WO2023073406A1 - Hot rolled and steel sheet and a method of manufacturing thereof - Google Patents
Hot rolled and steel sheet and a method of manufacturing thereof Download PDFInfo
- Publication number
- WO2023073406A1 WO2023073406A1 PCT/IB2021/059967 IB2021059967W WO2023073406A1 WO 2023073406 A1 WO2023073406 A1 WO 2023073406A1 IB 2021059967 W IB2021059967 W IB 2021059967W WO 2023073406 A1 WO2023073406 A1 WO 2023073406A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hot rolled
- steel sheet
- rolled steel
- temperature
- steel
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 110
- 239000010959 steel Substances 0.000 title claims abstract description 110
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 239000000203 mixture Substances 0.000 claims abstract description 18
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229910000734 martensite Inorganic materials 0.000 claims abstract description 16
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 13
- 239000011572 manganese Substances 0.000 claims abstract description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000011651 chromium Substances 0.000 claims abstract description 11
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 11
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 10
- 239000010955 niobium Substances 0.000 claims abstract description 10
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 10
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 9
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims abstract description 9
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 8
- 229910001566 austenite Inorganic materials 0.000 claims abstract description 8
- 229910052742 iron Inorganic materials 0.000 claims abstract description 8
- 150000001247 metal acetylides Chemical class 0.000 claims abstract description 8
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 8
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 8
- 239000010936 titanium Substances 0.000 claims abstract description 8
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 7
- 239000010703 silicon Substances 0.000 claims abstract description 7
- 239000011593 sulfur Substances 0.000 claims abstract description 7
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000011575 calcium Substances 0.000 claims abstract description 6
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 6
- 239000010949 copper Substances 0.000 claims abstract description 6
- 239000012535 impurity Substances 0.000 claims abstract description 6
- 239000011733 molybdenum Substances 0.000 claims abstract description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 6
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 6
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims abstract description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 5
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 5
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 4
- 229910052787 antimony Inorganic materials 0.000 claims abstract description 4
- 229910052796 boron Inorganic materials 0.000 claims abstract description 4
- 229910052802 copper Inorganic materials 0.000 claims abstract description 4
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 4
- 239000011574 phosphorus Substances 0.000 claims abstract description 4
- 238000012545 processing Methods 0.000 claims abstract description 4
- 229910052718 tin Inorganic materials 0.000 claims abstract description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims abstract 2
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims abstract 2
- 239000011777 magnesium Substances 0.000 claims abstract 2
- 238000001816 cooling Methods 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 15
- 238000005098 hot rolling Methods 0.000 claims description 14
- 238000005065 mining Methods 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims description 6
- 238000000137 annealing Methods 0.000 claims description 5
- 238000003303 reheating Methods 0.000 claims description 5
- 238000005496 tempering Methods 0.000 claims description 5
- 239000011265 semifinished product Substances 0.000 claims description 4
- 238000005096 rolling process Methods 0.000 claims description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 5
- 238000005728 strengthening Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 238000001556 precipitation Methods 0.000 description 5
- 238000009749 continuous casting Methods 0.000 description 4
- 230000001627 detrimental effect Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- -1 Iron carbides Chemical class 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 230000002411 adverse Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 229910052745 lead Inorganic materials 0.000 description 2
- 238000012827 research and development Methods 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- INZDTEICWPZYJM-UHFFFAOYSA-N 1-(chloromethyl)-4-[4-(chloromethyl)phenyl]benzene Chemical compound C1=CC(CCl)=CC=C1C1=CC=C(CCl)C=C1 INZDTEICWPZYJM-UHFFFAOYSA-N 0.000 description 1
- 241000282376 Panthera tigris Species 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 229910001563 bainite Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910001567 cementite Inorganic materials 0.000 description 1
- 239000010960 cold rolled steel Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000001955 cumulated effect Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000009931 harmful effect Effects 0.000 description 1
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 229910001562 pearlite Inorganic materials 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000000979 retarding effect Effects 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
- C21D1/19—Hardening; Quenching with or without subsequent tempering by interrupted quenching
- C21D1/22—Martempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/004—Heat treatment of ferrous alloys containing Cr and Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0273—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/32—Ferrous alloys, e.g. steel alloys containing chromium with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
Definitions
- the present invention relates to hot rolled steel sheets suitable for use as steel sheet for green goods such as parts or ancillary for agriculture machinery, mining machinery and engineering machinery.
