WO2023075571A1 - Use of polysaccharides derived from strains of enterococcus genus - Google Patents
Use of polysaccharides derived from strains of enterococcus genus Download PDFInfo
- Publication number
- WO2023075571A1 WO2023075571A1 PCT/KR2022/016933 KR2022016933W WO2023075571A1 WO 2023075571 A1 WO2023075571 A1 WO 2023075571A1 KR 2022016933 W KR2022016933 W KR 2022016933W WO 2023075571 A1 WO2023075571 A1 WO 2023075571A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bone
- enterococcus
- polysaccharide
- composition
- strain
- Prior art date
Links
- 150000004676 glycans Chemical class 0.000 title claims abstract description 59
- 229920001282 polysaccharide Polymers 0.000 title claims abstract description 59
- 239000005017 polysaccharide Substances 0.000 title claims abstract description 59
- 241000194033 Enterococcus Species 0.000 title claims abstract description 47
- 230000011164 ossification Effects 0.000 claims abstract description 43
- 210000000988 bone and bone Anatomy 0.000 claims abstract description 31
- 208000020084 Bone disease Diseases 0.000 claims abstract description 21
- 210000000130 stem cell Anatomy 0.000 claims abstract description 19
- 230000010478 bone regeneration Effects 0.000 claims abstract description 9
- 230000004069 differentiation Effects 0.000 claims abstract description 5
- 230000002265 prevention Effects 0.000 claims abstract description 5
- 239000000203 mixture Substances 0.000 claims description 27
- 230000001737 promoting effect Effects 0.000 claims description 24
- 239000006228 supernatant Substances 0.000 claims description 22
- 241000194031 Enterococcus faecium Species 0.000 claims description 21
- 210000005258 dental pulp stem cell Anatomy 0.000 claims description 16
- 239000001963 growth medium Substances 0.000 claims description 16
- 239000008194 pharmaceutical composition Substances 0.000 claims description 16
- 239000002244 precipitate Substances 0.000 claims description 16
- 239000000463 material Substances 0.000 claims description 13
- 241001106597 Enterococcus lactis Species 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 12
- 238000012258 culturing Methods 0.000 claims description 11
- 238000000502 dialysis Methods 0.000 claims description 8
- YNJBWRMUSHSURL-UHFFFAOYSA-N trichloroacetic acid Chemical compound OC(=O)C(Cl)(Cl)Cl YNJBWRMUSHSURL-UHFFFAOYSA-N 0.000 claims description 8
- 238000002156 mixing Methods 0.000 claims description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- 239000000316 bone substitute Substances 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 206010068975 Bone atrophy Diseases 0.000 claims description 3
- 208000037147 Hypercalcaemia Diseases 0.000 claims description 3
- 208000029725 Metabolic bone disease Diseases 0.000 claims description 3
- 208000010191 Osteitis Deformans Diseases 0.000 claims description 3
- 208000003076 Osteolysis Diseases 0.000 claims description 3
- 206010049088 Osteopenia Diseases 0.000 claims description 3
- 208000001132 Osteoporosis Diseases 0.000 claims description 3
- 208000027868 Paget disease Diseases 0.000 claims description 3
- 201000010103 fibrous dysplasia Diseases 0.000 claims description 3
- 238000011049 filling Methods 0.000 claims description 3
- 230000000148 hypercalcaemia Effects 0.000 claims description 3
- 208000030915 hypercalcemia disease Diseases 0.000 claims description 3
- 208000029791 lytic metastatic bone lesion Diseases 0.000 claims description 3
- 208000027202 mammary Paget disease Diseases 0.000 claims description 3
- 201000008482 osteoarthritis Diseases 0.000 claims description 3
- 208000005368 osteomalacia Diseases 0.000 claims description 3
- 208000028169 periodontal disease Diseases 0.000 claims description 3
- 201000001245 periodontitis Diseases 0.000 claims description 3
- 206010039073 rheumatoid arthritis Diseases 0.000 claims description 3
- 229920002444 Exopolysaccharide Polymers 0.000 description 74
- 230000009818 osteogenic differentiation Effects 0.000 description 39
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 36
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 36
- 239000000284 extract Substances 0.000 description 33
- 230000014509 gene expression Effects 0.000 description 27
- 108090000623 proteins and genes Proteins 0.000 description 23
- 238000010186 staining Methods 0.000 description 20
- 210000004027 cell Anatomy 0.000 description 19
- 108010024682 Core Binding Factor Alpha 1 Subunit Proteins 0.000 description 18
- 102100025368 Runt-related transcription factor 2 Human genes 0.000 description 17
- 102000002574 p38 Mitogen-Activated Protein Kinases Human genes 0.000 description 17
- 108010068338 p38 Mitogen-Activated Protein Kinases Proteins 0.000 description 17
- 102000004169 proteins and genes Human genes 0.000 description 16
- 230000000694 effects Effects 0.000 description 12
- 239000002609 medium Substances 0.000 description 11
- 210000000963 osteoblast Anatomy 0.000 description 11
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 10
- 102000006602 glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 10
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 10
- 230000037361 pathway Effects 0.000 description 10
- 239000002953 phosphate buffered saline Substances 0.000 description 10
- 108060000903 Beta-catenin Proteins 0.000 description 9
- 102000015735 Beta-catenin Human genes 0.000 description 9
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 9
- 102000008186 Collagen Human genes 0.000 description 9
- 108010035532 Collagen Proteins 0.000 description 9
- HFVAFDPGUJEFBQ-UHFFFAOYSA-M alizarin red S Chemical compound [Na+].O=C1C2=CC=CC=C2C(=O)C2=C1C=C(S([O-])(=O)=O)C(O)=C2O HFVAFDPGUJEFBQ-UHFFFAOYSA-M 0.000 description 9
- 239000011575 calcium Substances 0.000 description 9
- 229910052791 calcium Inorganic materials 0.000 description 9
- 229920001436 collagen Polymers 0.000 description 9
- 230000008021 deposition Effects 0.000 description 9
- 239000002243 precursor Substances 0.000 description 9
- 238000003753 real-time PCR Methods 0.000 description 9
- 102100024505 Bone morphogenetic protein 4 Human genes 0.000 description 8
- 101000762379 Homo sapiens Bone morphogenetic protein 4 Proteins 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 8
- 230000005754 cellular signaling Effects 0.000 description 7
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 7
- 239000003550 marker Substances 0.000 description 7
- 238000001262 western blot Methods 0.000 description 7
- 230000001086 cytosolic effect Effects 0.000 description 6
- 239000003814 drug Substances 0.000 description 6
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 210000001519 tissue Anatomy 0.000 description 6
- 239000001974 tryptic soy broth Substances 0.000 description 6
- 108010050327 trypticase-soy broth Proteins 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 102000007665 Extracellular Signal-Regulated MAP Kinases Human genes 0.000 description 5
- 108010007457 Extracellular Signal-Regulated MAP Kinases Proteins 0.000 description 5
- 108010055717 JNK Mitogen-Activated Protein Kinases Proteins 0.000 description 5
- 201000010099 disease Diseases 0.000 description 5
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 5
- 239000012091 fetal bovine serum Substances 0.000 description 5
- 210000002901 mesenchymal stem cell Anatomy 0.000 description 5
- 238000001000 micrograph Methods 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 241000699666 Mus <mouse, genus> Species 0.000 description 4
- -1 aromatics Substances 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 238000003384 imaging method Methods 0.000 description 4
- 230000005764 inhibitory process Effects 0.000 description 4
- 239000007758 minimum essential medium Substances 0.000 description 4
- 238000010606 normalization Methods 0.000 description 4
- 210000000056 organ Anatomy 0.000 description 4
- 239000000546 pharmaceutical excipient Substances 0.000 description 4
- 238000004445 quantitative analysis Methods 0.000 description 4
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 229930040373 Paraformaldehyde Natural products 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 210000002421 cell wall Anatomy 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 210000003074 dental pulp Anatomy 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 238000007490 hematoxylin and eosin (H&E) staining Methods 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 3
- 235000014655 lactic acid Nutrition 0.000 description 3
- 239000004310 lactic acid Substances 0.000 description 3
- 210000000933 neural crest Anatomy 0.000 description 3
- 229920002866 paraformaldehyde Polymers 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 238000003757 reverse transcription PCR Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000004083 survival effect Effects 0.000 description 3
- 229940124597 therapeutic agent Drugs 0.000 description 3
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 2
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- 108010049955 Bone Morphogenetic Protein 4 Proteins 0.000 description 2
- 102000008137 Bone Morphogenetic Protein 4 Human genes 0.000 description 2
- 206010065687 Bone loss Diseases 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 108700039887 Essential Genes Proteins 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- DHCLVCXQIBBOPH-UHFFFAOYSA-N Glycerol 2-phosphate Chemical compound OCC(CO)OP(O)(O)=O DHCLVCXQIBBOPH-UHFFFAOYSA-N 0.000 description 2
- WZUVPPKBWHMQCE-UHFFFAOYSA-N Haematoxylin Chemical compound C12=CC(O)=C(O)C=C2CC2(O)C1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-UHFFFAOYSA-N 0.000 description 2
- 102100026517 Lamin-B1 Human genes 0.000 description 2
- 102000043136 MAP kinase family Human genes 0.000 description 2
- 108091054455 MAP kinase family Proteins 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 2
- 239000012826 P38 inhibitor Substances 0.000 description 2
- 210000000577 adipose tissue Anatomy 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000003833 cell viability Effects 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 210000004268 dentin Anatomy 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 239000012154 double-distilled water Substances 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 230000003511 endothelial effect Effects 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 238000005194 fractionation Methods 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 230000003394 haemopoietic effect Effects 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 108010052263 lamin B1 Proteins 0.000 description 2
- 108020004999 messenger RNA Proteins 0.000 description 2
- 230000000813 microbial effect Effects 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- 108020004707 nucleic acids Proteins 0.000 description 2
- 150000007523 nucleic acids Chemical class 0.000 description 2
- 230000002188 osteogenic effect Effects 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 230000026731 phosphorylation Effects 0.000 description 2
- 238000006366 phosphorylation reaction Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000001542 size-exclusion chromatography Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000012192 staining solution Substances 0.000 description 2
- 239000000829 suppository Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 125000003831 tetrazolyl group Chemical group 0.000 description 2
- 210000001036 tooth cervix Anatomy 0.000 description 2
- 230000035899 viability Effects 0.000 description 2
- 239000000080 wetting agent Substances 0.000 description 2
- 102100022464 5'-nucleotidase Human genes 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 206010003694 Atrophy Diseases 0.000 description 1
- 208000034309 Bacterial disease carrier Diseases 0.000 description 1
- 241001608472 Bifidobacterium longum Species 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 102100032912 CD44 antigen Human genes 0.000 description 1
- 101150008656 COL1A1 gene Proteins 0.000 description 1
- 208000004434 Calcinosis Diseases 0.000 description 1
- 102000012422 Collagen Type I Human genes 0.000 description 1
- 108010022452 Collagen Type I Proteins 0.000 description 1
- 102000029816 Collagenase Human genes 0.000 description 1
- 108060005980 Collagenase Proteins 0.000 description 1
- 102000015775 Core Binding Factor Alpha 1 Subunit Human genes 0.000 description 1
- 108020004414 DNA Proteins 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- 102100031573 Hematopoietic progenitor cell antigen CD34 Human genes 0.000 description 1
- 101000678236 Homo sapiens 5'-nucleotidase Proteins 0.000 description 1
- 101000868273 Homo sapiens CD44 antigen Proteins 0.000 description 1
- 101000777663 Homo sapiens Hematopoietic progenitor cell antigen CD34 Proteins 0.000 description 1
- 101000935043 Homo sapiens Integrin beta-1 Proteins 0.000 description 1
- 101000946889 Homo sapiens Monocyte differentiation antigen CD14 Proteins 0.000 description 1
- 101000738771 Homo sapiens Receptor-type tyrosine-protein phosphatase C Proteins 0.000 description 1
- 101000857682 Homo sapiens Runt-related transcription factor 2 Proteins 0.000 description 1
- 101000800116 Homo sapiens Thy-1 membrane glycoprotein Proteins 0.000 description 1
- 208000029462 Immunodeficiency disease Diseases 0.000 description 1
- 102100034343 Integrase Human genes 0.000 description 1
- 102100025304 Integrin beta-1 Human genes 0.000 description 1
- 102000019145 JUN kinase activity proteins Human genes 0.000 description 1
- MIJPAVRNWPDMOR-ZAFYKAAXSA-N L-ascorbic acid 2-phosphate Chemical compound OC[C@H](O)[C@H]1OC(=O)C(OP(O)(O)=O)=C1O MIJPAVRNWPDMOR-ZAFYKAAXSA-N 0.000 description 1
- 241000186684 Lactobacillus pentosus Species 0.000 description 1
- 240000006024 Lactobacillus plantarum Species 0.000 description 1
- 235000013965 Lactobacillus plantarum Nutrition 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 102100035877 Monocyte differentiation antigen CD14 Human genes 0.000 description 1
- 229920000715 Mucilage Polymers 0.000 description 1
- 102000003729 Neprilysin Human genes 0.000 description 1
- 108090000028 Neprilysin Proteins 0.000 description 1
- 208000012902 Nervous system disease Diseases 0.000 description 1
- 208000025966 Neurological disease Diseases 0.000 description 1
- 102000007999 Nuclear Proteins Human genes 0.000 description 1
- 108010089610 Nuclear Proteins Proteins 0.000 description 1
- 208000008589 Obesity Diseases 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 101710160107 Outer membrane protein A Proteins 0.000 description 1
- 229940122907 Phosphatase inhibitor Drugs 0.000 description 1
- 102100024616 Platelet endothelial cell adhesion molecule Human genes 0.000 description 1
- 241000269908 Platichthys flesus Species 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 241000186429 Propionibacterium Species 0.000 description 1
- 241000186428 Propionibacterium freudenreichii Species 0.000 description 1
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 1
- 238000011529 RT qPCR Methods 0.000 description 1
- 102100037422 Receptor-type tyrosine-protein phosphatase C Human genes 0.000 description 1
- 101150086605 Runx2 gene Proteins 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 244000057717 Streptococcus lactis Species 0.000 description 1
- 235000014897 Streptococcus lactis Nutrition 0.000 description 1
- 238000000692 Student's t-test Methods 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 239000012505 Superdex™ Substances 0.000 description 1
- 208000004761 Supernumerary Tooth Diseases 0.000 description 1
- 206010042572 Supernumerary teeth Diseases 0.000 description 1
- 244000299461 Theobroma cacao Species 0.000 description 1
- 235000005764 Theobroma cacao ssp. cacao Nutrition 0.000 description 1
- 235000005767 Theobroma cacao ssp. sphaerocarpum Nutrition 0.000 description 1
- 102100033523 Thy-1 membrane glycoprotein Human genes 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 238000010162 Tukey test Methods 0.000 description 1
- 102000013814 Wnt Human genes 0.000 description 1
- 230000004156 Wnt signaling pathway Effects 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000002293 adipogenic effect Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- RGCKGOZRHPZPFP-UHFFFAOYSA-N alizarin Chemical compound C1=CC=C2C(=O)C3=C(O)C(O)=CC=C3C(=O)C2=C1 RGCKGOZRHPZPFP-UHFFFAOYSA-N 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000000540 analysis of variance Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 230000037444 atrophy Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229940009291 bifidobacterium longum Drugs 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229960000074 biopharmaceutical Drugs 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 230000037182 bone density Effects 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 235000014121 butter Nutrition 0.000 description 1
- 238000010804 cDNA synthesis Methods 0.000 description 1
- 235000001046 cacaotero Nutrition 0.000 description 1
- 230000001201 calcium accumulation Effects 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 208000015100 cartilage disease Diseases 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 238000003570 cell viability assay Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 230000009816 chondrogenic differentiation Effects 0.000 description 1
- 230000002648 chondrogenic effect Effects 0.000 description 1
- 229960002424 collagenase Drugs 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 210000002808 connective tissue Anatomy 0.000 description 1
- 238000002247 constant time method Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 1
- 229960003957 dexamethasone Drugs 0.000 description 1
- 235000021186 dishes Nutrition 0.000 description 1
- 239000007884 disintegrant Substances 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical compound [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000012869 ethanol precipitation Methods 0.000 description 1
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 1
- 229940093471 ethyl oleate Drugs 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 235000021107 fermented food Nutrition 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000000834 fixative Substances 0.000 description 1
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 1
- 235000003599 food sweetener Nutrition 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 238000001794 hormone therapy Methods 0.000 description 1
- 239000000367 immunologic factor Substances 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229940072205 lactobacillus plantarum Drugs 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- VMPHSYLJUKZBJJ-UHFFFAOYSA-N lauric acid triglyceride Natural products CCCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCC)COC(=O)CCCCCCCCCCC VMPHSYLJUKZBJJ-UHFFFAOYSA-N 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229940057995 liquid paraffin Drugs 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229960003511 macrogol Drugs 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 210000002894 multi-fate stem cell Anatomy 0.000 description 1
- 230000001114 myogenic effect Effects 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 239000012457 nonaqueous media Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 230000005937 nuclear translocation Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 235000020824 obesity Nutrition 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 238000001543 one-way ANOVA Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 229930010796 primary metabolite Natural products 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 238000002278 reconstructive surgery Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 238000009938 salting Methods 0.000 description 1
- 229930000044 secondary metabolite Natural products 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 230000017423 tissue regeneration Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/66—Microorganisms or materials therefrom
- A61K35/74—Bacteria
- A61K35/741—Probiotics
- A61K35/744—Lactic acid bacteria, e.g. enterococci, pediococci, lactococci, streptococci or leuconostocs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/36—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/08—Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
Definitions
- the present invention relates to the use of a polysaccharide derived from a strain of the genus Enterococcus.
- Bone is the body's hard connective tissue and has several functions, including protecting various organs, producing red and white blood cells, storing minerals, and supporting the body. Bone has an intrinsic ability to repair itself. However, self-healing of bone is often difficult after severe bone loss has occurred. Bone regeneration is important in reconstructive surgery, and bone differentiation of stem cells may provide a tool for repairing bone defects.
- DPSCs Dental pulp stem cells
- DPSCs are neural crest-derived mesenchymal stem cells that can differentiate into adipogenic, osteogenic, chondrogenic and myogenic cells.
- DPSCs can be isolated from dental pulp tissues in a non-surgical way.
- DPSCs have the potential to be used to treat some diseases such as neurological diseases, immunodeficiency diseases and cartilage diseases.
- exopolysaccharides are microbial polysaccharides that form capsular membranes around cell walls as part of microbial cell walls or accumulate during fermentation in the form of mucilage on the outside of cell walls, and are primary or secondary metabolites.
