[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023068279A1 - ブラウチア(Blautia)属細菌のスクリーニング方法 - Google Patents

ブラウチア(Blautia)属細菌のスクリーニング方法 Download PDF

Info

Publication number
WO2023068279A1
WO2023068279A1 PCT/JP2022/038803 JP2022038803W WO2023068279A1 WO 2023068279 A1 WO2023068279 A1 WO 2023068279A1 JP 2022038803 W JP2022038803 W JP 2022038803W WO 2023068279 A1 WO2023068279 A1 WO 2023068279A1
Authority
WO
WIPO (PCT)
Prior art keywords
wexlerae
brautia
strain
culture
bacteria
Prior art date
Application number
PCT/JP2022/038803
Other languages
English (en)
French (fr)
Inventor
純 國澤
晃司 細見
浩平 北尾
Original Assignee
国立研究開発法人医薬基盤・健康・栄養研究所
Noster株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人医薬基盤・健康・栄養研究所, Noster株式会社 filed Critical 国立研究開発法人医薬基盤・健康・栄養研究所
Priority to JP2023554712A priority Critical patent/JPWO2023068279A1/ja
Publication of WO2023068279A1 publication Critical patent/WO2023068279A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/10Animal feeding-stuffs obtained by microbiological or biochemical processes
    • A23K10/16Addition of microorganisms or extracts thereof, e.g. single-cell proteins, to feeding-stuff compositions
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/135Bacteria or derivatives thereof, e.g. probiotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/74Bacteria
    • A61K35/741Probiotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor

Definitions

  • the present invention relates to a screening method for bacteria belonging to the genus Blautia. More specifically, the present invention provides that Blautia wexlerae species have metabolic improving effects (that is, body weight gain reducing action, adipose tissue reducing action, adipose tissue inflammation suppressing action, fasting blood sugar level lowering action, fasting The present invention relates to a screening method for determining whether or not the present invention has blood insulin-lowering action, insulin resistance-improving action).
  • Metabolic syndrome is a condition in which two or more of hyperglycemia, hypertension, and dyslipidemia are combined with visceral fat obesity, and arteriosclerosis is likely to occur. It is estimated that 1 in 2 men and 1 in 5 women in Japan aged 40 to 74 have metabolic syndrome or are at risk of developing it. Therefore, the importance of optimizing calorie intake through dietary therapy has been advocated for the purpose of preventing or eliminating lipid accumulation in metabolic syndrome.
  • compositions comprising bacterial strains of the genus Brauchia as a means of increasing microbiota diversity for use in the treatment and/or prevention of diseases associated with decreased microbiota diversity such as obesity and type 2 diabetes. It has been proposed (Patent Document 1).
  • Patent Document 1 what is specifically described in Patent Document 1 is that viable bacterial strains belonging to Blautia hydrogenotrophica have therapeutic activity against autoimmune diseases. No effect of Wexlerae is given. Moreover, even for Brautia hydrogenotrophica, it has not been proved at all whether it has a metabolic improving effect or an effect of killing dead bacteria.
  • Non-Patent Document 3 There is also a report that it was 5.589% in humans (Non-Patent Document 3), and it remains unclear whether there is a correlation between obesity and the amount of Brauchia wexlerae in the intestine. In addition, some strains of Brautia wexlerae are causative of diabetes, and it has been reported that the characteristics of the strains of Brautia wexlerae differ depending on their characteristics (Patent Document 2).
  • An object of the present invention is to provide a screening method for the intestinal bacterium, Brautia wexlerae, for determining whether it has the effect of preventing and/or improving metabolic disorders.
  • the present inventors have conducted intensive research in view of the above problems, and found that Brauchia wexlerae has a body weight gain-reducing action, adipose tissue-reducing action, adipose tissue inflammation-inhibiting action, fasting blood sugar level-lowering action, fasting L-ornithine, S - adenosylmethionine, It was discovered that acetylcholine, amylopectin, acetic acid, succinic acid, lactic acid, etc. are produced. The present inventors have succeeded in screening Brautia wexlerae strains having a metabolic improvement effect by using the production amounts of these substances as indices, and have completed the present invention.
  • a method for determining whether a strain belonging to Blautia wexlerae has a function of improving metabolism comprising: (i) anaerobically culturing the isolated test strain of Brautia wexlerae; (ii) detecting production of two or more substances selected from the group consisting of L-ornithine, S-adenosylmethionine, acetylcholine, amylopectin, acetic acid, succinic acid and lactic acid in the resulting culture; and (iii) ) A method comprising the step of determining that the test strain has a function of improving metabolism when the production of two or more substances can be detected in step (ii).
  • a composition for preventing or ameliorating metabolic disorders, comprising as an active ingredient at least one selected from the group consisting of viable, dead, and culture supernatants of Brautia wexlerae, the Brautia wexlerae strain.
  • composition produces two or more substances selected from the group consisting of L-ornithine, S-adenosylmethionine, acetylcholine, amylopectin, acetic acid, succinic acid and lactic acid when the isolated strain is anaerobically cultured
  • the metabolic disorder is at least one selected from the group consisting of obesity, diabetes, impaired glucose tolerance, hyperinsulinemia, dyslipidemia, increased adipose tissue and fatty liver, according to [5].
  • Composition [7] The composition according to [5] or [6], which is a food or food additive.
  • [5A] A method for preventing or improving metabolic abnormality in a subject, comprising having the subject ingest an effective amount of at least one selected from the group consisting of live bacteria, dead bacteria, and culture supernatant of Brautia wexlerae. 2 selected from the group consisting of L-ornithine, S-adenosylmethionine, acetylcholine, amylopectin, acetic acid, succinic acid and lactic acid, when the isolated strain is anaerobically cultured.
  • a method that produces more than one species comprising having the subject ingest an effective amount of at least one selected from the group consisting of live bacteria, dead bacteria, and culture supernatant of Brautia wexlerae. 2 selected from the group consisting of L-ornithine, S-adenosylmethionine, acetylcholine, amy
  • Brautia wexlerae At least one selected from the group consisting of viable, dead and culture supernatants of Brautia wexlerae for use as a composition for preventing or improving metabolic disorders, said Brautia wexlerae
  • the strain produces two or more substances selected from the group consisting of L-ornithine, S-adenosylmethionine, acetylcholine, amylopectin, acetic acid, succinic acid and lactic acid when the isolated strain is anaerobically cultured. At least one selected from the group consisting of live bacteria, dead bacteria and culture supernatant.
  • live bacteria (probiotics) and / or dead bacteria (prebiotics) of the target Brautia wexlerae strain have an inhibitory effect on weight gain, an inhibitory effect on adipose tissue increase, and an adipose tissue inflammation Diseases or pathological conditions accompanied by metabolic abnormalities, such as obesity, diabetes, impaired glucose tolerance, and hyperinsulinemia, can be determined without conducting experiments such as administration to animals, as it can be determined whether they have inhibitory effects and inhibitory effects on elevation of blood sugar levels.
  • useful strains of Brautia wexlerae for preventing or improving dyslipidemia, increased adipose tissue, fatty liver, etc. can be quickly and easily found.
  • the present invention can be used in the field of health industry, and compositions containing strains screened in the present invention can be used in various fields such as pharmaceuticals, foods, and feeds.
  • mice were fed with a normal diet (Control diet, CD) and a high fat diet (HFD) for 8 weeks, during which the high-fat diet mice were fed with a viable bacterial culture of Brautia wexlerae (Bw) three times a week. (HFD+Bw) or medium (HFD) as a control was orally administered with a sonde, showing body weight fluctuation results (A) and photographs of mice after 8 weeks (B). The bar in the photograph indicates 1 cm.
  • mice were fed a normal diet (CD), a high-fat diet (HFD) for 8 weeks, during which time the high-fat diet mice were fed three times a week with live bacterial cultures of Brautia wexlerae (Bw) (HFD+Bw) or control.
  • 8 shows a photograph of the peri-testicular adipose tissue and the weight of the peri-testicular adipose tissue (eAT) of mice after 8 weeks of administration of medium (HFD) by an oral probe. The bar in the photograph indicates 1 cm.
