[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023079850A1 - Method for determining conformity of rolling mill roller, method for rolling metal strip, and method for producing cold-rolled steel sheet - Google Patents

Method for determining conformity of rolling mill roller, method for rolling metal strip, and method for producing cold-rolled steel sheet Download PDF

Info

Publication number
WO2023079850A1
WO2023079850A1 PCT/JP2022/034960 JP2022034960W WO2023079850A1 WO 2023079850 A1 WO2023079850 A1 WO 2023079850A1 JP 2022034960 W JP2022034960 W JP 2022034960W WO 2023079850 A1 WO2023079850 A1 WO 2023079850A1
Authority
WO
WIPO (PCT)
Prior art keywords
roll
rolling
evaluated
rolls
surface shape
Prior art date
Application number
PCT/JP2022/034960
Other languages
French (fr)
Japanese (ja)
Inventor
渉 馬場
佑馬 下司
利行 坂元
由紀雄 高嶋
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2022574353A priority Critical patent/JP7243944B1/en
Priority to MX2024005265A priority patent/MX2024005265A/en
Priority to KR1020247013250A priority patent/KR20240073071A/en
Priority to CN202280071725.2A priority patent/CN118176069A/en
Priority to EP22889674.2A priority patent/EP4406671A1/en
Publication of WO2023079850A1 publication Critical patent/WO2023079850A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product

