WO2023070664A1 - 一种物体重量检测系统及检测方法 - Google Patents
一种物体重量检测系统及检测方法 Download PDFInfo
- Publication number
- WO2023070664A1 WO2023070664A1 PCT/CN2021/127955 CN2021127955W WO2023070664A1 WO 2023070664 A1 WO2023070664 A1 WO 2023070664A1 CN 2021127955 W CN2021127955 W CN 2021127955W WO 2023070664 A1 WO2023070664 A1 WO 2023070664A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pressure sensor
- sensor module
- digital signal
- weight
- micro
- Prior art date
Links
- 238000005259 measurement Methods 0.000 title abstract description 12
- 238000000691 measurement method Methods 0.000 title abstract 2
- 241001465754 Metazoa Species 0.000 claims abstract description 36
- 238000001514 detection method Methods 0.000 claims description 42
- 238000005303 weighing Methods 0.000 claims description 18
- 230000037396 body weight Effects 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 11
- 230000002650 habitual effect Effects 0.000 claims description 7
- 238000006243 chemical reaction Methods 0.000 claims description 6
- 230000032683 aging Effects 0.000 claims description 4
- 238000012886 linear function Methods 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 3
- 230000003321 amplification Effects 0.000 abstract description 9
- 238000003199 nucleic acid amplification method Methods 0.000 abstract description 9
- 238000010171 animal model Methods 0.000 description 11
- 230000008859 change Effects 0.000 description 10
- 238000012546 transfer Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 230000008569 process Effects 0.000 description 7
- 230000008901 benefit Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000005284 excitation Effects 0.000 description 2
- 230000003862 health status Effects 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 244000000010 microbial pathogen Species 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- PCTMTFRHKVHKIS-BMFZQQSSSA-N (1s,3r,4e,6e,8e,10e,12e,14e,16e,18s,19r,20r,21s,25r,27r,30r,31r,33s,35r,37s,38r)-3-[(2r,3s,4s,5s,6r)-4-amino-3,5-dihydroxy-6-methyloxan-2-yl]oxy-19,25,27,30,31,33,35,37-octahydroxy-18,20,21-trimethyl-23-oxo-22,39-dioxabicyclo[33.3.1]nonatriaconta-4,6,8,10 Chemical compound C1C=C2C[C@@H](OS(O)(=O)=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2.O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 PCTMTFRHKVHKIS-BMFZQQSSSA-N 0.000 description 1
- 208000031873 Animal Disease Models Diseases 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000011558 animal model by disease Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000009395 breeding Methods 0.000 description 1
- 230000001488 breeding effect Effects 0.000 description 1
- 230000003930 cognitive ability Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01G—WEIGHING
- G01G17/00—Apparatus for or methods of weighing material of special form or property
- G01G17/08—Apparatus for or methods of weighing material of special form or property for weighing livestock
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01G—WEIGHING
- G01G23/00—Auxiliary devices for weighing apparatus
- G01G23/01—Testing or calibrating of weighing apparatus
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01G—WEIGHING
- G01G3/00—Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances
- G01G3/12—Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances wherein the weighing element is in the form of a solid body stressed by pressure or tension during weighing
- G01G3/13—Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances wherein the weighing element is in the form of a solid body stressed by pressure or tension during weighing having piezoelectric or piezoresistive properties
Definitions
- the application belongs to the technical field of biomedical engineering, and in particular relates to an object weight detection system and detection method.
- Non-human primate experimental animals need to be regularly weighed in accordance with relevant management standards during the breeding process in the animal room, so as to facilitate the understanding of the health status of non-human primate experimental animals.
- the traditional weight detection method is basically to carry the transfer cage manually, transfer the non-human primate experimental animal into the transfer cage, and then put the transfer cage and the non-human primate experimental animal on the weighing scale for measurement. It can measure experimental animals one by one, but the work efficiency is low and it also needs to consume a lot of manpower and material resources, so it cannot be popularized in large quantities.
- the weight of the object When a heavy object is placed on the storage platform, the weight of the object causes the resistance value of the strain gauge to change, resulting in a change in the circuit current.
- the current is amplified by a certain multiple of the amplification circuit. When the current does not change within a certain period of time (usually a few seconds) If there is another change, the weighing scale determines that the system has stabilized, and calculates the weight of the object on the storage table through the change of the current.
- This type of weighing scale is mainly suitable for the weighing of people and objects, and it needs to follow certain usage specifications and be used under human intervention. When performing weight detection on non-human primate experimental animals under conditions stimulated by environmental changes, The accuracy of the data cannot be guaranteed.
- the present application provides an object weight detection system, system, terminal and storage medium, aiming to solve one of the above-mentioned technical problems in the prior art at least to a certain extent.
- An object weight detection system comprising a computer system, a micro-control system, an amplifying circuit module, and a pressure sensor module; the computer system is connected to the micro-control system, and the micro-control system, the amplifying circuit module, and the pressure sensor module are connected in sequence, and the The pressure sensor module is installed at the bottom of the box for placing the measured object;
- the pressure sensor module is used to output a corresponding electrical signal to the amplifying circuit module according to the magnitude of the pressure it bears;
- the amplifying circuit module is used to amplify the received electrical signal, convert the amplified electrical signal into a digital signal, and transmit the digital signal to the micro control system;
- the computer system is used to read the digital signal from the micro-control system, and calculate the digital signal according to the characteristic parameters of the pressure sensor module to obtain the weight data of the measured object.
- the technical solution adopted in the embodiment of the present application also includes: a storage table for placing the measured object is installed above the pressure sensor module; the bottom surface of the pressure sensor module has a higher end A and a lower end B, the End A is fixed on the bottom surface of the box, and end B is suspended; when measuring body weight, the measured object placed on the storage table generates a downward pressure on the suspended end B, and the pressure sensor module The metal wire of the resistance strain gauge inside is elastically deformed under the pressure, thereby outputting an electrical signal;
- the strength of the electric signal is directly proportional to the mass of the measured object.
- the pressure sensor module includes four resistance strain gauges R1, R2, R3, and R4, and the resistance strain gauges are respectively arranged in pairs on the sensor body in the longitudinal direction and the transverse direction, Form a balanced full-bridge measurement circuit.
- the pressure sensor module is a full-bridge resistance strain type cantilever beam pressure sensor.