  • HOMA-IR an index of insulin resistance after 8 weeks, is shown when the medium (HFD) was administered as an oral probe.
  • HFD medium
  • HOMA-IR fasting insulin level ( ⁇ U/mL) ⁇ fasting blood glucose level (mg/dL)/405. **P ⁇ 0.01 Mice were fed on a normal diet (CD), high-fat diet (HFD) for 8 weeks, during which time the high-fat diet mice were fed three times a week with live bacterial cultures (HFD + Bw) of Brautia wexlerae JCM17041 strain T (Bw).
  • Fig. 2 shows the results of the decrease and increase of components in the medium in which the Brauchia wexlerae JCM17041 T strain (Bw) was anaerobically cultured.
  • FIG. 4 shows concentrations of succinic acid, lactic acid, and acetic acid in the culture supernatant after anaerobic culture of Brautia wexlerae JCM17041 T strain (Bw).
  • FIG. 1 shows the concentration of S-adenosylmethionine and L-ornithine in each culture supernatant after anaerobically culturing Brauchia wexlerae JCM17041 T strain (Bw 17041) and JCM31267 T strain (Bw 31267).
  • Mice were fed on a normal diet (CD), high-fat diet (HFD) for 8 weeks, during which time the high-fat diet mice were fed three times a week with live bacterial cultures (HFD+Bw) of Brautia wexlerae JCM31267 T strain (Bw).
  • the present invention provides a method for determining whether a strain of Brautia wexlerae has an effect of preventing and/or improving metabolic disorders, and a method for screening a strain of Brautia wexlerae having a function of improving metabolism (hereinafter collectively referred to as "the strain of the present invention. method”).
  • Brautia wexlerae which is the test subject in the method of the present invention, belongs to the phylum Gram-positive bacteria (Firmicutes), the class Clostridia, the order Clostridiales, the family Lachnospiraceae, and the genus Blautia. It is classified as a Gram-positive obligate anaerobe.
  • the genus Blautia includes, in addition to Blautia wexlerae, Blautia hydrogenotrophica, Blautia stercoris, Blautia faecis, Blautia coccoides, and Blautia coccoides.
  • Whether or not the bacterium isolated from the isolation source is a strain belonging to Brautia wexlerae can be determined, for example, by PCR-amplifying all or part of the 16S rRNA gene using the genomic DNA extracted from the strain as a template, and determining the nucleotide sequence of the amplified fragment. can be determined and compared to known Brautia wexlerae sequence data and a phylogenetic analysis can be performed. A phylogenetic analysis and a method for constructing a phylogenetic tree can be performed, for example, according to the following procedures.
  • genomic DNA that serves as a template is extracted from bacteria.
  • Methods for extracting DNA from bacteria are known, and any method may be used. In general, a method of treating cells with a cell wall-degrading enzyme such as lysozyme, a method of physical disruption with glass beads, a treatment method of repeated freezing and thawing, and the like are used. A commercially available reagent for DNA extraction can also be used. Genomic DNA does not necessarily have to be extracted in an intact state. Therefore, it is possible to appropriately select a method that has a low possibility of sample contamination, is easy to operate, and can be performed quickly.
  • the target DNA encoding 16S rRNA is amplified by polymerase chain reaction (PCR).
  • the sequences of the primers used in PCR can be appropriately designed so that target DNAs encoding 16S rRNAs of all known bacteria belonging to at least Brautia wexlerae are amplified, but are usually conserved across species.
  • a primer consisting of a sequence (universal primer; for example, a primer set of 27F and 357R that amplifies about 350 bases of the V1-V2 region, and 342F that amplifies about 460 bases of the V3-V4 region used in the examples described later and 806R primer sets) are used.
  • PCR conditions are not particularly limited, and can be appropriately selected within a commonly used range. Using commercially available PCR reagents, the reaction can be performed according to the attached instructions.
  • DNA fragments amplified by PCR are purified using a spin column or the like as necessary, and then their base sequences are determined. Determination of base sequences can be carried out according to standard methods.
  • the determined nucleotide sequence can be searched for homology with known bacterial 16S ribosomal DNA sequences using an appropriate gene sequence database and homology search program to extract known sequences showing the highest homology.
  • BLAST and FASTA can be used through the homepage of the DNA Data Bank of Japan (DDBJ).
  • DDBJ DNA Data Bank of Japan
  • Any other gene sequence database can be used as long as it contains a data set of nucleotide sequences of bacterial 16S rRNA genes (for example, RDP (http://rdp.cme.msu.edu), Silva (http:/ /www.arb-silva.de) etc.).
  • RDP http://rdp.cme.msu.edu
  • Silva http:/ /www.arb-silva.de
  • 16S rRNA gene sequence identity is required for identification at the genus level, and 98% or more for identification at the species level (Science 2005, 307, 1915-1920). . Therefore, when the sequence of the 16S rRNA gene of an isolated bacterium has 98% or more identity with the known sequence of a bacterium belonging to Brautia wexlerae as a result of homology search, the bacterium is regarded as a bacterium belonging to Brautia wexlerae. can be identified.
  • a known 16S rRNA gene sequence that serves as a reference for discrimination includes, but is not limited to, the sequence derived from Blautia wexlerae JCM 17041 T strain (SEQ ID NO: 1) registered in GenBank under accession number LC037229.1. Therefore, when the nucleotide sequence of the PCR-amplified fragment has 98% or more identity with the nucleotide sequence represented by SEQ ID NO: 1, the isolated bacterium can be identified as a bacterium belonging to Brautia wexlerae. .
  • the strain of Brautia wexlerae is anaerobically cultured, the medium after culture is analyzed by LC-MS/MS or the like, and an increase in a specific component is detected to metabolize the strain of Brautia wexlerae. It is determined that there is an effect on the anomaly.
  • Brautia wexlerae can be cultured under known culture conditions and maintained and amplified. Since Brautia wexlerae is an obligatory anaerobe, it is cultured in an anaerobe medium. In addition to the carbon source, nitrogen source and inorganic substances necessary for the growth of bacteria, reducing agents (e.g., cysteine hydrochloride, nitrogen sulfide, titanium citrate, etc.) are added to the anaerobic culture medium to lower the redox potential. Supplemented medium is included.
  • reducing agents e.g., cysteine hydrochloride, nitrogen sulfide, titanium citrate, etc.
  • carbon sources include, for example, glucose, dextrin, soluble starch, sucrose, etc.
  • nitrogen sources include, for example, ammonium salts, nitrates, corn steep liquor, peptone, casein, meat extract, soybean meal, potato.
  • Inorganic or organic substances such as extracts; inorganic substances include, for example, calcium chloride, sodium dihydrogen phosphate, magnesium chloride, and the like, respectively.
  • blood derived from horses, rabbits, and sheep, hemin, vitamin K, and the like can be added to the anaerobic culture medium.
  • the medium may be solid or liquid.
  • Difco TM reinforced clostridial medium (#218081; BD Bioscience, San Jose, Calif.) can be used as the medium.
  • Brautia wexlerae is an obligatory anaerobic bacterium
  • cultivation is carried out under anaerobic conditions (oxygen concentration of 1 ppm or less).
  • it can be cultured in an anaerobic gas chamber under a mixed gas atmosphere of 10% CO 2 , 10% H 2 and 80% N 2 .
  • the culture temperature is about 37°C.
  • the culture period is, for example, 12 to 72 hours, preferably 24 to 48 hours, but is not particularly limited.
  • the culture supernatant is analyzed for components. Cultivation may be performed under known culture conditions, but anaerobic conditions (oxygen concentration of 1 ppm or less), for example, in an anaerobic gas chamber, under a mixed gas atmosphere of 10% CO 2 , 10% H 2 and 80% N 2 Cultivate in
  • the culture temperature is about 37° C.
  • the culture period is 12 to 72 hours, preferably 24 to 48 hours.
  • Specific components of the culture supernatant after culturing are measured by LC-MS/MS or HPLC.
  • amylopectin produced not only in the medium but also in the cells the cells collected after culturing are freeze-dried, and the freeze-dried cells are analyzed.
  • Succinic acid , Lactic Acid and Acetic Acid in Culture Supernatant by HPLC can be analyzed by high performance liquid chromatography (HPLC).
