[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023082611A1 - 窗式空调器的控制方法、运行控制装置及窗式空调器 - Google Patents

窗式空调器的控制方法、运行控制装置及窗式空调器 Download PDF

Info

Publication number
WO2023082611A1
WO2023082611A1 PCT/CN2022/096290 CN2022096290W WO2023082611A1 WO 2023082611 A1 WO2023082611 A1 WO 2023082611A1 CN 2022096290 W CN2022096290 W CN 2022096290W WO 2023082611 A1 WO2023082611 A1 WO 2023082611A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
noise
value
preset
increase
Prior art date
Application number
PCT/CN2022/096290
Other languages
English (en)
French (fr)
Inventor
李锶
胡伟宏
梁嘉文
Original Assignee
广东美的制冷设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的制冷设备有限公司 filed Critical 广东美的制冷设备有限公司
Publication of WO2023082611A1 publication Critical patent/WO2023082611A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/02Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing
    • F24F1/03Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing characterised by mounting arrangements
    • F24F1/031Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing characterised by mounting arrangements penetrating a wall or window
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • F24F11/66Sleep mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/87Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling absorption or discharge of heat in outdoor units
    • F24F11/871Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling absorption or discharge of heat in outdoor units by controlling outdoor fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/24Means for preventing or suppressing noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/24Means for preventing or suppressing noise
    • F24F2013/247Active noise-suppression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2130/00Control inputs relating to environmental factors not covered by group F24F2110/00
    • F24F2130/40Noise
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the invention relates to the technical field of air conditioner control, in particular to a control method of a window type air conditioner, an operation control device and the window type air conditioner.
  • Window air conditioners are usually installed on the window frame of the wall to cool or heat the indoor environment. At present, most window air conditioners are equipped with noise reduction mode.
  • the noise reduction method of fixed frequency window air conditioner is that when the sleep mode is activated, the fan speed is directly adjusted to the lowest gear to work;
  • the noise reduction method is that when the sleep mode is activated, the fan speed is reduced to the lowest gear, and the frequency of the compressor is also reduced to meet the overall low noise requirement.
  • reducing the fan speed and compressor frequency alone will significantly reduce the cooling effect.
  • the object of the present invention is to at least solve one of the technical problems in the prior art, and provide a control method, an operation control device and a window air conditioner, which can effectively coordinate the influence of noise, temperature and humidity, and improve The comfort of the user during sleep.
  • an embodiment of the present invention provides a method for controlling a window air conditioner, including:
  • Acquiring mode trigger instructions operating in the first control mode within a first preset time period, the first control mode includes: acquiring noise measurement values and temperature measurement values, according to the noise measurement value, the temperature measurement value , noise preset value, temperature preset value to adjust compressor frequency, internal fan speed, external fan speed and pumping motor speed;
  • the second control mode includes: obtaining a humidity measurement value, and adjusting the frequency of the compressor and the speed of the internal fan according to the humidity measurement value and the humidity preset value and pumping motor speed.
  • the window air conditioner will receive the mode trigger instruction, and then run first within the first preset time period
  • the frequency of the compressor, the speed of the internal fan, the speed of the external fan and the speed of the water pumping motor are adjusted according to the difference between the noise measurement value and the temperature measurement value and the preset value, so that the noise and temperature It may meet the low noise requirements and temperature requirements of the initial stage of sleep
  • the noise requirements are not as high as the initial stage of sleep, but the humidity needs to be well controlled, so in the second control mode according to the humidity
  • the difference between the measured value and the preset value is used to adjust the frequency of the compressor, the speed of the internal fan and the speed of the water pumping motor, so that the humidity can meet the humidity requirements of the sleeping stage as much as possible; through the different parameters of
  • the noise value can be reduced by reducing the frequency of the compressor, the speed of the internal fan, the speed of the external fan, and the speed of the water pumping motor, so that the noise value can be effectively controlled.
  • D is the noise measurement value
  • Dt is the noise preset value
  • T is the temperature measurement value
  • Tt is the temperature preset value
  • M and N are the preset values.
  • the temperature measurement value T is less than the difference between the temperature preset value Tt and the preset value N, it means that the temperature measurement value T is much smaller than the temperature preset value Tt. At this time, the temperature is too low or the cooling capacity is too strong. Reducing the frequency of the compressor can be effective. Reduced cooling capacity;
  • the noise measurement value D is less than the difference between the noise preset value Dt and the preset value M and the temperature measurement value T is greater than the temperature preset value Tt, it means that the noise measurement value D is much smaller than the noise preset value Dt and the temperature does not meet the requirements.
  • Increasing the frequency of the compressor can effectively improve the cooling capacity, and the noise value also has sufficient room for improvement;
  • the noise measurement value D is within the range of the noise preset value Dt fluctuating preset value M and the temperature measurement value T is greater than the sum of the temperature preset value Tt and the preset value N, it means that the noise deviation is not large, but the temperature deviation is large At this time, increasing the speed of the pumping motor can improve the heat transfer effect of the condenser and improve the cooling capacity without causing a large increase in noise;
  • the noise measurement value D is greater than the sum of the noise preset value Dt and the preset value M and the temperature measurement value T is within the range of the temperature preset value Tt fluctuating from the preset value N, it means that the temperature deviation is not large, but the noise deviation is large , at this time, reducing the speed of the internal fan can reduce the noise without causing a significant drop in cooling capacity.
  • the control method of an embodiment within the first preset time period, it also includes:
  • the adjusting the frequency of the compressor, the speed of the internal fan and the speed of the pumping motor according to the measured humidity value and the preset humidity value includes:
  • H is a measured value of humidity
  • Ht is a preset value of humidity
  • P is a preset value
  • H ⁇ Ht-P it means that the humidity measurement value is far lower than the humidity preset value at this time, and the temperature of the evaporator is increased by reducing the frequency of the compressor and increasing the speed of the internal fan, thereby reducing the dehumidification capacity; when H>Ht+ P, indicating that the humidity measurement value is much higher than the humidity preset value at this time.
  • the increase rate of the compressor frequency is 2hz/min, and the decrease rate is 4hz/min; the increase rate of the internal fan speed, the external fan speed and the pumping motor speed is 50rev/min, and the decrease rate is 100rev/min. min.
  • an embodiment of the present invention provides an operation control device, including at least one control processor and a memory for communicating with the at least one control processor; the memory stores information that can be processed by the at least one control processor. Instructions executed by the controller, the instructions are executed by the at least one control processor, so that the at least one control processor can execute the method for controlling the window air conditioner described in the embodiment of the first aspect above.
  • an embodiment of the present invention provides a window air conditioner, including the operation control device described in the embodiment of the second aspect above.
  • an embodiment of the present invention provides a computer-readable storage medium, the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are used to make a computer perform the above-mentioned first aspect embodiment.
  • the control method of the window air conditioner is not limited to:
  • Fig. 1 is a flow chart of a control method for a window air conditioner provided by an embodiment of the present invention
  • Fig. 2 is a flowchart of a control method of a window air conditioner provided by another embodiment of the present invention.
  • Fig. 3 is a schematic structural diagram of an operation control device provided by an embodiment of the present invention.
  • Window air conditioners are usually installed on the window frame of the wall to cool or heat the indoor environment. At present, most window air conditioners are equipped with noise reduction mode.
  • the noise reduction method of fixed frequency window air conditioner is that when the sleep mode is activated, the fan speed is directly adjusted to the lowest gear to work;
  • the noise reduction method is that when the sleep mode is activated, the fan speed is reduced to the lowest gear, and the frequency of the compressor is also reduced to meet the overall low noise requirement.
  • reducing the fan speed and compressor frequency alone will significantly reduce the cooling effect.