- the amplifying circuit module includes a programmable amplifier and an A/D converter
- the programmable amplifier is used to amplify the electrical signal
- the A/D converter is used to convert the Convert the amplified electrical signal into a digital signal and output a 24bit digital signal
- the amplifying circuit module is an HX711 type 24-digit digital-to-analog conversion amplifying circuit.
- the technical solution adopted in the embodiment of the present application further includes: the computer system calculates the digital signal according to the characteristic parameters of the pressure sensor module, and obtains the real weight data of the measured object, specifically:
- the fitting curve R 2 is a linear function of one variable, and its ordinate y is the digital signal, and the abscissa x is the quality, the slope k of the fitting curve R2 and the longitudinal intercept b are the characteristic parameters of the pressure sensor module;
- the characteristic parameters of the pressure sensor module are called by the computer system, and the digital signal read from the micro-control system is used as the y value, which is brought into the fitting curve R 2 to calculate the x value, The weight data of the measured object is obtained, and the weight data is stored.
- the technical solution adopted in the embodiment of the present application further includes: the computer system calculates the digital signal according to the characteristic parameters of the pressure sensor module, and obtains the real weight data of the measured object, specifically:
- N weight data are obtained continuously or at intervals. If there is repeated data in the N weight data and the repeated data has the largest number of repetitions, the repeated data is considered to be under the habitual action.
- the fixed weight is used to calculate the real weight data of the measured object according to the fixed weight and the corresponding percentage.
- the technical solution adopted in the embodiment of the present application also includes: the computer system is also used to periodically calculate the value of the fitting curve R2 , and when the value of the fitting curve R2 is less than the set threshold, it is determined that the pressure sensor module In an aging state, it is reminded to replace the pressure sensor module.
- Another technical solution adopted in the embodiment of the present application is: a method for detecting the weight of an object, comprising:
- the weight data of the measured object is collected through the pressure sensor module, and an electrical signal corresponding to the weight data is output to the amplifying circuit module; the pressure sensor module is installed at the bottom of the box for placing the measured object;
- the computer system reads the digital signal from the micro-control system, and calculates the digital signal according to the characteristic parameters of the pressure sensor module to obtain the weight data of the measured object.
- the beneficial effect produced by the embodiment of the present application lies in that the object weight detection system and detection method of the embodiment of the present application are integrated with the experimental device for placing the tested animals, and the start of the weighing work is remotely controlled. On and off to achieve high-efficiency, high-precision weight detection.
- the present application has at least the following advantages:
- the animals under test do not need to be transferred or placed separately, which avoids the stimulation of experimental animals due to expulsion, transfer and environmental changes, as well as the potential harm of pathogenic microorganism infection, and reduces the risk of animals being tested. Probability of escape accidents. There is no need for manual participation in the weighing process, the measured animals can move freely, the weighing accuracy is high, the efficiency is high, and the cost is low, which can be widely promoted;
- the tested animals can be tested continuously or at intervals to avoid a single detection error and ensure the accuracy of the detection data
- FIG. 1 is a schematic structural diagram of an object weight detection system according to an embodiment of the present application
- Fig. 2 is a schematic structural diagram of a pressure sensor module according to an embodiment of the present application.
- Fig. 3 is the circuit diagram of the pressure sensor module of the embodiment of the present application.
- FIG. 4 is a schematic diagram of the circuit connection between the pressure sensor module and the amplifying circuit module of the embodiment of the present application;
- Fig. 5 is the relationship diagram between quality and digital signal value
- FIG. 6 is a flowchart of a method for detecting the weight of an object according to an embodiment of the present application.
- the object weight detection system of the embodiment of the present application designs a modular real-time object weight detection system on the basis of the existing non-human primate experimental device and transfer box.
- the system sets the pressure sensor module 40 at the bottom of the experimental device or the transfer box, collects the weight data of the measured animal in real time through the pressure sensor module 40, amplifies and converts the data through the amplification circuit, and processes the data through the micro-control system 20.
- the embodiment of the present application acquires the weight data in real time in the daily life of the experimental animals without manual transfer, does not interfere with the daily life of the experimental animals, and can ensure the accuracy of the data.
- the present application can be widely applied to weight detection or weight change analysis of any type of animals or objects, such as weight detection of liquid usage, loss, utilization, etc.
- the embodiment of the present application only takes the object weight detection of non-human primate as an example for specific description.
- FIG. 1 is a schematic structural diagram of an object weight detection system according to an embodiment of the present application.
- the object weight detection system of the embodiment of the present application includes a computer system 10 , a micro control system 20 , an amplifying circuit module 30 and a pressure sensor module 40 .
- the computer system 10 is connected with the micro-control system 20 through the data line, and the micro-control system 20, the amplifying circuit module 30 and the pressure sensor module 40 are connected in sequence, and the pressure sensor module 40 is installed in the casing for placing the measured animal (including placing At the bottom of the experimental device or transfer box of the tested animal, the external computer can control and operate the computer system 10 through the wireless network.
- the computer system 10 sends an instruction to start the weighing mode to the micro-control system 20, and the micro-control system 20 turns on the DC 5V power supply circuit to supply power to the amplifier circuit and the pressure sensor module 40 respectively, and the object weight detection system starts to work.
- the weight of the measured animal through the amplifying circuit module 30 Amplify the received electrical signal, convert the amplified electrical signal into a digital signal, and transmit the digital signal to the micro-control system 20; process the digital signal into data that can be read by the computer system 10 through the micro-control system 20 Afterwards, the digital signal is read by the computer system 10, and the digital signal is calculated according to the characteristic parameters of the pressure sensor module 40 to obtain the real weight data of the tested animal.
- FIG. 2 it is a schematic structural diagram of a pressure sensor module 40 according to an embodiment of the present application.
- the pressure sensor module 40 of the embodiment of the present application is a full-bridge resistance strain cantilever beam pressure sensor.
- the pressure sensor module 40 is installed at the bottom of the box body, and a storage table for placing the measured animal is installed above the pressure sensor module 40 .
- the bottom surface of the pressure sensor module 40 has a higher end A and a lower end B, the A end is fixed to the bottom surface of the box, and the B end is suspended.
- the measured animal placed on the storage table will generate a downward pressure on the suspended B end, and the metal wire of the resistance strain gauge in the pressure sensor module 40 will elastically deform when subjected to the pressure.
- FIG. 3 it is a circuit diagram of the pressure sensor module 40 of the embodiment of the present application.
- the pressure sensor module 40 On the main structure of the sensor, there are four resistance strain gauges R1, R2, R3 and R4 in pairs in the longitudinal and transverse directions respectively, and a balanced full-bridge measurement circuit is composed of R1, R2, R3 and R4.