Definitions

  • the present invention relates to a method for judging suitability of rolling rolls, a method for rolling metal strips, and a method for manufacturing cold-rolled steel sheets.
  • Metal strips such as steel sheets used in automobiles, beverage cans, etc. are made into products after undergoing continuous casting, hot rolling, and cold rolling processes, followed by annealing and plating processes.
  • the cold rolling process is the final process for determining the thickness of the metal strip as a product.
  • the thickness of the plating may be thinner than before, and the surface texture of the metal strip before the plating process tends to affect the surface texture of the product after the plating process, so it is necessary to prevent the occurrence of surface defects. increasing.
  • Chatter marks are one of the surface defects that occur during the cold rolling process. This is a linear mark that appears in the width direction of the metal band, and is a surface defect in which such linear marks periodically appear in the longitudinal direction of the metal band. Chatter marks are said to be caused by vibrations of the rolling mill (hereinafter referred to as chattering).
  • chattering vibrations of the rolling mill
  • a very light chatter mark may not be found by visual inspection or plate thickness measurement after the cold rolling process, and may be recognized only after the plating process. For this reason, it is not noticed that a large number of surface defects have occurred during this period, and as a result, the yield of the product is lowered, which is a factor in significantly impeding productivity.
  • sudden changes in the thickness and tension of the metal strips due to chattering may cause production troubles such as breakage of the metal strips, which may hinder productivity.
  • the vibration displacement, vibration velocity, or vibration acceleration of each part is detected, and frequency analysis is performed on the detected vibration displacement, vibration velocity, or vibration acceleration of each part.
  • frequency analysis of rolling parameters such as tension, rolling torque, rolling speed, rolling load, and strip thickness variation is performed.
  • the results of frequency analysis of the measured values of vibration and rolling parameters exceed the set values at frequencies that are integral multiples of the fundamental frequency for each cause of chatter mark occurrence, it is determined that chattering has occurred, and the cause of the occurrence is determined as described above. is specified from the fundamental frequency of
  • the vibration abnormality detection method in cold rolling or temper rolling shown in Patent Document 2 has a vibration signal collection step, an FFT frequency analysis step, and a vibration abnormality determination step.
  • vibration signal collecting step vibration signals detected by at least one small diameter roll among the small diameter rolls between the stands of the cold rolling mill or on the entry and exit sides of the cold rolling mill are collected.
  • FFT frequency analysis step the frequency analysis of the collected vibration signal is performed using the fast Fourier transform method to obtain the frequency components contained in the vibration signal and their spectral values.
  • the vibration abnormality determination step among the frequency components obtained in the FFT frequency analysis execution step, at least a plurality of spectrum values of frequency components that are the same as the frequency of string vibration in a plurality of vibration modes of the steel plate calculated by a predetermined expression. If one exceeds a preset threshold, it is determined that there is vibration abnormality.
  • the method for preventing chatter marks on a steel plate disclosed in Patent Document 3 when cold-rolling a steel plate having a yield strength of 450 MPa or less after hot rolling and pickling, the natural frequency of the cold rolling mill, The chord length between the final stand of the cold rolling mill and the small-diameter roll that first contacts the steel sheet on the delivery side of the cold rolling mill, as shown in the predetermined formula, is set so that the frequency of the chordal vibration of the steel sheet does not match. .
  • the bending strain generated on the surface of the steel sheet which is expressed by the predetermined formula, is set to a magnitude that does not cause plastic deformation of the steel sheet.
  • Non-Patent Document 1 describes an analysis of the "chattering" phenomenon in cold rolling of ultra-thin steel sheets.
  • Non-Patent Document 1 describes the chattering phenomenon that occurs during the rolling of ultra-thin cold-rolled steel sheets with a total cold reduction of 93 to 94%. The results of research that examined the
  • chatter marks including these mild chatter marks, are caused by polygonal wear, in which the circumferential profile of the surface of the rolling rolls during rolling becomes polygonal.
  • Polygonal wear means that the surface shape of the roll becomes polygonal due to the growth of minute irregularities on the surface of the roll during the rolling process of the metal strip and the growth of irregularities with a specific pitch.
  • the present invention has been made to solve this conventional problem, and its purpose is to estimate the state of polygonal wear of a roll to be evaluated that occurs during rolling on-line, It is an object of the present invention to provide a method for judging suitability of rolling rolls, a method for rolling a metal strip, and a method for manufacturing a cold-rolled steel sheet, which can prevent chatter marks.
  • a method for determining suitability of rolling rolls is a rolling mill comprising one or a plurality of stands each having a plurality of rolling rolls.
  • a rolling load data acquisition method for determining the suitability of a roll to be evaluated which is a rolling roll arbitrarily selected from rolling rolls, wherein rolling load data is obtained for a stand having the roll to be evaluated.
  • the suitability of the evaluation target roll is determined. and a conformity determination step.
  • the suitability determination of the evaluation target roll is performed during rolling of the metal strip using the above-described method for determining suitability of the rolling rolls, and the result of the suitability determination is unsuitable.
  • the roll to be evaluated is replaced with a new rolling roll to roll the metal strip.
  • a gist of a method for manufacturing a cold-rolled steel sheet according to another aspect of the present invention is to manufacture a cold-rolled steel sheet using the metal strip rolling method described above.
  • the state of polygonal wear of an evaluation target roll that occurs during rolling is estimated online, and polygonal wear is used. Minor chatter marks can be prevented.
  • FIG. 1 is a schematic configuration diagram of a rolling mill to which a rolling roll suitability determination method according to an embodiment of the present invention is applied; It shows the specific shape of the rolling rolls, and (a) is an explanation in which the cross-sectional shape (solid line) of the rolling roll is plotted along with the reference circle (dashed line) when it is assumed that the cross-sectional shape of the rolling roll is a perfect circle.
  • FIG. (b) is a graph showing an example of the relationship between the circumferential position (angle) of the rolling rolls and the amount of radial deviation of the cross-sectional shape from the perfect circle represented by the diameter of the rolling rolls. .
  • FIG. 4 is a graph showing an example of the relationship between the unevenness pitch of the surface of the rolling roll and the spectrum value. It is a schematic diagram which shows a mode that a rolling roll is installed in a roll grinder and the surface shape of a rolling roll is measured.
  • FIG. 1 is a schematic configuration diagram of a rolling mill in which each stand is provided with a conformity determination device to which a method for determining conformity of rolling rolls according to an embodiment of the present invention is applied; However, FIG. 5 shows a state in which the rolling roll suitability determination device is provided only in the first stand F1. 6 is a flow chart for explaining the flow of processing in the high-level computer of the rolling mill and the suitability determination device shown in FIG. 5; FIG.
  • FIG. 4 is a diagram for explaining a rolling mill vibration model in which a four-stage stand is approximated by a mass-spring system;
  • a rolling mill vibration model that approximates a four-stage stand with a mass-spring system when the upper work roll is selected as the roll to be evaluated, the coupling with the upper backup roll is virtually released to calculate the frequency response.
  • FIG. 10 is a diagram for explaining an example of In a rolling mill vibration model that approximates a four-stage stand with a mass-spring system, when the upper work roll is selected as the roll to be evaluated, the coupling with the lower work roll is virtually released to estimate the frequency response. It is a figure for demonstrating the example to calculate.
  • FIG. 10 is a diagram for explaining an example of In a rolling mill vibration model that approximates a four-stage stand with a mass-spring system, when the upper work roll is selected as the roll to be evaluated, the coupling with the lower work roll is virtually released to estimate the frequency response. It is a figure for demonstrating the example to calculate.
  • FIG. 4 is a diagram for explaining a rolling mill vibration model in which a six-stage stand is approximated by a mass-spring system
  • FIG. 5 is a diagram for explaining an example of calculating a frequency response when an upper intermediate roll is selected as an evaluation target roll in a rolling mill vibration model in which a six-high stand is approximated by a mass-spring system
  • FIG. 5 is a diagram for explaining an example of calculating a frequency response when an upper intermediate roll is selected as an evaluation target roll in a rolling mill vibration model in which a six-high stand is approximated by a mass-spring system
  • FIG. 6 is a graph showing changes in the peripheral speed of the rolling rolls and timing for judging suitability of rolls to be evaluated when a metal strip is continuously rolled using the rolling mill shown in FIG. 5 ;
  • FIG. 5 is a diagram for explaining an example of calculating a frequency response when an upper intermediate roll is selected as an evaluation target roll in a rolling mill vibration model in which a six-high stand is approximated by a mass-spring
  • chattering abnormal vibrations of the stands F1 to F5 of the rolling mill a that occur during rolling of the metal strip S
  • chatter marks periodic patterns formed on the surface of the metal strip S by chattering
  • chatter marks in which irregularities with an amplitude of about 0.1 to 5 ⁇ m are formed on the surface of the metal strip S
  • a suitability determination is performed for a roll to be evaluated (which will be described later in detail) targeting so-called mild chatter marks. This slight chatter mark is often caused by the thickness of the metal strip S varying.
  • Chattering which causes chatter marks, is said to be often caused by looseness in bearings, gear engagement, couplings, etc. that make up the rolling mill.
  • chattering is conventionally detected by analyzing vibration data obtained from vibrometers 5 installed in the respective stands F1 to F5 of the rolling mill a, and determining the magnitude of vibration in a specific frequency band as a preset threshold value. was considered to be detectable when the However, the inventors of the present invention have found that some slight chatter marks are difficult to detect with the vibrometers 5 installed in the stands F1 to F5 of the rolling mill a or their peripheral equipment.
  • FIG. 1 shows a schematic configuration of a rolling mill to which a rolling roll suitability determination method according to an embodiment of the present invention is applied.
  • the rolling mill a shown in FIG. 1 is a cold rolling mill, and includes a plurality of stands for cold rolling a steel sheet as the metal strip S (in this embodiment, from the first stand F1 counted from the entry side in the sheet threading direction A tandem mill with a fifth stand F5).
  • Other devices attached to the rolling mill a for example, an entry-side rewinder, a welder, a looper, an exit-side cutter, a winder, etc.
  • the first stand F1 to the fourth stand F4 counted from the entry side in the threading direction are four-stage stands
  • the fifth stand F5 counted from the entry side is a six-stage stand.
  • Each of the four-stage stands F1 to F4 includes, in a housing 4, upper and lower work rolls 1 for rolling a steel plate as the metal strip S, and an upper side for supporting the upper and lower work rolls 1, respectively. and a backup roll 2 on the lower side.
  • the six-stage stand F5 includes, in the housing 4, upper and lower work rolls 1, upper and lower backup rolls 2, upper intermediate rolls 3, and lower intermediate rolls 3. I have.
  • the upper and lower work rolls 1 roll a steel sheet as a metal strip S.
  • Upper and lower backup rolls 2 support upper and lower work rolls 1, respectively.
  • An upper intermediate roll 3 is arranged between the upper work roll 1 and the upper backup roll 2 .
  • a lower intermediate roll 3 is arranged between the lower work roll 1 and the lower backup roll 2 .
  • Vibrometers 5 for measuring vibrations of the stands F1 to F5 are installed on the upper portions of the housings 4 of the stands F1 to F5.
  • the vibration meter 5 is preferably a piezoelectric element type vibration sensor, but may be a vibration meter of another type.
  • a rolling load detector 6 for detecting the rolling load of each stand F1 to F5 is installed above the backup roll 2 above each stand F1 to F5.
  • the rolling load detector 6 is composed of a load cell.
  • a tension meter for detecting the tension of the steel sheet as the metal strip S is provided on the tension meter roll 8 provided between the adjacent stands F1 to F5.
  • a plate thickness meter 7 for detecting the plate thickness of the steel plate as the metal strip S is installed on the delivery side of each of the first stand F1 and the fifth stand F5.
  • a work roll driving device 9 is connected to the upper and lower work rolls 1 of each of the stands F1 to F5, and the work roll driving device 9 controls the peripheral speed of the upper and lower work rolls 1.
  • a roll speed controller 11 is connected.
  • the roll speed controller 11 is provided with roll rotation speed detectors (not shown) for detecting the rotation speeds of the upper and lower work rolls 1 .
  • the upper and lower work rolls 1 of each of the stands F1 to F5 are provided with roll gap controllers 10 for controlling the roll gaps between the upper and lower work rolls 1. As shown in FIG.
  • the roll gap controller 10 is provided with a roll-down position detector (not shown) for detecting roll-down positions of the upper and lower work rolls 1 .
  • Each stand F1 to F5 of the rolling mill a is provided with a roll changer (not shown).
  • the roll changer is provided with a carriage (not shown) capable of traveling on rails (not shown) in the axial direction of the rolling rolls 1, 2 and 3. As shown in FIG.
  • the carriage moves to the vicinity of the rolling rolls 1, 2, 3 to be replaced under instructions from the host computer 14, which will be described later.
  • the operator removes the used rolling rolls 1, 2 and 3 from the predetermined stands F1 to F5, and then loads new rolling rolls after grinding into the predetermined stands F1 to F5.
  • the used rolling rolls 1, 2 and 3 are transported to a roll shop and regrinded.
  • the system for manufacturing steel products is composed of a large-scale hierarchical system for production management targeting a large number of facilities.
  • the hierarchical system includes a host computer 14 at Level 3 at the highest level, a control computer 13 at Level 2 for each production line such as a continuous cold rolling mill, and a control computer 13 for each facility constituting each line is configured in a hierarchy such as the control controller 12 of Level1.
  • the host computer 14 is a business computer
  • the control computer 13 is a process computer
  • the control controller 12 is a PLC.
  • the control computer 13 is connected between the host computer 14 and the subordinate controller 12, receives the manufacturing plan planned by the host computer 14, and instructs the manufacturing line to manufacture the steel sheet as the metal strip S. .
  • the control computer 13 collects various performance information from the control controller 12, displays them on the operation monitoring screen, performs calculations based on a theoretical model, and transmits information necessary for control to the control controller 12. Its main role is to send
  • the control controller 12 issues instructions to the drives, valves, sensors, etc. that make up the manufacturing equipment at appropriate timing, adjusts operations so that the devices do not interfere with each other, and counts values held by the sensors.
  • the main role is to operate by linking with physical information.
  • the control computer 13 determines the rolling operation conditions for the next steel sheet before the welding point of the steel sheet as the metal strip S passes. Specifically, a pass schedule is set according to information such as base material dimensions (base material plate thickness and width) and product target plate thickness given from the host computer 14. Determine the predicted values of the rolling load and advance rate, and the set values of the roll gap and roll peripheral speed. At that time, in order to set the rolling load and roll peripheral speed, as information on the rolling rolls 1, 2, and 3 used in each stand F1 to F5, the actual measurement of the roll diameter after grinding (before charging into the stand) The specification information of the rolling rolls including the values is sent from the host computer 14 to the control computer 13 .
  • the specification information of the rolling rolls includes roll diameter, roll barrel length, roll number, roll material, surface roughness standard classification, and the like.
  • the control controller 12 controls the roll speed controller 11 of each stand F1 to F5 and the roll gap control of each stand F1 to F5 based on the set values (command values) of the roll gap and the roll peripheral speed obtained from the control computer 13.
  • a process for controlling the machine 10 is executed. Further, the control controller 12 collects the rolling load of each stand F1 to F5 detected by the rolling load detector 6 from the rolling load detectors 6 installed in each of the stands F1 to F5.
  • the control controller 12 also collects measured values of the rotational speeds of the upper and lower work rolls 1 from the rotational speed detectors of the roll speed controller 11 . Furthermore, the control controller 12 continuously collects rolling data such as tension measurements by the tension meter provided on the tension meter roll 8 . Then, the control controller 12 outputs these rolling data to the control computer 13 at preset intervals.
  • each of the rolling stands F1 to F5 is provided with a rolling roll suitability determination device 30 for determining suitability of the roll to be evaluated.
  • FIG. 5 shows a state in which the rolling roll suitability determination device 30 is provided only in the first stand F1.
  • This suitability determination device 30 estimates on-line the surface shape of the evaluation target roll that occurs during rolling, that is, the state of polygonal wear. Then, the suitability determination device 30 determines suitability of the roll to be evaluated based on the estimated surface shape of the roll to be evaluated, that is, the state of polygonal wear, and prevents mild chatter marks caused by polygonal wear. be.
  • the roll to be evaluated is a rolling roll arbitrarily selected from a plurality of rolling rolls 1, 2, and 3 of arbitrary stands F1 to F5 among the stands F1 to F5.
  • the upper and lower work rolls 1, the upper and lower backup rolls 2, and the upper and lower intermediate rolls 3 are called mill rolls, respectively.
  • the rolls selected arbitrarily from the upper and lower work rolls 1 and the upper and lower backup rolls 2 of any stand F1 to F4 are evaluated. called a roll.
  • mill rolls arbitrarily selected from the upper and lower work rolls 1, the upper and lower backup rolls 2, and the upper and lower intermediate rolls 3 of the stand F5. is called an evaluation target role.
  • the surface shape of the rolling rolls (rolls to be evaluated) 1, 2, 3 refers to the cross-sectional shape of the trunk portions of the rolling rolls 1, 2, 3. Since the cross-sectional shapes of the rolling rolls 1, 2, and 3 are generally circular, the surface shape is represented by the deviation of the cross-sectional shape from a perfect circle.
  • the cross sections of the rolling rolls 1, 2, and 3 may be any cross section in the axial direction of the body, but preferably the cross section at the center position of the body.
  • FIG. 2(a) plots the cross-sectional shapes (solid lines) of the rolling rolls 1, 2, and 3 together with the reference circles (broken lines) when the cross-sectional shapes of the rolling rolls 1, 2, and 3 are assumed to be perfect circles. It is.
  • FIG. 2(b) shows the cross-sectional shape from the perfect circle represented by the diameter of the rolls 1, 2, 3, with the positions (angles) of the rolls 1, 2, 3 in the circumferential direction as the horizontal axis. It is a figure which represented the deviation amount (deviation amount) of a radial direction as a vertical axis
  • the surface shapes of the rolling rolls (evaluation rolls) 1, 2, and 3 to be estimated in the present embodiment are as shown in FIG. This information is specified by the relationship with the size of unevenness on the surface.
  • the diameters of the rolling rolls (evaluation target rolls) 1, 2, and 3, which serve as a reference when specifying the perfect circle, are measured during grinding of the rolling rolls (evaluation target rolls) 1, 2, and 3, and are stored in the host computer 14. Saved by the operator.
  • the surface shapes of the rolling rolls (evaluation target rolls) 1, 2, and 3 to be estimated in the present embodiment are not information specified by continuous curves as shown in FIGS.
  • the surfaces of the rolling rolls (evaluation target rolls) 1, 2, and 3 are equally divided in the circumferential direction and the outer diameters are measured at opposing positions, and the maximum and minimum diameters of them are Dmax and Dmin, respectively.
  • Dmax-Dmin may be used as the surface shape information of the rolling rolls (evaluation target rolls) 1, 2, and 3.
  • the number of equal divisions in the circumferential direction is 4 to 36000 equal divisions, more preferably 360 equal divisions or more.
  • the rolling rolls (evaluation target rolls) 1, 2, and 3 incorporated in each of the stands F1 to F5 an uneven shape in which a plurality of frequency components are combined is formed in relation to the vibration of each of the rolling stands F1 to F5. may occur.
  • the relationship between the circumferential position information (angle information) of the rolling rolls (evaluation target rolls) 1, 2, and 3 and the amount of deviation from the perfect circle is subjected to frequency analysis using the fast Fourier transform method.
  • the relationship between the pitch of the unevenness corresponding to the frequency component included in the surface shape and the spectrum value corresponding to the pitch may be used as the surface shape of (evaluation target rolls) 1, 2, and 3.
  • FIG. 3 shows the unevenness of the surface of the rolling rolls obtained by the frequency analysis of the fast Fourier transform method from the relationship between the position information of the rolling rolls (rolls to be evaluated) 1, 2, and 3 in the circumferential direction and the amount of deviation from the perfect circle. It is an example showing the relationship between pitch and spectrum value.
  • amplitude information associated with the pitch of the unevenness formed on the surface of the evaluation target roll is the difference between the maximum value and the minimum value of the deviation amount from the perfect circle as the cross-sectional shape of the rolling rolls (evaluation target rolls) 1, 2, 3 per pitch.
  • the amplitude information associated with the pitch of the unevenness is amplitude information when the pitch of the unevenness is set in advance and the pitch is set as one cycle.
  • the relationship between the position (angle) in the circumferential direction of the roll to be evaluated and the amount of deviation from the perfect circle of the cross-sectional shape is expanded into a Fourier series, and the resulting Fourier coefficient is defined as amplitude information related to the pitch. You can also This is because it is an index representing the amplitude corresponding to a specific pitch or frequency.
  • FIG. 4 schematically shows how a rolling roll is installed in a roll grinder and the surface profile is measured.
  • the rests 22 support both ends of the rolling rolls (evaluation target rolls) 1 , 2 and 3 in the axial direction.
  • one axial end of the rolling rolls 1, 2, 3 is fixed by the chuck 21 of the roll rotating device 23, and the other axial end of the rolling rolls 1, 2, 3 is axially rotated by the tailstock 24. impose.
  • Displacement gauges 26 are installed on the surfaces of the body portions of the rolling rolls 1, 2 and 3 so as to be in contact with the surfaces of the body portions of the rolling rolls 1, 2 and 3 and detect the displacement of the surfaces.
  • Any contact or non-contact measuring device can be used as the displacement meter 26 .
  • this displacement meter 26 it is preferable to use, for example, a contact-type magnescale with relatively high measurement accuracy. It is preferable to use a Magnescale with a measurement accuracy of about 0.1 to 0.2 ⁇ m, a measurement stroke of about 1 to 5 mm, and a sampling frequency of about 1 kHz.
  • the rolling rolls 1, 2, 3 are rotated at a low speed (for example, 5 to 10 rpm) by a roll rotating device 23 whose rotating shaft is connected to a motor 25, and the output of a displacement gauge 26 is collected by a measuring instrument logger 27. .
  • a roll rotating device 23 whose rotating shaft is connected to a motor 25, and the output of a displacement gauge 26 is collected by a measuring instrument logger 27.
  • the rolling rolls 1, 2, and 3 by rotating the rolling rolls 1, 2, and 3 a plurality of times (2 to 5) and taking the autocorrelation of the displacement information obtained by the displacement meter 26, the displacement information for one rotation is specified, and the rolling roll 1, 2, and 3 circumferential positions and displacement information may be associated with each other.
  • the conformity determination device 30 provided in each of the stands F1 to F5 includes an operation data acquisition unit 31 having a rolling load data acquisition unit 32 and a peripheral speed data acquisition unit 33, a vibration analysis unit 34 , an initial surface shape acquisition unit 35 , a surface shape estimation unit 36 , and a conformity determination unit 37 .
  • the suitability determination device 30 performs arithmetic processing to realize each function of the operation data acquisition unit 31, the vibration analysis unit 34, the initial surface profile acquisition unit 35, the surface profile estimation unit 36, and the suitability determination unit 37 by executing a program. It is a computer system with functions. By executing various dedicated computer programs pre-stored in hardware, this computer system can realize each function described above on software.
  • the operation data acquisition unit 31 includes a rolling load data acquisition unit 32 and a peripheral speed data acquisition unit 33.
  • the rolling load data acquisition unit 32 acquires information on the stands F1 to Fn having the rolls to be evaluated selected by the operator from the host computer 14, and based on the information, operates the rolling load of the stands F1 to F5 having the rolls to be evaluated. Perform data acquisition processing.
  • the peripheral speed data acquisition unit 33 acquires information on the stands F1 to Fn where the evaluation target roll is selected by the operator from the host computer 14, and based on the information, acquires the operation data of the peripheral speed of the evaluation target roll. .
  • Information on the stands F1 to Fn on which the rolls to be evaluated are selected by the operator is input to the control computer 13 and sent to the operation data acquisition unit 31 via the host computer 14 .
  • the rolling load data acquisition unit 32 acquires the rolling load operation data of the stands F1 to F5 having the rolls to be evaluated from the controller 12 based on the above information.
  • the operation data of the rolling load of the stands F1 to F5 is the operation data of the rolling load detected by the rolling load detector 6 during rolling of the steel sheet as the metal strip S.
  • This rolling load operation data is sent to the control controller 12 , and the rolling load data acquisition unit 32 acquires the operation data from the control controller 12 .
  • the rolling load setting values set by the control computer 13 may be used as the rolling load operation data. As shown in FIG.
  • this is the bonding between the front end of the metal strip S (A, B, C) and the tail end of the preceding metal strip preceding the metal strip S (A, B, C).
  • the rolling load for rolling the metal strip A, the metal strip B, and the metal strip C is set by the control computer 13 at the timings t1, t2, and t3 when the part passes the rolling mill a.
  • the setting value of the rolling load is sent from the control computer 13 to the control controller 12 , and the rolling load data acquisition unit 32 acquires the setting value of the rolling load from the control controller 12 .
  • the operation data of the rolling load may be sent to the vibration analysis unit 34 as time-series data during the rolling of the metal strip S at any time, but the vibration analysis unit 34 is sent to the vibration analysis unit 34 only once when rolling of the metal strip S is started. You can send it to
  • the peripheral speed data acquisition unit 33 acquires operation data of the peripheral speed of the evaluation target roll from the controller 12 based on the above information.
  • the operation data on the peripheral speed of the evaluation target roll is time-series data, and the peripheral speed of the evaluation target roll during rolling of the steel sheet as the metal strip S is acquired at any time. It is preferable that the peripheral speed of the roll to be evaluated is time-series data with a sampling period arbitrarily set in the range of 0.1 to 5 ms. However, if a speedometer for measuring the rotation speed of the evaluation target roll is installed in each of the stands F1 to F5, the operation data of the peripheral speed of the evaluation target roll acquired by the peripheral speed data acquisition unit 33 is value can be used.
  • the operation data about the peripheral speed of the roll to be evaluated is sent to the surface shape estimator 36 at any time while the metal strip S is being rolled.
  • the operation data acquisition unit 31 may acquire other operation data when the metal strip S is rolled, in addition to the operation data of the rolling load and the operation data of the peripheral speed of the roll to be evaluated.
  • the surface hardness, Young's modulus, Poisson's ratio, and the like of the rolling rolls 1, 2, and 3 may be obtained as operational data relating to the attributes of the rolling rolls 1, 2, and 3.
  • set values and actual values such as the thickness of the material to be rolled, deformation resistance, reduction rate, advance rate, and coefficient of friction may be acquired.
  • the attribute information of the rolling rolls 1, 2, and 3 affects the susceptibility to wear when the rolling rolls to be evaluated contact the other rolling rolls 1, 2, and 3 and wear occurs, thereby determining the surface shape of the rolling rolls to be evaluated. This is because it may affect.
  • the operation data exemplified as the rolling conditions affect the contact pressure, relative sliding speed, and relative sliding amount between the evaluation roll and the other rolling rolls 1, 2, and 3 in contact with each other. This is because it may affect the surface shape of the These operational data are sent to the vibration analysis section 34 or the surface shape estimation section 36 .
  • the vibration analysis unit 34 analyzes the vibration behavior of the stands F1 to F5 using the rolling load operation data of the stands F1 to F5 having the evaluation target rolls acquired by the rolling load data acquisition unit 32 .
  • the vibration analysis unit 34 considers the influence of the rolling rolls 1, 2, and 3 other than the rolls to be evaluated on the vibration behavior of the rolls to be evaluated regarding the vibration behavior of the stands F1 to F5 in which the rolls to be evaluated are incorporated.
  • Run a vibration analysis For example, the upper backup rolls 2 of the four-stage stands F1 to F4 are selected as rolls to be evaluated.
  • the vibration analysis unit 34 analyzes the vibration behavior including the lower backup roll 2, the upper work roll 1, and the lower work roll 1 that constitute the stands F1 to F4, and evaluates Vibration behavior of the upper backup roll 2, which is a roll, is obtained.
  • a rolling mill vibration model that approximates the stands F1 to F5 having the rolls to be evaluated with a mass-spring system is used. Then, the spring constant in this rolling mill vibration model is updated according to the operation data of the rolling load of the stands F1 to F5 having the rolls to be evaluated, and a virtual external force is applied to the rolling mill vibration model with the updated spring constant. Calculate the frequency response when
  • a rolling mill vibration model approximating the stands F1 to F4 with a mass-spring system in the case where the stands having rolls to be evaluated are four-high stands F1 to F4 will be described below.
  • the rolling mill vibration model that approximates the four-stage stands F1 to F4 with a mass-spring system has upper and lower work rolls 1 and upper and lower backup rolls 2 as mass points, respectively. It is a vibrating model, and damping elements can be added if desired.
  • m1 is the mass of the upper backup roll 2
  • m4 is the mass of the lower backup roll 2
  • m2 is the mass of the upper work roll 1
  • m3 is the mass of the lower work roll 1.
  • the spring constant k1 of the spring 41 between the housing and the upper backup roll 2 and the spring constant k5 of the spring 45 between the housing and the lower backup roll 2 depend on the stiffness of the housing and the upper and lower backup rolls 2 shows the spring constant due to bearing deformation and roll deflection.
  • the spring constant k2 of the spring 42 between the upper backup roll 2 and the upper work roll 1 corresponds to the rigidity due to elastic contact deformation between the upper backup roll 2 and the upper work roll 1 .
  • a spring constant k4 of the spring 44 between the lower backup roll 2 and the lower work roll 1 corresponds to the rigidity due to contact elastic deformation between the lower backup roll 2 and the lower work roll 1 .
  • the spring constant k3 of the spring 43 between the upper and lower work rolls 1 is a spring constant calculated from the deformation characteristics of the metal strip S when the metal strip S is rolled by the upper and lower work rolls 1. is.
  • damping elements 46 may be provided as necessary, such as when a hydraulic pressure reduction device is used as a device for raising and lowering the backup rolls 2 by the roll gap controllers 10 of the respective stands F1 to F4.
  • the spring constant k3 of the spring 43 between the upper and lower work rolls 1 is calculated from the ratio of the variation of the rolling load to the variation of the gap (roll gap) between the upper and lower work rolls 1.
  • the rolling load may be calculated by using two-dimensional rolling theory, which is an elementary analysis method, and considering the flattening deformation of the upper and lower work rolls 1 (for example, Hitchcock's roll flattening formula).
  • two-dimensional rolling theory methods that are widely used for calculating the rolling load, such as Orowan theory, Karman theory, Bland & Ford's formula, and Hill's approximation formula, can be applied.
  • the mill rigidity K of each of the stands F1 to F4 is obtained from the ratio of the load change of the rolling load detected by the rolling load detector 6 with respect to the change of the roll gap when the upper and lower work rolls 1 are brought into contact when the mill is idling. It is possible to obtain the mill stretch curve (elastic characteristic curve).
  • the spring constant k3 the diameter of the upper and lower work rolls 1, entry-side plate thickness, entry-side tension, exit-side tension, deformation resistance of the material to be rolled, and the coefficient of friction in the roll bite are known as the standard rolling conditions.
  • the rolling load A' obtained as a simultaneous solution with the elastic characteristic curves of the stands F1 to F4 is obtained.
  • the rolling load B' when the reference roll gap A is changed to the roll gap B is obtained in the same manner.
  • the ratio of the amount of change from rolling load A' to B' to the amount of change from roll gap A to B obtained in this way can be taken as the spring constant k3.
  • the spring constant k2 of the spring 42 between the upper backup roll 2 and the upper work roll 1 and the spring constant k4 of the spring 44 between the lower backup roll 2 and the lower work roll 1 are 2 It can be calculated by applying the Hertzian contact theory for the elastic contact deformation of a cylinder.
  • the theory of Hertzian contact is a theoretical solution for contact deformation within the elastic range assuming that no slip or friction occurs between two solid bodies in contact. In this case, the axial approach amount, contact pressure, and contact length can be obtained. A coefficient obtained by linearly approximating the relationship between the axial center approach amount and the contact load at this time may be taken as the spring constant.
  • the mill stiffness K of each stand F1 to F4 is measured with the upper work roll 1 and the lower work roll 1 in contact with each other.
  • the spring constant k3E for the elastic contact deformation during is calculated by applying the Hertzian contact theory.
  • the mill stiffness K of the rolling mill corresponds to a composite spring composed of unknown spring constants k1, k5 and known spring constants k2, k3E, k4. Therefore, if one of the spring constants k1 and k5 can be calculated, or if the ratio of the two spring constants can be estimated, the spring constant k1, k1, k5 can be calculated.
  • the spring constants k1 and k5 can be assumed to be equal to Thereby, each spring constant k1 to k5 can be determined. Note that the method described in Non-Patent Document 1, for example, may be used as the method for determining each spring constant.
  • the damping coefficient when the damping element 46 is included in the rolling mill vibration model is obtained by performing a hammering test from the top of the housing 4 with the upper work roll 1 and the lower work roll 1 in contact with each other. It can be estimated from the behavior that the vibration of 4 is attenuated. For example, the amplitude attenuation behavior can be approximated by an exponential function with respect to the time axis, and the attenuation coefficient can be obtained from the functional expression. Since the damping coefficient is a unique value for each of the stands F1 to F4, the predetermined damping coefficient may be stored in the vibration analysis unit 34 as a fixed value.
  • the spring constants k1 to k5 of the spring elements that make up the mass-spring model are affected by the rolling load when the metal strip S is rolled. That is, the spring constants k1 to k5 calculated by the above method originally have nonlinear characteristics, but are usually calculated as values that can be linearly approximated in the vicinity of the rolling load when rolling the metal strip S. is. Therefore, in the rolling mill vibration model in which the stands F1 to F4 are approximated by the mass-spring model as described above, the vibration characteristics change according to the rolling load when the metal strip S is rolled.
  • the vibration analysis unit 34 of the present embodiment when the rolling load acquired by the rolling load data acquisition unit 32 changes, the spring constants k1 to k5 of the rolling mill vibration model are updated according to the operation data of the rolling load. . That is, the vibration analysis unit 34 updates the spring constants k1 to k5 of the rolling mill vibration model, which approximates the stands F1 to F4 in which the rolls to be evaluated are installed, by a mass-spring model, to the latest values according to the operation data of the rolling load. Reset.
  • the vibration analysis unit 34 may acquire time-series data of the rolling load from the rolling load data acquisition unit 32 and update the spring constants k1 to k5 of the rolling mill vibration model as needed.
  • the vibration analysis unit 34 calculates a frequency response when a virtual external force is applied to the rolling mill vibration model with updated spring constants k1 to k5.
  • the connection between the mass point element corresponding to the evaluation target roll and the other mass point element coupled by the spring element is virtually released with respect to the rolling mill vibration model in which the stands F1 to F4 are approximated by the mass-spring model.
  • the rolling mill vibration models of the respective stands F1 to F4 are divided into two, and the frequency responses of the divided rolling mill vibration models are calculated for each.
  • the mass point element corresponding to the roll to be evaluated is combined with the other two mass point elements, it is divided into two steps, step 1 and step 2, and the frequency response corresponding to each step is calculated.
  • Step 1 is a step of calculating a frequency response when a virtual external force is applied by virtually releasing the coupling with one mass element.
  • Step 2 is a step of calculating the frequency response when the coupling with the other mass point element is virtually released and a virtual external force is applied.
  • FIG. 8 shows a rolling mill vibration model in which a four-stage stand is approximated by a mass-spring system.
  • the coupling with the upper backup roll 2 is virtually released.
  • FIG. 4 is a diagram for explaining an example of calculating a frequency response (step 1).
  • FIG. 9 shows a virtual connection with the lower work roll 1 when the upper work roll 1 is selected as the roll to be evaluated in a rolling mill vibration model in which a four-stage stand is approximated by a mass-spring system. It is a figure for demonstrating the example which opens and calculates a frequency response (step 2).
  • the spring 42 (spring constant k2) that couples with the mass point m1 representing the upper backup roll 2 on the upper side of the mass point m2 representing the upper work roll 1 is a coupling portion C1.
  • Step 1 is to calculate the frequency response for each of the two divided mass-spring models when the spring 42 of the connecting portion C1 is released.
  • the spring 43 (spring constant k3) that couples with the mass point m3 representing the lower work roll 1 below the mass point m2 representing the upper work roll 1 is a coupling portion C2.
  • Step 2 is to calculate the frequency response for each of the two divided mass-spring models when the spring element of the coupling portion C2 is released.
  • a method of calculating the frequency response in step 1 will be described.
  • the mass-spring model is divided into a vibration system M1-1 above the joint C1 and a vibration system M1-2 below the joint C1.
  • the vibration system M1-1 when an upward force (external force) f acts on the mass point m1 representing the upper backup roll 2 above the coupling portion C1 as an input, A frequency response G1(i ⁇ ) whose output is the displacement of the mass point m1 at .
  • a downward force (external force) f is input to the mass point m2 representing the upper work roll 1 below the coupling portion C1.
  • a frequency response G2(i ⁇ ) whose output is the displacement of the mass points m2, m3, and m4 below the coupling portion C1 when acted on is obtained.
  • i indicates an imaginary unit and ⁇ indicates an angular frequency.
  • transfer functions they are G 1 (s) and G 2 (s).
  • Frequency responses G1(i ⁇ ), G2(i ⁇ ) and transfer functions G 1 (s), G 2 (s) represent the vibration behavior of each of the stands F1 to F4 centering on the joint C1.
  • the mass-spring model is divided into a vibration system M2-1 above the joint C2 and a vibration system M2-2 below the joint C2.
  • a vibration system M2-1 when an upward force (external force) f acts on the mass point m2 representing the upper work roll 1 above the coupling portion C2 as an input, A frequency response G3(i ⁇ ) is obtained with displacements of the mass points m2 and m1 at .
  • a downward force is input to the mass point m3 representing the lower work roll 1 below the coupling portion C2.
  • a frequency response G4(i ⁇ ) is obtained by outputting displacements of the mass points m3 and m4 located below the coupling portion C2 when acted on.
  • transfer functions they are G 3 (s) and G 4 (s).
  • the frequency responses G3(i ⁇ ), G4(i ⁇ ) and the transfer functions G3 (s), G4 (s) represent the vibration behavior of the rolling mill around the joint C2.
  • the frequency response of the coupled vibration system is Just ask.
  • the spring 41 spring constant k1
  • the rolling mill vibration model approximating the six-high stand F5 with a mass-spring system includes upper and lower work rolls 1, upper and lower backup rolls 2, and upper and lower This is a vibration model with the intermediate rolls 3 as mass points, and damper elements can be added as necessary.
  • m1 is the mass of the upper backup roll 2
  • m6 is the mass of the lower backup roll 2
  • m2 is the mass of the upper intermediate roll 3
  • m5 is the mass of the lower intermediate roll 3
  • m3 is The mass of the upper work roll 1
  • m4 represents the mass of the lower work roll 1.
  • the spring constant k1 of the spring 51 between the housing and the upper backup roll 2 and the spring constant k7 of the spring 57 between the housing and the lower backup roll 2 depend on the stiffness of the housing and the upper and lower backup rolls 2 shows the spring constant due to bearing deformation and roll deflection.
  • the spring constant k2 of the spring 52 between the upper backup roll 2 and the upper intermediate roll 3 corresponds to the rigidity due to elastic contact deformation between the upper backup roll 2 and the upper intermediate roll 3 .
  • the spring constant k6 of the spring 56 between the lower backup roll 2 and the lower intermediate roll 3 corresponds to the rigidity due to elastic contact deformation between the lower backup roll 2 and the lower intermediate roll 3.
  • the spring constant k3 of the spring 53 between the upper intermediate roll 3 and the upper work roll 1 corresponds to the rigidity due to elastic contact deformation between the upper intermediate roll 3 and the upper work roll 1 .
  • the spring constant k5 of the spring 55 between the lower intermediate roll 3 and the lower work roll 1 corresponds to the rigidity due to elastic contact deformation between the lower intermediate roll 3 and the lower work roll 1.
  • the spring constant k4 of the spring 54 between the upper and lower work rolls 1 is a spring constant calculated from the deformation characteristics of the metal strip S when the metal strip S is rolled by the upper and lower work rolls 1.
  • the damping element 58 may be provided as necessary, such as when a hydraulic screw down device is used as a device for raising and lowering the backup roll 2 by the roll gap controller 10 of the stand F5.
  • the vibration analysis section 34 updates the spring constants k1 to k7 of the rolling mill vibration model according to the rolling load operation data.
  • the vibration analysis unit 34 may acquire the rolling load time-series data from the rolling load data acquisition unit 32 and update the spring constants k1 to k7 of the rolling mill vibration model as needed.
  • the dimensions and deformation resistance of the metal strip S to be rolled do not fluctuate greatly, changes in the spring constants k1 to k7 in the rolling mill vibration model can be practically ignored. It is sufficient to update the rolling load operation data once. That is, since the control computer 13 performs the setting calculation before rolling the metal strip S, the set value of the rolling load obtained by the setting calculation is obtained, and the spring constants k1 to k7 are updated using the obtained value. can be
  • the vibration analysis unit 34 applies a virtual external force to the rolling mill vibration model that approximates the six-high stand F5 with the rolls to be evaluated with updated spring constants k1 to k7 using a mass-spring system.
  • the vibration analysis unit 34 applies a virtual external force to the rolling mill vibration model that approximates the six-high stand F5 with the rolls to be evaluated with updated spring constants k1 to k7 using a mass-spring system.
  • Step 1 is a step of calculating a frequency response when a virtual external force is applied by virtually releasing the coupling with one mass element.
  • Step 2 is a step of calculating a frequency response when a virtual external force is applied by virtually releasing the coupling with the other mass element.
  • FIG. 11 shows a rolling mill vibration model in which a six-high stand is approximated by a mass-spring system.
  • FIG. 4 is a diagram for explaining an example of calculating a frequency response (step 1).
  • FIG. 12 shows a rolling mill vibration model in which a six-high stand is approximated by a mass-spring system.
  • FIG. 10 is a diagram for explaining an example of calculating a frequency response (step 2).
  • the spring 52 (spring constant k2) that couples with the mass point m1 representing the upper backup roll 2 above the mass point m2 representing the upper intermediate roll 3 is a coupling portion C3.
  • Step 1 is to calculate the frequency response for each of the two divided mass-spring models when the spring 52 of the connecting portion C3 is released.
  • the spring 53 (spring constant k3) that couples with the mass point m3 representing the upper work roll 1 below the mass point m2 representing the upper intermediate roll 3 is a coupling portion C4.
  • Step 2 is to calculate the frequency response for each of the two divided mass-spring models when the spring element of the coupling portion C4 is released.
  • a method of calculating the frequency response in step 1 will be described.
  • the mass-spring model is divided into a vibration system M3-1 above the joint C3 and a vibration system M3-2 below the joint C3.
  • the vibration system M3-1 when an upward force (external force) f acts on the mass point m1 representing the upper backup roll 2 above the coupling portion C3 as an input, A frequency response G5(i ⁇ ) whose output is the displacement of the mass point m1 at .
  • a downward force (external force) f is input to the mass point m2 representing the upper intermediate roll 3 below the coupling portion C3.
  • a frequency response G6(i ⁇ ) is obtained in which the displacements of the mass points m2, m3, m4, m5, and m6 below the coupling portion C3 are output.
  • i indicates an imaginary unit and ⁇ indicates an angular frequency.
  • transfer functions they are G 5 (s) and G 6 (s).
  • the frequency responses G5(i ⁇ ), G5(i ⁇ ) and the transfer functions G5 (s), G6 (s) represent the vibration behavior of the stand F5 about the joint C3.
  • the mass-spring model is divided into a vibration system M4-1 above the joint C4 and a vibration system M4-2 below the joint C4.
  • a vibration system M4-1 when an upward force (external force) f acts on the mass point m2 representing the upper intermediate roll 3 above the coupling portion C4 as an input, A frequency response G7(i ⁇ ) is obtained with displacements of the mass points m2 and m1 at .
  • a downward force acts as an input on the mass point m3 representing the upper work roll 1 below the coupling portion C4.
  • a frequency response G8(i ⁇ ) whose output is the displacement of the mass points m3, m4, m5, and m6 below the coupling portion C4 is obtained.
  • G 7 (s) and G 8 (s) When represented by a transfer function, G 7 (s) and G 8 (s).
  • the frequency responses G7(i ⁇ ), G8(i ⁇ ) and the transfer functions G7 (s), G8 (s) represent the vibration behavior of the rolling mill around the joint C4.
  • G 6 (s) has a denominator of ( m6s2 + c1s + k7 + k6 ) ( m5s2 + k6 + k5 ) ( m4s2 + k5 + k4 ) ( m3s2 + k4 + k3 ) ( m2s2 + k3 ) - k 6 2 (m 4 s 2 + k 5 + k 4 ) (m 3 s 2 + k 4 + k 3 ) (m 2 s 2 + k 3 ) - k 5 2 (m 6 s 2 + c 1 s + k 7 + k 6 ) (m 3 s 2 +k 4 +k 3 )(m 2 s 2 +k 3 ) ⁇ k 4 2 (m 6 s 2 +c 1 s+k 7 +k 6 )(m 5 s 2 +k 6 +k 5 )(m 2 s 2 +k 3 ) - k 3 2 (m 6
  • G 8 (s) has a denominator of (m 6 s 2 +c 1 s +k 7 +k 6 )(m 5 s 2 +k 6 +k 5 )(m 4 s 2 +k 5 +k 4 )(m 3 s 2 +k 4 ) ⁇ k 4 2 ⁇ (m 6 s 2 +c 1 s+k 7 +k 6 )(m 5 s 2 +k 6 +k 5 ) ⁇ k 6 2 ⁇ k 6 2 (m 4 s 2 +k 5 +k 4 )(m 3 s 2 +k 4 ) ⁇ k 5 2 (m 6 s 2 +c 1 s +k 7 +k 6 )(m 3 s 2 +k 4 ), the molecule - (m 6 s 2 + c 1 s + k 7 + k 6 ) (m 5 s 2 + k 6 + k 5 ) (m 4 s 2 + k 5 + k 4 ) + k 6 2 (m 4 s 2 + k 5 +
  • the initial surface shape acquisition unit 35 acquires from the host computer 14 the initial surface shape of the roll to be evaluated before the roll to be evaluated is incorporated in the stands F1 to F5 where the roll to be evaluated is located.
  • the initial surface shape of the roll to be evaluated represents the initial amplitude of the surface of the roll to be evaluated before the roll to be evaluated is incorporated in the stands F1 to F5, and is a parameter specified after grinding the roll to be evaluated by a roll grinder. be. Specifically, the operator can measure the surface shape of the roll to be evaluated after grinding, and obtain the difference between the measured maximum diameter and minimum diameter as the initial amplitude ⁇ .
  • the surface shape information of the evaluation target roll before the evaluation target roll is incorporated in the stands F1 to F5
  • the surface profile of the evaluation target roll in the circumferential direction after roll grinding is subjected to Fourier series expansion for each pitch p
  • Initial amplitude ⁇ 0 ( p) may be specified.
  • the initial surface shape of the roll to be evaluated is input to the control computer 13 by the operator when the operator inputs information on the selected roll to be evaluated into the control computer 13, and is passed through the host computer 14 to obtain the initial surface shape. It is sent to the shape acquisition unit 35 .
  • the surface shape estimating unit 36 in addition to the analysis result of the vibration behavior of the stands F1 to F5 having the evaluation target roll by the vibration analysis unit 34 and the peripheral speed operation data of the evaluation target roll acquired by the peripheral speed data acquiring unit 33 Then, using the initial surface shape of the evaluation target roll acquired by the initial surface shape acquisition unit 35, the surface shape of the evaluation target roll is estimated.
  • the analysis result of the vibration behavior of the stands F1 to F5 having the roll to be evaluated by the vibration analysis unit 34 is the frequency response calculated as follows, and is sent from the vibration analysis unit 34 to the surface shape estimation unit 36. .
  • a rolling mill vibration model that approximates the stands F1 to F5 having the rolls to be evaluated by a mass-spring system is used. Then, the spring constants k1 to k7 in this rolling mill vibration model are updated according to the rolling load operation data of the stands F1 to F5 having the rolls to be evaluated. The frequency response is calculated when a virtual external force is applied to the rolling mill vibration model with updated spring constants k1 to k7.
  • the evaluation target rolls incorporated in the stands F1 to F5 receive periodic contact loads from other rolling rolls coming into contact with the metal strip S during rolling or from the metal strip S, which is the material to be rolled.
  • the periodic contact load in this case acts on the roll to be evaluated as a load obtained by combining vibrations of multiple frequencies.
  • Such a load on the roll to be evaluated gradually progresses wear between the solids in contact with each other, and as a result, unevenness with a specific period develops, and the surface shape of the roll to be evaluated may become polygonal. be.
  • a minute relative slip corresponding to the vibration frequency occurs between the roll to be evaluated and other solids that come into contact with it, and the resulting minute wear grows at a specific pitch. becomes polygonal.
  • the surface shape estimating unit 36 uses an index that represents the degree of damage that the evaluation target roll receives from other solids that come into contact with the evaluation target roll when vibrations of a plurality of frequencies are applied to the evaluation target roll.
  • the surface shape of the evaluation target roll formed during rolling of S is estimated.
  • the surface shape estimator 36 estimates the surface shape of the roll to be evaluated using a parameter called "pitch damage degree” described below.
  • the “pitch damage degree” is the frequency response characteristics of each stand F1 to F5 calculated using the rolling mill vibration model in the vibration analysis unit 34 and the peripheral speed of the evaluation target roll acquired by the peripheral speed data acquisition unit 33. It is a parameter for calculating the degree of damage associated with the pitch of the unevenness formed on the surface of the evaluation target roll from the operation data of V (m/sec), and can be defined as follows.
  • the degree of pitch damage to the joint C1 calculated in step 1 ⁇ 1(p) is expressed by the following equation (9) using frequency responses G1(i ⁇ ) and G2(i ⁇ ).
  • p is the evaluation pitch (m) of the unevenness formed on the surface shape of the roll to be evaluated.
  • k 0 (N/m) is the spring constant at the joint C1
  • ⁇ (m/N) is the wear progress coefficient at the joint C1
  • the wear rate (m/N ) is the wear rate (m/N ).
  • T (sec) is the rotation cycle of the roll to be evaluated.
  • ⁇ 0 (rad/sec) is the angular frequency corresponding to the evaluation pitch p. ).
  • the degree of pitch damage ⁇ 1(p) is associated with the amount of wear (degree of damage) of the pitch unevenness formed on the surface of the roll to be evaluated due to the vibration at the coupling portion C1, and naturally follows the amplitude of the pitch unevenness. It corresponds to the amount of change per unit time of the value obtained by applying logarithm.
  • the degree of pitch damage ⁇ 2(p) for the coupling portion C2 is expressed by the following equation (11) using the frequency responses G3(i ⁇ ) and G4(i ⁇ ).
  • the degree of pitch damage ⁇ (p) of the roll to be evaluated has a characteristic of accumulating with the vibration of the rolling mill, and the cumulative degree of pitch damage ⁇ (p) is defined as the following equation (12).
  • ⁇ t is the sampling cycle of the peripheral speed of the rolling rolls acquired by the operation data acquiring unit.
  • the degree of pitch damage ⁇ (p) may become negative, which means that the unevenness corresponding to the pitch p gradually decreases.
  • the amplitude information u(p) corresponding to the pitch p in the process of rolling the metal strip is calculated by the following equation (13). .
  • represents the initial surface shape of the evaluation target roll input from the initial surface shape acquisition unit 35, that is, the initial amplitude of the surface of the evaluation target roll before the evaluation target roll is incorporated in the stands F1 to F4, and the evaluation It is a parameter specified after the target roll is ground by a roll grinder. Specifically, the operator can measure the surface shape of the roll to be evaluated after grinding, and obtain the difference between the measured maximum diameter and minimum diameter as the initial amplitude ⁇ .
  • the surface shape information of the evaluation target roll before the evaluation target roll is incorporated in the stands F1 to F4
  • the surface profile of the evaluation target roll in the circumferential direction after roll grinding is subjected to Fourier series expansion for each pitch p
  • Initial amplitude ⁇ 0 ( p) may be specified.
  • the amplitude information u(p) corresponding to the pitch p can be calculated by the following equation (14).
  • the amplitude information u(p) corresponding to the pitch p is the same as described above. It can be calculated by the method of
  • the frequency response of each stand F1 to F5 the actual data of the peripheral speed of the roll to be evaluated, and the surface shape of the roll to be evaluated are evaluated based on the past operation results.
  • the surface shape of the roll may be estimated. For example, frequency responses G 1 (s), G 2 (s), G 3 (s), G 4 (s), G 5 (s), G 6 ( s), G 7 (s), G 8 (s) performance data, operation performance data such as average speed and maximum speed as peripheral speed of the roll to be evaluated, and evaluation measured after finishing rolling of metal strip S
  • the measurement results of the surface profile of the target roll are stored in a database in association with each other. Then, when the metal strip S is rolled, a roll to be evaluated may be set, the operation data acquisition unit 31 may acquire these data, and the data may be sent to the surface shape estimation unit 36 .
  • the surface shape of the roll to be evaluated estimated by the surface shape estimating unit 36 that is, the amplitude information u(p) corresponding to the pitch p of the surface of the roll to be evaluated is applied to the conformity determination unit connected to the surface shape estimating unit 36. It is sent to section 37 .
  • the suitability determination unit 37 performs suitability determination of the evaluation target roll based on the surface shape of the evaluation target roll estimated by the surface shape estimation unit 36 .
  • the conformity determination unit 37 refers to the value of the amplitude information u(p) corresponding to the surface pitch p of the evaluation target roll calculated by the surface shape estimation unit 36 .
  • the conformity determination unit 37 determines conformity (acceptance). If it is more than that, it will be determined as non-conforming (failed).
  • the upper limit value of the amplitude corresponding to the preset pitch p is set in advance when it is known from past operation results and chatter mark occurrence results that irregularities tend to grow at a specific pitch p. This is the upper limit value of the amplitude corresponding to such a pitch p set as the surface shape of the roll to be evaluated. As a result, it is possible to appropriately manage the replacement timing of the rolling rolls, and to prevent a decrease in the production efficiency and work rate of the rolling mill a. Then, the determination result by the conformity determination section 37 is sent to the display device 38 connected to the conformity determination section 37 . The display device 38 displays the output of the result, that is, the determination result by the conformance determining section 37 .
  • a rolling roll is arbitrarily selected from a plurality of rolling rolls 1, 2, and 3 of arbitrary stands F1 to F5 using a rolling roll suitability determination device 30. Perform conformity judgment of the role to be evaluated.
  • This conformity determination method will be described with reference to FIGS. 6 and 13.
  • FIG. 6 is a flow chart for explaining the flow of processing in the high-level computer 14 and conformity determining device 30 of the rolling mill a shown in FIG.
  • FIG. 13 is a graph showing changes in the peripheral speed of the rolling rolls 1, 2, and 3 and the timing of judging suitability of the rolls to be evaluated when the metal strip S is continuously rolled using the rolling mill a shown in FIG. .
  • a normal rolling mill a continuously rolls a plurality of metal strips S, so in the example shown in FIG. 13, metal strips A, B, and C are rolled in this order.
  • the front end of the metal strip A and the tail end of the preceding metal strip preceding the metal strip A are joined by welding.
  • processing is performed in the high-level computer 14 and conformity determining device 30 of the rolling mill a shown in FIG.
  • the information about the selected roll to be evaluated is information about which of the rolls 1, 2, and 3 in which of the stands F1 to F5 was selected as the roll to be evaluated. Then, the host computer 14 selects an evaluation target role based on the information input to the host computer 14 in step S1. Then, the host computer 14 sends the information of the selected roll to be evaluated to the operation data acquisition section 31 of the suitability determination device 30 provided at the stand F1 to F5 where the roll to be evaluated is located.
  • the host computer 14 sends information on the initial surface shape of the roll to be evaluated to the initial surface shape acquisition unit 35 of the suitability determination device 30 provided in the stand F1 to F5 where the roll to be evaluated is located (selection step of roll to be evaluated ).
  • the initial surface shape acquisition unit 35 of the suitability determination device 30 provided in the stand F1 to F5 where the roll to be evaluated is provided acquires information on the initial surface shape of the roll to be evaluated, that is, the surface of the roll to be evaluated.
  • the initial amplitude ⁇ is acquired from the host computer 14 (initial surface profile acquisition step).
  • the initial surface profile acquisition unit 35 specified the initial amplitude ⁇ 0(p) for each pitch p by Fourier series expansion of the circumferential surface profile of the evaluation target roll after roll grinding as the surface profile information of the evaluation target roll. You can get things.
  • step S3 the rolling load data acquisition unit 32 of the suitability determination device 30 provided in the stand F1 to F5 having the roll to be evaluated selects the roll to be evaluated based on the selection information of the roll to be evaluated from the host computer 14.
  • Operation data of the rolling load of a certain stand F1 to F5 is obtained from the controller 12 (rolling load data obtaining step).
  • the operation data of the rolling load of the stands F1 to F5 is the operation of the rolling load detected by the rolling load detector 6 when the joint between the metal strip A and the preceding metal strip passes through the stands F1 to F5.
  • the rolling load setting values set by the control computer 13 may be used as the rolling load operation data.
  • step S4 the peripheral speed data acquisition unit 33 of the suitability determination device 30 provided in the stand F1 to F5 where the roll to be evaluated is located, selects the roll to be evaluated based on the selection information of the roll to be evaluated from the host computer 14.
  • Operation data of peripheral speed is acquired from the controller 12 (peripheral speed data acquisition step).
  • the operation data of the peripheral speed of the evaluation target roll acquired by the peripheral speed data acquisition unit 33 is the actual measurement of the rotational speed of the upper and lower work rolls 1 detected by the rotational speed detector of the roll speed controller 11. It is obtained by converting the value using the ratio of the roll diameters of the work roll 1 and the roll to be evaluated.
  • step S5 the vibration analysis unit 34 of the suitability determination device 30 provided in the stands F1 to F5 having the rolls to be evaluated acquires the stand F1 to F5 having the rolls to be evaluated acquired in step S3 (rolling load acquisition step).
  • the vibration behavior of the stands F1 to F5 is analyzed using the rolling load operation data (vibration analysis step).
  • the rolling mill vibration model that approximates the stands F1 to F5 with the rolls to be evaluated by a mass-spring system is used. .
  • the spring constants k1 to k5 in this rolling mill vibration model are updated according to the rolling load operation data of the stands F1 to F5 having the rolls to be evaluated acquired in step S3. Then, the frequency response when a virtual external force is applied to the rolling mill vibration model with updated spring constants k1 to k5 is calculated.
  • transfer function G 1 (s ), G 2 (s), G 3 (s), and G 4 (s) can be expressed by the formulas (1) to (4) described above.
  • transfer functions G5 (s), G 6 (s), G 7 (s), and G 8 (s) can be expressed by the aforementioned formulas (5) to (8).
  • step S6 the surface shape estimating section 36 estimates the surface shape of the evaluation target roll during rolling of the metal strip S (surface shape estimating step).
  • the analysis result of the vibration behavior of the stands F1 to F5 having the roll to be evaluated in step S5 (vibration analysis step) is used.
  • the operation data of the peripheral speed of the evaluation target roll acquired in step S4 peripheral speed data acquisition step
  • the initial surface shape of the roll to be evaluated acquired in step S2 (initial surface shape acquisition step) is used.
  • the analysis result of the vibration behavior of the stands F1 to F5 having the rolls to be evaluated in step S5 is the frequency response calculated as follows, and sent to That is, when calculating the frequency response, a rolling mill vibration model that approximates the stands F1 to F5 having the rolls to be evaluated by a mass-spring system is used. Then, the spring constants k1 to k7 in this rolling mill vibration model are updated according to the rolling load operation data of the stands F1 to F5 having the rolls to be evaluated. The frequency response is calculated when a virtual external force is applied to the rolling mill vibration model with updated spring constants k1 to k7.
  • the operation data of the peripheral speed of the evaluation target roll acquired in step S ⁇ b>4 is sent from the peripheral speed data acquisition section 33 to the surface shape estimation section 36 .
  • the evaluation target rolls incorporated in the stands F1 to F5 receive periodic contact loads from other rolling rolls that come into contact during rolling of the metal strip S or from the metal strip S that is the material to be rolled.
  • the periodic contact load in this case acts on the roll to be evaluated as a load obtained by combining vibrations of multiple frequencies.
  • Such a load on the roll to be evaluated gradually progresses wear between the solids in contact with each other, and as a result, unevenness with a specific period develops, and the surface shape of the roll to be evaluated may become polygonal. be.
  • a minute relative slip corresponding to the vibration frequency occurs between the roll to be evaluated and other solids that come into contact with it, and the resulting minute wear grows at a specific pitch. becomes polygonal.
  • step S6 the surface shape estimating unit 36 uses an index representing the degree of damage that the evaluation target roll receives from other solids that come into contact with the evaluation target roll when vibrations of a plurality of frequencies are applied to the evaluation target roll. , the surface shape of the roll to be evaluated formed during the rolling of the metal strip S is estimated.
  • the surface shape estimating section 36 estimates the surface shape of the evaluation target roll using the parameter called the "pitch damage degree" described above.
  • the “pitch damage degree” refers to the frequency response characteristics of each stand F1 to F5 calculated using the rolling mill vibration model in step S5 (vibration analysis step) and the frequency response characteristics obtained in step S4 (peripheral velocity data acquisition step). It is a parameter for calculating the degree of damage associated with the pitch of the unevenness formed on the surface of the roll to be evaluated from the operational data of the peripheral speed of the roll to be evaluated.
  • the degree of pitch damage to the joint C1 calculated in step 1 ⁇ 1(p) is expressed by the above equation (9) using the frequency responses G1(i ⁇ ) and G2(i ⁇ ).
  • the degree of pitch-related damage ⁇ 2(p) for the coupling portion C2 is expressed by the above-described equation (11) using the frequency responses G3(i ⁇ ) and G4(i ⁇ ).
  • the degree of pitch damage ⁇ (p) of the roll to be evaluated has the characteristic of accumulating along with the vibration of the rolling mill, and the cumulative degree of pitch damage ⁇ (p) is defined as in the above-described formula (12).
  • is the initial surface shape of the evaluation target roll acquired in step S2 (initial surface shape acquisition step), that is, the initial amplitude of the surface of the evaluation target roll before the evaluation target roll is incorporated in the stands F1 to F4. It is a parameter specified after grinding the roll to be evaluated by the roll grinder. Specifically, the operator can measure the surface shape of the roll to be evaluated after grinding, and obtain the difference between the measured maximum diameter and minimum diameter as the initial amplitude ⁇ .
  • the surface shape information of the evaluation target roll before the evaluation target roll is incorporated in the stands F1 to F4
  • the surface profile of the evaluation target roll in the circumferential direction after roll grinding is subjected to Fourier series expansion for each pitch p Initial amplitude ⁇ 0 ( p) may be specified.
  • the amplitude information u(p) corresponding to the pitch p can be calculated by the above equation (14). Note that when the frequency response is calculated using a rolling mill vibration model that approximates the six-high stand F5 with the rolls to be evaluated by a mass-spring system, the amplitude information u(p) corresponding to the pitch p is the same as described above. It can be calculated by the method of Then, the surface shape of the roll to be evaluated estimated by the surface shape estimating unit 36, that is, the amplitude information u(p) corresponding to the pitch p of the surface of the roll to be evaluated is applied to the conformity determination unit connected to the surface shape estimating unit 36. It is sent to section 37 .
  • the suitability determination unit 37 performs suitability determination of the evaluation target roll based on the surface shape of the evaluation target roll estimated by the surface shape estimation unit 36 (suitability determination step). Specifically, the conformity determination unit 37 refers to the value of the amplitude information u(p) corresponding to the surface pitch p of the evaluation target roll calculated by the surface shape estimation unit 36 . Then, if the value of the information u(p) corresponding to the pitch p of the roll to be evaluated is less than the preset upper limit value of the amplitude corresponding to the pitch p, the conformity determination unit 37 determines conformity (acceptance). If it is more than that, it will be determined as non-conforming (failed).
  • the upper limit value of the amplitude corresponding to the preset pitch p is set in advance when it is known from past operation results and chatter mark occurrence results that irregularities tend to grow at a specific pitch p. This is the upper limit value of the amplitude corresponding to such a pitch p set as the surface shape of the roll to be evaluated.
  • the display device 38 displays the output of the result, that is, the determination result of step S7 (display step).
  • An operator who performs a rolling operation can confirm the suitability determination result of the roll to be evaluated on the display device 38 .
  • any stand F1 to A suitability determination is made for a roll to be evaluated, which is a rolling roll arbitrarily selected from a plurality of rolling rolls 1, 2, and 3 in F5.
  • the suitability determination method includes a rolling load data acquisition step (step S3) for acquiring rolling load operation data of the stands F1 to F5 having rolls to be evaluated.
  • the suitability determination method also includes a peripheral speed data acquisition step (step S4) of acquiring operation data of the peripheral speed of the roll to be evaluated.
  • the conformity determination method uses the rolling load operation data of the stands F1 to F5 having the rolls to be evaluated acquired in the rolling load data acquisition step (step S3) to analyze the vibration behavior of the stands F1 to F5.
  • the conformity determination method includes the analysis result of the vibration behavior of the stands F1 to F5 having the evaluation target roll in the vibration analysis step (step S5) and the peripheral speed of the evaluation target roll acquired in the peripheral speed data acquisition step (step S4). and a surface shape estimating step (step S6) of estimating the surface shape of the evaluation target roll during rolling of the metal strip S from the operation data.
  • the suitability determination method also includes a suitability determination step (step S7) for determining suitability of the evaluation target roll based on the surface shape of the evaluation target roll estimated in the surface shape estimation step (step S6).
  • the state of polygonal wear of the roll to be evaluated that occurs during rolling can be estimated online, and based on the estimated polygonal wear state of the roll roll can be determined to prevent mild chatter marks caused by polygonal wear.
  • the initial surface shape acquisition step of acquiring the initial surface shape of the roll to be evaluated before the roll to be evaluated is incorporated in the stands F1 to F5 having the roll to be evaluated. (Step S2). Then, in the surface shape estimation step (step S6), the analysis result of the vibration behavior of the stand having the evaluation target roll in the vibration analysis step (step S5) and the circumference of the evaluation target roll acquired in the peripheral speed data acquisition step (step S4) In addition to the speed operation data, the initial surface profile of the evaluation target roll acquired in the initial surface profile acquisition step (step S2) is used to estimate the surface profile of the evaluation target roll during rolling of the metal strip S.
  • the surface shape of the roll to be evaluated is determined by the amplitude information u(p) associated with the pitch p of the unevenness formed on the surface of the roll to be evaluated. be.
  • the amplitude information u(p) associated with the pitch p of the unevenness formed on the surface of the evaluation target roll which accurately represents the state of polygonal wear of the evaluation target roll during rolling, is estimated. , it is possible to adequately prevent mild chatter marks caused by polygon wear.
  • the analysis of the vibration behavior of the stands F1 to F5 having the rolls to be evaluated in the vibration analysis step (step S5) is performed using the stands F1 to F5 having the rolls to be evaluated. is approximated by a mass-spring system. Then, the spring constants k1 to k7 in the rolling mill vibration model are updated according to the rolling load operation data of the stands F1 to F5 having rolls to be evaluated. Then, the frequency response when a virtual external force is applied to the rolling mill vibration model with updated spring constants k1 to k7 is calculated.
  • the suitability determination of the roll to be evaluated is performed during rolling of the metal strip S using the above-described method for determining suitability of the rolling rolls, and when the result of the suitability determination is unsuitable Secondly, the rolls to be evaluated are replaced with new rolling rolls, and the metal strip S is rolled. That is, when the roll to be evaluated is determined to be unsuitable by the above-described method for determining suitability of rolling rolls, the rolling mill a is temporarily stopped.
  • the non-conforming rolls to be evaluated are extracted from the corresponding stands F1 to F5, and after they are replaced with new rolling rolls that have been ground by the roll grinder, the rolling of the metal strip S may be restarted.
  • generation of chatter marks on the surface of the metal band S can be prevented, and the metal band S can be manufactured with a high yield.
  • the rolling mill a has five stands
  • the stands F1 to F4 are four-high rolling mills
  • the stand F5 is a six-high rolling mill, but the number of stands is limited to five. not.
  • the suitability determination device 30 does not necessarily need to include the initial surface shape acquisition unit 35 that acquires the initial surface shape of the evaluation target roll before the evaluation target roll is assembled in the stands F1 to F5 where the evaluation target roll is located. Then, the surface shape estimating unit 36 adds the analysis results of the vibration behavior of the stands F1 to F5 having the evaluation target roll by the vibration analysis unit 34 and the operation data of the peripheral speed of the evaluation target roll acquired by the peripheral speed data acquisition unit 33 Therefore, it is not always necessary to estimate the surface shape of the roll to be evaluated using the initial surface shape of the roll to be evaluated acquired by the initial surface shape acquiring unit 35 .
  • the surface shape of the roll to be evaluated estimated by the surface shape estimating unit 36 does not necessarily have to be the amplitude information u(p) associated with the pitch p of the unevenness formed on the surface of the roll to be evaluated.
  • the vibration analysis of the vibration behavior of the stands F1 to F5 with the rolls to be evaluated by the vibration analysis unit 34 uses a rolling mill vibration model that approximates the stands F1 to F5 with the rolls to be evaluated by a mass-spring system.
  • the spring constants k1 to k7 in the model are updated according to the operation data of the rolling load of the stands F1 to F5 having the rolls to be evaluated, and a virtual external force is applied to the rolling mill vibration model with the updated spring constants k1 to k7. It is not always necessary to calculate the frequency response when given.
  • an example targeting a rolling mill (tandem rolling mill) a with four stands F1 to F4 in which the front three stands F1 to F3 are a four-high rolling mill and the final stand F4 is a six-high rolling mill explain.
  • the backup roll 2 above the third stand F3, which is a four-high rolling mill was selected as the roll to be evaluated.
  • the diameter of the roll to be evaluated is 1370 mm.
  • the work rolls 1 on the upper and lower sides of the stand F3 had a diameter ranging from 480 to 550 mm, and a plurality of metal strips S were rolled while exchanging the work rolls 1 at any time.
  • the rolls to be evaluated were forged steel rolls, which were finished with a roll grinder to have a center line average roughness of 0.8 ⁇ mRa and then loaded into the stand F3.
  • the maximum amplitude was 0.1 ⁇ m, so the initial amplitude ⁇ of the surface of the roll to be evaluated was set to 0.1 ⁇ m.
  • the metal strip S rolled by the rolling mill a is a cold-rolled sheet steel including ultra-low carbon steel, high-strength steel, and the like.
  • the rolling speed (peripheral speed of the upper and lower work rolls 1 of the final stand F4) has a minimum speed of 200 m/min and a maximum speed of 1300 m/min. Rolling was performed at the maximum speed set by the control computer 13 according to the plate width, base material length) and steel type. However, depending on the state of supply of the metal strip S to the rolling mill a, etc., the rolling speed was appropriately reset during the rolling of the metal strip at the discretion of the operator.
  • the operator provides information on the selected evaluation target roll (information that the backup roll 2 on the upper side of the third stand F3 is the evaluation target roll) and the initial surface shape of the evaluation target roll (surface of the evaluation target roll is 0.1 ⁇ m) is input to the control computer 13 , and the information is input to the host computer 14 .
  • step S1 the host computer 14 selects a roll to be evaluated based on the information input to the host computer 14, and transmits the information of the selected roll to be evaluated to the conformity judgment provided at the stand F3 where the roll to be evaluated is located. It was sent to the operation data acquisition unit 31 of the device 30 . In addition, the host computer 14 sent the information on the initial surface shape of the roll to be evaluated to the initial surface shape acquiring section 35 of the suitability determination device 30 provided at the stand F3 where the roll to be evaluated is located.
  • step S3 the rolling load data acquisition unit 32 of the suitability determination device 30 provided in the stand F3 having the roll to be evaluated, based on the selection information of the roll to be evaluated from the host computer 14, the stand having the roll to be evaluated
  • the operation data of the rolling load of F3 was acquired from the controller 12 for control.
  • the operation data of the rolling load of the stand F3 is obtained by continuously rolling the trailing metal strip having the joint portion of the leading metal strip and the trailing metal strip with respect to the stand F3. From the result of the setting calculation by the control computer 13 executed before the leading end of the rolling mill passes the rolling mill a, the setting value of the rolling load was 5000 kN to 25000 kN.
  • step S4 the circumferential speed data acquisition unit 33 of the suitability determination device 30 provided in the stand F3 where the roll to be evaluated is located, based on the selection information of the roll to be evaluated from the host computer 14, the circumferential speed of the roll to be evaluated was acquired from the controller 12 for control.
  • the operation data of the peripheral speed of the evaluation target roll acquired by the peripheral speed data acquisition unit 33 is the actual measurement of the rotational speed of the upper and lower work rolls 1 detected by the rotational speed detector of the roll speed controller 11. From the value, it was obtained by converting using the ratio of the roll diameters of the work roll 1 and the roll to be evaluated.
  • step S5 the vibration analysis unit 34 of the conformity determination device 30 provided in the stand F3 having the roll to be evaluated uses the rolling load operation data of the stand F3 having the roll to be evaluated acquired in step S3.
  • the vibration behavior of stand F3 was analyzed.
  • a rolling mill vibration model that approximates the stand F3 having the roll to be evaluated with a mass-spring system is used.
  • the spring constants k1 to k5 in this rolling mill vibration model were updated according to the rolling load operation data of the stand F3 having the evaluation target roll acquired in step S3.
  • a frequency response was calculated when a virtual external force was applied to the rolling mill vibration model with updated spring constants k1 to k5.
  • the vibration analysis unit 34 virtually releases the connection between the mass point m1 representing the backup roll 2 on the upper side of the third stand F3 having the roll to be evaluated and the other mass points coupled by the springs 41 and 42,
  • the mass-spring model of stand F3 was divided into two, and the frequency response of the divided mass-spring model was calculated for each.
  • Other mass points connected by the spring 41 to the mass point m1 representing the upper backup roll 2 do not exist because there is no rolling roll above the mass point m1.
  • the mass point m2 represents the upper work roll 1 because the upper work roll 1 exists below the mass point m1.
  • G 1 (s) representing frequency responses G1(i ⁇ ), G2(i ⁇ ), G3(i ⁇ ), G4(i ⁇ ) since there is no rolling roll contacting the upper backup roll 2 from above
  • G 2 (s), G 3 (s), and G 4 (s) are respectively composed of the following equations (15) to (18).
  • G1 (s) 0
  • G2 (s) 0 (16)
  • the surface shape estimator 36 of the suitability determination device 30 provided in the stand F3 where the roll to be evaluated is located estimates the surface shape of the roll to be evaluated during rolling of the metal strip S in step S6.
  • the analysis result (frequency response) of the vibration behavior of the stand F3 having the evaluation target roll in step S5 and the operation data of the peripheral speed of the evaluation target roll acquired in step S4 were used.
  • the initial surface shape of the roll to be evaluated obtained in step S2 was also used.
  • the wear progress coefficient ⁇ when calculating the pitch damage degrees ⁇ 1(p) and ⁇ 2(p) was set to 1.0 ⁇ 10 ⁇ 14 m/N.
  • the conformity determining unit 37 refers to the value of the amplitude information u(p) corresponding to the pitch p calculated by the surface shape estimating unit 36 at any time, and if the amplitude at the pitch 25 mm of the evaluation target roll is less than 3.0 ⁇ m, If it is 3.0 ⁇ m or more, it is determined to be unsuitable (failed).
  • the judgment result by the conformity judgment section 37 is displayed on the display device 38 .
  • the metal strip S was rolled in the same manner as above. At that time, not only the backup roll 2 on the upper side of the stand F3 but also the backup roll 2 on the lower side of the stand F3 are included in the rolls to be evaluated. bottom.
  • the same metal strip S as described above is continuously rolled as a material to be rolled, and the surface shape of either the upper backup roll 2 or the lower backup roll 2 of the third stand F3, which is the roll to be evaluated.
  • the amplitude corresponding to the pitch of 25 mm exceeded 2.5 ⁇ m
  • the upper backup roll 2 and the lower backup roll 2 of the stand F3 were replaced with new ground rolls to continue rolling the metal strip S. .
  • the generation rate of chatter marks on the metal strip S was reduced by about 70% compared to the conventional operating method in which backup rolls are replaced when the total rolled weight reaches a preset value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