- EPS is composed mostly of polysaccharides (exopolysaccharides) and proteins, but also contains other macromolecules such as DNA, lipids and humic substances. EPS is a component of bacterial colonization and remains attached to the outer surface of cells or secreted into the growth medium.
- An object of the present invention is to provide a composition for promoting osteogenesis comprising a polysaccharide derived from a strain of the genus Enterococcus.
- An object of the present invention is to provide a pharmaceutical composition for preventing or treating bone diseases.
- a composition for promoting osteogenesis comprising a polysaccharide derived from Enterococcus genus strain.
- composition for promoting bone formation according to 1 above, wherein the Enterococcus genus strain is Enterococcus faecium or Enterococcus lactis .
- composition for promoting bone formation according to 1 above, wherein the concentration of the polysaccharide is 0.5 to 2 ⁇ g/ml.
- composition for promoting bone formation according to 1 above, which promotes the induction of osteogenic differentiation of stem cells.
- composition for promoting bone formation according to 1 above which is used for at least one of artificial bone, artificial joint, bone fixation material, bone substitute, bone restoration material, bone filling material, or bone graft material.
- a pharmaceutical composition for preventing or treating bone diseases treatable by bone formation or bone regeneration comprising a polysaccharide derived from Enterococcus genus strain.
- a pharmaceutical composition for preventing or treating bone disease obtained by a method for preparing a polysaccharide comprising the steps of mixing the cultured supernatant with absolute ethanol to obtain a precipitate and dialysis the precipitate.
- composition for preventing or treating bone diseases according to 8 above wherein the concentration of the polysaccharide is 0.5 to 2 ⁇ g/ml.
- the bone disease according to 8 above periodontal disease, periodontitis, alveolar bone disease, osteoporosis, osteomalacia, osteopenia, bone atrophy atrophy, osteoarthritis, rheumatoid arthritis, osteolysis, fibrous dysplasia, Paget's disease, osteoogenesis imperfect and hypercalcemia.
- a pharmaceutical composition for preventing or treating bone disease At least one selected from the group consisting of, a pharmaceutical composition for preventing or treating bone disease.
- the polysaccharide derived from the Enterococcus genus strain of the present invention can promote bone formation through the induction of osteogenic differentiation of stem cells.
- composition containing polysaccharides derived from Enterococcus spp. of the present invention can be applied to promote bone formation, and can be applied to bone regeneration and treatment or prevention of bone diseases requiring bone formation.
- FIG. 1 to 4 show the results of characterization of hDPSCs (human dental pulp stem cells) at passages 3 and 8 by fluorescence-activated cell sorting (FACS) (Figs. 1 and 2 are passages 3 (Passage 3), Fig. 3 and 4 are passage 8).
- FACS fluorescence-activated cell sorting
- FIG. 5 to 10 show that Enterococcus faecium L15 extract (L 15 extract) promotes osteogenic differentiation of hDPSCs.
- Figure 5 shows the cell viability (%) according to the L15 extract treatment at various concentrations.
- 7 shows calcium deposition through ARS staining of hDPSCs treated with or without the L15 extract.
- 8 shows the relative expression levels of osteogenic differentiation marker genes (RUNX2, ALP and COL1A1) analyzed by real-time PCR. GAPDH was used for normalization.
- FIG. 9 shows the relative expression levels of osteogenic differentiation marker proteins (BMP4, RUNX2 and ALP).
- L15 EPS Enterococcus faecium L15-derived extracellular polysaccharide
- 13 to 17 show that Enterococcus faecium L15-derived extracellular polysaccharide (L15 EPS) promotes osteogenic differentiation of hDPSCs.
- 14 shows calcium deposition through ARS staining of hDPSCs treated with or without L15 EPS.
- 15 shows the relative expression levels of osteogenic differentiation marker genes (RUNX2, ALP and COL1A1) analyzed by real-time PCR. GAPDH was used for normalization.
- 16 shows the relative expression levels of osteogenic differentiation marker proteins (BMP4, RUNX2 and ALP).
- 18 to 24 show that L15 EPS activates the p38 MAPK pathway.
- 18 is a Western blot analysis result of MAPK (ERK, JNK, and p38) and Wnt signaling pathways in hDPSCs treated with L15 EPS.
- 19 to 20 are quantitative analysis results of phosphorylation levels, cytoplasmic and nuclear ⁇ -catenin expression levels in FIG. 18 .
- 21 shows the results of western blot analysis on the expression levels of p38 and p-p38 after inhibition of the p38 MAPK pathway.
- 22 is a quantitative analysis result of each protein expression level of FIG. 21 .
- FIG. 23 shows the results of Western blot analysis on the expression levels of osteogenic differentiation marker proteins (BMP4, RUNX2, and ALP) after inhibition of the p38 MAPK pathway.
- 24 is a quantitative analysis result of each protein expression level in FIG. 23 (*p ⁇ 0.05, **p ⁇ 0.01, ***p ⁇ 0.001.
- N 3).
- EPS Enterococcus faecium L15-derived extracellular polysaccharide treatment group
- SB p38 inhibitor SB203580 (SB) treatment group
- SB+EPS SB and EPS combined treatment group
- Control control group without any treatment.
- Figure 25 to 27 show the effect of L15 EPS on primary osteoblast precursors and bone formation.
- 26 shows the results of real-time PCR analysis of the expression of osteogenic differentiation marker genes (RUNX2, COL1A1, ALP) in primary osteoblast precursors.
- the present invention relates to the use of a polysaccharide derived from a strain of the genus Enterococcus.
- the present invention provides a composition for promoting osteogenesis comprising a polysaccharide derived from Enterococcus genus strain.
- Polysaccharide refers to a compound substance in which several sugars are attached, and is a component of carbohydrates, and is not limited to the type of polymeric polysaccharide produced and released by microorganisms, including lactic acid bacteria, during the growth process. Specifically, extracellular polysaccharide ( exopolysaccharides, EPS), but is not limited thereto.
- exopolysaccharides EPS
- the polysaccharide of the present invention is sufficient as long as it is derived from Enterococcus genus strain, and the strain type is not limited.
- the Enterococcus genus strain may be, for example , Enterococcus faecium or Enterococcus lactis.
- the polysaccharide derived from Enterococcus genus strain is a polysaccharide derived from Enterococcus pesium L-15.
- Enterococcus pesium L-15 is a strain deposited at the Biological Resource Center of the Korea Research Institute of Bioscience and Biotechnology on March 15, 2018, and the accession number is KCTC13498BP.
- the polysaccharide derived from the Enterococcus genus strain of the present invention is obtained by centrifuging the growth medium containing the Enterococcus genus strain as follows; Separating the supernatant of the growth medium; culturing by adding trichloroacetic acid to the separated supernatant; Obtaining a precipitate by mixing and culturing the cultured supernatant with absolute ethanol; And it may be obtained by a method for producing a polysaccharide derived from a strain of the genus Enterococcus comprising dialysis of the precipitate.
- Centrifugation of the growth medium containing the strain of Enterococcus may be performed at 8,000 to 12,000 xg for 15 to 25 minutes.
- culture conditions When cultured by adding trichloroacetic acid to the separated supernatant, culture conditions may be incubation at 34 to 38° C. for 30 minutes to 2 hours.
- Proteins and nucleic acids may be denatured by adding trichloroacetic acid to the separated supernatant and culturing the supernatant.
- the mixing volume ratio of the cultured supernatant and absolute ethanol may be 1: 1.5 to 3.
- the mixed culture conditions may be incubation at 3 to 5°C for 1 to 2 days. A precipitate is formed through the mixed culture.
- Dialysis may be carried out at 3 to 5 °C for 18 to 54 hours after dissolving the mixed culture precipitate in ddH 2 O. Dialysis can remove trace amounts of protein in the precipitate.
- a step of freeze-drying the precipitate after dialysis may be further included.
- the polysaccharide derived from the Enterococcus genus strain of the present invention can promote bone formation by inducing bone differentiation of stem cells.
- Stem cells capable of inducing osteogenic differentiation by the polysaccharide derived from the strain of the genus Enterococcus of the present invention may be mesenchymal stem cells (MSC).
- MSC mesenchymal stem cells
- Mesenchymal stem cells of the present invention may be derived from neural crest, bone marrow, adipose tissue, or peripheral blood, but are not limited thereto.
- the stem cells may be dental pulp stem cells (DPSC), for example, dental pulp stem cells derived from neural crest.
- DPSC dental pulp stem cells
- Dental pulp stem cells refer to stem cells present in dental pulp tissues, and are multipotent stem cells necessary for dental pulp and dentin regeneration, and can differentiate into various tissues such as bone, adipose tissue, neurons, and dentin.
- the dental pulp stem cells may be human dental pulp stem cells (hDPSC) isolated from human teeth, and may be autologous, allogenic, or xenogenic cells.
- the polysaccharide derived from the Enterococcus genus strain can increase the expression level of bone formation-related genes in stem cells. For example, it can increase RUNX2, ALP, and COL1A1 gene expression levels.
- the polysaccharide derived from Enterococcus genus strain can increase the expression level of bone formation-related proteins in stem cells.
- the expression levels of BMP4, RUNX2, and ALP proteins can be increased.
- polysaccharides derived from strains of the genus Enterococcus can activate the p38 mitogen-activated protein kinases (MAPK) pathway of stem cells.
- MAPK mitogen-activated protein kinases
- the polysaccharide derived from Enterococcus genus strain can increase the phosphorylation of p38 in stem cells.
- the concentration of the polysaccharide in the composition for promoting bone formation is 0.5 to 25 ⁇ g/ml, 0.5 to 20 ⁇ g/ml, 0.5 to 15 ⁇ g/ml, 0.5 to 10 ⁇ g/ml, 0.5 to 5 ⁇ g/ml, 0.5 to 2 ⁇ g/ml.
- ml 0.5 to 1 ⁇ g/ml, 1 to 10 ⁇ g/ml, 1 to 5 ⁇ g/ml, 1 to 3 ⁇ g/ml, 1 to 2 ⁇ g/ml, or 1 to 1.5 ⁇ g/ml, but is limited thereto It is not.
- composition for promoting bone formation of the present invention may be used, for example, for at least one of artificial bone, artificial joint, bone fixation material, bone substitute, bone restoration material, bone filling material, and bone graft material.
- the composition for promoting bone formation can be compressed, compressed, or pressed. It can be used in the form of putty, paste, moldable strip, block, chip, etc. using methods such as contact, packing, pressing, and hardening, and using chemical additives, it can be used in the form of gel, granule, paste, tablet, pellet, etc. It can be formulated and used, and can also be used in powder form.
- the present invention provides a pharmaceutical composition for the prevention or treatment of bone disease, which contains a polysaccharide derived from Enterococcus genus strain and is treatable by bone formation or bone regeneration.
- Enterococcus genus Enterococcus genus ( Enterococcus genus )
- the strain-derived polysaccharide is the same as that described in the bone formation promoter described above.
- the polysaccharide derived from Enterococcus genus strain may be prepared by the method described above.
- the polysaccharide derived from Enterococcus genus strain is a polysaccharide derived from Enterococcus pesium L-15 (accession number KCTC13498BP).
- the pharmaceutical composition of the present invention can be used for the prevention or treatment of bone diseases requiring an increase in bone density due to bone loss, and bone diseases treatable by bone formation or bone regeneration.
- the diseases include periodontal disease, periodontitis, alveolar bone disease, osteoporosis, osteomalacia, osteopenia, bone atrophy, and osteoarthritis.
- At least one selected from the group consisting of rheumatoid arthritis, osteolysis, fibrous dysplasia, Paget's disease, bone formation imperfect and hypercalcemia It may be, but is not limited thereto.
- the pharmaceutical composition may increase bone thickness or promote alveolar bone regeneration by inducing bone regeneration or bone formation by being administered to a subject in need of promoting bone formation.
- the pharmaceutical composition according to the present invention may be administered in a pharmaceutically effective amount.
- pharmaceutically effective amount means an amount sufficient to treat a disease with a reasonable benefit or risk ratio applicable to medical treatment, and the effective dose level is the type, severity, and activity of the drug of the patient's disease , sensitivity to the drug, time of administration, route of administration and excretion rate, duration of treatment, factors including concomitantly used drugs, and other factors well known in the medical field.
- the composition of the present invention may be administered as an individual therapeutic agent or in combination with other therapeutic agents, may be administered sequentially or simultaneously with conventional therapeutic agents, and may be administered single or multiple times. Considering all of the above factors, it is important to administer an amount that can obtain the maximum effect with the minimum amount without side effects, which can be easily determined by those skilled in the art.
- the effective amount of the composition according to the present invention may vary depending on the patient's age, sex, and weight, and is generally 0.1 mg to 100 mg per 1 kg of body weight, preferably 0.2 mg to 17 mg per day or every other day. It may be administered or divided into 1 to 3 times a day. However, since it may increase or decrease depending on the route of administration, severity of obesity, gender, weight, age, etc., the dosage is not limited to the scope of the present invention in any way.
- composition When formulating the composition, it is prepared using diluents or excipients such as commonly used fillers, extenders, binders, wetting agents, disintegrants, and surfactants.
- diluents or excipients such as commonly used fillers, extenders, binders, wetting agents, disintegrants, and surfactants.
- Solid preparations for oral administration include tablets, patients, powders, granules, capsules, troches, etc., and these solid preparations are suitable for the dead lactic acid bacteria Propionibacterium freudenreiki MJ2 (Propionibacterium freudenreichii KCCM12272P) of the present invention It is prepared by mixing at least one or more excipients, such as starch, calcium carbonate, sucrose or lactose, or gelatin. In addition to simple excipients, lubricants such as magnesium styrate and talc are also used.
- Liquid preparations for oral administration include suspensions, solutions for oral administration, emulsions, or syrups. In addition to water and liquid paraffin, which are commonly used simple diluents, various excipients such as wetting agents, sweeteners, aromatics, and preservatives may be included. can
- Formulations for parenteral administration include sterilized aqueous solutions, non-aqueous solutions, suspension solutions, emulsions, freeze-dried formulations, suppositories, and the like.
- Propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable esters such as ethyl oleate may be used as non-aqueous solvents and suspending solvents.
- a base for the suppository witepsol, macrogol, tween 61, cacao butter, laurin paper, glycerol, gelatin, and the like may be used.
- composition of the present invention may be used alone or in combination with methods using surgery, radiation therapy, hormone therapy, chemotherapy, and biological response modifiers.
- E. faecium strain L15 (KCTC13498BP, “L15”) was obtained from NeoRegen Biotech (Suwon, Gyeonggi-do). L15 extract preparation process is described in “Kim H, Park S, Kim K, Ku S, Seo J, Roh S. Enterococcus faecium L-15 cell-free extract improves the chondrogenic differentiation of human dental pulp stem cells. Int J Mol Sci. 2019 ;20(3):624.” This strain was originally isolated from a traditional Korean rice fermented food containing flounder. L15 was cultured in TSB (tryptic soy broth) medium (Hardy Diagnostics, Santa Maria, CA, USA). ) for 18 hours at 35° C.
- TSB tryptic soy broth
- the cultured L15 was harvested, washed three times with phosphate-buffered saline (PBS) and resuspended in double deionized water (ddH2O), and the washed L15 was sonicated on ice for 30 minutes. (Sonics, Stratford, CT, USA), centrifuged at 12,000xg for 10 min to remove cell debris, supernatant was passed through a 0.45 ⁇ m filter and lyophilized overnight at -80 °C, then It was reconstituted in PBS for use in experiments.
- PBS phosphate-buffered saline
- ddH2O double deionized water
- E. faecium and E. lactis-derived exopolysaccharides were purified using ethanol precipitation.
- E. faecium L15 and E. lactis L28 were cultured in TSB (tryptic soy broth) medium (Hardy Diagnostics, Santa Maria, CA, USA) for 18 hours at 35°C, respectively.
- Cultured L15 and L28dmf were separated from the growth medium by centrifugation at 10,000xg for 20 minutes. After centrifugation, the supernatant was collected, denatured proteins and nucleic acids by adding 14% trichloroacetic acid to the final concentration, and then incubated at 37°C for 1 hour. The solution at a ratio of 2:1 was incubated at 4° C. for 1 day to allow aggregation.
- the precipitate was dissolved in ddH 2 O and dialyzed at 4° C. for 24-48 hours to remove trace amounts of protein. The precipitate was lyophilized at -80 °C and then reconstituted with PBS for use in experiments.
- hDPSCs human dental pulp stem cells
- ⁇ -MEM Minimum essential medium eagle—alpha modification
- FBS fetal bovine serum
- FACS was performed to identify hDPSCs. At passages 3 and 8, hDPSCs were isolated and resuspended in cold PBS containing 5% FBS. Cells were stained with CD10-fluorescein isothiocyanate (FITC), CD29-Alexa 488, CD44-FITC, CD73-FITC, CD90-FITC, D105-FITC, CD14-allophycocyanin (APC), CD34- Incubated for 30 min on ice with monoclonal antibodies to Alexa 647, CD45-APC and CD31-APC.
- FITC CD10-fluorescein isothiocyanate
- CD29-Alexa 488 CD44-FITC
- CD73-FITC CD90-FITC
- D105-FITC D105-FITC
- CD14-allophycocyanin APC
- CD34- Incubated for 30 min on ice with monoclonal antibodies to Alexa 647, CD45-APC and CD31-APC.
- hDPSCs were grown in ⁇ -MEM supplemented with 10% FBS (Hyclone Laboratories Inc.), 100 nM dexamethasone (Sigma-Aldrich), 10 mM ⁇ -glycerophosphate (Sigma-Aldrich) and 0.05 mM ascorbic acid 2-phosphate (Sigma-Aldrich). (Hyclone Laboratories Inc.) was seeded at 15,000 cells/cm 2 in a 12-well culture dish in an osteogenic differentiation medium. The medium was replaced every 2 to 3 days, and osteogenic differentiation proceeded for 28 days.
- hDPSCs were seeded in 96-well plates at a density of 1 ⁇ 10 4 cells per well. Cells were cultured with various concentrations of L15 extract for 3 days and cultured in osteogenic differentiation medium containing L15 EPS for 3 and 7 days. WST solution was added to each well. The mixture was incubated at 37° C. for 30 minutes. The absorbance of each well was measured at 450 nm using an Emax Plus Microplate reader (Molecular Devices, Sunnyvale, CA, USA).
- WST water-soluble tetrazolium salt
- RT-PCR Reverse transcription polymerase chain reaction
- RT-PCR and real-time PCR were used to quantify gene expression.
- Total RNA was extracted from the pellet using the PureLinkTM RNA Mini kit (Life Technologies, Camarillo, CA, USA).