- Agricultural Machinery, mining machinery and engineering machinery such as plough wheels, dozer, shovel loader, excavator, wagon tremie and various mining machinery, grab bucket, stacker-reclaimer, crusher jaw, tractor shoe are mandated to have good wear resistance and steel used to manufacture these equipment depend primarily on the hardness of the steel to achieve good wear resistance and higher hardness can provide good wear resistance. However, increase the hardness, is detrimental for other properties, such as ductility and fatigue. In order to obtain steels having both very good wear-resistance and good suitability for use, therefore, means other than increasing the hardness have been sought.
- EP2695960 is an abrasion resistant steel plate or steel sheet suitable for use in construction machines, industrial machines, and the like and a method for manufacturing the same.
- a steel plate or steel sheet has a composition containing 0.20% to 0.30% C, 0.05% to 1.0% Si, 0.40% to 1.20% Mn, P, S, 0.1% or less Al, 0.01 % or less N, and 0.0003% to 0.0030% B on a mass basis, the composition further containing one or more of Cr, Mo, and W, the composition further containing one or more of Nb, Ti, Cu, Ni, V, an REM, Ca, and Mg as required, the remainder being Fe and inevitable impurities.
- a semi-finished product having the above steel composition is heated, hot rolling is performed, air cooling is performed, reheating is performed, and accelerated cooling is then performed or accelerated cooling is performed immediately after hot rolling.
- the steel of EP2695960 is not able to achieve the hardness of 550Hv or more.
- the purpose of the present invention is to solve these problems by making available hot rolled steel sheets that simultaneously have:
- the steel sheets according to the invention may also present a tensile strength 1800 MPa or more
- such steel can also have a good suitability for forming, in particular for rolling with good weldability and bendability.
- Another object of the present invention is also to make available a method for the manufacturing of these sheets that is compatible with conventional industrial applications while being robust towards manufacturing parameters shifts.
- Carbon is present in the steel of present invention is from 0.38% to 0.5%.
- Carbon is an element necessary for increasing hardness of the Steel of present invention by producing a low-temperature transformation phases such as Tempered Martensite, carbon also impart the steel with strength by precipitate strengthening by forming Iron carbides, Vanadium Carbide or Niobium Carbides. But Carbon content less than 0.36% will not be able to impart the strength as well as hardness to the steel of present invention. On the other hand, at a Carbon content exceeding 0.5%, the steel exhibits poor fatigue properties which limits its application for the agricultural machinery parts.
- a preferable content for the present invention may be kept from 0.39% to 0.48% and more preferably from 0.39% to 0.45%.
- Manganese content of the steel of present invention is from 1 % to 2%. This element is gammagenous and also influence Bs and Ms temperatures therefore plays an important role in controlling the Martensite formation.
- the purpose of adding Manganese is essentially to impart hardenability to the steel. An amount of at least 1 % by weight of Manganese has been found in order to provide the strength and hardenability to the steel sheet. But when Manganese content is more than 2% it produces adverse effects such as it retards transformation of Austenite during the cooling after hot rolling. In addition, the Manganese content of above 1 .8% it promotes the central segregation hence reduces the formability and also deteriorates the weldability of the present steel. A preferable content for the present invention may be kept from 1 .3% to 1 .8%,
- Silicon content of the steel of present invention is from 0.1 % to 0.7%. Silicon is solid solution strengthener. In addition, a higher content of Silicon can retard the precipitation of Cementite. However, disproportionate content of Silicon leads to a problem such as surface defects like tiger strips which adversely effects the steel of present invention. Therefore, the concentration is controlled within an upper limit of 0.7%.
- a preferable content for the present invention may be kept from 0.2% to 0.6% and more preferably from 0.2% to 0.5%.
- Aluminum is an element that is present in the steel of the present invention from 0.01 % to 0.1 %.
- Aluminum is an alphagenous element and imparts ductility to steel of present invention.
- Aluminum in the steel has a tendency to bond with nitrogen to form aluminum nitride hence from point of view of the present invention the Aluminum content must be kept as low as possible and preferably from 0.02% to 0.06%.
- Chromium of steel of present invention is from 0.3% to 1 %. Chromium is an essential element that provide strength to the steel by solid solution strengthening and a minimum of 0.3% is required to impart the strength but when used above 1 % impairs surface finish of steel. The preferred limit for the presence of Chromium is from 0.3% to 0.9 % and more preferably from 0.3% to 0.8%. Boron is an essential element for the steel of present invention and may be present from 0.002% to 0.05%. Boron forms boro-nitirides and impart additional strength to steel of present invention when added in an amount of at least 0.002%.