Provided is a method for determining the conformity of a rolling mill roller which makes it possible to estimate online the state of polygonal wear of a roller to be evaluated which is caused by rolling, and to prevent light chatter marks. This method for determining the conformity of a rolling mill roller includes: a rolling load data acquisition step (step S3) for acquiring rolling load operation data of a stand (F1-F5) which is the roller to be evaluated; a circumferential speed data acquisition step (step S4) for acquiring circumferential speed operation data for the roller to be evaluated; a vibration analysis step (step S5) for analyzing the vibration behavior of the stand (F1-F5) by using the rolling load operation data of the stand (F1-F5); a surface shape estimation step (step S6) for estimating the surface shape of the roller to be evaluated during the rolling of the metal strip on the basis of the analysis results about the vibration behavior of the stand (F1-F5) and the circumferential speed operation data for the roller to be evaluated; and a conformity determination step (step S7) for determining the conformity of the roller to be evaluated on the basis of the surface shape of the roller to be evaluated.

Description

圧延ロールの適合判定方法、金属帯の圧延方法及び冷延鋼板の製造方法Method for judging suitability of rolling rolls, method for rolling metal strip, and method for manufacturing cold-rolled steel sheet
 本発明は、圧延ロールの適合判定方法、金属帯の圧延方法及び冷延鋼板の製造方法に関する。 The present invention relates to a method for judging suitability of rolling rolls, a method for rolling metal strips, and a method for manufacturing cold-rolled steel sheets.
 自動車や飲料缶等に使用される鋼板等の金属帯は、連続鋳造工程、熱間圧延工程、及び冷間圧延工程が施された後、焼鈍工程やめっき工程を経て製品となる。この中で、冷間圧延工程は、製品としての金属帯の厚みを決定する最終工程である。近年はめっき厚みを従来よりも薄くする場合があり、めっき工程前の金属帯の表面性状がめっき工程後の製品の表面性状に影響を与えやすいことから、表面欠陥の発生を防止する必要性が増している。 Metal strips such as steel sheets used in automobiles, beverage cans, etc. are made into products after undergoing continuous casting, hot rolling, and cold rolling processes, followed by annealing and plating processes. Among these, the cold rolling process is the final process for determining the thickness of the metal strip as a product. In recent years, the thickness of the plating may be thinner than before, and the surface texture of the metal strip before the plating process tends to affect the surface texture of the product after the plating process, so it is necessary to prevent the occurrence of surface defects. increasing.
 冷間圧延工程で発生する表面欠陥の一つとしてチャタマークが挙げられる。これは、金属帯の幅方向に現れる線状のマークであって、このような線状のマークが金属帯の長手方向に周期的に現れる表面欠陥である。チャタマークは、圧延機の振動(以降、チャタリングと称す)により発生するとされている。ここで、非常に軽度のチャタマークは、冷間圧延工程後の目視検査や板厚測定等では判明せず、めっき工程後に初めて認識されることがある。このため、その間にも大量の表面欠陥が発生していることに気づかず、結果として製品の歩留まりを低下させ、生産性を大きく阻害する要因となる。また、缶用鋼板や電磁鋼板等の薄物材料では、チャタリングによる金属帯の厚みや張力の急激な変動により、金属帯が破断する等の生産トラブルが発生し、生産性を阻害する場合もある。 Chatter marks are one of the surface defects that occur during the cold rolling process. This is a linear mark that appears in the width direction of the metal band, and is a surface defect in which such linear marks periodically appear in the longitudinal direction of the metal band. Chatter marks are said to be caused by vibrations of the rolling mill (hereinafter referred to as chattering). Here, a very light chatter mark may not be found by visual inspection or plate thickness measurement after the cold rolling process, and may be recognized only after the plating process. For this reason, it is not noticed that a large number of surface defects have occurred during this period, and as a result, the yield of the product is lowered, which is a factor in significantly impeding productivity. In addition, in the case of thin materials such as steel sheets for cans and electrical steel sheets, sudden changes in the thickness and tension of the metal strips due to chattering may cause production troubles such as breakage of the metal strips, which may hinder productivity.
 このような背景から、従来、例えば、特許文献1乃至3や非特許文献1に示すようなチャタリングの発生を抑制する方法が提案されている。
 特許文献1に示す圧延機のチャタリング検出方法は、圧延機各部の1個以上に振動検出器を設置して運転中の圧延機各部の振動を検出し、各部の検出した振動からの圧延機のチャタリングを検出するものである。そして、この圧延機のチャタリング検出方法においては、ミル固有振動数、ギヤの噛み合い不良、ベアリング不良、スピンドルとロールのカップリングのガタ、ロール疵より発生する固有の振動数をそれぞれ計算してチャタマーク発生原因毎の基本周波数とする。そして、前記各部の振動変位、振動速度または振動加速度を検出し、検出した各部の振動変位、振動速度または振動加速度の周波数分析を行う。また、張力、圧延トルク、圧延速度、圧延荷重、板厚変動の圧延パラメータの周波数分析を行う。そして、振動と圧延パラメータの実測値の周波数分析を行った結果が、チャタマーク発生原因毎の基本周波数の整数倍の周波数において設定値を超えたとき、チャタリング発生と判定し、その発生原因を前述の基本周波数から特定するものである。
Against this background, conventionally, there have been proposed methods for suppressing the occurrence of chattering, such as those disclosed in Patent Documents 1 to 3 and Non-Patent Document 1, for example.
In the method for detecting chattering of a rolling mill shown in Patent Document 1, a vibration detector is installed in one or more parts of each part of the rolling mill to detect the vibration of each part of the rolling mill during operation, and the vibration detected by each part of the rolling mill is detected. It detects chattering. In this rolling mill chattering detection method, the mill's natural frequency, gear engagement failure, bearing failure, coupling play between the spindle and roll, and roll flaws are each calculated to generate chatter marks. The fundamental frequency for each cause of occurrence. Then, the vibration displacement, vibration velocity, or vibration acceleration of each part is detected, and frequency analysis is performed on the detected vibration displacement, vibration velocity, or vibration acceleration of each part. In addition, frequency analysis of rolling parameters such as tension, rolling torque, rolling speed, rolling load, and strip thickness variation is performed. Then, when the results of frequency analysis of the measured values of vibration and rolling parameters exceed the set values at frequencies that are integral multiples of the fundamental frequency for each cause of chatter mark occurrence, it is determined that chattering has occurred, and the cause of the occurrence is determined as described above. is specified from the fundamental frequency of
 また、特許文献2に示す冷間圧延または調質圧延における振動異常検出方法は、振動信号収集ステップと、FFT周波数解析ステップと、振動異常判定ステップと、を有する。振動信号収集ステップでは、冷間圧延機の各スタンド間または冷間圧延機入出側の小径ロールの内、少なくとも1つの小径ロールで検出した振動信号を収集する。また、FFT周波数解析ステップでは、収集した振動信号の高速フーリエ変換方式の周波数解析を行い、振動信号に含まれる周波数成分とそのスペクトル値を得る。また、振動異常判定ステップでは、FFT周波数解析の実行ステップで得た周波数成分の内、所定式で演算される鋼板の複数の振動モードにおける弦振動の周波数と同じ周波数成分の複数のスペクトル値の少なくとも1つが予め設定した閾値を超過した場合に振動異常が生じていると判定する。 Also, the vibration abnormality detection method in cold rolling or temper rolling shown in Patent Document 2 has a vibration signal collection step, an FFT frequency analysis step, and a vibration abnormality determination step. In the vibration signal collecting step, vibration signals detected by at least one small diameter roll among the small diameter rolls between the stands of the cold rolling mill or on the entry and exit sides of the cold rolling mill are collected. In the FFT frequency analysis step, the frequency analysis of the collected vibration signal is performed using the fast Fourier transform method to obtain the frequency components contained in the vibration signal and their spectral values. Further, in the vibration abnormality determination step, among the frequency components obtained in the FFT frequency analysis execution step, at least a plurality of spectrum values of frequency components that are the same as the frequency of string vibration in a plurality of vibration modes of the steel plate calculated by a predetermined expression. If one exceeds a preset threshold, it is determined that there is vibration abnormality.
 また、特許文献3に示す鋼板のチャタマーク防止方法は、熱間圧延および酸洗を行った後の降伏強度が450MPa以下の鋼板を冷間圧延するに際して、冷間圧延機の固有振動数と、所定式に示す、冷間圧延機の最終スタンドと冷間圧延機出側で鋼板に最初に接触する小径ロールとの間を弦長とする、鋼板の弦振動の周波数とが一致しないようにする。また、所定式に示す鋼板表面に生じる曲げ歪みを、鋼板が塑性変形しない大きさとなるようにする。 In addition, the method for preventing chatter marks on a steel plate disclosed in Patent Document 3, when cold-rolling a steel plate having a yield strength of 450 MPa or less after hot rolling and pickling, the natural frequency of the cold rolling mill, The chord length between the final stand of the cold rolling mill and the small-diameter roll that first contacts the steel sheet on the delivery side of the cold rolling mill, as shown in the predetermined formula, is set so that the frequency of the chordal vibration of the steel sheet does not match. . In addition, the bending strain generated on the surface of the steel sheet, which is expressed by the predetermined formula, is set to a magnitude that does not cause plastic deformation of the steel sheet.
 更に、非特許文献1には、極薄鋼板の冷間圧延における「チャタリング」現象の解析が記載されている。非特許文献1には、冷間総圧下率が93~94%におよぶ極薄冷延鋼板の圧延中に発生するチャタリング現象に関し、実機ミル調査や圧延挙動の理論解析を行い、チャタリングの防止対策を検討した研究結果が示されている。 Furthermore, Non-Patent Document 1 describes an analysis of the "chattering" phenomenon in cold rolling of ultra-thin steel sheets. Non-Patent Document 1 describes the chattering phenomenon that occurs during the rolling of ultra-thin cold-rolled steel sheets with a total cold reduction of 93 to 94%. The results of research that examined the
特許第2964887号公報Japanese Patent No. 2964887 特許第6296046号公報Japanese Patent No. 6296046 特許第6102835号公報Japanese Patent No. 6102835
 ところで、これら特許文献1乃至3や非特許文献1などに示す従来の技術においては、圧延機の複数個所に振動計(加速度計等)を設置して、圧延中の振動挙動をモニタリングすることにより、チャタリングを早期に検出することが行われている。
 しかしながら、チャタマークの中には、圧延機の振動計測のみでは検出が難しい軽度のチャタマークが生じる場合がある。軽度のチャタマークは、金属帯の表面に0.1~5μm程度の振幅の凹凸が形成されている場合をいい、前述したように、冷間圧延工程後の目視検査や板厚測定等では判明せず、めっき工程後に初めて認識されることがある。このため、その間にも大量の表面欠陥が発生していることに気づかず、結果として製品の歩留まりを低下させ、生産性を大きく阻害する要因となる。
By the way, in the conventional techniques shown in these Patent Documents 1 to 3 and Non-Patent Document 1, vibrometers (accelerometers, etc.) are installed at a plurality of locations in the rolling mill to monitor the vibration behavior during rolling. , early detection of chattering has been performed.
However, among the chatter marks, mild chatter marks that are difficult to detect only by vibration measurement of the rolling mill may occur. A slight chatter mark is when unevenness with an amplitude of about 0.1 to 5 μm is formed on the surface of the metal strip. may not be recognized for the first time after the plating process. For this reason, it is not noticed that a large number of surface defects have occurred during this period, and as a result, the yield of the product is lowered, which is a factor in significantly impeding productivity.
 一方、この軽度のチャタマークを含むチャタマークは、圧延中に生じる圧延ロールの表面の周方向のプロフィルが多角形化する多角形摩耗により生じることが知見されている。多角形摩耗とは、金属帯の圧延過程で、圧延ロールの表面に微小な凹凸が生じ、特定のピッチの凹凸が成長することにより、圧延ロールの表面形状が多角形化することを意味する。 On the other hand, it is known that chatter marks, including these mild chatter marks, are caused by polygonal wear, in which the circumferential profile of the surface of the rolling rolls during rolling becomes polygonal. Polygonal wear means that the surface shape of the roll becomes polygonal due to the growth of minute irregularities on the surface of the roll during the rolling process of the metal strip and the growth of irregularities with a specific pitch.
 従って、本発明はこの従来の課題を解決するためになされたものであり、その目的は、圧延中に生じる評価対象ロールの多角形摩耗の状態をオンラインで推定し、多角形摩耗による生じる軽度のチャタマークを防止することができる、圧延ロールの適合判定方法、金属帯の圧延方法及び冷延鋼板の製造方法を提供することにある。 Therefore, the present invention has been made to solve this conventional problem, and its purpose is to estimate the state of polygonal wear of a roll to be evaluated that occurs during rolling on-line, It is an object of the present invention to provide a method for judging suitability of rolling rolls, a method for rolling a metal strip, and a method for manufacturing a cold-rolled steel sheet, which can prevent chatter marks.
 上記課題を解決するために、本発明の一態様に係る圧延ロールの適合判定方法は、各々が複数の圧延ロールを有する1又は複数のスタンドを備える圧延機における、任意の前記スタンドの前記複数の圧延ロールから任意に選定された圧延ロールである評価対象ロールの適合判定を行う圧延ロールの適合判定方法であって、前記評価対象ロールのあるスタンドの圧延荷重の操業データを取得する圧延荷重データ取得ステップと、前記評価対象ロールの周速度の操業データを取得する周速度データ取得ステップと、前記圧延荷重データ取得ステップで取得した前記評価対象ロールのあるスタンドの圧延荷重の操業データを用いて当該スタンドの振動挙動を解析する振動解析ステップと、該振動解析ステップによる前記評価対象ロールのあるスタンドの振動挙動の解析結果と前記周速度データ取得ステップで取得した前記評価対象ロールの周速度の操業データとから前記評価対象ロールの表面形状を金属帯の圧延中に推定する表面形状推定ステップと、該表面形状推定ステップにより推定した前記評価対象ロールの表面形状に基づいて前記評価対象ロールの適合判定を行う適合判定ステップと、を含むことを要旨とする。 In order to solve the above problems, a method for determining suitability of rolling rolls according to an aspect of the present invention is a rolling mill comprising one or a plurality of stands each having a plurality of rolling rolls. A rolling load data acquisition method for determining the suitability of a roll to be evaluated, which is a rolling roll arbitrarily selected from rolling rolls, wherein rolling load data is obtained for a stand having the roll to be evaluated. A step, a peripheral speed data acquisition step of acquiring operation data of the peripheral speed of the roll to be evaluated, and a stand with the roll to be evaluated using the operation data of the rolling load of the stand with the roll to be evaluated acquired in the rolling load data acquisition step A vibration analysis step for analyzing the vibration behavior of, the analysis result of the vibration behavior of the stand having the evaluation target roll by the vibration analysis step, and the peripheral speed operation data of the evaluation target roll acquired in the peripheral speed data acquisition step. Based on the surface shape estimation step of estimating the surface shape of the evaluation target roll from the rolling of the metal strip, and the surface shape of the evaluation target roll estimated by the surface shape estimation step, the suitability of the evaluation target roll is determined. and a conformity determination step.
 また、本発明の別の態様に係る金属帯の圧延方法は、前述の圧延ロールの適合判定方法を用いて金属帯の圧延中に前記評価対象ロールの適合判定を行い、適合判定の結果が不適合である場合に、前記評価対象ロールを新たな圧延ロールに組み替えて前記金属帯の圧延を行うことを要旨とする。 Further, in a method for rolling a metal strip according to another aspect of the present invention, the suitability determination of the evaluation target roll is performed during rolling of the metal strip using the above-described method for determining suitability of the rolling rolls, and the result of the suitability determination is unsuitable. In this case, the roll to be evaluated is replaced with a new rolling roll to roll the metal strip.
 また、本発明の別の態様に係る冷延鋼板の製造方法は、前述の金属帯の圧延方法を用いて冷延鋼板を製造することを要旨とする。 A gist of a method for manufacturing a cold-rolled steel sheet according to another aspect of the present invention is to manufacture a cold-rolled steel sheet using the metal strip rolling method described above.
 本発明に係る圧延ロールの適合判定方法、金属帯の圧延方法及び冷延鋼板の製造方法によれば、圧延中に生じる評価対象ロールの多角形摩耗の状態をオンラインで推定し、多角形摩耗により生じる軽度のチャタマークを防止することができる。 According to the method for determining suitability of rolling rolls, the method for rolling a metal strip, and the method for manufacturing a cold-rolled steel sheet according to the present invention, the state of polygonal wear of an evaluation target roll that occurs during rolling is estimated online, and polygonal wear is used. Minor chatter marks can be prevented.
本発明の一実施形態に係る圧延ロールの適合判定方法が適用される圧延機の概略構成図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic configuration diagram of a rolling mill to which a rolling roll suitability determination method according to an embodiment of the present invention is applied; 圧延ロールの具体的形状を示すものであり、(a)は圧延ロールの断面形状が真円であると仮定した場合の参照円(破線)とともに、圧延ロールの断面形状(実線)をプロットした説明図、(b)は圧延ロールの円周方向の位置(角度)と、圧延ロールの直径により表される真円からの、断面形状の半径方向の偏差量との関係の一例を示すグラフである。It shows the specific shape of the rolling rolls, and (a) is an explanation in which the cross-sectional shape (solid line) of the rolling roll is plotted along with the reference circle (dashed line) when it is assumed that the cross-sectional shape of the rolling roll is a perfect circle. FIG. (b) is a graph showing an example of the relationship between the circumferential position (angle) of the rolling rolls and the amount of radial deviation of the cross-sectional shape from the perfect circle represented by the diameter of the rolling rolls. . 圧延ロールの表面の凹凸ピッチとスペクトル値との関係の一例を示すグラフである。4 is a graph showing an example of the relationship between the unevenness pitch of the surface of the rolling roll and the spectrum value. 圧延ロールをロール研削機に設置して、圧延ロールの表面形状を測定する様子を示す模式図である。It is a schematic diagram which shows a mode that a rolling roll is installed in a roll grinder and the surface shape of a rolling roll is measured. 本発明の一実施形態に係る圧延ロールの適合判定方法が適用される適合判定装置をスタンドの各々に設けた圧延機の概略構成図である。但し、図5においては、圧延ロールの適合判定装置が1番目のスタンドF1のみに設けられた状態が示されている。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic configuration diagram of a rolling mill in which each stand is provided with a conformity determination device to which a method for determining conformity of rolling rolls according to an embodiment of the present invention is applied; However, FIG. 5 shows a state in which the rolling roll suitability determination device is provided only in the first stand F1. 図5に示す圧延機の上位計算機及び適合判定装置における処理の流れを説明するためのフローチャートである。6 is a flow chart for explaining the flow of processing in the high-level computer of the rolling mill and the suitability determination device shown in FIG. 5; 4段式スタンドをマス・バネ系で近似した圧延機振動モデルを説明するための図である。FIG. 4 is a diagram for explaining a rolling mill vibration model in which a four-stage stand is approximated by a mass-spring system; 4段式スタンドをマス・バネ系で近似した圧延機振動モデルにおいて、上側のワークロールを評価対象ロールとして選定した場合において、上側のバックアップロールとの結合を仮想的に開放して周波数応答を算出する例を説明するための図である。In a rolling mill vibration model that approximates a four-stage stand with a mass-spring system, when the upper work roll is selected as the roll to be evaluated, the coupling with the upper backup roll is virtually released to calculate the frequency response. FIG. 10 is a diagram for explaining an example of 4段式スタンドをマス・バネ系で近似した圧延機振動モデルにおいて、上側のワークロールを評価対象ロールとして選定した場合において、下側のワークロールとの結合を仮想的に開放して周波数応答を算出する例を説明するための図である。In a rolling mill vibration model that approximates a four-stage stand with a mass-spring system, when the upper work roll is selected as the roll to be evaluated, the coupling with the lower work roll is virtually released to estimate the frequency response. It is a figure for demonstrating the example to calculate. 6段式スタンドをマス・バネ系で近似した圧延機振動モデルを説明するための図である。FIG. 4 is a diagram for explaining a rolling mill vibration model in which a six-stage stand is approximated by a mass-spring system; 6段式スタンドをマス・バネ系で近似した圧延機振動モデルにおいて、上側の中間ロールを評価対象ロールとして選定した場合の周波数応答を算出する例を説明するための図である。FIG. 5 is a diagram for explaining an example of calculating a frequency response when an upper intermediate roll is selected as an evaluation target roll in a rolling mill vibration model in which a six-high stand is approximated by a mass-spring system; 6段式スタンドをマス・バネ系で近似した圧延機振動モデルにおいて、上側の中間ロールを評価対象ロールとして選定した場合の周波数応答を算出する例を説明するための図である。FIG. 5 is a diagram for explaining an example of calculating a frequency response when an upper intermediate roll is selected as an evaluation target roll in a rolling mill vibration model in which a six-high stand is approximated by a mass-spring system; 図5に示す圧延機を用いて金属帯の連続圧延を行う際の、圧延ロールの周速度の変化及び評価対象ロールの適合判定タイミングを示すグラフである。FIG. 6 is a graph showing changes in the peripheral speed of the rolling rolls and timing for judging suitability of rolls to be evaluated when a metal strip is continuously rolled using the rolling mill shown in FIG. 5 ; FIG.
 以下、本発明の実施の形態を図面を参照して説明する。ここで、図面は模式的なものである。そのため、厚みと平面寸法との関係、比率等は現実のものとは異なることに留意すべきであり、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれている。
 また、以下に示す実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記の実施形態に特定するものではない。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings. Here, the drawings are schematic. Therefore, it should be noted that the relationship, ratio, etc. between the thickness and the planar dimensions are different from the actual ones, and the drawings include portions where the relationship and ratio of the dimensions are different from each other.
Further, the embodiments shown below are examples of devices and methods for embodying the technical idea of the present invention. etc. are not specified in the following embodiments.
 先ず、図1において、金属帯Sの圧延中に生じる圧延機aの各スタンドF1~F5の異常振動をチャタリングと呼び、チャタリングによって金属帯Sの表面に形成される周期的な模様をチャタマークと呼ぶ。本実施形態に係る圧延ロールの適合判定方法が適用される適合判定装置30(図5参照)では、金属帯Sの表面に0.1~5μm程度の振幅の凹凸が形成されているチャタマーク、いわゆる軽度のチャタマークを対象として評価対象ロール(のちに詳細に説明する)の適合判定を行う。この軽度のチャタマークは金属帯Sの厚みが変動しているために生じることが多い。微小な凹凸が形成される軽度のチャタマークは、圧延機aの出側に設置された板厚計7では検出することが難しい場合が多い。また、圧延後の金属帯Sの表面を目視で観察しても判定しにくい。軽度のチャタマークは、めっき処理等の表面処理を行った後に検出されるか、金属帯Sのプレス成形後に初めて検出される場合も多い。 First, in FIG. 1, abnormal vibrations of the stands F1 to F5 of the rolling mill a that occur during rolling of the metal strip S are called chattering, and periodic patterns formed on the surface of the metal strip S by chattering are called chatter marks. call. In the suitability determination device 30 (see FIG. 5) to which the rolling roll suitability determination method according to the present embodiment is applied, chatter marks, in which irregularities with an amplitude of about 0.1 to 5 μm are formed on the surface of the metal strip S, A suitability determination is performed for a roll to be evaluated (which will be described later in detail) targeting so-called mild chatter marks. This slight chatter mark is often caused by the thickness of the metal strip S varying. It is often difficult to detect a slight chatter mark formed by minute irregularities with the plate thickness gauge 7 installed on the delivery side of the rolling mill a. Moreover, it is difficult to make a determination even by visually observing the surface of the metal strip S after rolling. In many cases, mild chatter marks are detected after surface treatment such as plating is performed, or are detected for the first time after the metal strip S is press-formed.
 チャタマークの発生原因となるチャタリングは、圧延機を構成するベアリング、ギアのかみ合い、カップリング等のがたつきに起因する場合が多いとされている。この場合、チャタリングは、従来においては、圧延機aの各スタンドF1~F5に設置した振動計5から取得される振動データを解析し、特定の周波数帯における振動の大きさが予め設定された閾値を超えた場合に検出できるとされていた。しかしながら、本発明の発明者らは、軽度のチャタマークとして、圧延機aの各スタンドF1~F5またはその周辺設備に設置した振動計5では検出が難しいものもあることを知見した。さらに、金属帯Sの圧延過程で、圧延ロールの表面に微小な凹凸が発生し、特定のピッチの凹凸が成長することにより、圧延ロールの表面形状が多角形化する(多角形摩耗を生じる)場合があることを知見した。上側及び下側のワークロール1、上側及び下側のバックアップロール2、及び上側及び下側の中間ロール3をそれぞれ圧延ロール1,2,3と呼ぶ。この場合に、金属帯Sの圧延中に圧延機aの各スタンドF1~F5の振動が徐々に増加してチャタリングに至ることになる。このため、評価対象ロールの表面形状の変化を推定することが重要である。 Chattering, which causes chatter marks, is said to be often caused by looseness in bearings, gear engagement, couplings, etc. that make up the rolling mill. In this case, chattering is conventionally detected by analyzing vibration data obtained from vibrometers 5 installed in the respective stands F1 to F5 of the rolling mill a, and determining the magnitude of vibration in a specific frequency band as a preset threshold value. was considered to be detectable when the However, the inventors of the present invention have found that some slight chatter marks are difficult to detect with the vibrometers 5 installed in the stands F1 to F5 of the rolling mill a or their peripheral equipment. Furthermore, during the rolling process of the metal strip S, fine irregularities are generated on the surface of the rolling rolls, and irregularities with a specific pitch grow, thereby polygonalizing the surface shape of the rolling rolls (causing polygonal wear). I have found that there is a case. Upper and lower work rolls 1, upper and lower backup rolls 2, and upper and lower intermediate rolls 3 are called mill rolls 1, 2, 3, respectively. In this case, during the rolling of the metal strip S, the vibrations of the stands F1 to F5 of the rolling mill a gradually increase, resulting in chattering. Therefore, it is important to estimate the change in the surface shape of the roll to be evaluated.
(圧延機)
 図1には、本発明の一実施形態に係る圧延ロールの適合判定方法が適用される圧延機の概略構成が示されている。
 図1に示す圧延機aは、冷間圧延機であり、金属帯Sとしての鋼板を冷間圧延する複数のスタンド(本実施形態では通板方向の入側から数えて1番目のスタンドF1から5番目のスタンドF5)を備えるタンデムミルである。なお、圧延機aに付帯する他の装置(例えば、入側の巻戻機、溶接機、ルーパ、出側の切断機、及び巻取機等)については図示を省略している。
 ここで、通板方向の入側から数えて1番目のスタンドF1から4番目のスタンドF4までは4段式スタンドであり、入側から数えて5番目のスタンドF5は6段式スタンドとなっている。
(rolling mill)
FIG. 1 shows a schematic configuration of a rolling mill to which a rolling roll suitability determination method according to an embodiment of the present invention is applied.
The rolling mill a shown in FIG. 1 is a cold rolling mill, and includes a plurality of stands for cold rolling a steel sheet as the metal strip S (in this embodiment, from the first stand F1 counted from the entry side in the sheet threading direction A tandem mill with a fifth stand F5). Other devices attached to the rolling mill a (for example, an entry-side rewinder, a welder, a looper, an exit-side cutter, a winder, etc.) are omitted from the drawing.
Here, the first stand F1 to the fourth stand F4 counted from the entry side in the threading direction are four-stage stands, and the fifth stand F5 counted from the entry side is a six-stage stand. there is
 4段式の各スタンドF1~F4は、ハウジング4内に、金属帯Sとしての鋼板を圧延する上側及び下側のワークロール1と、これら上側及び下側のワークロール1のそれぞれを支持する上側及び下側のバックアップロール2とを備えている。また、6段式のスタンドF5は、ハウジング4内に、上側及び下側のワークロール1と、上側及び下側のバックアップロール2と、上側の中間ロール3と、下側の中間ロール3とを備えている。上側及び下側のワークロール1は、金属帯Sとしての鋼板を圧延する。上側及び下側のバックアップロール2は、上側及び下側のワークロール1のそれぞれを支持する。上側の中間ロール3は、上側のワークロール1と上側のバックアップロール2との間に配置されている。また、下側の中間ロール3は、下側のワークロール1と下側のバックアップロール2との間に配置されている。 Each of the four-stage stands F1 to F4 includes, in a housing 4, upper and lower work rolls 1 for rolling a steel plate as the metal strip S, and an upper side for supporting the upper and lower work rolls 1, respectively. and a backup roll 2 on the lower side. In addition, the six-stage stand F5 includes, in the housing 4, upper and lower work rolls 1, upper and lower backup rolls 2, upper intermediate rolls 3, and lower intermediate rolls 3. I have. The upper and lower work rolls 1 roll a steel sheet as a metal strip S. Upper and lower backup rolls 2 support upper and lower work rolls 1, respectively. An upper intermediate roll 3 is arranged between the upper work roll 1 and the upper backup roll 2 . A lower intermediate roll 3 is arranged between the lower work roll 1 and the lower backup roll 2 .
 そして、各スタンドF1~F5のハウジング4の上部には、各スタンドF1~F5の振動を計測する振動計5が設置されている。振動計5は、圧電素子型振動センサが好適であるが、その他の方式の振動計であってもよい。
 また、各スタンドF1~F5の上側のバックアップロール2の上部には、各スタンドF1~F5の圧延荷重を検出する圧延荷重検出器6が設置されている。圧延荷重検出器6はロードセルで構成される。
 また、隣接するスタンドF1~F5の間に設けられたテンションメータロール8には金属帯Sとしての鋼板の張力を検出する張力計が設けられている。また、1番目のスタンドF1及び5番目のスタンドF5のそれぞれの出側には、金属帯Sとしての鋼板の板厚を検出する板厚計7が設置されている。
Vibrometers 5 for measuring vibrations of the stands F1 to F5 are installed on the upper portions of the housings 4 of the stands F1 to F5. The vibration meter 5 is preferably a piezoelectric element type vibration sensor, but may be a vibration meter of another type.
A rolling load detector 6 for detecting the rolling load of each stand F1 to F5 is installed above the backup roll 2 above each stand F1 to F5. The rolling load detector 6 is composed of a load cell.
A tension meter for detecting the tension of the steel sheet as the metal strip S is provided on the tension meter roll 8 provided between the adjacent stands F1 to F5. Further, a plate thickness meter 7 for detecting the plate thickness of the steel plate as the metal strip S is installed on the delivery side of each of the first stand F1 and the fifth stand F5.
 また、各スタンドF1~F5の上側及び下側のワークロール1には、ワークロール駆動装置9が接続され、ワークロール駆動装置9には、上側及び下側のワークロール1の周速を制御するロール速度制御機11が接続されている。ロール速度制御機11には、上側及び下側のワークロール1の回転速度を検出するロール回転速度検出器(図示せず)が設けられている。また、各スタンドF1~F5の上側及び下側のワークロール1には、上側及び下側のワークロール1間のロールギャップを制御するロールギャップ制御機10が設けられている。ロールギャップ制御機10には、上側及び下側のワークロール1の圧下位置を検出する圧下位置検出器(図示せず)が設けられている。 A work roll driving device 9 is connected to the upper and lower work rolls 1 of each of the stands F1 to F5, and the work roll driving device 9 controls the peripheral speed of the upper and lower work rolls 1. A roll speed controller 11 is connected. The roll speed controller 11 is provided with roll rotation speed detectors (not shown) for detecting the rotation speeds of the upper and lower work rolls 1 . Further, the upper and lower work rolls 1 of each of the stands F1 to F5 are provided with roll gap controllers 10 for controlling the roll gaps between the upper and lower work rolls 1. As shown in FIG. The roll gap controller 10 is provided with a roll-down position detector (not shown) for detecting roll-down positions of the upper and lower work rolls 1 .
 なお、圧延機aの各スタンドF1~F5には、不図示のロール交換装置が併設される。ロール交換装置には、レール(図示せず)上を圧延ロール1,2,3の軸方向に走行可能な台車(図示せず)が備えられている。台車は、後述する上位計算機14からの指示の下、交換される圧延ロール1,2,3の近傍に移動する。オペレータは、使用後の圧延ロール1,2,3を所定のスタンドF1~F5から抜き出してから、研削後の新たな圧延ロールを所定のスタンドF1~F5に装入する。使用後の圧延ロール1,2,3はロールショップに搬送され、再研削が行われる。 Each stand F1 to F5 of the rolling mill a is provided with a roll changer (not shown). The roll changer is provided with a carriage (not shown) capable of traveling on rails (not shown) in the axial direction of the rolling rolls 1, 2 and 3. As shown in FIG. The carriage moves to the vicinity of the rolling rolls 1, 2, 3 to be replaced under instructions from the host computer 14, which will be described later. The operator removes the used rolling rolls 1, 2 and 3 from the predetermined stands F1 to F5, and then loads new rolling rolls after grinding into the predetermined stands F1 to F5. The used rolling rolls 1, 2 and 3 are transported to a roll shop and regrinded.
 ここで、鉄鋼製品の製造を行うためのシステムは、多数の設備を対象とした生産管理を行うために大規模な階層システムによって構成されている。具体的には、階層システムは、最上位にはLevel3である上位計算機14、連続式冷間圧延機のような製造ライン単位にはLevel2である制御用計算機13、各ラインを構成する設備単位にはLevel1である制御用コントローラ12といった階層で構成されている。上位計算機14はビジネスコピュータ、制御用計算機13はプロセスコンピュータ、制御用コントローラ12はPLCである。 Here, the system for manufacturing steel products is composed of a large-scale hierarchical system for production management targeting a large number of facilities. Specifically, the hierarchical system includes a host computer 14 at Level 3 at the highest level, a control computer 13 at Level 2 for each production line such as a continuous cold rolling mill, and a control computer 13 for each facility constituting each line is configured in a hierarchy such as the control controller 12 of Level1. The host computer 14 is a business computer, the control computer 13 is a process computer, and the control controller 12 is a PLC.
 制御用計算機13は、上位計算機14と下位の制御用コントローラ12との間に接続され、上位計算機14で計画された製造計画を受信して製造ラインに金属帯Sとしての鋼板の製造指示を行う。また、制御用計算機13は、制御用コントローラ12から各種実績情報を収集し、それらを運転監視画面に表示したり、理論モデルに基づいた演算を行い、制御に必要な情報を制御用コントローラ12に送信したりすることが主な役割である。一方、制御用コントローラ12は、製造設備を構成するドライブやバルブ、センサ等に対して的確なタイミングで指示を出すこと、機器同士が干渉しないよう動作の調整を行うこと、センサが保持するカウント値を物理的な情報と紐づけて動作させること等が主要な役割である。 The control computer 13 is connected between the host computer 14 and the subordinate controller 12, receives the manufacturing plan planned by the host computer 14, and instructs the manufacturing line to manufacture the steel sheet as the metal strip S. . In addition, the control computer 13 collects various performance information from the control controller 12, displays them on the operation monitoring screen, performs calculations based on a theoretical model, and transmits information necessary for control to the control controller 12. Its main role is to send On the other hand, the control controller 12 issues instructions to the drives, valves, sensors, etc. that make up the manufacturing equipment at appropriate timing, adjusts operations so that the devices do not interfere with each other, and counts values held by the sensors. The main role is to operate by linking with physical information.
 本実施形態では、制御用計算機13は、金属帯Sとしての鋼板の溶接点が通過する前に次の鋼板の圧延操業条件を決定する。具体的には、上位計算機14から与えられる母材寸法(母材板厚と板幅)、製品目標板厚等の情報に従ってパススケジュールが設定され、制御用計算機13は、各スタンドF1~F5の圧延荷重と先進率の予測値、及びロールギャップ、ロール周速の設定値を決定する。その際、圧延荷重やロール周速の設定のために、各スタンドF1~F5に使用する圧延ロール1,2,3に関する情報として、研削後(スタンドへの装入前)のロール径等の実測値を含む圧延ロールの諸元情報が上位計算機14から制御用計算機13に送られる。圧延ロールの諸元情報は、ロール径、ロールバレル長、ロール番号、ロール材質、表面粗さの規格区分等である。 In this embodiment, the control computer 13 determines the rolling operation conditions for the next steel sheet before the welding point of the steel sheet as the metal strip S passes. Specifically, a pass schedule is set according to information such as base material dimensions (base material plate thickness and width) and product target plate thickness given from the host computer 14. Determine the predicted values of the rolling load and advance rate, and the set values of the roll gap and roll peripheral speed. At that time, in order to set the rolling load and roll peripheral speed, as information on the rolling rolls 1, 2, and 3 used in each stand F1 to F5, the actual measurement of the roll diameter after grinding (before charging into the stand) The specification information of the rolling rolls including the values is sent from the host computer 14 to the control computer 13 . The specification information of the rolling rolls includes roll diameter, roll barrel length, roll number, roll material, surface roughness standard classification, and the like.
 制御用コントローラ12は、制御用計算機13から取得したロールギャップ、ロール周速の設定値(指令値)に基づき、各スタンドF1~F5のロール速度制御機11及び各スタンドF1~F5のロールギャップ制御機10を制御するための処理を実行する。また、制御用コントローラ12は、圧延荷重検出器6で検出される各スタンドF1~F5の圧延荷重を各スタンドF1~F5に設置された圧延荷重検出器6から収集する。また、制御用コントローラ12は、上側及び下側のワークロール1の回転速度の実測値をロール速度制御機11の回転速度検出器から収集する。更に、制御用コントローラ12は、テンションメータロール8に設けられた張力計による張力測定値等の圧延データを連続的に収集する。そして、制御用コントローラ12は、これら圧延データを予め設定された周期毎に制御用計算機13に出力する。 The control controller 12 controls the roll speed controller 11 of each stand F1 to F5 and the roll gap control of each stand F1 to F5 based on the set values (command values) of the roll gap and the roll peripheral speed obtained from the control computer 13. A process for controlling the machine 10 is executed. Further, the control controller 12 collects the rolling load of each stand F1 to F5 detected by the rolling load detector 6 from the rolling load detectors 6 installed in each of the stands F1 to F5. The control controller 12 also collects measured values of the rotational speeds of the upper and lower work rolls 1 from the rotational speed detectors of the roll speed controller 11 . Furthermore, the control controller 12 continuously collects rolling data such as tension measurements by the tension meter provided on the tension meter roll 8 . Then, the control controller 12 outputs these rolling data to the control computer 13 at preset intervals.
(圧延ロールの適合判定装置)
 本実施形態においては、各圧延スタンドF1~F5には、図5に示すように、評価対象ロールの適合判定を行う圧延ロールの適合判定装置30が設けられている。図5には、圧延ロールの適合判定装置30が1番目のスタンドF1のみに設けられた状態が示されている。この適合判定装置30は、圧延中に生じる評価対象ロールの表面形状、即ち多角形摩耗の状態をオンラインで推定する。そして、適合判定装置30は、その推定した評価対象ロールの表面形状、即ち多角形摩耗の状態に基づいて評価対象ロールの適合判定を行い、多角形摩耗による生じる軽度のチャタマークを防止するものである。
(Conformity determination device for rolling rolls)
In the present embodiment, as shown in FIG. 5, each of the rolling stands F1 to F5 is provided with a rolling roll suitability determination device 30 for determining suitability of the roll to be evaluated. FIG. 5 shows a state in which the rolling roll suitability determination device 30 is provided only in the first stand F1. This suitability determination device 30 estimates on-line the surface shape of the evaluation target roll that occurs during rolling, that is, the state of polygonal wear. Then, the suitability determination device 30 determines suitability of the roll to be evaluated based on the estimated surface shape of the roll to be evaluated, that is, the state of polygonal wear, and prevents mild chatter marks caused by polygonal wear. be.
 ここで、評価対象ロールは、スタンドF1~F5のうちの任意のスタンドF1~F5の複数の圧延ロール1,2,3から任意に選定された圧延ロールである。上側及び下側のワークロール1、上側及び下側のバックアップロール2、及び上側及び下側の中間ロール3をそれぞれ圧延ロールと呼ぶ。4段式スタンドF1~F4の場合には、任意のスタンドF1~F4の上側及び下側のワークロール1、及び上側及び下側のバックアップロール2のうちから任意に選定された圧延ロールを評価対象ロールと呼ぶ。6段式スタンドF5の場合には、スタンドF5の上側及び下側のワークロール1、上側及び下側のバックアップロール2、及び上側及び下側の中間ロール3のうちから任意に選定された圧延ロールを評価対象ロールと呼ぶ。 Here, the roll to be evaluated is a rolling roll arbitrarily selected from a plurality of rolling rolls 1, 2, and 3 of arbitrary stands F1 to F5 among the stands F1 to F5. The upper and lower work rolls 1, the upper and lower backup rolls 2, and the upper and lower intermediate rolls 3 are called mill rolls, respectively. In the case of four-stage stands F1 to F4, the rolls selected arbitrarily from the upper and lower work rolls 1 and the upper and lower backup rolls 2 of any stand F1 to F4 are evaluated. called a roll. In the case of a six-tier stand F5, mill rolls arbitrarily selected from the upper and lower work rolls 1, the upper and lower backup rolls 2, and the upper and lower intermediate rolls 3 of the stand F5. is called an evaluation target role.
 圧延ロール(評価対象ロール)1,2,3の表面形状とは、圧延ロール1,2,3の胴部における断面形状を指す。圧延ロール1,2,3の断面形状は概ね円形状であるため、断面形状の真円からのズレ量により表面形状を表す。圧延ロール1,2,3の断面は、胴部の軸方向における任意の断面を対象としてよいが、胴部の中央位置における断面を対象とするのが好ましい。 The surface shape of the rolling rolls (rolls to be evaluated) 1, 2, 3 refers to the cross-sectional shape of the trunk portions of the rolling rolls 1, 2, 3. Since the cross-sectional shapes of the rolling rolls 1, 2, and 3 are generally circular, the surface shape is represented by the deviation of the cross-sectional shape from a perfect circle. The cross sections of the rolling rolls 1, 2, and 3 may be any cross section in the axial direction of the body, but preferably the cross section at the center position of the body.
 圧延ロール1,2,3の表面形状の具体例を図2に示す。図2(a)は、圧延ロール1,2,3の断面形状が真円であると仮定した場合の参照円(破線)と共に、圧延ロール1,2,3の断面形状(実線)をプロットしたものである。また、図2(b)は圧延ロール1,2,3の円周方向の位置(角度)を横軸にして、圧延ロール1,2,3の直径により表される真円から、断面形状の半径方向の偏差量(ズレ量)を縦軸として表した図である。本実施形態の推定対象となる圧延ロール(評価対象ロール)1,2,3の表面形状は、図2(b)のように圧延ロール(評価対象ロール)1,2,3の周方向位置と表面における凹凸の大きさとの関係により特定される情報である。なお、真円を特定する際に基準となる圧延ロール(評価対象ロール)1,2,3の直径は、圧延ロール(評価対象ロール)1,2,3の研削時に測定され、上位計算機14にオペレータにより保存される。 A specific example of the surface shape of the rolling rolls 1, 2, and 3 is shown in FIG. FIG. 2(a) plots the cross-sectional shapes (solid lines) of the rolling rolls 1, 2, and 3 together with the reference circles (broken lines) when the cross-sectional shapes of the rolling rolls 1, 2, and 3 are assumed to be perfect circles. It is. In addition, FIG. 2(b) shows the cross-sectional shape from the perfect circle represented by the diameter of the rolls 1, 2, 3, with the positions (angles) of the rolls 1, 2, 3 in the circumferential direction as the horizontal axis. It is a figure which represented the deviation amount (deviation amount) of a radial direction as a vertical axis|shaft. The surface shapes of the rolling rolls (evaluation rolls) 1, 2, and 3 to be estimated in the present embodiment are as shown in FIG. This information is specified by the relationship with the size of unevenness on the surface. The diameters of the rolling rolls (evaluation target rolls) 1, 2, and 3, which serve as a reference when specifying the perfect circle, are measured during grinding of the rolling rolls (evaluation target rolls) 1, 2, and 3, and are stored in the host computer 14. Saved by the operator.
 一方、本実施形態で推定対象となる圧延ロール(評価対象ロール)1,2,3の表面形状は、図2(a),(b)のような連続的な曲線により特定される情報でなくてもよい。例えば圧延ロール(評価対象ロール)1,2,3の表面を周方向に等分して対向する位置での外直径を計測し、それらのうちの最大径と最少径をそれぞれDmax、Dminとして、Dmax-Dminを圧延ロール(評価対象ロール)1,2,3の表面形状情報としてもよい。周方向に等分する数としては、4~36000等分であり、より好ましくは360等分以上である。 On the other hand, the surface shapes of the rolling rolls (evaluation target rolls) 1, 2, and 3 to be estimated in the present embodiment are not information specified by continuous curves as shown in FIGS. may For example, the surfaces of the rolling rolls (evaluation target rolls) 1, 2, and 3 are equally divided in the circumferential direction and the outer diameters are measured at opposing positions, and the maximum and minimum diameters of them are Dmax and Dmin, respectively. Dmax-Dmin may be used as the surface shape information of the rolling rolls (evaluation target rolls) 1, 2, and 3. The number of equal divisions in the circumferential direction is 4 to 36000 equal divisions, more preferably 360 equal divisions or more.
