WO2023082806A9 - 显示面板、显示屏及电子设备 - Google Patents
显示面板、显示屏及电子设备 Download PDFInfo
- Publication number
- WO2023082806A9 WO2023082806A9 PCT/CN2022/117335 CN2022117335W WO2023082806A9 WO 2023082806 A9 WO2023082806 A9 WO 2023082806A9 CN 2022117335 W CN2022117335 W CN 2022117335W WO 2023082806 A9 WO2023082806 A9 WO 2023082806A9
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- light
- sub
- structure layer
- light emitting
- Prior art date
Links
- 238000005452 bending Methods 0.000 claims abstract description 121
- 238000005538 encapsulation Methods 0.000 claims description 86
- 238000002955 isolation Methods 0.000 claims description 45
- 239000000758 substrate Substances 0.000 claims description 23
- 238000004806 packaging method and process Methods 0.000 claims description 7
- 230000000149 penetrating effect Effects 0.000 claims description 4
- 239000010410 layer Substances 0.000 description 564
- 239000000463 material Substances 0.000 description 45
- 239000002346 layers by function Substances 0.000 description 33
- 229910052751 metal Inorganic materials 0.000 description 33
- 239000002184 metal Substances 0.000 description 33
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 28
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 27
- 239000001301 oxygen Substances 0.000 description 27
- 229910052760 oxygen Inorganic materials 0.000 description 27
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 23
- 229910052814 silicon oxide Inorganic materials 0.000 description 23
- 239000011368 organic material Substances 0.000 description 17
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 15
- 239000010409 thin film Substances 0.000 description 15
- 238000002347 injection Methods 0.000 description 14
- 239000007924 injection Substances 0.000 description 14
- 239000010936 titanium Substances 0.000 description 14
- 239000010408 film Substances 0.000 description 13
- 229910010272 inorganic material Inorganic materials 0.000 description 12
- 239000011147 inorganic material Substances 0.000 description 12
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 11
- 238000010586 diagram Methods 0.000 description 11
- -1 polyphenylene Polymers 0.000 description 11
- 239000011651 chromium Substances 0.000 description 10
- 239000010949 copper Substances 0.000 description 10
- 239000003822 epoxy resin Substances 0.000 description 10
- 239000010931 gold Substances 0.000 description 10
- 229920000647 polyepoxide Polymers 0.000 description 10
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 9
- 239000004926 polymethyl methacrylate Substances 0.000 description 9
- 239000004065 semiconductor Substances 0.000 description 9
- 230000004888 barrier function Effects 0.000 description 8
- 230000009286 beneficial effect Effects 0.000 description 8
- 239000003990 capacitor Substances 0.000 description 8
- 239000011777 magnesium Substances 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 229920005989 resin Polymers 0.000 description 8
- 239000011347 resin Substances 0.000 description 8
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 7
- 239000002356 single layer Substances 0.000 description 7
- 125000006850 spacer group Chemical group 0.000 description 7
- 229910052719 titanium Inorganic materials 0.000 description 7
- 229910052782 aluminium Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 230000005525 hole transport Effects 0.000 description 6
- 229920001721 polyimide Polymers 0.000 description 6
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 5
- 229910052779 Neodymium Inorganic materials 0.000 description 5
- 229910052581 Si3N4 Inorganic materials 0.000 description 5
- 229910052804 chromium Inorganic materials 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 5
- 229910052737 gold Inorganic materials 0.000 description 5
- 239000012535 impurity Substances 0.000 description 5
- 229910052750 molybdenum Inorganic materials 0.000 description 5
- 239000011733 molybdenum Substances 0.000 description 5
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 5
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 5
- 229910001887 tin oxide Inorganic materials 0.000 description 5
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 5
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 4
- 229920001621 AMOLED Polymers 0.000 description 4
- 239000004925 Acrylic resin Substances 0.000 description 4
- 229920000178 Acrylic resin Polymers 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 229920000265 Polyparaphenylene Polymers 0.000 description 4
- 239000004734 Polyphenylene sulfide Substances 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 150000001931 cyclobutenes Chemical class 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 230000003628 erosive effect Effects 0.000 description 4
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 229920001568 phenolic resin Polymers 0.000 description 4
- 239000005011 phenolic resin Substances 0.000 description 4
- 229920006122 polyamide resin Polymers 0.000 description 4
- 239000009719 polyimide resin Substances 0.000 description 4
- 229920000069 polyphenylene sulfide Polymers 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 229920006337 unsaturated polyester resin Polymers 0.000 description 4
- 238000007740 vapor deposition Methods 0.000 description 4
- 239000011787 zinc oxide Substances 0.000 description 4
- HBGPNLPABVUVKZ-POTXQNELSA-N (1r,3as,4s,5ar,5br,7r,7ar,11ar,11br,13as,13br)-4,7-dihydroxy-3a,5a,5b,8,8,11a-hexamethyl-1-prop-1-en-2-yl-2,3,4,5,6,7,7a,10,11,11b,12,13,13a,13b-tetradecahydro-1h-cyclopenta[a]chrysen-9-one Chemical compound C([C@@]12C)CC(=O)C(C)(C)[C@@H]1[C@H](O)C[C@]([C@]1(C)C[C@@H]3O)(C)[C@@H]2CC[C@H]1[C@@H]1[C@]3(C)CC[C@H]1C(=C)C HBGPNLPABVUVKZ-POTXQNELSA-N 0.000 description 3
- 241001391944 Commicarpus scandens Species 0.000 description 3
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- WQPDQJCBHQPNCZ-UHFFFAOYSA-N cyclohexa-2,4-dien-1-one Chemical compound O=C1CC=CC=C1 WQPDQJCBHQPNCZ-UHFFFAOYSA-N 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 229910052733 gallium Inorganic materials 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- TYHJXGDMRRJCRY-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) tin(4+) Chemical compound [O-2].[Zn+2].[Sn+4].[In+3] TYHJXGDMRRJCRY-UHFFFAOYSA-N 0.000 description 3
- 239000002033 PVDF binder Substances 0.000 description 2
- 239000004696 Poly ether ether ketone Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 230000003190 augmentative effect Effects 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- JAONJTDQXUSBGG-UHFFFAOYSA-N dialuminum;dizinc;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Al+3].[Al+3].[Zn+2].[Zn+2] JAONJTDQXUSBGG-UHFFFAOYSA-N 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- SJCKRGFTWFGHGZ-UHFFFAOYSA-N magnesium silver Chemical compound [Mg].[Ag] SJCKRGFTWFGHGZ-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229920002285 poly(styrene-co-acrylonitrile) Polymers 0.000 description 2
- 229920001707 polybutylene terephthalate Polymers 0.000 description 2
- 229920002530 polyetherether ketone Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920006324 polyoxymethylene Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 239000002096 quantum dot Substances 0.000 description 2
- 229910001316 Ag alloy Inorganic materials 0.000 description 1
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229920002319 Poly(methyl acrylate) Polymers 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- GENZLHCFIPDZNJ-UHFFFAOYSA-N [In+3].[O-2].[Mg+2] Chemical compound [In+3].[O-2].[Mg+2] GENZLHCFIPDZNJ-UHFFFAOYSA-N 0.000 description 1
- FDLSOIWNAZCAMB-UHFFFAOYSA-N [O--].[O--].[O--].[Mg++].[Sn+4] Chemical compound [O--].[O--].[O--].[Mg++].[Sn+4] FDLSOIWNAZCAMB-UHFFFAOYSA-N 0.000 description 1
- DZLPZFLXRVRDAE-UHFFFAOYSA-N [O--].[O--].[O--].[O--].[Al+3].[Zn++].[In+3] Chemical compound [O--].[O--].[O--].[O--].[Al+3].[Zn++].[In+3] DZLPZFLXRVRDAE-UHFFFAOYSA-N 0.000 description 1
- QRSFFHRCBYCWBS-UHFFFAOYSA-N [O].[O] Chemical compound [O].[O] QRSFFHRCBYCWBS-UHFFFAOYSA-N 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- RNQKDQAVIXDKAG-UHFFFAOYSA-N aluminum gallium Chemical compound [Al].[Ga] RNQKDQAVIXDKAG-UHFFFAOYSA-N 0.000 description 1
- VGLYDBMDZXTCJA-UHFFFAOYSA-N aluminum zinc oxygen(2-) tin(4+) Chemical compound [O-2].[Al+3].[Sn+4].[Zn+2] VGLYDBMDZXTCJA-UHFFFAOYSA-N 0.000 description 1
- 229920005601 base polymer Polymers 0.000 description 1
- 125000005605 benzo group Chemical group 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 1
- 229910001195 gallium oxide Inorganic materials 0.000 description 1
- RHZWSUVWRRXEJF-UHFFFAOYSA-N indium tin Chemical compound [In].[Sn] RHZWSUVWRRXEJF-UHFFFAOYSA-N 0.000 description 1
- PNHVEGMHOXTHMW-UHFFFAOYSA-N magnesium;zinc;oxygen(2-) Chemical compound [O-2].[O-2].[Mg+2].[Zn+2] PNHVEGMHOXTHMW-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- NQBRDZOHGALQCB-UHFFFAOYSA-N oxoindium Chemical compound [O].[In] NQBRDZOHGALQCB-UHFFFAOYSA-N 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 229920001483 poly(ethyl methacrylate) polymer Polymers 0.000 description 1
- 229920000548 poly(silane) polymer Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920003257 polycarbosilane Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000120 polyethyl acrylate Polymers 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 229920001709 polysilazane Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- BNEMLSQAJOPTGK-UHFFFAOYSA-N zinc;dioxido(oxo)tin Chemical compound [Zn+2].[O-][Sn]([O-])=O BNEMLSQAJOPTGK-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
- H10K59/124—Insulating layers formed between TFT elements and OLED elements
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F9/00—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
- G09F9/30—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
- G09F9/301—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements flexible foldable or roll-able electronic displays, e.g. thin LCD, OLED
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F9/00—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
- G09F9/30—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
- G09F9/33—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/84—Passivation; Containers; Encapsulations
- H10K50/844—Encapsulations
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/84—Passivation; Containers; Encapsulations
- H10K50/844—Encapsulations
- H10K50/8445—Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Definitions
- the present application relates to the field of display technology, in particular to a display panel, a display screen and electronic equipment.
- Embodiments of the present application provide a display panel, a display screen, and an electronic device, which can achieve a narrow frame of the screen on the basis of ensuring good working performance of the screen.
- the present application provides a display panel, the display panel comprising:
- the flat area includes a stacked driving structure layer and a first light emitting structure layer, the first light emitting structure layer is electrically connected to the driving structure layer and is used to be driven by the driving structure layer to emit light;
- a bending area is connected to the periphery of the flat area and is bent relative to the flat area, the bending area includes a second light emitting structure layer, and the second light emitting structure layer is connected to the first light emitting structure layer
- the light emitting structure layer is arranged in the same layer, and the second light emitting structure layer is electrically connected to the driving structure layer and used to be driven by the driving structure layer to emit light.
- the flat area can be the central area of the display panel, and the bending area can be the edge area of the display panel.
- the bending area can be bent relative to the flat area, that is, the edge of the display panel can be bent so that the display panel presents a curved profile.
- the bending area is arranged around the flat area and connected with the periphery of the flat area.
- the division of the flat area and the bending area means that the bending area is the part that is relatively easy to bend of the two, and the flat area is the part that is relatively easy to bend between the two, and does not mean the flat area No kinks will occur. That is, in the display area, the two parts of the flat area and the bending area can bear different stresses during bending, that is, the bending capabilities of the two parts are different.
- the flat area can become a region where light-emitting display can be performed in the display panel due to the characteristic that the first light-emitting structure layer can be driven to emit light by the driving structure layer.
- the second light-emitting structure layer in the bending region, the bending region can become a region where light-emitting display can be performed in the display panel due to the property that the second light-emitting structure layer can be driven to emit light by the driving structure layer.
- both the flat area and the bending area can be used for display.
- the area that can be displayed in the display panel can be enlarged by the area surrounded by the edge of the flat area.
- the width of the non-display area that is, the border width, can be greatly reduced due to the expansion of the display area without changing the size of the display screen, and then Make narrow bezels or even no bezels a reality, and can effectively increase the screen-to-body ratio and improve the user experience.
- the driving structure layer has a multi-layer film structure composed of inorganic materials. Due to the high density of the inorganic layer, and is very dense, the driving structure layer is prone to fracture due to stress after being bent, thereby affecting the display. normal operation of the panel. Therefore, by setting the driving structure layer in a flat area, the entire driving structure layer can be located in a relatively flat area where there is no stress concentration, so that the normal operation of the driving structure layer can be guaranteed without affecting the bending of the edge of the display panel. It is beneficial to improve the overall working reliability of the display panel.
- the second light-emitting structure layer is arranged in the bending area, because the bending area has less film structure composed of inorganic materials, so that the second light-emitting structure layer can be well adapted to bending while performing light-emitting display.
- the generated stress minimizes the possibility of breaking the film structure due to excessive stress, affecting wiring layout, causing open circuit or short circuit, etc., effectively ensuring the luminous display performance of the display panel with good reliability.
- the second light-emitting structure layer and the first light-emitting structure layer are formed in the same manufacturing process, that is, they are arranged in the same layer, so that the display effects of the two light-emitting structures can be relatively consistent and balanced.
- the bending region further includes a circuit layer, the circuit layer is stacked with the second light emitting structure layer, and the circuit layer is electrically connected between the second light emitting structure layer and the Between the driving structure layers.
- the second light-emitting structure layer is located in the bending area, and the driving structure layer for driving the second light-emitting structure layer to emit light is located in the flat area. Pass. Therefore, by setting the wiring layer in the bending area and electrically connecting the wiring layer between the second light-emitting structure layer and the driving structure layer, the control signal sent by the driving structure layer located in the flat area can be passed through the wiring layer. transmitted to the second light-emitting structure layer, and drive the second light-emitting structure layer to emit light.
- the control path of the driving structure layer can be extended through the connection of the circuit layer, so that the driving structure layer can not only control the first light-emitting structure layer with a shorter distance to emit light, but also control the second light-emitting structure layer with a longer distance.
- Luminous, with the dual functions of short-distance control and long-distance control, and the performance of the driving structure layer is excellent.
- the circuit layer may include data lines, and the data lines located in the bending area may be electrically connected to the data lines in the flat area, so as to supply each column of sub-pixels in the pixel array (that is, the first sub-pixel set in the same column hereinafter). light-emitting unit and the second sub-light-emitting unit).
- the data line located in the bending area may be an oblique line. It can be understood that since the data line is located in the bending area, it needs to have good bending performance. Good bending performance can prevent the cracking and disconnection of the line due to bending, and then the failure of the display panel. The possibility is reduced to the minimum, and the service life of the display panel is fully guaranteed.
- the data line located in the bending area may include a first portion and a second portion.
- the first part is connected to the data line in the flat area
- the extension direction of the first part is the same as the bending direction of the bending area
- the second part is connected to the first part by bending
- the end of the second part away from the first part is used to connect with the driver chip .
- the data line may be a polyline. Under this setting, the tension on the data line can be minimized, which is beneficial to ensure that the data line will not break when it is bent.
- the driving structure layer includes a first conductive layer and a second conductive layer stacked, and the second conductive layer is connected between the first conductive layer and the first light emitting structure layer. between;
- the circuit layer is electrically connected to the first conductive layer.
- the circuit layer and the first conductive layer can be manufactured through the same manufacturing process, that is, the circuit layer and the first conductive layer are arranged on the same layer.
- the second light emitting structure layer can be connected to the driving structure layer, so as to transmit the control signal of the driving structure layer to the second light emitting structure layer through the circuit layer.
- the circuit layer is electrically connected to the second conductive layer.
- the circuit layer and the second conductive layer can be made through the same manufacturing process, that is, the circuit layer and the second conductive layer are arranged in the same layer.
- the second light emitting structure layer can be connected to the driving structure layer, so as to transmit the control signal of the driving structure layer to the second light emitting structure layer through the circuit layer.
- connection between the circuit layer and the first conductive layer or the second conductive layer in the driving structure layer can be flexibly selected according to the actual application requirements of the display panel, and only the electrical connection between the circuit layer and the driving structure layer needs to be realized. That is, the embodiments of the present application do not strictly limit this.
- the first light-emitting structure layer has a plurality of first pixel openings, each of the first pixel openings is used to form a first light-emitting unit, and the planar area further includes a first package layer, the first encapsulation layer is disposed on the first light emitting structure layer, and the first encapsulation layer covers at least part of the surface of the plurality of first light emitting units and the first light emitting structure layer.
- the first sub-light emitting unit and the thin film transistor can be prevented from being oxidized or damaged by water, oxygen or other impurities in the external environment due to the barrier of the first encapsulation layer, which has good protection performance.
- the first encapsulation layer may be in the form of a "sandwich" of "inorganic encapsulation layer-organic encapsulation layer-inorganic encapsulation layer".
- This type of structure can ensure that the first encapsulation layer has better water and oxygen barrier performance as a whole.
- the inorganic encapsulation layer can be formed of inorganic materials, such as silicon nitride (SiNx) and/or silicon oxide (SiOx), and the organic encapsulation layer can be formed of organic materials, such as epoxy resin organic materials, polymethyl methacrylate, and the like.