- Phosphorus constituent of the steel of present invention is from 0.002% to 0.02%. Phosphorus reduces the spot weldability and the hot ductility, particularly due to its tendency to segregate at the grain boundaries or co-segregate with manganese. For these reasons, its content is limited to 0.02% and preferably lower than 0.015%.
- Sulfur is not an essential element but may be contained as an impurity in steel and from point of view of the present invention the Sulfur content is preferably as low as possible, but is 0.005% or less from the viewpoint of manufacturing cost. Further if higher Sulfur is present in steel it combines to form Sulfides especially with Manganese and reduces its beneficial impact on the steel of present invention, therefore preferred below 0.003%
- Nitrogen is limited to 0.01 % in order to avoid ageing of material, nitrogen forms the nitrides which impart strength to the steel of present invention by precipitation strengthening with Vanadium and Niobium but whenever the presence of nitrogen is more than 0.01 % it can form high amount of Aluminum Nitrides which are detrimental for the present invention hence the preferable upper limit for nitrogen is 0.005%.
- Molybdenum is an optional element that constitutes 0% to 0.5% of the Steel of present invention: Molybdenum increases the hardenability of the steel of present invention and influences the transformation of austenite during cooling after hot rolling. However, the addition of Molybdenum excessively increases the cost of the addition of alloy elements, so that for economic reasons its content is limited to 0.5%. Preferable limit for molybdenum is from 0.01 % to 0.3%.
- Vanadium is an optional element that constitutes from 0 % to 0.5% of the steel of present invention. Vanadium is effective in enhancing the strength of steel by forming carbides, nitrides or carbo-nitrides and the upper limit is 0.5% due to the economic reasons. These carbides, nitrides or carbo-nitrides are formed during the cooling after hot rolling. Preferable limit for Vanadium is from 0 % to 0.3%.
- Titanium is an optional element to the Steel of present invention from 0.001 % to 0.1 %. It forms Titanium-nitrides appearing during solidification of the cast product. The amount of Titanium is so limited to 0.1 % to avoid the formation of coarse Titaniumnitrides detrimental for formability. In case the Titanium content below 0.001 % does not impart any effect on the steel of present invention.
- Niobium is an optional element for the present invention. Niobium content may be present in the steel of present invention from 0% to 0.05% and is added in the steel of present invention for forming carbides or carbo-nitrides to impart strength to the steel of present invention by precipitation strengthening.
- Nickel may be added as an optional element in an amount of 0% to 1 % to increase the strength of the steel present invention and to improve its toughness. A minimum of 0.01 % is preferred to get such effects. However, when its content is above 1 %, Nickel causes ductility deterioration.
- Copper may be added as an optional element in an amount of 0% to 1 % to increase the strength of the of Steel of present invention and to improve its corrosion resistance. A minimum of 0.01 % is preferred to get such effects. However, when its content is above 1 %, it can degrade the surface aspects.
- Calcium can be added to the steel of present invention in an among from 0.001 % to 0.01 %%. Calcium is added to steel of present invention as an optional element especially during the inclusion treatment. Calcium contributes towards the refining of the Steel by binding the detrimental Sulfur content in globular form thereby retarding the harmful effect of Sulfur.
- Mg, Sn , Pb or Sb can be added individually or in combination in the following proportions: Mg ⁇ 0.0010%, Sn ⁇ 0.1 %, Pb ⁇ 0.1 % and Sb ⁇ 0.1 %. Up to the maximum content levels indicated, these elements make it possible to refine the grain during solidification. The remainder of the composition of the steel consists of iron and inevitable impurities resulting from processing.
- the remainder of the composition of the Steel consists of iron and inevitable impurities resulting from processing.
- the microstructure of the Steel sheet comprises:
- Martensite constitutes at least 94% of the microstructure by area fraction and preferably 95 to 99% in area fraction.
- the martensite of the present invention can comprise both fresh and tempered martensite.
- fresh martensite is an optional microconstituent which is preferably limited in the steel at an amount of from 0% to 4%, preferably from 0 to 2% and even better equal to 0%.