  • Embodiments of the present invention provide a control method, an operation control device, and a window air conditioner for a window air conditioner, which can effectively coordinate the effects of noise, temperature, and humidity, and improve the user's comfort during sleep.
  • the embodiment of the first aspect of the present invention provides a control method of a window air conditioner, including steps S110 to S120:
  • Step S110 Obtain a mode trigger instruction, within a first preset time period, run in the first control mode, the first control mode includes: acquiring noise measurement value and temperature measurement value, according to the noise measurement value, the Temperature measurement value, noise preset value, temperature preset value to adjust compressor frequency, internal fan speed, external fan speed and pumping motor speed;
  • Step S120 After the first preset time period, operate in the second control mode, the second control mode includes: acquiring a humidity measurement value, adjusting the frequency of the compressor according to the humidity measurement value and the humidity preset value, Internal fan speed and pumping motor speed.
  • the window air conditioner will receive a mode trigger instruction, and then run in the first control mode within the first preset time period, In the first control mode, the frequency of the compressor, the speed of the internal fan, the speed of the external fan and the speed of the pumping motor are adjusted according to the difference between the noise measurement value and the temperature measurement value and the preset value, so that the noise and temperature can meet the requirements of the initial stage of sleep as much as possible.
  • the noise requirements are not as high as the initial stage of sleep, but the humidity needs to be controlled, so in the second control mode according to the humidity measurement value and the preset value Adjust the frequency of the compressor, the speed of the internal fan, and the speed of the pumping motor, so that the humidity can meet the humidity requirements of the sleeping stage as much as possible; through the different emphases of the parameters in the two stages, the operating parameters of the window air conditioner are controlled accordingly. It can effectively coordinate the influence of noise, temperature and humidity, and improve the comfort of the user during sleep.
  • noise factor and the corresponding adjustment operations for noise reduction are considered, and the above four adjustment operations have different influences on the noise factors, such as the frequency of the compressor, the speed of the internal fan, the speed of the external fan, the The influence of the speed of the hydroelectric motor on the noise is generally gradually reduced, and appropriate adjustment measures need to be selected according to the magnitude of the noise measurement.
  • D is the noise measurement value
  • Dt is the noise preset value
  • T is the temperature measurement value
  • Tt is the temperature preset value
  • M and N are the preset values.
  • T ⁇ Tt-N that is, when the temperature measurement value T is less than the difference between the temperature preset value Tt and the preset value N, it means that the temperature measurement value T is much smaller than the temperature preset value Tt, and the temperature is too low or the cooling capacity is too strong.
  • the adjustment operation is to reduce the frequency of the compressor, which can effectively reduce the cooling capacity;
  • the noise measurement value D is greater than the sum of the noise preset value Dt and the preset value M, and the temperature measurement value T fluctuates around the temperature preset value Tt.
  • N it means that the temperature deviation is not large, but the noise deviation is relatively large. At this time, reducing the speed of the internal fan can reduce the noise without causing a significant drop in cooling capacity.
  • the control method of an embodiment within the first preset time period, it also includes:
  • the adjusting the frequency of the compressor, the speed of the internal fan and the speed of the pumping motor according to the measured humidity value and the preset humidity value includes:
  • H is a measured value of humidity
  • Ht is a preset value of humidity
  • P is a preset value
  • H ⁇ Ht-P it means that the humidity measurement value is far lower than the humidity preset value at this time, and the temperature of the evaporator is increased by reducing the frequency of the compressor and increasing the speed of the internal fan, thereby reducing the dehumidification capacity; when H>Ht+ P, indicating that the humidity measurement value is much higher than the humidity preset value at this time.
  • the increase rate of the compressor frequency is 2hz/min, and the decrease rate is 4hz/min; the increase rate of the internal fan speed, the external fan speed and the pumping motor speed is 50rev/min, and the decrease rate is 100rev/min. min.
  • This embodiment combines the structural form of the window air conditioner and its special function of pumping water to design a window air conditioner
  • the unique control method can effectively coordinate the influence of noise, temperature and humidity, and improve the comfort of the user during sleep.
  • the window air conditioner in this embodiment is an integral air conditioner, and the integral air conditioner is divided into two parts, indoor and outdoor, and the indoor part and the outdoor part are separated by a middle partition; the main components in the room include an evaporator, an internal fan And the wind wheel, the main outdoor components include the condenser, the external fan and the wind wheel.
  • a small water pumping device is installed on the chassis outside the outdoor side. The water pumping device is close to the condenser.
  • the water pumping device includes a water pumping motor and an impeller installed on its motor shaft. The water hits the condenser to improve the heat exchange effect of the condenser.
  • the sleep process is divided into the first stage and the second stage:
  • the first stage is the first sleep stage. This stage is the start-up stage of the sleep mode.
  • the noise needs to be significantly reduced, and the ambient temperature must also meet the needs of cooling and heating. Low noise is the main temperature control mode;
  • the second stage is the sleep stage, which is a stage of deep sleep. It does not require too low noise but needs to control the humidity well, and the humidity control mode that cannot make the humidity of the room too low.
  • the temperature preset value Tt, humidity preset value Ht and noise preset value Dt need to be set.
  • the air conditioner starts to detect the humidity and temperature of the indoor environment, and passes the built-in
  • the noise curve obtains the noise measurement value D of the current air conditioner, the user sets the noise preset value Dt, and then judges.
  • D is the noise measurement value
  • Dt is the noise preset value
  • M is the preset value.
  • the noise is slightly lower than the noise preset value Dt, which meets the user's needs, and then the temperature is judged, and the corresponding adjustment operation is performed according to the result of the temperature judgment:
  • T is a measured temperature value
  • Tt is a preset temperature value
  • N is a preset value
  • the noise is far lower than the noise preset value Dt, which meets the user's needs, and then the temperature is judged, and the corresponding adjustment operation is performed according to the result of the temperature judgment:
  • the noise is slightly higher than the noise preset value Dt, and then the temperature is judged, and the corresponding adjustment operation is performed according to the result of the temperature judgment:
  • the noise is much higher than the noise preset value Dt, and then the temperature is judged, and the corresponding adjustment operation is performed according to the result of the temperature judgment:
  • the second stage is mainly the humidity control mode. While maintaining the current noise level, try to control the humidity to ensure comfort.
  • the compressor frequency, external fan speed and internal fan speed in the second stage are based on the first The stage end parameter to determine the upper and lower bounds of the range.
  • the duration is t1, and detect the humidity of the room:
  • H is a measured value of humidity
  • Ht is a preset value of humidity
  • P is a preset value
  • the second aspect embodiment of the present invention provides an operation control device 500, including at least one control processor 510 and a memory 520 for communicating with the at least one control processor 510; the memory 520 stores There are instructions that can be executed by the at least one control processor 510, and the instructions are executed by the at least one control processor 510, so that the at least one control processor 510 can perform the above-mentioned first aspect embodiment
  • the control method of the window air conditioner for example, executes method step S110 to step S110 to step S120 in FIG. 1 , or executes the method flow shown in FIG. 2 .
  • the embodiment of the third aspect of the present invention provides a window air conditioner, including the operation control device 500 described in the embodiment of the second aspect above.
  • the embodiment of the fourth aspect of the present invention provides a computer-readable storage medium, the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are used to make the computer execute the above-mentioned embodiment of the first aspect.
  • the control method of the window air conditioner for example, executes method step S110 to step S110 to step S120 in FIG. 1 , or executes the method flow shown in FIG. 2 .
  • Computer storage media include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk DVD or other optical disk storage, magnetic cartridges, tape, magnetic disk storage or other magnetic storage devices, or can be used in Any other medium that stores desired information and that can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and may include any information delivery media .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Human Computer Interaction (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种窗式空调器的控制方法、运行控制装置及窗式空调器,其中该控制方法包括:获取模式触发指令,在第一预设时间段内,运行于第一控制模式,其中所述第一控制模式包括获取噪音测量值和温度测量值并根据噪音测量值、温度测量值、噪音预设值、温度预设值调节压缩机频率、内风机转速、外风机转速和打水电机转速(S110);以及在所述第一预设时间段之后,运行于第二控制模式,其中所述第二控制模式包括获取湿度测量值并根据湿度测量值和湿度预设值调节压缩机频率、内风机转速和打水电机转速(S120)。