- the actual number of layers of the first encapsulation layer is not limited to three layers, it may be one or more layers, and the number of layers of the encapsulation layer and the layer materials constituting the embodiment of the present application are not strictly limited.
- the planar area further includes a first isolation column, and the first isolation column is disposed on the first light emitting structure layer and located at an edge of the first encapsulation layer.
- the first isolation column can isolate the first encapsulation layer.
- the external water and oxygen Oxygen cannot pass through the first isolation column and continue to invade, so that the first isolation column can function to isolate water and oxygen, and further protect the inside of the display panel from erosion by water and oxygen.
- the number of the first isolation columns can be one or more as required, and when the number of the first isolation columns is multiple, the plurality of first isolation columns are all arranged on the edge of the first packaging layer, so as to Block water and oxygen.
- the first functional layer and the first cathode since the deposition of the vapor deposition material is directional (the particles move substantially along a straight line), the first functional layer and the first cathode may also be deposited on the surface of the first isolation column, The surface of the first isolation column is covered with the first functional layer and the first cathode.
- the bending region further includes a first flat layer, and the first flat layer is located between the circuit layer and the second light emitting structure layer.
- the first flat layer can cover the circuit layer, which can reduce the mechanical damage of the circuit layer, and avoid the damage and breakage of the internal wiring caused by the interference of the external environment. It can also provide stress relief for the wiring when the wiring is bent, preventing the wiring from receiving excessive tensile or compressive stress, and has good protection performance.
- the material of the first flat layer may include acrylic resin, epoxy resin, phenolic resin, polyamide resin, polyimide resin and unsaturated polyester resin, polyphenylene resin, polyphenylene sulfide resin and benzo One or more combinations of cyclobutenes.
- the bending region further includes an organic insulating layer, and the organic insulating layer is located on a side of the circuit layer away from the first flat layer.
- the organic insulating layer may be formed of organic materials, such as epoxy resin-based organic materials, polymethyl methacrylate, and the like.
- inorganic materials are relatively brittle and are prone to breakage when bent. Therefore, the use of organic insulating layers made of organic materials can make there are fewer inorganic layers between the circuit layer and the substrate, thereby making bending When the bending area is bent, the film layer structure in the bending area is not easy to break due to the material with good toughness and ductility, so that the bending area has better bendability and adaptability, which is conducive to extending The service life of the display panel is improved, and the working reliability of the display panel is improved.
- the bending region further includes a base, a buffer layer and an inorganic insulating layer stacked on the base in sequence, and the organic insulating layer is disposed on a side where the inorganic insulating layer is away from the buffer layer.
- the inorganic insulating layer On one side of the inorganic insulating layer, the inorganic insulating layer has a first groove penetrating through the inorganic insulating layer, and the buffer layer has a second groove communicating with the first groove;
- the organic insulating layer fills the first groove and the second groove, and the organic insulating layer disposed in the second groove is spaced apart from the substrate. That is, the second groove may be similar to a blind hole structure, which does not penetrate the buffer layer, and the organic insulating layer in the second groove may be spaced from the substrate through the buffer layer.
- the second groove penetrates through the buffer layer, the organic insulating layer fills the first groove and the second groove, and the organic insulating layer disposed in the second groove and The substrate contacts.
- the organic insulating layer made of organic materials is used to replace the etched buffer layer and inorganic insulating layer, which can increase the proportion of organic materials in the bending area, so that there is less gap between the circuit layer and the substrate.
- Inorganic materials so that when the bending area is bent, the film layer structure of the bending area is not easy to break due to the material with good toughness and ductility, so that the bending area has better bendability and
- the adaptability is beneficial to prolong the service life of the display panel and improve the working reliability of the display panel.
- the second light-emitting structure layer has a plurality of second pixel openings, each of the second pixel openings is used to form a second light-emitting unit, and the bending region further includes a plurality of sub-pixels.
- the encapsulation structure, each of the sub-encapsulation structures covers at least one of the second sub-light emitting units.
- the sub-encapsulation structure provided in the bending region does not completely cover the surface of the second light-emitting structure layer, and it may not cover the part where the second sub-light-emitting unit is not provided, so it only covers the second sub-light-emitting unit
- the sub-encapsulation structure can form a structure similar to an "island", and the second light-emitting structure layer without the sub-encapsulation structure is exposed between the "islands".
- a sub-package structure when each sub-package structure covers a second sub-light-emitting unit, a sub-package structure can independently constitute an "island” that encapsulates a second sub-light-emitting unit; when each sub-package structure covers two second sub-light-emitting units When a unit is used, one sub-package structure can independently constitute an "island” that encapsulates two second sub-light-emitting units.
- multiple sub-packaging structures arranged in the bending area can form an "island”-shaped package, and the "island”-shaped package can be distinguished from the full-surface package in the prior art so that the second light emitting structure layer has an unsub-packaged structure.
- the covered part can effectively improve the stress on the bending area during bending, and prevent the film layer structure in the bending area from breaking.
- the second sub-light-emitting unit can be prevented from being oxidized or damaged by water, oxygen or other impurities in the external environment, which has good protection performance.
- the second encapsulation layer may be in the form of a "sandwich" of "inorganic encapsulation layer-organic encapsulation layer-inorganic encapsulation layer".
- This type of structure can ensure that the second encapsulation layer has better water and oxygen barrier performance as a whole.
- the inorganic encapsulation layer can be formed of inorganic materials, such as silicon nitride (SiNx) and/or silicon oxide (SiOx), and the organic encapsulation layer can be formed of organic materials, such as epoxy resin organic materials, polymethyl methacrylate, and the like.
- the actual number of layers of the second encapsulation layer is not limited to three layers, it may be one or more layers, and there is no strict limitation on the number of layers of the encapsulation layer and the material of the layers constituting the embodiment of the present application.
- the bending region further includes a second isolation column, and the second isolation column is disposed on the second light emitting structure layer and located at an edge of the second encapsulation layer.
- the second isolation column can isolate the second encapsulation layer.
- the second isolation column can function to isolate water and oxygen, further protecting the inside of the display panel from erosion by water and oxygen.
- the number of the second isolation columns can be one or more as required, and when the number of the second isolation columns is multiple, the plurality of second isolation columns are all arranged on the edge of the second packaging layer, so as to Block water and oxygen.
- the second functional layer and the cathode since the deposition of the vapor deposition material is directional (the particles move substantially along a straight line), the second functional layer and the second cathode may also be deposited on the surface of the second isolation column, The surface of the second isolation column is covered with the second functional layer and the second cathode.
- the first light-emitting structure layer includes a plurality of first sub-light-emitting units, the color of each of the first light-emitting sub-units includes red, green or blue, and the second light-emitting structure layer including a plurality of second sub-light-emitting units, the color of each of the second sub-light-emitting units includes red, green or blue, and the driving structure layer includes a plurality of pixel driving circuits;
- Each of the pixel driving circuits drives one of the first sub-light-emitting units to emit light; or,
- Each of the pixel driving circuits drives one of the second sub-light-emitting units to emit light; or,
- Each of the pixel driving circuits drives at least two of the first sub-light emitting units of the same color to emit light; or,
- Each of the pixel driving circuits drives at least two second sub-light emitting units of the same color to emit light; or,
- Each of the pixel driving circuits drives at least one first sub-light emitting unit and at least one second sub-light emitting unit of the same color to emit light.
- the pixel driving circuit can drive the first sub-light-emitting unit to emit light, the second sub-light-emitting unit to emit light, and the first sub-light-emitting unit and the second sub-light-emitting unit to emit light, and can be configured to drive an arbitrary color according to needs.
- the first sub-light-emitting unit of the same color emits light, or drives a second sub-light-emitting unit of any color to emit light, or drives multiple first sub-light-emitting units of the same color to emit light, or drives multiple second sub-light-emitting units of the same color to emit light, or drives a Or multiple first sub-light-emitting units and second sub-light-emitting units of the same color can emit light, and their driving methods can be adjusted accordingly according to changes in actual application scenarios.
- the diversification of driving types is conducive to adapting to the application requirements in multiple scenarios, and the reliability better.
- the present application further provides a display screen, the display screen includes a cover plate and the above-mentioned display panel, and the cover plate is bonded to the display panel.
- the present application further provides an electronic device, the electronic device including the above-mentioned display screen.
- FIG. 1 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
- Fig. 2 is an exploded schematic diagram of an electronic device provided by an embodiment of the present application.
- Fig. 3 is a structural schematic diagram of a display panel provided by an embodiment of the present application.
- FIG. 4 is a schematic cross-sectional view of a display panel provided by an embodiment of the present application.
- Fig. 5 is a schematic diagram of a display panel provided by an embodiment of the present application.
- FIG. 6 is another schematic diagram of a display panel provided by an embodiment of the present application.
- FIG. 7 is another schematic cross-sectional view of a display panel provided by an embodiment of the present application.
- FIG. 8 is a partial cross-sectional schematic diagram of a display panel provided by an embodiment of the present application.
- FIG. 9 is another partial cross-sectional schematic diagram of a display panel provided by an embodiment of the present application.
- Fig. 10 is a schematic structural diagram of the first functional layer of the display panel provided by the embodiment of the present application.
- Fig. 11 is another schematic diagram of the display panel provided by the embodiment of the present application.
- Fig. 12 is a schematic structural diagram of the second functional layer of the display panel provided by the embodiment of the present application.
- FIG. 13 is another schematic diagram of a display panel provided by an embodiment of the present application.
- Plurality refers to two or more than two.
- connection It should be understood in a broad sense.
- the connection between A and B can be directly connected between A and B, or indirectly connected through an intermediary.
- the embodiment of the present application provides a display panel 100, a display screen 200 and an electronic device 300, which can increase the area of the display area on the basis of ensuring that the screen has good working performance. , so as to effectively increase the screen-to-body ratio, realize narrower screen borders, and improve user experience, which will be described in detail below.
- an electronic device 300 may include a casing 310 and a display screen 200 .
- the casing 310 is used as a structural supporting part of the electronic device 300 for installing the display screen 200 and accommodating or installing other components such as a circuit board assembly.
- the display screen 200 can be used to display text, images, videos and the like.
- the display screen 200 may be a curved screen whose edges are curved to form an arc. That is, the display screen 200 may be a flexible display screen.
- the electronic device 300 may be, but not limited to, smart consumer electronic devices such as mobile phones, tablet computers, and notebook computers, or augmented reality (augmented reality, AR), virtual reality (virtual reality, VR), smart watches, smart bracelets, etc. and other wearable electronic devices, or vehicle-mounted devices such as cars and machines.
- smart consumer electronic devices such as mobile phones, tablet computers, and notebook computers
- augmented reality augmented reality, AR
- virtual reality virtual reality
- smart watches smart bracelets, etc.
- smart bracelets smart watches
- vehicle-mounted devices such as cars and machines.
- the display screen 200 may be, but not limited to, an organic light-emitting diode (organic light-emitting diode, OLED) display screen, an active matrix organic light-emitting diode or an active-matrix organic light-emitting diode (active-matrix organic light-emitting diode, AMOLED) display, mini organic light emitting diode display, micro organic light emitting diode (micro organic light-emitting diode) display, micro organic light emitting diode (micro organic light-emitting diode) display, quantum dot light emitting diode (quantum dot light emitting diodes, QLED) display.
- OLED organic light-emitting diode
- AMOLED active-matrix organic light-emitting diode
- mini organic light emitting diode display mini organic light emitting diode display
- micro organic light emitting diode micro organic light-emitting diode
- micro organic light emitting diode micro organic
- the display screen 200 is not only applicable to the above-mentioned electronic device 300, but also applicable to any device that needs to display text, images, videos, etc., which is not strictly limited in the embodiment of the present application.
- the display screen 200 may include a cover plate 210 and a display panel 100 , the cover plate 210 is attached to the display panel 100 , and the display panel 100 is closed by the cover plate 210 and the housing 310 .
- the cover plate 210 is used to protect the display panel 100, and it can provide tactile and force feedback to the user when the user touches it.
- the display panel 100 may be a flexible display panel, that is, it may be flexible and suitable for bending.
- the shape of the cover plate 210 can be adapted to the shape of the display panel 100 , for example, when the display panel 100 is a curved surface panel, the cover plate 210 can be a curved surface cover plate.
- the detailed structure of the display panel 100 will be described below with reference to FIGS. 3-13 .
- the display panel 100 may include a display area 10 and an edge area 40 .
- the display area 10 can be an area capable of displaying images in the display panel 100, and its edge can be curved with a predetermined curvature according to the application scene requirements of the display panel 100, so that the display panel 100 presents a curved panel shape.
- the edge area 40 can be an area where images are not displayed in the display panel 100.
- the edge area 40 is connected to the display area 10 and is located at the periphery of the display area 10. It can be bent to the back of the display area 10 following the bending of the display area 10. .
- the outline of the display surface of the display area 10 can be the display screen. 200 outline, under this setting, except for the display area 10, no other structures occupy the display space, so that the entire surface of the display screen 200 can display images, so that the device using the display panel 100 can realize a full-screen display on the front of the device, and then make Ultra-narrow bezels or even no bezels have become a reality, effectively improving the market competitiveness of products and improving user experience.
- the outline of the display screen 200 is independently formed by the outline of the display surface of the display area 10, that is, the entire surface of the display screen 200 displays images as an example.
- the display panel 100 It is also possible to make a part of the surface of the edge area 40 occupy a certain surface of the display screen 200 . That is to say, in the display surface of the display screen 200 (the surface facing the user when the user holds the electronic device 300 ), some surfaces (such as the surface near the edge) do not display images. It only needs to be satisfied that the display area 10 has a flat portion and a bent portion, which is not strictly limited in the embodiment of the present application.
- the edge area 40 can be connected to the lower edge 102, the left side 103, and the right side 104 of the display area 10, or, as shown in Figure 6, the edge area 40 can also be connected to the upper edge 101 and the lower edge of the display area 10. 102, 103 left and 104 right.
- the edge region 40 disposed on the lower side 102 may be an area where pads and circuit elements are arranged in the display panel 100, for example, as shown in FIG.
- a flexible printed circuit 50 Flexible Printed Circuit, FPC
- a driver chip 60 is arranged on the edge area 40 of the lower side 102 and the driver chip 60 is electrically connected to the flexible printed circuit 50 .
- FPC Flexible Printed Circuit
- the edge regions 40 arranged on the left side 103 and the right side 104 may be the regions in the display panel 100 provided with wiring and a driving circuit 70 for driving the screen.
- the driving circuit may be a GOA (Gate on Array) drive circuit.
- connection position between the edge area 40 and the display area 10 is not limited to the above-mentioned manners, and the edge area 40 can be connected on any one side, any two sides, any three sides of the four sides of the display area 10 according to actual application requirements.
- the key design of the embodiment of the present application does not lie in the edge area 40 , and the specific structure and connection position of the edge area 40 are not strictly limited.
- the display area 10 includes a flat area 20 and a bent area 30 , and the bent area 30 is bent and connected to the periphery of the flat area 20 . That is, the bending area 30 is connected to the flat area 20 and bent relative to the flat area 20 .
- the flat area 20 and the bending area 30 are set at an included angle, and the included angle may be within an angle range of 90°-180° (including endpoints 90° and 180°).
- the bending area 30 can be understood as a region in the display area 10 that can be bent, and the flat area 20 can be understood as a relatively flat area in the display area 10 that does not undergo bending.
- the bending zone 30 bends relative to the flat zone 20 around its bending axis (which can be understood as the centerline of rotation of the bending zone 30, around which the bending zone 30 can perform bending movement)
- the bending zone 30 can present a In the curved state, the size of the display panel 100 in the horizontal direction can be reduced.
- the flat area 20 can be the central area of the display panel 100
- the bending area 30 can be the edge area of the display panel 100 .
- the bending area 30 can be bent relative to the flat area 20 , that is, the edge of the display panel 100 can be bent so that the display panel 100 presents a curved profile.
- the bending area 30 is disposed around the flat area 20 and connected to the periphery of the flat area 20 .
- the division of the flat area 20 and the bending area 30 means that the bending area 30 is a part that is relatively prone to bending of the two, and the flat area 20 is a part that is relatively difficult to bend among the two, and It does not mean that the flat area 20 will not be bent. That is to say, in the display area 10 , the two parts of the flat area 20 and the bending area 30 can withstand different stresses during bending, that is, the bending capabilities of the two parts are different.
- the planar area 20 includes a substrate 21 , a buffer layer 22 , an inorganic insulating layer 26 , a driving structure layer 23 , a first light emitting structure layer 24 and a first encapsulation layer 25 .
- the substrate 21 may be a flexible substrate.
- the flat area 20 can have good extensibility, and can provide strong support for the curved shape of the display screen 200 .
- the material of the substrate 21 may include polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polysilane, polysiloxane, polysilazane, poly Carbosilane, polyacrylate, polymethylacrylate, polymethacrylate, polymethylmethacrylate, polyethylacrylate, polyethylmethacrylate, cycloolefin copolymer (COC), cycloolefin polymer ( COP), polyethylene (PE), polypropylene (PP), polyimide (PI), polymethyl methacrylate (PMMA), polystyrene (PS), polyacetal (POM; polyoxyethylene) , polyether ether ketone (PEEK), polyester sulfone (PES), polytetrafluoroethylene (PTFE), polyvinyl chloride (PVC), polycarbonate (PC), polyvinylidene fluoride (PVDF), perfluoroalkane A combination of one
- the buffer layer 22 is disposed on the substrate 21 .