 さらに、圧延ロール(評価対象ロール)1,2,3の表面形状としては、上記に加え、圧延ロール(評価対象ロール)1,2,3に形成される凹凸のピッチと関係づけられた断面形状の情報であることが好ましい。各スタンドF1~F5に組み込まれた圧延ロール(評価対象ロール)1,2,3には、各圧延スタンドF1~F5の振動に関連して、複数の周波数成分が複合された凹凸形状が形成される場合がある。この場合、圧延ロール(評価対象ロール)1,2,3の周方向の位置情報(角度情報)と真円からの偏差量の関係について高速フーリエ変換方式の周波数解析を行う。そして、表面形状に含まれる周波数成分に対応する凹凸のピッチと、そのピッチに対応するスペクトル値との関係を(評価対象ロール)1,2,3の表面形状としてもよい。図3は、圧延ロール(評価対象ロール)1,2,3の周方向の位置情報と真円からの偏差量との関係から、高速フーリエ変換方式の周波数解析により得られる圧延ロールの表面の凹凸ピッチとスペクトル値の関係を示す例である。 Furthermore, as the surface shape of the rolling rolls (evaluation target rolls) 1, 2, 3, in addition to the above, the cross-sectional shape related to the pitch of the unevenness formed on the rolling rolls (evaluation target rolls) 1, 2, 3 information. On the rolling rolls (evaluation target rolls) 1, 2, and 3 incorporated in each of the stands F1 to F5, an uneven shape in which a plurality of frequency components are combined is formed in relation to the vibration of each of the rolling stands F1 to F5. may occur. In this case, the relationship between the circumferential position information (angle information) of the rolling rolls (evaluation target rolls) 1, 2, and 3 and the amount of deviation from the perfect circle is subjected to frequency analysis using the fast Fourier transform method. Then, the relationship between the pitch of the unevenness corresponding to the frequency component included in the surface shape and the spectrum value corresponding to the pitch may be used as the surface shape of (evaluation target rolls) 1, 2, and 3. FIG. 3 shows the unevenness of the surface of the rolling rolls obtained by the frequency analysis of the fast Fourier transform method from the relationship between the position information of the rolling rolls (rolls to be evaluated) 1, 2, and 3 in the circumferential direction and the amount of deviation from the perfect circle. It is an example showing the relationship between pitch and spectrum value.
 本実施形態で推定対象となる圧延ロール(評価対象ロール)1,2,3の表面形状としては、後述するように、評価対象ロールの表面に形成される凹凸のピッチと関係づけられた振幅情報としている。振幅情報とは、圧延ロール(評価対象ロール)1,2,3の断面形状として真円からの偏差量の1ピッチ当たりの最大値と最小値との差である。また、凹凸のピッチと関係づけられた振幅情報とは、予め凹凸のピッチを設定し、そのピッチを1周期とした場合の振幅情報である。例えば、評価対象ロールの周方向の位置(角度)と、断面形状の真円からの偏差量の関係をフーリエ級数展開し、これにより得られるフーリエ係数を、ピッチと関係づけられた振幅情報と定義することもできる。特定のピッチまたは周波数に対応した振幅を代表する指標だからである。 As the surface shape of the rolling rolls (evaluation target rolls) 1, 2, and 3 to be estimated in this embodiment, amplitude information associated with the pitch of the unevenness formed on the surface of the evaluation target roll, as will be described later. and The amplitude information is the difference between the maximum value and the minimum value of the deviation amount from the perfect circle as the cross-sectional shape of the rolling rolls (evaluation target rolls) 1, 2, 3 per pitch. Further, the amplitude information associated with the pitch of the unevenness is amplitude information when the pitch of the unevenness is set in advance and the pitch is set as one cycle. For example, the relationship between the position (angle) in the circumferential direction of the roll to be evaluated and the amount of deviation from the perfect circle of the cross-sectional shape is expanded into a Fourier series, and the resulting Fourier coefficient is defined as amplitude information related to the pitch. You can also This is because it is an index representing the amplitude corresponding to a specific pitch or frequency.
 圧延ロール(評価対象ロール)1,2,3の表面形状を測定する方法としては、例えばロール研削機を用いた測定が可能である。図4は、ロール研削機に圧延ロールを設置して、表面形状を測定する様子を模式的に示している。圧延ロール(評価対象ロール)1,2,3の表面形状の測定に際し、圧延ロール(評価対象ロール)1,2,3の軸方向の両端近傍をレスト22に支持する。この状態で、圧延ロール1,2,3の軸方向の一端をロール回転装置23のチャック21により固定し、圧延ロール1,2,3の軸方向の他端を芯押し台24により軸方向に押し付ける。また、圧延ロール1,2,3の胴部の表面には、圧延ロール1,2,3の胴部の表面と接し、当該表面の変位を検出する変位計26を設置する。変位計26としては、接触式または非接触式の任意の測定器を用いることができる。この変位計26は、例えば測定精度の比較的高い、接触式のマグネスケールを用いることが好ましい。マグネスケールの測定精度としては、0.1~0.2μm程度で、測定ストロークが1~5mm程度、サンプリング周波数として1kHz程度のものを用いるのが好ましい。そして、圧延ロール1,2,3を、回転軸がモータ25に接続されたロール回転装置23により低速(例えば5~10rpm)で回転させながら、変位計26の出力を計測器ロガー27で収集する。その際、ロール回転装置23から圧延ロール1,2,3の回転速度の情報を取得することにより、変位計26で得られる変位と圧延ロール1,2,3の周方向位置とを対応付けることができる。また、圧延ロール1,2,3を複数回(2~5)回転させ、変位計26により得られる変位の情報の自己相関を取ることによって、1回転分の変位情報を特定して、圧延ロール1,2,3の周方向位置と変位情報を対応付けてもよい。 As a method for measuring the surface shape of the rolling rolls (rolls to be evaluated) 1, 2, and 3, for example, measurement using a roll grinder is possible. FIG. 4 schematically shows how a rolling roll is installed in a roll grinder and the surface profile is measured. When measuring the surface shape of the rolling rolls (evaluation target rolls) 1 , 2 and 3 , the rests 22 support both ends of the rolling rolls (evaluation target rolls) 1 , 2 and 3 in the axial direction. In this state, one axial end of the rolling rolls 1, 2, 3 is fixed by the chuck 21 of the roll rotating device 23, and the other axial end of the rolling rolls 1, 2, 3 is axially rotated by the tailstock 24. impose. Displacement gauges 26 are installed on the surfaces of the body portions of the rolling rolls 1, 2 and 3 so as to be in contact with the surfaces of the body portions of the rolling rolls 1, 2 and 3 and detect the displacement of the surfaces. Any contact or non-contact measuring device can be used as the displacement meter 26 . For this displacement meter 26, it is preferable to use, for example, a contact-type magnescale with relatively high measurement accuracy. It is preferable to use a Magnescale with a measurement accuracy of about 0.1 to 0.2 μm, a measurement stroke of about 1 to 5 mm, and a sampling frequency of about 1 kHz. Then, the rolling rolls 1, 2, 3 are rotated at a low speed (for example, 5 to 10 rpm) by a roll rotating device 23 whose rotating shaft is connected to a motor 25, and the output of a displacement gauge 26 is collected by a measuring instrument logger 27. . At that time, by acquiring information on the rotational speeds of the rolling rolls 1, 2 and 3 from the roll rotating device 23, it is possible to associate the displacements obtained by the displacement gauge 26 with the circumferential positions of the rolling rolls 1, 2 and 3. can. In addition, by rotating the rolling rolls 1, 2, and 3 a plurality of times (2 to 5) and taking the autocorrelation of the displacement information obtained by the displacement meter 26, the displacement information for one rotation is specified, and the rolling roll 1, 2, and 3 circumferential positions and displacement information may be associated with each other.
 そして、各スタンドF1~F5に設けられた適合判定装置30は、図5に示すように、圧延荷重データ取得部32及び周速度データ取得部33を有する操業データ取得部31と、振動解析部34と、初期表面形状取得部35と、表面形状推定部36と、適合判定部37とを備えている。
 適合判定装置30は、操業データ取得部31、振動解析部34、初期表面形状取得部35、表面形状推定部36、及び適合判定部37の各機能をプログラムを実行することで実現するため演算処理機能を有するコンピュータシステムである。そして、このコンピュータシステムは、ハードウェアに予め記憶された各種専用のコンピュータプログラムを実行することにより、前述した各機能をソフトウェア上で実現できるようになっている。
Then, as shown in FIG. 5, the conformity determination device 30 provided in each of the stands F1 to F5 includes an operation data acquisition unit 31 having a rolling load data acquisition unit 32 and a peripheral speed data acquisition unit 33, a vibration analysis unit 34 , an initial surface shape acquisition unit 35 , a surface shape estimation unit 36 , and a conformity determination unit 37 .
The suitability determination device 30 performs arithmetic processing to realize each function of the operation data acquisition unit 31, the vibration analysis unit 34, the initial surface profile acquisition unit 35, the surface profile estimation unit 36, and the suitability determination unit 37 by executing a program. It is a computer system with functions. By executing various dedicated computer programs pre-stored in hardware, this computer system can realize each function described above on software.
 操業データ取得部31は、圧延荷重データ取得部32と、周速度データ取得部33とを備えている。圧延荷重データ取得部32は、オペレータが選定した評価対象ロールのあるスタンドF1~Fnの情報を上位計算機14から取得し、その情報に基づき、評価対象ロールのあるスタンドF1~F5の圧延荷重の操業データの取得処理を行う。周速度データ取得部33は、オペレータが選定した評価対象ロールのあるスタンドF1~Fnの情報を上位計算機14から取得し、その情報に基づき、評価対象ロールの周速度の操業データの取得処理を行う。オペレータが選定した評価対象ロールあるスタンドF1~Fnの情報は、制御用計算機13に入力され、上位計算機14を経由して操業データ取得部31に送られる。 The operation data acquisition unit 31 includes a rolling load data acquisition unit 32 and a peripheral speed data acquisition unit 33. The rolling load data acquisition unit 32 acquires information on the stands F1 to Fn having the rolls to be evaluated selected by the operator from the host computer 14, and based on the information, operates the rolling load of the stands F1 to F5 having the rolls to be evaluated. Perform data acquisition processing. The peripheral speed data acquisition unit 33 acquires information on the stands F1 to Fn where the evaluation target roll is selected by the operator from the host computer 14, and based on the information, acquires the operation data of the peripheral speed of the evaluation target roll. . Information on the stands F1 to Fn on which the rolls to be evaluated are selected by the operator is input to the control computer 13 and sent to the operation data acquisition unit 31 via the host computer 14 .
 圧延荷重データ取得部32は、前述の情報に基づき評価対象ロールのあるスタンドF1~F5の圧延荷重の操業データを制御用コントローラ12から取得する。当該スタンドF1~F5の圧延荷重の操業データは、金属帯Sとしての鋼板の圧延中に圧延荷重検出器6が検出した圧延荷重の操業データである。この圧延荷重の操業データは制御用コントローラ12に送られ、圧延荷重データ取得部32は、当該操業データを制御用コントローラ12から取得する。ただし、当該スタンドF1~F5の圧延荷重の操業データは、制御用計算機13が設定する圧延荷重の設定値を圧延荷重の操業データとしてもよい。これは、後述する図13に示すように、金属帯S(A,B,C)の先端部とその金属帯S(A,B,C)に先行する先行金属帯の尾端部との接合部が圧延機aを通過するときのタイミングt1、t2、t3で、制御用計算機13による金属帯A、金属帯B、金属帯Cを圧延する際の圧延荷重が設定されるからである。そして、この圧延荷重の設定値が制御用計算機13から制御用コントローラ12に送られ、圧延荷重データ取得部32は、当該圧延荷重の設定値を制御用コントローラ12から取得する。圧延荷重の操業データは、時系列データとして金属帯Sの圧延中に、随時、振動解析部34に送るようにしてよいが、金属帯Sの圧延を開始する際に1回のみ振動解析部34に送るようにしてよい。 The rolling load data acquisition unit 32 acquires the rolling load operation data of the stands F1 to F5 having the rolls to be evaluated from the controller 12 based on the above information. The operation data of the rolling load of the stands F1 to F5 is the operation data of the rolling load detected by the rolling load detector 6 during rolling of the steel sheet as the metal strip S. This rolling load operation data is sent to the control controller 12 , and the rolling load data acquisition unit 32 acquires the operation data from the control controller 12 . However, as the rolling load operation data of the stands F1 to F5, the rolling load setting values set by the control computer 13 may be used as the rolling load operation data. As shown in FIG. 13, which will be described later, this is the bonding between the front end of the metal strip S (A, B, C) and the tail end of the preceding metal strip preceding the metal strip S (A, B, C). This is because the rolling load for rolling the metal strip A, the metal strip B, and the metal strip C is set by the control computer 13 at the timings t1, t2, and t3 when the part passes the rolling mill a. Then, the setting value of the rolling load is sent from the control computer 13 to the control controller 12 , and the rolling load data acquisition unit 32 acquires the setting value of the rolling load from the control controller 12 . The operation data of the rolling load may be sent to the vibration analysis unit 34 as time-series data during the rolling of the metal strip S at any time, but the vibration analysis unit 34 is sent to the vibration analysis unit 34 only once when rolling of the metal strip S is started. You can send it to
 また、周速度データ取得部33は、前述の情報に基づき評価対象ロールの周速度の操業データを制御用コントローラ12から取得する。周速度データ取得部33で取得する評価対象ロールの周速度の操業データは、ロール速度制御機11の回転速度検出器で検出される上側及び下側のワークロール1の回転速度の実測値から、当該ワークロール1と評価対象ロールとのロール径の比を用いて換算することにより求めたものである。具体的には、評価対象ロールの直径Deに対して、ワークロール1の直径Ddとワークロール1の回転速度ωdを用いて、評価対象ロールの回転速度ωeは、ωe=ωd・Dd/Deにより求めることができる。評価対象ロールの周速度についての操業データは時系列データであり、金属帯Sとしての鋼板の圧延中における評価対象ロールの周速度を随時取得する。評価対象ロールの周速度は、0.1~5msの範囲で任意に設定したサンプリング周期の時系列データであることが好ましい。ただし、周速度データ取得部33で取得する評価対象ロールの周速度の操業データは、各スタンドF1~F5に評価対象ロールの回転速度を測定する速度計が設置されている場合には、その測定値を用いることができる。評価対象ロールの周速度についての操業データは、金属帯Sの圧延中に、随時、表面形状推定部36に送られる。 In addition, the peripheral speed data acquisition unit 33 acquires operation data of the peripheral speed of the evaluation target roll from the controller 12 based on the above information. The operation data of the peripheral speed of the evaluation target roll acquired by the peripheral speed data acquisition unit 33 is obtained from the measured values of the rotation speed of the upper and lower work rolls 1 detected by the rotation speed detector of the roll speed controller 11, It is obtained by conversion using the ratio of the roll diameters of the work roll 1 and the roll to be evaluated. Specifically, using the diameter Dd of the work roll 1 and the rotation speed ωd of the work roll 1 with respect to the diameter De of the roll to be evaluated, the rotation speed ωe of the roll to be evaluated is obtained by ωe = ωd Dd/De can ask. The operation data on the peripheral speed of the evaluation target roll is time-series data, and the peripheral speed of the evaluation target roll during rolling of the steel sheet as the metal strip S is acquired at any time. It is preferable that the peripheral speed of the roll to be evaluated is time-series data with a sampling period arbitrarily set in the range of 0.1 to 5 ms. However, if a speedometer for measuring the rotation speed of the evaluation target roll is installed in each of the stands F1 to F5, the operation data of the peripheral speed of the evaluation target roll acquired by the peripheral speed data acquisition unit 33 is value can be used. The operation data about the peripheral speed of the roll to be evaluated is sent to the surface shape estimator 36 at any time while the metal strip S is being rolled.
 また、操業データ取得部31では、上記の圧延荷重の操業データ及び評価対象ロールの周速度の操業データの他にも、金属帯Sを圧延する際の他の操業データを取得してもよい。例えば、圧延ロール1,2,3の属性に関する操業データとして、圧延ロール1,2,3の表面硬度、ヤング率、ポアソン比などを取得してよい。圧延条件に関する操業データとして、被圧延材の板厚、変形抵抗、圧下率、先進率、摩擦係数などの設定値や実績値を取得してよい。圧延ロール1,2,3の属性情報は、評価対象ロールが他の圧延ロール1,2,3と接触し摩耗が生じる際の摩耗のしやすさに影響し、これにより評価対象ロールの表面形状に影響を与える場合があるからである。また、圧延条件として例示した操業データは、評価対象ロールと接触する他の圧延ロール1,2,3との間の接触圧力や相対すべり速度や相対すべり量に影響を与え、これにより評価対象ロールの表面形状に影響を与える場合があるからである。これらの操業データは、振動解析部34または表面形状推定部36に送られる。 In addition, the operation data acquisition unit 31 may acquire other operation data when the metal strip S is rolled, in addition to the operation data of the rolling load and the operation data of the peripheral speed of the roll to be evaluated. For example, the surface hardness, Young's modulus, Poisson's ratio, and the like of the rolling rolls 1, 2, and 3 may be obtained as operational data relating to the attributes of the rolling rolls 1, 2, and 3. As operation data related to rolling conditions, set values and actual values such as the thickness of the material to be rolled, deformation resistance, reduction rate, advance rate, and coefficient of friction may be acquired. The attribute information of the rolling rolls 1, 2, and 3 affects the susceptibility to wear when the rolling rolls to be evaluated contact the other rolling rolls 1, 2, and 3 and wear occurs, thereby determining the surface shape of the rolling rolls to be evaluated. This is because it may affect In addition, the operation data exemplified as the rolling conditions affect the contact pressure, relative sliding speed, and relative sliding amount between the evaluation roll and the other rolling rolls 1, 2, and 3 in contact with each other. This is because it may affect the surface shape of the These operational data are sent to the vibration analysis section 34 or the surface shape estimation section 36 .
 また、振動解析部34は、圧延荷重データ取得部32が取得した評価対象ロールのあるスタンドF1~F5の圧延荷重の操業データを用いて当該スタンドF1~F5の振動挙動を解析する。
 ここで、振動解析部34は、評価対象ロールが組み込まれたスタンドF1~F5の振動挙動について、評価対象ロール以外の圧延ロール1,2,3が評価対象ロールの振動挙動に与える影響も考慮した振動解析を実行する。例えば、4段式スタンドF1~F4の上側のバックアップロール2を評価対象ロールとして選定する。この場合に、振動解析部34は、そのスタンドF1~F4を構成する下側のバックアップロール2、上側のワークロール1、及び下側のワークロール1を含めた振動挙動の解析を行い、評価対象ロールである上側のバックアップロール2の振動挙動を求める。
Further, the vibration analysis unit 34 analyzes the vibration behavior of the stands F1 to F5 using the rolling load operation data of the stands F1 to F5 having the evaluation target rolls acquired by the rolling load data acquisition unit 32 .
Here, the vibration analysis unit 34 considers the influence of the rolling rolls 1, 2, and 3 other than the rolls to be evaluated on the vibration behavior of the rolls to be evaluated regarding the vibration behavior of the stands F1 to F5 in which the rolls to be evaluated are incorporated. Run a vibration analysis. For example, the upper backup rolls 2 of the four-stage stands F1 to F4 are selected as rolls to be evaluated. In this case, the vibration analysis unit 34 analyzes the vibration behavior including the lower backup roll 2, the upper work roll 1, and the lower work roll 1 that constitute the stands F1 to F4, and evaluates Vibration behavior of the upper backup roll 2, which is a roll, is obtained.
 振動解析部34による評価対象ロールのあるスタンドF1~F5の振動挙動の解析では、評価対象ロールのあるスタンドF1~F5をマス・バネ系で近似した圧延機振動モデルを用いる。そして、この圧延機振動モデルにおけるバネ定数を評価対象ロールのあるスタンドF1~F5の圧延荷重の操業データに応じて更新し、バネ定数を更新した圧延機振動モデルに対して仮想的な外力を与えた際の周波数応答を算出する。  In the analysis of the vibration behavior of the stands F1 to F5 having the rolls to be evaluated by the vibration analysis unit 34, a rolling mill vibration model that approximates the stands F1 to F5 having the rolls to be evaluated with a mass-spring system is used. Then, the spring constant in this rolling mill vibration model is updated according to the operation data of the rolling load of the stands F1 to F5 having the rolls to be evaluated, and a virtual external force is applied to the rolling mill vibration model with the updated spring constant. Calculate the frequency response when
 以下、評価対象ロールのあるスタンドが4段式スタンドF1~F4である場合の当該スタンドF1~F4をマス・バネ系で近似した圧延機振動モデルについて説明する。
 4段式スタンドF1~F4をマス・バネ系で近似した圧延機振動モデルは、図7に示すように、上側及び下側のワークロール1及び上側及び下側のバックアップロール2をそれぞれ質点とした振動モデルであり、必要に応じてダンパー要素を加えることができる。
A rolling mill vibration model approximating the stands F1 to F4 with a mass-spring system in the case where the stands having rolls to be evaluated are four-high stands F1 to F4 will be described below.
As shown in FIG. 7, the rolling mill vibration model that approximates the four-stage stands F1 to F4 with a mass-spring system has upper and lower work rolls 1 and upper and lower backup rolls 2 as mass points, respectively. It is a vibrating model, and damping elements can be added if desired.
 圧延機振動モデルにおいて、m1は上側のバックアップロール2の質量、m4は下側のバックアップロール2の質量、m2は上側のワークロール1の質量、m3は下側のワークロール1の質量を表す。ハウジングと上側のバックアップロール2との間のバネ41のバネ定数k1及びハウジングと下側のバックアップロール2との間のバネ45のバネ定数k5は、ハウジングの剛性及び上側及び下側のバックアップロール2の軸受変形やロールたわみによるバネ定数を示す。また、上側のバックアップロール2と上側のワークロール1との間のバネ42のバネ定数k2は、上側のバックアップロール2と上側のワークロール1との弾性接触変形による剛性に対応する。下側のバックアップロール2と下側のワークロール1との間のバネ44の バネ定数k4は、下側のバックアップロール2と下側のワークロール1との接触弾性変形による剛性に対応する。一方、上側及び下側のワークロール1間のバネ43のバネ定数k3は、上側及び下側のワークロール1により金属帯Sの圧延を行う際の金属帯Sの変形特性から算出されるバネ定数である。さらに、各スタンドF1~F4のロールギャップ制御機10によりバックアップロール2を昇降する機器として油圧圧下装置が使用される場合など、必要に応じて減衰要素46を設けてもよい。 In the rolling mill vibration model, m1 is the mass of the upper backup roll 2, m4 is the mass of the lower backup roll 2, m2 is the mass of the upper work roll 1, and m3 is the mass of the lower work roll 1. The spring constant k1 of the spring 41 between the housing and the upper backup roll 2 and the spring constant k5 of the spring 45 between the housing and the lower backup roll 2 depend on the stiffness of the housing and the upper and lower backup rolls 2 shows the spring constant due to bearing deformation and roll deflection. Also, the spring constant k2 of the spring 42 between the upper backup roll 2 and the upper work roll 1 corresponds to the rigidity due to elastic contact deformation between the upper backup roll 2 and the upper work roll 1 . A spring constant k4 of the spring 44 between the lower backup roll 2 and the lower work roll 1 corresponds to the rigidity due to contact elastic deformation between the lower backup roll 2 and the lower work roll 1 . On the other hand, the spring constant k3 of the spring 43 between the upper and lower work rolls 1 is a spring constant calculated from the deformation characteristics of the metal strip S when the metal strip S is rolled by the upper and lower work rolls 1. is. Furthermore, damping elements 46 may be provided as necessary, such as when a hydraulic pressure reduction device is used as a device for raising and lowering the backup rolls 2 by the roll gap controllers 10 of the respective stands F1 to F4.
 ここで、上側及び下側のワークロール1間のバネ43のバネ定数k3は、上側及び下側のワークロール1間の隙間(ロールギャップ)の変化量に対する圧延荷重の変化量の比により算出することができる。圧延荷重は、初等解析手法である2次元圧延理論を用いて、上側及び下側のワークロール1の偏平変形(例えばHitchcockのロール偏平式)を考慮した計算を行えばよい。2次元圧延理論としては、Orowan理論、Karman理論、Bland & Fordの式、Hillの近似式など、圧延荷重の計算に広く用いられる手法を適用できる。各スタンドF1~F4のミル剛性Kは、ミル空転時に上側及び下側のワークロール1を接触させ、ロールギャップの変化に対して圧延荷重検出器6により検出される圧延荷重の荷重変化の比から求めることができ、これによりミルストレッチカーブ(弾性特性曲線)を得ることができる。バネ定数k3には、基準となる圧延条件として上側及び下側のワークロール1の直径、入側板厚、入側張力、出側張力、被圧延材の変形抵抗、ロールバイト内の摩擦係数を既知の値として、基準となるロールギャップAを設定した場合に、各スタンドF1~F4の弾性特性曲線との連立解として得られる圧延荷重A’を求める。次に、基準となるロールギャップAをロールギャップBに変更した場合の圧延荷重B’を同様にして求める。こうして得られるロールギャップAからBへの変化量に対する、圧延荷重A’からB’への変化量の比をバネ定数k3とすることができる。 Here, the spring constant k3 of the spring 43 between the upper and lower work rolls 1 is calculated from the ratio of the variation of the rolling load to the variation of the gap (roll gap) between the upper and lower work rolls 1. be able to. The rolling load may be calculated by using two-dimensional rolling theory, which is an elementary analysis method, and considering the flattening deformation of the upper and lower work rolls 1 (for example, Hitchcock's roll flattening formula). As the two-dimensional rolling theory, methods that are widely used for calculating the rolling load, such as Orowan theory, Karman theory, Bland & Ford's formula, and Hill's approximation formula, can be applied. The mill rigidity K of each of the stands F1 to F4 is obtained from the ratio of the load change of the rolling load detected by the rolling load detector 6 with respect to the change of the roll gap when the upper and lower work rolls 1 are brought into contact when the mill is idling. It is possible to obtain the mill stretch curve (elastic characteristic curve). For the spring constant k3, the diameter of the upper and lower work rolls 1, entry-side plate thickness, entry-side tension, exit-side tension, deformation resistance of the material to be rolled, and the coefficient of friction in the roll bite are known as the standard rolling conditions. When the reference roll gap A is set as the value of , the rolling load A' obtained as a simultaneous solution with the elastic characteristic curves of the stands F1 to F4 is obtained. Next, the rolling load B' when the reference roll gap A is changed to the roll gap B is obtained in the same manner. The ratio of the amount of change from rolling load A' to B' to the amount of change from roll gap A to B obtained in this way can be taken as the spring constant k3.
 上側のバックアップロール2と上側のワークロール1との間のバネ42のバネ定数k2、および下側のバックアップロール2と下側のワークロール1との間のバネ44のバネ定数k4については、2円筒の弾性接触変形に関するヘルツ接触の理論を適用することにより算出できる。ヘルツ接触の理論は、接触する2つの固体間にすべりや摩擦が生じないと仮定した場合の弾性範囲内での接触変形に関する理論解であり、2つの円柱が接触する場合の接触荷重が与えられた場合に、軸心接近量、接触圧力、接触長を求めることができる。このときの軸心接近量と接触荷重との関係を線形近似した係数をバネ定数とすればよい。 The spring constant k2 of the spring 42 between the upper backup roll 2 and the upper work roll 1 and the spring constant k4 of the spring 44 between the lower backup roll 2 and the lower work roll 1 are 2 It can be calculated by applying the Hertzian contact theory for the elastic contact deformation of a cylinder. The theory of Hertzian contact is a theoretical solution for contact deformation within the elastic range assuming that no slip or friction occurs between two solid bodies in contact. In this case, the axial approach amount, contact pressure, and contact length can be obtained. A coefficient obtained by linearly approximating the relationship between the axial center approach amount and the contact load at this time may be taken as the spring constant.
 一方、各スタンドF1~F4のミル剛性Kは上側のワークロール1と下側のワークロール1とを接触させた状態で測定しているので、上側のワークロール1と下側のワークロール1との間の弾性接触変形に関するバネ定数k3Eをヘルツ接触の理論を適用して計算する。このとき、圧延機のミル剛性Kは、未知のバネ定数k1、k5と、既知のバネ定数k2、k3E、k4から構成される合成バネに相当する。したがって、バネ定数k1、k5の一方の値を算出することができる場合や、両者のバネ定数の比を推定できる場合には、ミル剛性K、バネ定数k2、k3E、k4から、バネ定数k1、k5を算出することができる。通常は、上側のバックアップロール2と下側のバックアップロール2との直径は等しいため、上側のバックアップロール2及び下側のバックアップロール2の曲げ剛性も等価であると考えて、バネ定数k1とk5とは等しいものと仮定してよい。これにより各バネ定数k1~k5を決定することができる。なお、各々のバネ定数の決定方法は、例えば非特許文献1に記載された方法を用いてもよい。 On the other hand, the mill stiffness K of each stand F1 to F4 is measured with the upper work roll 1 and the lower work roll 1 in contact with each other. The spring constant k3E for the elastic contact deformation during is calculated by applying the Hertzian contact theory. At this time, the mill stiffness K of the rolling mill corresponds to a composite spring composed of unknown spring constants k1, k5 and known spring constants k2, k3E, k4. Therefore, if one of the spring constants k1 and k5 can be calculated, or if the ratio of the two spring constants can be estimated, the spring constant k1, k1, k5 can be calculated. Normally, the diameters of the upper backup roll 2 and the lower backup roll 2 are equal, so considering that the bending rigidity of the upper backup roll 2 and the lower backup roll 2 are also equivalent, the spring constants k1 and k5 can be assumed to be equal to Thereby, each spring constant k1 to k5 can be determined. Note that the method described in Non-Patent Document 1, for example, may be used as the method for determining each spring constant.
 さらに、圧延機振動モデルに減衰要素46を含む場合の減衰係数は、上側のワークロール1と下側のワークロール1とを接触させた状態で、ハウジング4の上部からハンマリング試験を行い、ハウジング4の振動が減衰する挙動から推定することができる。例えば、振幅の減衰挙動を、時間軸に対して指数関数で近似し、その関数式から減衰係数を求めることができる。減衰係数は、各スタンドF1~F4に固有の値であるため、予め特定した減衰係数を固定値として振動解析部34に記憶させておいてもよい。 Furthermore, the damping coefficient when the damping element 46 is included in the rolling mill vibration model is obtained by performing a hammering test from the top of the housing 4 with the upper work roll 1 and the lower work roll 1 in contact with each other. It can be estimated from the behavior that the vibration of 4 is attenuated. For example, the amplitude attenuation behavior can be approximated by an exponential function with respect to the time axis, and the attenuation coefficient can be obtained from the functional expression. Since the damping coefficient is a unique value for each of the stands F1 to F4, the predetermined damping coefficient may be stored in the vibration analysis unit 34 as a fixed value.
 ところで、マス・バネモデルを構成するバネ要素のバネ定数k1~k5は、金属帯Sを圧延する際の圧延荷重が影響を与える。すなわち、上記の方法により算出するバネ定数k1~k5は、本来は非線形の特性を有するものであるが、金属帯Sを圧延する際の圧延荷重の近傍で線形近似できるものとして算出するのが通常である。そのため、上記のようにして各スタンドF1~F4をマス・バネモデルにより近似した圧延機振動モデルは、金属帯Sを圧延する際の圧延荷重に応じて振動特性が変化する。したがって、本実施形態の振動解析部34では、圧延荷重データ取得部32が取得する圧延荷重が変化する場合に、圧延荷重の操業データに応じて圧延機振動モデルのバネ定数k1~k5を更新する。つまり、振動解析部34は、評価対象ロールが組み込まれた各スタンドF1~F4をマス・バネモデルにより近似した圧延機振動モデルのバネ定数k1~k5を圧延荷重の操業データに応じて最新の値に再設定する。振動解析部34は、圧延荷重の時系列データを圧延荷重データ取得部32から取得して、随時、圧延機振動モデルのバネ定数k1~k5を更新してもよい。ただし、圧延される金属帯Sの寸法や変形抵抗が大きく変動しなければ、圧延機振動モデルにおけるバネ定数k1~k5の変化は実用上無視し得るため、一つの金属帯Sに対して、少なくとも圧延荷重の操業データを1回更新すればよい。すなわち、制御用計算機13が金属帯Sの圧延前に設定計算を行うので、設定計算により得られる圧延荷重の設定値を取得して、その値を用いて上記バネ定数k1~k5を更新するようにしてもよい。 By the way, the spring constants k1 to k5 of the spring elements that make up the mass-spring model are affected by the rolling load when the metal strip S is rolled. That is, the spring constants k1 to k5 calculated by the above method originally have nonlinear characteristics, but are usually calculated as values that can be linearly approximated in the vicinity of the rolling load when rolling the metal strip S. is. Therefore, in the rolling mill vibration model in which the stands F1 to F4 are approximated by the mass-spring model as described above, the vibration characteristics change according to the rolling load when the metal strip S is rolled. Therefore, in the vibration analysis unit 34 of the present embodiment, when the rolling load acquired by the rolling load data acquisition unit 32 changes, the spring constants k1 to k5 of the rolling mill vibration model are updated according to the operation data of the rolling load. . That is, the vibration analysis unit 34 updates the spring constants k1 to k5 of the rolling mill vibration model, which approximates the stands F1 to F4 in which the rolls to be evaluated are installed, by a mass-spring model, to the latest values according to the operation data of the rolling load. Reset. The vibration analysis unit 34 may acquire time-series data of the rolling load from the rolling load data acquisition unit 32 and update the spring constants k1 to k5 of the rolling mill vibration model as needed. However, if the dimensions and deformation resistance of the metal strip S to be rolled do not fluctuate greatly, the changes in the spring constants k1 to k5 in the rolling mill vibration model can be practically ignored. It is sufficient to update the rolling load operation data once. That is, since the control computer 13 performs the setting calculation before rolling the metal strip S, the set value of the rolling load obtained by the setting calculation is obtained, and the spring constants k1 to k5 are updated using the obtained value. can be
 そして、振動解析部34は、バネ定数k1~k5を更新した圧延機振動モデルに対して仮想的な外力を与えた際の周波数応答を算出する。
 つまり、各スタンドF1~F4をマス・バネモデルにより近似した圧延機振動モデルに対して、評価対象ロールに相当する質点要素とバネ要素により結合した他の質点要素との結合を仮想的に開放する。そして、各スタンドF1~F4の圧延機振動モデルを2分割して、分割された圧延機振動モデルの周波数応答をそれぞれに対して算出する。評価対象ロールに相当する質点要素が他の2つの質点要素と結合されている場合には、ステップ1とステップ2との2つのステップに分けて、それぞれのステップに対応する周波数応答を算出する。ステップ1は、一方の質点要素との結合を仮想的に開放して仮想的な外力を作用させた際の周波数応答を算出するステップである。また、ステップ2は、他方の質点要素との結合を仮想的に開放して仮想的な外力を作用させた際の周波数応答を算出するステップである。
Then, the vibration analysis unit 34 calculates a frequency response when a virtual external force is applied to the rolling mill vibration model with updated spring constants k1 to k5.
In other words, the connection between the mass point element corresponding to the evaluation target roll and the other mass point element coupled by the spring element is virtually released with respect to the rolling mill vibration model in which the stands F1 to F4 are approximated by the mass-spring model. Then, the rolling mill vibration models of the respective stands F1 to F4 are divided into two, and the frequency responses of the divided rolling mill vibration models are calculated for each. When the mass point element corresponding to the roll to be evaluated is combined with the other two mass point elements, it is divided into two steps, step 1 and step 2, and the frequency response corresponding to each step is calculated. Step 1 is a step of calculating a frequency response when a virtual external force is applied by virtually releasing the coupling with one mass element. Step 2 is a step of calculating the frequency response when the coupling with the other mass point element is virtually released and a virtual external force is applied.
 図8及び図9を用いて詳しく説明する。図8は、4段式スタンドをマス・バネ系で近似した圧延機振動モデルにおいて、上側のワークロール1を評価対象ロールとして選定した場合において、上側のバックアップロール2との結合を仮想的に開放して周波数応答を算出する(ステップ1)例を説明するための図である。図9は、4段式スタンドをマス・バネ系で近似した圧延機振動モデルにおいて、上側のワークロール1を評価対象ロールとして選定した場合において、下側のワークロール1との結合を仮想的に開放して周波数応答を算出する(ステップ2)例を説明するための図である。 A detailed description will be given with reference to FIGS. 8 and 9. FIG. 8 shows a rolling mill vibration model in which a four-stage stand is approximated by a mass-spring system. In the case where the upper work roll 1 is selected as the roll to be evaluated, the coupling with the upper backup roll 2 is virtually released. FIG. 4 is a diagram for explaining an example of calculating a frequency response (step 1). FIG. 9 shows a virtual connection with the lower work roll 1 when the upper work roll 1 is selected as the roll to be evaluated in a rolling mill vibration model in which a four-stage stand is approximated by a mass-spring system. It is a figure for demonstrating the example which opens and calculates a frequency response (step 2).
 図8に示すように、上側のワークロール1を表す質点m2の上側で上側のバックアップロール2を表す質点m1と結合するバネ42(バネ定数k2)を結合部C1とする。そして、結合部C1のバネ42を開放した場合に、2つに分割されるマス・バネモデルのそれぞれに対する周波数応答を算出するのがステップ1である。一方、図9に示すように、上側のワークロール1を表す質点m2の下側で下側のワークロール1を表す質点m3と結合するバネ43(バネ定数k3)を結合部C2とする。そして、結合部C2のバネ要素を開放した場合に、2つに分割されるマス・バネモデルのそれぞれに対する周波数応答を算出するのがステップ2である。 As shown in FIG. 8, the spring 42 (spring constant k2) that couples with the mass point m1 representing the upper backup roll 2 on the upper side of the mass point m2 representing the upper work roll 1 is a coupling portion C1. Step 1 is to calculate the frequency response for each of the two divided mass-spring models when the spring 42 of the connecting portion C1 is released. On the other hand, as shown in FIG. 9, the spring 43 (spring constant k3) that couples with the mass point m3 representing the lower work roll 1 below the mass point m2 representing the upper work roll 1 is a coupling portion C2. Step 2 is to calculate the frequency response for each of the two divided mass-spring models when the spring element of the coupling portion C2 is released.
 ステップ1の周波数応答の算出方法を説明する。図8に示すように、結合部C1を開放すると、マス・バネモデルは、結合部C1よりも上側の振動系M1-1と、結合部C1よりも下側の振動系M1-2とに分割される。振動系M1-1に対しては、結合部C1の上側にある上側のバックアップロール2を表す質点m1に対して上向きの力(外力)fを入力として作用させた場合に、結合部C1の上側にある質点m1の変位を出力とした周波数応答G1(iω)を求める。同様に、結合部C1で分割された振動系M1-2に対しては、結合部C1の下側にある上側のワークロール1を表す質点m2に対して下向きの力(外力)fを入力として作用させた場合に、結合部C1の下側にある質点m2、m3、m4の変位を出力とした周波数応答G2(iω)を求める。ただし、iは虚数単位、ωは角周波数を示す。伝達関数で表す場合には、G(s)、G(s)とする。周波数応答G1(iω)、G2(iω)や伝達関数G(s)、G(s)は、結合部C1を中心とした各スタンドF1~F4の振動挙動を表すものである。 A method of calculating the frequency response in step 1 will be described. As shown in FIG. 8, when the joint C1 is opened, the mass-spring model is divided into a vibration system M1-1 above the joint C1 and a vibration system M1-2 below the joint C1. be. With respect to the vibration system M1-1, when an upward force (external force) f acts on the mass point m1 representing the upper backup roll 2 above the coupling portion C1 as an input, A frequency response G1(iω) whose output is the displacement of the mass point m1 at . Similarly, for the vibration system M1-2 divided by the coupling portion C1, a downward force (external force) f is input to the mass point m2 representing the upper work roll 1 below the coupling portion C1. A frequency response G2(iω) whose output is the displacement of the mass points m2, m3, and m4 below the coupling portion C1 when acted on is obtained. However, i indicates an imaginary unit and ω indicates an angular frequency. When represented by transfer functions, they are G 1 (s) and G 2 (s). Frequency responses G1(iω), G2(iω) and transfer functions G 1 (s), G 2 (s) represent the vibration behavior of each of the stands F1 to F4 centering on the joint C1.
 一方、ステップ2の周波数応答の算出について、図9を用いて説明する。結合部C2を開放すると、マス・バネモデルは、結合部C2よりも上側の振動系M2-1と、結合部C2よりも下側の振動系M2-2とに分割される。振動系M2-1に対しては、結合部C2の上側にある上側のワークロール1を表す質点m2に対して上向きの力(外力)fを入力として作用させた場合に、結合部C2の上側にある質点m2、m1の変位を出力とした周波数応答G3(iω)を求める。同様に、結合部C2で分割された振動系M2-2に対しては、結合部C2の下側にある下側のワークロール1を表す質点m3に対して下向きの力(外力)を入力として作用させた場合に、結合部C2の下側にある質点m3、m4の変位を出力とした周波数応答G4(iω)を求める。伝達関数で表す場合には、G(s)、G(s)とする。周波数応答G3(iω)、G4(iω)や伝達関数G(s)、G(s)は、結合部C2を中心とした圧延機の振動挙動を表すものである。 On the other hand, the calculation of the frequency response in step 2 will be described with reference to FIG. When the joint C2 is opened, the mass-spring model is divided into a vibration system M2-1 above the joint C2 and a vibration system M2-2 below the joint C2. For the vibration system M2-1, when an upward force (external force) f acts on the mass point m2 representing the upper work roll 1 above the coupling portion C2 as an input, A frequency response G3(iω) is obtained with displacements of the mass points m2 and m1 at . Similarly, for the vibration system M2-2 divided by the coupling portion C2, a downward force (external force) is input to the mass point m3 representing the lower work roll 1 below the coupling portion C2. A frequency response G4(iω) is obtained by outputting displacements of the mass points m3 and m4 located below the coupling portion C2 when acted on. When represented by transfer functions, they are G 3 (s) and G 4 (s). The frequency responses G3(iω), G4(iω) and the transfer functions G3 (s), G4 (s) represent the vibration behavior of the rolling mill around the joint C2.
 図8および図9の例に対応した伝達関数G(s)、G(s)、G(s)、G(s)は、具体的には以下(1)式~(4)式のように表すことができる。 Specifically, the transfer functions G 1 (s), G 2 (s), G 3 (s), and G 4 (s) corresponding to the examples of FIGS. can be expressed as
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 なお、評価対象ロールに相当する質点要素が、一方の質点要素とは結合されているものの、他方の質点要素とは結合されていない場合には、結合されている方の振動系に対する周波数応答を求めればよい。例えば、図7において評価対象ロールとして上側のバックアップロール2を選択する場合には、上側のバックアップロール2の上方では、他の質点要素とは結合されていない。この場合、バネ41(バネ定数k1)が結合部C1となって、結合部C1よりも上側には質点要素を含む振動系が存在しない。したがって、振動系M1-1の伝達関数は
 G(s)=0
とすればよい。また、結合部C1に対して下側には質点要素を含む振動系M1-2が存在するものの、結合部C1において上側のバックアップロール2に接触する他のロールが存在しないため、
 G(s)=0
となる。上側のバックアップロールに上側(結合部C1)で接触して、上バックアップロールを振動させる要素が存在しないからである。したがって、評価対象ロールに相当する質点要素が、下側の質点要素とは結合されているものの、上側の質点要素とは結合されていない場合には、結合されている下側の結合部C2に対する振動系M2-1と振動系2-2の伝達関数G(s)、G(s)を求めればよい。
If the mass point element corresponding to the roll to be evaluated is coupled to one mass point element but not to the other mass point element, the frequency response of the coupled vibration system is Just ask. For example, when the upper backup roll 2 is selected as the evaluation target roll in FIG. In this case, the spring 41 (spring constant k1) becomes the coupling portion C1, and there is no vibration system including the mass element above the coupling portion C1. Therefore, the transfer function of the vibration system M1-1 is G 1 (s)=0
And it is sufficient. In addition, although the vibration system M1-2 including the mass element exists below the coupling portion C1, there is no other roll in contact with the upper backup roll 2 at the coupling portion C1.
G2 (s)=0
becomes. This is because there is no element that contacts the upper backup roll at the upper side (joint portion C1) and vibrates the upper backup roll. Therefore, if the mass point element corresponding to the roll to be evaluated is combined with the mass point element on the lower side but is not combined with the mass point element on the upper side, The transfer functions G 3 (s) and G 4 (s) of the vibration system M2-1 and the vibration system 2-2 can be obtained.
 次に、評価対象ロールのあるスタンドが6段式スタンドF5である場合の当該スタンドF5をマス・バネ系で近似した圧延機振動モデルについて説明する。
 6段式スタンドF5をマス・バネ系で近似した圧延機振動モデルは、図10に示すように、上側及び下側のワークロール1、上側及び下側のバックアップロール2、及び上側及び下側の中間ロール3をそれぞれ質点とした振動モデルであり、必要に応じてダンパー要素を加えることができる。
Next, a description will be given of a rolling mill vibration model that approximates the stand F5 with a mass-spring system when the stand with the rolls to be evaluated is the six-high stand F5.
As shown in FIG. 10, the rolling mill vibration model approximating the six-high stand F5 with a mass-spring system includes upper and lower work rolls 1, upper and lower backup rolls 2, and upper and lower This is a vibration model with the intermediate rolls 3 as mass points, and damper elements can be added as necessary.