Description

窗式空调器的控制方法、运行控制装置及窗式空调器
相关申请的交叉引用
本申请要求于2021年11月15日提交的申请号为202111347961.6、名称为“窗式空调器的控制方法、运行控制装置及窗式空调器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及空调器控制技术领域,尤其涉及一种窗式空调器的控制方法、运行控制装置及窗式空调器。
背景技术
窗式空调器通常是安装在墙体的窗框上,用于对室内环境进行制冷或制热。目前大部分的窗式空调器都装有降噪模式,定频窗式空调器的降噪方法是,当睡眠模式启动时,风机的转速直接调整到最低档工作;变频窗式空调器的降噪方法是,当睡眠模式启动时,风机转速降低到最低档,压缩机的频率也降低,达到整体的低噪音需求。但是单独的降低风机转速和压缩机频率会使制冷效果下降明显,虽然噪音下降但是会使用户在睡眠过程中冷热舒适性体验不佳,仍然难以入睡;另外,在部分气候炎热干燥和降雨较少的地区,如果在睡眠过程中无法对湿度进行控制,导致湿度变的更低,睡眠体验感会更差。
发明内容
本发明的目的在于至少解决现有技术中存在的技术问题之一,提供一种窗式空调器的控制方法、运行控制装置及窗式空调器,能够有效协调噪音、温度和湿度的影响,提升用户睡眠过程中的舒适性。
第一方面,本发明实施例提供一种窗式空调器的控制方法,包括:
获取模式触发指令,在第一预设时间段内,运行于第一控制模式,所述第一控制模式包括:获取噪音测量值和温度测量值,根据所述噪音测量值、所述温度测量值、噪音预设值、温度预设值调节压缩机频率、内风机转速、外风机转速和打水电机转速;
在所述第一预设时间段之后,运行于第二控制模式,所述第二控制模式包括:获取湿度测量值,根据所述湿度测量值和湿度预设值调节压缩机频率、内风机转速和打水电机转速。
根据本发明实施例提供的窗式空调器的控制方法,至少具有如下有益效果:用户选择进入睡眠模式后,窗式空调器会接收到模式触发指令,然后在第一预设时间段内先运行于第一控制模式,在第一控制模式下根据噪音测量值和温度测量值与预设值的差距来调节压 缩机频率、内风机转速、外风机转速和打水电机转速,使得噪音和温度尽可能满足睡眠初始阶段的低噪音要求和温度要求;第一预设时间段过后,进入睡眠的熟睡阶段,噪音要求没有睡眠初始阶段高,但是需要控制好湿度,因此在第二控制模式下根据湿度测量值与预设值的差距来调节压缩机频率、内风机转速和打水电机转速,使得湿度尽可能满足睡眠熟睡阶段的湿度要求;通过两个阶段的参数侧重点不同,来相应控制窗式空调器的运行参数,能够有效协调噪音、温度和湿度的影响,提升用户睡眠过程中的舒适性。
在一实施例的控制方法中,在第一预设时间段内,当所述噪音测量值大于所述噪音预设值,执行以下至少之一:
降低压缩机频率;
降低内风机转速;
降低外风机转速;以及
降低打水电机转速。
当噪音测量值大于噪音预设值,降低压缩机频率、内风机转速、外风机转速、打水电机转速均可以降低噪音值,从而使得噪音值得到有效控制。
在一实施例的控制方法中,在第一预设时间段内,当所述温度测量值大于所述温度预设值,执行以下至少之一:
升高压缩机频率;
升高内风机转速;
升高外风机转速;以及
升高打水电机转速。
当温度测量值大于温度预设值,升高压缩机频率、内风机转速、外风机转速、打水电机转速均可以提升制冷能力,从而使得温度值得到有效控制。
在一实施例的控制方法中,在第一预设时间段内,包括:
当T<Tt-N,降低压缩机频率;
当D<Dt-M且T>Tt,升高压缩机频率;
当Dt-M<D<Dt+M且T>Tt+N,升高打水电机转速;以及
当D>Dt+M且Tt-N<T<Tt+N,降低内风机转速;
其中,D为噪音测量值,Dt为噪音预设值,T为温度测量值,Tt为温度预设值,M和N为预设值。
当温度测量值T小于温度预设值Tt与预设值N之差时,说明温度测量值T远小于温度预设值Tt,此时温度过低或者制冷能力过猛,降低压缩机频率能够有效降低制冷能力;
当噪音测量值D小于噪音预设值Dt与预设值M之差且温度测量值T大于温度预设值Tt,说明噪音测量值D远小于噪音预设值Dt且温度未达要求,此时升高压缩机频率能够有效提高制冷能力,噪音值也有充足的允许提升的空间;
当噪音测量值D在噪音预设值Dt左右波动预设值M的范围内且温度测量值T大于温度预设值Tt与预设值N之和时,说明噪音偏差不大,但是温度偏差较大,此时升高打水电机转速,能够提升冷凝器的换热效果从而提升制冷能力,且不会造成噪音提升很大;
当噪音测量值D大于噪音预设值Dt与预设值M之和且温度测量值T在温度预设值Tt左右波动预设值N的范围内,说明温度偏差不大,但是噪音偏差较大,此时降低内风机转速,能够降低噪音的同时不会造成制冷能力大幅下降。
在一实施例的控制方法中,在第一预设时间段内,还包括:
当Dt-M<D<Dt且Tt<T<Tt+N,升高打水电机转速。
当Dt-M<D<Dt且Tt<T<Tt+N,说明噪音略低于噪音预设值Dt,满足噪音要求,温度略大于温度预设值Tt,此时升高打水电机转速,可以提升冷凝器的换热效果从而提升制冷能力,且不会造成噪音提升很大。
在一实施例的控制方法中,在第一预设时间段内:
当Dt-M<D<Dt且T>Tt+N,升高打水电机转速的同时升高外风机转速;以及
当Dt<D<Dt+M且T>Tt+N,升高打水电机转速的同时升高压缩机频率以及降低外风机转速。
当Dt-M<D<Dt且T>Tt+N时,说明噪音略低于噪音预设值Dt,满足噪音要求,温度远大于温度预设值Tt,制冷能力远不达需求,此时除了升高打水电机转速来提升制冷能力,还可以升高外风机转速,即可以略微牺牲噪音性能来提升温度性能;当Dt<D<Dt+M且T>Tt+N,说明噪音略高于噪音预设值Dt,温度远大于温度预设值Tt,制冷能力远不达需求,此时除了升高打水电机转速来提升制冷能力,还可以选择升高压缩机频率来提升制冷能力,但是由于升高压缩机频率对噪音性能影响较大,需要同时降低外风机转速,来弥补升高压缩机频率所带来的噪音性能影响。
在一实施例的控制方法中,在第一预设时间段内:
当D<Dt-M且T>Tt+N,升高压缩机频率的同时升高外风机转速。
当D<Dt-M且T>Tt+N,说明噪音远低于噪音预设值Dt,温度远大于温度预设值Tt,制冷能力远不达需求,除了升高压缩机频率来提高制冷能力,还可以升高外风机转速来提升制冷能力,噪音值也有充足的允许提升的空间。
在一实施例的控制方法中,在第一预设时间段内:
当D>Dt+M且Tt<T<Tt+N,降低内风机转速的同时升高打水电机转速。