  • HPLC high performance liquid chromatography
  • the apparatus used for HPLC analysis is not particularly limited, for example, a high-performance liquid chromatograph apparatus manufactured by Shimadzu Corporation or Waters Corporation is used.
  • a fatty acid analysis kit manufactured by YMC Co., Ltd. can be used for labeling fatty acids.
  • the amount of amylopectin in the freeze-dried cells can be measured, for example, by using an amylose/amylopectin analysis kit manufactured by Megazyme.
  • a Brauchia wexlerae strain has a function of improving metabolism Whether a strain of Brautia wexlerae has a function of improving metabolism can be confirmed by LC-MS/MS analysis, HPLC analysis, and analysis of freeze-dried bacterial cells of the medium.
  • the production of two or more of ornithine, S-adenosylmethionine, acetylcholine, amylopectin, acetic acid, succinic acid, and lactic acid can be confirmed to determine that the substance has a function of improving metabolism.
  • the determination is made by confirming the production of preferably 4 or more, more preferably 6 or more.
  • Measurement may be performed for any two or more of the above seven substances as long as production of two or more substances can be confirmed. In one preferred embodiment, all of the above seven substances are measured.
  • the production of L-ornithine, S-adenosylmethionine, acetylcholine, acetic acid, succinic acid and lactic acid by the tested strains is measured, for example, in media not inoculated with microorganisms after incubation under identical anaerobic conditions. It can be confirmed by the amount of each substance in the culture supernatant of the strain to be tested being significantly higher than the amount of each substance.
  • the production of amylopectin by the strain to be tested can be confirmed, for example, by detecting a significant increase in the amount of amylopectin per cell weight of the strain to be tested before and after anaerobic culture.
  • a strain of Brautia wexlerae contained in a sample such as feces has a function of improving metabolism can be determined by isolating Brautia wexlerae from a sample. It can be determined by anaerobically culturing the Brautia wexlerae strain and measuring in the same manner. Specimens include not only intestinal flora such as feces, but also oral flora such as saliva, skin flora on the skin surface, vaginal flora, and other living organisms. It can also be applied to environmental specimens such as soil and water.
  • Preferred specimens in the present invention are human and non-human mammal feces.
  • a method for isolating Brautia wexlerae from a specimen for example, the specimen is suspended in sterile phosphate-buffered saline (PBS) or the like, and the resulting suspension is treated with a platinum loop or the like to isolate Brautia wexlerae.
  • Candidates for Brautia wexlerae can be selected from the mycological characteristics (morphological characteristics, biochemical characteristics, etc.) of colonies that have appeared after plating on a plate medium suitable for culture. Identification of a selected colony as a Brautia wexlerae colony can be performed, for example, by the 16S rRNA gene analysis described above.
  • a composition containing Brautia wexlerae determined to have a function of improving metabolism. may be provided).
  • Brautia wexlerae strains determined to have a function of improving metabolism by the method of the present invention that is, the group consisting of L-ornithine, S-adenosylmethionine, acetylcholine, amylopectin, acetic acid, succinic acid and lactic acid when anaerobically cultured
  • a strain that produces two or more substances selected from) isolated viable bacteria, as long as they are in a living state can be obtained from the culture (bacteria) as it is, or from the culture by a method known per se, For example, wet cells collected by centrifugation, filtration, magnetic separation, etc., or their washed products (can be washed with sterilized water, medium, PBS, etc.), or their freeze-dried powders, etc. It can be blended in the composition of the present invention in the state of "product”.
  • Killed bacteria of Brautia wexerellae can be prepared by physically and/or chemically treating and sterilizing viable cells according to standard methods.
  • physical treatment methods include heat treatment (autoclave treatment, pasteurization, high temperature sterilization, etc.), oxygen exposure treatment, drying treatment (heat drying, freeze drying, etc.), electromagnetic wave treatment (ultraviolet sterilization, gamma ray sterilization, etc.), Grinding/crushing treatment (glass bead treatment, French press treatment, ultrasonic treatment, etc.), or a combination thereof.
  • chemical treatment methods include chemical treatment (formaldehyde treatment, surfactant treatment, acid treatment, alkali treatment), enzymatic treatment (protease treatment, saccharifying enzyme treatment, etc.), and combinations thereof.
  • dead cells can be prepared by treating live cells of the bacterium of the present invention at a temperature of about 60 to 120° C. for about several seconds to 30 minutes.
  • Killed bacteria of Brautia wexerellae can be obtained directly from the above dead cells (including physically and chemically disrupted cells) or by various known extraction methods (e.g., various solvent extractions, supercritical fluid extractions). It can be blended in the composition of the present invention in the state of "treated dead cells" such as the resulting extract.
  • a culture supernatant obtained by culturing a Brautia wexlerae strain determined to have a function of improving metabolism by the above method can also be used.
  • the culture supernatant can be prepared by removing cells from the culture solution of Brautia wexlerae by a method known per se such as centrifugation or filtration.
  • the culture supernatant can be added to the composition of the present invention as it is or after being concentrated as appropriate.
  • the Brautia wexlerae strain to be blended in the composition of the present invention may be used singly or in combination of two or more strains.
  • live bacteria and dead bacteria including each treated bacterial cell
  • live bacteria and their culture supernatant the whole culture may be used
  • killed bacteria and culture supernatant the whole culture may be used
  • live bacteria, dead bacteria and culture Any combination of supernatants may be used.
  • Viable or dead bacteria of Brautia wexlerae strains determined to have a function of improving metabolism, their processed products, and their culture supernatants are added alone or pharmaceutically or food or feed processing acceptable additives can be formulated with a product. Alternatively, it can be incorporated into a pharmaceutical composition or food or feed as a pharmaceutical additive or food or feed additive.
  • the pharmaceutical or pharmaceutical containing the additive can be, for example, powders, granules, pills, soft capsules, hard capsules, tablets, chewable tablets, rapidly disintegrating tablets, It can be formulated into tablets, syrups, solutions, suspensions, suppositories, injections and the like.
  • compositions for oral administration include solid or liquid dosage forms, specifically tablets (including sugar-coated tablets and film-coated tablets), pills, granules, powders, and capsules (including soft capsules). , syrups, emulsions, suspensions and the like.
  • Such compositions are produced by known methods and may contain additives commonly used in the pharmaceutical field, such as excipients, binders, disintegrants, lubricants, and the like.
  • excipients include animal and vegetable oils such as soybean oil, safflower oil, olive oil, germ oil, sunflower oil, beef tallow, and sardine oil; polyhydric alcohols such as polyethylene glycol, propylene glycol, glycerin and sorbitol; and sorbitan fatty acid esters. , surfactants such as sucrose fatty acid esters, glycerin fatty acid esters and polyglycerin fatty acid esters, purified water, lactose, starch, crystalline cellulose, D-mannitol, lecithin, gum arabic, sorbitol solution, sugar solution and the like.
  • animal and vegetable oils such as soybean oil, safflower oil, olive oil, germ oil, sunflower oil, beef tallow, and sardine oil
  • polyhydric alcohols such as polyethylene glycol, propylene glycol, glycerin and sorbitol
  • sorbitan fatty acid esters such as sucrose fatty acid est
  • Binders include, for example, hydroxypropylmethylcellulose, hydroxypropylcellulose, gelatin, pregelatinized starch, polyvinylpyrrolidone, polyvinyl alcohol and the like.
  • Disintegrants include, for example, carmellose calcium, carmellose sodium, croscarmellose sodium, crospovidone, low-substituted hydroxypropylcellulose, corn starch and the like.
  • Lubricants include, for example, talc, hydrogenated vegetable oils, waxes, light silicic anhydride derived from natural products and their derivatives, stearic acid, magnesium stearate, calcium stearate, aluminum stearate and the like.
  • Sweeteners, coloring agents, pH adjusters, flavoring agents, various amino acids, etc. can also be added to the above composition.
  • tablets and granules may be coated by a well-known method.
  • a liquid formulation may be dissolved or suspended in water or other suitable medium at the time of administration.
  • compositions for parenteral administration for example, injections, suppositories, etc. are used.