 圧延機振動モデルにおいて、m1は上側のバックアップロール2の質量、m6は下側のバックアップロール2の質量、m2は上側の中間ロール3の質量、m5は下側の中間ロール3の質量、m3は上側のワークロール1の質量、m4は下側のワークロール1の質量を表す。ハウジングと上側のバックアップロール2との間のバネ51のバネ定数k1及びハウジングと下側のバックアップロール2との間のバネ57のバネ定数k7は、ハウジングの剛性及び上側及び下側のバックアップロール2の軸受変形やロールたわみによるバネ定数を示す。また、上側のバックアップロール2と上側の中間ロール3との間のバネ52のバネ定数k2は、上側のバックアップロール2と上側の中間ロール3との弾性接触変形による剛性に対応する。また、下側のバックアップロール2と下側の中間ロール3との間のバネ56のバネ定数k6は、下側のバックアップロール2と下側の中間ロール3との弾性接触変形による剛性に対応する。また、上側の中間ロール3と上側のワークロール1との間のバネ53のバネ定数k3は、上側の中間ロール3と上側のワークロール1との弾性接触変形による剛性に対応する。また、下側の中間ロール3と下側のワークロール1との間のバネ55のバネ定数k5は、下側の中間ロール3と下側のワークロール1との弾性接触変形による剛性に対応する。一方、上側及び下側のワークロール1間のバネ54のバネ定数k4は、上側及び下側のワークロール1により金属帯Sの圧延を行う際の金属帯Sの変形特性から算出されるバネ定数である。さらに、スタンドF5のロールギャップ制御機10によりバックアップロール2を昇降する機器として油圧圧下装置が使用される場合など、必要に応じて減衰要素58を設けてもよい。 In the rolling mill vibration model, m1 is the mass of the upper backup roll 2, m6 is the mass of the lower backup roll 2, m2 is the mass of the upper intermediate roll 3, m5 is the mass of the lower intermediate roll 3, and m3 is The mass of the upper work roll 1, m4 represents the mass of the lower work roll 1. The spring constant k1 of the spring 51 between the housing and the upper backup roll 2 and the spring constant k7 of the spring 57 between the housing and the lower backup roll 2 depend on the stiffness of the housing and the upper and lower backup rolls 2 shows the spring constant due to bearing deformation and roll deflection. Also, the spring constant k2 of the spring 52 between the upper backup roll 2 and the upper intermediate roll 3 corresponds to the rigidity due to elastic contact deformation between the upper backup roll 2 and the upper intermediate roll 3 . Further, the spring constant k6 of the spring 56 between the lower backup roll 2 and the lower intermediate roll 3 corresponds to the rigidity due to elastic contact deformation between the lower backup roll 2 and the lower intermediate roll 3. . Also, the spring constant k3 of the spring 53 between the upper intermediate roll 3 and the upper work roll 1 corresponds to the rigidity due to elastic contact deformation between the upper intermediate roll 3 and the upper work roll 1 . Further, the spring constant k5 of the spring 55 between the lower intermediate roll 3 and the lower work roll 1 corresponds to the rigidity due to elastic contact deformation between the lower intermediate roll 3 and the lower work roll 1. . On the other hand, the spring constant k4 of the spring 54 between the upper and lower work rolls 1 is a spring constant calculated from the deformation characteristics of the metal strip S when the metal strip S is rolled by the upper and lower work rolls 1. is. Further, the damping element 58 may be provided as necessary, such as when a hydraulic screw down device is used as a device for raising and lowering the backup roll 2 by the roll gap controller 10 of the stand F5.
 そして、振動解析部34では、圧延荷重データ取得部32が取得する圧延荷重が変化する場合に、圧延荷重の操業データに応じて圧延機振動モデルのバネ定数k1~k7を更新する。振動解析部34は、圧延荷重の時系列データを圧延荷重データ取得部32から取得して、随時、圧延機振動モデルのバネ定数k1~k7を更新してもよい。ただし、圧延される金属帯Sの寸法や変形抵抗が大きく変動しなければ、圧延機振動モデルにおけるバネ定数k1~k7の変化は実用上無視し得るため、一つの金属帯Sに対して、少なくとも圧延荷重の操業データを1回更新すればよい。すなわち、制御用計算機13が金属帯Sの圧延前に設定計算を行うので、設定計算により得られる圧延荷重の設定値を取得して、その値を用いて上記バネ定数k1~k7を更新するようにしてもよい。 Then, when the rolling load acquired by the rolling load data acquisition section 32 changes, the vibration analysis section 34 updates the spring constants k1 to k7 of the rolling mill vibration model according to the rolling load operation data. The vibration analysis unit 34 may acquire the rolling load time-series data from the rolling load data acquisition unit 32 and update the spring constants k1 to k7 of the rolling mill vibration model as needed. However, if the dimensions and deformation resistance of the metal strip S to be rolled do not fluctuate greatly, changes in the spring constants k1 to k7 in the rolling mill vibration model can be practically ignored. It is sufficient to update the rolling load operation data once. That is, since the control computer 13 performs the setting calculation before rolling the metal strip S, the set value of the rolling load obtained by the setting calculation is obtained, and the spring constants k1 to k7 are updated using the obtained value. can be
 そして、振動解析部34は、バネ定数k1~k7を更新した、評価対象ロールのある6段式スタンドF5をマス・バネ系で近似した圧延機振動モデルに対して仮想的な外力を与えた際の周波数応答を算出する。
 つまり、スタンドF5をマス・バネモデルにより近似した圧延機振動モデルに対して、評価対象ロールに相当する質点要素とバネ要素により結合した他の質点要素との結合を仮想的に開放し、スタンドF5の圧延機振動モデルを2分割して、分割された圧延機振動モデルの周波数応答をそれぞれに対して算出する。評価対象ロールに相当する質点要素が他の2つの質点要素と結合されている場合には、ステップ1とステップ2との2つのステップに分けて、それぞれのステップに対応する周波数応答を算出する。ステップ1は、一方の質点要素との結合を仮想的に開放して仮想的な外力を作用させた際の周波数応答を算出するステップである。ステップ2は、他方の質点要素との結合を仮想的に開放して仮想的な外力を作用させた際の周波数応答を算出するステップである。
Then, the vibration analysis unit 34 applies a virtual external force to the rolling mill vibration model that approximates the six-high stand F5 with the rolls to be evaluated with updated spring constants k1 to k7 using a mass-spring system. Calculate the frequency response of
In other words, with respect to the rolling mill vibration model that approximates the stand F5 by a mass-spring model, the coupling between the mass element corresponding to the roll to be evaluated and the other mass element coupled by the spring element is virtually released, and the stand F5 The rolling mill vibration model is divided into two, and the frequency response of the divided rolling mill vibration model is calculated for each. When the mass point element corresponding to the roll to be evaluated is combined with the other two mass point elements, it is divided into two steps, step 1 and step 2, and the frequency response corresponding to each step is calculated. Step 1 is a step of calculating a frequency response when a virtual external force is applied by virtually releasing the coupling with one mass element. Step 2 is a step of calculating a frequency response when a virtual external force is applied by virtually releasing the coupling with the other mass element.
 図11及び図12を用いて詳しく説明する。図11は、6段式スタンドをマス・バネ系で近似した圧延機振動モデルにおいて、上側の中間ロール3を評価対象ロールとして選定した場合において、上側のバックアップロール2との結合を仮想的に開放して周波数応答を算出する(ステップ1)例を説明するための図である。図12は、6段式スタンドをマス・バネ系で近似した圧延機振動モデルにおいて、上側の中間ロール3を評価対象ロールとして選定した場合において、上側のワークロール1との結合を仮想的に開放して周波数応答を算出する(ステップ2)例を説明するための図である。 A detailed description will be given with reference to FIGS. 11 and 12. FIG. 11 shows a rolling mill vibration model in which a six-high stand is approximated by a mass-spring system. FIG. 4 is a diagram for explaining an example of calculating a frequency response (step 1). FIG. 12 shows a rolling mill vibration model in which a six-high stand is approximated by a mass-spring system. FIG. 10 is a diagram for explaining an example of calculating a frequency response (step 2).
 図11に示すように、上側の中間ロール3を表す質点m2の上側で上側のバックアップロール2を表す質点m1と結合するバネ52(バネ定数k2)を結合部C3とする。そして、結合部C3のバネ52を開放した場合に、2つに分割されるマス・バネモデルのそれぞれに対する周波数応答を算出するのがステップ1である。一方、図12に示すように、上側の中間ロール3を表す質点m2の下側で上側のワークロール1を表す質点m3と結合するバネ53(バネ定数k3)を結合部C4とする。そして、結合部C4のバネ要素を開放した場合に、2つに分割されるマス・バネモデルのそれぞれに対する周波数応答を算出するのがステップ2である。 As shown in FIG. 11, the spring 52 (spring constant k2) that couples with the mass point m1 representing the upper backup roll 2 above the mass point m2 representing the upper intermediate roll 3 is a coupling portion C3. Step 1 is to calculate the frequency response for each of the two divided mass-spring models when the spring 52 of the connecting portion C3 is released. On the other hand, as shown in FIG. 12, the spring 53 (spring constant k3) that couples with the mass point m3 representing the upper work roll 1 below the mass point m2 representing the upper intermediate roll 3 is a coupling portion C4. Step 2 is to calculate the frequency response for each of the two divided mass-spring models when the spring element of the coupling portion C4 is released.
 ステップ1の周波数応答の算出方法を説明する。図11に示すように、結合部C3を開放すると、マス・バネモデルは、結合部C3よりも上側の振動系M3-1と、結合部C3よりも下側の振動系M3-2とに分割される。振動系M3-1に対しては、結合部C3の上側にある上側のバックアップロール2を表す質点m1に対して上向きの力(外力)fを入力として作用させた場合に、結合部C3の上側にある質点m1の変位を出力とした周波数応答G5(iω)を求める。同様に、結合部C3で分割された振動系M3-2に対しては、結合部C3の下側にある上側の中間ロール3を表す質点m2に対して下向きの力(外力)fを入力として作用させた場合に、結合部C3の下側にある質点m2、m3、m4、m5、m6の変位を出力とした周波数応答G6(iω)を求める。ただし、iは虚数単位、ωは角周波数を示す。伝達関数で表す場合には、G(s)、G(s)とする。周波数応答G5(iω)、G5(iω)や伝達関数G(s)、G(s)は、結合部C3を中心としたスタンドF5の振動挙動を表すものである。 A method of calculating the frequency response in step 1 will be described. As shown in FIG. 11, when the joint C3 is opened, the mass-spring model is divided into a vibration system M3-1 above the joint C3 and a vibration system M3-2 below the joint C3. be. With respect to the vibration system M3-1, when an upward force (external force) f acts on the mass point m1 representing the upper backup roll 2 above the coupling portion C3 as an input, A frequency response G5(iω) whose output is the displacement of the mass point m1 at . Similarly, for the vibration system M3-2 divided by the coupling portion C3, a downward force (external force) f is input to the mass point m2 representing the upper intermediate roll 3 below the coupling portion C3. A frequency response G6(iω) is obtained in which the displacements of the mass points m2, m3, m4, m5, and m6 below the coupling portion C3 are output. However, i indicates an imaginary unit and ω indicates an angular frequency. When represented by transfer functions, they are G 5 (s) and G 6 (s). The frequency responses G5(iω), G5(iω) and the transfer functions G5 (s), G6 (s) represent the vibration behavior of the stand F5 about the joint C3.
 一方、ステップ2の周波数応答の算出について、図12を用いて説明する。結合部C4を開放すると、マス・バネモデルは、結合部C4よりも上側の振動系M4-1と、結合部C4よりも下側の振動系M4-2とに分割される。振動系M4-1に対しては、結合部C4の上側にある上側の中間ロール3を表す質点m2に対して上向きの力(外力)fを入力として作用させた場合に、結合部C4の上側にある質点m2、m1の変位を出力とした周波数応答G7(iω)を求める。同様に、結合部C4で分割された振動系M4-2に対しては、結合部C4の下側にある上側のワークロール1を表す質点m3に対して下向きの力(外力)を入力として作用させた場合に、結合部C4の下側にある質点m3、m4、m5、m6の変位を出力とした周波数応答G8(iω)を求める。伝達関数で表す場合には、G(s)、G(s)とする。周波数応答G7(iω)、G8(iω)や伝達関数G(s)、G(s)は、結合部C4を中心とした圧延機の振動挙動を表すものである。 On the other hand, the calculation of the frequency response in step 2 will be explained using FIG. When the joint C4 is opened, the mass-spring model is divided into a vibration system M4-1 above the joint C4 and a vibration system M4-2 below the joint C4. For the vibration system M4-1, when an upward force (external force) f acts on the mass point m2 representing the upper intermediate roll 3 above the coupling portion C4 as an input, A frequency response G7(iω) is obtained with displacements of the mass points m2 and m1 at . Similarly, for the vibration system M4-2 divided by the coupling portion C4, a downward force (external force) acts as an input on the mass point m3 representing the upper work roll 1 below the coupling portion C4. A frequency response G8(iω) whose output is the displacement of the mass points m3, m4, m5, and m6 below the coupling portion C4 is obtained. When represented by a transfer function, G 7 (s) and G 8 (s). The frequency responses G7(iω), G8(iω) and the transfer functions G7 (s), G8 (s) represent the vibration behavior of the rolling mill around the joint C4.
 図11および図12の例に対応した伝達関数G(s)、G(s)、G(s)、G(s)は、具体的には以下(5)式~(8)式のように表すことができる。 Specifically, the transfer functions G 5 (s), G 6 (s), G 7 (s), and G 8 (s) corresponding to the examples of FIGS. can be expressed as
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 G(s)は、分母が、
(m+cs+k+k)(m+k+k)(m+k+k)(m+k+k)(m+k)-k (m+k+k)(m+k+k)(m+k)-k (m+cs+k+k)(m+k+k)(m+k)-k (m+cs+k+k)(m+k+k)(m+k)-k (m+cs+k+k)(m+k+k)(m+k+k)+k (m+cs+k+k)+k (m+k+k)+k (m+k)、
分子が、
 -(m+cs+k+k)(m+k+k)(m+k+k)(m+k+k)+k (m+k+k)(m+k+k)+k (m+cs+k+k)(m+k+k)+k (m+cs+k+k)(m+k+k)-k
となる(6)式で表せる。
G 6 (s) has a denominator of
( m6s2 + c1s + k7 + k6 ) ( m5s2 + k6 + k5 ) ( m4s2 + k5 + k4 ) ( m3s2 + k4 + k3 ) ( m2s2 + k3 ) - k 6 2 (m 4 s 2 + k 5 + k 4 ) (m 3 s 2 + k 4 + k 3 ) (m 2 s 2 + k 3 ) - k 5 2 (m 6 s 2 + c 1 s + k 7 + k 6 ) (m 3 s 2 +k 4 +k 3 )(m 2 s 2 +k 3 )−k 4 2 (m 6 s 2 +c 1 s+k 7 +k 6 )(m 5 s 2 +k 6 +k 5 )(m 2 s 2 +k 3 ) - k 3 2 (m 6 s 2 + c 1 s + k 7 + k 6 ) (m 5 s 2 + k 6 + k 5 ) (m 4 s 2 + k 5 + k 4 ) + k 5 2 k 3 2 (m 6 s 2 + c 1 s + k 7 + k 6 ) + k 3 2 k 6 2 (m 4 s 2 + k 5 + k 4 ) + k 4 2 k 6 2 (m 2 s 2 + k 3 ),
the molecule
-( m6s2 + c1s + k7 + k6 )( m5s2 + k6 + k5 )( m4s2 + k5 + k4 )( m3s2 + k4 + k3 )+ k62 ( m4s 2 + k5 + k4 )( m3s2 + k4 + k3 ) + k52 ( m6s2 + c1s + k7 + k6 )( m3s2 + k4 + k3 ) + k42 ( m6s2 + c 1 s+k 7 +k 6 )(m 5 s 2 +k 6 +k 5 )−k 4 2 k 6 2 ,
It can be expressed by the following formula (6).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 G(s)は、分母が、
(m+cs+k+k)(m+k+k)(m+k+k)(m+k)-k {(m+cs+k+k)(m+k+k)-k }-k (m+k+k)(m+k)-k (m+cs+k+k)(m+k)、
分子が、
-(m+cs+k+k)(m+k+k)(m+k+k)+k (m+k+k)+k (m+cs+k+k)、
となる(8)式で表せる。
G 8 (s) has a denominator of
(m 6 s 2 +c 1 s +k 7 +k 6 )(m 5 s 2 +k 6 +k 5 )(m 4 s 2 +k 5 +k 4 )(m 3 s 2 +k 4 )−k 4 2 {(m 6 s 2 +c 1 s+k 7 +k 6 )(m 5 s 2 +k 6 +k 5 )−k 6 2 }−k 6 2 (m 4 s 2 +k 5 +k 4 )(m 3 s 2 +k 4 )−k 5 2 (m 6 s 2 +c 1 s +k 7 +k 6 )(m 3 s 2 +k 4 ),
the molecule
- (m 6 s 2 + c 1 s + k 7 + k 6 ) (m 5 s 2 + k 6 + k 5 ) (m 4 s 2 + k 5 + k 4 ) + k 6 2 (m 4 s 2 + k 5 + k 4 ) + k 5 2 ( m 6 s 2 +c 1 s + k 7 + k 6 ),
It can be expressed by the following formula (8).
 なお、評価対象ロールに相当する質点要素が、一方の質点要素とは結合されているものの、他方の質点要素とは結合されていない場合には、結合されている方の振動系に対する周波数応答を求めればよい。
 次に、初期表面形状取得部35は、評価対象ロールが評価対象ロールのあるスタンドF1~F5に組み込まれる前の評価対象ロールの初期表面形状を上位計算機14から取得する。
If the mass point element corresponding to the roll to be evaluated is coupled to one mass point element but not to the other mass point element, the frequency response of the coupled vibration system is Just ask.
Next, the initial surface shape acquisition unit 35 acquires from the host computer 14 the initial surface shape of the roll to be evaluated before the roll to be evaluated is incorporated in the stands F1 to F5 where the roll to be evaluated is located.
 評価対象ロールの初期表面形状とは、評価対象ロールがスタンドF1~F5に組み込まれる前の評価対象ロールの表面の初期振幅を表し、評価対象ロールをロール研削機により研削した後に特定されるパラメータである。具体的には、オペレータが研削後の評価対象ロールの表面形状を測定し、測定される最大径と最小径との差を初期振幅αとして求めることができる。また、評価対象ロールがスタンドF1~F5に組み込まれる前の評価対象ロールの表面形状情報として、ロール研削後の評価対象ロールの周方向の表面プロフィルをフーリエ級数展開によりピッチpごとに初期振幅μ0(p)を特定したものでもよい。この評価対象ロールの初期表面形状は、オペレータが、選定した評価対象ロールの情報を制御用計算機13に入力する際に、オペレータにより制御用計算機13に入力され、上位計算機14を経由して初期表面形状取得部35に送られる。 The initial surface shape of the roll to be evaluated represents the initial amplitude of the surface of the roll to be evaluated before the roll to be evaluated is incorporated in the stands F1 to F5, and is a parameter specified after grinding the roll to be evaluated by a roll grinder. be. Specifically, the operator can measure the surface shape of the roll to be evaluated after grinding, and obtain the difference between the measured maximum diameter and minimum diameter as the initial amplitude α. In addition, as the surface shape information of the evaluation target roll before the evaluation target roll is incorporated in the stands F1 to F5, the surface profile of the evaluation target roll in the circumferential direction after roll grinding is subjected to Fourier series expansion for each pitch p Initial amplitude μ0 ( p) may be specified. The initial surface shape of the roll to be evaluated is input to the control computer 13 by the operator when the operator inputs information on the selected roll to be evaluated into the control computer 13, and is passed through the host computer 14 to obtain the initial surface shape. It is sent to the shape acquisition unit 35 .
 また、表面形状推定部36は、振動解析部34による評価対象ロールのあるスタンドF1~F5の振動挙動の解析結果及び周速度データ取得部33が取得した評価対象ロールの周速度の操業データに加えて、初期表面形状取得部35が取得した評価対象ロールの初期表面形状を用いて、評価対象ロールの表面形状を推定する。
 ここで、振動解析部34による評価対象ロールのあるスタンドF1~F5の振動挙動の解析結果は、次のように算出される周波数応答であり、振動解析部34から表面形状推定部36に送られる。つまり、周波数応答の算出に際し、評価対象ロールのあるスタンドF1~F5をマス・バネ系で近似した圧延機振動モデルを用いる。そして、この圧延機振動モデルにおけるバネ定数k1~k7を評価対象ロールのあるスタンドF1~F5の圧延荷重の操業データに応じて更新する。周波数応答は、バネ定数k1~k7を更新した圧延機振動モデルに対して仮想的な外力を与えた際に算出される。
In addition, the surface shape estimating unit 36, in addition to the analysis result of the vibration behavior of the stands F1 to F5 having the evaluation target roll by the vibration analysis unit 34 and the peripheral speed operation data of the evaluation target roll acquired by the peripheral speed data acquiring unit 33 Then, using the initial surface shape of the evaluation target roll acquired by the initial surface shape acquisition unit 35, the surface shape of the evaluation target roll is estimated.
Here, the analysis result of the vibration behavior of the stands F1 to F5 having the roll to be evaluated by the vibration analysis unit 34 is the frequency response calculated as follows, and is sent from the vibration analysis unit 34 to the surface shape estimation unit 36. . That is, when calculating the frequency response, a rolling mill vibration model that approximates the stands F1 to F5 having the rolls to be evaluated by a mass-spring system is used. Then, the spring constants k1 to k7 in this rolling mill vibration model are updated according to the rolling load operation data of the stands F1 to F5 having the rolls to be evaluated. The frequency response is calculated when a virtual external force is applied to the rolling mill vibration model with updated spring constants k1 to k7.
 また、周速度データ取得部33が取得した評価対象ロールの周速度の操業データは、周速度データ取得部33から表面形状推定部36に送られる。
 スタンドF1~F5に組み込まれる評価対象ロールは、金属帯Sの圧延中に接触する他の圧延ロールまたは被圧延材である金属帯Sから、周期的な接触荷重を受ける。この場合の周期的な接触荷重は、複数の周波数の振動が合成された負荷として、評価対象ロールに作用する。このような評価対象ロールに対する負荷は、相互に接触する固体間での摩耗を徐々に進行させ、結果として特定の周期の凹凸を発達させて、評価対象ロールの表面形状を多角形化させる場合がある。具体的には、評価対象ロールが接触する他の固体との間で振動周波数に対応する微小な相対すべりが生じ、これによる微小な摩耗が特定のピッチで成長することにより評価対象ロールの表面形状が多角形化するというものである。
Further, the operation data of the peripheral speed of the evaluation target roll acquired by the peripheral speed data acquiring unit 33 is sent from the peripheral speed data acquiring unit 33 to the surface shape estimating unit 36 .
The evaluation target rolls incorporated in the stands F1 to F5 receive periodic contact loads from other rolling rolls coming into contact with the metal strip S during rolling or from the metal strip S, which is the material to be rolled. The periodic contact load in this case acts on the roll to be evaluated as a load obtained by combining vibrations of multiple frequencies. Such a load on the roll to be evaluated gradually progresses wear between the solids in contact with each other, and as a result, unevenness with a specific period develops, and the surface shape of the roll to be evaluated may become polygonal. be. Specifically, a minute relative slip corresponding to the vibration frequency occurs between the roll to be evaluated and other solids that come into contact with it, and the resulting minute wear grows at a specific pitch. becomes polygonal.
 表面形状推定部36は、このような複数の周波数の振動が評価対象ロールに付与された場合に、評価対象ロールが、接触する他の固体から受ける損傷度を代表する指標を用いて、金属帯Sの圧延中に形成する評価対象ロールの表面形状を推定する。
 表面形状推定部36は、以下に示す「ピッチ性損傷度」と呼ぶパラメータを用いて評価対象ロールの表面形状を推定するものである。「ピッチ性損傷度」とは、振動解析部34において、圧延機振動モデルを用いて算出された各スタンドF1~F5の周波数応答特性と周速度データ取得部33が取得した評価対象ロールの周速度V(m/sec)の操業データとから、評価対象ロールの表面に形成される凹凸のピッチと関係づけられた損傷度を算出するためのパラメータであり、以下のように定義できる。
The surface shape estimating unit 36 uses an index that represents the degree of damage that the evaluation target roll receives from other solids that come into contact with the evaluation target roll when vibrations of a plurality of frequencies are applied to the evaluation target roll. The surface shape of the evaluation target roll formed during rolling of S is estimated.
The surface shape estimator 36 estimates the surface shape of the roll to be evaluated using a parameter called "pitch damage degree" described below. The “pitch damage degree” is the frequency response characteristics of each stand F1 to F5 calculated using the rolling mill vibration model in the vibration analysis unit 34 and the peripheral speed of the evaluation target roll acquired by the peripheral speed data acquisition unit 33. It is a parameter for calculating the degree of damage associated with the pitch of the unevenness formed on the surface of the evaluation target roll from the operation data of V (m/sec), and can be defined as follows.
 先ず、評価対象ロールのある4段式スタンドF1~F4をマス・バネ系で近似した圧延機振動モデルを用いて周波数応答を算出した場合、ステップ1で算出される結合部C1に対するピッチ性損傷度Δλ1(p)は、周波数応答G1(iω)、G2(iω)を用いて、次の(9)式により表される。 First, when the frequency response is calculated using a rolling mill vibration model that approximates the four-stage stands F1 to F4 with the rolls to be evaluated by a mass-spring system, the degree of pitch damage to the joint C1 calculated in step 1 Δλ1(p) is expressed by the following equation (9) using frequency responses G1(iω) and G2(iω).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 ただし、pは評価対象ロールの表面形状に形成される凹凸の評価ピッチ(m)である。また、k(N/m)は結合部C1におけるバネ定数、ν(m/N)は結合部C1における摩耗進展係数であり、単位荷重が結合部に作用した際の摩耗速度(m/N)である。さらに、T(sec)は評価対象ロールの回転周期である。なお、ω(rad/sec)は評価ピッチpに対応する角周波数であり、周速度データ取得部33が取得した評価対象ロールの周速度V(m/sec)を用いて、次の(10)式の関係がある。 However, p is the evaluation pitch (m) of the unevenness formed on the surface shape of the roll to be evaluated. Further, k 0 (N/m) is the spring constant at the joint C1, ν (m/N) is the wear progress coefficient at the joint C1, and the wear rate (m/N ). Furthermore, T (sec) is the rotation cycle of the roll to be evaluated. Note that ω 0 (rad/sec) is the angular frequency corresponding to the evaluation pitch p. ).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 ピッチ性損傷度Δλ1(p)は、結合部C1における振動に起因して評価対象ロールの表面に形成されるピッチ性凹凸の摩耗量(損傷度)と対応付けられ、ピッチ性凹凸の振幅に自然対数を作用させて得られた値の単位時間あたりの変化量に相当する。
 同様にして、結合部C2に対するピッチ性損傷度Δλ2(p)は、周波数応答G3(iω)、G4(iω)を用いて、次の(11)式により表される。
The degree of pitch damage Δλ1(p) is associated with the amount of wear (degree of damage) of the pitch unevenness formed on the surface of the roll to be evaluated due to the vibration at the coupling portion C1, and naturally follows the amplitude of the pitch unevenness. It corresponds to the amount of change per unit time of the value obtained by applying logarithm.
Similarly, the degree of pitch damage Δλ2(p) for the coupling portion C2 is expressed by the following equation (11) using the frequency responses G3(iω) and G4(iω).
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 このとき、評価対象ロールは、上下の接触点から振動を受けて表面の凹凸が形成されるため、評価対象ロールのピッチ性損傷度Δλ(p)は、
       Δλ(p)=Δλ1(p)+Δλ2(p)
により表すことができる。そして、評価対象ロールのピッチ性損傷度Δλ(p)は、圧延機の振動と共に累積する特性を有し、累積ピッチ性損傷度λ(p)を次の(12)式のように定義する。
At this time, since the evaluation target roll receives vibration from the upper and lower contact points and the surface unevenness is formed, the pitch damage degree Δλ (p) of the evaluation target roll is
Δλ(p)=Δλ1(p)+Δλ2(p)
can be represented by The degree of pitch damage Δλ(p) of the roll to be evaluated has a characteristic of accumulating with the vibration of the rolling mill, and the cumulative degree of pitch damage λ(p) is defined as the following equation (12).
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 ここで、Δtは操業データ取得部で取得する圧延ロールの周速度のサンプリング周期である。なお、ピッチ性損傷度Δλ(p)は圧延条件によっては負になる場合もあるが、その場合にはピッチpに対応する凹凸が徐々に小さくなることを意味する。
 このように累積ピッチ性損傷度λ(p)が求められると、金属帯を圧延している過程でのピッチpに対応する振幅情報u(p)は、次の(13)式により算出される。
Here, Δt is the sampling cycle of the peripheral speed of the rolling rolls acquired by the operation data acquiring unit. Depending on the rolling conditions, the degree of pitch damage Δλ(p) may become negative, which means that the unevenness corresponding to the pitch p gradually decreases.
When the cumulative pitch damage degree λ(p) is obtained in this way, the amplitude information u(p) corresponding to the pitch p in the process of rolling the metal strip is calculated by the following equation (13). .
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 ただし、αは、初期表面形状取得部35から入力される評価対象ロールの初期表面形状、即ち、評価対象ロールがスタンドF1~F4に組み込まれる前の評価対象ロールの表面の初期振幅を表し、評価対象ロールをロール研削機により研削した後に特定されるパラメータである。具体的には、オペレータが研削後の評価対象ロールの表面形状を測定し、測定される最大径と最小径との差を初期振幅αとして求めることができる。また、評価対象ロールがスタンドF1~F4に組み込まれる前の評価対象ロールの表面形状情報として、ロール研削後の評価対象ロールの周方向の表面プロフィルをフーリエ級数展開によりピッチpごとに初期振幅μ0(p)を特定したものでもよい。
 ピッチpごとに初期振幅μ0(p)を特定した場合、ピッチpに対応する振幅情報u(p)は、次の(14)式により算出することができる。
However, α represents the initial surface shape of the evaluation target roll input from the initial surface shape acquisition unit 35, that is, the initial amplitude of the surface of the evaluation target roll before the evaluation target roll is incorporated in the stands F1 to F4, and the evaluation It is a parameter specified after the target roll is ground by a roll grinder. Specifically, the operator can measure the surface shape of the roll to be evaluated after grinding, and obtain the difference between the measured maximum diameter and minimum diameter as the initial amplitude α. In addition, as the surface shape information of the evaluation target roll before the evaluation target roll is incorporated in the stands F1 to F4, the surface profile of the evaluation target roll in the circumferential direction after roll grinding is subjected to Fourier series expansion for each pitch p Initial amplitude μ0 ( p) may be specified.
When the initial amplitude μ0(p) is specified for each pitch p, the amplitude information u(p) corresponding to the pitch p can be calculated by the following equation (14).
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 なお、評価対象ロールのある6段式スタンドF5をマス・バネ系で近似した圧延機振動モデルを用いて周波数応答を算出した場合、ピッチpに対応する振幅情報u(p)は、前述と同様の手法により算出することができる。 Note that when the frequency response is calculated using a rolling mill vibration model that approximates the six-high stand F5 with the rolls to be evaluated by a mass-spring system, the amplitude information u(p) corresponding to the pitch p is the same as described above. It can be calculated by the method of
 表面形状推定部36の他の態様としては、各スタンドF1~F5の周波数応答および評価対象ロールの周速度の実績データと、評価対象ロールの表面形状との、過去の操業実績に基づいて評価対象ロールの表面形状を推定するようにしてもよい。例えば、振動解析部34で得られる評価対象ロールに対応した周波数応答G(s)、G(s)、G(s)、G(s)、G(s)、G(s)、G(s)、G(s)の実績データ、評価対象ロールの周速度として平均速度、最高速度などの操業実績データ、および金属帯Sの圧延を終了した後に測定される評価対象ロールの表面形状の測定結果とをデータベースにそれらを対応付けて蓄積しておく。そして、金属帯Sを圧延する際に評価対象ロールを設定し、操業データ取得部31でこれらデータを取得し、表面形状推定部36に送るようにしてもよい。 As another aspect of the surface shape estimating unit 36, the frequency response of each stand F1 to F5, the actual data of the peripheral speed of the roll to be evaluated, and the surface shape of the roll to be evaluated are evaluated based on the past operation results. The surface shape of the roll may be estimated. For example, frequency responses G 1 (s), G 2 (s), G 3 (s), G 4 (s), G 5 (s), G 6 ( s), G 7 (s), G 8 (s) performance data, operation performance data such as average speed and maximum speed as peripheral speed of the roll to be evaluated, and evaluation measured after finishing rolling of metal strip S The measurement results of the surface profile of the target roll are stored in a database in association with each other. Then, when the metal strip S is rolled, a roll to be evaluated may be set, the operation data acquisition unit 31 may acquire these data, and the data may be sent to the surface shape estimation unit 36 .
 そして、表面形状推定部36で推定された評価対象ロールの表面形状、即ち、評価対象ロールの表面のピッチpに対応する振幅情報u(p)は、表面形状推定部36に接続された適合判定部37に送出される。
 適合判定部37は、表面形状推定部36で推定された評価対象ロールの表面形状に基づいて評価対象ロールの適合判定を行う。つまり、適合判定部37は、表面形状推定部36で算出された評価対象ロールの表面のピッチpに対応する振幅情報u(p)の値を参照する。そして、適合判定部37は、評価対象ロールのピッチpに対応する情報u(p)の値が、予め設定されたピッチpに対応した振幅の上限値未満であれば適合(合格)、上限値以上であれば不適合(不合格)と判定する。
Then, the surface shape of the roll to be evaluated estimated by the surface shape estimating unit 36, that is, the amplitude information u(p) corresponding to the pitch p of the surface of the roll to be evaluated is applied to the conformity determination unit connected to the surface shape estimating unit 36. It is sent to section 37 .
The suitability determination unit 37 performs suitability determination of the evaluation target roll based on the surface shape of the evaluation target roll estimated by the surface shape estimation unit 36 . In other words, the conformity determination unit 37 refers to the value of the amplitude information u(p) corresponding to the surface pitch p of the evaluation target roll calculated by the surface shape estimation unit 36 . Then, if the value of the information u(p) corresponding to the pitch p of the roll to be evaluated is less than the preset upper limit value of the amplitude corresponding to the pitch p, the conformity determination unit 37 determines conformity (acceptance). If it is more than that, it will be determined as non-conforming (failed).
 なお、予め設定されたピッチpに対応した振幅の上限値は、過去の操業実績やチャタマークの発生実績から、特定のピッチpでの凹凸が成長しやすいことが判明している場合に、予め評価対象ロールの表面形状として設定した、そのようなピッチpに対応した振幅の上限値である。これにより、圧延ロールの交換タイミングを適切に管理することができ、圧延機aの生産能率や作業率の低下を防止できる。
 そして、適合判定部37による判定結果は、適合判定部37に接続された表示装置38に送出される。表示装置38は、結果の出力、すなわち適合判定部37による判定結果を表示する。
Note that the upper limit value of the amplitude corresponding to the preset pitch p is set in advance when it is known from past operation results and chatter mark occurrence results that irregularities tend to grow at a specific pitch p. This is the upper limit value of the amplitude corresponding to such a pitch p set as the surface shape of the roll to be evaluated. As a result, it is possible to appropriately manage the replacement timing of the rolling rolls, and to prevent a decrease in the production efficiency and work rate of the rolling mill a.
Then, the determination result by the conformity determination section 37 is sent to the display device 38 connected to the conformity determination section 37 . The display device 38 displays the output of the result, that is, the determination result by the conformance determining section 37 .
(圧延ロールの適合判定方法)
 本実施形態に係る圧延ロールの適合判定方法は、圧延ロールの適合判定装置30を用いて、任意のスタンドF1~F5の複数の圧延ロール1,2,3から任意に選定された圧延ロールである評価対象ロールの適合判定を行う。
 この適合判定方法について、図6及び図13を参照して説明する。図6は、図5に示す圧延機aの上位計算機14及び適合判定装置30における処理の流れを説明するためのフローチャートである。図13は、図5に示す圧延機aを用いて金属帯Sの連続圧延を行う際の、圧延ロール1,2,3の周速度の変化及び評価対象ロールの適合判定タイミングを示すグラフである。
(Conformity determination method for rolling rolls)
In the method for determining suitability of a rolling roll according to the present embodiment, a rolling roll is arbitrarily selected from a plurality of rolling rolls 1, 2, and 3 of arbitrary stands F1 to F5 using a rolling roll suitability determination device 30. Perform conformity judgment of the role to be evaluated.
This conformity determination method will be described with reference to FIGS. 6 and 13. FIG. FIG. 6 is a flow chart for explaining the flow of processing in the high-level computer 14 and conformity determining device 30 of the rolling mill a shown in FIG. FIG. 13 is a graph showing changes in the peripheral speed of the rolling rolls 1, 2, and 3 and the timing of judging suitability of the rolls to be evaluated when the metal strip S is continuously rolled using the rolling mill a shown in FIG. .
 通常の圧延機aは、複数の金属帯Sを連続的に圧延するため、図13に示す例では、金属帯A、B、Cの順に圧延するものとする。金属帯Aの先端部とその金属帯Aに先行する先行金属帯の尾端部とは溶接により接合されている。そして、その接合部が圧延機aを通過するときのタイミングt1で図6に示す圧延機aの上位計算機14及び適合判定装置30における処理がなされる。 A normal rolling mill a continuously rolls a plurality of metal strips S, so in the example shown in FIG. 13, metal strips A, B, and C are rolled in this order. The front end of the metal strip A and the tail end of the preceding metal strip preceding the metal strip A are joined by welding. Then, at the timing t1 when the joint passes through the rolling mill a, processing is performed in the high-level computer 14 and conformity determining device 30 of the rolling mill a shown in FIG.
 図6における上位計算機14及び適合判定装置30の処理に先立ち、オペレータは、選定した評価対象ロールの情報及びその評価対象ロールの初期表面形状(評価対象ロールの表面の初期振幅α)を制御用計算機13に入力し、その情報が上位計算機14に入力される。選定した評価対象ロールの情報は、スタンドF1~F5のうちの何れのスタンドにおける複数の圧延ロール1,2,3のうち何れの圧延ロールを評価対象ロールとして選定したかの情報である。
 そして、上位計算機14は、ステップS1において、上位計算機14に入力された情報に基づき、評価対象ロールを選定する。そして、上位計算機14は、選定した評価対象ロールの情報を評価対象ロールのあるスタンドF1~F5に設けられた適合判定装置30の操業データ取得部31に送出する。また、上位計算機14は、評価対象ロールの初期表面形状の情報を評価対象ロールのあるスタンドF1~F5に設けられた適合判定装置30の初期表面形状取得部35に送出する(評価対象ロール選定ステップ)。
Prior to the processing of the host computer 14 and the suitability determination device 30 in FIG. 13 and the information is input to the host computer 14 . The information about the selected roll to be evaluated is information about which of the rolls 1, 2, and 3 in which of the stands F1 to F5 was selected as the roll to be evaluated.
Then, the host computer 14 selects an evaluation target role based on the information input to the host computer 14 in step S1. Then, the host computer 14 sends the information of the selected roll to be evaluated to the operation data acquisition section 31 of the suitability determination device 30 provided at the stand F1 to F5 where the roll to be evaluated is located. In addition, the host computer 14 sends information on the initial surface shape of the roll to be evaluated to the initial surface shape acquisition unit 35 of the suitability determination device 30 provided in the stand F1 to F5 where the roll to be evaluated is located (selection step of roll to be evaluated ).
 次いで、ステップS2において、評価対象ロールのあるスタンドF1~F5に設けられた適合判定装置30の初期表面形状取得部35は、評価対象ロールの初期表面形状の情報、即ち、評価対象ロールの表面の初期振幅αを上位計算機14から取得する(初期表面形状取得ステップ)。
 なお、初期表面形状取得部35は、評価対象ロールの表面形状情報として、ロール研削後の評価対象ロールの周方向の表面プロフィルをフーリエ級数展開によりピッチpごとに初期振幅μ0(p)を特定したものを取得しても良い。
Next, in step S2, the initial surface shape acquisition unit 35 of the suitability determination device 30 provided in the stand F1 to F5 where the roll to be evaluated is provided acquires information on the initial surface shape of the roll to be evaluated, that is, the surface of the roll to be evaluated. The initial amplitude α is acquired from the host computer 14 (initial surface profile acquisition step).
In addition, the initial surface profile acquisition unit 35 specified the initial amplitude μ0(p) for each pitch p by Fourier series expansion of the circumferential surface profile of the evaluation target roll after roll grinding as the surface profile information of the evaluation target roll. You can get things.
 次いで、ステップS3において、評価対象ロールのあるスタンドF1~F5に設けられた適合判定装置30の圧延荷重データ取得部32は、上位計算機14からの評価対象ロールの選定情報に基づき、評価対象ロールのあるスタンドF1~F5の圧延荷重の操業データを制御用コントローラ12から取得する(圧延荷重データ取得ステップ)。
 ここで、当該スタンドF1~F5の圧延荷重の操業データは、金属帯Aと先行金属帯との接合部が当該スタンドF1~F5を通過する際の圧延荷重検出器6が検出した圧延荷重の操業データである。ただし、当該スタンドF1~F5の圧延荷重の操業データは、制御用計算機13が設定する圧延荷重の設定値を圧延荷重の操業データとしてもよい。金属帯Aの先端部とその金属帯Aに先行する先行金属帯の尾端部との接合部が圧延機aを通過するときのタイミングt1で、制御用計算機13による金属帯Aを圧延する際の圧延荷重が設定されるからである。
Next, in step S3, the rolling load data acquisition unit 32 of the suitability determination device 30 provided in the stand F1 to F5 having the roll to be evaluated selects the roll to be evaluated based on the selection information of the roll to be evaluated from the host computer 14. Operation data of the rolling load of a certain stand F1 to F5 is obtained from the controller 12 (rolling load data obtaining step).
Here, the operation data of the rolling load of the stands F1 to F5 is the operation of the rolling load detected by the rolling load detector 6 when the joint between the metal strip A and the preceding metal strip passes through the stands F1 to F5. Data. However, as the rolling load operation data of the stands F1 to F5, the rolling load setting values set by the control computer 13 may be used as the rolling load operation data. When the metal strip A is rolled by the control computer 13 at timing t1 when the joint between the leading end of the metal strip A and the trailing end of the preceding metal strip preceding the metal strip A passes through the rolling mill a This is because the rolling load of is set.
 次いで、ステップS4において、評価対象ロールのあるスタンドF1~F5に設けられた適合判定装置30の周速度データ取得部33は、上位計算機14からの評価対象ロールの選定情報に基づき、評価対象ロールの周速度の操業データを制御用コントローラ12から取得する(周速度データ取得ステップ)。
 ここで、周速度データ取得部33が取得する評価対象ロールの周速度の操業データは、ロール速度制御機11の回転速度検出器で検出される上側及び下側のワークロール1の回転速度の実測値から、当該ワークロール1と評価対象ロールとのロール径の比を用いて換算することにより求めたものである。
Next, in step S4, the peripheral speed data acquisition unit 33 of the suitability determination device 30 provided in the stand F1 to F5 where the roll to be evaluated is located, selects the roll to be evaluated based on the selection information of the roll to be evaluated from the host computer 14. Operation data of peripheral speed is acquired from the controller 12 (peripheral speed data acquisition step).
Here, the operation data of the peripheral speed of the evaluation target roll acquired by the peripheral speed data acquisition unit 33 is the actual measurement of the rotational speed of the upper and lower work rolls 1 detected by the rotational speed detector of the roll speed controller 11. It is obtained by converting the value using the ratio of the roll diameters of the work roll 1 and the roll to be evaluated.
 次いで、ステップS5において、評価対象ロールのあるスタンドF1~F5に設けられた適合判定装置30の振動解析部34は、ステップS3(圧延荷重取得ステップ)で取得した評価対象ロールのあるスタンドF1~F5の圧延荷重の操業データを用いて当該スタンドF1~F5の振動挙動を解析する(振動解析ステップ)。
 この振動解析部34による評価対象ロールのあるスタンドF1~F5の振動挙動の解析では、前述したように、評価対象ロールのあるスタンドF1~F5をマス・バネ系で近似した圧延機振動モデルを用いる。そして、この圧延機振動モデルにおけるバネ定数k1~k5を、ステップS3において取得した評価対象ロールのあるスタンドF1~F5の圧延荷重の操業データに応じて更新する。そして、バネ定数k1~k5を更新した圧延機振動モデルに対して仮想的な外力を与えた際の周波数応答を算出する。
Next, in step S5, the vibration analysis unit 34 of the suitability determination device 30 provided in the stands F1 to F5 having the rolls to be evaluated acquires the stand F1 to F5 having the rolls to be evaluated acquired in step S3 (rolling load acquisition step). The vibration behavior of the stands F1 to F5 is analyzed using the rolling load operation data (vibration analysis step).
In the analysis of the vibration behavior of the stands F1 to F5 with the rolls to be evaluated by the vibration analysis unit 34, as described above, the rolling mill vibration model that approximates the stands F1 to F5 with the rolls to be evaluated by a mass-spring system is used. . Then, the spring constants k1 to k5 in this rolling mill vibration model are updated according to the rolling load operation data of the stands F1 to F5 having the rolls to be evaluated acquired in step S3. Then, the frequency response when a virtual external force is applied to the rolling mill vibration model with updated spring constants k1 to k5 is calculated.
 ここで、4段式スタンドF1~F4の図8及び図9の例に対応した周波数応答G1(iω)、G2(iω)、G3(iω)、G4(iω)を表す伝達関数G(s)、G(s)、G(s)、G(s)は、前述した(1)式~(4)式により表せる。
 また、6段式スタンドF5の図11及び図12の例に対応した周波数応答G5(iω)、G6(iω)、G7(iω)、G8(iω)を表す伝達関数G(s)、G(s)、G(s)、G(s)は、前述した(5)式~(8)式により表せる。
Here, the transfer function G 1 (s ), G 2 (s), G 3 (s), and G 4 (s) can be expressed by the formulas (1) to (4) described above.
Also transfer functions G5 (s), G 6 (s), G 7 (s), and G 8 (s) can be expressed by the aforementioned formulas (5) to (8).
 次いで、ステップS6において、表面形状推定部36は、金属帯Sの圧延中に評価対象ロールの表面形状を推定する(表面形状推定ステップ)。評価対象ロールの表面形状の推定に際し、ステップS5(振動解析ステップ)による評価対象ロールのあるスタンドF1~F5の振動挙動の解析結果を用いる。また、評価対象ロールの表面形状の推定に際し、ステップS4(周速度データ取得ステップ)で取得した評価対象ロールの周速度の操業データを用いる。更に、評価対象ロールの表面形状の推定に際し、ステップS2(初期表面形状取得ステップ)で取得した評価対象ロールの初期表面形状を用いる。 Next, in step S6, the surface shape estimating section 36 estimates the surface shape of the evaluation target roll during rolling of the metal strip S (surface shape estimating step). When estimating the surface shape of the roll to be evaluated, the analysis result of the vibration behavior of the stands F1 to F5 having the roll to be evaluated in step S5 (vibration analysis step) is used. Further, when estimating the surface shape of the evaluation target roll, the operation data of the peripheral speed of the evaluation target roll acquired in step S4 (peripheral speed data acquisition step) is used. Furthermore, when estimating the surface shape of the roll to be evaluated, the initial surface shape of the roll to be evaluated acquired in step S2 (initial surface shape acquisition step) is used.