- cDNA synthesis was performed using M-MLV reverse transcriptase (Promega Corporation, Fitchburg, WI, USA) according to the manufacturer's instructions.
- Real-time PCR was performed using SYBR Pre-mix Ex TaqTM II (Takara, Tokyo, Japan) and 7500 Real-Time PCR System (Applied Biosystems, Carlsbad, CA, USA). Primers used are listed in Table 1.
- the PCR reaction was performed at 95°C for 30 seconds followed by 40 amplification cycles of 95°C for 5 seconds and 60°C for 34 seconds.
- a comparative CT method was used to measure the expression level.
- Glyceralde-hyde 3-phosphate dehydrogenase (GAPDH) was used as a housekeeping gene for normalization.
- Table 1 relates to primer sequences used for real-time PCR.
- Distinction gene forward primer reverse primer human genes Runx2 CAGACCAGCAGCACTCCATA (SEQ ID NO: 1) TTCAATATGGTCGCCAAACA (SEQ ID NO: 7) COL1A1 GCGAGAGCATGACCGATGGA (SEQ ID NO: 2) GCGGATCTCGATCTCGTTGGA (SEQ ID NO: 8) ALP GGGATAAAGCAGGTCTTGGGGTGC (SEQ ID NO: 3) CGCTTGGTCTCGCCAGTACTTGG (SEQ ID NO: 9) GAPDH ACATGTTCCAATATGATCCC (SEQ ID NO: 4) TGGACTCCACGACGTACTCA (SEQ ID NO: 10) mouse gene Runx2 Same as human primer (SEQ ID NO: 1) Same as human primer (SEQ ID NO: 7) COL1A1 Same as human primer (SEQ ID NO: 2) Same as human primer (SEQ ID NO: 8) ALP CCAACTCTTTTTGTGCCAGAGA (SEQ ID NO: 5) GGCTACATTGGTG
- Osteogenic differentiation evaluation used ARS staining to visualize calcium deposits.
- the differentiated cells were fixed with 4% paraformaldehyde (PFA), stained with alizarin red solution (Sigma-Aldrich), and then photographed with a digital camera (Canon, Tokyo, Japan) using an inverted microscope (EVOSTM XL Core Imaging system, Thermo ScientificTM, Waltham, MA, USA).
- PFA paraformaldehyde
- alizarin red solution Sigma-Aldrich
- ALP staining was performed using the StemAb Alkaline Phosphatase Staining Kit II (Reprocell, Beltsville, MD, USA) according to the manufacturer's instructions.
- hDPSCs and mouse calvaria-derived osteoblasts were treated for 7 days with or without the L15 extract or extracellular polysaccharide (EPS).
- Cells were fixed for 2 minutes using fixative solution, washed twice with PBS, and incubated for 30 minutes with ALP staining solution.
- the ALP staining solution was removed and staining was observed with an inverted microscope (EVOSTM XL Core Imaging System; Thermo ScientificTM, Waltham, MA, USA).
- Cytoplasmic and nuclear proteins were extracted with NE-PERTM Nuclear and Cytoplasmic Extraction Reagents (Thermo ScientificTM) containing proteinase inhibitor (MedChemExpress, Monmouth Junction, NJ, USA) and phosphatase inhibitor (MedChemExpress). Cell lysates were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis and immunoblotted with the following indicated antibodies.
- BMP4 bone morphogenetic protein-4
- Runx2 Runx family transcription factor 2
- ALP R&D Systems, Minneapolis, MN, USA
- extracellular signal Regulated kinase ERK; Cell Signaling Technology
- p-ERK phospho-ERK
- JNK c-Jun N-terminal kinase
- JNK Cell Signaling Technology
- p-JNK Cell Signaling Technology
- p38 Cell Signaling Technology
- p-p38 Cell Signaling Technology
- ⁇ -catenin Cell Signaling Technology
- Lamin B1 Sura Cruz Biotechnology, Dallas, TX, USA
- GAPDH BioLegend, SanDiego, CA, USA
- GAPDH was used as a housekeeping gene for normalization.
- Lamin B1 was used to normalize nuclear ⁇ -catenin.
- Boneoblast precursors were isolated from mouse calvaria. Calvaria were isolated from 4-day-old mice and digested with 0.25% trypsin and 0.2% collagenase at 37°C for 30 min. The released cells were plated in 100 mm dishes, grown in ⁇ -MEM (Hyclone Laboratories Inc.) supplemented with 10% FBS (Hyclone Laboratories Inc.), and cultured in an incubator under 5% CO 2 and 37°C conditions. After 3 days, adherent cells were used as osteoblast precursors. Osteoblast precursors were used for osteogenic differentiation using L15 extracellular polysaccharide (EPS).
- EPS extracellular polysaccharide
- calvaria from ICR mice were cultured on grids in 12-well culture plates. Calvaria were cultured in hDPSC culture medium with or without 10 ⁇ g/mL L15 EPS. The medium was changed every 2 days and calvarias were harvested on the 7th day. Calvaria were fixed in 4% PFA for 24 hours and decalcified in 14% EDTA for 2 days. After decalcification, calvaria were embedded in paraffin wax. Blocks were trimmed to a depth of 800 ⁇ m and cut sagittal to a thickness of 10 ⁇ m (Leica Microsystems, Wetzlar, Germany) at the midline.
- the cut tissue was stained with hematoxylin and eosin (H&E) and bright field micrographs were captured with an Olympus BX50 microscope (Olympus, Tokyo, Japan). Bone thickness was measured on sagittal slices obtained at a specific location (1 mm away from the midline suture of calvaria) using Image Pro software (Media Cybernetics Inc., Silver Spring, MD, USA).
- Results were expressed as mean ⁇ SD. Data were analyzed using one-way analysis of variance (ANOVA) followed by Tukey post hoc test and Student's t-test using GraphPad Prism V5.0 software (GraphPad Software, La Jolla, CA, USA). *p ⁇ 0.05, **p ⁇ 0.01, ***p ⁇ 0.001 were defined as statistical significance.
- hDPSCs human dental pulp stem cells
- cell surface antigen cluster cluster of differentiation, CD
- FACS fluorescence-activated cell sorting
- the survival rate of hDPSCs was significantly decreased when the L15 extract was treated with 5 ⁇ g/mL or more (p ⁇ 0.001). This suggested that an L15 extract concentration of 1 ⁇ g/mL was non-toxic to the cells, and this concentration was used for subsequent osteogenic differentiation.
- ALP staining was performed. More intense ALP staining was observed in the L15 extract treatment group compared to the control group (FIG. 6). Calcium deposition was examined by ARS staining after osteogenic differentiation for 28 days. Enhanced calcium deposition was observed in the L15 extract treatment group compared to the control group (FIG. 7).
- the purified extracellular polysaccharide (EPS) of E. faecium L15 was fractionated using size exclusion chromatography. As shown in FIG. 11, L15 EPS appeared as a single peak corresponding to the low molecular weight fraction.
- a water-soluble tetrazolium salt (WST) assay was performed to determine the effect of L15 EPS on the viability of hDPSCs. Six concentrations of L15 EPS (0, 1, 2.5, 5, 10 and 25 ⁇ g/ml) were treated for 3 days. There was no significant difference between groups (Fig. 12 (a)). The same concentration of L15 EPS was treated with osteogenic differentiation medium for 7 days.
- L15-derived EPS promotes osteogenic differentiation of hDPSCs
- ALP staining was performed. ALP staining was observed to be more intense in the L15 EPS treated group than in the control group (FIG. 13). Calcium accumulation was examined using ARS staining after 28 days of osteogenic differentiation. Calcium deposition was significantly increased in the L15 EPS treatment group compared to the control group (FIG. 14).
- the protein expression levels of BMP4, RUNX2 and ALP were significantly increased in the L15 EPS treatment group (FIGS. 16 and 17; p ⁇ 0.05).
- L15 EPS on pathway protein ie, ERK, p-ERK, JNK, p-JNK, p38, p-p38, cytoplasmic ⁇ -catenin and nuclear ⁇ -catenin
- ERK, p-ERK, JNK, p-JNK, p38, p-p38, cytoplasmic ⁇ -catenin and nuclear ⁇ -catenin was confirmed by Western blot analysis. (FIG. 18). Since nuclear translocation of ⁇ -catenin is a key feature of Wnt pathway activation, nuclear and cytoplasmic fractionation of ⁇ -catenin was performed. Expression levels of ERK, p-ERK, JNK, p-JNK, cytoplasmic ⁇ -catenin and nuclear ⁇ -catenin did not change (FIGS. 18 to 20).
- L15 EPS improves the osteogenic differentiation of osteoblast precursors
- isolated osteoblast precursors were cultured in an osteogenic medium treated with or without L15 EPS for 7 days.
- ALP intensity was stronger in the L15 EPS treated group compared to the control group (FIG. 25).
- mRNA levels were analyzed by qPCR.
- the mRNA levels of RUNX2, COL1A1 and ALP were significantly up-regulated with L15 EPS (FIG. 26).
- L15 EPS can induce osteogenesis.
- Enterococcus faecium L15 (L15) and Enterococcus lactis L28 (L28) extracts as well as Lactococcus lactis L7.5 (L7.5), Lactobacillus plantarum L30 (L30, KCTC 3107), and Bifidobacterium longum L31 (which belong to other genera).
- L31) and Lactobacillus pentosus MS4 (MS4) strain extracts were tested to confirm the bone formation promoting effect.
- the L15 and L28 strains were cultured in TSB (tryptic soy broth) medium, and the L7.5, L30, L31 and MS4 strains were cultured in MRS broth medium at 35° C. for 18 hours, respectively.
- the cultured strains were harvested, washed three times with phosphate-buffered saline (PBS), and resuspended in double deionized water (ddH2O). Washed strains were sonicated (Sonics, Strat-ford, CT, USA) for 30 minutes on ice. It was centrifuged at 12,000xg for 10 minutes to remove cell debris.
- the supernatant was passed through a 0.45 ⁇ m filter and lyophilized overnight at -80 ° C to obtain extracts derived from each strain. Then, it was reconstituted with PBS for use in experiments.
- Each extract was treated with hDPSCs in the same manner as described above (each extract treated for 7 days, extract concentration: 1 ug/ml) and cultured for 28 days, and then osteogenic differentiation was observed by ALP staining.
- osteogenic differentiation was observed only in the group treated with the extracts of L15 and L28 strains belonging to the genus Enterococcus.
- L28-derived extracellular polysaccharide (L28 EPS) was treated with hDPSCs in the same manner as described above (L28 EPS treatment for 7 days, concentration of L28 EPS: 1 ug/ml) and cultured for 28 days, followed by calcium deposition through ARS staining. It was confirmed whether
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physical Education & Sports Medicine (AREA)
- Epidemiology (AREA)
- Mycology (AREA)
- Pharmacology & Pharmacy (AREA)
- Microbiology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Rheumatology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biomedical Technology (AREA)
- Botany (AREA)
- Dermatology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
The present invention relates to use of polysaccharides derived from strains of an Enterococcus genus, wherein polysaccharides derived from strains of Enterococcus genus can promote bone differentiation of stem cells and thus can be used to promote osteogenesis, and can be used for the prevention or treatment of bone diseases that are treatable by bone regeneration.
Description
본 발명은 엔테로코커스 속 균주 유래의 다당체의 용도에 관한 것이다.The present invention relates to the use of a polysaccharide derived from a strain of the genus Enterococcus.
뼈는 신체의 단단한 결합 조직이며 다양한 장기 보호, 적혈구 및 백혈구 생성, 미네랄 저장, 신체지지 구조 등 여러 기능을 가지고 있다. 뼈는 스스로 복구할 수 있는 본질적인 능력을 가지고 있다. 그러나 심한 뼈 결손이 발생한 후에는 뼈의 자가 복구가 어려운 경우가 많다. 뼈 재생은 재건 수술에서 중요하고, 줄기 세포의 골 분화는 골 결손 치료를 위한 도구를 제공할 수 있다.Bone is the body's hard connective tissue and has several functions, including protecting various organs, producing red and white blood cells, storing minerals, and supporting the body. Bone has an intrinsic ability to repair itself. However, self-healing of bone is often difficult after severe bone loss has occurred. Bone regeneration is important in reconstructive surgery, and bone differentiation of stem cells may provide a tool for repairing bone defects.
줄기 세포는 자가 재생 능력이 있고 다양한 세포로 분화할 수 있기 때문에 부상이나 질병 후 조직 재생에 사용된다. 치과 치수 줄기 세포 (DPSC)는 신경 능선 유래 중간엽 줄기 세포로 지방 생성, 골 형성, 연골 생성 및 근 생성 세포로 분화할 수 있다. DPSC는 비외과적인 방법으로 치아의 치수 조직에서 분리할 수 있다. DPSC는 신경계 질환, 면역 결핍 질환 및 연골 질환과 같은 일부 질병을 치료하는 데 사용할 수 있는 잠재력이 있다.Stem cells are used for tissue regeneration after injury or disease because they have the ability to self-renew and differentiate into a variety of cell types. Dental pulp stem cells (DPSCs) are neural crest-derived mesenchymal stem cells that can differentiate into adipogenic, osteogenic, chondrogenic and myogenic cells. DPSCs can be isolated from dental pulp tissues in a non-surgical way. DPSCs have the potential to be used to treat some diseases such as neurological diseases, immunodeficiency diseases and cartilage diseases.
한편, 세포외다당체(exopolysaccharides)는 미생물 세포벽의 일부로서 세포벽주위에 협막을 형성하거나 세포벽 외부에 점질 형태로서 발효 중에 축적되는 미생물 다당류로, 1차 또는 2차 대사산물이다. EPS는 대부분 다당류 (exopolysaccharides)와 단백질 로 구성되지만, DNA, 지질, 휴믹 물질과 같은 다른 거대분자도 포함한다. EPS는 박테리아 정착의 구성 물질이며 세포의 외부 표면에 부착된 상태로 유지되거나 성장 배지로 분비된다.On the other hand, exopolysaccharides are microbial polysaccharides that form capsular membranes around cell walls as part of microbial cell walls or accumulate during fermentation in the form of mucilage on the outside of cell walls, and are primary or secondary metabolites. EPS is composed mostly of polysaccharides (exopolysaccharides) and proteins, but also contains other macromolecules such as DNA, lipids and humic substances. EPS is a component of bacterial colonization and remains attached to the outer surface of cells or secreted into the growth medium.
본 발명은 엔테로코커스 속 균주 유래의 다당체를 포함하는 골 형성 촉진용 조성물을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a composition for promoting osteogenesis comprising a polysaccharide derived from a strain of the genus Enterococcus.
본 발명은 골 질환의 예방 또는 치료용 약학 조성물을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a pharmaceutical composition for preventing or treating bone diseases.
1. 엔테로코커스 속(Enterococcus genus) 균주 유래의 다당체를 포함하는 골 형성 촉진용 조성물.1. A composition for promoting osteogenesis comprising a polysaccharide derived from Enterococcus genus strain.
2. 위 1에 있어서, 엔테로코커스 속 균주는 엔테로코커스 페시움(Enterococcus faecium) 또는 엔테로코커스 락티스(Enterococcus lactis)인, 골 형성 촉진용 조성물.2. The composition for promoting bone formation according to 1 above, wherein the Enterococcus genus strain is Enterococcus faecium or Enterococcus lactis .
3. 위 1에 있어서, 다당체는 엔테로코커스 속 균주가 포함된 성장 배지를 원심분리하는 단계; 성장 배지의 상층액을 분리하고, 분리된 상층액에 트리클로로 아세트산을 첨가하여 배양하는 단계; 배양된 상층액을 무수 에탄올과 혼합 배양하여 침전물을 얻는 단계 및 침전물을 투석하는 단계를 포함하는 다당체의 제조방법으로 얻어진 것인, 골 형성 촉진용 조성물.3. The step of centrifuging the growth medium containing the polysaccharide according to 1 above; Separating the supernatant of the growth medium and culturing by adding trichloroacetic acid to the separated supernatant; A composition for promoting bone formation obtained by a method for producing a polysaccharide comprising the steps of mixing and culturing the cultured supernatant with absolute ethanol to obtain a precipitate and dialysis of the precipitate.
4. 위 1에 있어서, 다당체의 농도는 0.5 내지 2 μg/ml인, 골 형성 촉진용 조성물.4. The composition for promoting bone formation according to 1 above, wherein the concentration of the polysaccharide is 0.5 to 2 μg/ml.
5. 위 1에 있어서, 줄기세포의 골 분화 유도를 촉진하는, 골 형성 촉진용 조성물.5. The composition for promoting bone formation according to 1 above, which promotes the induction of osteogenic differentiation of stem cells.
6. 위 5에 있어서, 상기 줄기세포는 치수 줄기세포인, 골 형성 촉진용 조성물.6. The composition for promoting bone formation according to 5 above, wherein the stem cells are dental pulp stem cells.
7. 위 1에 있어서, 인공골, 인공관절, 골 고정재, 골 대체제, 골 수복재, 골 충진재 또는 골 이식재 중 하나 이상에 사용되는, 골 형성 촉진용 조성물.7. The composition for promoting bone formation according to 1 above, which is used for at least one of artificial bone, artificial joint, bone fixation material, bone substitute, bone restoration material, bone filling material, or bone graft material.
8. 엔테로코커스 속(Enterococcus genus) 균주 유래의 다당체를 포함하는 골 형성 또는 골 재생에 의해 치료 가능한 골 질환 예방 또는 치료용 약학 조성물.8. A pharmaceutical composition for preventing or treating bone diseases treatable by bone formation or bone regeneration, comprising a polysaccharide derived from Enterococcus genus strain.
9. 위 8에 있어서, 상기 엔테로코커스 속 균주는 엔테로코커스 페시움(Enterococcus faecium) 또는 엔테로코커스 락티스(Enterococcus lactis)인 다당체를 포함하는, 골 질환 예방 또는 치료용 약학 조성물.9. The pharmaceutical composition for preventing or treating bone disease according to 8 above, wherein the Enterococcus genus strain contains a polysaccharide of Enterococcus faecium or Enterococcus lactis .
10. 위 8에 있어서, 다당체는 엔테로코커스 속 균주가 포함된 성장 배지를 원심분리하는 단계; 성장 배지의 상층액을 분리하고, 분리된 상층액에 트리클로로 아세트산을 첨가하여 배양하는 단계; 배양된 상층액을 무수 에탄올과 혼합 배양하여 침전물을 얻는 단계 및 침전물을 투석하는 단계를 포함하는 다당체의 제조방법으로 얻어진 것인, 골 질환 예방 또는 치료용 약학 조성물.10. The step of centrifuging the growth medium containing the polysaccharide according to 8 above; Separating the supernatant of the growth medium and culturing by adding trichloroacetic acid to the separated supernatant; A pharmaceutical composition for preventing or treating bone disease, obtained by a method for preparing a polysaccharide comprising the steps of mixing the cultured supernatant with absolute ethanol to obtain a precipitate and dialysis the precipitate.