- Fresh martensite may form during cooling after tempering. Tempered martensite is formed from the martensite which forms during the cooling after annealing and particularly after below Ms temperature and more particularly from Ms-10°C to 20°C.Such martensite is then tempered during the holding at a tempering temperature Temper from 100°C to 300°C.
- the martensite of the present invention imparts ductility and strength to such steel.
- the content of martensite is from 95% to 99% and more preferably from 96% to 99%.
- Residual Austenite is an optional constitutes for the steel of present invention and may be present from 0% to 5% by area fraction. When Residual Austenite is in excess of 5 % it lowers the hardness of the steel of present invention below an acceptable level. In a preferred embodiment, residual austenite is from 0% to 4% and more preferably from 0% to 3%.
- Carbides of alloying elements might be present in the steel of present invention in a cumulated amount from 0% to 5% by area fraction such as of Chromium, Niobium, Vanadium and Iron. These carbides may increase the strength of the steel of present invention by precipitation strengthening, but whenever the presence of carbides is 5% or more, their precipitation consume partly the amount of Carbon required for the strengthening of tempered martensite.
- the microstructure of the hot rolled steel sheet is free from microstructural components, such as Pearlite, ferrite and Bainite but may be found in traces.
- a steel sheet according to the invention can be produced by any suitable method.
- a preferred method consists in providing a semi-finished casting of steel with a chemical composition according to the invention. The casting can be done either into ingots or continuously in form of thin slabs or thin strips, i.e. with a thickness ranging from approximately 220mm for slabs up to several tens of millimeters for thin strip.
- a slab having the above-described chemical composition is manufactured by continuous casting wherein the slab optionally underwent the direct soft reduction during the continuous casting process to avoid central segregation and to ensure a ratio of local Carbon to nominal Carbon kept below 1.10.
- the slab provided by continuous casting process can be used directly at a high temperature after the continuous casting or may be first cooled to room temperature and then reheated for hot rolling.
- the temperature of the slab which is subjected to hot rolling, is preferably at least 1100° C and must be below 1300°C. In case the temperature of the slab is lower than 1100° C, excessive load is imposed on a rolling mill. Therefore, the temperature of the slab is preferably sufficiently high so that hot rolling can be completed in the in 100% austenitic range. Reheating at temperatures above 1275°C must be avoided because it causes productivity loss and is also industrially expensive. Therefore, the preferred reheating temperature is from 1200°C to 1275°C.
- Hot rolling finishing temperature for the present invention is from 850°C to 975°C and preferably from 860°C to 930°C.
- the hot rolled strip obtained in this manner is then cooled wherein the cooling starts immediately after the finishing of hot rolling and in the cooling step hot rolled strip is cooled from finishing of hot rolling to a coiling temperature range from550°C to 750°C, preferably at a cooling rate from1 °C/s to 150°C/s.
- the cooling rate for the of cooling step is from1 °C/s to 120°C/s.
- the coiled hot rolled strip may be optionally cut into steel pieces to subjected to at least one mechanical manufacturing operation.
- Mechanical operation may comprise tapering, cutting, forming, turning, honing or any other suitable mechanical operation or manufacturing procedure that is required to form the part or ancillary for agriculture machinery, mining machinery and engineering machinery.
- the preferred temperature for all the mechanical operations is from 20° C to Ac3 +300° C and more preferable temperature for all the mechanical operations is from 20° C and Ac3 +250° C.
- the part is cooled to room temperature to obtain an non-heat treated part or ancillary for agriculture machinery, mining machinery and engineering machinery.
- the obtained non-heat treated part or ancillary according to the present invention must be heat treated in the identical manner as the hot rolled strip to obtain final microstructure described herein below.
- the hot rolled strip is being heat treated which will impart the steel of present invention with requisite mechanical properties and microstructure.
- the hot rolled strip is then being heated, to an annealing temperature Tsoak which is from Ac3 to Ac3 + 100°C, preferably from Ac3 +10°C to Ac3 + 100°C, at a heating rate HR1 which is from 1 °C/s to 100°C/s.
- the heating rate HR1 is from 1 °C/s to 50°C/s.
- the hot rolled strip is cooled from Tsoak at a cooling rate CR1 from 1 °C/s and 150°C/s, to a temperature T1 which is in a range from Ms-75°C and 20°C.
- the cooling rate CR1 for such step of cooling is from 15°C/s and 120°C/s.
- the preferred T1 temperature for such step is from Ms-100°C and 20°C.