  • Injections can be prepared, for example, by suspending or emulsifying cells or processed cells of Blautia wexlerae in a sterile aqueous or oily liquid commonly used for injections. can.
  • Aqueous solutions for injection include, for example, physiological saline, isotonic solutions containing glucose and other adjuvants, and the like.
  • As the oily liquid for example, sesame oil, soybean oil, or the like is used.
  • Suppositories used for rectal administration can be prepared by mixing the bacterial cells, treated bacterial cells and/or culture supernatant of Brautia wexlerae with a conventional suppository base.
  • composition of the present invention may be used in combination with other drugs such as anti-inflammatory drugs, anti-arteriosclerotic drugs, anti-diabetic drugs, etc., depending on the target disease. good.
  • the composition of the present invention and the concomitant drug may be formulated as a single composition (mixture), or may be provided as separate compositions.
  • the composition of the present invention and the concomitant drug can be administered to a subject at the same time or at different times, by the same route or by different routes.
  • the composition of the present invention is provided as a food (or feed) or a food additive (or feed additive)
  • the food (or feed) or the food (or feed) containing the additive may be a solution, suspension
  • the food (or feed) or the food (or feed) containing the additive may be a solution, suspension
  • the food (or feed) or the food (or feed) containing the additive may be a solution, suspension
  • the food (or feed) or the food (or feed) containing the additive may be a solution, suspension
  • the food (or feed) or the food (or feed) containing the additive may be a solution, suspension
  • the food (or feed) or the food (or feed) containing the additive may be a solution, suspension
  • Specific examples include supplements (powder, granules, soft capsules, hard capsules, tablets, chewable tablets, rapidly disintegrating tablets, syrups, liquids, etc.), beverages (carbonated drinks, lactic acid drinks, sports drinks, fruit juice drinks, vegetable drinks, soy milk drinks).
  • dairy products yogurt, butter, cheese, ice cream, etc.
  • confectionery gummy, jelly, gum, chocolate, cookies, candy, caramel , Japanese sweets, snacks, etc.
  • instant foods instant noodles,
  • the above food contains various nutrients, various vitamins (vitamin A, vitamin B1, vitamin B2, vitamin B6, vitamin C, vitamin D, vitamin E, vitamin K, etc.), various minerals ( magnesium, zinc, iron, sodium, potassium, selenium, etc.), dietary fiber, dispersants, stabilizers such as emulsifiers, sweeteners, taste ingredients (citric acid, malic acid, etc.), flavors, royal jelly, propolis, agaricus, etc. can be compounded.
  • the viable cell count of Brautia wexlerae contained in the composition of the present invention is, for example, 10 4 to 10 12 colony forming units (cfu), preferably 10 6 to 10 10 cfu, as a daily intake.
  • the number of dead bacteria the number of viable bacteria (cfu) before sterilization is used as a guide for the number of dead bacteria, and the intake per day is 10 4 to 10 12 cfu before sterilization, preferably 10 6 ⁇ 10 10 cfu.
  • the culture supernatant can be prepared from a culture containing the above number of viable bacteria per unit volume (amount to be added to the composition).
  • composition of the present invention may further contain cells of other useful microorganisms or processed cells thereof.
  • Such other microorganisms include, for example, genus Lactobacillus, genus Streptococcus, genus Leuconostoc, genus Pediococcus, genus Lactococcus, and Enterococcus.
  • genus genus, Bifidobacterium genus, yeast, Bacillus genus, Clostridium butyricum, Aspergillus oryzae, etc., but not limited thereto.
  • microorganisms can be added to the composition of the present invention in the form of not only viable cells but also dead cells or crushed cells, cell extracts, cell components, etc., as long as they are effective. You can also The amount of the microorganism to be used in combination is, for example, 10 4 to 10 12 colony forming units (cfu), preferably 10 6 to 10 10 cfu, as a daily intake.
  • cfu colony forming units
  • the Brautia wexlerae strain determined to have a function of improving metabolism has a metabolic improving effect (that is, weight gain rate reducing effect, adipose tissue reducing effect, adipose tissue inflammation inhibitory action, fasting blood sugar level lowering action, fasting blood insulin lowering action, and insulin resistance improving action), and therefore metabolic function is improved by enriching the bacterial species in the intestinal flora. can do.
  • a metabolic improving effect that is, weight gain rate reducing effect, adipose tissue reducing effect, adipose tissue inflammation inhibitory action, fasting blood sugar level lowering action, fasting blood insulin lowering action, and insulin resistance improving action
  • metabolic function is improved by enriching the bacterial species in the intestinal flora. can do.
  • dead cells and culture supernatants of Brautia wexlerae can exert a metabolic improving effect as prebiotics in the same manner as viable cells. Therefore, the composition of the present invention is useful as a pharmaceutical or pharmaceutical additive, or
  • “Lifestyle-related diseases” refers to a group of diseases in which lifestyle habits such as eating habits, exercise habits, rest, smoking, and drinking are involved in the onset and progression of such diseases.
  • composition for improving metabolism of the present invention is useful for diabetes (type 1 diabetes, type 2 diabetes, gestational diabetes, etc.), diabetic complications (arteriosclerotic disease, diabetic retinopathy, diabetic nephropathy, diabetic neuropathy). etc.), dyslipidemia, hyperlipidemia, hypercholesterolemia, hypertriglyceridemia, insulin resistance, and prevention or improvement of fatty liver.
  • diabetes type 1 diabetes, type 2 diabetes, gestational diabetes, etc.
  • diabetic complications arteriosclerotic disease, diabetic retinopathy, diabetic nephropathy, diabetic neuropathy). etc.
  • dyslipidemia hyperlipidemia
  • hypercholesterolemia hypertriglyceridemia
  • insulin resistance and prevention or improvement of fatty liver.
  • composition of the present invention can be applied to humans or other mammals (e.g., dogs, cats, mice, rats, hamsters, guinea pigs, rabbits, pigs, cows, goats, horses, sheep, monkeys, etc.) as described above.
  • the daily intake can be taken orally once or divided into several times a day. Alternatively, it can be administered rectally.
  • the composition of the present invention When the composition of the present invention is provided as a food, the food can be sold with a label indicating that it is used for improving metabolic disorders.
  • “indication” means all actions to inform consumers of the above-mentioned use. Regardless of the object, medium, etc. to be displayed, all correspond to the "display" in the present invention. However, it is preferable to display the product in an expression that allows consumers to directly recognize the usage.
  • the act of describing the above-mentioned use on the product or product packaging related to the food of the present invention, transferring, delivering, or displaying for transfer or delivery the product or product packaging that describes the above-mentioned use , the act of importing, displaying or distributing the above-mentioned use in advertisements, price lists or transaction documents related to products, or by electromagnetic (Internet, etc.) methods by describing the above-mentioned use in information containing these contents Act of providing, etc. can be exemplified.
  • the labeling it is preferable to be a labeling approved by the government, etc. , catalogs, pamphlets, POP and other advertising materials at sales sites, and other documents.
  • labeling as health food, functional food, enteral nutrition food, food for special dietary use, food with nutrient function claims, quasi-drugs, etc. can be exemplified, and other labels approved by the Ministry of Health, Labor and Welfare, such as , food for specified health use, and labeling approved by similar systems.
  • Examples of the latter include labeling as a food for specified health uses, labeling as a conditionally specified health food, labeling to the effect that it affects the structure and functions of the body, and labeling to reduce the risk of disease.
  • labeling as a food for specified health use stipulated in the Ordinance for Enforcement of the Health Promotion Law (Ministry of Health, Labor and Welfare Ordinance No. 86 of April 30, 2003), and similar Display is a typical example.
  • Example 1 Effect of Improving Metabolism in Mice by Administration of Live or Killed Bacteria of Brautia wexlerae JCM17041 (Materials and Methods) Animals Mice used were C57BL/6JJmsSlc. All mice were housed in an SPF grade animal facility within the National Institutes of Biomedical Innovation, Health and Nutrition. Animals were allowed food and water ad libitum under a strict 12 hour light cycle.