11. 위 8에 있어서, 다당체의 농도는 0.5 내지 2 μg/ml인, 골 질환 예방 또는 치료용 약학 조성물.11. The pharmaceutical composition for preventing or treating bone diseases according to 8 above, wherein the concentration of the polysaccharide is 0.5 to 2 μg/ml.
12. 위 8에 있어서, 상기 골 질환은 치주질환(periodontal disease), 치주염(periodontitis), 치조골 질환(alveolar bone disease), 골다공증(osteoporosis), 골연화증(osteomalacia), 골감소증(osteopenia), 골위축(bone atrophy), 골관절염(osteoarthritis), 류마티스 관절염(rhermatoid arthritis), 골용해(osteolysis), 섬유이형성증(fibrous dysplasia), 파제트병(Paget's disease), 골 형성부전증(osteogenesis imperfect) 및 고칼슘혈증(hypercalcemia)으로 이루어진 군에서 선택되는 적어도 하나인, 골 질환 예방 또는 치료용 약학 조성물.12. The bone disease according to 8 above, periodontal disease, periodontitis, alveolar bone disease, osteoporosis, osteomalacia, osteopenia, bone atrophy atrophy, osteoarthritis, rheumatoid arthritis, osteolysis, fibrous dysplasia, Paget's disease, osteoogenesis imperfect and hypercalcemia. At least one selected from the group consisting of, a pharmaceutical composition for preventing or treating bone disease.
본 발명의 엔테로코커스 속 균주 유래의 다당체는 줄기세포의 골 분화 유도를 통해 골 형성을 촉진할 수 있다.The polysaccharide derived from the Enterococcus genus strain of the present invention can promote bone formation through the induction of osteogenic differentiation of stem cells.
본 발명의 엔테로코커스 속 균주 유래의 다당체를 포함한 조성물은 골 형성 촉진에 적용될 수 있으며, 골 재생 및 골 형성이 필요한 골 질환의 치료 또는 예방에 적용될 수 있다. The composition containing polysaccharides derived from Enterococcus spp. of the present invention can be applied to promote bone formation, and can be applied to bone regeneration and treatment or prevention of bone diseases requiring bone formation.
도 1 내지 4는 fluorescence-activated cell sorting(FACS)에 의한 계대수 3 및 8 hDPSCs(human dental pulp stem cells)의 특성 분석 결과를 나타낸 것이다(도 1 및 2는 계대수 3(Passage 3), 도 3 및 4는 계대수 8(Passage 8)).1 to 4 show the results of characterization of hDPSCs (human dental pulp stem cells) at passages 3 and 8 by fluorescence-activated cell sorting (FACS) (Figs. 1 and 2 are passages 3 (Passage 3), Fig. 3 and 4 are passage 8).
도 5 내지 10은 엔테로코커스 페시움 L15 추출물(L 15 추출물)이 hDPSC의 골 형성 분화를 촉진함을 보여준다. 도 5는 다양한 농도의 L15 추출물 처리에 따른 세포생존율(%)을 나타낸다. 도 6은 L15 추출물을 처리한 또는 처리하지 않은 hDPSC에 ALP 염색한 후의 명시야 현미경 사진(EVOS™ XL Core Imaging System, 스케일 바 = 200μm)이다. 도 7은 L15 추출물을 처리한 또는 처리하지 않은 hDPSC의 ARS 염색을 통한 칼슘 침착 여부를 보여준다. 도 8은 실시간 PCR로 분석된 골 형성 분화 마커 유전자(RUNX2, ALP 및 COL1A1)의 상대적 발현 수준을 나타낸다. GAPDH는 정규화에 사용되었다. 도 9는 골 형성 분화 마커 단백질(BMP4, RUNX2 및 ALP)의 상대적 발현 수준을 나타낸다. 도 10은 도 9에서 나타난 GAPDH 대비 각 단백질의 발현 강도를 정량적으로 분석한 결과이다. 오차 막대는 평균의 표준 편차를 나타낸다(*p < 0.05, **p < 0.01, ***p < 0.001. N = 3). Extract: 엔테로코커스 페시움 L15 추출물 처리군, Control: 아무것도 처리하지 않은 대조군.5 to 10 show that Enterococcus faecium L15 extract (L 15 extract) promotes osteogenic differentiation of hDPSCs. Figure 5 shows the cell viability (%) according to the L15 extract treatment at various concentrations. 6 is a bright field micrograph (EVOS™ XL Core Imaging System, scale bar = 200 μm) after ALP staining of hDPSCs treated with or without L15 extract. 7 shows calcium deposition through ARS staining of hDPSCs treated with or without the L15 extract. 8 shows the relative expression levels of osteogenic differentiation marker genes (RUNX2, ALP and COL1A1) analyzed by real-time PCR. GAPDH was used for normalization. 9 shows the relative expression levels of osteogenic differentiation marker proteins (BMP4, RUNX2 and ALP). FIG. 10 is a result of quantitatively analyzing the expression intensity of each protein compared to GAPDH shown in FIG. 9 . Error bars represent standard deviation of the mean (*p < 0.05, **p < 0.01, ***p < 0.001. N = 3). Extract: Enterococcus pesium L15 extract treatment group, Control: control group not treated with anything.
도 11은 엔테로코커스 페시움 L15 유래 세포외다당체(L15 EPS)의 크기 배제 크로마토그램을 나타낸다. 11 shows a size exclusion chromatogram of Enterococcus faecium L15-derived extracellular polysaccharide (L15 EPS).
도 12는 (a)3일, (b)7일 동안 골 형성 분화 배지를 사용하여 다양한 농도의 L15 EPS에 노출 시 hDPSC의 생존율을 나타낸다(***p < 0.001. 스케일 바 = 200 μm. N = 3).Figure 12 shows the survival rate of hDPSCs when exposed to various concentrations of L15 EPS using osteogenic differentiation medium for (a) 3 days and (b) 7 days (***p < 0.001. Scale bar = 200 μm. N = 3).
도 13 내지 17은 엔테로코커스 페시움 L15 유래 세포외다당체(L15 EPS)이 hDPSC의 골 형성 분화를 촉진함을 보여준다. 도 13은 L15 EPS를 처리한 또는 처리하지 않은 hDPSC에 ALP 염색한 후의 명시야 현미경 사진(EVOS™ XL Core Imaging System, 스케일 바 = 200μm)이다. 도 14는 L15 EPS를 처리한 또는 처리하지 않은 hDPSC의 ARS 염색을 통한 칼슘 침착 여부를 보여준다. 도 15는 실시간 PCR로 분석된 골 형성 분화 마커 유전자(RUNX2, ALP 및 COL1A1)의 상대적 발현 수준을 나타낸다. GAPDH는 정규화에 사용되었다. 도 16은 골 형성 분화 마커 단백질(BMP4, RUNX2 및 ALP)의 상대적 발현 수준을 나타낸다. 도 17은 도 16에서 나타난 GAPDH 대비 각 단백질의 발현 강도를 정량적으로 분석한 결과이다. 오차 막대는 평균의 표준 편차를 나타낸다(*p < 0.05. N = 3). EPS: 엔테로코커스 페시움 L15 유래 세포외다당체 처리군, Control: 아무것도 처리하지 않은 대조군.13 to 17 show that Enterococcus faecium L15-derived extracellular polysaccharide (L15 EPS) promotes osteogenic differentiation of hDPSCs. 13 is a bright field micrograph (EVOS™ XL Core Imaging System, scale bar = 200 μm) after ALP staining of hDPSCs treated with or without L15 EPS. 14 shows calcium deposition through ARS staining of hDPSCs treated with or without L15 EPS. 15 shows the relative expression levels of osteogenic differentiation marker genes (RUNX2, ALP and COL1A1) analyzed by real-time PCR. GAPDH was used for normalization. 16 shows the relative expression levels of osteogenic differentiation marker proteins (BMP4, RUNX2 and ALP). 17 is a result of quantitatively analyzing the expression intensity of each protein compared to GAPDH shown in FIG. 16. Error bars represent standard deviation of the mean (*p < 0.05. N = 3). EPS: Enterococcus faecium L15-derived extracellular polysaccharide treated group, Control: a control group not treated with anything.
도 18 내지 24는 L15 EPS가 p38 MAPK 경로를 활성화함을 보여준다. 도 18은 L15 EPS로 처리된 hDPSC에서 MAPK(ERK, JNK 및 p38) 및 Wnt 신호 경로의 웨스턴 블롯 분석결과이다. 도 19 내지 20은 도 18에서 인산화 수준, 세포질 및 핵 β-카테닌 발현 수준의 정량적 분석결과이다. 도 21은 p38 MAPK 경로 억제 후 단백질 p38 및 p-p38 발현 수준에 대한 웨스턴 블롯 분석결과이다. 도 22는 도 21의 각 단백질 발현 수준의 정량적 분석결과이다. 도 23은 p38 MAPK 경로 억제 후 골 형성 분화 마커 단백질(BMP4, RUNX2 및 ALP) 발현 수준에 대한 웨스턴 블롯 분석결과이다. 도 24는 도 23의 각 단백질 발현 수준의 정량적 분석결과이다(*p < 0.05, **p < 0.01, ***p < 0.001. N = 3). EPS: 엔테로코커스 페시움 L15 유래 세포외다당체 처리군, SB: p38 억제제 SB203580(SB) 처리군, SB+EPS: SB 및 EPS 병용 처리군, Control: 아무것도 처리하지 않은 대조군.18 to 24 show that L15 EPS activates the p38 MAPK pathway. 18 is a Western blot analysis result of MAPK (ERK, JNK, and p38) and Wnt signaling pathways in hDPSCs treated with L15 EPS. 19 to 20 are quantitative analysis results of phosphorylation levels, cytoplasmic and nuclear β-catenin expression levels in FIG. 18 . 21 shows the results of western blot analysis on the expression levels of p38 and p-p38 after inhibition of the p38 MAPK pathway. 22 is a quantitative analysis result of each protein expression level of FIG. 21 . 23 shows the results of Western blot analysis on the expression levels of osteogenic differentiation marker proteins (BMP4, RUNX2, and ALP) after inhibition of the p38 MAPK pathway. 24 is a quantitative analysis result of each protein expression level in FIG. 23 (*p < 0.05, **p < 0.01, ***p < 0.001. N = 3). EPS: Enterococcus faecium L15-derived extracellular polysaccharide treatment group, SB: p38 inhibitor SB203580 (SB) treatment group, SB+EPS: SB and EPS combined treatment group, Control: control group without any treatment.
도 25 내지 27은 1차 조골세포 전구체 및 골 형성에 대한 L15 EPS의 효과를 보여준다. 도 25는 7일 동안 L15 EPS를 처리한 또는 처리하지 않은 일차 조골세포 전구체(ICR 신생아의 calvaria에서 얻음)의 ALP 염색 현미경 사진이다(스케일 바 = 200 μm). 도 26은 일차 조골세포 전구체에서 골 형성 분화 마커 유전자(RUNX2, COL1A1, ALP)의 발현을 실시간 PCR로 분석한 결과이다. 도 27은 10μg/mL L15 EPS를 처리한 또는 처리하지 않은 hDPSC 배양 배지에서 배양된 calvaria의 두께를 나타낸다. H&E 염색에 의해 평가되었다(스케일 바 = 25 μm, *p < 0.05. N = 3).25 to 27 show the effect of L15 EPS on primary osteoblast precursors and bone formation. Figure 25 is an ALP staining micrograph of primary osteoblast precursors (obtained from calvaria of ICR neonates) treated with or without L15 EPS for 7 days (scale bar = 200 μm). 26 shows the results of real-time PCR analysis of the expression of osteogenic differentiation marker genes (RUNX2, COL1A1, ALP) in primary osteoblast precursors. 27 shows the thickness of calvaria cultured in hDPSC culture medium treated with or without 10 μg/mL L15 EPS. Evaluated by H&E staining (scale bar = 25 μm, *p < 0.05. N = 3).
도 28은 여러 종류의 유산균 추출물의 hDPSC의 골 형성 분화를 촉진여부를 나타낸다. L7.5, L15, L28, L30, L31 또는 M34 추출물 처리 후하고 ALP 염샘한 후의 디지털 이미지 및 L15 및 L28의 명시야 현미경 사진을 나타낸다(스케일 바 = 200μm).28 shows whether various types of lactic acid bacteria extracts promote osteogenic differentiation of hDPSCs. Digital images after treatment with L7.5, L15, L28, L30, L31 or M34 extracts and after ALP salting and bright field micrographs of L15 and L28 are shown (scale bar = 200 μm).
도 29는 Enterococcus lactis L28 균주 유래 세포외다당체(EPS)처리한 후 hDPSC 배양물의 칼슘 침착 여부를 나타낸다. ARS 염색후의 디지털 이미지이다. 29 shows the presence or absence of calcium deposition in hDPSC cultures after treatment with Enterococcus lactis L28 strain-derived extracellular polysaccharide (EPS). This is a digital image after ARS staining.
본 발명은 엔테로코커스 속 균주 유래 다당체의 용도에 관한 것이다.The present invention relates to the use of a polysaccharide derived from a strain of the genus Enterococcus.
본 발명은 엔테로코커스 속(Enterococcus genus) 균주 유래의 다당체를 포함하는 골 형성 촉진용 조성물을 제공한다.The present invention provides a composition for promoting osteogenesis comprising a polysaccharide derived from Enterococcus genus strain.
다당체는 당이 여러 개 붙어 있는 화합 물질을 말하는 것으로, 탄수화물의 구성 성분으로, 유산균을 포함한 미생물이 생육 과정에서 생산 및 배출하는 고분자 다당체라면 그 종류에는 제한되지 않는 것으로, 구체적으로는 세포외다당체(exopolysaccharides, EPS)일 수 있으나, 이에 제한되는 것은 아니다.Polysaccharide refers to a compound substance in which several sugars are attached, and is a component of carbohydrates, and is not limited to the type of polymeric polysaccharide produced and released by microorganisms, including lactic acid bacteria, during the growth process. Specifically, extracellular polysaccharide ( exopolysaccharides, EPS), but is not limited thereto.
본 발명의 다당체는 엔테로코커스 속(Enterococcus genus) 균주로부터 유래된 것이면 충분하며, 균주의 종류는 한정되지 않는다. The polysaccharide of the present invention is sufficient as long as it is derived from Enterococcus genus strain, and the strain type is not limited.
상기 엔테로코커스 속 균주는 예컨대 엔테로코커스 페시움(Enterococcus faecium) 또는 엔테로코커스 락티스(Enterococcus latics)일 수 있다.The Enterococcus genus strain may be, for example , Enterococcus faecium or Enterococcus lactis.
일 실시예에 따르면, 엔테로코커스 속(Enterococcus genus) 균주 유래의 다당체는 엔테로코커스 페시움 L-15 유래 다당체이다. 엔테로코커스 페시움 L-15는 한국생명공학연구원 생물자원센터에 2018.3.15자로 기탁된 균주로, 기탁번호는 KCTC13498BP이다.According to one embodiment, the polysaccharide derived from Enterococcus genus strain is a polysaccharide derived from Enterococcus pesium L-15. Enterococcus pesium L-15 is a strain deposited at the Biological Resource Center of the Korea Research Institute of Bioscience and Biotechnology on March 15, 2018, and the accession number is KCTC13498BP.
기탁기관명 : 한국생명공학연구원 생물자원센터(KCTC)Name of depositor: Korea Research Institute of Bioscience and Biotechnology Biological Resources Center (KCTC)
수탁번호 : KCTC13498BPAccession number: KCTC13498BP
수탁일자 : 20180315Entrusted date: 20180315
본 발명의 엔테로코커스 속 균주 유래의 다당체는 다음과 같이, 엔테로코커스 속 균주가 포함된 성장 배지를 원심분리하는 단계; 상기 성장 배지의 상층액을 분리하는 단계; 상기 분리된 상층액에 트리클로로 아세트산(trichloroaceticacid)을 첨가하여 배양하는 단계; 상기 배양된 상층액을 무수 에탄올과 혼합 배양하여 침전물을 얻는 단계; 및 상기 침전물을 투석하는 단계를 포함하는 엔테로코커스 속 균주 유래의 다당체의 제조방법으로 얻어진 것일 수 있다.The polysaccharide derived from the Enterococcus genus strain of the present invention is obtained by centrifuging the growth medium containing the Enterococcus genus strain as follows; Separating the supernatant of the growth medium; culturing by adding trichloroacetic acid to the separated supernatant; Obtaining a precipitate by mixing and culturing the cultured supernatant with absolute ethanol; And it may be obtained by a method for producing a polysaccharide derived from a strain of the genus Enterococcus comprising dialysis of the precipitate.
상기 엔테로코커스 속 균주가 포함된 성장 배지의 원심분리는 8,000 내지 12,000 xg에서 15 내지 25분 동안 수행되는 것일 수 있다.Centrifugation of the growth medium containing the strain of Enterococcus may be performed at 8,000 to 12,000 xg for 15 to 25 minutes.
상기 분리된 상층액에 트리클로로 아세트산(trichloroaceticacid)을 첨가하여 배양시 배양 조건은 34 내지 38℃에서 30분 내지 2시간 동안 배양하는 것일 수 있다.When cultured by adding trichloroacetic acid to the separated supernatant, culture conditions may be incubation at 34 to 38° C. for 30 minutes to 2 hours.
상기 분리된 상층액에 트리클로로 아세트산을 첨가하여 배양함으로써 단백질과 핵산을 변성시킬 수 있다.Proteins and nucleic acids may be denatured by adding trichloroacetic acid to the separated supernatant and culturing the supernatant.
상기 배양된 상층액과 무수 에탄올의 혼합 부피 비율은 1: 1.5 내지 3일 수 있다. 혼합 배양 조건은 3 내지 5℃에서 1일 내지 2일 동안 배양하는 것일 수 있다. 상기 혼합 배양을 통해 침전물이 형성된다.The mixing volume ratio of the cultured supernatant and absolute ethanol may be 1: 1.5 to 3. The mixed culture conditions may be incubation at 3 to 5°C for 1 to 2 days. A precipitate is formed through the mixed culture.
투석은 상기 혼합 배양 침전물을 ddH2O에 녹인 후 3 내지 5℃에서 18 내지 54 시간 동안 수행하는 것일 수 있다. 투석을 통해 침전물 내 미량의 단백질을 제거할 수 있다.Dialysis may be carried out at 3 to 5 °C for 18 to 54 hours after dissolving the mixed culture precipitate in ddH 2 O. Dialysis can remove trace amounts of protein in the precipitate.