- Ms for the steel sheet is calculated by using the following formula:
- the hot rolled strip is reheated to a tempering temperature Ttemper from 100°C to 300°C, preferably with a heating rate of at least 1 °C/s and preferably of at least 2°C/s and more of at least 5°C/s during 10s and 10 hours.
- Ttemper a tempering temperature
- the preferred temperature range for tempering is from 150°C to 250°C and the preferred duration for holding at Ttemper is from 200 s to 9hours.
- the hot rolled strip is cooled down to room temperature to obtain a the hot rolled steel sheet.
- Table 1 Steel sheets made of steels with different compositions are gathered in Table 1 , where the steel sheets are produced according to process parameters as stipulated in Table 2, respectively. Thereafter Table 3 gathers the microstructures of the steel sheets obtained during the trials and table 4 gathers the result of evaluations of obtained properties. Table 1
- Table 2 gathers the process parameters implemented on steels of Table 1 .
- Table 3 exemplifies the results of the tests conducted in accordance with the standards on different microscopes such as Scanning Electron Microscope for determining the microstructures of the steel.
- Table 4 exemplifies the mechanical properties of the steel.
- the tensile tests are conducted in accordance of JIS Z2241 standards and the wear test is conducted in accordance of Wear ASTM-G55 standards.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
- Metal Rolling (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA3235635A CA3235635A1 (en) | 2021-10-28 | 2021-10-28 | Hot rolled and steel sheet and a method of manufacturing thereof |
PCT/IB2021/059967 WO2023073406A1 (en) | 2021-10-28 | 2021-10-28 | Hot rolled and steel sheet and a method of manufacturing thereof |
EP21807258.5A EP4423307A1 (en) | 2021-10-28 | 2021-10-28 | Hot rolled and steel sheet and a method of manufacturing thereof |
MX2024005143A MX2024005143A (en) | 2021-10-28 | 2021-10-28 | Hot rolled and steel sheet and a method of manufacturing thereof. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/IB2021/059967 WO2023073406A1 (en) | 2021-10-28 | 2021-10-28 | Hot rolled and steel sheet and a method of manufacturing thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023073406A1 true WO2023073406A1 (en) | 2023-05-04 |
Family
ID=78621927
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2021/059967 WO2023073406A1 (en) | 2021-10-28 | 2021-10-28 | Hot rolled and steel sheet and a method of manufacturing thereof |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP4423307A1 (en) |
CA (1) | CA3235635A1 (en) |
MX (1) | MX2024005143A (en) |
WO (1) | WO2023073406A1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040047757A1 (en) * | 2002-05-10 | 2004-03-11 | Komatsu Ltd. | High-hardness, high-toughness steels and crawler components, earth wear resistant components, fastening bolts, high-toughness gears, high-toughness, high contact pressure resistance gears, and wear resistant steel plates using the same |
EP2695960A1 (en) | 2011-03-29 | 2014-02-12 | JFE Steel Corporation | Abrasion-resistant steel sheet exhibiting excellent resistance to stress corrosion cracking, and method for producing same |
US20190309384A1 (en) * | 2016-04-19 | 2019-10-10 | Jfe Steel Corporation | Abrasion-resistant steel plate and method of producing abrasion-resistant steel plate |
US20190382864A1 (en) * | 2016-12-23 | 2019-12-19 | Posco | Tempered martensitic steel having low yield ratio and excelllent uniform elongation, and manufacturing method therefor |
KR20210080042A (en) * | 2019-12-20 | 2021-06-30 | 주식회사 포스코 | Hot rolled steel sheet, annealed hot rolled steel sheet, parts having excellent austampering heat treatment property and method of manufacturing thereof |
EP3859040A1 (en) * | 2018-09-27 | 2021-08-04 | Posco | Wear resistant steel having excellent hardness and impact toughness and method of manufacturing the same |
EP3859043A1 (en) * | 2018-09-27 | 2021-08-04 | Posco | Abrasion resistant steel having excellent hardness and impact toughness, and manufacturing method therefor |
-
2021
- 2021-10-28 EP EP21807258.5A patent/EP4423307A1/en active Pending
- 2021-10-28 WO PCT/IB2021/059967 patent/WO2023073406A1/en active Application Filing
- 2021-10-28 CA CA3235635A patent/CA3235635A1/en active Pending
- 2021-10-28 MX MX2024005143A patent/MX2024005143A/en unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040047757A1 (en) * | 2002-05-10 | 2004-03-11 | Komatsu Ltd. | High-hardness, high-toughness steels and crawler components, earth wear resistant components, fastening bolts, high-toughness gears, high-toughness, high contact pressure resistance gears, and wear resistant steel plates using the same |