  • mice 4-week-old mice were fed a normal diet (Oriental yeast, AIN-93M), a high-fat diet (Oriental yeast, AIN-93G), a high-fat diet + Brautia wexlerae JCM17041 (Blautia) live bacteria, a high-fat diet + Brautia wexlerae JCM17041 (Blautia) killed cells were divided into 4 groups.
  • Blautia wexlerae JCM17041 (Blautia) viable bacteria were cultured to a turbidity (OD600 value) of 1 to 3 in the culture solution, and then ingested with an oral probe at a dose of 0.5 mL three times a week.
  • Brautia wexlerae JCM17041 (Blautia) dead cells were obtained by heat-treating the same number of Brautia wexlerae JCM17041 viable cells at 60° C. for 30 minutes.
  • Experimental animals were used in accordance with the Declaration of Helsinki and the methods described in the "Standards for the Care and Storage of Experimental Animals" established by the Japanese Association for Laboratory Animals. All experiments were approved by the National Institute of Biomedical Innovation, Health and Nutrition (Institutional Approval Nos. DS25-2, DS25-3).
  • viable cells of Brautia wexlerae were collected by centrifugation, resuspended in Difco TM reinforced clostridial medium, treated at 60° C. for 30 minutes, and heat sterilized. Successful heat sterilization was confirmed by plating heat-treated bacteria and no growth.
  • Plasma insulin levels were obtained by collecting blood from the fundus using hematocrit capillary heparin treatment (manufactured by HIRSCHMANN), and measuring the plasma using a Levis insulin mouse T (manufactured by Fujifilm Wako Shibayagi).
  • IPGTT Glucose Tolerance Test
  • Example 2 LC-MS/MS analysis of culture supernatant of Brautia wexlerae JCM17041 Anaerobically cultured at 37° C. for 48 hours. Water was added to 100 ⁇ L of the culture supernatant after culturing to make 200 ⁇ L, mixed with 400 ⁇ L of a methanol solution containing methionine sulfone as an internal standard, and then 400 ⁇ L of chloroform. After centrifugation at 4° C. and 20,000 ⁇ g for 15 minutes, 200 ⁇ L of the supernatant was centrifuged through a 5-kDa cutoff filter (manufactured by Human Metabolome Technology).
  • LC-MS/MS analysis was performed using a Nexera system (manufactured by Shimadzu Corporation) equipped with two LC-40D pumps, a DGU-405 degasser, a SIL-40C autosampler, a CTO-40C column oven, and a CBM-40 control module. , LCMA-8050 quadrupole mass spectrometer (manufactured by Shimadzu Corporation).
  • FIG. 6 shows the results of the decrease and increase of the components in the culture supernatant obtained by anaerobically culturing the Brauchia wexlerae JCM17041 T strain (Bw).
  • S-adenosylmethionine, acetylcholine and L-ornithine can be confirmed in the culture supernatant after culture of Brauchia wexlerae JCM17041, indicating that these substances are produced by culture.
  • Example 3 Measurement of amylopectin in freeze-dried cells after culture of Brautia wexlerae JCM17041
  • the amounts of amylose and amylopectin in the freeze-dried samples were determined using an amylose/amylopectin assay kit manufactured by Megazyme. Bacteroides vulgataus (Bv), Prevotella copri (Pc), and Faecalibacterium prausnitzii (Fp) were similarly measured. The results are shown in FIG. Amylopectin is highly accumulated in the freeze-dried cells of Brautia wexlerae JCM17041 after culture, indicating that the culture produces amylopectin.
  • Example 4 Fatty acid analysis of Brautia wexlerae JCM17041 culture supernatant by HPLC After culture of Brautia wexlerae JCM17041 cultured in Example 2, the medium supernatant was labeled with a fatty acid analysis kit manufactured by YMC Co., Ltd., followed by the manufacturer's instructions. , 6.0 ⁇ 250 mm YMC-Pack FA column (manufactured by YMC) was used to measure succinic acid, lactic acid and acetic acid by high performance liquid chromatography (HPLC). Detecting UV spectra were measured at 400 nm. The results are shown in FIG. Succinic acid, lactic acid, and acetic acid can be confirmed in the culture supernatant of Brautia wexlerae JCM17041, indicating that these short-chain fatty acids are produced by cultivation.
  • a fatty acid analysis kit manufactured by YMC Co., Ltd.
  • HPLC high performance liquid chromatography