当D>Dt+M且Tt<T<Tt+N,说明此时噪音远高于噪音预设值Dt,温度略大于温度预设值Tt,降低内风机转速虽然可以降低噪音,但是也会导致制冷能力下降,同时升高打水电机转速可以稍微弥补降低内风机转速所带来的制冷性能影响。
在一实施例的控制方法中,在第一预设时间段内:
当Dt-M<D<Dt且T<Tt-N,降低压缩机频率的同时降低内风机转速;以及
当D>Dt+M且T<Tt-N,降低压缩机频率的同时降低内风机转速。
当Dt-M<D<Dt且T<Tt-N,说明此时噪音略低于噪音预设值Dt,温度远低于温度预设值Tt,温度性能余量较足,可以同时降低压缩机频率和内风机转速,降低制冷能力;当D>Dt+M且T<Tt-N,说明此时噪音远大于噪音预设值Dt,温度远低于温度预设值Tt,温度性能余量较足,可以同时降低压缩机频率和内风机转速来降低噪音,制冷能力有充足的允许下降的空间。
在一实施例的控制方法中,当D>Dt+M且T>Tt+N,发出噪音预设值或者温度预设值过低警示。
当D>Dt+M且T>Tt+N,说明噪音和温度均远大于预设值,无论作何种调整,均会导致其中一个因素更加偏离预设值,需要发出噪音预设值或者温度预设值过低警示,从而提示用户将至少一个因素对应的预设值适当调大。
在一实施例的控制方法中,所述根据所述湿度测量值和湿度预设值调节压缩机频率、内风机转速和打水电机转速,包括:
当H<Ht-P,降低压缩机频率,升高内风机转速;以及
当H>Ht+P,降低内风机转速,升高打水电机转速;
其中,H为湿度测量值,Ht为湿度预设值,P为预设值。
当H<Ht-P,说明此时湿度测量值远低于湿度预设值,通过降低压缩机频率和升高内风机转速来升高蒸发器的温度,从而减少除湿量;当H>Ht+P,说明此时湿度测量值远大于湿度预设值,通过降低内风机转速和升高打水电机转速,来降低蒸发温度,从而增大除湿量。
在上述的控制方法中,压缩机频率的上升率为2hz/min,下降率为4hz/min;内风机转速、外风机转速和打水电机转速的上升率为50rev/min,下降率为100rev/min。
第二方面,本发明实施例提供一种运行控制装置,包括至少一个控制处理器和用于与所述至少一个控制处理器通信连接的存储器;所述存储器存储有可被所述至少一个控制处理器执行的指令,所述指令被所述至少一个控制处理器执行,以使所述至少一个控制处理 器能够执行如上第一方面实施例所述的窗式空调器的控制方法。
第三方面,本发明实施例提供一种窗式空调器,包括如上第二方面实施例所述的运行控制装置。
第四方面,本发明实施例提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使计算机执行如上第一方面实施例所述的窗式空调器的控制方法。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本发明技术方案的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明的技术方案,并不构成对本发明技术方案的限制。
下面结合附图和实施例对本发明进一步地说明;
图1是本发明实施例提供的一种窗式空调器的控制方法的流程图;
图2是本发明另一实施例提供的一种窗式空调器的控制方法的流程图;以及
图3是本发明实施例提供的一种运行控制装置的结构示意图。
具体实施方式
本部分将详细描述本发明的具体实施例,本发明之较佳实施例在附图中示出,附图的作用在于用图形补充说明书文字部分的描述,使人能够直观地、形象地理解本发明的每个技术特征和整体技术方案,但其不能理解为对本发明保护范围的限制。
在本发明的描述中,如果有描述到第一、第二只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
本发明的描述中,除非另有明确的限定,设置、安装、连接等词语应做广义理解,所属技术领域技术人员可以结合技术方案的具体内容合理确定上述词语在本发明中的具体含义。
窗式空调器通常是安装在墙体的窗框上,用于对室内环境进行制冷或制热。目前大部分的窗式空调器都装有降噪模式,定频窗式空调器的降噪方法是,当睡眠模式启动时,风机的转速直接调整到最低档工作;变频窗式空调器的降噪方法是,当睡眠模式启动时,风机转速降低到最低档,压缩机的频率也降低,达到整体的低噪音需求。但是单独的降低风机转速和压缩机频率会使制冷效果下降明显,虽然噪音下降但是会使用户在睡眠过程中冷 热舒适性体验不佳,仍然难以入睡;另外,在部分气候炎热干燥和降雨较少的地区,如果在睡眠过程中无法对湿度进行控制,导致湿度变的更低,睡眠体验感会更差。
本发明实施例提供一种窗式空调器的控制方法、运行控制装置及窗式空调器,能够有效协调噪音、温度和湿度的影响,提升用户睡眠过程中的舒适性。
下面结合附图,对本发明实施例作进一步阐述。
参照图1,本发明的第一方面实施例提供一种窗式空调器的控制方法,包括步骤S110至步骤S120:
步骤S110:获取模式触发指令,在第一预设时间段内,运行于第一控制模式,所述第一控制模式包括:获取噪音测量值和温度测量值,根据所述噪音测量值、所述温度测量值、噪音预设值、温度预设值调节压缩机频率、内风机转速、外风机转速和打水电机转速;
步骤S120:在所述第一预设时间段之后,运行于第二控制模式,所述第二控制模式包括:获取湿度测量值,根据所述湿度测量值和湿度预设值调节压缩机频率、内风机转速和打水电机转速。
根据本发明实施例提供的窗式空调器的控制方法,用户选择进入睡眠模式后,窗式空调器会接收到模式触发指令,然后在第一预设时间段内先运行于第一控制模式,在第一控制模式下根据噪音测量值和温度测量值与预设值的差距来调节压缩机频率、内风机转速、外风机转速和打水电机转速,使得噪音和温度尽可能满足睡眠初始阶段的低噪音要求和温度要求;第一预设时间段过后,进入睡眠的熟睡阶段,噪音要求没有睡眠初始阶段高,但是需要控制好湿度,因此在第二控制模式下根据湿度测量值与预设值的差距来调节压缩机频率、内风机转速和打水电机转速,使得湿度尽可能满足睡眠熟睡阶段的湿度要求;通过两个阶段的参数侧重点不同,来相应控制窗式空调器的运行参数,能够有效协调噪音、温度和湿度的影响,提升用户睡眠过程中的舒适性。
在一实施例的控制方法中,在第一预设时间段内,当所述噪音测量值大于所述噪音预设值,执行以下至少之一:
降低压缩机频率;
降低内风机转速;
降低外风机转速;以及
降低打水电机转速。
可以理解的是,降低压缩机频率、内风机转速、外风机转速、打水电机转速均可以降低噪音值,因此当噪音测量值大于噪音预设值时执行上述操作,可以使得噪音值得到有效控制。