- moisture or other impurities in the external environment can be prevented from penetrating into the display panel 100 through the substrate 21 .
- the buffer layer 22 can planarize the surface of the substrate 21 , which is beneficial to improve the yield of the display panel 100 .
- the inorganic insulating layer 26 is provided on the buffer layer 22 .
- the inorganic insulating layer 26 may be a single-layer/multi-layer structure made of silicon oxide (SiOx), or the inorganic insulating layer 26 may also be a single-layer/multi-layer structure made of silicon nitride (SiNx).
- the driving structure layer 23 may include a semiconductor layer 231 disposed on the buffer layer 22 and covered by the inorganic insulating layer 26, a first gate metal layer 232 disposed on the inorganic insulating layer 26, a first gate metal layer 232 disposed on the inorganic insulating layer 26 and covering the first The first insulating layer 233 of the gate metal layer 232, the second gate metal layer 234 disposed on the first insulating layer 233, the second insulating layer 235 disposed on the first insulating layer 233 and covering the second gate metal layer 234, The first conductive layer 236 disposed on the second insulating layer 235, the second flat layer 237 disposed on the second insulating layer 235 and covering the first conductive layer 236, the second conductive layer disposed on the second flat layer 237 2
- the semiconductor layer 231 may include a source region, a drain region, and a channel region connected between the source region and the drain region, and the source region is used to connect to the source 2361 of the first gate metal layer 232 , the drain region is used to connect with the drain 2362 of the first gate metal layer 232 .
- the material of the semiconductor layer 231 may include indium tin gallium zinc oxide (InSnGaZnO), indium gallium zinc oxide (InGaZnO), indium tin zinc oxide (InSnZnO), tin gallium zinc oxide (SnGaZnO), aluminum gallium Zinc oxide (AlGaZnO), indium aluminum zinc oxide (InAlZnO), tin aluminum zinc oxide (SnAlZnO), indium zinc oxide (InZnO), tin zinc oxide (SnZnO), aluminum zinc oxide (AlZnO), zinc Magnesium oxide (ZnMgO), tin magnesium oxide (SnMgO), indium magnesium oxide (InMgO), indium gallium oxide (InGaO), indium oxide (InO), tin oxide (SnO), zinc oxide (ZnO), etc.
- InSnGaZnO indium gallium zinc oxide
- InSnZnO indium tin zinc oxide
- the semiconductor layer 231 and the first gate metal layer 232 can be spaced apart to insulate them from each other, so that the flow of the semiconductor layer 231 Current will not flow to the first gate metal layer 232 , which is conducive to the normal circulation of electrical signals.
- the first gate metal layer 232 may include a gate and a first capacitor electrode.
- the material of the first gate metal layer 232 may include copper (Cu), aluminum (Al), molybdenum (Mo), chromium (Cr), gold (Au), titanium (Ti), nickel (Ni), neodymium (Nd) or an alloy of the aforementioned materials.
- the first insulating layer 233 can separate the first gate metal layer 232 and the second gate metal layer 234 to insulate the two from each other, so that the two have good electrical properties.
- the first insulating layer 233 may be an inorganic insulating layer, for example, the first insulating layer 233 may be a single-layer/multilayer structure made of silicon oxide (SiOx), or the first insulating layer 233 may also be nitrogen Single-layer/multi-layer structure composed of silicon oxide (SiNx).
- the second gate metal layer 234 may include a second capacitor electrode.
- the material of the second gate metal layer 234 may include copper (Cu), aluminum (Al), molybdenum (Mo), chromium (Cr), gold (Au), titanium (Ti), nickel (Ni), neodymium (Nd) or an alloy of the aforementioned materials.
- the second insulating layer 235 can separate the second gate metal layer 234 from the first conductive layer 236 to insulate them from each other.
- the second insulating layer 235 can be an inorganic insulating layer, for example, the second insulating layer 235 can be a single-layer/multilayer structure made of silicon oxide (SiOx), or the second insulating layer 235 can also be nitrogen Single-layer/multi-layer structure composed of silicon oxide (SiNx).
- the first conductive layer 236 may also be referred to as a first source-drain metal layer ( SD1 ), and the first conductive layer 236 may include a source 2361 and a drain 2362 .
- the source electrode 2361 may be connected to the source electrode 2361 region of the semiconductor layer 231 through the first metal via hole 2363 passing through the inorganic insulating layer 26 , the first insulating layer 233 and the second insulating layer 235 .
- the drain 2362 may be connected to the region of the drain 2362 of the semiconductor layer 231 through the second metal via hole 2364 passing through the inorganic insulating layer 26 , the first insulating layer 233 and the second insulating layer 235 .
- the first metal via hole 2363 and the second metal via hole 2364 can be understood as an electrical connection structure with conductive properties formed by filling conductive metal in the hole structure.
- the material of the first conductive layer 236 may include copper (Cu), aluminum (Al), molybdenum (Mo), chromium (Cr), gold (Au), titanium (Ti), nickel (Ni), neodymium ( Nd) or alloys of the aforementioned materials.
- the source 2361 of the first conductive layer 236, the drain 2362 of the first conductive layer 236, the gate of the first gate metal layer 232 and the semiconductor layer 231 can jointly form a thin film transistor, and the thin film transistor is configured for A part of the structure of the pixel driving circuit that drives and controls the light emitting unit to emit light or display, which may include a driving transistor and a switching transistor.
- the first capacitor electrode of the first gate metal layer 232 and the second capacitor electrode of the second gate metal layer 234 can jointly form a storage capacitor, and the storage capacitor is a part of the pixel driving circuit for driving and controlling the light emitting unit to emit light or display. .
- the source 2361, the drain 2362 and the gate can be insulated from each other, which is beneficial to ensure that the electrical performance of the thin film transistor is not affected. , good reliability.
- a plurality of thin film transistors and a plurality of storage capacitors can be formed in the driving structure layer 23, and each thin film transistor and a corresponding storage capacitor form a pixel driving circuit, so the driving The structural layer 23 actually has a plurality of pixel driving circuits.
- the driving structure layer 23 has a multi-layer film structure composed of inorganic materials. Because the density of the inorganic layer is relatively high and very dense, the driving structure layer 23 is easily affected by stress after being bent. A fracture occurs, thereby affecting the normal operation of the display panel 100 . Therefore, by setting the driving structure layer 23 in the flat area 20, the driving structure layer 23 can be located in a relatively flat area without stress concentration as a whole, so that the driving structure layer 23 can be guaranteed without affecting the bending of the edge of the display panel 100. The normal operation of the display panel 100 is not affected, which is beneficial to improving the overall working reliability of the display panel 100 .
- the second planar layer 237 can cover the thin film transistor, which can protect the thin film transistor, alleviate the step caused by disposing the thin film transistor, and reduce the parasitic capacitance generated between the thin film transistor and other circuits and devices.
- the material of the second flat layer 237 may include acrylic resin, epoxy resin, phenolic resin, polyamide resin, polyimide resin and unsaturated polyester resin, polyphenylene resin, polyphenylene sulfide resin and benzene One or more combinations of cyclobutenes.
- the second conductive layer 238 can also be called the second source-drain metal layer (SD2).
- SD2 second source-drain metal layer
- the second conductive layer 238 is stacked with the first conductive layer 236 and connected between the first conductive layer 236 and the first light emitting structure layer 24.
- the second conductive layer 238 may include a connection electrode 2381 , and the connection electrode 2381 may be connected to the drain 2362 of the first conductive layer 236 through a third metal via hole 2382 disposed in the second planar layer 237 .
- the third metal via hole 2382 can be understood as an electrical connection structure with conductive properties formed by filling conductive metal in the hole structure.
- the material of the second conductive layer 238 may include copper (Cu), aluminum (Al), molybdenum (Mo), chromium (Cr), gold (Au), titanium (Ti), nickel (Ni), neodymium ( Nd) or an alloy of the aforementioned materials, etc.
- first conductive layer 236 and the second conductive layer 238 may also include signal lines (such as gate lines, data lines, etc.).
- the third flat layer 239 can cover the second conductive layer 238 and can protect the second conductive layer 238 .
- the material of the third flat layer 239 may include acrylic resin, epoxy resin, phenolic resin, polyamide resin, polyimide resin and unsaturated polyester resin, polyphenylene resin, polyphenylene sulfide resin and benzene One or more combinations of cyclobutenes.
- the first light emitting structure layer 24 is disposed on the third planar layer 239 , the first light emitting structure layer 24 is electrically connected to the driving structure layer 23 and is used to be driven by the driving structure layer 23 glow.
- the flat region 20 can become a region where light-emitting display can be performed in the display panel 100 due to the property that the first light-emitting structure layer 24 can be driven to emit light by the driving structure layer 23 .
- the first light emitting structure layer 24 includes a first anode 241 , a first pixel definition layer 242 , a first functional layer 243 and a first cathode 244 .
- the first anode 241 is disposed on the third planar layer 239 , the first anode 241 can provide holes to the first functional layer 243 , and can be connected to the connection electrode 2381 through the fourth metal via hole provided in the third planar layer 239 .
- the fourth metal via hole can be understood as an electrical connection structure with conductive properties formed by filling conductive metal in the hole structure.
- the material of the first anode 241 may include indium tin oxide (ITO), indium zinc oxide (IZO) and the like.
- the first pixel definition layer 242 is disposed on the third flat layer 239 and covers the first anode 241 .
- the first pixel definition layer 242 has a first pixel opening 2421 , and the first pixel opening 2421 exposes part of the first anode 241 .
- the first functional layer 243 is disposed in the first pixel opening 2421 and connected to the first anode 241, and the first functional layer 243 is used for emitting light.
- the first functional layer 243 may include a hole injection layer 2431 (HIL), a hole transport layer 2432 (HTL), a light emitting layer 2433, an electron transport layer 2434 (ETL) and an electron injection layer 2435 (EIL).
- HIL hole injection layer 2431
- HTL hole transport layer 2432
- ETL electron transport layer 2434
- EIL electron injection layer 2435
- the hole injection layer 2431 is disposed on the first anode 241 to facilitate the hole injection of the first anode 241 .
- the hole transport layer 2432 is disposed on the hole injection layer 2431 to efficiently transport holes to the light emitting layer 2433 .
- the light-emitting layer 2433 is arranged on the hole transport layer 2432.
- the light-emitting layer 2433 can emit light of a specific color through a material capable of emitting light of a specific color. For example, red light can be emitted through a material capable of emitting red light. Green light can be emitted by a material that emits green light, and blue light can be emitted by a blue light emitting material.
- the material of the light-emitting layer 2433 may include small organic molecule light-emitting materials, complex light-emitting materials, polymers, and the like.
- the electron transport layer 2434 can be disposed on the light emitting layer 2433 to efficiently transport electrons to the light emitting layer 2433 .
- the electron injection layer 2435 can be disposed between the electron transport layer 2434 and the first cathode 244 to facilitate the electron injection of the first cathode 244 .
- the thin film transistor can input an anode voltage to the first anode 241 and a cathode voltage to the first cathode 244, thus, driven by the external voltage, the holes injected by the first anode 241 and the first cathode 244
- the injected electrons recombine in the first functional layer 243 to generate excitons (electron-hole pairs), and the excitons radiate and de-excite photons to generate visible light, wherein the luminescent color depends on the type of organic molecules in the luminescent layer, luminous brightness or intensity Depends on the performance of the luminescent material and the magnitude of the applied current.
- the first cathode 244 is disposed on the first functional layer 243 , at least part of the first cathode 244 is located in the first pixel opening 2421 , and the first cathode 244 can provide electrons to the first functional layer 243 .
- the material of the first cathode 244 may include magnesium (Mg), silver magnesium (Ag:Mg), indium tin oxide (ITO), indium zinc oxide (IZO), indium tin zinc oxide (ITZO), Zinc oxide (ZnO), tin oxide (TO).
- the first anode 241, the first functional layer 243 and the first cathode 244 can jointly form the first sub-light-emitting unit 245, and the first sub-light-emitting unit 245 is electrically connected to the thin film transistor, which can be used in the pixel driving circuit. Illumination or display under actuation and control.
- FIG. 8 only shows one first sub-light-emitting unit 245, but in the actual application of the display panel 100, the number of first pixel openings 2421 is multiple, that is, the first pixel definition layer 242 has There are a plurality of first pixel openings 2421 , and a first sub-light emitting unit 245 is formed in each first pixel opening 2421 , so the first light emitting structure layer 24 actually has a plurality of first sub-light emitting units 245 .
- each first sub-light-emitting unit 245 includes red (R), green (G) or blue (B). That is, when the color of the first sub-light-emitting unit 245 is red, it can emit red light under the driving of the pixel driving circuit, and can be called a red sub-pixel R. When the color of the first sub-light-emitting unit 245 is green, it can emit green light under the driving of the pixel driving circuit, which can be called a green sub-pixel G. When the color of the first sub-light-emitting unit 245 is blue, it can emit blue light under the driving of the pixel driving circuit, which can be called a blue sub-pixel B.
- RGB red
- G green
- B blue
- the first pixel definition layer 242 defines a plurality of first sub-light emitting units 245 with different colors.
- a plurality of red first sub-light-emitting units 245 (can emit red light)
- a plurality of green first sub-light-emitting units 245 (can emit green light)
- a plurality of blue first sub-light-emitting units 245 (can emit blue light) are arranged in an array cloth.
- each pixel driving circuit drives one first sub-light-emitting unit 245 to emit light, so a 1-for-1 driving form can be formed.
- each pixel driving circuit can drive a red first sub-light emitting unit 245 to emit light, or can drive a green first sub-light emitting unit 245 to emit light, or can drive a blue first sub-light emitting unit 245 to emit light.
- each pixel driving circuit drives at least two first sub-light-emitting units 245 of the same color to emit light, so a driving form of 1 driving N can be formed.
- each pixel driving circuit can drive at least two red first sub-light emitting units 245 to emit light, or can drive at least two green first sub-light emitting units 245 to emit light, or can drive at least two blue first sub-light emitting units 245 to emit light.
- Unit 245 emits light.
- the pixel driving circuit can be configured to drive one first sub-light-emitting unit 245 of any color to emit light or drive multiple first sub-light-emitting units 245 of the same color to emit light according to actual needs. Changes in scenarios can be adjusted accordingly, and the diversification of driver types is conducive to adapting to the application requirements in multiple scenarios, and the reliability is better.
- the first encapsulation layer 25 is disposed on the first light emitting structure layer 24 , and the first encapsulation layer 25 covers a plurality of first sub-light emitting units 245 and part or all of the surfaces of the first light emitting structure layer 24 .
- the first sub-light-emitting unit 245 and the thin film transistor can be protected from oxidation or damage by water, oxygen or other impurities in the external environment due to the barrier of the first encapsulation layer 25 , which has good protection performance.
- the first encapsulation layer 25 can be in the form of a "sandwich" of "inorganic encapsulation layer-organic encapsulation layer-inorganic encapsulation layer", this type of structure can ensure that the first encapsulation layer 25 has better water and oxygen barrier properties as a whole .
- the inorganic encapsulation layer can be formed of inorganic materials, such as silicon nitride (SiNx) and/or silicon oxide (SiOx), and the organic encapsulation layer can be formed of organic materials, such as epoxy resin organic materials, polymethyl methacrylate, and the like.
- the actual number of layers of the first encapsulation layer 25 is not limited to three layers, it may be one or more layers, and there is no strict limitation on the number of layers of the encapsulation layer and the material of the layers constituting the embodiment of the present application.
- the planar area 20 further includes a first isolation column 27 , and the first isolation column 27 is disposed on the first light emitting structure layer 24 and located at the edge of the first encapsulation layer 25 .
- the first isolation column 27 can isolate the first encapsulation layer 25.
- the number of the first isolation columns 27 can be one or more as required, and when the number of the first isolation columns 27 is multiple, the plurality of first isolation columns 27 are all arranged on the first packaging layer 25 edge to block water and oxygen.
- the first functional layer 243 and the first negative electrode 244 since the deposition of the vapor deposition material has directionality (the particles move substantially along a straight line), the first functional layer 243 and the first negative electrode 244 may also be deposited on the first functional layer 243 and the first negative electrode 244.
- the surface of a spacer column 27 is such that the surface of the first spacer column 27 is covered with the first functional layer 243 and the first cathode 244 .
- the film layer structure of the flat area 20 has been described above, and the film layer structure of the bending area 30 will be described in detail below with reference to FIGS. 8 , 9 , 11 , 12 and 13 .
- the bending region 30 includes a substrate 21, a buffer layer 22 stacked on the substrate 21, an inorganic insulating layer 26, an organic insulating layer 31, a circuit layer 32, a first flat layer 33, a second Two light emitting structure layers 34 and a second encapsulation layer 35 .
- the specific introduction of the substrate 21 , the buffer layer 22 , and the inorganic insulating layer 26 can refer to the foregoing description, and will not be repeated here.
- the organic insulating layer 31 is arranged on the inorganic insulating layer 26, and the part of the organic insulating layer 31 is located in the inorganic insulating layer 26 and the buffer layer 22, wherein, the part of the organic insulating layer 31 is located in the inorganic insulating layer 26 and the buffer layer 22.