 ここで、ステップS5(振動解析ステップ)による評価対象ロールのあるスタンドF1~F5の振動挙動の解析結果は、次のように算出される周波数応答であり、振動解析部34から表面形状推定部36に送られる。つまり、周波数応答の算出に際し、評価対象ロールのあるスタンドF1~F5をマス・バネ系で近似した圧延機振動モデルを用いる。そして、この圧延機振動モデルにおけるバネ定数k1~k7を評価対象ロールのあるスタンドF1~F5の圧延荷重の操業データに応じて更新する。周波数応答は、バネ定数k1~k7を更新した圧延機振動モデルに対して仮想的な外力を与えた際に算出される。
 また、ステップS4(周速度データ取得ステップ)で取得した評価対象ロールの周速度の操業データは、周速度データ取得部33から表面形状推定部36に送られる。
Here, the analysis result of the vibration behavior of the stands F1 to F5 having the rolls to be evaluated in step S5 (vibration analysis step) is the frequency response calculated as follows, and sent to That is, when calculating the frequency response, a rolling mill vibration model that approximates the stands F1 to F5 having the rolls to be evaluated by a mass-spring system is used. Then, the spring constants k1 to k7 in this rolling mill vibration model are updated according to the rolling load operation data of the stands F1 to F5 having the rolls to be evaluated. The frequency response is calculated when a virtual external force is applied to the rolling mill vibration model with updated spring constants k1 to k7.
In addition, the operation data of the peripheral speed of the evaluation target roll acquired in step S<b>4 (peripheral speed data acquisition step) is sent from the peripheral speed data acquisition section 33 to the surface shape estimation section 36 .
 スタンドF1~F5に組み込まれる評価対象ロールは、金属帯Sの圧延中に接触する他の圧延ロールまたは被圧延材である金属帯Sから、周期的な接触荷重を受ける。この場合の周期的な接触荷重は、複数の周波数の振動が合成された負荷として、評価対象ロールに作用する。このような評価対象ロールに対する負荷は、相互に接触する固体間での摩耗を徐々に進行させ、結果として特定の周期の凹凸を発達させて、評価対象ロールの表面形状を多角形化させる場合がある。具体的には、評価対象ロールが接触する他の固体との間で振動周波数に対応する微小な相対すべりが生じ、これによる微小な摩耗が特定のピッチで成長することにより評価対象ロールの表面形状が多角形化するというものである。 The evaluation target rolls incorporated in the stands F1 to F5 receive periodic contact loads from other rolling rolls that come into contact during rolling of the metal strip S or from the metal strip S that is the material to be rolled. The periodic contact load in this case acts on the roll to be evaluated as a load obtained by combining vibrations of multiple frequencies. Such a load on the roll to be evaluated gradually progresses wear between the solids in contact with each other, and as a result, unevenness with a specific period develops, and the surface shape of the roll to be evaluated may become polygonal. be. Specifically, a minute relative slip corresponding to the vibration frequency occurs between the roll to be evaluated and other solids that come into contact with it, and the resulting minute wear grows at a specific pitch. becomes polygonal.
 ステップS6において表面形状推定部36は、このような複数の周波数の振動が評価対象ロールに付与された場合に、評価対象ロールが、接触する他の固体から受ける損傷度を代表する指標を用いて、金属帯Sの圧延中に形成する評価対象ロールの表面形状を推定する。
 ステップS6において、表面形状推定部36は、前述した「ピッチ性損傷度」と呼ぶパラメータを用いて評価対象ロールの表面形状を推定するものである。「ピッチ性損傷度」とは、ステップS5(振動解析ステップ)において、圧延機振動モデルを用いて算出された各スタンドF1~F5の周波数応答特性とステップS4(周速度データ取得ステップ)で取得した評価対象ロールの周速度の操業データとから、評価対象ロールの表面に形成される凹凸のピッチと関係づけられた損傷度を算出するためのパラメータである。
In step S6, the surface shape estimating unit 36 uses an index representing the degree of damage that the evaluation target roll receives from other solids that come into contact with the evaluation target roll when vibrations of a plurality of frequencies are applied to the evaluation target roll. , the surface shape of the roll to be evaluated formed during the rolling of the metal strip S is estimated.
In step S6, the surface shape estimating section 36 estimates the surface shape of the evaluation target roll using the parameter called the "pitch damage degree" described above. The “pitch damage degree” refers to the frequency response characteristics of each stand F1 to F5 calculated using the rolling mill vibration model in step S5 (vibration analysis step) and the frequency response characteristics obtained in step S4 (peripheral velocity data acquisition step). It is a parameter for calculating the degree of damage associated with the pitch of the unevenness formed on the surface of the roll to be evaluated from the operational data of the peripheral speed of the roll to be evaluated.
 先ず、評価対象ロールのある4段式スタンドF1~F4をマス・バネ系で近似した圧延機振動モデルを用いて周波数応答を算出した場合、ステップ1で算出される結合部C1に対するピッチ性損傷度Δλ1(p)は、周波数応答G1(iω)、G2(iω)を用いて、前述の(9)式により表される。
 また、結合部C2に対するピッチ性損傷度Δλ2(p)は、周波数応答G3(iω)、G4(iω)を用いて、前述の(11)式により表される。
 このとき、評価対象ロールは、上下の接触点から振動を受けて表面の凹凸が形成されるため、評価対象ロールのピッチ性損傷度Δλ(p)は、
       Δλ(p)=Δλ1(p)+Δλ2(p)
により表すことができる。そして、評価対象ロールのピッチ性損傷度Δλ(p)は、圧延機の振動と共に累積する特性を有し、累積ピッチ性損傷度λ(p)を前述の(12)式のように定義する。
First, when the frequency response is calculated using a rolling mill vibration model that approximates the four-stage stands F1 to F4 with the rolls to be evaluated by a mass-spring system, the degree of pitch damage to the joint C1 calculated in step 1 Δλ1(p) is expressed by the above equation (9) using the frequency responses G1(iω) and G2(iω).
Also, the degree of pitch-related damage Δλ2(p) for the coupling portion C2 is expressed by the above-described equation (11) using the frequency responses G3(iω) and G4(iω).
At this time, since the evaluation target roll receives vibration from the upper and lower contact points and the surface unevenness is formed, the pitch damage degree Δλ (p) of the evaluation target roll is
Δλ(p)=Δλ1(p)+Δλ2(p)
can be represented by The degree of pitch damage Δλ(p) of the roll to be evaluated has the characteristic of accumulating along with the vibration of the rolling mill, and the cumulative degree of pitch damage λ(p) is defined as in the above-described formula (12).
 このように累積ピッチ性損傷度λ(p)が求められると、金属帯を圧延している過程でのピッチpに対応する振幅情報u(p)は、前述の(13)式により算出される。
 ここで、αは、ステップS2(初期表面形状取得ステップ)で取得した評価対象ロールの初期表面形状、即ち、評価対象ロールがスタンドF1~F4に組み込まれる前の評価対象ロールの表面の初期振幅を表し、評価対象ロールをロール研削機により研削した後に特定されるパラメータである。具体的には、オペレータが研削後の評価対象ロールの表面形状を測定し、測定される最大径と最小径との差を初期振幅αとして求めることができる。また、評価対象ロールがスタンドF1~F4に組み込まれる前の評価対象ロールの表面形状情報として、ロール研削後の評価対象ロールの周方向の表面プロフィルをフーリエ級数展開によりピッチpごとに初期振幅μ0(p)を特定したものでもよい。
When the cumulative pitch damage degree λ(p) is obtained in this way, the amplitude information u(p) corresponding to the pitch p in the process of rolling the metal strip is calculated by the above equation (13). .
Here, α is the initial surface shape of the evaluation target roll acquired in step S2 (initial surface shape acquisition step), that is, the initial amplitude of the surface of the evaluation target roll before the evaluation target roll is incorporated in the stands F1 to F4. It is a parameter specified after grinding the roll to be evaluated by the roll grinder. Specifically, the operator can measure the surface shape of the roll to be evaluated after grinding, and obtain the difference between the measured maximum diameter and minimum diameter as the initial amplitude α. In addition, as the surface shape information of the evaluation target roll before the evaluation target roll is incorporated in the stands F1 to F4, the surface profile of the evaluation target roll in the circumferential direction after roll grinding is subjected to Fourier series expansion for each pitch p Initial amplitude μ0 ( p) may be specified.
 ピッチpごとに初期振幅μ0(p)を特定した場合、ピッチpに対応する振幅情報u(p)は、前述の(14)式により算出することができる。
 なお、評価対象ロールのある6段式スタンドF5をマス・バネ系で近似した圧延機振動モデルを用いて周波数応答を算出した場合、ピッチpに対応する振幅情報u(p)は、前述と同様の手法により算出することができる。
 そして、表面形状推定部36で推定された評価対象ロールの表面形状、即ち、評価対象ロールの表面のピッチpに対応する振幅情報u(p)は、表面形状推定部36に接続された適合判定部37に送出される。
When the initial amplitude μ0(p) is specified for each pitch p, the amplitude information u(p) corresponding to the pitch p can be calculated by the above equation (14).
Note that when the frequency response is calculated using a rolling mill vibration model that approximates the six-high stand F5 with the rolls to be evaluated by a mass-spring system, the amplitude information u(p) corresponding to the pitch p is the same as described above. It can be calculated by the method of
Then, the surface shape of the roll to be evaluated estimated by the surface shape estimating unit 36, that is, the amplitude information u(p) corresponding to the pitch p of the surface of the roll to be evaluated is applied to the conformity determination unit connected to the surface shape estimating unit 36. It is sent to section 37 .
 そして、ステップS7において、適合判定部37は、表面形状推定部36で推定された評価対象ロールの表面形状に基づいて評価対象ロールの適合判定を行う(適合判定ステップ)。具体的に、適合判定部37は、表面形状推定部36で算出された評価対象ロールの表面のピッチpに対応する振幅情報u(p)の値を参照する。そして、適合判定部37は、評価対象ロールのピッチpに対応する情報u(p)の値が、予め設定されたピッチpに対応した振幅の上限値未満であれば適合(合格)、上限値以上であれば不適合(不合格)と判定する。 Then, in step S7, the suitability determination unit 37 performs suitability determination of the evaluation target roll based on the surface shape of the evaluation target roll estimated by the surface shape estimation unit 36 (suitability determination step). Specifically, the conformity determination unit 37 refers to the value of the amplitude information u(p) corresponding to the surface pitch p of the evaluation target roll calculated by the surface shape estimation unit 36 . Then, if the value of the information u(p) corresponding to the pitch p of the roll to be evaluated is less than the preset upper limit value of the amplitude corresponding to the pitch p, the conformity determination unit 37 determines conformity (acceptance). If it is more than that, it will be determined as non-conforming (failed).
 なお、予め設定されたピッチpに対応した振幅の上限値は、過去の操業実績やチャタマークの発生実績から、特定のピッチpでの凹凸が成長しやすいことが判明している場合に、予め評価対象ロールの表面形状として設定した、そのようなピッチpに対応した振幅の上限値である。これにより、圧延ロールの交換タイミングを適切に管理することができ、圧延機aの生産能率や作業率の低下を防止できる。
 そして、ステップS8において、表示装置38は、結果の出力、すなわちステップS7の判定結果を表示する(表示ステップ)。圧延作業をするオペレータは、評価対象ロールの適合判定結果を表示装置38において確認することができる。
 これにより、金属帯Aの先端部とその金属帯Aに先行する先行金属帯の尾端部との接合部が圧延機aを通過するときのタイミングt1における上位計算機14及び適合判定装置30における処理が終了する。
Note that the upper limit value of the amplitude corresponding to the preset pitch p is set in advance when it is known from past operation results and chatter mark occurrence results that irregularities tend to grow at a specific pitch p. This is the upper limit value of the amplitude corresponding to such a pitch p set as the surface shape of the roll to be evaluated. As a result, it is possible to appropriately manage the replacement timing of the rolling rolls, and to prevent a decrease in the production efficiency and work rate of the rolling mill a.
Then, in step S8, the display device 38 displays the output of the result, that is, the determination result of step S7 (display step). An operator who performs a rolling operation can confirm the suitability determination result of the roll to be evaluated on the display device 38 .
As a result, the processing in the host computer 14 and the suitability determination device 30 at the timing t1 when the joint between the front end of the metal strip A and the tail end of the preceding metal strip preceding the metal strip A passes through the rolling mill a. ends.
 そして、図13において、金属帯Bの先端部とその金属帯Bに先行する金属帯Aの尾端部との接合部が圧延機aを通過するときのタイミングt2において、図6に示す上位計算機14及び適合判定装置30における処理が繰り返される。また、金属帯Cの先端部とその金属帯Cに先行する金属帯Bの尾端部との接合部が圧延機aを通過するときのタイミングt3においても、図6に示す上位計算機14及び適合判定装置30における処理が繰り返される。 Then, in FIG. 13, at timing t2 when the joint between the front end of the metal strip B and the tail end of the metal strip A preceding the metal strip B passes through the rolling mill a, the host computer shown in FIG. 14 and the processing in the match determining device 30 are repeated. Also, at timing t3 when the joint between the front end of the metal strip C and the tail end of the metal strip B preceding the metal strip C passes through the rolling mill a, the high-level computer 14 shown in FIG. The processing in the determination device 30 is repeated.
 このように、本実施形態に係る圧延ロールの適合判定方法によれば、各々が複数の圧延ロール1,2,3を有する複数のスタンドF1~F5を備える圧延機aにおける、任意のスタンドF1~F5の複数の圧延ロール1,2,3から任意に選定された圧延ロールである評価対象ロールの適合判定を行う。そして、当該適合判定方法は、評価対象ロールのあるスタンドF1~F5の圧延荷重の操業データを取得する圧延荷重データ取得ステップ(ステップS3)を含む。また、当該適合判定方法は、評価対象ロールの周速度の操業データを取得する周速度データ取得ステップ(ステップS4)を含む。また、当該適合判定方法は、圧延荷重データ取得ステップ(ステップS3)で取得した評価対象ロールのあるスタンドF1~F5の圧延荷重の操業データを用いて当該スタンドF1~F5の振動挙動を解析する振動解析ステップ(ステップS5)を含む。また、当該適合判定方法は、振動解析ステップ(ステップS5)による評価対象ロールのあるスタンドF1~F5の振動挙動の解析結果と周速度データ取得ステップ(ステップS4)で取得した評価対象ロールの周速度の操業データとから評価対象ロールの表面形状を金属帯Sの圧延中に推定する表面形状推定ステップ(ステップS6)を含む。また、当該適合判定方法は、表面形状推定ステップ(ステップS6)により推定した評価対象ロールの表面形状に基づいて評価対象ロールの適合判定を行う適合判定ステップ(ステップS7)を含む。 As described above, according to the method for determining suitability of rolling rolls according to the present embodiment, any stand F1 to A suitability determination is made for a roll to be evaluated, which is a rolling roll arbitrarily selected from a plurality of rolling rolls 1, 2, and 3 in F5. The suitability determination method includes a rolling load data acquisition step (step S3) for acquiring rolling load operation data of the stands F1 to F5 having rolls to be evaluated. The suitability determination method also includes a peripheral speed data acquisition step (step S4) of acquiring operation data of the peripheral speed of the roll to be evaluated. In addition, the conformity determination method uses the rolling load operation data of the stands F1 to F5 having the rolls to be evaluated acquired in the rolling load data acquisition step (step S3) to analyze the vibration behavior of the stands F1 to F5. An analysis step (step S5) is included. In addition, the conformity determination method includes the analysis result of the vibration behavior of the stands F1 to F5 having the evaluation target roll in the vibration analysis step (step S5) and the peripheral speed of the evaluation target roll acquired in the peripheral speed data acquisition step (step S4). and a surface shape estimating step (step S6) of estimating the surface shape of the evaluation target roll during rolling of the metal strip S from the operation data. The suitability determination method also includes a suitability determination step (step S7) for determining suitability of the evaluation target roll based on the surface shape of the evaluation target roll estimated in the surface shape estimation step (step S6).
 これにより、オンライン中に評価対象ロールの表面形状を推定することで、圧延中に生じる評価対象ロールの多角形摩耗の状態をオンラインで推定し、その推定した多角形摩耗の状態に基づいて圧延ロールの適合判定を行い、多角形摩耗による生じる軽度のチャタマークを防止することができる。 As a result, by estimating the surface shape of the roll to be evaluated online, the state of polygonal wear of the roll to be evaluated that occurs during rolling can be estimated online, and based on the estimated polygonal wear state of the roll roll can be determined to prevent mild chatter marks caused by polygonal wear.
 また、本実施形態に係る圧延ロールの適合判定方法によれば、評価対象ロールが評価対象ロールのあるスタンドF1~F5に組み込まれる前の評価対象ロールの初期表面形状を取得する初期表面形状取得ステップ(ステップS2)を含む。そして、表面形状推定ステップ(ステップS6)では、振動解析ステップ(ステップS5)による評価対象ロールのあるスタンドの振動挙動の解析結果及び周速度データ取得ステップ(ステップS4)で取得した評価対象ロールの周速度の操業データに加えて、初期表面形状取得ステップ(ステップS2)で取得した評価対象ロールの初期表面形状を用いて、金属帯Sの圧延中に評価対象ロールの表面形状を推定する。 Further, according to the method for determining suitability of a rolling roll according to the present embodiment, the initial surface shape acquisition step of acquiring the initial surface shape of the roll to be evaluated before the roll to be evaluated is incorporated in the stands F1 to F5 having the roll to be evaluated. (Step S2). Then, in the surface shape estimation step (step S6), the analysis result of the vibration behavior of the stand having the evaluation target roll in the vibration analysis step (step S5) and the circumference of the evaluation target roll acquired in the peripheral speed data acquisition step (step S4) In addition to the speed operation data, the initial surface profile of the evaluation target roll acquired in the initial surface profile acquisition step (step S2) is used to estimate the surface profile of the evaluation target roll during rolling of the metal strip S.
 これにより、評価対象ロールの表面形状をより的確に推定することができる。
 また、本実施形態に係る圧延ロールの適合判定方法によれば、評価対象ロールの表面形状は、評価対象ロールの表面に形成される凹凸のピッチpと対応付けられた振幅情報u(p)である。
 これにより、圧延中に生じる評価対象ロールの多角形摩耗の状態を的確に表す評価対象ロールの表面に形成される凹凸のピッチpと対応付けられた振幅情報u(p)を推定することになり、多角形摩耗による生じる軽度のチャタマークを適切に防止することができる。
This makes it possible to more accurately estimate the surface shape of the roll to be evaluated.
Further, according to the method for determining suitability of a rolling roll according to the present embodiment, the surface shape of the roll to be evaluated is determined by the amplitude information u(p) associated with the pitch p of the unevenness formed on the surface of the roll to be evaluated. be.
As a result, the amplitude information u(p) associated with the pitch p of the unevenness formed on the surface of the evaluation target roll, which accurately represents the state of polygonal wear of the evaluation target roll during rolling, is estimated. , it is possible to adequately prevent mild chatter marks caused by polygon wear.
 また、本実施形態に係る圧延ロールの適合判定方法によれば、振動解析ステップ(ステップS5)による評価対象ロールのあるスタンドF1~F5の振動挙動の解析は、評価対象ロールのあるスタンドF1~F5をマス・バネ系で近似した圧延機振動モデルを用いる。そして、圧延機振動モデルにおけるバネ定数k1~k7を評価対象ロールのあるスタンドF1~F5の圧延荷重の操業データに応じて更新する。そして、バネ定数k1~k7が更新された圧延機振動モデルに対して仮想的な外力を与えた際の周波数応答を算出する。
 これにより、各スタンドF1~F4をマス・バネモデルにより近似した圧延機振動モデルが圧延荷重に応じて振動特性が変化することに対応して、周波数応答を算出することができ、評価対象ロールのあるスタンドF1~F5の振動挙動のより適切な解析結果を得ることができる。
Further, according to the method for determining suitability of the rolling rolls according to the present embodiment, the analysis of the vibration behavior of the stands F1 to F5 having the rolls to be evaluated in the vibration analysis step (step S5) is performed using the stands F1 to F5 having the rolls to be evaluated. is approximated by a mass-spring system. Then, the spring constants k1 to k7 in the rolling mill vibration model are updated according to the rolling load operation data of the stands F1 to F5 having rolls to be evaluated. Then, the frequency response when a virtual external force is applied to the rolling mill vibration model with updated spring constants k1 to k7 is calculated.
As a result, it is possible to calculate the frequency response of the rolling mill vibration model that approximates each of the stands F1 to F4 by a mass-spring model, corresponding to changes in the vibration characteristics according to the rolling load. A more appropriate analysis result of the vibration behavior of the stands F1 to F5 can be obtained.
(金属帯の圧延方法)
 また、本実施形態に係る金属帯の圧延方法は、前述の圧延ロールの適合判定方法を用いて金属帯Sの圧延中に評価対象ロールの適合判定を行い、適合判定の結果が不適合である場合に、評価対象ロールを新たな圧延ロールに組み替えて金属帯Sの圧延を行うものである。
 つまり、前述の圧延ロールの適合判定方法によって評価対象ロールが不適合と判定された場合には、一旦圧延機aを停止する。そして、少なくとも不適合とされた評価対象ロールを該当スタンドF1~F5から抜き出して、ロール研削機で研削済の新たな圧延ロールに組み替えた後に、金属帯Sの圧延を再開するようにしてよい。これにより、金属帯Sの表面にチャタマークを発生するのを防止することができ、歩留まりのよい金属帯Sを製造することができる。
(Method of rolling metal strip)
Further, in the metal strip rolling method according to the present embodiment, the suitability determination of the roll to be evaluated is performed during rolling of the metal strip S using the above-described method for determining suitability of the rolling rolls, and when the result of the suitability determination is unsuitable Secondly, the rolls to be evaluated are replaced with new rolling rolls, and the metal strip S is rolled.
That is, when the roll to be evaluated is determined to be unsuitable by the above-described method for determining suitability of rolling rolls, the rolling mill a is temporarily stopped. Then, at least the non-conforming rolls to be evaluated are extracted from the corresponding stands F1 to F5, and after they are replaced with new rolling rolls that have been ground by the roll grinder, the rolling of the metal strip S may be restarted. As a result, generation of chatter marks on the surface of the metal band S can be prevented, and the metal band S can be manufactured with a high yield.
(冷延鋼板の製造方法)
 そして、前述の金属帯の圧延方法を用いて冷延鋼板を製造することが好ましい。つまり、前述の金属帯Sとして冷延鋼板を対象とすることが好適である。冷延鋼板は表面の外観が均一であることが求められ、軽度のチャタマークであっても表面欠陥と判定されるためである。
(Manufacturing method of cold-rolled steel sheet)
Then, it is preferable to manufacture a cold-rolled steel sheet using the above-described metal strip rolling method. In other words, it is preferable to use a cold-rolled steel sheet as the metal strip S described above. This is because a cold-rolled steel sheet is required to have a uniform surface appearance, and even a slight chatter mark is determined to be a surface defect.
 以上、本発明の実施形態について説明してきたが、本発明はこれに限定されず種々の変更、改良を行うことができる。
 例えば、本実施形態においては、圧延機aは、スタンドの数が5つで、スタンドF1~F4を4段圧延機、スタンドF5を6段圧延機としてあるが、スタンドの数は5つに限定されない。また、複数のスタンドのうちいずれのスタンドを4段圧延機あるいは6段圧延機とするかは適宜決定することができる。
Although the embodiment of the present invention has been described above, the present invention is not limited to this and various modifications and improvements can be made.
For example, in the present embodiment, the rolling mill a has five stands, the stands F1 to F4 are four-high rolling mills, and the stand F5 is a six-high rolling mill, but the number of stands is limited to five. not. Further, it is possible to appropriately determine which stand among the plurality of stands is to be a 4-high rolling mill or a 6-high rolling mill.
 また、適合判定装置30は、評価対象ロールが評価対象ロールのあるスタンドF1~F5に組み込まれる前の評価対象ロールの初期表面形状を取得する初期表面形状取得部35を備える必要は必ずしもない。そして、表面形状推定部36は、振動解析部34による評価対象ロールのあるスタンドF1~F5の振動挙動の解析結果及び周速度データ取得部33で取得した評価対象ロールの周速度の操業データに加えて、初期表面形状取得部35で取得した評価対象ロールの初期表面形状を用いて、評価対象ロールの表面形状を推定する必要は必ずしもない。 Also, the suitability determination device 30 does not necessarily need to include the initial surface shape acquisition unit 35 that acquires the initial surface shape of the evaluation target roll before the evaluation target roll is assembled in the stands F1 to F5 where the evaluation target roll is located. Then, the surface shape estimating unit 36 adds the analysis results of the vibration behavior of the stands F1 to F5 having the evaluation target roll by the vibration analysis unit 34 and the operation data of the peripheral speed of the evaluation target roll acquired by the peripheral speed data acquisition unit 33 Therefore, it is not always necessary to estimate the surface shape of the roll to be evaluated using the initial surface shape of the roll to be evaluated acquired by the initial surface shape acquiring unit 35 .
 また、表面形状推定部36が推定する評価対象ロールの表面形状は、記評価対象ロールの表面に形成される凹凸のピッチpと対応付けられた振幅情報u(p)である必要は必ずしもない。
 また、振動解析部34による評価対象ロールのあるスタンドF1~F5の振動挙動の解析は、評価対象ロールのあるスタンドF1~F5をマス・バネ系で近似した圧延機振動モデルを用い、圧延機振動モデルにおけるバネ定数k1~k7を評価対象ロールのあるスタンドF1~F5の圧延荷重の操業データに応じて更新し、バネ定数k1~k7が更新された圧延機振動モデルに対して仮想的な外力を与えた際の周波数応答を算出するものである必要は必ずしもない。
Further, the surface shape of the roll to be evaluated estimated by the surface shape estimating unit 36 does not necessarily have to be the amplitude information u(p) associated with the pitch p of the unevenness formed on the surface of the roll to be evaluated.
In addition, the vibration analysis of the vibration behavior of the stands F1 to F5 with the rolls to be evaluated by the vibration analysis unit 34 uses a rolling mill vibration model that approximates the stands F1 to F5 with the rolls to be evaluated by a mass-spring system. The spring constants k1 to k7 in the model are updated according to the operation data of the rolling load of the stands F1 to F5 having the rolls to be evaluated, and a virtual external force is applied to the rolling mill vibration model with the updated spring constants k1 to k7. It is not always necessary to calculate the frequency response when given.
 本発明の実施例として、前段3スタンドF1~F3が4段圧延機で、最終スタンドF4が6段圧延機である4スタンドF1~F4の圧延機(タンデム圧延機)aを対象とした例について説明する。
 本実施例では評価対象ロールとして、4段式圧延機である3番目のスタンドF3の上側のバックアップロール2を選定した。評価対象ロールの直径は1370mmである。なお、このスタンドF3の上側及び下側のワークロール1は直径480~550mmの範囲であり、複数のワークロール1を随時交換しながら、複数の金属帯Sの圧延を行った。評価対象ロールは鍛鋼性のロールであり、ロール研削機により中心線平均粗さを0.8μmRaに仕上げてからスタンドF3に装入した。なお、ロール研削後に評価対象ロールの周方向における凹凸を測定した結果、最大の振幅が0.1μmであったことから、評価対象ロールの表面の初期振幅αを0.1μmとした。
As an example of the present invention, an example targeting a rolling mill (tandem rolling mill) a with four stands F1 to F4 in which the front three stands F1 to F3 are a four-high rolling mill and the final stand F4 is a six-high rolling mill explain.
In this example, the backup roll 2 above the third stand F3, which is a four-high rolling mill, was selected as the roll to be evaluated. The diameter of the roll to be evaluated is 1370 mm. The work rolls 1 on the upper and lower sides of the stand F3 had a diameter ranging from 480 to 550 mm, and a plurality of metal strips S were rolled while exchanging the work rolls 1 at any time. The rolls to be evaluated were forged steel rolls, which were finished with a roll grinder to have a center line average roughness of 0.8 μmRa and then loaded into the stand F3. As a result of measuring the unevenness in the circumferential direction of the roll to be evaluated after the roll grinding, the maximum amplitude was 0.1 μm, so the initial amplitude α of the surface of the roll to be evaluated was set to 0.1 μm.
 圧延機aによって圧延される金属帯Sは、極低炭素鋼や高強度鋼板などを含む、シート系冷延鋼板である。圧延速度(最終スタンドF4の上側及び下側のワークロール1の周速度)は最低速度が200m/min、最高速度が1300m/minであり、被圧延材である金属帯Sのサイズ(板厚、板幅、母材長さ)や鋼種に応じて制御用計算機13により設定される最高速度で圧延を行った。ただし、圧延機aへの金属帯Sの供給状況などに応じて、オペレータの判断により金属帯の圧延中に圧延速度は適宜再設定が行われた。
 本実施例では、オペレータは、選定した評価対象ロールの情報(3番目のスタンドF3の上側のバックアップロール2を評価対象ロールとした情報)及びその評価対象ロールの初期表面形状(評価対象ロールの表面の初期振幅αが0.1μmである)を制御用計算機13に入力し、その情報が上位計算機14に入力される。
The metal strip S rolled by the rolling mill a is a cold-rolled sheet steel including ultra-low carbon steel, high-strength steel, and the like. The rolling speed (peripheral speed of the upper and lower work rolls 1 of the final stand F4) has a minimum speed of 200 m/min and a maximum speed of 1300 m/min. Rolling was performed at the maximum speed set by the control computer 13 according to the plate width, base material length) and steel type. However, depending on the state of supply of the metal strip S to the rolling mill a, etc., the rolling speed was appropriately reset during the rolling of the metal strip at the discretion of the operator.
In this embodiment, the operator provides information on the selected evaluation target roll (information that the backup roll 2 on the upper side of the third stand F3 is the evaluation target roll) and the initial surface shape of the evaluation target roll (surface of the evaluation target roll is 0.1 μm) is input to the control computer 13 , and the information is input to the host computer 14 .
 そして、上位計算機14は、ステップS1において、上位計算機14に入力された情報に基づき、評価対象ロールを選定し、選定した評価対象ロールの情報を評価対象ロールのあるスタンドF3に設けられた適合判定装置30の操業データ取得部31に送出した。また、上位計算機14は、評価対象ロールの初期表面形状の情報を評価対象ロールのあるスタンドF3に設けられた適合判定装置30の初期表面形状取得部35に送出した。
 次いで、評価対象ロールのあるスタンドF3に設けられた適合判定装置30の初期表面形状取得部35は、ステップS2において、評価対象ロールの初期表面形状の情報、即ち、評価対象ロールの表面の初期振幅α(=0.1μm)を上位計算機14から取得した。
Then, in step S1, the host computer 14 selects a roll to be evaluated based on the information input to the host computer 14, and transmits the information of the selected roll to be evaluated to the conformity judgment provided at the stand F3 where the roll to be evaluated is located. It was sent to the operation data acquisition unit 31 of the device 30 . In addition, the host computer 14 sent the information on the initial surface shape of the roll to be evaluated to the initial surface shape acquiring section 35 of the suitability determination device 30 provided at the stand F3 where the roll to be evaluated is located.
Next, in step S2, the initial surface shape acquisition unit 35 of the suitability determination device 30 provided on the stand F3 where the roll to be evaluated is located acquires information on the initial surface shape of the roll to be evaluated, that is, the initial amplitude of the surface of the roll to be evaluated α (=0.1 μm) was acquired from the host computer 14 .
 次いで、評価対象ロールのあるスタンドF3に設けられた適合判定装置30の圧延荷重データ取得部32は、ステップS3において、上位計算機14からの評価対象ロールの選定情報に基づき、評価対象ロールのあるスタンドF3の圧延荷重の操業データを制御用コントローラ12から取得した。
 ここで、当該スタンドF3の圧延荷重の操業データは、当該スタンドF3を対象として、先行金属帯と後行金属帯との接合部を有する後行金属帯を連続圧延する際に、後行金属帯の先端部が圧延機aを通過する前に実行される制御用計算機13による設定計算の結果から、圧延荷重の設定値は5000kN~25000kNであった。
Next, in step S3, the rolling load data acquisition unit 32 of the suitability determination device 30 provided in the stand F3 having the roll to be evaluated, based on the selection information of the roll to be evaluated from the host computer 14, the stand having the roll to be evaluated The operation data of the rolling load of F3 was acquired from the controller 12 for control.
Here, the operation data of the rolling load of the stand F3 is obtained by continuously rolling the trailing metal strip having the joint portion of the leading metal strip and the trailing metal strip with respect to the stand F3. From the result of the setting calculation by the control computer 13 executed before the leading end of the rolling mill passes the rolling mill a, the setting value of the rolling load was 5000 kN to 25000 kN.
 次いで、評価対象ロールのあるスタンドF3に設けられた適合判定装置30の周速度データ取得部33は、ステップS4において、上位計算機14からの評価対象ロールの選定情報に基づき、評価対象ロールの周速度の操業データを制御用コントローラ12から取得した。
 ここで、周速度データ取得部33が取得する評価対象ロールの周速度の操業データは、ロール速度制御機11の回転速度検出器で検出される上側及び下側のワークロール1の回転速度の実測値から、当該ワークロール1と評価対象ロールとのロール径の比を用いて換算することにより求めた。
Next, in step S4, the circumferential speed data acquisition unit 33 of the suitability determination device 30 provided in the stand F3 where the roll to be evaluated is located, based on the selection information of the roll to be evaluated from the host computer 14, the circumferential speed of the roll to be evaluated was acquired from the controller 12 for control.
Here, the operation data of the peripheral speed of the evaluation target roll acquired by the peripheral speed data acquisition unit 33 is the actual measurement of the rotational speed of the upper and lower work rolls 1 detected by the rotational speed detector of the roll speed controller 11. From the value, it was obtained by converting using the ratio of the roll diameters of the work roll 1 and the roll to be evaluated.
 次いで、評価対象ロールのあるスタンドF3に設けられた適合判定装置30の振動解析部34は、ステップS5において、ステップS3で取得した評価対象ロールのあるスタンドF3の圧延荷重の操業データを用いて当該スタンドF3の振動挙動を解析した。
 この振動解析部34による評価対象ロールのあるスタンドF3の振動挙動の解析では、評価対象ロールのあるスタンドF3をマス・バネ系で近似した圧延機振動モデルを用いた。そして、この圧延機振動モデルにおけるバネ定数k1~k5を、ステップS3において取得した評価対象ロールのあるスタンドF3の圧延荷重の操業データに応じて更新した。そして、バネ定数k1~k5を更新した圧延機振動モデルに対して仮想的な外力を与えた際の周波数応答を算出した。
Next, in step S5, the vibration analysis unit 34 of the conformity determination device 30 provided in the stand F3 having the roll to be evaluated uses the rolling load operation data of the stand F3 having the roll to be evaluated acquired in step S3. The vibration behavior of stand F3 was analyzed.
In the analysis of the vibration behavior of the stand F3 having the roll to be evaluated by the vibration analysis unit 34, a rolling mill vibration model that approximates the stand F3 having the roll to be evaluated with a mass-spring system is used. Then, the spring constants k1 to k5 in this rolling mill vibration model were updated according to the rolling load operation data of the stand F3 having the evaluation target roll acquired in step S3. Then, a frequency response was calculated when a virtual external force was applied to the rolling mill vibration model with updated spring constants k1 to k5.
 ここで、振動解析部34は、評価対象ロールのある3番目のスタンドF3の上側のバックアップロール2を表す質点m1とバネ41,42により結合した他の質点との結合を仮想的に開放し、スタンドF3のマス・バネモデルを2分割して、分割されたマス・バネモデルの周波数応答をそれぞれに対して算出した。上側のバックアップロール2を表す質点m1とバネ41により結合した他の質点については、質点m1の上側には圧延ロールがないため質点が存在していない。また、上側のバックアップロール2を表す質点m1とバネ42により結合した他の質点については、質点m1の下側は上側のワークロール1が存在するため上側のワークロール1を表す質点m2である。 Here, the vibration analysis unit 34 virtually releases the connection between the mass point m1 representing the backup roll 2 on the upper side of the third stand F3 having the roll to be evaluated and the other mass points coupled by the springs 41 and 42, The mass-spring model of stand F3 was divided into two, and the frequency response of the divided mass-spring model was calculated for each. Other mass points connected by the spring 41 to the mass point m1 representing the upper backup roll 2 do not exist because there is no rolling roll above the mass point m1. As for the mass point m1 representing the upper backup roll 2 and the other mass point connected by the spring 42, the mass point m2 represents the upper work roll 1 because the upper work roll 1 exists below the mass point m1.
 上側のバックアップロール2に対してさらに上方から接触する圧延ロールが存在しないため、周波数応答G1(iω)、G2(iω)、G3(iω)、G4(iω)を表す伝達関数G(s)、G(s)、G(s)、G(s)は、それぞれ以下の(15)式~(18)式で構成された。
 G(s)=0 ・・・(15)
 G(s)=0 ・・・(16)
Transfer function G 1 (s) representing frequency responses G1(iω), G2(iω), G3(iω), G4(iω) since there is no rolling roll contacting the upper backup roll 2 from above , G 2 (s), G 3 (s), and G 4 (s) are respectively composed of the following equations (15) to (18).
G1 (s)=0 (15)
G2 (s)=0 (16)
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 次いで、評価対象ロールのあるスタンドF3に設けられた適合判定装置30の表面形状推定部36は、ステップS6において、金属帯Sの圧延中に評価対象ロールの表面形状を推定した。評価対象ロールの表面形状の推定に際し、ステップS5による評価対象ロールのあるスタンドF3の振動挙動の解析結果(周波数応答)及びステップS4で取得した評価対象ロールの周速度の操業データを用いた。また、評価対象ロールの表面形状の推定に際し、ステップS2で取得した評価対象ロールの初期表面形状をも用いた。 Next, the surface shape estimator 36 of the suitability determination device 30 provided in the stand F3 where the roll to be evaluated is located estimates the surface shape of the roll to be evaluated during rolling of the metal strip S in step S6. When estimating the surface shape of the evaluation target roll, the analysis result (frequency response) of the vibration behavior of the stand F3 having the evaluation target roll in step S5 and the operation data of the peripheral speed of the evaluation target roll acquired in step S4 were used. In estimating the surface shape of the roll to be evaluated, the initial surface shape of the roll to be evaluated obtained in step S2 was also used.
 つまり、表面形状推定部36は、ピッチ性損傷度Δλ1(p)を前述の(9)式により算出し、ピッチ性損傷度Δλ2(p)を前述の(11)式により算出した。また、評価対象ロールのピッチ性損傷度Δλ(p)を、λ(p)=Δλ1(p)+Δλ2(p)により算出し、評価対象ロールの累積ピッチ性損傷度λ(p)を(12)により算出した。さらに、ピッチpに対応する振幅情報u(p)を、初期振幅αを用いて(13)式により算出した。なお、ピッチ性損傷度Δλ1(p)、Δλ2(p)を算出する際の摩耗進展係数νは1.0×10-14m/Nとした。 That is, the surface shape estimating unit 36 calculated the degree of pitch damage Δλ1(p) using the above equation (9), and calculated the degree of pitch damage Δλ2(p) using the above equation (11). Further, the pitch damage degree Δλ(p) of the roll to be evaluated is calculated by λ(p)=Δλ1(p)+Δλ2(p), and the cumulative pitch damage degree λ(p) of the roll to be evaluated is calculated as (12) Calculated by Further, the amplitude information u(p) corresponding to the pitch p was calculated by the equation (13) using the initial amplitude α. The wear progress coefficient ν when calculating the pitch damage degrees Δλ1(p) and Δλ2(p) was set to 1.0×10 −14 m/N.
 本実施例では、評価対象ロールの表面形状として、過去に金属帯Sに発生したチャタマークのピッチが25mmであったことから、ピッチpが25mmにおける振幅に着目した。そして、適合判定部37は、表面形状推定部36により随時算出されるピッチpに対応する振幅情報u(p)の値を参照し、評価対象ロールのピッチ25mmにおける振幅が3.0μm未満であれば適合(合格)、3.0μm以上であれば不適合(不合格)と判定するようにした。
 適合判定部37による判定結果は表示装置38に表示した。
In this example, as the surface shape of the roll to be evaluated, attention was focused on the amplitude at a pitch p of 25 mm, because the pitch of the chatter marks generated on the metal band S in the past was 25 mm. Then, the conformity determining unit 37 refers to the value of the amplitude information u(p) corresponding to the pitch p calculated by the surface shape estimating unit 36 at any time, and if the amplitude at the pitch 25 mm of the evaluation target roll is less than 3.0 μm, If it is 3.0 μm or more, it is determined to be unsuitable (failed).
The judgment result by the conformity judgment section 37 is displayed on the display device 38 .
 本実施例では、金属帯Sの圧延総重量が50,000トンになった段階で、評価対象ロールのピッチ25mmにおける振幅が3.0μmになったと推定されたため、適合判定部37は不適合と判定し、その判定結果が表示装置38に表示された。このため、オペレータは、表示装置38に表示された判定結果に基づいて、一旦圧延を中止した。その後、オペレータが3番目のスタンドF3の上側のバックアップロール2を当該スタンドF3から抜き出して表面形状を測定したところ、ピッチ25mmの振幅が3.2μmとなっており、評価対象ロールの不適合を精度よく判定できたことが確認できた。 In this example, when the total rolling weight of the metal strip S reached 50,000 tons, it was estimated that the amplitude at the pitch of the evaluation target roll of 25 mm was 3.0 μm, so the conformity determination unit 37 determined that it was not conforming. Then, the judgment result was displayed on the display device 38 . Therefore, the operator temporarily stopped rolling based on the determination result displayed on the display device 38 . After that, when the operator pulled out the upper backup roll 2 of the third stand F3 from the stand F3 and measured the surface shape, the amplitude at the pitch of 25 mm was 3.2 μm, and the nonconformity of the roll to be evaluated was accurately determined. It was confirmed that the decision was made.
 一方、スタンドF3の上側及び下側のバックアップロール2および上側及び下側のワークロール1を新たに研削したロールに組み替えてから、上記と同様の方法により、金属帯Sの圧延を行った。その際、スタンドF3の上側のバックアップロール2だけでなく、下側のバックアップロール2も評価対象ロールに加えて、適合判定部37ではピッチ25mmの振幅として2.5μmを上限値とする基準を設定した。 On the other hand, after replacing the upper and lower backup rolls 2 and the upper and lower work rolls 1 of the stand F3 with newly ground rolls, the metal strip S was rolled in the same manner as above. At that time, not only the backup roll 2 on the upper side of the stand F3 but also the backup roll 2 on the lower side of the stand F3 are included in the rolls to be evaluated. bottom.
 そして、上記と同様の金属帯Sを被圧延材として連続圧延を実施し、評価対象ロールとした3番目のスタンドF3の上側のバックアップロール2または下側のバックアップロール2のいずれかの表面形状としてピッチ25mmに対応する振幅が2.5μmを超えた場合にスタンドF3の上側のバックアップロール2および下側のバックアップロール2を研削済の新たな圧延ロールに交換して金属帯Sの圧延を継続した。その結果、予め設定された圧延総重量となった時点でバックアップロールを交換するという従来の操業方法に比べて、金属帯Sのチャタマーク発生率が約70%低減された。 Then, the same metal strip S as described above is continuously rolled as a material to be rolled, and the surface shape of either the upper backup roll 2 or the lower backup roll 2 of the third stand F3, which is the roll to be evaluated. When the amplitude corresponding to the pitch of 25 mm exceeded 2.5 μm, the upper backup roll 2 and the lower backup roll 2 of the stand F3 were replaced with new ground rolls to continue rolling the metal strip S. . As a result, the generation rate of chatter marks on the metal strip S was reduced by about 70% compared to the conventional operating method in which backup rolls are replaced when the total rolled weight reaches a preset value.
 1 ワークロール(圧延ロール)
 2 バックアップロール(圧延ロール)
 3 中間ロール(圧延ロール)
 4 ハウジング
 5 振動計
 6 圧延荷重検出器
 7 板厚計
 8 テンションメータロール
 9 ワークロール駆動装置
 10 ロールギャップ制御機
 11 ロール速度制御機
 12 制御用コントローラ
 13 制御用計算機
 14 上位計算機
 21 チャック
 22 レスト
 23 ロール回転装置
 24 芯押し台
 25 モータ
 26 変位計
 27 計測器ロガー
 30 圧延ロールの適合判定装置
 31 操業データ取得部
 32 圧延荷重データ取得部
 33 周速度データ取得部
 34 振動解析部
 35 初期表面形状取得部
 36 表面形状推定部
 37 適合判定部
 38 表示装置
 41~45 バネ
 46 減衰要素
 51~57 バネ
 58 減衰要素
 a 圧延機
 F1~F5 スタンド
 S 金属帯
1 work roll (rolling roll)
2 Backup roll (rolling roll)
3 Intermediate roll (rolling roll)
4 Housing 5 Vibration Meter 6 Rolling Load Detector 7 Plate Thickness Gauge 8 Tension Meter Roll 9 Work Roll Driving Device 10 Roll Gap Controller 11 Roll Speed Controller 12 Controller for Control 13 Computer for Control 14 Host Computer 21 Chuck 22 Rest 23 Roll Rotating device 24 Tailstock 25 Motor 26 Displacement gauge 27 Measuring instrument logger 30 Suitability determination device for rolling rolls 31 Operation data acquisition unit 32 Rolling load data acquisition unit 33 Peripheral speed data acquisition unit 34 Vibration analysis unit 35 Initial surface shape acquisition unit 36 Surface shape estimation unit 37 Conformity determination unit 38 Display device 41 to 45 Spring 46 Damping element 51 to 57 Spring 58 Damping element a Rolling mill F1 to F5 Stand S Metal strip