투석 후 침전물을 동결 건조하는 단계를 더 포함할 수 있다.A step of freeze-drying the precipitate after dialysis may be further included.
본 발명의 엔테로코커스 속 균주 유래의 다당체는 줄기세포의 골 분화를 유도하여 골 형성을 촉진할 수 있다.The polysaccharide derived from the Enterococcus genus strain of the present invention can promote bone formation by inducing bone differentiation of stem cells.
본 발명의 엔테로코커스 속 균주 유래의 다당체가 골 형성 분화를 유도할 수 있는 줄기세포는, 중간엽 줄기세포(MSC)일 수 있다.Stem cells capable of inducing osteogenic differentiation by the polysaccharide derived from the strain of the genus Enterococcus of the present invention may be mesenchymal stem cells (MSC).
본 발명의 중간엽 줄기세포는 신경능선, 골수, 지방조직, 말초혈액 유래일 수 있으나, 이에 제한되는 것은 아니다.Mesenchymal stem cells of the present invention may be derived from neural crest, bone marrow, adipose tissue, or peripheral blood, but are not limited thereto.
상기 줄기세포는 치수줄기세포(dental pulp stem cell, DPSC)일 수 있고, 예컨대 신경능선 유래의 치수줄기세포일 수 있다.The stem cells may be dental pulp stem cells (DPSC), for example, dental pulp stem cells derived from neural crest.
치수 줄기세포는 치수 조직에 존재하는 줄기세포를 의미하고, 치수 및 상아질 재생에 필요한 다분화성 줄기세포로서, 골, 지방 조직, 뉴런, 상아질 등 다양한 조직으로 분화할 수 있다. 구체적으로, 상기 치수 줄기세포는 인간의 치아로부터 분리된 인간 치수 줄기세포(hDPSC)일 수 있고, 자가 (autologous), 동종 (allogenic), 이종(xenogenic) 세포일 수 있다.Dental pulp stem cells refer to stem cells present in dental pulp tissues, and are multipotent stem cells necessary for dental pulp and dentin regeneration, and can differentiate into various tissues such as bone, adipose tissue, neurons, and dentin. Specifically, the dental pulp stem cells may be human dental pulp stem cells (hDPSC) isolated from human teeth, and may be autologous, allogenic, or xenogenic cells.
일 실시예에 따르면, 엔테로코커스 속 균주 유래의 다당체는 줄기세포의 골 형성 관련 유전자의 발현 수준을 증가시킬 수 있다. 예를 들어, RUNX2, ALP, 및 COL1A1 유전자 발현 수준을 증가시킬 수 있다.According to one embodiment, the polysaccharide derived from the Enterococcus genus strain can increase the expression level of bone formation-related genes in stem cells. For example, it can increase RUNX2, ALP, and COL1A1 gene expression levels.
일 실시예에 따르면, 엔테로코커스 속 균주 유래의 다당체는 줄기세포의 골 형성 관련 단백질의 발현 수준을 증가시킬 수 있다. 예를 들어, BMP4, RUNX2, 및 ALP 단백질의 발현 수준을 증가시킬 수 있다.According to one embodiment, the polysaccharide derived from Enterococcus genus strain can increase the expression level of bone formation-related proteins in stem cells. For example, the expression levels of BMP4, RUNX2, and ALP proteins can be increased.
일 실시예에 따르면, 엔테로코커스 속 균주 유래의 다당체는 줄기세포의 p38 MAPK(mitogen-activated protein kinases) 경로를 활성화시킬 수 있다.According to one embodiment, polysaccharides derived from strains of the genus Enterococcus can activate the p38 mitogen-activated protein kinases (MAPK) pathway of stem cells.
구체적으로, 엔테로코커스 속 균주 유래의 다당체는 줄기세포의 p38의 인산화를 증가시킬 수 있다.Specifically, the polysaccharide derived from Enterococcus genus strain can increase the phosphorylation of p38 in stem cells.
골 형성 촉진용 조성물 내 다당체의 농도는 0.5 내지 25 μg/ml, 0.5 내지 20 μg/ml, 0.5 내지 15 μg/ml, 0.5 내지 10 μg/ml, 0.5 내지 5 μg/ml, 0.5 내지 2 μg/ml, 0.5 내지 1 μg/ml, 1 내지 10 μg/ml, 1 내지 5 μg/ml, 1 내지 3 μg/ml, 1 내지 2 μg/ml 또는 1 내지 1.5 μg/ml일 수 있으나, 이에 제한되는 것은 아니다.The concentration of the polysaccharide in the composition for promoting bone formation is 0.5 to 25 μg/ml, 0.5 to 20 μg/ml, 0.5 to 15 μg/ml, 0.5 to 10 μg/ml, 0.5 to 5 μg/ml, 0.5 to 2 μg/ml. ml, 0.5 to 1 μg/ml, 1 to 10 μg/ml, 1 to 5 μg/ml, 1 to 3 μg/ml, 1 to 2 μg/ml, or 1 to 1.5 μg/ml, but is limited thereto It is not.
본 발명의 골 형성 촉진용 조성물은 예를 들면 인공골, 인공관절, 골 고정재, 골 대체제, 골 수복재, 골 충진재 또는 골 이식재 중 하나 이상의 에 사용될 수 있다.The composition for promoting bone formation of the present invention may be used, for example, for at least one of artificial bone, artificial joint, bone fixation material, bone substitute, bone restoration material, bone filling material, and bone graft material.
예컨대, 골 이식재나 골 대체체는 협의로는 골 조직 내의 공간을 충진하기 위하여 사용될 수도 있고, 광의로는 뼈나 치아의 일부를 대체하는데 사용될 수 있으므로, 상기 골 형성 촉진용 조성물은 압착, 압축, 가압접촉, 패킹, 압박, 굳힘 등의 방법을 사용하여 퍼티, 페이스트, 주형 가능한 스트립, 블록, 칩 등의 형태로 사용될 수 있고, 화학적 첨가물을 이용하여, 겔, 과립, 페이스트, 정제, 펠렛 등의 형태로 제형화하여 사용될 수 있으며, 분말 형태로도 사용될 수 있다.For example, since a bone graft material or a bone substitute can be used to fill a space in a bone tissue in a narrow sense or to replace a part of a bone or tooth in a broad sense, the composition for promoting bone formation can be compressed, compressed, or pressed. It can be used in the form of putty, paste, moldable strip, block, chip, etc. using methods such as contact, packing, pressing, and hardening, and using chemical additives, it can be used in the form of gel, granule, paste, tablet, pellet, etc. It can be formulated and used, and can also be used in powder form.
본 발명은 엔테로코커스 속(Enterococcus genus) 균주 유래의 다당체를 포함하고 골 형성 또는 골 재생에 의해 치료 가능한 골 질환의 예방 또는 치료용 약학 조성물을 제공한다.The present invention provides a pharmaceutical composition for the prevention or treatment of bone disease, which contains a polysaccharide derived from Enterococcus genus strain and is treatable by bone formation or bone regeneration.
엔테로코커스 속(Enterococcus genus) 균주 유래의 다당체에 대해서는 앞서 설명한 골 형성 촉진물에서 설명한 것과 동일하다.Enterococcus genus ( Enterococcus genus ) The strain-derived polysaccharide is the same as that described in the bone formation promoter described above.
엔테로코커스 속 균주 유래의 다당체는 앞서 설명한 방법으로 제조된 것일 수 있다. The polysaccharide derived from Enterococcus genus strain may be prepared by the method described above.
일 실시예에 따르면, 엔테로코커스 속(Enterococcus genus) 균주 유래의 다당체는 엔테로코커스 페시움 L-15(기탁번호 KCTC13498BP)유래 다당체이다.According to one embodiment, the polysaccharide derived from Enterococcus genus strain is a polysaccharide derived from Enterococcus pesium L-15 (accession number KCTC13498BP).
본 발명의 약학 조성물은 골 소실로 인해 골밀도의 증가가 필요한 골 질환, 골 형성 또는 골 재생에 의해 치료 가능한 골 질환 예방 또는 치료에 사용될 수 있다.The pharmaceutical composition of the present invention can be used for the prevention or treatment of bone diseases requiring an increase in bone density due to bone loss, and bone diseases treatable by bone formation or bone regeneration.
예컨대 상기 질환은 치주질환(periodontal disease), 치주염(periodontitis), 치조골 질환(alveolar bone disease), 골다공증(osteoporosis), 골연화증(osteomalacia), 골감소증(osteopenia), 골위축(bone atrophy), 골관절염(osteoarthritis), 류마티스 관절염(rhermatoid arthritis), 골용해(osteolysis), 섬유이형성증(fibrous dysplasia), 파제트병(Paget's disease), 골 형성부전증(osteogenesis imperfect) 및 고칼슘혈증(hypercalcemia)으로 이루어진 군에서 선택된 적어도 하나일 수 있으나, 이에 제한되는 것은 아니다.For example, the diseases include periodontal disease, periodontitis, alveolar bone disease, osteoporosis, osteomalacia, osteopenia, bone atrophy, and osteoarthritis. , At least one selected from the group consisting of rheumatoid arthritis, osteolysis, fibrous dysplasia, Paget's disease, bone formation imperfect and hypercalcemia It may be, but is not limited thereto.
일 실시예에 따르면, 상기 약학 조성물은 골 형성 촉진이 필요한 대상체에 투여됨으로써, 골 재생 또는 골 형성을 유도하여 뼈의 두께를 증가시키거나 치조골 재생(alveolar bone regeneration)을 촉진시킬 수 있다.According to one embodiment, the pharmaceutical composition may increase bone thickness or promote alveolar bone regeneration by inducing bone regeneration or bone formation by being administered to a subject in need of promoting bone formation.
본 발명의 약학 조성물은 따른 조성물은 약제학적으로 유효한 양으로 투여될 수 있다.The pharmaceutical composition according to the present invention may be administered in a pharmaceutically effective amount.
본 발명에 있어서, "약제학적으로 유효한 양"은 의학적 치료에 적용 가능한 합리적인 수혜 또는 위험 비율로 질환을 치료하기에 충분한 양을 의미하며, 유효 용량 수준은 환자의 질환의 종류, 중증도, 약물의 활성, 약물에 대한 민감도, 투여 시간, 투여 경로 및 배출 비율, 치료 기간, 동시 사용되는 약물을 포함한 요소 및 기타 의학 분야에 잘 알려진 요소에 따라 결정될 수 있다. 본 발명의 조성물은 개별 치료제로 투여하거나 다른 치료제와 병용하여 투여될 수 있고 종래의 치료제와는 순차적 또는 동시에 투여될 수 있으며, 단일 또는 다중 투여될 수 있다. 상기 요소들을 모두 고려하여 부작용 없이 최소한의 양으로 최대 효과를 얻을 수 있는 양을 투여하는 것이 중요하며, 이는 당업자에 의해 용이하게 결정될 수 있다.In the present invention, "pharmaceutically effective amount" means an amount sufficient to treat a disease with a reasonable benefit or risk ratio applicable to medical treatment, and the effective dose level is the type, severity, and activity of the drug of the patient's disease , sensitivity to the drug, time of administration, route of administration and excretion rate, duration of treatment, factors including concomitantly used drugs, and other factors well known in the medical field. The composition of the present invention may be administered as an individual therapeutic agent or in combination with other therapeutic agents, may be administered sequentially or simultaneously with conventional therapeutic agents, and may be administered single or multiple times. Considering all of the above factors, it is important to administer an amount that can obtain the maximum effect with the minimum amount without side effects, which can be easily determined by those skilled in the art.
구체적으로, 본 발명에 따른 조성물의 유효량은 환자의 나이, 성별, 체중에 따라 달라질 수 있으며, 일반적으로는 체중 1 kg 당 0.1 mg 내지 100 mg, 바람직하게는 0.2 mg 내지 17 mg을 매일 또는 격일로 투여하거나 1일 1회 내지 3회로 나누어 투여할 수 있다. 그러나 투여 경로, 비만의 중증도, 성별, 체중, 연령 등에 따라서 증감될 수 있으므로 상기 투여량이 어떠한 방법으로도 본 발명의 범위를 한정하는 것은 아니다.Specifically, the effective amount of the composition according to the present invention may vary depending on the patient's age, sex, and weight, and is generally 0.1 mg to 100 mg per 1 kg of body weight, preferably 0.2 mg to 17 mg per day or every other day. It may be administered or divided into 1 to 3 times a day. However, since it may increase or decrease depending on the route of administration, severity of obesity, gender, weight, age, etc., the dosage is not limited to the scope of the present invention in any way.
상기 조성물을 제제화할 경우, 보통 사용하는 충진제, 증량제, 결합제, 습윤제, 붕해제, 계면활성제 등의 희석제 또는 부형제를 사용하여 제조된다.When formulating the composition, it is prepared using diluents or excipients such as commonly used fillers, extenders, binders, wetting agents, disintegrants, and surfactants.
경구 투여를 위한 고형제제에는 정제, 환자, 산제, 과립제, 캡슐제, 트로키제 등이 포함되며, 이러한 고형제제는 본 발명의 유산균 사균체 프로피오니바크테리움 후레우덴레이키 MJ2 (Propionibacterium freudenreichii KCCM12272P)에 적어도 하나 이상의 부형제 예를 들면, 전분, 탄산칼슘, 수크로스(sucrose) 또는 락토오스(lactose) 또는 젤라틴 등을 섞어 조제된다. 또한, 단순한 부형제 외에 마그네슘 스티레이트, 탈크 같은 윤활제들도 사용된다. 경구 투여를 위한 액상제제로는 현탁제, 내용액제, 유제 또는 시럽제 등이 해당되는데, 흔히 사용되는 단순 희석제인 물, 리퀴드 파라핀 이외에 여러 가지 부형제, 예를 들면 습윤제, 감미제, 방향제, 보존제 등이 포함될 수 있다.Solid preparations for oral administration include tablets, patients, powders, granules, capsules, troches, etc., and these solid preparations are suitable for the dead lactic acid bacteria Propionibacterium freudenreiki MJ2 (Propionibacterium freudenreichii KCCM12272P) of the present invention It is prepared by mixing at least one or more excipients, such as starch, calcium carbonate, sucrose or lactose, or gelatin. In addition to simple excipients, lubricants such as magnesium styrate and talc are also used. Liquid preparations for oral administration include suspensions, solutions for oral administration, emulsions, or syrups. In addition to water and liquid paraffin, which are commonly used simple diluents, various excipients such as wetting agents, sweeteners, aromatics, and preservatives may be included. can
비경구 투여를 위한 제제에는 멸균된 수용액, 비수성용제, 현탁용제, 유제, 동결 건조 제제, 좌제 등이 포함된다.Formulations for parenteral administration include sterilized aqueous solutions, non-aqueous solutions, suspension solutions, emulsions, freeze-dried formulations, suppositories, and the like.
비수성용제, 현탁 용제로는 프로필렌 글리콜, 폴리에틸 렌글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사가능한 에스테르 등이 사용될 수 있다. 좌제의 기제로는 위텝솔(witepsol), 마크로골, 트윈(tween)61, 카카오지, 라우린지, 글리세롤, 젤라틴 등이 사용될 수 있다.Propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable esters such as ethyl oleate may be used as non-aqueous solvents and suspending solvents. As a base for the suppository, witepsol, macrogol, tween 61, cacao butter, laurin paper, glycerol, gelatin, and the like may be used.
본 발명의 약학 조성물은 단독으로, 또는 수술, 방사선 치료, 호르몬 치료, 화학 치료 및 생물학적 반응조절제를 사용하는 방법들과 병용하여 사용할 수 있다.The pharmaceutical composition of the present invention may be used alone or in combination with methods using surgery, radiation therapy, hormone therapy, chemotherapy, and biological response modifiers.
이하, 실시예를 통해 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail through examples.
방법method
1. Enterococcus faecium L15(E. faecium L15) 추출물의 준비1. Preparation of Enterococcus faecium L15 (E. faecium L15) extract
E. faecium L15 균주(KCTC13498BP, "L15")는 NeoRegen Biotech(경기도 수원)에서 입수했다. L15 추출물 준비 과정은 "Kim H, Park S, Kim K, Ku S, Seo J, Roh S. Enterococcus faecium L-15 cell-free extract improves the chondrogenic differentiation of human dental pulp stem cells. Int J Mol Sci. 2019;20(3):624.”을 참조하였다. 이 균주는 원래 가자미를 함유한 한국의 전통 쌀 발효 식품에서 분리되었다. L15를 TSB(tryptic soy broth) 배지(Hardy Diagnostics, Santa Maria, CA, USA)에서 18시간 동안 35℃로 배양했다. 배양된 L15를 수확하고 PBS(phosphate-buffered saline)로 3회 세척하고 이중 탈이온수(ddH2O)에 재현탁시켰다. 세척된 L15를 얼음 위에서 30분 동안 초음파 처리(Sonics, Strat-ford, CT, USA)했다. 세포 파편을 제거하기 위해 12,000xg에서 10분 동안 원심분리했다. 상층액을 0.45μm 필터에 통과시키고 밤새 -80℃에서 동결건조 시켰으며, 이후 실험에 사용하기 위해 PBS로 재구성(reconstitution)했다.E. faecium strain L15 (KCTC13498BP, “L15”) was obtained from NeoRegen Biotech (Suwon, Gyeonggi-do). L15 extract preparation process is described in “Kim H, Park S, Kim K, Ku S, Seo J, Roh S. Enterococcus faecium L-15 cell-free extract improves the chondrogenic differentiation of human dental pulp stem cells. Int J Mol Sci. 2019 ;20(3):624.” This strain was originally isolated from a traditional Korean rice fermented food containing flounder. L15 was cultured in TSB (tryptic soy broth) medium (Hardy Diagnostics, Santa Maria, CA, USA). ) for 18 hours at 35° C. The cultured L15 was harvested, washed three times with phosphate-buffered saline (PBS) and resuspended in double deionized water (ddH2O), and the washed L15 was sonicated on ice for 30 minutes. (Sonics, Stratford, CT, USA), centrifuged at 12,000xg for 10 min to remove cell debris, supernatant was passed through a 0.45 μm filter and lyophilized overnight at -80 °C, then It was reconstituted in PBS for use in experiments.
2. E. faecium 및 E. lactis 유래 EPS 정제2. Purification of EPS from E. faecium and E. lactis
E. faecium 및 E. lactis 유래 세포외다당체(exopolysaccharide, EPS)는 에탄올 침전법을 사용하여 정제되었다.E. faecium and E. lactis-derived exopolysaccharides (EPS) were purified using ethanol precipitation.