- the organic insulating layer 31 penetrates the inorganic insulating layer 26 and does not penetrate the buffer layer 22, thereby passing through the interval of the buffer layer 22 and not directly contacting the substrate 21. It also includes the organic insulating layer 31 penetrating the inorganic insulating layer 26 and the buffer layer 22 so as to be in contact with the substrate 21. The case where the substrate 21 is in direct contact.
- the inorganic insulating layer 26 has a first groove 261 , and the first groove 261 runs through the inorganic insulating layer 26 .
- the buffer layer 22 has a second groove 221, the second groove 221 runs through or not through the buffer layer 22, the second groove 221 communicates with the first groove 261, and the organic insulating layer 31 fills the first groove 261 and the second groove. Slot 221.
- the organic insulating layer 31 is in direct contact with the substrate 21 .
- the organic insulating layer 31 and the substrate 21 are separated by the buffer layer 22 .
- the inner diameter of the first groove 261 may be larger than the inner diameter of the second groove 221 , so that the connection between the first groove 261 and the second groove 221 is stepped.
- the organic insulating layer 31 may be formed of organic materials, such as epoxy resin-based organic materials, polymethyl methacrylate, and the like.
- both the buffer layer 22 and the inorganic insulating layer 26 can be made of inorganic materials, and the inorganic materials are relatively brittle and easily cause fracture when bent. Therefore, the organic insulating layer 31 made of organic materials can be used instead of the Part of the buffer layer 22 and the inorganic insulating layer 26 etched away can increase the proportion of organic materials in the bending region 30, so that there are less inorganic materials between the circuit layer 32 and the substrate 21, so that the bending region 30 is When bending, due to the toughness and ductility of the material, the film layer structure of the bending area 30 is not easy to break, so that the bending area 30 has better bendability and adaptability, which is conducive to extending the display The service life of the panel 100 is improved, and the working reliability of the display panel 100 is improved.
- the circuit layer 32 is arranged on the organic insulating layer 31, and the circuit layer 32 is electrically connected between the second light emitting structure layer 34 and the driving structure layer 23, and is used to realize the electrical performance between the second light emitting structure layer 34 and the driving structure layer 23. connected, so that the second light emitting structure layer 34 can be driven by the driving structure layer 23 to perform light emitting action.
- the second light-emitting structure layer 34 is located in the bending area 30, and the driving structure layer 23 for driving the second light-emitting structure layer 34 to emit light is located in the flat area 20, and the two are located in different areas in the display area 10. Directly realize the conduction of the electrical signal.
- the circuit layer 32 in the bending region 30 and electrically connecting the circuit layer 32 between the second light emitting structure layer 34 and the driving structure layer 23, the light emitted by the driving structure layer 23 located in the flat region 20 can be made
- the control signal can be transmitted to the second light emitting structure layer 34 through the transmission of the circuit layer 32, and drive the second light emitting structure layer 34 to emit light.
- the control path of the driving structure layer 23 can be extended through the connection function of the circuit layer 32, so that the driving structure layer 23 can not only control the first light emitting structure layer 24 with a shorter distance to emit light, but also control the first light emitting structure layer 24 with a longer distance.
- the second light-emitting structure layer 34 emits light, and has dual functions of short-distance control and long-distance control, and the performance of driving the structure layer 23 is excellent.
- the circuit layer 32 is electrically connected to the first conductive layer 236 .
- the circuit layer 32 and the first conductive layer 236 can be manufactured through the same manufacturing process, that is, the circuit layer 32 and the first conductive layer 236 are disposed on the same layer.
- the second light emitting structure layer 34 can be connected to the driving structure layer 23 so as to transmit the control signal of the driving structure layer 23 to the second light emitting structure layer 34 through the circuit layer 32 .
- the circuit layer 32 is electrically connected to the second conductive layer 238 .
- the circuit layer 32 and the second conductive layer 238 can be manufactured through the same manufacturing process, that is, the circuit layer 32 and the second conductive layer 238 are disposed on the same layer.
- the second light emitting structure layer 34 can be connected to the driving structure layer 23 so as to transmit the control signal of the driving structure layer 23 to the second light emitting structure layer 34 through the circuit layer 32 .
- connection between the wiring layer 32 and the first conductive layer 236 or the second conductive layer 238 in the driving structure layer 23 can be flexibly selected according to the actual application requirements of the display panel 100, and only the wiring layer 32 and the driving structure layer need to be connected.
- the electrical connection relationship between 23 is sufficient, and the embodiments of the present application do not make strict limitations on this.
- the circuit layer 32 may include a plurality of wires, each wire is electrically connected between the first light emitting structure layer 24 and the second light emitting structure layer 34 .
- the traces may be data lines, and are electrically connected to the data lines located in the planar region (specifically located in the first conductive layer or the second conductive layer), so as to supply pixels in each column in the pixel array.
- the wiring may be formed of a conductive material having excellent ductility such as gold (Au), silver (Ag) or aluminum (Al), or may be formed of molybdenum (Mo), chromium (Cr), titanium (Ti), Nickel (Ni), neodymium (Nd), copper (Cu), and alloys of silver (Ag) and magnesium (Mg) are formed.
- the wiring can be a single-layer structure, or the wiring can also be a multilayer structure of various conductive materials, such as a three-layer structure of titanium (Ti)/aluminum (Al)/titanium (Ti). Not strictly limited.
- the first planar layer 33 is disposed on the circuit layer 32 and located between the circuit layer 32 and the second light emitting structure layer 34 .
- the first flat layer 33 can cover the circuit layer 32, which can reduce the mechanical damage of the circuit layer 32, and avoid the damage and breakage of the internal wiring caused by the interference of the external environment. It can also provide stress relief for the wiring when the wiring is bent, preventing the wiring from receiving excessive tensile or compressive stress, and has good protection performance.
- the material of the first flat layer 33 may include acrylic resin, epoxy resin, phenolic resin, polyamide resin, polyimide resin and unsaturated polyester resin, polyphenylene resin, polyphenylene sulfide resin and benzene One or more combinations of cyclobutenes.
- the first planar layer 33 and the second planar layer 237 can be manufactured through the same manufacturing process, that is, the first planar layer 33 and the second planar layer 237 are disposed on the same layer.
- the first planar layer 33 and the third planar layer 239 can be manufactured through the same manufacturing process, that is, the first planar layer 33 and the third planar layer 239 are disposed on the same layer.
- the second light emitting structure layer 34 is disposed on the first planar layer 33 , and the second light emitting structure layer 34 is electrically connected to the driving structure layer 23 and used to be driven by the driving structure layer 23 to emit light. It should be understood that the driving structure layer 23 can not only drive the first light emitting structure layer 24 to emit light, but also drive the second light emitting structure layer 34 to emit light.
- the second light-emitting structure layer 34 and the first light-emitting structure layer 24 can be formed in the same manufacturing process, that is, the two can be arranged in the same layer, so that the display effects of the two can be more consistent when they emit light. and balance.
- the bending region 30 can become a region in the display panel 100 where light emitting display can be performed due to the property that the second light emitting structure layer 34 can be driven to emit light by the driving structure layer 23 .
- the bending area 30 and the flat area 20 can jointly form an area of the display panel 100 that can perform light-emitting display, and the light-emitting display area of the display panel 100 can extend from the flat area 20 to the bending area 30 .
- both the flat area 20 and the bending area 30 can be used for display.
- the area that can be displayed in the display panel 100 can be surrounded by the edge of the flat area 20.
- the formed area expands to the area enclosed by the edge of the bending area 30.
- the width of the non-display area, that is, the border can be greatly reduced due to the expansion of the area of the display area. width, which makes narrow borders or even no borders a reality, and can effectively increase the screen ratio and improve the user experience.
- disposing the second light-emitting structure layer 34 in the bending region 30 can enable the second light-emitting structure layer 34 to perform light-emitting display and Good adaptation to the stress generated by bending minimizes the possibility of breakage of the film layer structure due to excessive stress, affects wiring layout, and causes problems such as open circuit or short circuit, effectively ensuring the luminous display of the display panel 100 Excellent performance and reliability.
- the second light emitting structure layer 34 includes a second anode 341 , a second pixel definition layer 342 , a second functional layer 343 and a second cathode 344 .
- the second anode 341 is disposed on the first planar layer 33 , and the second anode 341 can provide holes to the second functional layer 343 .
- the material of the second anode 341 may include indium tin oxide (ITO), indium zinc oxide (IZO) and the like.
- the second anode 341 may be in the form of a lead, and is electrically connected to the first anode 241 .
- the second pixel definition layer 342 is disposed on the first flat layer 33 and covers the second anode 341 .
- the second pixel definition layer 342 has a second pixel opening 3421 , and the second pixel opening 3421 exposes a part of the second anode 341 .
- the second functional layer 343 is disposed in the second pixel opening 3421 and connected to the second anode 341 , and the second functional layer 343 is used for emitting light.
- the second functional layer 343 may include a hole injection layer 3431 (HIL), a hole transport layer 3432 (HTL), a light emitting layer 3433, an electron transport layer 3434 (ETL), and an electron injection layer 3435 (EIL).
- HIL hole injection layer 3431
- HTL hole transport layer 3432
- ETL electron transport layer 3434
- EIL electron injection layer 3435
- the hole injection layer 3431 is disposed on the second anode 341 to facilitate the hole injection of the second anode 341 .
- the hole transport layer 3432 is disposed on the hole injection layer 3431 to efficiently transport holes to the light emitting layer 3433 .
- the light-emitting layer 3433 is arranged on the hole transport layer 3432, and the light-emitting layer 3433 can emit light of a specific color through a material capable of emitting light of a specific color, such as red light can be emitted through a material capable of emitting red light, Green light can be emitted by a material that emits green light, and blue light can be emitted by a blue light emitting material.
- the material of the light-emitting layer 3433 may include small organic molecule light-emitting materials, complex light-emitting materials, polymers, and the like.
- the electron transport layer 3434 can be disposed on the light emitting layer 3433 to efficiently transport electrons to the light emitting layer 3433 .
- the electron injection layer 3435 can be disposed between the electron transport layer 3434 and the second cathode 344 to facilitate the electron injection of the second cathode 344 .
- the thin film transistor can input an anode voltage to the second anode 341 and a cathode voltage to the second cathode 344, thus, driven by the external voltage, the holes injected by the second anode 341 and the second cathode 344
- the injected electrons recombine in the second functional layer 343 to generate excitons (electron-hole pairs), and the excitons radiate and de-excite photons to generate visible light, wherein the luminescent color depends on the type of organic molecules in the luminescent layer, luminous brightness or intensity Depends on the performance of the luminescent material and the magnitude of the applied current.
- the second cathode 344 is disposed on the second functional layer 343 , at least part of the second cathode 344 is located in the second pixel opening 3421 , and the second cathode 344 can provide electrons to the second functional layer 343 .
- the material of the second cathode 344 may include magnesium (Mg), silver magnesium (Ag:Mg), indium tin oxide (ITO), indium zinc oxide (IZO), indium tin zinc oxide (ITZO), Zinc oxide (ZnO), tin oxide (TO).
- the second anode 341, the second functional layer 343 and the second cathode 344 can jointly form the second sub-light-emitting unit 345, and the second sub-light-emitting unit 345 is electrically connected to the thin film transistor, which can be used in the pixel driving circuit. Illumination or display under actuation and control.
- FIG. 8 only shows two second sub-light-emitting units 345, but in the actual application of the display panel 100, the number of second pixel openings 3421 is multiple, that is, the second pixel definition layer 342 There are a plurality of second pixel openings 3421 , and a second sub-light emitting unit 345 is formed in each second pixel opening 3421 , so the second light emitting structure layer 34 actually has a plurality of second sub-light emitting units 345 .
- each second sub-light-emitting unit 345 includes red (R), green (G) or blue (B). That is, when the color of the second sub-light emitting unit 345 is red, it can emit red light under the driving of the pixel driving circuit, and can be called a red sub-pixel R. When the color of the second sub-light-emitting unit 345 is green, it can emit green light under the driving of the pixel driving circuit, which can be called a green sub-pixel G. When the color of the second sub-light-emitting unit 345 is blue, it can emit blue light under the driving of the pixel driving circuit, which can be called a blue sub-pixel B.
- RGB red
- G green
- B blue
- the second pixel definition layer 342 defines a plurality of second sub-light emitting units 345 with different colors.
- a plurality of red second sub-light-emitting units 345 (can emit red light), a plurality of green second sub-light-emitting units 345 (can emit green light), and a plurality of blue second sub-light-emitting units 345 (can emit blue light) are arranged in an array cloth.
- each pixel driving circuit drives one second sub-light-emitting unit 345 to emit light, so a 1-for-1 driving form can be formed.
- each pixel driving circuit can drive a red second sub-light emitting unit 345 to emit light, or can drive a green second sub-light emitting unit 345 to emit light, or can drive a blue second sub-light emitting unit 345 to emit light.
- each pixel driving circuit drives at least two second sub-light-emitting units 345 of the same color to emit light, so a driving form of 1 driving N can be formed.
- each pixel driving circuit can drive at least two red second sub-light emitting units 345 to emit light, or can drive at least two green second sub-light emitting units 345 to emit light, or can drive at least two blue second sub-light emitting units 345 to emit light.
- Unit 345 emits light.
- each pixel driving circuit drives at least one first sub-light emitting unit 245 and at least one second sub-light emitting unit 345 of the same color to emit light, so a driving form of 1 driving N can be formed.
- each pixel driving circuit can drive at least one red first sub-light-emitting unit 245 to emit light and at least one red second sub-light-emitting unit 345 to emit light, or can drive at least one green first sub-light-emitting unit 245 to emit light and at least one green sub-light-emitting unit to emit light.
- the second sub-light emitting unit 345 emits light, or can drive at least one blue first sub-light emitting unit 245 to emit light and at least one blue second sub-light emitting unit 345 to emit light.
- the pixel driving circuit can drive the first sub-light-emitting unit 245 to emit light, the second sub-light-emitting unit 345 to emit light, and the first sub-light-emitting unit 245 and the second sub-light-emitting unit 345 to emit light, and can be configured as required Drive a first sub-light-emitting unit 245 of any color to emit light, or drive a second sub-light-emitting unit 345 of any color to emit light, or drive multiple first sub-light-emitting units 245 of the same color to emit light, or drive multiple second sub-light units 345 of the same color to emit light.
- the light-emitting unit 345 emits light, or drives one or more first sub-light-emitting units 245 and second sub-light-emitting units 345 of the same color to emit light.
- the driving method can be adjusted according to changes in actual application scenarios. The diversification of driving types is beneficial Adapt to the application requirements in multiple scenarios, with better reliability.
- the wiring in the circuit layer 32 described above may include a data line 321, and the data line 321 located in the bending area 30 may be electrically connected to the data line in the flat area 20. , so as to supply each column of sub-pixels in the array (that is, the first sub-light-emitting unit 245 and the second sub-light-emitting unit 345 arranged in the same column). That is, one end of the data line 321 in the bending area 30 is electrically connected to the data line in the flat area 20 , and the other end is used to electrically connect to the driving chip 60 .
- the data line 321 may be an oblique line. It can be understood that since the data line 321 is located in the bending area 30, it needs to have good bending performance, which can prevent cracking and disconnection of the line due to bending, and then cause the display panel 100 to fail. The possibility of occurrence of problems is minimized, and the service life of the display panel 100 is fully ensured.
- each data line 321 includes a first portion 322 and a second portion 323 .
- the first part 322 is connected to the data line of the flat area 20, the extension direction of the first part 322 is the same as the bending direction of the bending area 30, the second part 323 is connected to the first part 322 by bending, and the second part 323 is far away from the first part 322
- One end is used to connect with the driver chip 60. That is, the data line 321 may be a broken line. Under this setting, the tension on the data line 321 can be minimized, which is beneficial to ensure that the data line 321 will not be broken when bent.
- the second encapsulation layer 35 is disposed on the second light emitting structure layer 34, specifically on the first planar layer 33, the second encapsulation layer 35 includes a plurality of sub-encapsulation structures 351, each sub-encapsulation Each encapsulation structure 351 covers at least one second sub-light emitting unit 345 .
- the second encapsulation layer 35 disposed in the bending region 30 does not completely cover the surface of the second light emitting structure layer 34, and the gray part in FIG. 13 is that the second light emitting structure layer 34 does not cover the second encapsulation layer. 35, that is, the second encapsulation layer 35 may not cover the part where the second sub-light emitting unit 345 is not provided, so the sub-encapsulation structure 351 that can cover the second sub-light-emitting unit 345 can form a structure similar to an "island", " The second light emitting structure layer 34 without the second encapsulation layer 35 is exposed between the "islands".
- one sub-encapsulation structure 351 when each sub-encapsulation structure 351 covers a second sub-light-emitting unit 345, one sub-encapsulation structure 351 can independently constitute an "island” that encapsulates one second sub-light-emitting unit 345.
- one sub-package structure 351 can independently constitute an "island” that encapsulates two second sub-light-emitting units 345.
- the multiple sub-package structures 351 arranged in the bending area 30 can form an "island" package, which can be different from the full-surface package in the prior art, so that the second light emitting structure layer 34 has a unique
- the part covered by the sub-encapsulation structure 351 can effectively improve the stress on the bending region 30 during bending, and prevent the film layer structure of the bending region 30 from breaking.
- the second sub-light-emitting unit 345 can be prevented from being oxidized or damaged by water, oxygen or other impurities in the external environment, which has good protection performance.