- the bridge measuring circuit can sensitively measure small resistance value changes of the order of 10-3 to 10-6.
- R4 and R1 are connected at 90 degrees to each other, which is set as point A;
- R1 and R2 are connected at 90 degrees to each other, which is set as point B;
- R2 and R3 are connected at 90 degrees to each other, which is set as point C;
- R3 and R4 are connected at 90 degrees to each other They are connected at 90 degrees and set as point D;
- four points ABCD are diamond-shaped on the plane, two points A and C are connected to the excitation voltage U, and the present invention adopts a DC regulated power supply for power supply;
- two points B and D are output terminals, which will An electrical signal U 0 is output.
- the resistance change of the resistance strain gauge will cause the imbalance of the electric bridge, thereby outputting an electrical signal, and the intensity of the outputting electrical signal is proportional to the mass (mg) of the measured animal, thereby realizing the mass-electricity Linear transformation between signals.
- the pressure sensor module 40 in the embodiment of the present application may also be other instruments or devices capable of acquiring pressure data.
- the amplifying circuit module 30 is an HX711 type 24-digit digital-to-analog conversion amplifying circuit, which is used to amplify the electrical signal U 0 output by the pressure sensor module 40 .
- the internal voltage stabilizing circuit of the amplifying circuit module 30 can directly provide power to the external pressure sensor module 40 and the internal A/D converter (digital-to-analog conversion), and there is a clock oscillator inside the circuit, which is packaged in SOP-16L. All the control signals of the amplifying circuit module 30 are driven by pins, and there is no need to program the internal registers of the chip.
- the input selector switch can select channel A or channel B arbitrarily, and connect with its internal low-noise programmable amplifier. It can be understood that the amplifier circuit module 30 in the embodiment of the present application may also be any other integrated or separate digital-to-analog conversion circuit and amplifier circuit.
- FIG. 4 it is a schematic diagram of the circuit connection between the pressure sensor module and the amplifying circuit module of the embodiment of the present application.
- the circuit structure of the amplifying circuit module 30 is the prior art, and in order to avoid redundancy, the present application will not repeat it.
- the full-scale output voltage of the 40kg pressure sensor module excitation voltage * sensitivity (1.0mv/v), assuming the power supply voltage is 5v, multiplied by the sensitivity 1.0mv/v, the full-scale output voltage is 5mv, That is, when there is a gravity of 40kg, a voltage of 5mV will be generated.
- the amplifying circuit module 30 is used to sample the generated 5mV voltage.
- the amplification circuit module 30 includes an A channel and a B channel.
- the voltage of 5 mV is amplified by 128 times through the A channel, and a 24-bit digital signal is output after being converted by an AD converter.
- VVADD is an analog power interface
- AGND is an analog ground interface
- VBG is an analog output interface.
- the four interfaces A, B, C, and D of the pressure sensor module 40 are respectively connected to the interfaces A+, E+, and A- of the amplifier circuit module 30.
- AGND is the neutral line voltage, which is a fixed 0V.
- the micro control system 20 is used to supply power to the amplifying circuit module 30 , and process and record the digital signal output by the amplifying circuit module 30 . It can be understood that the micro-control system 20 in the embodiment of the present application includes any type of single-chip microcomputer with logic operation or program execution function.
- the computer system 10 first calculates the fitting curve R2 according to the relationship between different qualities and digital signal values, and saves the calculated fitting curve R2 ; the relationship between different qualities and digital signal values is shown in Figure 5 .
- the fitting curve R 2 is a linear function of one variable, and its ordinate y is the digital signal read from the micro-control system 20, the abscissa x is the quality, and the slope k and the longitudinal intercept b of the fitting curve R 2 are the pressure Characteristic parameters of the sensor module 40 .
- the characteristic parameters of the pressure sensor module 40 are called by the computer system 10, and the digital signal read from the micro-control system 20 is used as the y value, which is brought into the fitting curve R 2 , thereby calculating the x value, The real weight data of the tested animal is obtained, and the weight data is stored in the computer system 10 .
- the percentage is stored in the computer system 10, and when calculating the real body weight of the tested animal, it can be performed continuously or at intervals Obtain N (N ⁇ 3) weight data. If there is repeated data in multiple weight data and the repeated data has the largest number of repetitions, the repeated data is considered to be the fixed weight under the habitual action. According to the fixed weight and the corresponding percentage The real weight of the tested animal can be calculated and the accuracy of weighing can be improved.
- the computer system 10 can remotely control and parameterize the object weight detection system through a wireless network, such as opening or closing the working status of the object weight detection system, setting the measurement mode of the object weight detection system (such as continuous measurement, continuous measurement times, interval measurement or interval time, etc.), the weight data calculated by the computer system 10 can also be remotely read or analyzed through the wireless network.
- a wireless network such as opening or closing the working status of the object weight detection system, setting the measurement mode of the object weight detection system (such as continuous measurement, continuous measurement times, interval measurement or interval time, etc.), the weight data calculated by the computer system 10 can also be remotely read or analyzed through the wireless network.
- the computer system 10 in the embodiment of the present application includes any type of computer such as a desktop computer, a portable computer, or an all-in-one computer.
- calibration and calibration operations can also be performed on the object weight detection system according to usage conditions.
- calibrating and calibrating the object weight detection system first make the storage table in the no-load state, open the DC 5V power supply circuit through the micro-control system 20, and record the digital signal under the no-load state output by the amplifier circuit module 30, and the computer system 10 Calibrate the object weight detection system according to the digital signal in the no-load state; then place standard weights of 0kg, 5kg, 10kg, 20kg, and 30kg on the storage table respectively, and record the amplification circuit module 30 respectively through the micro-control system 20 Output digital signals under different weight qualities; finally read the digital signals under different weight qualities through the computer system 10, and detect the weight of the object according to the ratio parameter between the current (digital signal) and different pressures (weight quality) The system is calibrated.
- the computer system 10 can also periodically calculate the value of the fitting curve R 2 , and evaluate the aging condition of the pressure sensor module 40 according to the value of the fitting curve R 2 .
- the value of R2 is less than the set threshold (the threshold value is set to 0.99 in the embodiment of the present application)
- the threshold value is set to 0.99 in the embodiment of the present application
- the object weight detection system of the embodiment of the present application can also be set as a module and installed in an experimental device with the cognitive ability of an animal disease model, so as to provide a basis for real-time evaluation of the health status of experimental animals.