  • Brautia wexlerae JCM17041 which was confirmed to have a function of improving metabolism by mouse animal experiments, is L-ornithine, S-adenosylmethionine, acetylcholine, amylopectin, acetic acid, succinic acid in anaerobic culture. , characteristically produces lactic acid, and by confirming the production of these, it can be determined that it has the ability to improve metabolism.
  • Example 5 Verification with another strain of Brautia wexlerae (JCM31267)
  • JCM31267 Japan Collection of Microorganisms
  • LC-MS/MS of the culture supernatant after anaerobic culture in the same manner as in Example 2 Analysis was carried out.
  • Brautia wexlerae JCM31267 was cultured in the same manner as JCM17041, and the culture supernatant was prepared. The results are shown in FIG. It was confirmed that Brauchia wexlerae JCM31267 also produced S-adenosylmethionine and L-ornithine in the culture supernatant.
  • the method of the present invention can easily determine whether the intestinal bacterium, Brautia wexlerae, is useful for metabolic diseases such as lifestyle-related diseases. Moreover, it is useful also as a medical use using it.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Zoology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Diabetes (AREA)
  • Veterinary Medicine (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Genetics & Genomics (AREA)
  • Obesity (AREA)
  • Biochemistry (AREA)
  • Hematology (AREA)
  • General Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Mycology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Food Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Virology (AREA)
  • Emergency Medicine (AREA)
  • Animal Husbandry (AREA)
  • Immunology (AREA)
  • Endocrinology (AREA)
  • Child & Adolescent Psychology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Nutrition Science (AREA)

Abstract

本発明は、ブラウチア・ウェクスレラエ菌株が代謝改善機能を有するかを判定する方法であって、被検ブラウチア・ウェクスレラエ菌株を嫌気培養したときにL-オルニチン、S-アデノシルメチオニン、アセチルコリン、アミロペクチン、酢酸、コハク酸及び乳酸からなる群より選択される2種以上の物質の産生を検出することで、該菌株が代謝改善機能を有すると判定することを含む、方法を提供する。

Description

ブラウチア(Blautia)属細菌のスクリーニング方法
 本発明は、ブラウチア(Blautia)属細菌のスクリーニング方法に関する。より詳細には、本発明は、ブラウチア・ウェクスレラエ(Blautia wexlerae)種が代謝改善作用(即ち、体重増加率低減作用、脂肪組織低減作用、脂肪組織炎症抑制作用、空腹時血糖値低下作用、空腹時血中インスリン低下作用、インスリン抵抗性改善作用)を有するかを判定するためのスクリーニング方法に関する。
 近年、過食および運動不足等による肥満、特に内臓脂肪の蓄積を伴うメタボリックシンドロームが社会的問題となっている。メタボリックシンドロームとは、内臓脂肪型肥満に、高血糖、高血圧、脂質異常症のうち2つ以上を合併し、動脈硬化が引き起こされやすくなった状態のことをいう。40~74才の日本人、男性では2人に1人、女性では5人に1人が、メタボリックシンドローム及びその予備軍と推計されている。そのため、メタボリックシンドロームにおける脂質蓄積の進行防止・解消を目的に、食事療法により摂取カロリーの適正化を図ることの重要性が提唱されている。
 また最近では、腸内細菌叢の変化が宿主のエネルギー調節や栄養摂取、免疫機能等に関与し、肥満や糖尿病等の病態に対して、直接影響することが明らかとなっている。特に肥満と腸内細菌の相関性に関しては世界中の研究者により盛んに研究されており、肥満の人は肥満でない人と比較して特定の種類の腸内細菌が多い(あるいは、少ない)ことや、肥満の人の腸内細菌を移植したマウスは肥満になりやすいこと等が知られている。例えば、BMIが低くて長寿であるとされる日本人は、アメリカ、デンマーク、中国、ベネズエラなどの他国の人と比較して腸内細菌中に占めるブラウチア(Blautia)属細菌の割合が多いとの報告がある(非特許文献1)。また、微生物叢多様性を増加させる手段としてブラウチア属の細菌株を含む組成物が開示され、肥満、2型糖尿病など微生物叢多様性の減少が関連する疾患の治療及び/又は予防への使用が提唱されている(特許文献1)。
 しかし、特許文献1に具体的に記載されているのは、ブラウチア・ヒドロゲノトロフィカ(Blautia hrdrogenotrophica)に属する細菌株の生菌が、自己免疫性疾患に対する治療活性を有することであり、ブラウチア・ウェクスレラエの効果については何ら示されていない。また、ブラウチア・ヒドロゲノトロフィカについてすら、代謝改善作用の有無、死菌の効果の有無については、何ら実証されていない。
 これまでに、肥満とブラウチア・ウェクスレラエとの直接的な因果関係に関する報告は皆無である。糞便中の細菌叢の網羅的解析により、肥満でない日本人の糞便中のブラウチア・ウェクスレラエの割合は11.91%であるのに対し、肥満である日本人の糞便中のブラウチア・ウェクスレラエの割合は3.79%と有意に低かったとの報告がある一方で(非特許文献2)、痩せた日本人の糞便中のブラウチア・ウェクスレラエの割合は3.798%であるのに比べて、肥満の日本人では5.589%であったとする報告もあり(非特許文献3)、肥満と腸内ブラウチア・ウェクスレラエ量との間に相関関係があるか否かについては不明のままである。また、ブラウチア・ウェクスレラエの株によっては、糖尿病の起因菌となるものもあり、ブラウチア・ウェクスレラエの菌株の特徴によりその性質は異なることが報告されている(特許文献2)。
WO2018/109461 WO2019/235447
S. Nishijima et al., DNA Research, 23(2) 125-133 (2016). C. Kasai et al., BMC Gastroenterology, 15:100 (2015). A. Andoh et al., J Clin Biochem Nutr, 59(1) 65-70 (2016)
 本発明の目的は、腸内細菌であるブラウチア・ウェクスレラエが代謝異常の予防及び/又は改善効果を有するかどうかを判定するための、当該菌種のスクリーニング法を提供することである。
 本発明者らは、上記課題に鑑み鋭意研究を行った結果、ブラウチア・ウェクスレラエであって、体重増加率低減作用、脂肪組織低減作用、脂肪組織炎症抑制作用、空腹時血糖値低下作用、空腹時血中インスリン低下作用、インスリン抵抗性改善作用を有する菌株をDifcoTM reinforced clostridial medium (♯218081;BD Bioscience,San Jose,CA)にて嫌気培養した際に、L-オルニチン、S-アデノシルメチオニン、アセチルコリン、アミロペクチン、酢酸、コハク酸、乳酸などを産生することを発見した。本発明者らは、これらの物質の産生量を指標とすることにより、代謝改善効果を有するブラウチア・ウェクスレラエ菌株をスクリーニングすることに成功し、本発明を完成するに至った。
 即ち、本発明は以下のものを提供する。
[1]ブラウチア・ウェクスレラエ(Blautia wexlerae)に属する菌株が代謝改善機能を有するか否かを判定する方法であって、
(i)単離されたブラウチア・ウェクスレラエの被検菌株を嫌気培養する工程;
(ii)得られる培養物におけるL-オルニチン、S-アデノシルメチオニン、アセチルコリン、アミロペクチン、酢酸、コハク酸及び乳酸からなる群より選択される2種以上の物質の産生を検出する工程;並びに
(iii)工程(ii)において2種以上の物質の産生が検出できた場合に、該被検菌株は代謝改善機能を有すると判定する工程
を含む方法。
[2]2以上の被検菌株から代謝改善機能を有するブラウチア・ウェクスレラエの菌株をスクリーニングする、[1]に記載の方法。