- the second encapsulation layer 35 can be in the form of a "sandwich" of "inorganic encapsulation layer-organic encapsulation layer-inorganic encapsulation layer", this type of structure can ensure that the second encapsulation layer 35 has better water and oxygen barrier properties as a whole .
- the inorganic encapsulation layer can be formed of inorganic materials, such as silicon nitride (SiNx) and/or silicon oxide (SiOx), and the organic encapsulation layer can be formed of organic materials, such as epoxy resin organic materials, polymethyl methacrylate, and the like.
- the actual number of layers of the second encapsulation layer 35 is not limited to three layers, it can be one or more layers, and there is no strict limitation on the number of layers of the encapsulation layer and the material of the layers constituting the embodiment of the present application.
- the bending area 30 further includes a second isolation column 36 , and the second isolation column 36 is disposed on the second light emitting structure layer 34 and located at the edge of the second encapsulation layer 35 .
- the second isolation column 36 can isolate the second encapsulation layer 35.
- the number of second isolation columns 36 can be one or more as required, and when the number of second isolation columns 36 is multiple, the plurality of second isolation columns 36 are all arranged on the second packaging layer 35 edge to block water and oxygen.
- the second functional layer 343 and the cathode since the deposition of the vapor deposition material is directional (the particles move substantially along a straight line), the second functional layer 343 and the second cathode 344 may also be deposited on the second isolation column. 36, so that the surface of the second spacer 36 is covered with the second functional layer 343 and the second cathode 344.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Electroluminescent Light Sources (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
Abstract
本申请提供一种显示面板、显示屏及电子设备。所述显示面板包括平坦区和弯折区,所述平坦区包括层叠设置的驱动结构层和第一发光结构层,所述第一发光结构层与所述驱动结构层电连接且用于被所述驱动结构层驱动而发光;所述弯折区连接于所述平坦区的外围,且相对所述平坦区弯曲,所述弯折区包括第二发光结构层,所述第二发光结构层与所述第一发光结构层同层设置,所述第二发光结构层与所述驱动结构层电连接且用于被所述驱动结构层驱动而发光。本申请的技术方案能够在保证屏幕具有良好工作性能的基础上,实现屏幕的窄边框化。
Description
本申请要求于2021年11月11日提交中国专利局、申请号为202111331299.5、申请名称为“显示面板、显示屏及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及显示技术领域,尤其涉及一种显示面板、显示屏及电子设备。
随着显示技术的发展,柔性显示屏因其所具备的优异的柔性和可适应性等优点,而在屏幕中得到越来越广泛的应用。对于屏幕来说,其显示区域的四周存在一定宽度的非显示区域,即边框,较宽的边框会影响用户的使用体验。如何能在保证屏幕具有良好工作性能的基础上,实现屏幕的窄边框化,为业界持续探索的课题。
发明内容
本申请的实施例提供一种显示面板、显示屏及电子设备,能够在保证屏幕具有良好工作性能的基础上,实现屏幕的窄边框化。
第一方面,本申请提供一种显示面板,所述显示面板包括:
平坦区,所述平坦区包括层叠设置的驱动结构层和第一发光结构层,所述第一发光结构层与所述驱动结构层电连接且用于被所述驱动结构层驱动而发光;及
弯折区,所述弯折区连接于所述平坦区的外围,且相对所述平坦区弯曲,所述弯折区包括第二发光结构层,所述第二发光结构层与所述第一发光结构层同层设置,所述第二发光结构层与所述驱动结构层电连接且用于被所述驱动结构层驱动而发光。
可以理解的是,由于弯折区连接于平坦区的外围,故而在显示面板中,平坦区可以为显示面板的中心区域,弯折区可以为显示面板的边缘区域。而弯折区能够相对于平坦区弯曲,也即,显示面板的边缘可以弯曲以使显示面板呈现曲面轮廓。
示例性地,弯折区环绕设置在平坦区的四周,且与平坦区的周缘连接。
需说明的是,平坦区和弯折区的划分,代表弯折区为两者中相对易于发生弯折的部分,平坦区为两者中相对不容易发生弯折的部分,并不代表平坦区不会发生弯折。也即为,在显示区中,平坦区和弯折区这两个部分,在弯折时所能承受的应力不相同,也即,两者的弯折能力不相同。
本申请的技术方案中,通过在平坦区设置第一发光结构层,能够因第一发光结构层可被驱动结构层驱动发光的特性,使平坦区成为显示面板中可以进行发光显示的区域。通过在弯折区设置第二发光结构层,能够因第二发光结构层可被驱动结构层驱动发光的特性,使弯折区成为显示面板中可以进行发光显示的区域。基于上述描述,应当理解,弯折区可以和平坦区共同形成显示面板中可以进行发光显示的区域,显示面板的发光显示区域可自平坦区延伸至弯折区。
由此,能够使平坦区和弯折区均用于显示,相对于现有技术中仅能在平坦区进行显示,能够使显示面板中可以进行显示的区域由平坦区边缘围成的区域扩大至弯折区边缘围成的区域。此设置下,显示面板应用至显示屏中时,能够在不改变显示屏的尺寸的基础上,因 显示区域面积的扩大,而极大的减小非显示区域的宽度,也即边框宽度,进而使窄边框甚至无边框成为现实,且还能有效提高屏占比,改善用户的使用体验。
另外,驱动结构层中具有多层由无机材料构成的膜层结构,由于无机层的密度较大,且非常致密,导致驱动结构层易在受弯折后因应力影响而发生断裂,进而影响显示面板的正常工作。由此,通过将驱动结构层设置平坦区,能够使驱动结构层整体位于非应力集中的较为平坦的区域,从而可以在不影响显示面板边缘弯曲的情况下,保证驱动结构层的正常工作不受影响,有利于提高显示面板整体的工作可靠性。而将第二发光结构层设于弯折区,能够因弯折区具有较少的由无机材料构成的膜层结构,而使第二发光结构层能够在进行发光显示的同时良好的适应弯折所产生的应力,将因应力过大而导致膜层结构发生断裂、影响走线布置、造成断路或短路等问题发生的可能性降低到最小,有效保证显示面板的发光显示性能,可靠性佳。
需说明的是,第二发光结构层与第一发光结构层在同一制程工艺中形成,也即为,两者同层设置,从而使两者在进行发光时显示效果能够较为一致和平衡。
一种可能的实施方式中,所述弯折区还包括线路层,所述线路层与所述第二发光结构层层叠设置,所述线路层电连接在所述第二发光结构层和所述驱动结构层之间。
可以理解的是,第二发光结构层位于弯折区,而用于驱动第二发光结构层发光的驱动结构层位于平坦区,两者位于显示区内的不同区域,难以直接实现电信号的导通。由此,通过在弯折区设置线路层,并使线路层电连接在第二发光结构层和驱动结构层之间,能够使位于平坦区的驱动结构层所发出的控制信号能够经由线路层的传输而传递至第二发光结构层,并驱动第二发光结构层进行发光。此设置下,能够通过线路层的连接作用而延长驱动结构层的控制路径,使驱动结构层不仅能够控制距离较短的第一发光结构层发光,还能够控制距离较长的第二发光结构层发光,兼具短距离控制和长距离控制的双重作用,驱动结构层的性能优异。
示例性地,线路层可以包括数据线,位于弯折区的数据线可与平坦区的数据线电连接,以供应像素阵列中的每一列子像素(也即后文中同一列设置的第一子发光单元和第二子发光单元)。其中,位于弯折区的数据线可以为斜线。可以理解的是,由于数据线位于弯折区,故而其需具有良好的弯折性能,良好的弯折性能能够将因弯折而造成线路开裂、断开,进而使显示面板失效的问题发生的可能性降低到最小,充分保证显示面板的使用寿命。
或者,位于弯折区的数据线可以包括第一部分和第二部分。第一部分与平坦区的数据线连接,第一部分的延伸方向与弯折区的弯折方向相同,第二部分与第一部分弯折连接,且第二部分远离第一部分的一端用于与驱动芯片连接。也即为,数据线可以为折线。此设置下,可以使数据线所受的张力最小化,有利于保证数据线不会在弯折时断裂。
一种可能的实施方式中,所述驱动结构层包括层叠设置的第一导电层和第二导电层,所述第二导电层连接在所述第一导电层和所述第一发光结构层之间;
所述线路层与所述第一导电层电连接。线路层与第一导电层可通过同一制程工艺制成,也即,线路层与第一导电层同层设置。此设置下,能够使第二发光结构层与驱动结构层连接,以便将驱动结构层的控制信号经由线路层传递至第二发光结构层。
或者,所述线路层与所述第二导电层电连接。线路层与第二导电层可通过同一制程工 艺制成,也即,线路层与第二导电层同层设置。此设置下,能够使第二发光结构层与驱动结构层连接,以便将驱动结构层的控制信号经由线路层传递至第二发光结构层。
需说明的是,可根据显示面板的实际应用需求而灵活选择线路层与驱动结构层中的第一导电层或第二导电层连接,仅需实现线路层与驱动结构层之间的电连接关系即可,本申请的实施例对此不做严格限制。
一种可能的实施方式中,所述第一发光结构层具有多个第一像素开口,每一所述第一像素开口均用于形成一个第一发光单元,所述平坦区还包括第一封装层,所述第一封装层设于所述第一发光结构层上,所述第一封装层覆盖所述多个第一发光单元和所述第一发光结构层的至少部分表面。
此设置下,可因第一封装层的阻挡而使第一子发光单元和薄膜晶体管免于受外部环境中水、氧或其他杂质的氧化或破坏,具有良好的保护性能。
示例性地,第一封装层可以为“无机封装层-有机封装层-无机封装层”的“三明治”形式,此类结构能确保第一封装层整体上具有较好的水氧阻隔性能。其中,无机封装层可由无机材料形成,如氮化硅(SiNx)和/或氧化硅(SiOx),有机封装层可由有机材料形成,如环氧树脂类有机材料、聚甲基丙烯酸甲酯等。当然,第一封装层的实际层数并不局限于三层,其可以为一层或多层,对于封装层的层数和层材料构成本申请的实施例不做严格限制。
一种可能的实施方式中,所述平坦区还包括第一隔离柱,所述第一隔离柱设于所述第一发光结构层上且位于所述第一封装层的边缘。
由此,第一隔离柱能够将第一封装层隔断,当外界水氧从第一隔离柱一侧侵入第一封装层时,由于第一封装层在隔离柱处是被隔断的,故而外界水氧无法越过第一隔离柱而继续入侵,从而能够使第一隔离柱起到隔绝水氧的作用,进一步保护显示面板的内部不受水氧的侵蚀。
需说明的是,第一隔离柱的数量可根据需要而为一个或多个,当第一隔离柱的数量为多个时,多个第一隔离柱均设置在第一封装层的边缘,以阻隔水氧。另外,在形成第一功能层和阴极时,由于蒸镀材料的沉积具有方向性(粒子基本沿直线运动),故而第一功能层和第一阴极还可能会沉积到第一隔离柱的表面,使第一隔离柱的表面覆盖上第一功能层和第一阴极。
一种可能的实施方式中,所述弯折区还包括第一平坦层,所述第一平坦层位于所述线路层和所述第二发光结构层之间。
此设置下,第一平坦层能够覆盖在线路层上,可以减少线路层的机械损伤,避免其内部走线因受外部环境的干扰而造成损伤、断裂的问题发生。还可以在走线进行弯折时,为走线提供应力释放,防止走线收到过大的拉伸或压缩应力,具有良好的保护性能。
示例性地,第一平坦层的材质可以包括丙烯酸树脂、环氧树脂、酚醛树脂、聚酰胺树脂、聚酰亚胺树脂和不饱和聚酯树脂、聚苯树脂、聚苯硫醚树脂和苯并环丁烯中一种或多种的组合。
一种可能的实施方式中,所述弯折区还包括有机绝缘层,所述有机绝缘层位于所述线路层背离所述第一平坦层的一侧。
示例性地,有机绝缘层可由有机材料形成,如环氧树脂类有机材料、聚甲基丙烯酸甲 酯等。
可以理解的是,而无机材料较脆,易在弯折时导致断裂,由此,采用有机材料制成的有机绝缘层,能够使线路层与基底之间具有较少的无机层,进而使弯折区在进行弯折时,因具有韧性和延展性良好的材质而使弯折区的膜层结构不易发生断裂,使弯折区具有较佳的可弯折性和自适应性,有利于延长显示面板的使用寿命,提高显示面板的工作可靠性。
一种可能的实施方式中,所述弯折区还包括基底、依次层叠设置在所述基底上的缓冲层和无机绝缘层,所述有机绝缘层设于所述无机绝缘层背离所述缓冲层的一侧,所述无机绝缘层具有贯穿所述无机绝缘层的第一凹槽,所述缓冲层具有与所述第一凹槽连通的第二凹槽;
所述有机绝缘层填充所述第一凹槽和所述第二凹槽,且设于所述第二凹槽的所述有机绝缘层与所述基底间隔设置。也即为,第二凹槽可类似盲孔结构,其并不贯穿缓冲层,位于第二凹槽内的有机绝缘层可通过缓冲层与基底间隔设置。
或者,所述第二凹槽贯穿所述缓冲层,所述有机绝缘层填充所述第一凹槽和所述第二凹槽,且设于所述第二凹槽的所述有机绝缘层与所述基底接触。
上述两种方案中,采用有机材料制成的有机绝缘层替代被刻蚀掉的缓冲层和无机绝缘层,能够增加弯折区中有机材料的占比,使线路层与基底之间具有较少的无机材料,进而使弯折区在进行弯折时,因具有韧性和延展性良好的材质而使弯折区的膜层结构不易发生断裂,使弯折区具有较佳的可弯折性和自适应性,有利于延长显示面板的使用寿命,提高显示面板的工作可靠性。
一种可能的实施方式中,所述第二发光结构层具有多个第二像素开口,每一所述第二像素开口均用于形成一个第二发光单元,所述弯折区还包括多个子封装结构,每一所述子封装结构均覆盖至少一个所述第二子发光单元。
需说明的是,设于弯折区的子封装结构并不会完全覆盖第二发光结构层的表面,其可以不覆盖未设有第二子发光单元的部分,故而仅覆盖第二子发光单元的子封装结构可形成类似“岛”的结构,“岛”与“岛”之间暴露出未设置子封装结构的第二发光结构层。例如,当每一子封装结构覆盖一个第二子发光单元时,一个子封装结构可独立构成一个封装一个第二子发光单元的“岛”,当每一子封装结构覆盖两个第二子发光单元时,一个子封装结构可独立构成一个封装两个第二子发光单元的“岛”。
此设置下,在弯折区设置的多个子封装结构可形成“岛”状封装,“岛”状封装可以区别于现有技术中的整面封装而使第二发光结构层具有未被子封装结构覆盖的部分,从而能够有效改善弯折区在弯折时所受的应力,避免弯折区的膜层结构发生断裂。另外,还可因子封装结构的阻挡而使第二子发光单元免于受外部环境中水、氧或其他杂质的氧化或破坏,具有良好的保护性能。
示例性地,第二封装层可以为“无机封装层-有机封装层-无机封装层”的“三明治”形式,此类结构能确保第二封装层整体上具有较好的水氧阻隔性能。其中,无机封装层可由无机材料形成,如氮化硅(SiNx)和/或氧化硅(SiOx),有机封装层可由有机材料形成,如环氧树脂类有机材料、聚甲基丙烯酸甲酯等。当然,第二封装层的实际层数并不局限于三层,其可以为一层或多层,对于封装层的层数和层材料构成本申请的实施例不做严格限制。
一种可能的实施方式中,所述弯折区还包括第二隔离柱,所述第二隔离柱设于所述第二发光结构层上且位于所述第二封装层的边缘。
由此,第二隔离柱能够将第二封装层隔断,当外界水氧从第二隔离柱一侧侵入第二封装层时,由于第二封装层在隔离柱处是被隔断的,故而外界水氧无法越过第二隔离柱而继续入侵,从而能够使第二隔离柱起到隔绝水氧的作用,进一步保护显示面板的内部不受水氧的侵蚀。
需说明的是,第二隔离柱的数量可根据需要而为一个或多个,当第二隔离柱的数量为多个时,多个第二隔离柱均设置在第二封装层的边缘,以阻隔水氧。另外,在形成第二功能层和阴极时,由于蒸镀材料的沉积具有方向性(粒子基本沿直线运动),故而第二功能层和第二阴极还可能会沉积到第二隔离柱的表面,使第二隔离柱的表面覆盖上第二功能层和第二阴极。