- the object weight detection system of the embodiment of the present application is integrated with the experimental device for placing the tested animals, and realizes high-efficiency and high-precision weight detection by remotely controlling the opening and closing of the weighing work.
- the present application has at least the following advantages:
- the animals under test do not need to be transferred or placed separately, which avoids the stimulation of experimental animals due to expulsion, transfer and environmental changes, as well as the potential harm of pathogenic microorganism infection, and reduces the risk of animals being tested. Probability of escape accidents. There is no need for manual participation in the weighing process, the measured animals can move freely, the weighing accuracy is high, the efficiency is high, and the cost is low, which can be widely promoted;
- the tested animals can be tested continuously or at intervals to avoid a single detection error and ensure the accuracy of the detection data
- FIG. 6 is a flowchart of an object weight detection method according to an embodiment of the present application.
- the object weight detection method of the embodiment of the present application includes the following steps:
- S1 Send an instruction to start the weighing mode to the micro-control system through the computer system;
- S3 collect the weight data of the measured animal through the pressure sensor module, and output an electrical signal to the amplifier circuit module through the sensor signal line; wherein, the strength of the electrical signal is proportional to the pressure (the weight of the measured animal) on the pressure sensor module;
- S4 Amplify the received electrical signal through the amplifying circuit module, convert the amplified electrical signal into a digital signal, and transmit the digital signal to the micro control system;
- S5 Process the digital signal into data that can be read by the computer system through the micro-control system, read the processed digital signal through the computer system, and calculate the digital signal according to the characteristic parameters of the pressure sensor module to obtain the measured animal's real weight data;
- the computer system first calculates a fitting curve R 2 according to the relationship between different qualities and corresponding digital signal values, and saves the calculated fitting curve R 2 in the computer system.
- the fitting curve R2 is a linear function of one variable, the ordinate y is the digital signal read from the micro-control system, the abscissa x is the quality, the slope k and the longitudinal intercept b of the fitting curve R2 are the pressure sensor module Characteristic Parameters.
- the characteristic parameters of the pressure sensor module are called by the computer system, and the digital signal output by the pressure sensor module is used as the y value, which is brought into the fitting curve R2 , thereby calculating the x value, and obtaining the real weight of the measured animal. weight data.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Fluid Pressure (AREA)
Abstract