E. faecium L15 및 E. lactis L28을 각각 TSB(tryptic soy broth) 배지(Hardy Diagnostics, Santa Maria, CA, USA)에서 18시간 동안 35℃로 배양했다. 배양된 L15 및 L28dmf 20분 동안 10,000xg에서 원심분리하여 성장 배지로부터 분리하였다. 원심분리 후 상층액을 채취하여 최종 농도 14% trichloroacetic acid를 첨가하여 단백질과 핵산을 변성시킨 후 37℃에서 1시간 동안 배양하였다. 2:1의 비율로 용액을 4℃에서 1일 동안 인큐베이션하여 응집시켰다. 침전물을 ddH2O에 용해하고 4℃에서 24-48시간 동안 투석하여 미량의 단백질을 제거했다. 침전물을 -80℃에서 동결건조 시켰으며, 이후 실험에 사용하기 위해 PBS로 재구성(reconstitution)했다.E. faecium L15 and E. lactis L28 were cultured in TSB (tryptic soy broth) medium (Hardy Diagnostics, Santa Maria, CA, USA) for 18 hours at 35°C, respectively. Cultured L15 and L28dmf were separated from the growth medium by centrifugation at 10,000xg for 20 minutes. After centrifugation, the supernatant was collected, denatured proteins and nucleic acids by adding 14% trichloroacetic acid to the final concentration, and then incubated at 37°C for 1 hour. The solution at a ratio of 2:1 was incubated at 4° C. for 1 day to allow aggregation. The precipitate was dissolved in ddH 2 O and dialyzed at 4° C. for 24-48 hours to remove trace amounts of protein. The precipitate was lyophilized at -80 °C and then reconstituted with PBS for use in experiments.
3. EPS 분획3. EPS fractionation
위에서 정제하여 얻은 crude EPS를 대상으로 크기 배제 크로마토그래피를 수행하였다. 정제된 crude EPS를 PBS로 평형화된 HiLoad™ 16/600 Superdex 200(GE Healthcare, Chicago, IL, USA) 컬럼에 적용했다. 용출은 1 ml min-1의 유속으로 수행하였고, 프랙션 컬렉터(fraction collector)를 사용하여 2 ml의 분획(fraction)을 얻었다.Size exclusion chromatography was performed on the crude EPS obtained by purification as above. The purified crude EPS was applied to a HiLoad™ 16/600 Superdex 200 (GE Healthcare, Chicago, IL, USA) column equilibrated with PBS. Elution was performed at a flow rate of 1 ml min -1 , and a fraction of 2 ml was obtained using a fraction collector.
4. 인간 치수 줄기 세포(hDPSC)의 분리 및 배양4. Isolation and culture of human dental pulp stem cells (hDPSCs)
인간 상악 중심 과잉치(Human maxillary central supernumerary teeth, n = 3)는 IRB가 승인한 지침에 따라 서울대학교 치과병원에서 발치하였다. 발치된 치아는 절단 디스크를 사용하여 CEJ(cemento-enamel junction) 주변을 짧게 절단했다. 치수 조직이 노출되고 크라운에서 부드럽게 분리되었다. 펄프 조직을 메스 블레이드로 1mm2 조각으로 잘게 썰고 12웰 배양 접시에 옮겼다. 그런 다음 세포를 10% 소 태아 혈청(FBS; Hyclone Laboratories Inc.)이 보충된 Minimum essential medium eagle―alpha modification(α-MEM; Hyclone Laboratories Inc., Logan, UT, USA)에서 성장시키고 5% CO2 및 37℃ 조건의 인큐베이터에서 배양했다. 배양 배지는 3일마다 교체되었다.Human maxillary central supernumerary teeth (n = 3) were extracted at Seoul National University Dental Hospital according to IRB-approved guidelines. The extracted tooth was cut short around the cemento-enamel junction (CEJ) using a cutting disc. The pulp tissue was exposed and gently separated from the crown. The pulp tissue was minced with a scalpel blade into 1 mm 2 pieces and transferred to a 12-well culture dish. Cells were then grown in Minimum essential medium eagle—alpha modification (α-MEM; Hyclone Laboratories Inc., Logan, UT, USA) supplemented with 10% fetal bovine serum (FBS; Hyclone Laboratories Inc.) and 5% CO 2 . and cultured in an incubator at 37°C. The culture medium was changed every 3 days.
5. 형광 활성화 세포 분류(FACS)를 이용한 hDPSC의 특성분석5. Characterization of hDPSCs using Fluorescence Activated Cell Sorting (FACS)
FACS는 hDPSC를 식별하기 위해 수행되었다. 계대 3 및 8에서 hDPSC를 분리하고 5% FBS를 함유하는 차가운 PBS에 재현탁했다. 세포를 CD10-플루오레세인 이소티오시아네이트(FITC), CD29-Alexa 488, CD44-FITC, CD73-FITC, CD90-FITC, D105-FITC, CD14-알로피코시아닌(allophycocyanin, APC), CD34-Alexa 647, CD45-APC 및 CD31-APC에 대한 단일 클론 항체와 함께 얼음 위에서 30분 동안 배양했다.FACS was performed to identify hDPSCs. At passages 3 and 8, hDPSCs were isolated and resuspended in cold PBS containing 5% FBS. Cells were stained with CD10-fluorescein isothiocyanate (FITC), CD29-Alexa 488, CD44-FITC, CD73-FITC, CD90-FITC, D105-FITC, CD14-allophycocyanin (APC), CD34- Incubated for 30 min on ice with monoclonal antibodies to Alexa 647, CD45-APC and CD31-APC.
FACSVerse(Becton Dickinson, Franklin Lakes, NJ, USA)를 사용하여 분석을 수행했다.Analysis was performed using the FACSVerse (Becton Dickinson, Franklin Lakes, NJ, USA).
6. hDPSC의 골 형성 분화6. Osteogenic Differentiation of hDPSCs
hDPSC는 10% FBS(Hyclone Laboratories Inc.), 100nM 덱사메타손(Sigma-Aldrich), 10mM β-글리세로포스페이트(Sigma-Aldrich) 및 0.05mM 아스코르브산 2-포스페이트(Sigma-Aldrich)가 보충된 α-MEM(Hyclone Laboratories Inc.)으로 구성된 골 형성 분화 배지에서 12웰 배양 접시에 15,000 cells/cm2로 시딩되었다. 2~3일마다 배지를 교체하고 28일 동안 골 형성 분화를 진행하였다.hDPSCs were grown in α-MEM supplemented with 10% FBS (Hyclone Laboratories Inc.), 100 nM dexamethasone (Sigma-Aldrich), 10 mM β-glycerophosphate (Sigma-Aldrich) and 0.05 mM ascorbic acid 2-phosphate (Sigma-Aldrich). (Hyclone Laboratories Inc.) was seeded at 15,000 cells/cm 2 in a 12-well culture dish in an osteogenic differentiation medium. The medium was replaced every 2 to 3 days, and osteogenic differentiation proceeded for 28 days.
7. 세포 생존율 분석7. Cell viability assay
세포 생존율은 수용성 tetrazolium salt(WST) 방법을 기반으로 하는 EZ-Cytox kit(Daeil Lab Service, Seoul, Korea)를 사용하여 측정하였다. hDPSC를 96웰 플레이트에 웰당 1 x 104 세포의 밀도로 시딩했다. 세포는 3일 동안 다양한 농도의 L15 추출물과 배양되었고, 3일 및 7일 동안 L15 EPS가 포함된 골 형성 분화 배지에서 배양되었다. WST 용액을 각 웰에 첨가했다. 혼합물을 37℃에서 30분 동안 배양하였다. 각 웰의 흡광도는 Emax Plus Microplate 판독기(Molecular Devices, Sunnyvale, CA, USA)를 사용하여 450nm에서 측정되었다.Cell viability was measured using the EZ-Cytox kit (Daeil Lab Service, Seoul, Korea) based on the water-soluble tetrazolium salt (WST) method. hDPSCs were seeded in 96-well plates at a density of 1×10 4 cells per well. Cells were cultured with various concentrations of L15 extract for 3 days and cultured in osteogenic differentiation medium containing L15 EPS for 3 and 7 days. WST solution was added to each well. The mixture was incubated at 37° C. for 30 minutes. The absorbance of each well was measured at 450 nm using an Emax Plus Microplate reader (Molecular Devices, Sunnyvale, CA, USA).
8. 역전사 중합효소 연쇄 반응(RT-PCR) 및 실시간 PCR8. Reverse transcription polymerase chain reaction (RT-PCR) and real-time PCR
RT-PCR과 real-time PCR은 유전자 발현을 정량화하는 데 사용되었다. PureLink™ RNA Mini 키트(Life Technologies, Camarillo, CA, USA)를 사용하여 펠렛에서 총 RNA를 추출했다. cDNA 합성은 제조사의 지침에 따라 M-MLV 역전사효소(Promega Corporation, Fitchburg, WI, USA)를 사용하여 수행되었다. Real-time PCR은 SYBR Pre-mix Ex Taq™ II(Takara, Tokyo, Japan)와 7500 Real-Time PCR System(Applied Biosystems, Carlsbad, CA, USA)을 사용하여 수행되었다. 사용된 프라이머는 표 1에 나열되어 있다. PCR 반응은 95℃에서 30초 동안 수행한 다음 95℃에서 5초 및 60℃에서 34초의 증폭 주기를 40회 수행했다. 발현 정도를 측정하기 위해 비교 CT법을 사용하였다. Glyceralde-hyde 3-phosphate dehydrogenase(GAPDH)는 정상화를 위한 하우스키핑 유전자로 사용되었다.RT-PCR and real-time PCR were used to quantify gene expression. Total RNA was extracted from the pellet using the PureLink™ RNA Mini kit (Life Technologies, Camarillo, CA, USA). cDNA synthesis was performed using M-MLV reverse transcriptase (Promega Corporation, Fitchburg, WI, USA) according to the manufacturer's instructions. Real-time PCR was performed using SYBR Pre-mix Ex Taq™ II (Takara, Tokyo, Japan) and 7500 Real-Time PCR System (Applied Biosystems, Carlsbad, CA, USA). Primers used are listed in Table 1. The PCR reaction was performed at 95°C for 30 seconds followed by 40 amplification cycles of 95°C for 5 seconds and 60°C for 34 seconds. A comparative CT method was used to measure the expression level. Glyceralde-hyde 3-phosphate dehydrogenase (GAPDH) was used as a housekeeping gene for normalization.
표 1은 실시간(real timer) PCR에 사용한 프라이머 서열에 관한 것이다Table 1 relates to primer sequences used for real-time PCR.
구별Distinction | 유전자gene | 정방향 프라이머forward primer | 역방향 프라이머reverse primer |
인간 유전자human genes | Runx2Runx2 | CAGACCAGCAGCACTCCATA(서열번호 1)CAGACCAGCAGCACTCCATA (SEQ ID NO: 1) | TTCAATATGGTCGCCAAACA(서열번호 7)TTCAATATGGTCGCCAAACA (SEQ ID NO: 7) |
COL1A1COL1A1 | GCGAGAGCATGACCGATGGA(서열번호 2)GCGAGAGCATGACCGATGGA (SEQ ID NO: 2) | GCGGATCTCGATCTCGTTGGA(서열번호 8)GCGGATCTCGATCTCGTTGGA (SEQ ID NO: 8) | |
ALPALP | GGGATAAAGCAGGTCTTGGGGTGC(서열번호 3)GGGATAAAGCAGGTCTTGGGGTGC (SEQ ID NO: 3) | CGCTTGGTCTCGCCAGTACTTGG(서열번호 9)CGCTTGGTCTCGCCAGTACTTGG (SEQ ID NO: 9) | |
GAPDHGAPDH | ACATGTTCCAATATGATTCC(서열번호 4)ACATGTTCCAATATGATCCC (SEQ ID NO: 4) | TGGACTCCACGACGTACTCA(서열번호 10)TGGACTCCACGACGTACTCA (SEQ ID NO: 10) | |
마우스 유전자mouse gene | Runx2Runx2 | 인간 프라이머와 동일(서열번호 1)Same as human primer (SEQ ID NO: 1) | 인간 프라이머와 동일(서열번호 7)Same as human primer (SEQ ID NO: 7) |
COL1A1COL1A1 | 인간 프라이머와 동일(서열번호 2)Same as human primer (SEQ ID NO: 2) | 인간 프라이머와 동일(서열번호 8)Same as human primer (SEQ ID NO: 8) | |
ALPALP | CCAACTCTTTTGTGCCAGAGA(서열번호 5)CCAACTCTTTTTGTGCCAGAGA (SEQ ID NO: 5) | GGCTACATTGGTGTTGAGCTTTT(서열번호 11)GGCTACATTGGTGTTGAGCTTTT (SEQ ID NO: 11) | |
GAPDHGAPDH | AGGTCGGTGTGAACGGATTTG(서열번호 6)AGGTCGGTGTGAACGGATTTG (SEQ ID NO: 6) | TGTAGACCATGTAGTTGAGGTCA(서열번호 12)TGTAGACCATGTAGTTGAGGTCA (SEQ ID NO: 12) |
9. 알리자린 레드 S(ARS) 염색9. Alizarin Red S (ARS) Staining
골 형성 분화 평가는 칼슘 침착물을 가시화하기 위해 ARS 염색을 이용하였다. 분화된 세포를 4% 파라포름알데히드(PFA)로 고정하고 알리자린 레드 용액(Sigma-Aldrich)으로 염색한 후 디지털 카메라(Canon, Tokyo, Japan)로 촬영하여 도립현미경(EVOS™ XL Core Imaging system, Thermo Scientific™, Waltham, MA, USA)으로 관찰하였다. Osteogenic differentiation evaluation used ARS staining to visualize calcium deposits. The differentiated cells were fixed with 4% paraformaldehyde (PFA), stained with alizarin red solution (Sigma-Aldrich), and then photographed with a digital camera (Canon, Tokyo, Japan) using an inverted microscope (EVOS™ XL Core Imaging system, Thermo Scientific™, Waltham, MA, USA).
10. 알칼리성 인산분해효소(ALP) 염색10. Alkaline phosphatase (ALP) staining
ALP 염색은 제조사의 지침에 따라 StemAb Alkaline Phosphatase Staining Kit II(Reprocell, Beltsville, MD, USA)를 사용하여 수행되었다. L15 추출물 또는 세포외다당체(EPS)의 유무에 관계없이 hDPSC 및 마우스 calvaria 유래 조골세포를 7일 동안 처리하였다. 세포를 고정 용액을 사용하여 2분 동안 고정하고, PBS로 2회 세척하고, ALP 염색 용액으로 30분 동안 배양하였다. ALP 염색 용액을 제거하고 도립 현미경(EVOS™ XL Core Imaging System; Thermo Scientific™, Waltham, MA, USA)으로 염색을 관찰했다.ALP staining was performed using the StemAb Alkaline Phosphatase Staining Kit II (Reprocell, Beltsville, MD, USA) according to the manufacturer's instructions. hDPSCs and mouse calvaria-derived osteoblasts were treated for 7 days with or without the L15 extract or extracellular polysaccharide (EPS). Cells were fixed for 2 minutes using fixative solution, washed twice with PBS, and incubated for 30 minutes with ALP staining solution. The ALP staining solution was removed and staining was observed with an inverted microscope (EVOS™ XL Core Imaging System; Thermo Scientific™, Waltham, MA, USA).
11. 웨스턴 블롯 분석11. Western blot analysis
세포질 및 핵 단백질은 proteinase inhibitor(MedChemExpress, Monmouth Junction, NJ, USA) 및 phosphatase inhibitor(MedChemExpress)가 포함된 NE-PER™ Nuclear and Cytoplasmic Extraction Reagents(Thermo Scientific™)로 추출되었다. 세포 용해물을 소듐 도데실 설페이트 폴리아크릴아미드 겔 전기영동으로 분리하고 다음의 표시된 항체로 면역블롯팅했다. bone morphogenetic protein-4 (BMP4; Cusabio Life Science, Wuhan, China), runx family transcription factor 2 (Runx2; Novus Biologicals, Centennial, Colorado, USA), ALP (R&D Systems, Minneapolis, MN, USA), 세포외 신호조절 인산화효소(ERK; Cell Signaling Technology), phospho-ERK (p-ERK; Cell Signaling Technology), c-Jun N-terminal kinase (JNK; Cell Signaling Technology), p-JNK (Cell Signaling Technology), p38 (Cell Signaling Technology), p-p38 (Cell Signaling Technology), β-catenin (Cell Sign- aling Technology), Lamin B1 (Santa Cruz Biotechnology, Dallas, TX, USA), and GAPDH (BioLegend, SanDiego, CA, USA). GAPDH는 정상화를 위한 하우스키핑 유전자로 사용되었다. 라민 B1은 핵 β-카테닌의 정상화에 사용되었다.Cytoplasmic and nuclear proteins were extracted with NE-PER™ Nuclear and Cytoplasmic Extraction Reagents (Thermo Scientific™) containing proteinase inhibitor (MedChemExpress, Monmouth Junction, NJ, USA) and phosphatase inhibitor (MedChemExpress). Cell lysates were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis and immunoblotted with the following indicated antibodies. bone morphogenetic protein-4 (BMP4; Cusabio Life Science, Wuhan, China), runx family transcription factor 2 (Runx2; Novus Biologicals, Centennial, Colorado, USA), ALP (R&D Systems, Minneapolis, MN, USA), extracellular signal Regulated kinase (ERK; Cell Signaling Technology), phospho-ERK (p-ERK; Cell Signaling Technology), c-Jun N-terminal kinase (JNK; Cell Signaling Technology), p-JNK (Cell Signaling Technology), p38 ( Cell Signaling Technology), p-p38 (Cell Signaling Technology), β-catenin (Cell Signaling Technology), Lamin B1 (Santa Cruz Biotechnology, Dallas, TX, USA), and GAPDH (BioLegend, SanDiego, CA, USA) . GAPDH was used as a housekeeping gene for normalization. Lamin B1 was used to normalize nuclear β-catenin.
12. Calvaria 유래 조골 세포 전구체 분리12. Isolation of Calvaria-derived osteoblast precursors
마우스 calvaria에서 일차 조골 세포 전구체를 분리하였다. calvaria는 4일 된 마우스에서 분리되었고 30분 동안 37℃에서 0.25% 트립신 및 0.2% 콜라게나아제로 소화되었다. 방출된 세포를 100mm 접시에 플레이팅하고, 10% FBS(Hyclone Laboratories Inc.)가 보충된 α-MEM(Hyclone Laboratories Inc.)에서 성장시키고, 5% CO2 및 37℃ 조건의 인큐베이터에서 배양했다. 3일 후, 부착 세포를 조골세포 전구체로 사용하였다. 조골세포 전구체는 L15 세포외다당체(EPS)를 사용한 골 형성 분화에 사용되었다.Primary osteoblast precursors were isolated from mouse calvaria. Calvaria were isolated from 4-day-old mice and digested with 0.25% trypsin and 0.2% collagenase at 37°C for 30 min. The released cells were plated in 100 mm dishes, grown in α-MEM (Hyclone Laboratories Inc.) supplemented with 10% FBS (Hyclone Laboratories Inc.), and cultured in an incubator under 5% CO 2 and 37°C conditions. After 3 days, adherent cells were used as osteoblast precursors. Osteoblast precursors were used for osteogenic differentiation using L15 extracellular polysaccharide (EPS).