Claims (6)

  1.  各々が複数の圧延ロールを有する1又は複数のスタンドを備える圧延機における、任意の前記スタンドの前記複数の圧延ロールから任意に選定された圧延ロールである評価対象ロールの適合判定を行う圧延ロールの適合判定方法であって、
     前記評価対象ロールのあるスタンドの圧延荷重の操業データを取得する圧延荷重データ取得ステップと、
     前記評価対象ロールの周速度の操業データを取得する周速度データ取得ステップと、
     前記圧延荷重データ取得ステップで取得した前記評価対象ロールのあるスタンドの圧延荷重の操業データを用いて当該スタンドの振動挙動を解析する振動解析ステップと、
     該振動解析ステップによる前記評価対象ロールのあるスタンドの振動挙動の解析結果と前記周速度データ取得ステップで取得した前記評価対象ロールの周速度の操業データとから前記評価対象ロールの表面形状を金属帯の圧延中に推定する表面形状推定ステップと、
     該表面形状推定ステップにより推定した前記評価対象ロールの表面形状に基づいて前記評価対象ロールの適合判定を行う適合判定ステップと、
     を含むことを特徴とする圧延ロールの適合判定方法。
    In a rolling mill comprising one or more stands each having a plurality of rolling rolls, a rolling roll selected arbitrarily from the plurality of rolling rolls of an arbitrary stand to determine the suitability of a roll to be evaluated. A conformity determination method,
    A rolling load data acquisition step of acquiring operation data of the rolling load of the stand having the roll to be evaluated;
    A peripheral speed data acquisition step of acquiring operation data of the peripheral speed of the roll to be evaluated;
    A vibration analysis step of analyzing the vibration behavior of the stand using the rolling load operation data of the stand having the evaluation target roll acquired in the rolling load data acquiring step;
    The surface shape of the roll to be evaluated is obtained from the analysis result of the vibration behavior of the stand having the roll to be evaluated by the vibration analysis step and the operation data of the peripheral speed of the roll to be evaluated acquired in the peripheral speed data acquisition step. A surface shape estimation step for estimating during rolling of
    a suitability determination step of determining suitability of the evaluation target roll based on the surface shape of the evaluation target roll estimated by the surface shape estimation step;
    A method for determining suitability of a rolling roll, comprising:
  2.  前記評価対象ロールが前記評価対象ロールのあるスタンドに組み込まれる前の前記評価対象ロールの初期表面形状を取得する初期表面形状取得ステップを含み、
     前記表面形状推定ステップでは、前記振動解析ステップによる前記評価対象ロールのあるスタンドの振動挙動の解析結果及び前記周速度データ取得ステップで取得した前記評価対象ロールの周速度の操業データに加えて、前記初期表面形状取得ステップで取得した前記評価対象ロールの初期表面形状を用いて、前記評価対象ロールの表面形状を金属帯の圧延中に推定することを特徴とする請求項1に記載の圧延ロールの適合判定方法。
    An initial surface shape acquisition step of acquiring an initial surface shape of the evaluation target roll before the evaluation target roll is incorporated in a stand with the evaluation target roll,
    In the surface shape estimation step, in addition to the analysis result of the vibration behavior of the stand having the evaluation target roll in the vibration analysis step and the operation data of the peripheral speed of the evaluation target roll acquired in the peripheral speed data acquisition step, The rolling roll according to claim 1, wherein the surface shape of the evaluation target roll is estimated during rolling of the metal strip using the initial surface shape of the evaluation target roll acquired in the initial surface shape acquisition step. Conformance judgment method.
  3.  前記評価対象ロールの表面形状は、前記評価対象ロールの表面に形成される凹凸のピッチと対応付けられた振幅情報であることを特徴とする請求項1又は2に記載の圧延ロールの適合判定方法。 3. The method of determining suitability of a rolling roll according to claim 1, wherein the surface shape of the roll to be evaluated is amplitude information associated with a pitch of irregularities formed on the surface of the roll to be evaluated. .
  4.  前記振動解析ステップによる前記評価対象ロールのあるスタンドの振動挙動の解析は、前記評価対象ロールのあるスタンドをマス・バネ系で近似した圧延機振動モデルを用い、該圧延機振動モデルにおけるバネ定数を前記評価対象ロールのあるスタンドの圧延荷重の操業データに応じて更新し、バネ定数が更新された前記圧延機振動モデルに対して仮想的な外力を与えた際の周波数応答を算出するものであることを特徴とする請求項1乃至3のうちいずれか一項に記載の圧延ロールの適合判定方法。 Analysis of the vibration behavior of the stand with the roll to be evaluated by the vibration analysis step uses a rolling mill vibration model that approximates the stand with the roll to be evaluated by a mass-spring system, and the spring constant in the rolling mill vibration model is The frequency response is calculated when a virtual external force is applied to the rolling mill vibration model in which the spring constant is updated according to the operation data of the rolling load of the stand having the roll to be evaluated. 4. The method for judging conformity of rolling rolls according to claim 1, characterized in that:
  5.  請求項1乃至4のうちいずれか一項に記載の圧延ロールの適合判定方法を用いて金属帯の圧延中に前記評価対象ロールの適合判定を行い、適合判定の結果が不適合である場合に、前記評価対象ロールを新たな圧延ロールに組み替えて前記金属帯の圧延を行うことを特徴とする金属帯の圧延方法。 When the suitability determination of the evaluation target roll is performed during rolling of the metal strip using the method for determining suitability of the rolling rolls according to any one of claims 1 to 4, and the result of the suitability determination is unsatisfactory, A method of rolling a metal strip, wherein the roll to be evaluated is replaced with a new roll to roll the metal strip.
  6.  請求項5に記載の金属帯の圧延方法を用いて冷延鋼板を製造することを特徴とする冷延鋼板の製造方法。 A method for manufacturing a cold-rolled steel sheet, which comprises manufacturing a cold-rolled steel sheet using the metal strip rolling method according to claim 5.
PCT/JP2022/034960 2021-11-02 2022-09-20 Method for determining conformity of rolling mill roller, method for rolling metal strip, and method for producing cold-rolled steel sheet WO2023079850A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022574353A JP7243944B1 (en) 2021-11-02 2022-09-20 Method for judging suitability of rolling rolls, method for rolling metal strip, and method for manufacturing cold-rolled steel sheet
MX2024005265A MX2024005265A (en) 2021-11-02 2022-09-20 Method for determining conformity of rolling mill roller, method for rolling metal strip, and method for producing cold-rolled steel sheet.
KR1020247013250A KR20240073071A (en) 2021-11-02 2022-09-20 Method for determining suitability of rolling rolls, rolling method for metal strips, and manufacturing method for cold-rolled steel sheets
CN202280071725.2A CN118176069A (en) 2021-11-02 2022-09-20 Method for judging suitability of roll, method for rolling metal strip, and method for manufacturing cold-rolled steel sheet
EP22889674.2A EP4406671A1 (en) 2021-11-02 2022-09-20 Method for determining conformity of rolling mill roller, method for rolling metal strip, and method for producing cold-rolled steel sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021179344 2021-11-02
JP2021-179344 2021-11-02