[3]被検菌株が、検体中に存在するブラウチア・ウェクスレラエの菌株である、[1]又は[2]に記載の方法。
[4]検体が、ヒト又はヒト以外の哺乳動物の糞便である、[3]に記載の方法。
[5]ブラウチア・ウェクスレラエの生菌、死菌及び培養上清からなる群より選択される少なくとも1種を有効成分として含む、代謝異常の予防又は改善用組成物であって、該ブラウチア・ウェクスレラエ菌株は、単離された該菌株を嫌気培養したときに、L-オルニチン、S-アデノシルメチオニン、アセチルコリン、アミロペクチン、酢酸、コハク酸及び乳酸からなる群より選択される2種以上の物質を産生するものである、組成物。
[6]代謝異常が、肥満、糖尿病、耐糖能異常、高インスリン血症、脂質異常症、脂肪組織の増加及び脂肪肝からなる群より選択される少なくとも1種である、[5]に記載の組成物。
[7]食品又は食品添加物である、[5]又は[6]に記載の組成物。
[8]医薬品である、[5]又は[6]に記載の組成物。
[9]飼料又は飼料添加物である、[5]又は[6]に記載の組成物。
[5A]ブラウチア・ウェクスレラエの生菌、死菌及び培養上清からなる群より選択される少なくとも1種の有効量を対象に摂取させることを含む、該対象における代謝異常の予防又は改善方法であって、該ブラウチア・ウェクスレラエ菌株は、単離された該菌株を嫌気培養したときに、L-オルニチン、S-アデノシルメチオニン、アセチルコリン、アミロペクチン、酢酸、コハク酸及び乳酸からなる群より選択される2種以上の物質を産生するものである、方法。
[5B]代謝異常の予防又は改善用組成物としての使用のための、ブラウチア・ウェクスレラエの生菌、死菌及び培養上清からなる群より選択される少なくとも1種であって、該ブラウチア・ウェクスレラエ菌株は、単離された該菌株を嫌気培養したときに、L-オルニチン、S-アデノシルメチオニン、アセチルコリン、アミロペクチン、酢酸、コハク酸及び乳酸からなる群より選択される2種以上の物質を産生するものである、該生菌、死菌及び培養上清からなる群より選択される少なくとも1種。
 本発明によれば、対象となるブラウチア・ウェクスレラエ菌株の生菌(プロバイオティクス)及び/又は死菌(プレバイオティクス)が、体重増加に対する抑制作用、脂肪組織増加に対する抑制作用、脂肪組織炎症に対する抑制作用および血糖値上昇に対する抑制作用を有するかを動物への投与などの実験を行うことなく判断できるため、代謝異常を伴う疾患又は病態、例えば、肥満、糖尿病、耐糖能異常、高インスリン血症、脂質異常症、脂肪組織の増加、脂肪肝等を予防又は改善するためのブラウチア・ウェクスレラエの有用株を迅速かつ簡便に見つけることができる。また、ヒト糞便中のブラウチア・ウェクスレラエ菌株を単離し、その菌株が代謝異常に対して有用な株であるかを確認できることから、宿主の腸内菌叢の特性を知る手がかりにもなる。したがって、本発明は、健康産業の分野において使用できるものであり、また、本発明でスクリーニングした菌株を含有する組成物は、医薬品、食品、飼料等、様々な分野において使用し得る。
マウスを通常食(Control diet, CD)、高脂肪食(High fat diet, HFD)で8週間飼育し、その間、高脂肪食マウスへ週に3回、ブラウチア・ウェクスレラエ(Bw)の生菌培養液(HFD+Bw)もしくはコントロールとして培地(HFD)を経口ゾンデで投与した際の、体重変動結果(A)と8週間後のマウスの写真(B)を示す。写真中のバーは1cmを示す。 マウスを通常食(CD)、高脂肪食(HFD)で8週間飼育し、その間、高脂肪食マウスへ週に3回、ブラウチア・ウェクスレラエ(Bw)の生菌培養液(HFD+Bw)もしくはコントロールとして培地(HFD)を経口ゾンデで投与した際の、8週間後のマウスの精巣周囲脂肪組織の写真と精巣周囲脂肪組織(eAT)の重量を示す。写真中のバーは1cmを示す。*P<0.05 マウスを通常食(CD)、高脂肪食(HFD)で8週間飼育し、その間、高脂肪食マウスへ週に3回、ブラウチア・ウェクスレラエ(Bw)の生菌培養液(HFD+Bw)もしくはコントロールとして培地(HFD)を経口ゾンデで投与した際の、8週間後の血糖値(A)および血中のインスリン濃度(B)を示す。**P<0.01 マウスを通常食(CD)、高脂肪食(HFD)で8週間飼育し、その間、高脂肪食マウスへ週に3回、ブラウチア・ウェクスレラエ(Bw)の生菌培養液(HFD+Bw)もしくはコントロールとして培地(HFD)を経口ゾンデで投与した際の、8週間後のインスリン抵抗性の指標であるHOMA-IRを示す。HOMA-IR=空腹時インスリン値(μU/mL)×空腹時血糖値(mg/dL)/405。**P<0.01 マウスを通常食(CD)、高脂肪食(HFD)で8週間飼育し、その間、高脂肪食マウスへ週に3回、ブラウチア・ウェクスレラエJCM17041株(Bw)の生菌培養液(HFD+Bw)もしくはブラウチア・ウェクスレラエJCM17041株(Bw)の加熱死菌体懸濁液(HFD+BwHK)もしくはコントロールとして培地(HFD)を経口ゾンデで投与した際の、体重変動結果(A)と8週間後のマウスのグルコース負荷試験IPGTTの結果(B)を示す。 ブラウチア・ウェクスレラエJCM17041株(Bw)を嫌気培養した培地中の成分の減少増加の結果を示す。 ブラウチア・ウェクスレラエJCM17041株(Bw)、バクテロイデス・ブルガタス(Bv)、プレボテラ・コプリ(Pc)、フィーカリバクテリウム・プラウスニッツィ(Fp)をそれぞれ嫌気培養した後における各培養上清中のS-アデノシルメチオニン、アセチルコリン、L-オルニチンの濃度を示す。 ブラウチア・ウェクスレラエJCM17041株(Bw)、バクテロイデス・ブルガタス(Bv)、プレボテラ・コプリ(Pc)、フィーカリバクテリウム・プラウスニッツィ(Fp)の嫌気培養後の各凍結乾燥菌体に含まれるアミロース、アミロペクチンの量を示す。 ブラウチア・ウェクスレラエJCM17041株(Bw)の嫌気培養後の培養上清中のコハク酸、乳酸、酢酸の濃度を示す。 ブラウチア・ウェクスレラエJCM17041株(Bw 17041)、JCM31267株(Bw 31267)をそれぞれ嫌気培養した後の各培養上清中のS-アデノシルメチオニン、L-オルニチンの濃度を示す。 マウスを通常食(CD)、高脂肪食(HFD)で8週間飼育し、その間、高脂肪食マウスへ週に3回、ブラウチア・ウェクスレラエJCM31267株(Bw)の生菌培養液(HFD+Bw 31267)もしくはブラウチア・ウェクスレラエJCM31267株(Bw)の加熱死菌体懸濁液(HFD+BwHK 31267)もしくはコントロールとして培地(HFD)を経口ゾンデで投与した際の、体重変動結果(C)と8週間後のマウスのグルコース負荷試験IPGTTの結果(D)を示す。
 本発明は、ブラウチア・ウェクスレラエの菌株が代謝異常の予防及び/又は改善効果を有するかどうかを判定する方法、代謝改善機能を有するブラウチア・ウェクスレラエ菌株のスクリーニング法(以下、包括して「本発明の方法」という場合がある。)を提供する。
1.ブラウチア・ウェクスレラエ
 本発明の方法における被検対象であるブラウチア・ウェクスレラエは、グラム陽性細菌門(Firmicutes)、クロストリジウム綱(Clostridia)、クロストリジウム目(Clostridiales)、ラクノスピラ科(Lachnospiraceae)、ブラウチア属(Blautia)に分類されるグラム陽性の偏性嫌気性菌である。ブラウチア属には、ブラウチア・ウェクスレラエの他に、ブラウチア・ヒドロゲノトロフィカ(Blautia hydrogenotrophica)、ブラウチア・ステルコリス(Blautia stercoris)、ブラウチア・ファエシス(Blautia faecis)、ブラウチア・コッコイデス(Blautia coccoides)、ブラウチア・グルセラス(Blautia gluceras)、ブラウチア・ハンセニイ(Blautia hansenii)、ブラウチア・ルティ(Blautia luti)、ブラウチア・プロダクタ(Blautia producta)、ブラウチア・シュインキイ(Blautia schinkii)等の種が存在し、それぞれ各種炭素源の資化能力、最終代謝産物、16S rRNAの類似性等において相違する(例えば、International Journal of Systematic and eEvolutionaly Microbiology (2008),58,1896-1902参照)。ブラウチア・ウェクスレラエは、上記特許文献1(WO2018/109461)において自己免疫疾患の治療作用を有することが示唆されているブラウチア・ヒドロゲノトロフィカとは、16S rRNAの類似性及び生化学的特徴において、大きく相違する。
 分離源から分離された細菌がブラウチア・ウェクスレラエに属する菌株か否かは、例えば、該菌株から抽出したゲノムDNAを鋳型として16S rRNA遺伝子の全部又は一部をPCR増幅し、該増幅断片のヌクレオチド配列を決定して、既知のブラウチア・ウェクスレラエの配列データと比較し、系統解析を行うことにより判別することができる。系統解析及び系統樹の作製方法は、例えば以下の手順に従って行うことができる。
 まず細菌から鋳型となるゲノムDNAを抽出する。細菌からDNAを抽出する方法は公知であり、いずれの方法を使用してもよい。一般的には、細胞をリゾチームなどの細胞壁分解酵素で処理する方法、ガラスビーズによる物理的破壊方法、凍結融解を繰り返す処理方法などが使用される。また市販のDNA抽出用の試薬も使用することができる。ゲノムDNAは必ずしもインタクトな状態で抽出されなくてもよい。従って、試料のコンタミネーションの可能性が低く、操作が簡単で、迅速に行うことのできる方法を適宜選択することができる。