EP2695960A1 (en) | 2011-03-29 | 2014-02-12 | JFE Steel Corporation | Abrasion-resistant steel sheet exhibiting excellent resistance to stress corrosion cracking, and method for producing same |
US20190309384A1 (en) * | 2016-04-19 | 2019-10-10 | Jfe Steel Corporation | Abrasion-resistant steel plate and method of producing abrasion-resistant steel plate |
US20190382864A1 (en) * | 2016-12-23 | 2019-12-19 | Posco | Tempered martensitic steel having low yield ratio and excelllent uniform elongation, and manufacturing method therefor |
EP3859040A1 (en) * | 2018-09-27 | 2021-08-04 | Posco | Wear resistant steel having excellent hardness and impact toughness and method of manufacturing the same |
EP3859043A1 (en) * | 2018-09-27 | 2021-08-04 | Posco | Abrasion resistant steel having excellent hardness and impact toughness, and manufacturing method therefor |
KR20210080042A (en) * | 2019-12-20 | 2021-06-30 | 주식회사 포스코 | Hot rolled steel sheet, annealed hot rolled steel sheet, parts having excellent austampering heat treatment property and method of manufacturing thereof |
Also Published As
Publication number | Publication date |
---|---|
CA3235635A1 (en) | 2023-05-04 |
EP4423307A1 (en) | 2024-09-04 |
MX2024005143A (en) | 2024-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7240486B2 (en) | Abrasion-resistant steel plate with excellent hardness and impact toughness and method for producing the same | |
CN108463340B (en) | High strength steel sheet having excellent formability and method of manufacturing the same | |
TWI412609B (en) | High strength steel sheet and method for manufacturing the same | |
CA3080674C (en) | Cold rolled and heat treated steel sheet and a method of manufacturing thereof | |
CN110100034B (en) | High-hardness wear-resistant steel and method for manufacturing same | |
TWI412605B (en) | High strength steel sheet and method for manufacturing the same | |
CN111479945B (en) | Wear-resistant steel having excellent hardness and impact toughness and method for manufacturing same | |
JP7471417B2 (en) | High-hardness wear-resistant steel with excellent low-temperature impact toughness and manufacturing method thereof | |
CN113785079A (en) | High hardness steel product and method for manufacturing same | |
CN114746562B (en) | Hot rolled steel sheet and method for producing same | |
EP3856937A1 (en) | Hot rolled and steel sheet and a method of manufacturing thereof | |
JP4650013B2 (en) | Abrasion resistant steel plate with excellent low temperature toughness and method for producing the same | |
CN112771194A (en) | Wear-resistant steel having excellent hardness and impact toughness and method for manufacturing same | |
WO2019122963A1 (en) | Cold rolled and heat treated steel sheet and a method of manufacturing thereof | |
TW202113098A (en) | Wear-resistant steel sheet and method for producing same | |
CN108368589B (en) | High hardness wear resistant steel having excellent toughness and cut crack resistance and method for manufacturing the same | |
JP6684353B2 (en) | Thick plate steel excellent in low temperature toughness and hydrogen induced cracking resistance, and method of manufacturing the same | |
CN113692456B (en) | Ultrahigh-strength steel sheet having excellent shear workability and method for producing same | |
CN111511952B (en) | Wear-resistant steel having excellent hardness and impact toughness and method for manufacturing same | |
JPWO2020039485A1 (en) | Steel plate and method of manufacturing the same | |
WO2023073406A1 (en) | Hot rolled and steel sheet and a method of manufacturing thereof | |
JP6822049B2 (en) | Steel processed parts and their manufacturing methods | |
WO2024033688A1 (en) | A cold rolled martensitic steel and method of producing thereof | |
JP2020193380A (en) | Abrasion resistant steel plate and method for producing the same | |
KR20210149145A (en) | Cold-rolled martensitic steel sheet and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21807258 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 3235635 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18703766 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2024/005143 Country of ref document: MX |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112024007750 Country of ref document: BR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2021807258 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021807258 Country of ref document: EP Effective date: 20240528 |
|
ENP | Entry into the national phase |
Ref document number: 112024007750 Country of ref document: BR Kind code of ref document: A2 Effective date: 20240419 |