一种物体重量检测系统以及检测方法。该检测系统包括计算机系统(10)、微控制系统(20)、放大电路模块(30)以及压力传感器模块(40);计算机系统(10)与微控制系统(20)连接,微控制系统(20)、放大电路模块(30)以及压力传感器模块(40)依次连接,压力传感器模块(40)安装于用于放置被测物体的箱体底部;压力传感器模块(40)用于根据所承受压力大小向放大电路模块(30)输出对应的电信号;放大电路模块(30)用于将接收到的电信号放大,将放大后的电信号转化为数字信号后,将数字信号传输至微控制系统(20);计算机系统(10)用于从微控制系统(20)中读取数字信号,并根据压力传感器模块(40)的特征参数对数字信号进行计算,得到被测物体的重量数据。该检测系统通过与放置被测动物的实验装置集为一体,可以实现高效率、高精度的重量检测。
Description
本申请属于生物医学工程技术领域,特别涉及一种物体重量检测系统及检测方法。
非人灵长类实验动物在动物房的饲养过程中需要按照相关管理标准定期对其进行重量检测,便于了解非人灵长类实验动物的健康状况。传统的重量检测方法基本是通过人工扛起转移笼,将非人灵长类实验动物转入转移笼后再将转移笼及非人灵长类实验动物放在体重秤上进行测量,该方法只能对实验动物逐只测量,工作效率低同时还需要耗费大量人力物力,不能大量推广。
另外,目前市面上绝大多数的体重称是利用压力传感器模块40。秤体支撑部位传感器内部的电阻应变片会由于压力作用造成部分形变,从而改变应变片内的电阻长度及电路有效载流面积,继而导致电阻应变片内部电阻电路阻值的变化。当电路被接入直流恒压电源后,根据欧姆定律,整体电路中的电流值与电路电阻值之间存在反比关系,两者乘积在数值上等于恒压电源电压值。当置物平台被放置重物后,物体的重量使应变片电阻值产生变化,导致电路电流发生变化,通过一定倍数的放大电路将电流放大,当电流在一定时间内(通常是几秒钟)不再发生变化,则体重秤判定系统已经稳定,通过电流大小的变化,计算置物台上物体的重量。此类体重秤主要适用于人和物的重量称量,需要遵照一定的使用规范并在人为干预下使用,在对有环境变化刺激的条件下的非人灵长类实验动物进行重量检测时,无法保证数据的准确性。
发明内容
本申请提供了一种物体重量检测系统、系统、终端以及存储介质,旨在至少在一定程度上解决现有技术中的上述技术问题之一。
为了解决上述问题,本申请提供了如下技术方案:
一种物体重量检测系统,包括计算机系统、微控制系统、放大电路模块以及压力传感器模块;所述计算机系统与微控制系统连接,所述微控制系统、放大电路模块以及压力传感器模块依次连接,所述压力传感器模块安装于用于放置被测物体的箱体底部;
所述压力传感器模块用于根据所承受压力大小向放大电路模块输出对应的电信号;
所述放大电路模块用于将接收到的电信号放大,将放大后的电信号转化为数字信号后,将所述数字信号传输至微控制系统;
所述计算机系统用于从微控制系统中读取数字信号,并根据所述压力传感器模块的特征参数对所述数字信号进行计算,得到被测物体的重量数据。
本申请实施例采取的技术方案还包括:所述压力传感器模块的上方安装有放置被测物体的置物台;所述压力传感器模块的底面具有较高的A端和较低的B端,所述A端固定在箱体的底面,所述B端悬空;在测量体重时,置于所述置物台上的被测物体对所述悬空的B端产生一个向下的压力,所述压力传感器模块内的电阻应变片的金属丝在所述压力作用下发生弹性变形,从而输出电信号;
所述电信号的强度与被测物体的质量成正比。
本申请实施例采取的技术方案还包括:所述压力传感器模块包括R1,R2,R3,R4共4个电阻应变片,所述电阻应变片分别在纵向和横向上成对设置在传感器主体上,组成一个平衡的全桥式测量电路。
本申请实施例采取的技术方案还包括:所述压力传感器模块为全桥式电阻应变式悬臂梁压力传感器。
本申请实施例采取的技术方案还包括:所述放大电路模块包括可编程放大器和A/D转换器,所述可编程放大器用于将电信号进行放大,所述A/D转换器用于将所述放大后的电信号转换为数字信号后输出24bit的数字信号;
所述放大电路模块分别包括VAVDD电压和AGND电压,所述VAVDD电压通过VAVDD=VBG(R1+R2)/R2计算得到,VBG为模块基准电压1.25V,R1=20KΩ,R2=8.2KΩ。
本申请实施例采取的技术方案还包括:所述放大电路模块为HX711型24位数模转换放大电路。
本申请实施例采取的技术方案还包括:所述计算机系统根据所述压力传感器模块的特征参数对所述数字信号进行计算,得到被测物体的真实重量数据具体为:
根据质量与数字信号之间的关系计算出拟合曲线R
2,对所述拟合曲线R
2进行保存;所述拟合曲线R
2为一元一次函数,其纵坐标y为数字信号,横坐标x为质量,拟合曲线R
2的斜率k及纵截距b为压力传感器模块的特征参数;
在进行称重时,通过所述计算机系统调用压力传感器模块的特征参数,将从所述微控制系统中读取的数字信号作为y值,带入拟合曲线R
2中,计算出x值,得到被测物体的重量数据,并对所述重量数据进行存储。
本申请实施例采取的技术方案还包括:所述计算机系统根据所述压力传感器模块的特征参数对所述数字信号进行计算,得到被测物体的真实重量数据具体为:
计算所述被测物体在习惯性动作下的固定体重与真实体重之间的百分比,将所述百分比存储在计算机系统内;
在计算被测动物的重量数据时,连续或间隔获取N个重量数据,如果N个重量数据中存在重复数据且所述重复数据的重复次数最多,则认为所述重复数据为习惯性动作下的固定体重,根据所述固定体重与对应百分比计算出被测物体的真实重量数据。
本申请实施例采取的技术方案还包括:所述计算机系统还用于定期计算拟合曲线R
2的值,当所述拟合曲线R
2的值小于设定阈值时,判定所述压力传感器模块处于老化状态,提醒对所述压力传感器模块进行替换。
本申请实施例采取的另一技术方案为:一种物体重量检测方法,包括:
通过压力传感器模块采集被测物体的重量数据,并向放大电路模块输出与所述重量数据相对应的电信号;所述压力传感器模块安装于用于放置被测物体的箱体底部;
通过所述放大电路模块对电信号进行放大,将所述放大后的电信号转化为数字信号后,将所述数字信号传输至微控制系统;
通过计算机系统从所述微控制系统中读取数字信号,并根据所述压力传感器模块的特征参数对所述数字信号进行计算,得到被测物体的重量数据。
相对于现有技术,本申请实施例产生的有益效果在于:本申请实施例的物体重量检测系统及检测方法通过与放置被测动物的实验装置集为一体,并通过远程控制称量工作的开启与关闭,实现高效率、高精度的重量检测。相对于现有技术,本申请至少具有以下优点:
1、物体重量检测时被测动物无需进行场地转移,无需单独的摆放场地,避免了由于驱逐、转移及环境变化等对实验动物产生的刺激以及病原微生物感 染的潜在危害,并降低被测动物逃逸事故的发生几率。称量过程中无需人工参与,被测动物可以自由活动,称量准确率高,效率高,且成本低,可以大量推广;
2、模块化设计,便于更换损坏部件,不必整体报废,节约资源;
3、可以进行标定及校准操作,确保数据准确性;
4、可对被测动物进行连续或间隔检测,避免单次检测误差,保证检测数据的准确性;
5、占用空间小,集成度高,适用范围广,能够大规模推广。
图1是本申请实施例的物体重量检测系统的结构示意图;
图2为本申请实施例的压力传感器模块结构示意图;
图3为本申请实施例的压力传感器模块的电路图;
图4为本申请实施例的压力传感器模块与放大电路模块的电路连接示意图;
图5为质量与数字信号数值之间的关系图;
图6为本申请实施例的物体重量检测方法的流程图。
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
针对现有技术的不足,本申请实施例的物体重量检测系统在现有非人灵长类动物实验装置及转运箱的基础上,设计了模块化的实时物体重量检测系统。 该系统通过在实验装置或转运箱的底部设置压力传感器模块40,通过压力传感器模块40实时采集被测动物的重量数据,经放大电路进行放大及转换后,通过微控制系统20对数据进行处理后通过计算机系统10进行读取,计算出被测动物的真实重量数据。本申请实施例在实验动物日常生活中实时获取重量数据,不需要人工转移,不干扰实验动物日常生活,能够保证数据的准确性。