需要说明的是,本实施例中只考虑噪音因素以及对应降低噪音的调整操作,而且上述四种调整操作对噪音因素的影响作用是不同的,压缩机频率、内风机转速、外风机转速、打水电机转速对噪音的影响作用大致逐渐降低,需要根据噪音测量值的大小选取合适的调整措施。
在一实施例的控制方法中,在第一预设时间段内,当所述温度测量值大于所述温度预设值,执行以下至少之一:
升高压缩机频率;
升高内风机转速;
升高外风机转速;以及
升高打水电机转速。
可以理解的是,升高压缩机频率、内风机转速、外风机转速、打水电机转速均可以提升制冷能力,当温度测量值大于温度预设值时执行上述操作,可以使得温度值得到有效控制。
需要说明的是,本实施例中只考虑温度因素以及对应提升制冷能力的调整操作,而且上述四种调整操作对制冷能力的影响作用是不同的,压缩机频率、内风机转速、外风机转速、打水电机转速对制冷能力的影响作用大致逐渐降低,需要根据温度测量值的大小选取合适的调整措施。
可以理解的是,上述两个实施例分别给出单独对应噪音因素和温度因素的调整操作,当需要结合噪音因素和温度因素共同考虑时,具体的调整操作会有所不同,下面对此作进一步介绍。
结合噪音因素和温度因素所进行的调整操作参照下表所示。
Figure PCTCN2022096290-appb-000001
Figure PCTCN2022096290-appb-000002
其中,D为噪音测量值,Dt为噪音预设值,T为温度测量值,Tt为温度预设值,M和N为预设值。
在一实施例的控制方法中,在第一预设时间段内,包括:
当T<Tt-N,降低压缩机频率;
当D<Dt-M且T>Tt,升高压缩机频率;
当Dt-M<D<Dt+M且T>Tt+N,升高打水电机转速;以及
当D>Dt+M且Tt-N<T<Tt+N,降低内风机转速;
当T<Tt-N,即温度测量值T小于温度预设值Tt与预设值N之差时,说明温度测量值T远小于温度预设值Tt,此时温度过低或者制冷能力过猛,调整操作为降低压缩机频率,该操作能够有效降低制冷能力;
当D<Dt-M且T>Tt,即噪音测量值D小于噪音预设值Dt与预设值M之差且温度测量值T大于温度预设值Tt,说明噪音测量值D远小于噪音预设值Dt且温度未达要求,此时升高压缩机频率能够有效提高制冷能力,噪音值也有充足的允许提升的空间;
当Dt-M<D<Dt+M且T>Tt+N,即噪音测量值D在噪音预设值Dt左右波动预设值M的范围内且温度测量值T大于温度预设值Tt与预设值N之和时,说明噪音偏差不大,但是温度偏差较大,此时升高打水电机转速,能够提升冷凝器的换热效果从而提升制冷能力,且不会造成噪音提升很大;
当D>Dt+M且Tt-N<T<Tt+N,噪音测量值D大于噪音预设值Dt与预设值M之和且温度测量值T在温度预设值Tt左右波动预设值N的范围内,说明温度偏差不大,但是噪音偏差较大,此时降低内风机转速,能够降低噪音的同时不会造成制冷能力大幅下降。
在一实施例的控制方法中,在第一预设时间段内,还包括:
当Dt-M<D<Dt且Tt<T<Tt+N,升高打水电机转速。
当Dt-M<D<Dt且Tt<T<Tt+N,说明噪音略低于噪音预设值Dt,满足噪音要求,温度略大于温度预设值Tt,此时升高打水电机转速,可以提升冷凝器的换热效果从而提升制冷能力,且不会造成噪音提升很大。
在一实施例的控制方法中,在第一预设时间段内:
当Dt-M<D<Dt且T>Tt+N,升高打水电机转速的同时升高外风机转速;
当Dt<D<Dt+M且T>Tt+N,升高打水电机转速的同时升高压缩机频率以及降低外风机转速。
当Dt-M<D<Dt且T>Tt+N时,说明噪音略低于噪音预设值Dt,满足噪音要求,温度 远大于温度预设值Tt,制冷能力远不达需求,此时除了升高打水电机转速来提升制冷能力,还可以升高外风机转速,即可以略微牺牲噪音性能来提升温度性能;当Dt<D<Dt+M且T>Tt+N,说明噪音略高于噪音预设值Dt,温度远大于温度预设值Tt,制冷能力远不达需求,此时除了升高打水电机转速来提升制冷能力,还可以选择升高压缩机频率来提升制冷能力,但是由于升高压缩机频率对噪音性能影响较大,需要同时降低外风机转速,来弥补升高压缩机频率所带来的噪音性能影响。
在一实施例的控制方法中,在第一预设时间段内:
当D<Dt-M且T>Tt+N,升高压缩机频率的同时升高外风机转速。
当D<Dt-M且T>Tt+N,说明噪音远低于噪音预设值Dt,温度远大于温度预设值Tt,制冷能力远不达需求,除了升高压缩机频率来提高制冷能力,还可以升高外风机转速来提升制冷能力,噪音值也有充足的允许提升的空间。
在一实施例的控制方法中,在第一预设时间段内:
当D>Dt+M且Tt<T<Tt+N,降低内风机转速的同时升高打水电机转速。
当D>Dt+M且Tt<T<Tt+N,说明此时噪音远高于噪音预设值Dt,温度略大于温度预设值Tt,降低内风机转速虽然可以降低噪音,但是也会导致制冷能力下降,同时升高打水电机转速可以稍微弥补降低内风机转速所带来的制冷性能影响。
在一实施例的控制方法中,在第一预设时间段内:
当Dt-M<D<Dt且T<Tt-N,降低压缩机频率的同时降低内风机转速;
当D>Dt+M且T<Tt-N,降低压缩机频率的同时降低内风机转速。
当Dt-M<D<Dt且T<Tt-N,说明此时噪音略低于噪音预设值Dt,温度远低于温度预设值Tt,温度性能余量较足,可以同时降低压缩机频率和内风机转速,降低制冷能力;当D>Dt+M且T<Tt-N,说明此时噪音远大于噪音预设值Dt,温度远低于温度预设值Tt,温度性能余量较足,可以同时降低压缩机频率和内风机转速来降低噪音,制冷能力有充足的允许下降的空间。
在一实施例的控制方法中,当D>Dt+M且T>Tt+N,发出噪音预设值或者温度预设值过低警示。
当D>Dt+M且T>Tt+N,说明噪音和温度均远大于预设值,无论作何种调整,均会导致其中一个因素更加偏离预设值,需要发出噪音预设值或者温度预设值过低警示,从而提示用户将至少一个因素对应的预设值适当调大。
上述的各个实施例对窗式空调器在第一控制模式下对于噪音和温度的各种组合情况下的调整操作均作了详细介绍。下面对窗式空调器在第二控制模式下的调整操作进行介绍。
在一实施例的控制方法中,所述根据所述湿度测量值和湿度预设值调节压缩机频率、内风机转速和打水电机转速,包括:
当H<Ht-P,降低压缩机频率,升高内风机转速;以及
当H>Ht+P,降低内风机转速,升高打水电机转速;
其中,H为湿度测量值,Ht为湿度预设值,P为预设值。
当H<Ht-P,说明此时湿度测量值远低于湿度预设值,通过降低压缩机频率和升高内风机转速来升高蒸发器的温度,从而减少除湿量;当H>Ht+P,说明此时湿度测量值远大于湿度预设值,通过降低内风机转速和升高打水电机转速,来降低蒸发温度,从而增大除湿量。