一种可能的实施方式中,所述第一发光结构层包括多个第一子发光单元,每一所述第一子发光单元的颜色包括红色、绿色或蓝色,所述第二发光结构层包括多个第二子发光单元,每一所述第二子发光单元的颜色包括红色、绿色或蓝色,所述驱动结构层包括多个像素驱动电路;
每一所述像素驱动电路驱动一个所述第一子发光单元发光;或者,
每一所述像素驱动电路驱动一个所述第二子发光单元发光;或者,
每一所述像素驱动电路驱动同色的至少两个所述第一子发光单元发光;或者,
每一所述像素驱动电路驱动同色的至少两个所述第二子发光单元发光;或者,
每一所述像素驱动电路驱动同色的至少一个所述第一子发光单元和至少一个所述第二子发光单元发光。
基于上述描述,应当理解,像素驱动电路可驱动第一子发光单元发光、第二子发光单元发光及第一子发光单元和第二子发光单元发光,可根据需要而被配置为驱动一个任意颜色的第一子发光单元发光,或驱动一个任意颜色的第二子发光单元发光,或驱动多个同色的第一子发光单元发光,或驱动多个同色的第二子发光单元发光,或驱动一个或多个同色的第一子发光单元和第二子发光单元发光,其驱动方式可根据实际应用场景的改变而相应进行调整,驱动类型的多样化有利于适应多场景下的应用需求,可靠性较佳。
第二方面,本申请还提供一种显示屏,所述显示屏包括盖板和如上所述的显示面板,所述盖板与所述显示面板贴合。
第三方面,本申请还提供一种电子设备,所述电子设备包括如上所述的显示屏。
图1是本申请实施例提供的电子设备的结构示意图;
图2是本申请实施例提供的电子设备的爆炸示意图;
图3是本申请实施例提供的显示面板的一角度的结构示意图;
图4是本申请实施例提供的显示面板的一种剖面示意图;
图5是本申请实施例提供的显示面板的一种示意简图;
图6是本申请实施例提供的显示面板的另一种示意简图;
图7是本申请实施例提供的显示面板的另一种剖面示意图;
图8是本申请实施例提供的显示面板的一种部分剖面示意图;
图9是本申请实施例提供的显示面板的另一种部分剖面示意图;
图10是本申请实施例提供的显示面板的第一功能层的结构简图;
图11是本申请实施例提供的显示面板的又一种示意简图;
图12是本申请实施例提供的显示面板的第二功能层的结构简图;
图13是本申请实施例提供的显示面板的再一种示意简图。
为了方便理解,首先对本申请的实施例所涉及的术语进行解释。
和/或:仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
多个:是指两个或多于两个。
连接:应做广义理解,例如,A与B连接,可以是A与B直接相连,也可以是A与B通过中间媒介间接相连。
下面将结合附图,对本申请的具体实施方式进行清楚地描述。
随着显示技术的发展,柔性显示屏因其所具备的优异的柔性和可适应性等优点,而在屏幕中得到越来越广泛的应用。目前,屏幕的显示区域的四周存在一定宽度的非显示区域,即边框。而现有的边框较宽,难以继续优化,易导致屏占比降低,且影响屏幕的外观及用户的使用体验。
基于此,请结合参阅图1-图13,本申请的实施例提供一种显示面板100、显示屏200及电子设备300,能够在保证屏幕具有良好工作性能的基础上,增大显示区域的面积,从而有效提高屏占比,实现屏幕的窄边框化,改善用户的使用体验,具体将在下文进行说明。
请参阅图1,电子设备300可以包括壳体310和显示屏200。壳体310作为电子设备300的结构承载部件,用于安装显示屏200,以及收容或安装如电路板组件等其他部件。显示屏200可以用于显示文字、图像、视频等。示例性地,显示屏200可以是曲面屏,其边缘弯曲形成弧面。也即,显示屏200可以是柔性显示屏。
其中,电子设备300可以为但不限于为手机、平板电脑、笔记本电脑等智能消费类电子设备,或增强现实(augmented reality,AR)、虚拟现实(virtual reality,VR)、智能手表、智能手环等可穿戴类电子设备,或车机等车载类设备。
显示屏200可以为但不限于为有机发光二极管(organic light-emitting diode,OLED)显示屏,有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light-emitting diode,AMOLED)显示屏,迷你发光二极管(mini organic lightemitting diode)显示屏,微型发光二极管(micro organic light-emitting diode)显示屏,微型有机发光二极管(micro organic light-emitting diode)显示屏,量子点发光二极管(quantum dot light emitting diodes,QLED)显示屏。
需说明的是,显示屏200不仅适用于如上所述的电子设备300,其还可适用于任何对于显示文字、图像、视频等有需求的设备,本申请的实施例对此不做严格限制。
请结合参阅图1和图2,显示屏200可以包括盖板210和显示面板100,盖板210与显示面板100贴合,显示面板100被盖板210与壳体310封闭起来。盖板210用于对显示面 板100进行防护,其可以在用户触摸时向用户提供触感和力反馈。其中,显示面板100可以为柔性显示面板,即其可具有柔性并适于弯折。盖板210的形状可以与显示面板100的形状相适配,例如显示面板100为曲面面板时,盖板210可以为曲面盖板。
如下将结合图3-图13而对显示面板100的详细结构进行说明。
请结合参阅图3、图4、图5和图6,显示面板100可以包括显示区10和边缘区40。显示区10可以为显示面板100中能够进行图像显示的区域,其边缘可根据显示面板100的应用场景需求而以预定曲率进行弯曲,使显示面板100呈现曲面面板的形态。边缘区40可以为显示面板100中不进行图像显示的区域,边缘区40与显示区10连接并位于显示区10的外围,其可以跟随显示区10的弯折而弯折至显示区10的背面。
由此,通过将显示面板100的显示区10弯折,并将显示面板100的边缘区40(非显示区域)设置在显示区10的背面,能够使得显示区10的显示面轮廓即为显示屏200的轮廓,此设置下,除显示区10外没有其余结构占用显示空间,故而能使显示屏200整个表面均显示图像,使得应用该显示面板100的设备可以实现设备正面的全屏显示,进而使超窄边框甚至无边框成为现实,有效提高产品的市场竞争力,并可改善用户的使用体验。
需说明的是,如上是以显示区10的显示面轮廓独立构成显示屏200的轮廓,也即,显示屏200的整个表面均显示图像为例进行说明,但在显示面板100的实际应用中,还可以使边缘区40的部分表面占据一定的显示屏200表面。也即,显示屏200的显示面(用户握持电子设备300时朝向用户的表面)中会有部分表面(如靠近边缘的表面)不显示图像。仅需满足显示区10具有平坦部分和弯折部分即可,本申请的实施例对此不做严格限制。
示例性地,以图5和图6所示显示面板100的放置方向为参考方向,将显示区10的四边分为上边101、下边102、左边103和右边104,显示区10的四边均可弯折而形成弧面。
如图5所示,边缘区40可连接在显示区10的下边102、左边103、右边104三边,或者,如图6所示,边缘区40也可以连接在显示区10的上边101、下边102、左边103和右边104。其中,设置于下边102的边缘区40可以为显示面板100中设置焊盘和电路元件的区域,例如,如图7所示,可在设置于下边102的边缘区40远离显示区10的端部设置柔性电路板50(Flexible Printed Circuit,FPC),并在设置于下边102的边缘区40设置驱动芯片60且使驱动芯片60电连接至柔性电路板50。如图5和图6所示,设置于左边103和右边104的边缘区40可以为显示面板100中设置有布线以及用于驱动屏幕的驱动电路70的区域,例如,驱动电路可以为GOA(Gate on Array)驱动电路。
需说明的是,边缘区40与显示区10的连接位置并不局限于上述所列举的方式,边缘区40可根据实际应用需要而连接在显示区10四边中的任意一边、任意两边、任意三边或每一边,本申请的实施例的关键设计不在于边缘区40,对于边缘区40的具体结构及连接位置不做严格限制。
请结合参阅图3和图8,显示区10包括平坦区20和弯折区30,弯折区30弯折连接在平坦区20的外围。也即,弯折区30与平坦区20连接且相对平坦区20弯折。换言之,平坦区20与弯折区30呈夹角设置,夹角的角度可以在90°~180°的角度范围内(包括端点值90°和180°)。
其中,弯折区30可理解为显示区10中能够进行弯折的区域,平坦区20可理解为显示 区10中较为平坦且不进行弯折的区域。当弯折区30绕其弯折轴(可理解为弯折区30的转动中心线,弯折区30可绕其做弯折运动)相对平坦区20发生弯折时,弯折区30可呈现弧形状态,显示面板100水平方向的尺寸可发生缩减。
可以理解的是,由于弯折区30连接于平坦区20的外围,故而在显示面板100中,平坦区20可以为显示面板100的中心区域,弯折区30可以为显示面板100的边缘区域。而弯折区30能够相对于平坦区20弯曲,也即,显示面板100的边缘可以弯曲以使显示面板100呈现曲面轮廓。
示例性地,如图3所示,弯折区30环绕设置在平坦区20的四周,且与平坦区20的周缘连接。
需说明的是,平坦区20和弯折区30的划分,代表弯折区30为两者中相对易于发生弯折的部分,平坦区20为两者中相对不容易发生弯折的部分,并不代表平坦区20不会发生弯折。也即为,在显示区10中,平坦区20和弯折区30这两个部分,在弯折时所能承受的应力不相同,也即,两者的弯折能力不相同。
如下将结合图8-图13对平坦区20和弯折区30的膜层结构进行详细说明。
请参阅图8,平坦区20包括基底21、缓冲层22、无机绝缘层26、驱动结构层23、第一发光结构层24和第一封装层25。
基底21可以为柔性基底,通过采用柔性基底,能够使平坦区20具有良好的延展性能,且能够为显示屏200的曲面形态提供强有力的支撑。
示例性地,基底21的材质可以包括聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚硅烷、聚硅氧烷、聚硅氮烷、聚碳硅烷、聚丙烯酸酯、聚丙烯酸甲酯、聚甲基丙烯酸酯、聚甲基丙烯酸甲酯、聚丙烯酸乙酯、聚甲基丙烯酸乙酯、环烯烃共聚物(COC)、环烯烃聚合物(COP)、聚乙烯(PE)、聚丙烯(PP)、聚酰亚胺(PI)、聚甲基丙烯酸甲酯(PMMA)、聚苯乙烯(PS)、聚缩醛(POM;聚氧乙烯)、聚醚醚酮(PEEK)、聚酯砜(PES)、聚四氟乙烯(PTFE)、聚氯乙烯(PVC)、聚碳酸酯(PC)、聚偏二氟乙烯(PVDF)、全氟烷基聚合物(PFA)、苯乙烯丙烯腈共聚物(SAN)中一种或多种的组合。
缓冲层22设置在基底21上。一方面,可以抑制外部环境中的水分或其它杂质通过基底21而渗入显示面板100。另一方面,缓冲层22可以将基底21的表面平坦化,有利于提高显示面板100的良率。
无机绝缘层26设置在缓冲层22上。例如,无机绝缘层26可以为由氧化硅(SiOx)构成的单层/多层结构,或者,无机绝缘层26也可以为氮化硅(SiNx)构成的单层/多层结构。
驱动结构层23的部分设置在缓冲层22上,部分设置在无机绝缘层26上,驱动结构层23用于驱动第一发光结构层24发光。驱动结构层23可以包括设置在缓冲层22上且被无机绝缘层26覆盖的半导体层231、设置在无机绝缘层26上的第一栅金属层232、设置在无机绝缘层26上且覆盖第一栅金属层232的第一绝缘层233、设置在第一绝缘层233上的第二栅金属层234、设置在第一绝缘层233上且覆盖第二栅金属层234的第二绝缘层235、设置在第二绝缘层235上的第一导电层236、设置在第二绝缘层235上且覆盖第一导电层236的第二平坦层237、设置在第二平坦层237上的第二导电层238和设置在第二平坦层237上且覆盖第二导电层238的第三平坦层239。
具体而言,半导体层231可以包括源极区域、漏极区域以及连接在源极区域和漏极区域之间的沟道区域,源极区域用于与第一栅金属层232的源极2361连接,漏极区域用于与第一栅金属层232的漏极2362连接。示例性地,半导体层231的材质可以包括铟锡镓锌氧化物(InSnGaZnO)、铟镓锌氧化物(InGaZnO)、铟锡锌氧化物(InSnZnO)、锡镓锌氧化物(SnGaZnO)、铝镓锌氧化物(AlGaZnO)、铟铝锌氧化物(InAlZnO)、锡铝锌氧化物(SnAlZnO)、铟锌氧化物(InZnO)、锡锌氧化物(SnZnO)、铝锌氧化物(AlZnO)、锌镁氧化物(ZnMgO)、锡镁氧化物(SnMgO)、铟镁氧化物(InMgO)、铟镓氧化物(InGaO)、氧化铟(InO)、氧化锡(SnO)、氧化锌(ZnO)等中一种或多种的组合。
另外,通过在半导体层231与第一栅金属层232之间设置无机绝缘层26,能够将半导体层231与第一栅金属层232间隔开而使两者彼此绝缘,使流过半导体层231的电流不会流向第一栅金属层232,有利于电信号的正常流通。
第一栅金属层232可包括栅极和第一电容电极。示例性地,第一栅金属层232的材质可以包括铜(Cu)、铝(Al)、钼(Mo)、铬(Cr)、金(Au)、钛(Ti)、镍(Ni)、钕(Nd)或前述材质的合金。
第一绝缘层233能够将第一栅金属层232和第二栅金属层234间隔开而使两者彼此绝缘,使两者具有良好的电性能。示例性地,第一绝缘层233可以为无机绝缘层,例如,第一绝缘层233可以为由氧化硅(SiOx)构成的单层/多层结构,或者,第一绝缘层233也可以为氮化硅(SiNx)构成的单层/多层结构。
第二栅金属层234可包括第二电容电极。示例性地,第二栅金属层234的材质可以包括铜(Cu)、铝(Al)、钼(Mo)、铬(Cr)、金(Au)、钛(Ti)、镍(Ni)、钕(Nd)或前述材质的合金。
第二绝缘层235能够将第二栅金属层234与第一导电层236间隔开而使两者彼此绝缘。示例性地,第二绝缘层235可以为无机绝缘层,例如,第二绝缘层235可以为由氧化硅(SiOx)构成的单层/多层结构,或者,第二绝缘层235也可以为氮化硅(SiNx)构成的单层/多层结构。
第一导电层236亦可称为第一源漏金属层(SD1),第一导电层236可以包括源极2361和漏极2362。源极2361可通过贯穿无机绝缘层26、第一绝缘层233和第二绝缘层235的第一金属过孔2363与半导体层231的源极2361区域连接。漏极2362可通过贯穿无机绝缘层26、第一绝缘层233和第二绝缘层235的第二金属过孔2364与半导体层231的漏极2362区域连接。其中,第一金属过孔2363和第二金属过孔2364可理解为在孔类结构中填充导电金属而形成的具有导电性能的电连接结构。示例性地,第一导电层236的材质可以包括铜(Cu)、铝(Al)、钼(Mo)、铬(Cr)、金(Au)、钛(Ti)、镍(Ni)、钕(Nd)或前述材质的合金。
可以理解的是,第一导电层236的源极2361、第一导电层236的漏极2362、第一栅金属层232的栅极和半导体层231可共同形成薄膜晶体管,薄膜晶体管为构成用于驱动和控制发光单元发光或显示的像素驱动电路的一部分结构,其可包括驱动晶体管和开关晶体管。第一栅金属层232的第一电容电极和第二栅金属层234的第二电容电极可共同形成存储电容,存储电容为构成用于驱动和控制发光单元发光或显示的像素驱动电路的一部分结构。另外,通过在源极2361、漏极2362和栅极之间设置多个绝缘层,能够使源极2361、漏极2362和栅极之间彼此绝缘,有利于确保薄膜晶体管的电学性能不受影响,可靠性佳。
需说明的是,在显示面板100的实际应用中,可在驱动结构层23形成多个薄膜晶体管 和多个存储电容,每一薄膜晶体管均会与相应的存储电容组成一个像素驱动电路,故而驱动结构层23实际具有多个像素驱动电路。
基于上述描述,应当理解,驱动结构层23中具有多层由无机材料构成的膜层结构,由于无机层的密度较大,且非常致密,导致驱动结构层23易在受弯折后因应力影响而发生断裂,进而影响显示面板100的正常工作。由此,通过将驱动结构层23设置平坦区20,能够使驱动结构层23整体位于非应力集中的较为平坦的区域,从而可以在不影响显示面板100边缘弯曲的情况下,保证驱动结构层23的正常工作不受影响,有利于提高显示面板100整体的工作可靠性。
请继续参阅图8,第二平坦层237可覆盖薄膜晶体管,能够起到保护薄膜晶体管、缓和设置薄膜晶体管所导致的台阶,减小薄膜晶体管与其他线路和器件之间生成的寄生电容的作用。示例性地,第二平坦层237的材质可以包括丙烯酸树脂、环氧树脂、酚醛树脂、聚酰胺树脂、聚酰亚胺树脂和不饱和聚酯树脂、聚苯树脂、聚苯硫醚树脂和苯并环丁烯中一种或多种的组合。
第二导电层238亦可称为第二源漏金属层(SD2),第二导电层238与第一导电层236层叠设置且连接在第一导电层236和第一发光结构层24之间,第二导电层238可以包括连接电极2381,连接电极2381可通过设置在第二平坦层237的第三金属过孔2382与第一导电层236的漏极2362连接。其中,第三金属过孔2382可理解为在孔类结构中填充导电金属而形成的具有导电性能的电连接结构。示例性地,第二导电层238的材质可以包括铜(Cu)、铝(Al)、钼(Mo)、铬(Cr)、金(Au)、钛(Ti)、镍(Ni)、钕(Nd)或前述材质的合金等。
需说明的是,第一导电层236和第二导电层238还可以包括信号线(如栅线、数据线等)。
第三平坦层239可覆盖第二导电层238,能够起到保护第二导电层238的作用。示例性地,第三平坦层239的材质可以包括丙烯酸树脂、环氧树脂、酚醛树脂、聚酰胺树脂、聚酰亚胺树脂和不饱和聚酯树脂、聚苯树脂、聚苯硫醚树脂和苯并环丁烯中一种或多种的组合。
请结合参阅图8、图9和图10,第一发光结构层24设置于第三平坦层239上,第一发光结构层24与驱动结构层23电连接且用于被驱动结构层23驱动而发光。而通过在平坦区20设置第一发光结构层24,能够因第一发光结构层24可被驱动结构层23驱动发光的特性,使平坦区20成为显示面板100中可以进行发光显示的区域。