可以理解,本申请可广泛应用于任意类型的动物或物体的重量检测或重量变化分析,例如液体使用、损耗、利用等重量检测等。为便于说明,本申请实施例仅以非人灵长类动物的物体重量检测为例进行具体说明。
具体地,请参阅图1,是本申请实施例的物体重量检测系统的结构示意图。本申请实施例的物体重量检测系统包括计算机系统10、微控制系统20、放大电路模块30以及压力传感器模块40。其中,计算机系统10通过数据线与微控制系统20连接,微控制系统20、放大电路模块30以及压力传感器模块40依次连接,压力传感器模块40安装于用于放置被测动物的箱体(包括放置被测动物的实验装置或转运箱)底部,外部计算机可通过无线网络对计算机系统10进行控制与操作。通过计算机系统10向微控制系统20发送开启称重模式指令,微控制系统20开启直流5V供电电路,分别为放大电路及压力传感器模块40供电,物体重量检测系统开始工作。通过压力传感器模块40采集被测动物的重量数据,并通过传感器信号线向放大电路模块30输出电信号,电信号强度与所受压力(即被测动物的重量)成正比;通过放大电路模块30将接收到的电信号放大,并将放大后的电信号转化为数字信号后,将数字信号传输至微控制系统20;通过微控制系统20将数字信号处理为能够被计算机系统10读取的数据后,通过计算机系统10读取数字信号,并根据压力传感器模块40的特征参数对数字信号进行计算,得到被测动物的真实重量数据。
具体的,如图2所示,为本申请实施例的压力传感器模块40结构示意图。本申请实施例的压力传感器模块40为全桥式电阻应变式悬臂梁压力传感器。压力传感器模块40安装于箱体的底部,压力传感器模块40的上方安装有放置被测动物的置物台。压力传感器模块40的底面具有较高的A端和较低的B端,A端与箱体的底面相固定,B端悬空。在测量体重时,置于置物台上的被测动物会对悬空的B端产生一个向下的压力,压力传感器模块40内电阻应变片的金属丝在承受压力作用时会发生弹性变形,此时金属丝的长度、截面积以及电阻率均会发生相应变化。如图3所示,为本申请实施例的压力传感器模块40的电路图。在传感器主体结构上,分别在纵向和横向上成对地设有R1,R2,R3,R4共4个电阻应变片,由R1,R2,R3,R4组成一个平衡的全桥式测量电路,该桥式测量电路可以灵敏地测量10-3~10-6量级的微小电阻值变化。图3中,R4与R1互成90度连接,设为A点;R1与R2互成90度连接,设为B点;R2与R3互成90度连接,设为C点;R3与R4互成90度连接,设为D点;ABCD四点在平面呈菱形,A、C两点接入激励电压U,本发明采用直流稳压电源供电;B、D两点为输出端,工作时会输出电信号U
0。当压力传感器模块40受到压力时,电阻应变片的电阻变化会引起电桥的不平衡,从而输出电信号,输出电信号的强度与被测动物的质量(mg)成正比,从而实现质量—电量信号之间的线形变换。可以理解,本申请实施例的压力传感器模块40也可以为其他可以获取压力数据的仪器或设备。
放大电路模块30为HX711型24位数模转换放大电路,用于将压力传感器模块40输出的电信号U
0放大。放大电路模块30的内部稳压电路可以直接向外部的压力传感器模块40和内部的A/D转换器(数模转换)提供电源,电路内部存在时钟振荡器,采用SOP-16L封装。放大电路模块30的所有控制信号由管脚驱动, 无需对芯片内部的寄存器进行编程。输入选择开关可任意选取通道A或通道B,与其内部的低噪声可编程放大器相连。可以理解,本申请实施例的放大电路模块30也可以是其他任何集成或分体式数模转换电路及放大电路。
进一步地,如图4所示,为本申请实施例的压力传感器模块与放大电路模块的电路连接示意图。其中放大电路模块30的电路结构为现有技术,为避免冗余,本申请不再赘述。以40kg压力传感器模块为例,40kg压力传感器模块的满量程输出电压=激励电压*灵敏度(1.0mv/v),假设供电电压是5v,乘以灵敏度1.0mv/v,满量程输出电压为5mv,即当有40kg重力时会产生5mV的电压。放大电路模块30用于对产生的5mV电压进行采样。放大电路模块30包括A通道和B通道,本申请实施例通过A通道将5mV的电压放大128倍,并经AD转换器转换后输出24bit的数字信号。图中VVADD为模拟电源接口,AGND为模拟地线接口,VBG为模拟输出接口,压力传感器模块40的A、B、C、D四个接口分别与放大电路模块30的接口A+、E+、A-、E-连接,其中E+和E-电压分别为VAVDD电压和AGND电压,VAVDD电压通过VAVDD=VBG(R1+R2)/R2计算得到,VBG为模块基准电压1.25V,R1=20KΩ,R2=8.2KΩ得出VAVDD=4.3V(为了降低功耗,该电压只在采样时刻才有输出)。AGND为零线电压,为固定0V。在4.3V的供电电压下40kg的压力传感器模块最大输出电压是4.3V*1mv/V=4.3mV,经过128倍放大后,最大电压为4.3mV*128=550.4mV,经过AD转换器转换后输出的最大数字信号为:550.4mV*224/4.3V≈2147483。
微控制系统20用于为放大电路模块30供电,并对放大电路模块30输出的数字信号进行处理和记录。可以理解,本申请实施例中的微控制系统20包括任意型号的具有逻辑运算或程序执行功能的单片机。
计算机系统10首先根据不同质量与数字信号数值之间的关系计算出拟合曲线R
2,对计算出的拟合曲线R
2进行保存;不同质量与数字信号数值之间的关系如图5所示。其中,拟合曲线R
2为一元一次函数,其纵坐标y为从微控制系统20中读取的数字信号,横坐标x为质量,拟合曲线R
2的斜率k及纵截距b为压力传感器模块40的特征参数。在进行称重时,通过计算机系统10调用压力传感器模块40的特征参数,将从微控制系统20中读取的数字信号作为y值,带入拟合曲线R
2中,从而计算出x值,得到被测动物的真实重量数据,并将该重量数据存储在计算机系统10内。
进一步地,由于被测动物在箱体中处于活动状态,不同的动作会产生不同的重量数据,导致单次获取的重量数据准确度较低。而由于每种动物都具有相对固定且频率较高的习惯性动作,例如手扶墙壁或将尾巴置于置物台外等,在该习惯性动作下会产生一个固定体重,当被测动物的真实体重增加或减少,该固定体重也会随之变动,且该固定体重和被测动物的真实体重具有一定的比例关系。本申请实施例通过称量被测动物的实际体重,并计算实际体重和固定体重之间的百分比,将该百分比存储在计算机系统10内,在计算被测动物的真实体重时,可连续或间隔获取N(N≥3)个重量数据,如果多个重量数据中存在重复数据且该重复数据的重复次数最多,则认为该重复数据为习惯性动作下的固定体重,根据该固定体重与对应百分比即可计算出被测动物的真实体重,提高体重称量的准确性。
计算机系统10可通过无线网络对物体重量检测系统进行远程控制及参数设置等,例如开启或关闭物体重量检测系统的工作状态,设置物体重量检测系统的测量方式(例如连续测量、连续测量次数、间隔测量或间隔时间等),也可通过无线网络对计算机系统10计算出的重量数据进行远程读取或分析等操 作。可以理解,本申请实施例的计算机系统10包括台式计算机、便携式计算机或一体机等任何形式的计算机类型。