在上述的控制方法中,压缩机频率的上升率为2hz/min,下降率为4hz/min;内风机转速、外风机转速和打水电机转速的上升率为50rev/min,下降率为100rev/min。
下面,结合图2,对本实施例提供的窗式空调器的控制方法进行详细具体的介绍。
用户在睡眠过程中,不仅对噪音有需求,同时对温湿度也有需求。尤其是沙特市场,全年高温且湿度低,所以对合适湿度的控制显得尤为的重要,本实施例结合窗式空调器的结构形式和其具有打水的特殊功能,设计一种窗式空调器的控制方法能够有效协调噪音、温度和湿度的影响,提升用户睡眠过程中的舒适性。
本实施例中的窗式空调器是整体机形式空调,该整体式空调器分为室内和室外的两部分,室内部分和室外部分通过中隔板隔开;室内主要部件包括蒸发器,内风机和风轮,室外的主要部件包括冷凝器,外风机和风轮。同时在室外侧底盘安装有小型的打水装置,该打水装置靠近冷凝器,打水装置包括打水电机和安装在其电机轴上的叶轮,当打水装置运转时,叶轮将底盘的冷凝水打起到冷凝器上,提升冷凝器的换热效果。
在本实施例中,将睡眠过程分为第一阶段和第二阶段:
第一阶段为初睡阶段,该阶段为睡眠模式的启动阶段,需要噪音有明显降低,且环境温度也要满足制冷和制热的需求,低噪音主要控温模式;
第二阶段为睡眠阶段,该阶段为熟睡阶段,不需要太低的噪音但是需要控制好湿度,不能使房间的湿度过低的控湿模式。
当用户选择进入睡眠模式,需要设置温度预设值Tt、湿度预设值Ht和噪音预设值Dt,空调器开始检测室内的环境的湿度和温度,根据内外机转速和压缩机频率通过内置的噪音曲线得到目前空调的噪音测量值D,用户设置噪音预设值Dt,接下来进行判断。
首先进入到第一阶段,第一阶段的持续时间为t。
  |D-Dt|<M |D-Dt|>M
D-Dt<0 进入判断逻辑1 进入判断逻辑2
D-Dt>0 进入判断逻辑3 进入判断逻辑4
其中,D为噪音测量值,Dt为噪音预设值,M为预设值。
先执行第一步判断,将噪音测量值D与噪音预设值Dt进行比较,根据比较结果进入相应的下一步判断逻辑,即上表中的判断逻辑1、判断逻辑2、判断逻辑3或者判断逻辑4。其中,当D-Dt<0且|D-Dt|>M,即D<Dt-M,说明噪音测量值D远小于噪音预设值Dt,此时进入逻辑判断2;当D-Dt<0且|D-Dt|<M,即Dt-M<D<Dt,说明噪音测量值D略小于噪音预设值Dt,此时进入逻辑判断1;当D-Dt>0且|D-Dt|<M,即Dt<D<Dt+M,说明噪音测量值D略大于噪音预设值Dt,此时进入逻辑判断3;当D-Dt>0且|D-Dt|>M,即D>Dt+M,说明说明噪音测量值D远大于噪音预设值Dt,此时进入逻辑判断4。以下继续对四种逻辑判断的情况作进一步说明。
当进入逻辑判断1时:
此时噪音略低于噪音预设值Dt,满足用户需求,然后进行温度判断,并根据温度判断的结果执行相应的调整操作:
Figure PCTCN2022096290-appb-000003
其中,T为温度测量值,Tt为温度预设值,N为预设值。
当进入逻辑判断2时:
此时噪音远低于噪音预设值Dt,满足用户需求,然后进行温度判断,并根据温度判断的结果执行相应的调整操作:
Figure PCTCN2022096290-appb-000004
当进入逻辑判断3时:
此时噪音略高于噪音预设值Dt,然后进行温度判断,并根据温度判断的结果执行相应的调整操作:
Figure PCTCN2022096290-appb-000005
当进入逻辑判断4时:
此时噪音远高于噪音预设值Dt,然后进行温度判断,并根据温度判断的结果执行相应的调整操作:
Figure PCTCN2022096290-appb-000006
第一阶段持续时间t后,进入第二阶段:
第二阶段主要为控湿模式,在保持当前噪音水平情况下,尽量控制湿度保证舒适性。进入到第二阶段时,记录第一阶段结束时的压缩机频率、外风机转速、内风机转速和打水电机转速,第二阶段的压缩机频率、外风机转速和内风机转速是根据第一阶段结束参数来确定范围的上下限。
进入到第二阶段,持续时间为t1,对房间湿度进行检测:
Figure PCTCN2022096290-appb-000007
其中,H为湿度测量值,Ht为湿度预设值,P为预设值。
当H-Ht<0,且|H-Ht|>P,即H<Ht-P,说明此时湿度测量值远低于湿度预设值,通过降低压缩机频率和升高内风机转速来升高蒸发器的温度,从而减少除湿量;当H-Ht>0且|H-Ht|>P,H>Ht+P,说明此时湿度测量值远大于湿度预设值,通过降低内风机转速和升高打水电机转速,来降低蒸发温度,从而增大除湿量。
可以理解的是,当在第一阶段的持续时间t期间或者在第二阶段的持续时间t2期间,用户执行了中断操作,可以重新进行循环判断,再次进入第一阶段,重新执行上述实施例 中的窗式空调器的控制方法。
参照图3,本发明的第二方面实施例提供一种运行控制装置500,包括至少一个控制处理器510和用于与所述至少一个控制处理器510通信连接的存储器520;所述存储器520存储有可被所述至少一个控制处理器510执行的指令,所述指令被所述至少一个控制处理器510执行,以使所述至少一个控制处理器510能够执行如上第一方面实施例所述的窗式空调器的控制方法,例如执行图1中的方法步骤S110至步骤S110至步骤S120,或者执行图2所示的方法流程。
另外,本发明的第三方面实施例提供一种窗式空调器,包括如上第二方面实施例所述的运行控制装置500。
另外,本发明的第四方面实施例提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使计算机执行如上第一方面实施例所述的窗式空调器的控制方法,例如执行图1中的方法步骤S110至步骤S110至步骤S120,或者执行图2所示的方法流程。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统可以被实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质或非暂时性介质和通信介质或暂时性介质。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息诸如计算机可读指令、数据结构、程序模块或其他数据的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘DVD或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所述技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。