具体而言,第一发光结构层24包括第一阳极241、第一像素定义层242、第一功能层243和第一阴极244。
第一阳极241设于第三平坦层239上,第一阳极241能够向第一功能层243提供空穴,并可通过设置在第三平坦层239的第四金属过孔与连接电极2381连接。其中,第四金属过孔可理解为在孔类结构中填充导电金属而形成的具有导电性能的电连接结构。示例性地,第一阳极241的材质可包括铟锡氧化物(ITO)、铟锌氧化物(IZO)等。
第一像素定义层242设于第三平坦层239上,且覆盖第一阳极241,第一像素定义层242具有第一像素开口2421,第一像素开口2421暴露部分第一阳极241。
第一功能层243的至少部分设于第一像素开口2421且与第一阳极241连接,第一功能 层243用于发射光。如图10所示,第一功能层243可以包括空穴注入层2431(HIL)、空穴传输层2432(HTL)、发光层2433、电子传输层2434(ETL)和电子注入层2435(EIL)。
空穴注入层2431设置在第一阳极241上,以方便第一阳极241的空穴注入。空穴传输层2432设置在空穴注入层2431上,以有效的向发光层2433传输空穴。发光层2433设置在空穴传输层2432上,发光层2433可通过能够发射特定颜色的光的材料来发射特定颜色的光,如可通过能够发射红光的材料来发射红光,可通过能够发射绿光的材料来发射绿光,能够通过发射蓝光的材料来发射蓝光。发光层2433的材质可以包括有机小分子发光材料、配合物发光材料、高分子聚合物等。电子传输层2434可设置在发光层2433上,以有效的向发光层2433传输电子。电子注入层2435可设置在电子传输层2434和第一阴极244之间,忆方便第一阴极244的电子注入。
可以理解的是,薄膜晶体管可向第一阳极241输入阳极电压,向第一阴极244输入阴极电压,由此,在外界电压的驱动下,由第一阳极241注入的空穴和第一阴极244注入的电子在第一功能层243中复合产生激子(电子-空穴对),激子辐射退激发出光子,产生可见光,其中,发光颜色取决于发光层有机分子的类型,发光亮度或强度取决于发光材料的性能及所施加电流的大小。
请参阅图8,第一阴极244设于第一功能层243上,第一阴极244的至少部分位于第一像素开口2421,第一阴极244能够向第一功能层243提供电子。示例性地,第一阴极244的材质可以包括镁(Mg)、银镁(Ag:Mg)、铟锡氧化物(ITO)、铟锌氧化物(IZO)、铟锡锌氧化物(ITZO)、氧化锌(ZnO)、氧化锡(TO)。
本申请的实施例中,第一阳极241、第一功能层243和第一阴极244可共同形成第一子发光单元245,第一子发光单元245与薄膜晶体管电连接,能够在像素驱动电路的驱动和控制下进行发光或显示。
需说明的是,图8仅示意出一个第一子发光单元245,但在显示面板100的实际应用中,第一像素开口2421的数量为多个,也即为,第一像素定义层242具有多个第一像素开口2421,每一第一像素开口2421内均形成有一个第一子发光单元245,故而第一发光结构层24实际具有多个第一子发光单元245。
另外,请参阅图11,每一第一子发光单元245的颜色包括红色(R)、绿色(G)或蓝色(B)。也即为,当第一子发光单元245的颜色为红色时,其能在像素驱动电路的驱动下发红光,可称为红色子像素R。当第一子发光单元245的颜色为绿色时,其能在像素驱动电路的驱动下发绿光,可称为绿色子像素G。当第一子发光单元245的颜色为蓝色时,其能在像素驱动电路的驱动下发蓝光,可称为蓝色子像素B。
换言之,第一像素定义层242限定出多个颜色不相同的第一子发光单元245。多个红色第一子发光单元245(能发出红光)、多个绿色第一子发光单元245(能发出绿光)、多个蓝色第一子发光单元245(能发出蓝光)按阵列排布。
一种可能的实施方式中,每一个像素驱动电路均驱动一个第一子发光单元245发光,故而可形成1驱1的驱动形式。具体为,每一个像素驱动电路均可驱动一个红色第一子发光单元245发光,或可驱动一个绿色第一子发光单元245发光,或可驱动一个蓝色第一子发光单元245发光。
另一种可能的实施方式中,每一像素驱动电路均驱动同色的至少两个第一子发光单元245发光,故而可形成1驱N的驱动形式。具体为,每一个像素驱动电路均可驱动至少两个红色第一子发光单元245发光,或可驱动至少两个绿色第一子发光单元245发光,或可驱动至少两个蓝色第一子发光单元245发光。
基于上述描述,应当理解,像素驱动电路可根据需要而被配置为驱动一个任意颜色的第一子发光单元245发光或驱动多个同色的第一子发光单元245发光,其驱动方式可根据实际应用场景的改变而相应进行调整,驱动类型的多样化有利于适应多场景下的应用需求,可靠性较佳。
请参阅图8,第一封装层25设于第一发光结构层24上,第一封装层25覆盖多个第一子发光单元245和第一发光结构层24的部分表面或全部表面。此设置下,可因第一封装层25的阻挡而使第一子发光单元245和薄膜晶体管免于受外部环境中水、氧或其他杂质的氧化或破坏,具有良好的保护性能。
示例性地,第一封装层25可以为“无机封装层-有机封装层-无机封装层”的“三明治”形式,此类结构能确保第一封装层25整体上具有较好的水氧阻隔性能。其中,无机封装层可由无机材料形成,如氮化硅(SiNx)和/或氧化硅(SiOx),有机封装层可由有机材料形成,如环氧树脂类有机材料、聚甲基丙烯酸甲酯等。当然,第一封装层25的实际层数并不局限于三层,其可以为一层或多层,对于封装层的层数和层材料构成本申请的实施例不做严格限制。
一种可能的实施方式中,如图8所示,平坦区20还包括第一隔离柱27,第一隔离柱27设于第一发光结构层24上且位于第一封装层25的边缘。由此,第一隔离柱27能够将第一封装层25隔断,当外界水氧从第一隔离柱27一侧侵入第一封装层25时,由于第一封装层25在隔离柱处是被隔断的,故而外界水氧无法越过第一隔离柱27而继续入侵,从而能够使第一隔离柱27起到隔绝水氧的作用,进一步保护显示面板100的内部不受水氧的侵蚀。
需说明的是,第一隔离柱27的数量可根据需要而为一个或多个,当第一隔离柱27的数量为多个时,多个第一隔离柱27均设置在第一封装层25的边缘,以阻隔水氧。另外,在形成第一功能层243和第一阴极244时,由于蒸镀材料的沉积具有方向性(粒子基本沿直线运动),故而第一功能层243和第一阴极244还可能会沉积到第一隔离柱27的表面,使第一隔离柱27的表面覆盖上第一功能层243和第一阴极244。
如上对平坦区20的膜层结构进行了说明,如下将结合图8、图9、图11、图12和图13对弯折区30的膜层结构进行详细说明。
请结合参阅图8和图9,弯折区30包括基底21、依次层叠设置在基底21上的缓冲层22、无机绝缘层26、有机绝缘层31、线路层32、第一平坦层33、第二发光结构层34和第二封装层35。其中,基底21、缓冲层22、无机绝缘层26的具体介绍可参阅前述描述,在此不再赘述。
有机绝缘层31设于无机绝缘层26上,且有机绝缘层31的部分位于无机绝缘层26和缓冲层22中,其中,有机绝缘层31的部分位于无机绝缘层26和缓冲层22中即包括有机绝缘层31贯穿无机绝缘层26且不贯穿缓冲层22,从而通过缓冲层22的间隔而与基底21 无直接接触的情况,也包括有机绝缘层31贯穿无机绝缘层26和缓冲层22从而与基底21直接接触的情况。
具体而言,无机绝缘层26具有第一凹槽261,第一凹槽261贯穿无机绝缘层26。缓冲层22具有第二凹槽221,第二凹槽221贯穿或非贯穿缓冲层22,第二凹槽221与第一凹槽261连通,有机绝缘层31填充第一凹槽261和第二凹槽221。如图9所示,当第二凹槽221贯穿缓冲层22时,有机绝缘层31与基底21直接接触。如图8所示,当第二凹槽221非贯穿缓冲层22时,有机绝缘层31与基底21通过缓冲层22间隔。另外,第一凹槽261的内径尺寸可大于第二凹槽221的内径尺寸,从而使得第一凹槽261与第二凹槽221的连接处呈台阶状。示例性地,有机绝缘层31可由有机材料形成,如环氧树脂类有机材料、聚甲基丙烯酸甲酯等。
可以理解的是,缓冲层22和无机绝缘层26均可采用无机材料制成,而无机材料较脆,易在弯折时导致断裂,由此,采用有机材料制成的有机绝缘层31替代被刻蚀掉的部分缓冲层22和无机绝缘层26,能够增加弯折区30中有机材料的占比,使线路层32与基底21之间具有较少的无机材料,进而使弯折区30在进行弯折时,因具有韧性和延展性良好的材质而使弯折区30的膜层结构不易发生断裂,使弯折区30具有较佳的可弯折性和自适应性,有利于延长显示面板100的使用寿命,提高显示面板100的工作可靠性。
线路层32设于有机绝缘层31上,线路层32电连接在第二发光结构层34和驱动结构层23之间,用于实现第二发光结构层34和驱动结构层23之间的电性连接,从而使第二发光结构层34可以被驱动结构层23驱动而进行发光动作。
可以理解的是,第二发光结构层34位于弯折区30,而用于驱动第二发光结构层34发光的驱动结构层23位于平坦区20,两者位于显示区10内的不同区域,难以直接实现电信号的导通。由此,通过在弯折区30设置线路层32,并使线路层32电连接在第二发光结构层34和驱动结构层23之间,能够使位于平坦区20的驱动结构层23所发出的控制信号能够经由线路层32的传输而传递至第二发光结构层34,并驱动第二发光结构层34进行发光。此设置下,能够通过线路层32的连接作用而延长驱动结构层23的控制路径,使驱动结构层23不仅能够控制距离较短的第一发光结构层24发光,还能够控制距离较长的第二发光结构层34发光,兼具短距离控制和长距离控制的双重作用,驱动结构层23的性能优异。
一种可能的实施方式中,线路层32与第一导电层236电连接。线路层32与第一导电层236可通过同一制程工艺制成,也即,线路层32与第一导电层236同层设置。此设置下,能够使第二发光结构层34与驱动结构层23连接,以便将驱动结构层23的控制信号经由线路层32传递至第二发光结构层34。
另一种可能的实施方式中,线路层32与第二导电层238电连接。线路层32与第二导电层238可通过同一制程工艺制成,也即,线路层32与第二导电层238同层设置。此设置下,能够使第二发光结构层34与驱动结构层23连接,以便将驱动结构层23的控制信号经由线路层32传递至第二发光结构层34。
需说明的是,可根据显示面板100的实际应用需求而灵活选择线路层32与驱动结构层23中的第一导电层236或第二导电层238连接,仅需实现线路层32与驱动结构层23之间的电连接关系即可,本申请的实施例对此不做严格限制。
示例性地,线路层32可包括多条走线,每一走线均电连接在第一发光结构层24和第二发光结构层34之间。例如,走线可以为数据线,并与位于平坦区内的数据线(具体可位于第一导电层或第二导电层)电连接,从而供应像素阵列中每一列的像素。
示例性地,走线可以由如金(Au)、银(Ag)或铝(Al)等具有优异延展性的导电材料形成,或可由钼(Mo)、铬(Cr)、钛(Ti)、镍(Ni)、钕(Nd)、铜(Cu)、及银(Ag)和镁(Mg)的合金形成。而走线可以为单层结构,或者,走线也可以为各种导电材料的多层结构构成,如可由钛(Ti)/铝(Al)/钛(Ti)的三层结构形成,对此不做严格限制。
请参阅图8,第一平坦层33设置在线路层32上,且位于线路层32和第二发光结构层34之间。此设置下,第一平坦层33能够覆盖在线路层32上,可以减少线路层32的机械损伤,避免其内部走线因受外部环境的干扰而造成损伤、断裂的问题发生。还可以在走线进行弯折时,为走线提供应力释放,防止走线收到过大的拉伸或压缩应力,具有良好的保护性能。
示例性地,第一平坦层33的材质可以包括丙烯酸树脂、环氧树脂、酚醛树脂、聚酰胺树脂、聚酰亚胺树脂和不饱和聚酯树脂、聚苯树脂、聚苯硫醚树脂和苯并环丁烯中一种或多种的组合。第一平坦层33可与第二平坦层237可通过同一制程工艺制成,也即,第一平坦层33与第二平坦层237同层设置。或者,第一平坦层33可与第三平坦层239可通过同一制程工艺制成,也即,第一平坦层33与第三平坦层239同层设置。
请参阅图8,第二发光结构层34设置于第一平坦层33上,第二发光结构层34与驱动结构层23电连接且用于被驱动结构层23驱动而发光。应当理解,驱动结构层23不仅能够驱动第一发光结构层24发光,其还能驱动第二发光结构层34发光。
需说明的是,第二发光结构层34与第一发光结构层24可在同一制程工艺中形成,也即为,两者可同层设置,从而使两者在进行发光时显示效果能够较为一致和平衡。
通过在弯折区30设置第二发光结构层34,能够因第二发光结构层34可被驱动结构层23驱动发光的特性,使弯折区30成为显示面板100中可以进行发光显示的区域。基于上述描述,应当理解,弯折区30可以和平坦区20共同形成显示面板100中可以进行发光显示的区域,显示面板100的发光显示区域可自平坦区20延伸至弯折区30。
由此,能够使平坦区20和弯折区30均用于显示,相对于现有技术中仅能在平坦区20进行显示,能够使显示面板100中可以进行显示的区域由平坦区20边缘围成的区域扩大至弯折区30边缘围成的区域。此设置下,显示面板100应用至显示屏200中时,能够在不改变显示屏200的尺寸的基础上,因显示区域面积的扩大,而极大的减小非显示区域的宽度,也即边框宽度,进而使窄边框甚至无边框成为现实,且还能有效提高屏占比,改善用户的使用体验。
另外,将第二发光结构层34设于弯折区30,能够因弯折区30具有较少的由无机材料构成的膜层结构,而使第二发光结构层34能够在进行发光显示的同时良好的适应弯折所产生的应力,将因应力过大而导致膜层结构发生断裂、影响走线布置、造成断路或短路等问题发生的可能性降低到最小,有效保证显示面板100的发光显示性能,可靠性佳。
请结合参阅图8、图9和图12,具体而言,第二发光结构层34包括第二阳极341、第二像素定义层342、第二功能层343和第二阴极344。
第二阳极341设于第一平坦层33上,第二阳极341能够向第二功能层343提供空穴。示例性地,第二阳极341的材质可包括铟锡氧化物(ITO)、铟锌氧化物(IZO)等。第二阳极341可以为引线形式,并电连接至第一阳极241。
第二像素定义层342设于第一平坦层33上,且覆盖第二阳极341,第二像素定义层342具有第二像素开口3421,第二像素开口3421暴露部分第二阳极341。
第二功能层343的至少部分设于第二像素开口3421且与第二阳极341连接,第二功能层343用于发射光。第二功能层343可以包括空穴注入层3431(HIL)、空穴传输层3432(HTL)、发光层3433、电子传输层3434(ETL)和电子注入层3435(EIL)。
空穴注入层3431设置在第二阳极341上,以方便第二阳极341的空穴注入。空穴传输层3432设置在空穴注入层3431上,以有效的向发光层3433传输空穴。发光层3433设置在空穴传输层3432上,发光层3433可通过能够发射特定颜色的光的材料来发射特定颜色的光,如可通过能够发射红光的材料来发射红光,可通过能够发射绿光的材料来发射绿光,能够通过发射蓝光的材料来发射蓝光。发光层3433的材质可以包括有机小分子发光材料、配合物发光材料、高分子聚合物等。电子传输层3434可设置在发光层3433上,以有效的向发光层3433传输电子。电子注入层3435可设置在电子传输层3434和第二阴极344之间,忆方便第二阴极344的电子注入。
可以理解的是,薄膜晶体管可向第二阳极341输入阳极电压,向第二阴极344输入阴极电压,由此,在外界电压的驱动下,由第二阳极341注入的空穴和第二阴极344注入的电子在第二功能层343中复合产生激子(电子-空穴对),激子辐射退激发出光子,产生可见光,其中,发光颜色取决于发光层有机分子的类型,发光亮度或强度取决于发光材料的性能及所施加电流的大小。
第二阴极344设于第二功能层343上,第二阴极344的至少部分位于第二像素开口3421,第二阴极344能够向第二功能层343提供电子。示例性地,第二阴极344的材质可以包括镁(Mg)、银镁(Ag:Mg)、铟锡氧化物(ITO)、铟锌氧化物(IZO)、铟锡锌氧化物(ITZO)、氧化锌(ZnO)、氧化锡(TO)。
本申请的实施例中,第二阳极341、第二功能层343和第二阴极344可共同形成第二子发光单元345,第二子发光单元345与薄膜晶体管电连接,能够在像素驱动电路的驱动和控制下进行发光或显示。
需说明的是,图8仅示意出两个第二子发光单元345,但在显示面板100的实际应用中,第二像素开口3421的数量为多个,也即为,第二像素定义层342具有多个第二像素开口3421,每一第二像素开口3421内均形成有一个第二子发光单元345,故而第二发光结构层34实际具有多个第二子发光单元345。
另外,请参阅图11,每一第二子发光单元345的颜色包括红色(R)、绿色(G)或蓝色(B)。也即为,当第二子发光单元345的颜色为红色时,其能在像素驱动电路的驱动下发红光,可称为红色子像素R。当第二子发光单元345的颜色为绿色时,其能在像素驱动电路的驱动下发绿光,可称为绿色子像素G。当第二子发光单元345的颜色为蓝色时,其能在像素驱动电路的驱动下发蓝光,可称为蓝色子像素B。
换言之,第二像素定义层342限定出多个颜色不相同的第二子发光单元345。多个红 色第二子发光单元345(能发出红光)、多个绿色第二子发光单元345(能发出绿光)、多个蓝色第二子发光单元345(能发出蓝光)按阵列排布。
一种可能的实施方式中,每一个像素驱动电路均驱动一个第二子发光单元345发光,故而可形成1驱1的驱动形式。具体为,每一个像素驱动电路均可驱动一个红色第二子发光单元345发光,或可驱动一个绿色第二子发光单元345发光,或可驱动一个蓝色第二子发光单元345发光。