本申请实施例中,还可根据使用情况对物体重量检测系统进行标定及校准操作。在对物体重量检测系统进行标定及校准时,首先使置物台处于空载状态,通过微控制系统20开启直流5V供电电路,并记录放大电路模块30输出的空载状态下的数字信号,计算机系统10根据空载状态下的数字信号对物体重量检测系统进行标定;然后分别在置物台上放置0kg、5kg、10kg、20kg、30kg的标准砝码,并通过微控制系统20分别记录放大电路模块30输出的不同砝码质量下的数字信号;最后通过计算机系统10读取不同砝码质量下的数字信号,根据电流(数字信号)与不同压力(砝码质量)之间的比例参数对物体重量检测系统进行校准。
本申请实施例中,还可通过计算机系统10定期计算拟合曲线R
2的值,根据拟合曲线R
2的值对压力传感器模块40的老化情况进行评估。当R
2的值小于设定阈值(本申请实施例设定该阈值为0.99)时,判定压力传感器模块40处于老化状态,提醒对压力传感器模块40进行替换,确保压力传感器模块40采集数据的准确度。
本申请实施例的物体重量检测系统还可以作为模块设置并加装在具有动物疾病模型认知能力的实验装置中,为实时评估实验动物的健康状况提供依据。
基于上述,本申请实施例的物体重量检测系统通过与放置被测动物的实验装置集为一体,并通过远程控制称量工作的开启与关闭,实现高效率、高精度的重量检测。相对于现有技术,本申请至少具有以下优点:
1、物体重量检测时被测动物无需进行场地转移,无需单独的摆放场地,避免了由于驱逐、转移及环境变化等对实验动物产生的刺激以及病原微生物感 染的潜在危害,并降低被测动物逃逸事故的发生几率。称量过程中无需人工参与,被测动物可以自由活动,称量准确率高,效率高,且成本低,可以大量推广;
2、模块化设计,便于更换损坏部件,不必整体报废,节约资源;
3、可以进行标定及校准操作,确保数据准确性;
4、可对被测动物进行连续或间隔检测,避免单次检测误差,保证检测数据的准确性;
5、占用空间小,集成度高,适用范围广,能够大规模推广。
请参阅图6,是本申请实施例的物体重量检测方法的流程图。本申请实施例的物体重量检测方法包括以下步骤:
S1:通过计算机系统向微控制系统发送开启称重模式指令;
S2:通过微控制系统开启直流5V供电电路,分别为放大电路模块及压力传感器模块供电;
S3:通过压力传感器模块采集被测动物的重量数据,并通过传感器信号线向放大电路模块输出电信号;其中,电信号强度与压力传感器模块所受的压力(被测动物的体重)成正比;
S4:通过放大电路模块将接收到的电信号放大,并将放大后的电信号转化为数字信号后,将数字信号传输至微控制系统;
S5:通过微控制系统将数字信号处理为能够被计算机系统读取的数据,通过计算机系统读取处理后的数字信号,并根据压力传感器模块的特征参数对数字信号进行计算,得到被测动物的真实重量数据;
其中,计算机系统首先根据不同质量与对应数字信号数值之间的关系计算出拟合曲线R
2,将计算出的拟合曲线R
2保存在计算机系统内。拟合曲线R
2为 一元一次函数,其纵坐标y为从微控制系统中读取的数字信号,横坐标x为质量,拟合曲线R
2的斜率k及纵截距b为压力传感器模块的特征参数。在进行称重时,通过计算机系统调用压力传感器模块的特征参数,将压力传感器模块输出的数字信号作为y值,带入拟合曲线R
2中,从而计算出x值,得到被测动物的真实重量数据。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本发明中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本发明所示的这些实施例,而是要符合与本发明所公开的原理和新颖特点相一致的最宽的范围。
Claims (10)
- 一种物体重量检测系统,其特征在于,包括计算机系统、微控制系统、放大电路模块以及压力传感器模块;所述计算机系统与微控制系统连接,所述微控制系统、放大电路模块以及压力传感器模块依次连接,所述压力传感器模块安装于用于放置被测物体的箱体底部;所述压力传感器模块用于根据所承受压力大小向放大电路模块输出对应的电信号;所述放大电路模块用于将接收到的电信号放大,将放大后的电信号转化为数字信号后,将所述数字信号传输至微控制系统;所述计算机系统用于从微控制系统中读取数字信号,并根据所述压力传感器模块的特征参数对所述数字信号进行计算,得到被测物体的重量数据。
- 根据权利要求1所述的物体重量检测系统,其特征在于,所述压力传感器模块的上方安装有放置被测物体的置物台;所述压力传感器模块的底面具有较高的A端和较低的B端,所述A端固定在箱体的底面,所述B端悬空;在测量体重时,置于所述置物台上的被测物体对所述悬空的B端产生一个向下的压力,所述压力传感器模块内的电阻应变片的金属丝在所述压力作用下发生弹性变形,从而输出电信号;所述电信号的强度与被测物体的质量成正比。
- 根据权利要求2所述的物体重量检测系统,其特征在于,所述压力传感器模块包括R1,R2,R3,R4共4个电阻应变片,所述电阻应变片分别在纵向和横向上成对设置在传感器主体上,组成一个平衡的全桥式测量电路。
- 根据权利要求3所述的物体重量检测系统,其特征在于,所述压力传感 器模块为全桥式电阻应变式悬臂梁压力传感器。
- 根据权利要求1至4任一项所述的物体重量检测系统,其特征在于,所述放大电路模块包括可编程放大器和A/D转换器,所述可编程放大器用于将电信号进行放大,所述A/D转换器用于将所述放大后的电信号转换为数字信号后输出24bit的数字信号;所述放大电路模块分别包括VAVDD电压和AGND电压,所述VAVDD电压通过VAVDD=VBG(R1+R2)/R2计算得到,VBG为模块基准电压1.25V,R1=20KΩ,R2=8.2KΩ。
- 根据权利要求5所述的物体重量检测系统,其特征在于,所述放大电路模块为HX711型24位数模转换放大电路。
- 根据权利要求5所述的物体重量检测系统,其特征在于,所述计算机系统根据所述压力传感器模块的特征参数对所述数字信号进行计算,得到被测物体的真实重量数据具体为:根据质量与数字信号之间的关系计算出拟合曲线R 2,对所述拟合曲线R 2进行保存;所述拟合曲线R 2为一元一次函数,其纵坐标y为数字信号,横坐标x为质量,拟合曲线R 2的斜率k及纵截距b为压力传感器模块的特征参数;在进行称重时,通过所述计算机系统调用压力传感器模块的特征参数,将从所述微控制系统中读取的数字信号作为y值,带入拟合曲线R 2中,计算出x值,得到被测物体的重量数据,并对所述重量数据进行存储。
- 根据权利要求7所述的物体重量检测系统,其特征在于,所述计算机系统根据所述压力传感器模块的特征参数对所述数字信号进行计算,得到被测物体的真实重量数据具体为:计算所述被测物体在习惯性动作下的固定体重与真实体重之间的百分比,将所述百分比存储在计算机系统内;在计算被测动物的重量数据时,连续或间隔获取N个重量数据,如果N个重量数据中存在重复数据且所述重复数据的重复次数最多,则认为所述重复数据为习惯性动作下的固定体重,根据所述固定体重与对应百分比计算出被测物体的真实重量数据。
- 根据权利要求7或8所述的物体重量检测系统,其特征在于,所述计算机系统还用于定期计算拟合曲线R 2的值,当所述拟合曲线R 2的值小于设定阈值时,判定所述压力传感器模块处于老化状态,提醒对所述压力传感器模块进行替换。
- 一种物体重量检测方法,其特征在于,包括:通过压力传感器模块采集被测物体的重量数据,并向放大电路模块输出与所述重量数据相对应的电信号;所述压力传感器模块安装于用于放置被测物体的箱体底部;通过所述放大电路模块对电信号进行放大,将所述放大后的电信号转化为数字信号后,将所述数字信号传输至微控制系统;通过计算机系统从所述微控制系统中读取数字信号,并根据所述压力传感器模块的特征参数对所述数字信号进行计算,得到被测物体的重量数据。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111273475 | 2021-10-29 | ||