Claims (15)

  1. 一种窗式空调器的控制方法,包括:
    获取模式触发指令,在第一预设时间段内,运行于第一控制模式,其中所述第一控制模式包括:获取噪音测量值和温度测量值,根据所述噪音测量值、所述温度测量值、噪音预设值、温度预设值调节压缩机频率、内风机转速、外风机转速和打水电机转速;以及
    在所述第一预设时间段之后,运行于第二控制模式,其中所述第二控制模式包括:获取湿度测量值,根据所述湿度测量值和湿度预设值调节压缩机频率、内风机转速和打水电机转速。
  2. 根据权利要求1所述的控制方法,还包括:在第一预设时间段内,当所述噪音测量值大于所述噪音预设值,执行以下至少之一:
    降低压缩机频率;
    降低内风机转速;
    降低外风机转速;以及
    降低打水电机转速。
  3. 根据权利要求1所述的控制方法,还包括:在第一预设时间段内,当所述温度测量值大于所述温度预设值,执行以下至少之一:
    升高压缩机频率;
    升高内风机转速;
    升高外风机转速;以及
    升高打水电机转速。
  4. 根据权利要求1所述的控制方法,还包括:在第一预设时间段内:
    当T<Tt-N,降低压缩机频率;
    当D<Dt-M且T>Tt,升高压缩机频率;
    当Dt-M<D<Dt+M且T>Tt+N,升高打水电机转速;以及
    当D>Dt+M且Tt-N<T<Tt+N,降低内风机转速;
    其中,D为噪音测量值,Dt为噪音预设值,T为温度测量值,Tt为温度预设值,M和N为预设值。
  5. 根据权利要求4所述的控制方法,还包括:在第一预设时间段内,
    当Dt-M<D<Dt且Tt<T<Tt+N,升高打水电机转速。
  6. 根据权利要求4所述的控制方法,还包括:在第一预设时间段内:
    当Dt-M<D<Dt且T>Tt+N,升高打水电机转速的同时升高外风机转速;以及
    当Dt<D<Dt+M且T>Tt+N,升高打水电机转速的同时升高压缩机频率以及降低外风机转速。
  7. 根据权利要求4所述的控制方法,还包括:在第一预设时间段内,
    当D<Dt-M且T>Tt+N,升高压缩机频率的同时升高外风机转速。
  8. 根据权利要求4所述的控制方法,还包括:在第一预设时间段内,
    当D>Dt+M且Tt<T<Tt+N,降低内风机转速的同时升高打水电机转速。
  9. 根据权利要求4所述的控制方法,还包括:在第一预设时间段内:
    当Dt-M<D<Dt且T<Tt-N,降低压缩机频率的同时降低内风机转速;以及
    当D>Dt+M且T<Tt-N,降低压缩机频率的同时降低内风机转速。
  10. 根据权利要求4所述的控制方法,还包括:当D>Dt+M且T>Tt+N,发出噪音预设值或者温度预设值过低警示。
  11. 根据权利要求1所述的控制方法,其中,所述根据所述湿度测量值和湿度预设值调节压缩机频率、内风机转速和打水电机转速,包括:
    当H<Ht-P,降低压缩机频率,升高内风机转速;以及
    当H>Ht+P,降低内风机转速,升高打水电机转速;
    其中,H为湿度测量值,Ht为湿度预设值,P为预设值。
  12. 根据权利要求1所述的控制方法,其中,压缩机频率的上升率为2hz/min,下降率为4hz/min;内风机转速、外风机转速和打水电机转速的上升率为50rev/min,下降率为100rev/min。
  13. 一种运行控制装置,包括至少一个控制处理器和用于与所述至少一个控制处理器通信连接的存储器,其中所述存储器存储有可被所述至少一个控制处理器执行的指令,所述指令被所述至少一个控制处理器执行,以使所述至少一个控制处理器能够执行如权利要求1至12任一项所述的窗式空调器的控制方法。
  14. 一种窗式空调器,包括权利要求13所述的运行控制装置。
  15. 一种计算机可读存储介质,存储有计算机可执行指令,其中所述计算机可执行指令用于使计算机执行如权利要求1至12任一项所述的窗式空调器的控制方法。
PCT/CN2022/096290 2021-11-15 2022-05-31 窗式空调器的控制方法、运行控制装置及窗式空调器 WO2023082611A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111347961.6A CN114061093A (zh) 2021-11-15 2021-11-15 窗式空调器的控制方法、运行控制装置及窗式空调器
CN202111347961.6 2021-11-15