Publications (1)

Publication Number Publication Date
WO2023079850A1 true WO2023079850A1 (en) 2023-05-11

Family

ID=86241287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034960 WO2023079850A1 (en) 2021-11-02 2022-09-20 Method for determining conformity of rolling mill roller, method for rolling metal strip, and method for producing cold-rolled steel sheet

Country Status (1)

Country Link
WO (1) WO2023079850A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50159453A (en) * 1974-06-14 1975-12-24
JPH05115906A (en) * 1991-10-28 1993-05-14 Kawasaki Steel Corp Method for detecting surface roughening of work roll by difference load
JPH08132110A (en) * 1994-11-11 1996-05-28 Sumitomo Metal Ind Ltd Device for detecting chattering in rolling mill
JPH105837A (en) * 1996-06-14 1998-01-13 Nippon Steel Corp Method and equipment for cold tandem rolling

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50159453A (en) * 1974-06-14 1975-12-24
JPH05115906A (en) * 1991-10-28 1993-05-14 Kawasaki Steel Corp Method for detecting surface roughening of work roll by difference load
JPH08132110A (en) * 1994-11-11 1996-05-28 Sumitomo Metal Ind Ltd Device for detecting chattering in rolling mill
JPH105837A (en) * 1996-06-14 1998-01-13 Nippon Steel Corp Method and equipment for cold tandem rolling

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AN ANALYSIS OF ''CHATTERING'' IN COLD ROLLING FOR ULTRA THIN GAUGE STEEL STRIP: "An Analysis of ''Chattering'' in Cold Rolling for Ultra Thin Gauge Steel Strip", KAWASAKI STEEL GIHO, vol. 8, no. 1, 1976, pages 60 - 79

Similar Documents

Publication Publication Date Title
Jayakumar et al. A review of the application of acoustic emission techniques for monitoring forming and grinding processes
Yun et al. Review of chatter studies in cold rolling
DE102020210967A1 (en) Method and system for optimizing a production process in a production plant in the metal-producing industry, the non-ferrous industry or the steel industry for the production of semi-finished or finished products, in particular for monitoring the product quality of rolled or forged metal products
JP7131714B2 (en) Rolling mill vibration prediction method, rolling mill abnormal vibration determination method, metal strip rolling method, and rolling mill vibration prediction model generation method
JP7243944B1 (en) Method for judging suitability of rolling rolls, method for rolling metal strip, and method for manufacturing cold-rolled steel sheet
WO2023079850A1 (en) Method for determining conformity of rolling mill roller, method for rolling metal strip, and method for producing cold-rolled steel sheet
JP3902585B2 (en) Sheet shape control method in cold rolling
Ubici et al. Identification and countermeasures to resolve hot strip mill chatter
CN106960066B (en) Surface roughness forecasting method for finished product rack working roll of hot continuous rolling unit
JP4990747B2 (en) Temper rolling method
JP2755782B2 (en) Rolling line diagnostic system
RU2338609C1 (en) Method of diagnosing of sympathitic vibration and control of multistand cold rolling mill and device for implementation of diagnosing
JP6841264B2 (en) Abnormal vibration detection method in cold rolling
WO2022209295A1 (en) Abnormal vibration detection method for rolling mill, abnormality detection device, rolling method, and method for manufacturing metal strip
US20240033799A1 (en) Method for detecting abnormal vibration of rolling mill, apparatus for detecting abnormality of rolling mill, rolling method, and method for producing metal strip
JP7092260B2 (en) Meander control method for the material to be rolled
JP7332077B1 (en) Abnormal Vibration Prediction Method for Roll Grinding Machine, Roll Grinding Method, Metal Strip Rolling Method, Abnormal Vibration Prediction Device for Roll Grinding Machine, and Roll Grinding Equipment
JP6057774B2 (en) Identification method of mill elongation formula in rolling mill
CN114570774B (en) Rolling force calculation method and device of rolling mill
WO2023228483A1 (en) Roll grinder abnormal vibration predicting method, rolling roll grinding method, metal strip rolling method, roll grinder abnormal vibration predicting device, and roll grinding equipment
Valíček et al. Method of maintaining the required values of surface roughness and prediction of technological conditions for cold sheet rolling
Dragomir et al. Control process for a cold rolling mill by vibrations and torque
Mücke et al. 27 Methods of Describing, Assessing, and Influencing Shape Deviations in Strips
CN118492073A (en) Continuous rolling production line rolling mill roller breakage detection method and system
Becker et al. Institute for Production Engineering and Forming Machines, Technische Universität Darmstadt, Otto-Berndt-Straße 2, 64287 Darmstadt, Germany marco. becker@ ptu. tu-darmstadt. de

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022574353

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22889674

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247013250

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280071725.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: MX/A/2024/005265

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2401002835

Country of ref document: TH

ENP Entry into the national phase

Ref document number: 2022889674

Country of ref document: EP

Effective date: 20240426

NENP Non-entry into the national phase

Ref country code: DE