13. 마우스 calvarial 기관 배양 및 hematoxylin 및 eosin 염색13. Mouse calvarial organ culture and hematoxylin and eosin staining
출생 후 4일째에 ICR 마우스의 calvaria를 12웰 배양 플레이트의 그리드에서 배양했다. Calvaria는 10μg/mL L15 EPS가 있거나 없는 hDPSC 배양 배지에서 배양되었다. 배지는 2일마다 교체하고 7일째에 칼바리아를 수확하였다. 칼바리아는 4% PFA에서 24시간 동안 고정하고 14% EDTA에서 2일 동안 탈회하였다. 석회화 제거 후, calvaria는 파라핀 왁스에 매립되었다. 블록을 800μm 깊이로 트리밍하고 정중선에서 10μm(Leica Microsystems, Wetzlar, Germany) 두께로 시상 절단했다. 절단된 조직을 헤마톡실린과 에오신(H&E)으로 염색하고 Olympus BX50 현미경(Olympus, Tokyo, Japan)으로 명시야 현미경 사진을 캡처했다. 골두께는 Image Pro 소프트웨어(Media Cybernetics Inc., Silver Spring, MD, USA)를 사용하여 특정 위치[calvaria의 정중선 봉합사에서 1mm 떨어진]에서 얻은 시상 절편에서 측정되었다.At postnatal day 4, calvaria from ICR mice were cultured on grids in 12-well culture plates. Calvaria were cultured in hDPSC culture medium with or without 10 μg/mL L15 EPS. The medium was changed every 2 days and calvarias were harvested on the 7th day. Calvaria were fixed in 4% PFA for 24 hours and decalcified in 14% EDTA for 2 days. After decalcification, calvaria were embedded in paraffin wax. Blocks were trimmed to a depth of 800 μm and cut sagittal to a thickness of 10 μm (Leica Microsystems, Wetzlar, Germany) at the midline. The cut tissue was stained with hematoxylin and eosin (H&E) and bright field micrographs were captured with an Olympus BX50 microscope (Olympus, Tokyo, Japan). Bone thickness was measured on sagittal slices obtained at a specific location (1 mm away from the midline suture of calvaria) using Image Pro software (Media Cybernetics Inc., Silver Spring, MD, USA).
14. 통계 분석14. Statistical Analysis
결과는 평균 ± SD로 표시되었다. 데이터는 Tukey post hoc 테스트 및 GraphPad Prism V5.0 소프트웨어(GraphPad Software, La Jolla, CA, USA)를 사용한 Student's t-test에 이어 일원 분산 분석(ANOVA)을 사용하여 분석되었다. *p<0.05, **p<0.01, ***p<0.001을 통계적 유의성으로 정의하였다.Results were expressed as mean ± SD. Data were analyzed using one-way analysis of variance (ANOVA) followed by Tukey post hoc test and Student's t-test using GraphPad Prism V5.0 software (GraphPad Software, La Jolla, CA, USA). *p<0.05, **p<0.01, ***p<0.001 were defined as statistical significance.
결과result
1. 인간 치수 줄기 세포(hDPSC)의 특성1. Characteristics of human dental pulp stem cells (hDPSCs)
hDPSC의 특성을 조사하기 위해 형광 활성화 세포 분류(FACS)에 의해 중간엽, 조혈 및 내피 줄기 세포의 세포표면항원무리(cluster of differentiation, CD) 마커를 각각 분석하였다(도 1 내지 4, 표 2 및 3). hDPSC의 계대 3에서 세포는 높은 수준의 중간엽 줄기세포 마커를 발현했지만 조혈 및 내피 줄기 세포 마커의 낮은 수준을 발현했다 (표 2 및 3). hDPSC의 계대 8에서 표면 마커 발현 비율은 계대 3의 비율과 유사했다(표 3). 따라서 3-8 계대 세포가 골 형성 분화에 사용되었다.To investigate the characteristics of hDPSCs, cell surface antigen cluster (cluster of differentiation, CD) markers of mesenchymal, hematopoietic and endothelial stem cells were analyzed by fluorescence-activated cell sorting (FACS), respectively (Figs. 1 to 4, Table 2 and 3). At passage 3 of hDPSCs, the cells expressed high levels of mesenchymal stem cell markers but low levels of hematopoietic and endothelial stem cell markers (Tables 2 and 3). The ratio of surface marker expression in hDPSCs at passage 8 was similar to that at passage 3 (Table 3). Therefore, passage 3–8 cells were used for osteogenic differentiation.
표 2 및 3은 도 1 및 2에서 측정한 각각의 줄기세포 CD 마커들이 발현하는 세포의 비율을 백분율로 정량 표기한 것이다. (n=3).Tables 2 and 3 quantify the percentage of cells expressing each of the stem cell CD markers measured in FIGS. 1 and 2 . (n=3).
구분division | CD10CD10 | CD29CD29 | CD44CD44 | CD73CD73 | CD90CD90 |
CD105 |
계대수 3passage number 3 | 68.67±7.5668.67±7.56 |
99.02 ±0.5599.02 ±0.55 |
99.15 ±0.5999.15 ±0.59 |
99.10 ±0.5599.10 ±0.55 |
99.07 ±0.4899.07 ±0.48 |
80.45 ±17.9980.45 ±17.99 |
계대수 8passage number 8 | 76.66±8.7676.66±8.76 |
99.08 ±0.9099.08 ±0.90 |
99.21 ±0.7899.21 ±0.78 |
99.16 ±0.8299.16 ±0.82 |
95.18 ±5.1495.18 ±5.14 |
74.29 ±33.7374.29 ±33.73 |
구분division | CD14CD14 | CD31CD31 | CD34CD34 |
CD45 |
계대수 3passage number 3 | 31.16±14.5531.16±14.55 | 1.24±0.171.24±0.17 | 4.5±2.74.5±2.7 | 1.24±0.321.24±0.32 |
계대수 8passage number 8 | 33.10±9.9133.10±9.91 | 1.89±0.611.89±0.61 | 5.75±2.295.75±2.29 | 1.84±0.651.84±0.65 |
2. hDPSC 생존에 대한 L15 추출물의 효과2. Effect of L15 extract on hDPSC survival
도 5에 나타낸 바와 같이, hDPSC 생존율은 L15 추출물 5㎍/mL 이상 처리시 유의하게 감소하였다(p < 0.001). 이는 1㎍/mL의 L15 추출물 농도가 세포에 무독성임을 시사했으며, 이 농도는 후속 골 형성 분화에 사용되었다.As shown in Fig. 5, the survival rate of hDPSCs was significantly decreased when the L15 extract was treated with 5 μg/mL or more (p < 0.001). This suggested that an L15 extract concentration of 1 μg/mL was non-toxic to the cells, and this concentration was used for subsequent osteogenic differentiation.
3. L15 추출물의 hDPSC의 골 형성 분화 촉진 효과3. Effect of L15 extract on promoting osteogenic differentiation of hDPSCs
hDPSC를 L15 추출물과 함께 7일 동안 배양한 후 ALP 염색을 수행하였다. 대조군에 비해 L15 추출물 처리군에서 더 강렬한 ALP 염색이 관찰되었다(도 6). 28일 동안 골 형성 분화 후 ARS 염색으로 칼슘 침착을 조사하였다. 대조군에 비해 L15 추출물 처리군에서 강화된 칼슘 침착이 관찰되었다(도 7). 골 형성 관련 유전자인 RUNX2, ALP(alkaline phosphatase), I형 콜라겐(COL1A1)의 발현 정도를 Real-Time PCR로 조사하였다. RUNX2, ALP 및 COL1A1의 발현 수준은 L15 추출물 처리 후 유의하게 증가하였다(도 8; p < 0.05, p < 0.01). 골 형성 관련 단백질(BMP4(Bone morphogenetic protein 4), RUNX2, ALP)의 수준에 대한 L15 추출물의 효과는 웨스턴 블롯으로 확인되었다(도 9). BMP4, RUNX2 및 ALP 발현은 대조군에 비해 L15 추출물 처리군에서 유의하게 증가하였다(도 10).After culturing hDPSCs with the L15 extract for 7 days, ALP staining was performed. More intense ALP staining was observed in the L15 extract treatment group compared to the control group (FIG. 6). Calcium deposition was examined by ARS staining after osteogenic differentiation for 28 days. Enhanced calcium deposition was observed in the L15 extract treatment group compared to the control group (FIG. 7). The expression levels of RUNX2, alkaline phosphatase (ALP), and type I collagen (COL1A1), which are bone formation-related genes, were investigated by real-time PCR. The expression levels of RUNX2, ALP and COL1A1 increased significantly after treatment with the L15 extract (FIG. 8; p < 0.05, p < 0.01). The effect of the L15 extract on the levels of bone formation-related proteins (Bone morphogenetic protein 4 (BMP4), RUNX2, ALP) was confirmed by Western blotting (FIG. 9). BMP4, RUNX2 and ALP expressions were significantly increased in the L15 extract treatment group compared to the control group (FIG. 10).
4. 세포독성을 나타내지 않는 최적의 EPS 농도 선별4. Selection of the optimal EPS concentration that does not show cytotoxicity
E. faecium L15의 정제된 세포외다당체(EPS)를 크기 배제 크로마토그래피를 사용하여 분획화하였다. 도 11에 도시된 바와 같이, L15 EPS는 저분자량 분획에 해당하는 단일 피크로 나타났다. L15 EPS가 hDPSC의 생존력에 미치는 영향을 확인하기 위해 수용성 테트라졸륨염(WST) 분석을 수행했다. 6가지 농도의 L15 EPS(0, 1, 2.5, 5, 10 및 25㎍/ml)를 3일 동안 처리했다. 그룹 간에는 유의한 차이가 없었다(도 12 (a)). 동일한 농도의 L15 EPS를 7일 동안 골 형성 분화 배지로 처리했다. hDPSC의 생존력은 2.5㎍/mL 이상의 L15 EPS 처리에 의해 유의하게 감소하였다(도 12 (b)). 이 결과는 2.5μg/ml L15 EPS의 연속 처리가 hDPSC의 골 형성 분화에 독성이 있음을 시사했으며, 1μg/ml L15 EPS가 후속 실험에 사용되었다.The purified extracellular polysaccharide (EPS) of E. faecium L15 was fractionated using size exclusion chromatography. As shown in FIG. 11, L15 EPS appeared as a single peak corresponding to the low molecular weight fraction. A water-soluble tetrazolium salt (WST) assay was performed to determine the effect of L15 EPS on the viability of hDPSCs. Six concentrations of L15 EPS (0, 1, 2.5, 5, 10 and 25 μg/ml) were treated for 3 days. There was no significant difference between groups (Fig. 12 (a)). The same concentration of L15 EPS was treated with osteogenic differentiation medium for 7 days. The viability of hDPSCs was significantly decreased by treatment with 2.5 μg/mL or more L15 EPS (FIG. 12 (b)). This result suggested that continuous treatment with 2.5 μg/ml L15 EPS was toxic to the osteogenic differentiation of hDPSCs, and 1 μg/ml L15 EPS was used in subsequent experiments.
5. E. faecium L15 유래 EPS(L15 EPS)의 hDPSC의 골 형성 분화 촉진 효과5. E. faecium L15-derived EPS (L15 EPS) promotes osteogenic differentiation of hDPSCs
7일 동안 L15 EPS를 처리한 후 ALP 염색을 수행하였다. ALP 염색은 대조군보다 L15 EPS 처리군에서 더 강렬한 것으로 관찰되었다(도 13). 골 형성 분화 28일 후 ARS 염색을 이용해 칼슘 축적을 조사하였다. 칼슘 침착은 대조군에 비해 L15 EPS 처리군에서 유의하게 증가하였다(도 14). 골 형성 관련 유전자인 RUNX2, ALP, COL1A1의 발현 수준은 대조군에 비해 L15 EPS 처리군에서 유의하게 상향 조절되었다(도 15). BMP4, RUNX2 및 ALP의 단백질 발현 수준은 L15 EPS 처리군에서 현저하게 증가하였다(도 16, 17; p < 0.05).After treatment with L15 EPS for 7 days, ALP staining was performed. ALP staining was observed to be more intense in the L15 EPS treated group than in the control group (FIG. 13). Calcium accumulation was examined using ARS staining after 28 days of osteogenic differentiation. Calcium deposition was significantly increased in the L15 EPS treatment group compared to the control group (FIG. 14). The expression levels of RUNX2, ALP, and COL1A1, which are bone formation-related genes, were significantly up-regulated in the L15 EPS-treated group compared to the control group (FIG. 15). The protein expression levels of BMP4, RUNX2 and ALP were significantly increased in the L15 EPS treatment group (FIGS. 16 and 17; p < 0.05).
6. L15 EPS의 hDPSC 골 형성 분화 촉진 경로(p38 MAPK 경로)6. hDPSC osteogenic differentiation promotion pathway of L15 EPS (p38 MAPK pathway)
경로 단백질(즉, ERK, p-ERK, JNK, p-JNK, p38, p-p38, 세포질 β-카테닌 및 핵 β-카테닌) 수준에 대한 L15 EPS의 효과는 웨스턴 블롯 분석에 의해 확인되었다. (도 18). β-카테닌의 핵 전위는 Wnt 경로 활성화의 주요 특징이기 때문에, β-카테닌의 핵 및 세포질 분획을 수행하였다. ERK, p-ERK, JNK, p-JNK, 세포질 β-카테닌 및 핵 β-카테닌의 발현 수준은 변하지 않았다(도 18 내지 20). p-p38의 발현은 L15 EPS 처리군에서 상향 조절되었다(도 19). p-p38/p38의 비율은 대조군에 비해 L15 EPS 처리군에서 크게 증가하였다(도 19). 이러한 결과는 L15 EPS 처리 후에 p38 MAPK 경로가 활성화되었음을 보여주었다.The effect of L15 EPS on pathway protein (ie, ERK, p-ERK, JNK, p-JNK, p38, p-p38, cytoplasmic β-catenin and nuclear β-catenin) levels was confirmed by Western blot analysis. (FIG. 18). Since nuclear translocation of β-catenin is a key feature of Wnt pathway activation, nuclear and cytoplasmic fractionation of β-catenin was performed. Expression levels of ERK, p-ERK, JNK, p-JNK, cytoplasmic β-catenin and nuclear β-catenin did not change (FIGS. 18 to 20). The expression of p-p38 was upregulated in the L15 EPS treatment group (FIG. 19). The p-p38/p38 ratio was significantly increased in the L15 EPS treated group compared to the control group (FIG. 19). These results showed that the p38 MAPK pathway was activated after L15 EPS treatment.
7. p38 MAPK 경로의 억제를 통한 hDPSC의 L15 EPS 유발 골 형성 분화 억제7. Inhibition of L15 EPS-induced osteogenic differentiation of hDPSCs through inhibition of the p38 MAPK pathway
L15 EPS로 유도된 hDPSC의 골 형성 분화에서 p38의 역할은 p38 억제제 SB203580(SB)을 사용하여 추가로 분석되었다. SB의 효율은 웨스턴 블롯에 의해 확인되었다(도 21). SB는 p-p38/p38의 비율을 현저하게 감소시켰다(도 22). p-p38/p38의 비율은 대조군에 비해 EPS 처리군에서 현저하게 상향 조절되었다(도 22). 정량적 분석은 SB + EPS 처리군에서 p-p38/p38의 비율이 억제되었음을 보여주었다(도 22). 14일 동안 골 형성 분화 후, RUNX2 및 ALP 단백질 발현 수준은 EPS 처리군에 비해 SB + EPS 처리군에서 유의하게 하향 조절되었다(도 23, 24).The role of p38 in the osteogenic differentiation of hDPSCs induced with L15 EPS was further analyzed using the p38 inhibitor SB203580 (SB). The efficiency of SB was confirmed by Western blot (FIG. 21). SB significantly decreased the p-p38/p38 ratio (FIG. 22). The ratio of p-p38/p38 was significantly up-regulated in the EPS-treated group compared to the control group (FIG. 22). Quantitative analysis showed that the ratio of p-p38/p38 was suppressed in the SB + EPS treatment group (FIG. 22). After osteogenic differentiation for 14 days, RUNX2 and ALP protein expression levels were significantly downregulated in the SB + EPS treated group compared to the EPS treated group (FIG. 23, 24).
8. calvaria의 조골 세포 전구체에 대한 L15 EPS의 효과8. Effect of L15 EPS on osteoblast progenitors in calvaria
L15 EPS가 조골세포 전구체의 골 형성 분화를 개선하는지 여부를 확인하기 위해 분리된 조골세포 전구체를 L15 EPS를 처리한 또는 처리하지 않은 골 형성 배지에서 7일 동안 배양했다. ALP 강도는 대조군에 비해 L15 EPS 처리군에서 더 강하였다(도 25). L15 EPS로 골 형성 분화 14일 후, mRNA 수준을 qPCR로 분석했다. RUNX2, COL1A1 및 ALP의 mRNA 수준은 L15 EPS로 유의하게 상향 조절되었다(도 26).To examine whether L15 EPS improves the osteogenic differentiation of osteoblast precursors, isolated osteoblast precursors were cultured in an osteogenic medium treated with or without L15 EPS for 7 days. ALP intensity was stronger in the L15 EPS treated group compared to the control group (FIG. 25). After 14 days of osteogenic differentiation into L15 EPS, mRNA levels were analyzed by qPCR. The mRNA levels of RUNX2, COL1A1 and ALP were significantly up-regulated with L15 EPS (FIG. 26).
9. calvarial 기관 배양 모델에서 L15 EPS의 골 형성 촉진 확인9. Confirmation of promotion of bone formation by L15 EPS in a calvarial organ culture model
골 형성에 대한 L15 EPS의 효과는 calvarial ex vivo 기관 배양을 이용하여 확인되었다. H&E 염색을통해 L15 EPS가 골의 두께를 증가시키는 것을 확인했다(도 27). 이러한 결과는 L15 EPS가 골 형성을 유도할 수 있음을 나타낸다.The effect of L15 EPS on bone formation was confirmed using calvarial ex vivo organ culture. Through H&E staining, it was confirmed that L15 EPS increased bone thickness (FIG. 27). These results indicate that L15 EPS can induce osteogenesis.