另一种可能的实施方式中,每一像素驱动电路均驱动同色的至少两个第二子发光单元345发光,故而可形成1驱N的驱动形式。具体为,每一个像素驱动电路均可驱动至少两个红色第二子发光单元345发光,或可驱动至少两个绿色第二子发光单元345发光,或可驱动至少两个蓝色第二子发光单元345发光。
又一种可能的实施方式中,每一像素驱动电路均驱动同色的至少一个第一子发光单元245和至少一个第二子发光单元345发光,故而可形成1驱N的驱动形式。具体为,每一个像素驱动电路均可驱动至少一个红色第一子发光单元245发光和至少一个红色第二子发光单元345发光,或可驱动至少一个绿色第一子发光单元245发光和至少一个绿色第二子发光单元345发光,或可驱动至少一个蓝色第一子发光单元245发光和至少一个蓝色第二子发光单元345发光。
基于上述描述,应当理解,像素驱动电路可驱动第一子发光单元245发光、第二子发光单元345发光及第一子发光单元245和第二子发光单元345发光,可根据需要而被配置为驱动一个任意颜色的第一子发光单元245发光,或驱动一个任意颜色的第二子发光单元345发光,或驱动多个同色的第一子发光单元245发光,或驱动多个同色的第二子发光单元345发光,或驱动一个或多个同色的第一子发光单元245和第二子发光单元345发光,其驱动方式可根据实际应用场景的改变而相应进行调整,驱动类型的多样化有利于适应多场景下的应用需求,可靠性较佳。
一种可能的实施方式中,如图11所示,前文中描述的线路层32中的走线可以包括数据线321,位于弯折区30的数据线321可与平坦区20的数据线电连接,以供应阵列中的每一列子像素(也即同一列设置的第一子发光单元245和第二子发光单元345)。也即为,弯折区30的数据线321一端与平坦区20的数据线电连接,另一端用于与驱动芯片60电连接。
示例性地,数据线321可以为斜线。可以理解的是,由于数据线321位于弯折区30,故而其需具有良好的弯折性能,良好的弯折性能能够将因弯折而造成线路开裂、断开,进而使显示面板100失效的问题发生的可能性降低到最小,充分保证显示面板100的使用寿命。
或者,如图11所示,数据线321均包括第一部分322和第二部分323。第一部分322与平坦区20的数据线连接,第一部分322的延伸方向与弯折区30的弯折方向相同,第二部分323与第一部分322弯折连接,且第二部分323远离第一部分322的一端用于与驱动芯片60连接。也即为,数据线321可以为折线。此设置下,可以使数据线321所受的张力最小化,有利于保证数据线321不会在弯折时断裂。
请结合参阅图8和图13,第二封装层35设于第二发光结构层34上,具体为设于第一 平坦层33上,第二封装层35包括多个子封装结构351,每一子封装结构351均覆盖至少一个第二子发光单元345。
需说明的是,设于弯折区30的第二封装层35并不会完全覆盖第二发光结构层34的表面,图13中灰色部分即为第二发光结构层34未覆盖第二封装层35的表面,也即第二封装层35可以不覆盖未设有第二子发光单元345的部分,故而能够覆盖第二子发光单元345的子封装结构351可形成类似“岛”的结构,“岛”与“岛”之间暴露出未设置第二封装层35的第二发光结构层34。例如,当每一子封装结构351覆盖一个第二子发光单元345时,一个子封装结构351可独立构成一个封装一个第二子发光单元345的“岛”,当每一子封装结构351覆盖两个第二子发光单元345时,一个子封装结构351可独立构成一个封装两个第二子发光单元345的“岛”。
此设置下,在弯折区30设置的多个子封装结构351可形成“岛”状封装,“岛”状封装可以区别于现有技术中的整面封装而使第二发光结构层34具有未被子封装结构351覆盖的部分,从而能够有效改善弯折区30在弯折时所受的应力,避免弯折区30的膜层结构发生断裂。另外,还可因子封装结构351的阻挡而使第二子发光单元345免于受外部环境中水、氧或其他杂质的氧化或破坏,具有良好的保护性能。
示例性地,第二封装层35可以为“无机封装层-有机封装层-无机封装层”的“三明治”形式,此类结构能确保第二封装层35整体上具有较好的水氧阻隔性能。其中,无机封装层可由无机材料形成,如氮化硅(SiNx)和/或氧化硅(SiOx),有机封装层可由有机材料形成,如环氧树脂类有机材料、聚甲基丙烯酸甲酯等。当然,第二封装层35的实际层数并不局限于三层,其可以为一层或多层,对于封装层的层数和层材料构成本申请的实施例不做严格限制。
一种可能的实施方式中,如图8所示,弯折区30还包括第二隔离柱36,第二隔离柱36设于第二发光结构层34上且位于第二封装层35的边缘。由此,第二隔离柱36能够将第二封装层35隔断,当外界水氧从第二隔离柱36一侧侵入第二封装层35时,由于第二封装层35在隔离柱处是被隔断的,故而外界水氧无法越过第二隔离柱36而继续入侵,从而能够使第二隔离柱36起到隔绝水氧的作用,进一步保护显示面板100的内部不受水氧的侵蚀。
需说明的是,第二隔离柱36的数量可根据需要而为一个或多个,当第二隔离柱36的数量为多个时,多个第二隔离柱36均设置在第二封装层35的边缘,以阻隔水氧。另外,在形成第二功能层343和阴极时,由于蒸镀材料的沉积具有方向性(粒子基本沿直线运动),故而第二功能层343和第二阴极344还可能会沉积到第二隔离柱36的表面,使第二隔离柱36的表面覆盖上第二功能层343和第二阴极344。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。
Claims (13)
- 一种显示面板,其特征在于,所述显示面板包括:平坦区,所述平坦区包括层叠设置的驱动结构层和第一发光结构层,所述第一发光结构层与所述驱动结构层电连接且用于被所述驱动结构层驱动而发光;及弯折区,所述弯折区连接于所述平坦区的外围,且相对所述平坦区弯曲,所述弯折区包括第二发光结构层,所述第二发光结构层与所述第一发光结构层同层设置,所述第二发光结构层与所述驱动结构层电连接且用于被所述驱动结构层驱动而发光。
- 如权利要求1所述的显示面板,其特征在于,所述弯折区还包括线路层,所述线路层与所述第二发光结构层层叠设置,所述线路层电连接在所述第二发光结构层和所述驱动结构层之间。
- 如权利要求2所述的显示面板,其特征在于,所述驱动结构层包括层叠设置的第一导电层和第二导电层,所述第二导电层连接在所述第一导电层和所述第一发光结构层之间;所述线路层与所述第一导电层电连接,或者,所述线路层与所述第二导电层电连接。
- 如权利要求1-3任一项所述的显示面板,其特征在于,所述第一发光结构层具有多个第一像素开口,每一所述第一像素开口均用于形成一个第一发光单元,所述平坦区还包括第一封装层,所述第一封装层设于所述第一发光结构层上,所述第一封装层覆盖多个所述第一发光单元和所述第一发光结构层的至少部分表面。
- 如权利要求4所述的显示面板,其特征在于,所述平坦区还包括第一隔离柱,所述第一隔离柱设于所述第一发光结构层上且位于所述第一封装层的边缘。
- 如权利要求2-5任一项所述的显示面板,其特征在于,所述弯折区还包括第一平坦层,所述第一平坦层位于所述线路层和所述第二发光结构层之间。
- 如权利要求6所述的显示面板,其特征在于,所述弯折区还包括有机绝缘层,所述有机绝缘层位于所述线路层背离所述第一平坦层的一侧。
- 如权利要求7所述的显示面板,其特征在于,所述弯折区还包括基底、依次层叠设置在所述基底上的缓冲层和无机绝缘层,所述有机绝缘层设于所述无机绝缘层背离所述缓冲层的一侧,所述无机绝缘层具有贯穿所述无机绝缘层的第一凹槽,所述缓冲层具有与所述第一凹槽连通的第二凹槽;所述有机绝缘层填充所述第一凹槽和所述第二凹槽,且设于所述第二凹槽的所述有机绝缘层与所述基底间隔设置;或者,所述第二凹槽贯穿所述缓冲层,所述有机绝缘层填充所述第一凹槽和所述第二凹槽,且设于所述第二凹槽的所述有机绝缘层与所述基底接触。
- 如权利要求6-8任一项所述的显示面板,其特征在于,所述第二发光结构层具有多个第二像素开口,每一所述第二像素开口均用于形成一个第二发光单元,所述弯折区还包括多个子封装结构,每一所述子封装结构均覆盖至少一个所述第二子发光单元。
- 如权利要求9所述的显示面板,其特征在于,所述弯折区还包括第二隔离柱,所述第二隔离柱设于所述第二发光结构层上且位于所述第二封装层的边缘。
- 如权利要求1-10任一项所述的显示面板,其特征在于,所述第一发光结构层包括 多个第一子发光单元,每一所述第一子发光单元的颜色包括红色、绿色或蓝色,所述第二发光结构层包括多个第二子发光单元,每一所述第二子发光单元的颜色包括红色、绿色或蓝色,所述驱动结构层包括多个像素驱动电路;每一所述像素驱动电路驱动一个所述第一子发光单元发光;或者,每一所述像素驱动电路驱动一个所述第二子发光单元发光;或者,每一所述像素驱动电路驱动同色的至少两个所述第一子发光单元发光;或者,每一所述像素驱动电路驱动同色的至少两个所述第二子发光单元发光;或者,每一所述像素驱动电路驱动同色的至少一个所述第一子发光单元和至少一个所述第二子发光单元发光。
- 一种显示屏,其特征在于,所述显示屏包括盖板和如权利要求1-11任一项所述的显示面板,所述盖板与所述显示面板贴合。
- 一种电子设备,其特征在于,所述电子设备包括如权利要求12所述的显示屏。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111331299.5A CN115000124B (zh) | 2021-11-11 | 2021-11-11 | 显示面板、显示屏及电子设备 |
CN202111331299.5 | 2021-11-11 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2023082806A1 WO2023082806A1 (zh) | 2023-05-19 |
WO2023082806A9 true WO2023082806A9 (zh) | 2023-06-29 |
Family
ID=83017955
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/117335 WO2023082806A1 (zh) | 2021-11-11 | 2022-09-06 | 显示面板、显示屏及电子设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115000124B (zh) |
WO (1) | WO2023082806A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115000124B (zh) * | 2021-11-11 | 2023-09-01 | 荣耀终端有限公司 | 显示面板、显示屏及电子设备 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107204357B (zh) * | 2017-07-05 | 2019-08-02 | 武汉华星光电半导体显示技术有限公司 | 一种柔性显示面板及其制备方法、柔性显示装置 |
TWI634468B (zh) * | 2017-08-18 | 2018-09-01 | 財團法人工業技術研究院 | 透明顯示裝置 |
CN108550603B (zh) * | 2018-04-24 | 2020-12-11 | 云谷(固安)科技有限公司 | 柔性显示面板、显示装置及其制作方法 |
CN108922983B (zh) * | 2018-07-26 | 2020-07-28 | 武汉天马微电子有限公司 | 一种显示面板及显示装置 |
KR102562604B1 (ko) * | 2018-11-08 | 2023-08-01 | 엘지디스플레이 주식회사 | 플렉시블 전계발광 표시장치 |
CN109560111B (zh) * | 2018-11-30 | 2021-01-29 | 厦门天马微电子有限公司 | 有机发光显示面板和显示装置 |
KR20200094874A (ko) * | 2019-01-30 | 2020-08-10 | 삼성디스플레이 주식회사 | 표시 장치 |
CN109817675B (zh) * | 2019-01-30 | 2021-03-23 | 武汉华星光电半导体显示技术有限公司 | 柔性阵列基板、显示面板及制备方法 |
KR102441330B1 (ko) * | 2019-03-27 | 2022-09-13 | 삼성디스플레이 주식회사 | 가요성 표시 장치 |
CN110853517A (zh) * | 2019-11-21 | 2020-02-28 | 京东方科技集团股份有限公司 | 一种显示基板及其制备方法、显示装置 |
CN111477108B (zh) * | 2020-04-26 | 2022-02-01 | 武汉华星光电半导体显示技术有限公司 | 显示面板及其制备方法、显示装置 |
CN111564568B (zh) * | 2020-05-18 | 2023-06-06 | 京东方科技集团股份有限公司 | 显示面板及显示装置 |
CN111768706A (zh) * | 2020-06-24 | 2020-10-13 | 武汉华星光电半导体显示技术有限公司 | 一种显示面板、其制备方法及显示装置 |
CN112002734B (zh) * | 2020-08-06 | 2022-08-05 | 武汉华星光电半导体显示技术有限公司 | Oled显示面板 |
CN112310123B (zh) * | 2020-10-27 | 2023-02-07 | 武汉华星光电半导体显示技术有限公司 | 显示面板以及显示装置 |
CN112750883B (zh) * | 2020-12-30 | 2024-05-31 | 武汉天马微电子有限公司 | 一种显示面板以及显示装置 |
CN112968139B (zh) * | 2021-02-05 | 2023-10-10 | 京东方科技集团股份有限公司 | 显示基板、显示装置及其制备方法 |
CN115000124B (zh) * | 2021-11-11 | 2023-09-01 | 荣耀终端有限公司 | 显示面板、显示屏及电子设备 |
-
2021
- 2021-11-11 CN CN202111331299.5A patent/CN115000124B/zh active Active
-
2022
- 2022-09-06 WO PCT/CN2022/117335 patent/WO2023082806A1/zh active Application Filing
Also Published As
Publication number | Publication date |
---|---|
CN115000124B (zh) | 2023-09-01 |
WO2023082806A1 (zh) | 2023-05-19 |
CN115000124A (zh) | 2022-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102100247B1 (ko) | 유기 발광 다이오드 어레이 기판, 그 제조 방법, 및 디스플레이 장치 | |
CN113424323B (zh) | 显示基板、显示面板及拼接屏 | |
CN111384108B (zh) | 具有通孔的显示装置 | |
EP3716339A1 (en) | Flexible display device | |
KR102652572B1 (ko) | 플렉서블 전계 발광 표시장치 | |
KR20180047536A (ko) | 유기발광 표시장치 | |
CN105824457A (zh) | 有机发光二极管显示器 | |
WO2022022124A1 (zh) | 静电保护电路、显示基板和显示装置 | |
US20240038773A1 (en) | Display panel and display device | |
JP2014142456A (ja) | 表示装置 | |
US20240040862A1 (en) | Display panel and a display device | |
WO2014020850A1 (en) | Light emitting device, display unit including the same, and electronic apparatus | |
CN113078200B (zh) | 显示基板及显示面板 | |
WO2023082806A1 (zh) | 显示面板、显示屏及电子设备 | |
WO2023040596A1 (zh) | 显示基板及显示装置 | |
KR102666703B1 (ko) | 전계 발광 표시장치 | |
KR102602171B1 (ko) | 전계 발광 표시장치 | |
WO2020056887A1 (zh) | 有机发光二极管显示屏及电子设备 | |
KR102640017B1 (ko) | 협-베젤 전계 발광 표시장치 | |
KR102574813B1 (ko) | 플렉서블 전계 발광 표시장치 | |
US20240014183A1 (en) | Spliced display panel and display device | |
KR102730281B1 (ko) | 관통홀이 구비된 표시장치 | |
US20240213228A1 (en) | Display device | |
KR102433198B1 (ko) | 유기발광 표시장치 | |
WO2023077545A1 (zh) | 拼接显示面板和显示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22891611 Country of ref document: EP Kind code of ref document: A1 |