Publications (1)

Publication Number Publication Date
WO2023082611A1 true WO2023082611A1 (zh) 2023-05-19

Family

ID=80272501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/096290 WO2023082611A1 (zh) 2021-11-15 2022-05-31 窗式空调器的控制方法、运行控制装置及窗式空调器

Country Status (2)

Country Link
CN (1) CN114061093A (zh)
WO (1) WO2023082611A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114061093A (zh) * 2021-11-15 2022-02-18 广东美的制冷设备有限公司 窗式空调器的控制方法、运行控制装置及窗式空调器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001108278A (ja) * 1999-10-05 2001-04-20 Daikin Ind Ltd 空気調和装置
CN106288209A (zh) * 2016-08-19 2017-01-04 芜湖美智空调设备有限公司 移动空调控制方法及装置
CN106556122A (zh) * 2016-12-30 2017-04-05 广东美的制冷设备有限公司 控制系统、睡眠控制装置、空调器及其睡眠控制方法
CN112066528A (zh) * 2020-08-10 2020-12-11 珠海格力电器股份有限公司 一种空调控制方法、装置、存储介质及空调
CN113310194A (zh) * 2020-02-27 2021-08-27 青岛海尔空调器有限总公司 睡眠环境的智能调整方法与睡眠环境调节系统
CN113606731A (zh) * 2021-08-02 2021-11-05 宁波奥克斯电气股份有限公司 新风机组的新风调节方法、装置、机组、计算机存储介质
CN114061093A (zh) * 2021-11-15 2022-02-18 广东美的制冷设备有限公司 窗式空调器的控制方法、运行控制装置及窗式空调器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001108278A (ja) * 1999-10-05 2001-04-20 Daikin Ind Ltd 空気調和装置
CN106288209A (zh) * 2016-08-19 2017-01-04 芜湖美智空调设备有限公司 移动空调控制方法及装置
CN106556122A (zh) * 2016-12-30 2017-04-05 广东美的制冷设备有限公司 控制系统、睡眠控制装置、空调器及其睡眠控制方法
CN113310194A (zh) * 2020-02-27 2021-08-27 青岛海尔空调器有限总公司 睡眠环境的智能调整方法与睡眠环境调节系统
CN112066528A (zh) * 2020-08-10 2020-12-11 珠海格力电器股份有限公司 一种空调控制方法、装置、存储介质及空调
CN113606731A (zh) * 2021-08-02 2021-11-05 宁波奥克斯电气股份有限公司 新风机组的新风调节方法、装置、机组、计算机存储介质
CN114061093A (zh) * 2021-11-15 2022-02-18 广东美的制冷设备有限公司 窗式空调器的控制方法、运行控制装置及窗式空调器

Also Published As

Publication number Publication date
CN114061093A (zh) 2022-02-18

Similar Documents

Publication Publication Date Title
CN107621039B (zh) 一种空调器的控制方法、装置及空调器
CN107560007B (zh) 空调系统及其冷媒散热管的防凝露控制方法和装置
CN108375170B (zh) 一种电子膨胀阀的控制方法、装置及空调器
CN109751741B (zh) 用于风管式空调器的控制方法、装置及风管式空调器
CN110425692B (zh) 空调控制方法、空调及计算机可读存储介质
WO2020052281A1 (zh) 变频压缩机的控制方法、控制系统以及空调器
WO2015021853A1 (zh) 一种变频空调的控制方法、控制装置及变频空调
US11879658B2 (en) Air-conditioning ventilation system
CN114543282B (zh) 空调除湿控制方法及系统
CN104833044A (zh) 恒湿度制冷方法及系统
US11530832B2 (en) Peak demand response operation with improved sensible capacity
US20210048212A1 (en) Peak demand response operation of hvac system with face-split evaporator
WO2023082611A1 (zh) 窗式空调器的控制方法、运行控制装置及窗式空调器
WO2024001534A1 (zh) 空调系统的室外机控制方法、装置、室外机和空调系统
CN112178889B (zh) 一种空调的温度和湿度控制方法及空调
CN106765981A (zh) 一种空调运行频率确定装置、方法及空调
CN112484267A (zh) 一种风机控制方法、装置、空调器及存储介质
CN114353252B (zh) 空调器控制方法、装置、空调器以及存储介质
CN114576824B (zh) 空调器的控制方法、运行控制装置及空调器
CN112682926A (zh) 一种空调控制方法、装置、存储介质及空调
JPH11218350A (ja) 空気調和機
CN112161372B (zh) 有效降噪的空调控制方法、装置及空调机组
CN115264778A (zh) 空调器控制方法、装置、电子设备及存储介质
CN111550910B (zh) 一种变频精密空调及其除湿控制方法、存储介质
CN115523642B (zh) 空调的控制方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22891421

Country of ref document: EP

Kind code of ref document: A1