10. 다양한 균주 유래 EPS의 골 형성 분화 촉진 여부10. Whether EPS derived from various strains promotes osteogenic differentiation
(1) 여러 균주 유래 추출물의 골 형성 분화 촉진 여부(1) Whether extracts derived from various strains promote osteogenic differentiation
엔테로코커스 속 균주인 Enterococcus faecium L15(L15) 및 Enterococcus lactis L28(L28) 추출물뿐만 아니라, 다른 속에 속하는 Lactococcus lactis L7.5(L7.5), Lactobacillus plantarum L30(L30, KCTC 3107), Bifidobacterium longum L31(L31) 및 Lactobacillus pentosus MS4(MS4) 균주 추출물의 골 형성 촉진 효과를 확인하기 위해 실험을 진행하였다.Enterococcus faecium L15 (L15) and Enterococcus lactis L28 (L28) extracts, as well as Lactococcus lactis L7.5 (L7.5), Lactobacillus plantarum L30 (L30, KCTC 3107), and Bifidobacterium longum L31 (which belong to other genera). L31) and Lactobacillus pentosus MS4 (MS4) strain extracts were tested to confirm the bone formation promoting effect.
위의 L15 및 L28 균주는 각각 TSB(tryptic soy broth) 배지에서, L7.5, L30, L31 및 MS4 균주들은 각각 MRS broth 배지에서 35℃ 조건으로 18시간 동안 배양했다. 배양된 균주들을 수확하고 PBS(phosphate-buffered saline)로 3회 세척하고 이중 탈이온수(ddH2O)에 재현탁시켰다. 세척된 균주들을 얼음 위에서 30분 동안 초음파 처리(Sonics, Strat-ford, CT, USA)했다. 세포 파편을 제거하기 위해 12,000xg에서 10분 동안 원심분리했다. 상층액을 0.45μm 필터에 통과시키고 밤새 -80℃에서 동결건조 시켜 각 균주 유래 추출물을 얻었다. 이후 실험에 사용하기 위해 PBS로 재구성(reconstitution)했다. 각 추출물을 전술한 것과 동일한 방법으로 hDPSC에 처리(각 추출물 7일 동안 처리, 추출물의 농도: 1ug/ml)하여 28일 동안 배양했으며, 이후 ALP 염색을 통해 골 형성 분화 여부를 관찰하였다.The L15 and L28 strains were cultured in TSB (tryptic soy broth) medium, and the L7.5, L30, L31 and MS4 strains were cultured in MRS broth medium at 35° C. for 18 hours, respectively. The cultured strains were harvested, washed three times with phosphate-buffered saline (PBS), and resuspended in double deionized water (ddH2O). Washed strains were sonicated (Sonics, Strat-ford, CT, USA) for 30 minutes on ice. It was centrifuged at 12,000xg for 10 minutes to remove cell debris. The supernatant was passed through a 0.45 μm filter and lyophilized overnight at -80 ° C to obtain extracts derived from each strain. Then, it was reconstituted with PBS for use in experiments. Each extract was treated with hDPSCs in the same manner as described above (each extract treated for 7 days, extract concentration: 1 ug/ml) and cultured for 28 days, and then osteogenic differentiation was observed by ALP staining.
그 결과, 도 28에 도시된 바와 같이 엔테로코커스 속 균주인 L15 및 L28의 추출물이 처리된 군에서만 골 형성 분화가 관찰되었다.As a result, as shown in FIG. 28, osteogenic differentiation was observed only in the group treated with the extracts of L15 and L28 strains belonging to the genus Enterococcus.
이를 통해 엔테로코커스 속 외에 다른 균주의 추출물(또는 이에 포함된 세포외다당체)은 골 형성 분화 촉진 효과가 없음을 확인하였다.Through this, it was confirmed that extracts of strains other than Enterococcus (or the extracellular polysaccharide contained therein) had no osteogenic differentiation promoting effect.
(2) 칼슘 침착 여부 관찰을 통한 L28 유래 세포외다당체의 골 형성 촉진 효과 확인(2) Confirmation of the bone formation-promoting effect of L28-derived extracellular polysaccharide by observing calcium deposition
L28 유래 세포외다당체(L28 EPS)를 전술한 것과 동일한 방법(L28 EPS 7일 동안 처리, L28 EPS의 농도: 1ug/ml)으로 hDPSC에 처리하여 28일 동안 배양하였으며, 이후 ARS 염색을 통해 칼슘 침착 여부를 확인하였다.L28-derived extracellular polysaccharide (L28 EPS) was treated with hDPSCs in the same manner as described above (L28 EPS treatment for 7 days, concentration of L28 EPS: 1 ug/ml) and cultured for 28 days, followed by calcium deposition through ARS staining. It was confirmed whether
그 결과, 도 29에 도시된 바와 같이 아무것도 처리하지 않은 대조군(Control)과 달리, L28 EPS 처리군에서 칼슘 침착이 확인되었다. 이를 통해, 엔테로코커스 페시움 뿐만 아니라 엔테로코코스 속에 해당하는 엔테로코커스 락티스 균주 유래 세포외다당체의 골 형성 분화 촉진효과가 있음을 알 수 있었다.As a result, as shown in FIG. 29 , calcium deposition was confirmed in the L28 EPS-treated group, unlike the control group that was not treated with anything. Through this, it was found that not only Enterococcus pesium but also the exopolysaccharide derived from the Enterococcus lactis strain corresponding to the genus Enterococcus had an osteogenic differentiation promoting effect.
Claims (12)
- 엔테로코커스 속(Enterococcus genus) 균주 유래의 다당체를 포함하는 골 형성 촉진용 조성물.Enterococcus genus ( Enterococcus genus ) A composition for promoting osteogenesis comprising a strain-derived polysaccharide.
- 청구항 1에 있어서, 상기 엔테로코커스 속 균주는 엔테로코커스 페시움(Enterococcus faecium) 또는 엔테로코커스 락티스(Enterococcus lactis)인, 골 형성 촉진용 조성물.The method according to claim 1, Enterococcus genus strain Enterococcus faecium ( Enterococcus faecium ) or Enterococcus lactis ( Enterococcus lactis ) of, the composition for promoting bone formation.
- 청구항 1에 있어서, 상기 다당체는 엔테로코커스 속 균주가 포함된 성장 배지를 원심분리하는 단계; The method according to claim 1, wherein the polysaccharide comprises the steps of centrifuging a growth medium containing Enterococcus strain;상기 성장 배지의 상층액을 분리하고, 상기 분리된 상층액에 트리클로로 아세트산을 첨가하여 배양하는 단계;Separating the supernatant of the growth medium and culturing by adding trichloroacetic acid to the separated supernatant;상기 배양된 상층액을 무수 에탄올과 혼합 배양하여 침전물을 얻는 단계 및 Obtaining a precipitate by mixing and culturing the cultured supernatant with absolute ethanol and상기 침전물을 투석하는 단계를 포함하는 다당체의 제조방법으로 얻어진 것인, 골 형성 촉진용 조성물.A composition for promoting bone formation obtained by a method for producing a polysaccharide comprising the step of dialysis of the precipitate.
- 청구항 1에 있어서, 상기 다당체의 농도는 0.5 내지 2 μg/ml인, 골 형성 촉진용 조성물.The method according to claim 1, wherein the concentration of the polysaccharide is 0.5 to 2 μg / ml, the composition for promoting bone formation.
- 청구항 1에 있어서, 줄기세포의 골 분화를 유도하는, 골 형성 촉진용 조성물.The composition for promoting bone formation according to claim 1, which induces bone differentiation of stem cells.
- 청구항 5에 있어서, 상기 줄기세포는 치수 줄기세포인 골 형성 촉진용 조성물.The composition for promoting bone formation according to claim 5, wherein the stem cells are dental pulp stem cells.
- 청구항 1에 있어서, 인공골, 인공관절, 골 고정재, 골 대체제, 골 수복재, 골 충진재 또는 골 이식재 중 하나 이상에 사용되는, 골 형성 촉진용 조성물.The composition for promoting bone formation according to claim 1, which is used for at least one of artificial bone, artificial joint, bone fixation material, bone substitute, bone restoration material, bone filling material, or bone graft material.
- 엔테로코커스 속(Enterococcus genus) 균주 유래의 다당체를 포함하고 골 형성 또는 골 재생에 의해 치료 가능한 골 질환 예방 또는 치료용 약학 조성물.Enterococcus genus ( Enterococcus genus ) A pharmaceutical composition for the prevention or treatment of bone diseases that includes a strain-derived polysaccharide and is treatable by bone formation or bone regeneration.
- 청구항 8에 있어서, 상기 엔테로코커스 속 균주는 엔테로코커스 페시움(Enterococcus faecium) 또는 엔테로코커스 락티스(Enterococcus lactis)인, 골 질환 예방 또는 치료용 약학 조성물.The pharmaceutical composition for preventing or treating bone diseases according to claim 8, wherein the Enterococcus genus strain is Enterococcus faecium or Enterococcus lactis .
- 청구항 8에 있어서, 상기 다당체는 엔테로코커스 속 균주가 포함된 성장 배지를 원심분리하는 단계; The method according to claim 8, wherein the polysaccharide comprises centrifuging a growth medium containing Enterococcus strain;상기 성장 배지의 상층액을 분리하고, 상기 분리된 상층액에 트리클로로 아세트산을 첨가하여 배양하는 단계;Separating the supernatant of the growth medium and culturing by adding trichloroacetic acid to the separated supernatant;상기 배양된 상층액을 무수 에탄올과 혼합 배양하여 침전물을 얻는 단계 및 Obtaining a precipitate by mixing and culturing the cultured supernatant with absolute ethanol and상기 침전물을 투석하는 단계를 포함하는 다당체의 제조방법으로 얻어진 것인, 골 질환 예방 또는 치료용 약학 조성물.A pharmaceutical composition for preventing or treating bone diseases obtained by a method for producing a polysaccharide comprising the step of dialysis of the precipitate.
- 청구항 8에 있어서, 상기 다당체의 농도는 0.5 내지 2 μg/ml인, 골 질환 예방 또는 치료용 약학 조성물.The pharmaceutical composition for preventing or treating bone diseases according to claim 8, wherein the concentration of the polysaccharide is 0.5 to 2 μg/ml.
- 청구항 8에 있어서, 상기 골 질환은 치주질환(periodontal disease), 치주염(periodontitis), 치조골 질환(alveolar bone disease), 골다공증(osteoporosis), 골연화증(osteomalacia), 골감소증(osteopenia), 골위축(bone atrophy), 골관절염(osteoarthritis), 류마티스 관절염(rhermatoid arthritis), 골용해(osteolysis), 섬유이형성증(fibrous dysplasia), 파제트병(Paget's disease), 골 형성부전증(osteogenesis imperfect) 및 고칼슘혈증(hypercalcemia)으로 이루어진 군에서 선택되는 적어도 하나인, 골 질환 예방 또는 치료용 약학 조성물.The method according to claim 8, wherein the bone disease is periodontal disease, periodontitis, alveolar bone disease, osteoporosis, osteomalacia, osteopenia, bone atrophy , osteoarthritis, rheumatoid arthritis, osteolysis, fibrous dysplasia, Paget's disease, osteogenesis imperfect and hypercalcemia At least one selected from, a pharmaceutical composition for preventing or treating bone disease.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2021-0147674 | 2021-11-01 | ||
KR20210147674 | 2021-11-01 | ||
KR1020220143827A KR20230064568A (en) | 2021-11-01 | 2022-11-01 | Uses of polysaccharide derived from strains belonging to the Enterococcus genus |
KR10-2022-0143827 | 2022-11-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023075571A1 true WO2023075571A1 (en) | 2023-05-04 |
Family
ID=86158359
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2022/016933 WO2023075571A1 (en) | 2021-11-01 | 2022-11-01 | Use of polysaccharides derived from strains of enterococcus genus |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023075571A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170333488A1 (en) * | 2014-11-10 | 2017-11-23 | University Of Pittsburgh - Of The Commonwealth System Of Higher Education | Stem cell-based technologies for avian skeletal tissue engineering and regeneration |
KR101938865B1 (en) * | 2016-11-03 | 2019-01-16 | 주식회사 쎌바이오텍 | Composition for preventing or treating bone disease, obesity and lipid-related metabolic disease |
KR102102267B1 (en) * | 2019-11-20 | 2020-04-22 | 주식회사 류마앤정바이오 | Pharmaceutical and fool composition comprising lactic acid bacteria complex and N-acetylglucosamin as an active ingredient for preventing or treating skin moisturizing, osteoporosis |
KR20200050002A (en) * | 2018-10-30 | 2020-05-11 | 주식회사 종근당바이오 | Composition for Preventing or Treating Secondary Osteoporosis Comprising Probiotics |
KR20220053216A (en) * | 2020-10-22 | 2022-04-29 | (주)네오리젠바이오텍 | Composition for promoting born formation |
-
2022
- 2022-11-01 WO PCT/KR2022/016933 patent/WO2023075571A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170333488A1 (en) * | 2014-11-10 | 2017-11-23 | University Of Pittsburgh - Of The Commonwealth System Of Higher Education | Stem cell-based technologies for avian skeletal tissue engineering and regeneration |
KR101938865B1 (en) * | 2016-11-03 | 2019-01-16 | 주식회사 쎌바이오텍 | Composition for preventing or treating bone disease, obesity and lipid-related metabolic disease |
KR20200050002A (en) * | 2018-10-30 | 2020-05-11 | 주식회사 종근당바이오 | Composition for Preventing or Treating Secondary Osteoporosis Comprising Probiotics |
KR102102267B1 (en) * | 2019-11-20 | 2020-04-22 | 주식회사 류마앤정바이오 | Pharmaceutical and fool composition comprising lactic acid bacteria complex and N-acetylglucosamin as an active ingredient for preventing or treating skin moisturizing, osteoporosis |
KR20220053216A (en) * | 2020-10-22 | 2022-04-29 | (주)네오리젠바이오텍 | Composition for promoting born formation |
Non-Patent Citations (3)
Title |
---|
COLLINS FRASER L., RIOS-ARCE NAIOMY D., SCHEPPER JONATHAN D., PARAMESWARAN NARAYANAN, MCCABE LAURA R.: "The Potential of Probiotics as a Therapy for Osteoporosis", MICROBIOLOGY SPECTRUM, vol. 5, no. 4, 25 August 2017 (2017-08-25), pages 1 - 16, XP093061521, DOI: 10.1128/microbiolspec.BAD-0015-2016 * |
KIM HYEWON, OH NAEUN, KWON MIJIN, KWON OH-HEE, KU SEOCKMO, SEO JEONGMIN, ROH SANGHO: "Exopolysaccharide of Enterococcus faecium L15 promotes the osteogenic differentiation of human dental pulp stem cells via p38 MAPK pathway", STEM CELL RESEARCH & THERAPY, vol. 13, no. 1, XP093061524, DOI: 10.1186/s13287-022-03151-0 * |
KIM HYEWON, PARK SANGKYU, KIM KICHUL, KU SEOCKMO, SEO JEONGMIN, ROH SANGHO: "Enterococcus faecium L-15 Cell-Free Extract Improves the Chondrogenic Differentiation of Human Dental Pulp Stem Cells", INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, vol. 20, no. 3, 31 January 2019 (2019-01-31), pages 624, XP055924018, DOI: 10.3390/ijms20030624 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Mo et al. | Prolonged exposure to bacterial toxins downregulated expression of toll-like receptors in mesenchymal stromal cell-derived osteoprogenitors | |
WO2018074758A2 (en) | Method for sorting highly effective stem cells for treating immune disorder | |
Songsiripradubboon et al. | Stimulation of dentin regeneration by using acemannan in teeth with lipopolysaccharide-induced pulp inflammation | |
WO2010126194A1 (en) | Autologous and allogenic adipose-derived stromal stem cell composition for treating fistulas | |
WO2015194753A1 (en) | Composition for differentiating non-dental mesenchymal stem cells into odontoblasts, containing cpne7 protein, and differentiation method using same, and pharmaceutical composition for regenerating pulp tissue and treating dentin hyperesthesia, using same | |
WO2019117633A1 (en) | Cosmetic composition and pharmaceutical composition for alleviating atopic dermatitis, hair loss, and wounds or reducing skin wrinkles | |
Obeid et al. | Mesenchymal stem cells promote hard-tissue repair after direct pulp capping | |
Aboushady et al. | Comparative study of the osteogenic potential of mesenchymal stem cells derived from different sources | |
WO2014210037A2 (en) | Composition of mesenchymal stem cells | |
Liu et al. | Exercise affects biological characteristics of mesenchymal stromal cells derived from bone marrow and adipose tissue | |
WO2021066549A1 (en) | Lactobacillus acidophilus kbl409 strain and use thereof | |
Cristaldi et al. | Growth and osteogenic differentiation of discarded gingiva-derived mesenchymal stem cells on a commercial scaffold | |
WO2023075571A1 (en) | Use of polysaccharides derived from strains of enterococcus genus | |
WO2022085819A1 (en) | Composition for osteogenesis promotion | |
WO2013165120A1 (en) | Method for culturing neural crest stem cells, and use thereof | |
WO2022139166A1 (en) | Composition for skin improvement, containing culture liquid of umbilical-cord-derived mesenchymal stem cells as active ingredient | |
Keshavarz et al. | Resveratrol effect on adipose-derived stem cells differentiation to chondrocyte in three-dimensional culture | |
WO2019132353A1 (en) | Pharmaceutical composition, comprising cpne4 protein, for preventing or treating dentin-dental pulp disease or periodontal disease | |
WO2019031729A2 (en) | Use of composition comprising stem cell-derived exosome as effective ingredient in alleviating non-alcoholic simple steatosis or non-alcoholic steatohepatitis | |
Dutta et al. | Effects of Cirsium setidens (Dunn) Nakai on the osteogenic differentiation of stem cells | |
WO2022108165A1 (en) | Method for producing exosomes isolated from induced pluripotent stem cell-derived mesenchymal stem cells, and use thereof | |
KR20230064568A (en) | Uses of polysaccharide derived from strains belonging to the Enterococcus genus | |
WO2019216450A1 (en) | Method for culturing stem cells secreting anti-inflammatory components, and anti-inflammatory composition containing said stem cell culture medium | |
KR20120090483A (en) | Process for the differentiation of adult stem cells to chondrocytes or osteocytes using tauroursodeoxycholic acid | |
WO2020242195A1 (en) | Feline wharton's jelly-derived stem cells and preparation method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22887765 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22887765 Country of ref document: EP Kind code of ref document: A1 |