CN202111273475.4 | 2021-10-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023070664A1 true WO2023070664A1 (zh) | 2023-05-04 |
Family
ID=86160031
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/127955 WO2023070664A1 (zh) | 2021-10-29 | 2021-11-01 | 一种物体重量检测系统及检测方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN116067465A (zh) |
WO (1) | WO2023070664A1 (zh) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011106884A (ja) * | 2009-11-13 | 2011-06-02 | Shinko Seiki:Kk | 体重測定システム |
CN102279037A (zh) * | 2011-06-03 | 2011-12-14 | 王良田 | 活体动物称重方法和装置 |
CN103235550A (zh) * | 2013-04-15 | 2013-08-07 | 南京农业大学 | 保温箱仔猪生长参数监控系统及其方法 |
CN105716697A (zh) * | 2016-01-18 | 2016-06-29 | 贵州大学 | 基于ZigBee技术的多秤盘高精度电子秤控制装置 |
CN206300715U (zh) * | 2016-12-20 | 2017-07-04 | 榆林学院 | 一种高精度多功能悬臂梁式称重装置 |
CN209706923U (zh) * | 2018-12-27 | 2019-11-29 | 四川格林豪斯生物科技有限公司 | 一种实验猴笼内称重装置 |
CN112985570A (zh) * | 2021-02-04 | 2021-06-18 | 支付宝(杭州)信息技术有限公司 | 称重货架的传感器的标定方法和系统 |
CN214047141U (zh) * | 2020-12-09 | 2021-08-27 | 山东益圆农牧机械科技有限公司 | 一种养殖笼自动称重系统 |
-
2021
- 2021-11-01 WO PCT/CN2021/127955 patent/WO2023070664A1/zh active Application Filing
-
2022
- 2022-02-15 CN CN202210137387.XA patent/CN116067465A/zh active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011106884A (ja) * | 2009-11-13 | 2011-06-02 | Shinko Seiki:Kk | 体重測定システム |
CN102279037A (zh) * | 2011-06-03 | 2011-12-14 | 王良田 | 活体动物称重方法和装置 |
CN103235550A (zh) * | 2013-04-15 | 2013-08-07 | 南京农业大学 | 保温箱仔猪生长参数监控系统及其方法 |
CN105716697A (zh) * | 2016-01-18 | 2016-06-29 | 贵州大学 | 基于ZigBee技术的多秤盘高精度电子秤控制装置 |
CN206300715U (zh) * | 2016-12-20 | 2017-07-04 | 榆林学院 | 一种高精度多功能悬臂梁式称重装置 |
CN209706923U (zh) * | 2018-12-27 | 2019-11-29 | 四川格林豪斯生物科技有限公司 | 一种实验猴笼内称重装置 |
CN214047141U (zh) * | 2020-12-09 | 2021-08-27 | 山东益圆农牧机械科技有限公司 | 一种养殖笼自动称重系统 |
CN112985570A (zh) * | 2021-02-04 | 2021-06-18 | 支付宝(杭州)信息技术有限公司 | 称重货架的传感器的标定方法和系统 |
Also Published As
Publication number | Publication date |
---|---|
CN116067465A (zh) | 2023-05-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102323474A (zh) | 一种检测脉冲电流的数显电流表 | |
WO2020103535A1 (zh) | 一种可测量四角重量值的体重秤、测量装置及测量方法 | |
CN202615246U (zh) | 淡水养殖溶氧浓度监控装置 | |
WO2023070664A1 (zh) | 一种物体重量检测系统及检测方法 | |
CN103565447A (zh) | 用于测量咬合力的传感器 | |
CN204556016U (zh) | 一种物质温湿度混合测定仪 | |
Yunfeng et al. | A design of dissolved oxygen monitoring system based on Nb-Iot | |
CN103616416B (zh) | 自适应离子计及其测量离子浓度的方法 | |
CN111307889A (zh) | 一种高精度的血糖检测装置 | |
CN116519058A (zh) | 一种桥梁大体积承台应力与应变监测系统及监测方法 | |
CN211825812U (zh) | 一种高精度的血糖检测装置 | |
CN204988943U (zh) | 一种高精度金属材料疲劳损伤测试仪器 | |
CN205679311U (zh) | 一种智能电子称 | |
CN117770808A (zh) | 低功耗的葡萄糖浓度信息采集装置 | |
CN211633032U (zh) | 一种具有健康数据监测功能的智能马桶盖装置 | |
CN105686850A (zh) | 一种身高体重测量方法 | |
CN204988462U (zh) | 一种用于金属材料疲劳损伤测试的称重仪器 | |
Ma et al. | Design of a wireless compact implantable electrochemical biosensor system for health monitoring application | |
CN201274087Y (zh) | 智能型甲烷测定器 | |
CN204535739U (zh) | 一种数据采集装置 | |
CN215985837U (zh) | 紧压茶含水率测量仪 | |
CN206489220U (zh) | 一种基于单片机微电阻测量系统 | |
CN204594614U (zh) | 一种基于单片机的液压机上的数字式压力测量装置 | |
CN218629511U (zh) | 一种生物传感信号检测分析电路 | |
CN203643391U (zh) | 自适应离子计 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21962014 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21962014 Country of ref document: EP Kind code of ref document: A1 |