12-05 Jnc Corporation Hardening resin composition and color conversion material using the same
CN106117261A (zh) * 2016-06-17 2016-11-16 北京化工大学 一种八环己烷环氧烷笼型倍半硅氧烷及其制备方法
CN109054023A (zh) * 2018-07-23 2018-12-21 德清顾舒家华高分子材料有限公司 一种有机硅磷协同阻燃剂的制备方法
CN111116869A (zh) * 2019-05-28 2020-05-08 杭州师范大学 一种液态环氧基功能化poss改性型环氧树脂及其制备方法
CN112409401A (zh) * 2020-11-20 2021-02-26 北京航空航天大学 含硅氢的倍半硅氧烷及其相应聚合物的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130320264A1 (en) * 2011-02-18 2013-12-05 Jnc Corporation Hardening resin composition and color conversion material using the same
CN106117261A (zh) * 2016-06-17 2016-11-16 北京化工大学 一种八环己烷环氧烷笼型倍半硅氧烷及其制备方法
CN109054023A (zh) * 2018-07-23 2018-12-21 德清顾舒家华高分子材料有限公司 一种有机硅磷协同阻燃剂的制备方法
CN111116869A (zh) * 2019-05-28 2020-05-08 杭州师范大学 一种液态环氧基功能化poss改性型环氧树脂及其制备方法
CN112409401A (zh) * 2020-11-20 2021-02-26 北京航空航天大学 含硅氢的倍半硅氧烷及其相应聚合物的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118165684A (zh) * 2024-04-07 2024-06-11 苏州合邦鑫材科技有限公司 一种高耐热且阻燃性好的环氧树脂组合物及其制备方法和应用

Also Published As

Publication number Publication date
CN116120634A (zh) 2023-05-16

Similar Documents

Publication Publication Date Title
Chen et al. Flame retardant epoxy resins from bisphenol-A epoxy cured with hyperbranched polyphosphate ester
CN111303636A (zh) 一种低导热阻燃防火硅橡胶复合材料及其制备方法
Gan et al. Synthesis of a phosphorus‑silicone modifier imparting excellent flame retardancy and improved mechanical properties to a rapid cure epoxy
WO2022089459A1 (zh) 一种反应型磷硅协同阻燃剂、聚合型磷硅协同阻燃剂及其制备方法和应用
Chen et al. DOPO‐based curing flame retardant of epoxy composite material for char formation and intumescent flame retardance
CN106633066B (zh) 一种有机硅阻燃剂的制备方法
JP3614311B2 (ja) 難燃性樹脂組成物
CN102827468A (zh) 一种有机硅铝阻燃聚碳酸酯及其制备方法
CN112048157A (zh) 一种阻燃环氧树脂复合材料的制备方法
WO2023083325A1 (zh) 阻燃剂及其应用和耐火型环氧树脂
CN109135197A (zh) 一种笼形低聚硅倍半氧烷改性阻燃乙烯基酯树脂组合物及其制备方法和应用
CN109096471B (zh) 一种P-N-Si协同阻燃性环氧树脂固化剂及其制备方法
JP2013526637A (ja) アルコキシシラン含有ポリマー組成物
CN110256814A (zh) 一种含哌嗪结构的dopo衍生物改性阻燃环氧树脂的制备方法
CN103602070B (zh) 一种硅橡胶复合材料及其制备方法
Xu et al. High performance flame-retardant organic–inorganic hybrid epoxy composites with POSS and DOPO-based co-curing agent
JPH10251381A (ja) 含浸用樹脂組成物
JPS6256174B2 (zh)
CN113845840A (zh) 一种环氧改性有机硅阻燃涂料及其应用
CN109401707B (zh) 一种单组份高耐温抗冲击阻燃型结构胶黏剂及其制备方法
CN104098757B (zh) 一种有机硅磷杂化阻燃水性自乳化环氧树脂固化剂及其制备方法和用途
CN116444799A (zh) Poss基聚磷腈及pet/poss基聚磷腈复合材料以及它们制备方法
JP4196143B2 (ja) 難燃性樹脂組成物
CN115160543A (zh) 一种环保型阻燃胺类固化剂的制备方法及应用
CN103951981A (zh) 一种含磷-硅聚合物的阻燃室温硫化硅橡胶组合物及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22892118

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22892118

Country of ref document: EP

Kind code of ref document: A1