 次にポリメラーゼ連鎖反応(PCR)により16S rRNAをコードする標的DNAを増幅する。PCRにおいて使用されるプライマーの配列は、少なくともブラウチア・ウェクスレラエに属する全ての既知細菌の16S rRNAをコードする標的DNAが増幅されるよう適宜設計することができるが、通常、生物種を超えて保存された配列からなるプライマー(ユニバーサルプライマー;例えば、V1~V2領域の約350塩基を増幅する27Fと357Rのプライマーセットや、後述の実施例で使用されるV3~V4領域の約460塩基を増幅する342Fと806Rのプライマーセット等)が使用される。またPCRの条件は特に限定されず、通常用いられる範囲内で適宜選択することができる。市販のPCR用試薬を使用して、添付の説明書に従って反応を行うことができる。
 PCRで増幅されたDNA断片は、必要に応じてスピンカラムなどを用いて精製されたのち、その塩基配列が決定される。塩基配列の決定は定法に従って行うことができる。
 決定された塩基配列は、適当な遺伝子配列データベース及び相同性検索プログラムを用いて、既知の細菌16SリボソームDNA配列とのホモロジー検索を行うことにより、最も高いホモロジーを示す既知配列を抽出することができる。例えば、日本DNAデータバンク(DDBJ)のホームページを通じて、BLASTやFASTAが利用できる。プログラムとしてblastnやfastaを選択し、決定された塩基配列をクエリーとし、検索対象データベースとして16S rRNA(Prokaryotes)を選択して検索を実施すれば、高いホモロジーを示す既知配列が抽出され出力される。細菌の16S rRNA遺伝子の塩基配列のデータセットを含む限り、いかなる他の遺伝子配列データベースも利用することができる(例えば、RDP(http://rdp.cme.msu.edu)、Silva(http://www.arb-silva.de)等)。また、上記以外の自体公知のホモロジー検索プログラムを用いることもできる。
 一般に、細菌については、属レベルでの同定には95%以上、種レベルでの同定には98%以上の16S rRNA遺伝子配列の同一性が必要とされる(Science 2005, 307, 1915-1920)。従って、ホモロジー検索の結果、単離された細菌の16S rRNA遺伝子の配列が、ブラウチア・ウェクスレラエに属する細菌の既知配列と98%以上の同一性を有する場合、当該細菌をブラウチア・ウェクスレラエに属する細菌として同定することができる。
 判別の基準となる既知の16S rRNA遺伝子配列としては、GenBankにアクセッション番号LC037229.1にて登録されているBlautia wexleraeJCM 17041株由来の配列(配列番号1)が挙げられるが、それに限定されない。従って、前記PCR増幅断片のヌクレオチド配列が、配列番号1で表されるヌクレオチド配列と98%以上の同一性を有する場合、分離された細菌はブラウチア・ウェクスレラエに属する細菌であると同定することができる。
 また、増幅したDNAの塩基配列に基づき分子進化系統樹を推定し、単離された細菌の分類学的位置を特定することもできる。分子進化系統樹解析ソフトはインターネット等でも公開されており、それらを利用することができる(CLUSTAL W等)。系統樹解析の結果、単離された細菌がブラウチア・ウェクスレラエ(Blautia wexlerae)に属する細菌と同じクラスター内に位置づけられた場合、当該細菌をいずれかのブラウチア・ウェクスレラエ(Blautia wexlerae)に属する細菌として同定することができる。
 本発明は、ブラウチア・ウェクスレラエの菌株を嫌気培養し、培養後の培地をLC-MS/MSなどにより分析し、特定の成分が増加していることを検出することでブラウチア・ウェクスレラエの菌株が代謝異常に対する効果があることを判定する。
 ブラウチア・ウェクスレラエは、自体公知の培養条件にて培養し、維持増幅することができる。ブラウチア・ウェクスレラエは偏性嫌気性菌であるので、嫌気性菌用培地で培養する。嫌気性菌用培地としては、細菌の生育に必要な炭素源、窒素源及び無機物に加え、酸化還元電位を低下させるために還元剤(例:システイン塩酸塩、硫化窒素、クエン酸チタン等)が添加された培地が挙げられる。ここで炭素源としては、例えば、グルコース、デキストリン、可溶性澱粉、ショ糖などが;窒素源としては、例えば、アンモニウム塩類、硝酸塩類、コーンスチープ・リカー、ペプトン、カゼイン、肉エキス、大豆粕、バレイショ抽出液などの無機または有機物質が;無機物としては、例えば、塩化カルシウム、リン酸二水素ナトリウム、塩化マグネシウムなどがそれぞれ挙げられる。さらに、嫌気性菌用培地は、ウマ、ウサギ、ヒツジ由来の血液、ヘミンやビタミンK等を添加することができる。培地は固形培地でも液体培地であってもよい。
 より具体的には、培地として、DifcoTM reinforced clostridial medium (♯218081;BD Bioscience,San Jose,CA) を用いることができる。
 ブラウチア・ウェクスレラエは偏性嫌気性細菌であるので、培養は、嫌気条件下(酸素濃度1ppm以下)で行われる。例えば、嫌気ガスチャンバー内で、10% CO、10% H及び80% N混合ガス雰囲気下で培養することができる。培養温度は約37℃である。培養期間としては、例えば12~72時間、好ましくは24~48時間が挙げられるが、特に制限はない。
2.本発明の方法
 ブラウチア・ウェクスレラエの培養後の培養上清について成分の分析を行う。培養は、自体公知の培養条件にて培養できれば良いが、嫌気条件下(酸素濃度1ppm以下)、例えば嫌気ガスチャンバー内で、10% CO、10% H及び80% N混合ガス雰囲気下で培養する。培養温度は約37℃で、培養期間としては、12~72時間、好ましくは24~48時間が挙げられるが、特定の成分の生成が確認できれば特に制限はない。培養後の培養上清について、LC-MS/MSやHPLCにより特定の成分を測定する。また、培地だけでなく、菌体中に産生されるアミロペクチンについては、培養後に回収した菌体を凍結乾燥し、その凍結乾燥菌体について分析を行う。
LC-MS/MSによる培養上清中のL-オルニチン、S-アデノシルメチオニン、アセチルコリンの測定
 ブラウチア・ウェクスレラエの培養上清中のL-オルニチン、S-アデノシルメチオニン、アセチルコリンは液体クロマトグラフィー質量分析法(LC-MS/MS)にて分析することができる。LC-MS/MS分析に用いる装置は特に限定しないが、例えば、島津製作所製の超高速トリプル四重極型LC/MS/MSのLCMS-8050が挙げられる。
HPLCによる培養上清中のコハク酸、乳酸、酢酸の測定
 ブラウチア・ウェクスレラエの培養上清中のコハク酸、乳酸、酢酸は高速液体クロマトグラフィー法(HPLC)にて分析することができる。HPLC分析に用いる装置は特に限定しないが、例えば、島津製作所製やウォーターズ社製などの高速液体クロマトグラフ装置を用いる。脂肪酸の標識には株式会社ワイエムシィ社製の脂肪酸分析キットなどを用いることができる。
培養後の凍結乾燥菌体におけるアミロペクチンの測定
 ブラウチア・ウェクスレラエの培養後、遠心分離により菌体のみを回収し、回収した菌体を凍結乾燥する。凍結乾燥した菌体中のアミロペクチンの量は、例えば、Megazyme社製のアミロース/アミロペクチン分析キットを用いることで測定することができる。
ブラウチア・ウェクスレラエ菌株が代謝改善機能を有するかの判定
 ブラウチア・ウェクスレラエの菌株が代謝改善機能を有するかは、培地のLC-MS/MS分析、HPLC分析、凍結乾燥菌体の分析により確認できるL-オルニチン、S-アデノシルメチオニン、アセチルコリン、アミロペクチン、酢酸、コハク酸、乳酸のうち2種以上の産生が確認できることで代謝改善機能を有すると判定する。好ましくは4種以上、より好ましくは6種以上の産生を確認することで判定を行う。測定は、2種以上の物質の産生が確認できる限り、上記7種の物質のうち任意の2以上の物質について実施してもよい。好ましい一実施態様においては、上記7種の物質のすべてについて測定を行う。被検菌株によるL-オルニチン、S-アデノシルメチオニン、アセチルコリン、酢酸、コハク酸及び乳酸の産生は、例えば、微生物を接種していない培地を同一の嫌気条件下でインキュベートした後の該培地中の各物質の量に対して、被検菌株の培養上清中の各物質の量が有意に高いことにより確認することができる。また、被検菌株によるアミロペクチンの産生は、例えば、嫌気培養の前後で被検菌株の菌体重量あたりのアミロペクチン量が有意に増加するのを検出することにより確認することができる。
3.検体中におけるブラウチア・ウェクスレラエが代謝改善機能を有するかの判定
 糞便などの検体中に含まれるブラウチア・ウェクスレラエの菌株が代謝改善機能を有するかは、検体からブラウチア・ウェクスレラエを単離し、その単離したブラウチア・ウェクスレラエ菌株を嫌気培養し、同様に測定することで判定することができる。検体は糞便等の腸内細菌叢だけでなく、唾液などの口腔内細菌叢や、皮膚表面における皮膚細菌叢、膣内細菌叢などの生物における検体が挙げられる。また、土壌や水などの環境中の検体に適用することもできる。本発明で好ましい検体としては、ヒト及びヒト以外の哺乳動物の糞便である。
 検体からブラウチア・ウェクスレラエを単離する方法としては、例えば、検体を無菌のリン酸緩衝生理食塩水(PBS)等に懸濁し、得られる懸濁液を白金耳などを用いて、ブラウチア属細菌の培養に適した平板培地にプレーティングし、出現したコロニーの菌学的特徴(形態学的特徴、生化学的特徴等)から、ブラウチア・ウェクスレラエの候補を選択することが挙げられる。選択したコロニーがブラウチア・ウェクスレラエのコロニーであることの同定は、例えば、上記の16S rRNA遺伝子解析により行うことができる。
4.代謝改善機能を有すると判定したブラウチア・ウェクスレラエを含む組成物
 本発明はまた、代謝改善機能を有すると判定したブラウチア・ウェクスレラエ菌株を有効成分として含む組成物(以下、「本発明の組成物」という場合がある。)を提供する。本発明の方法により代謝改善機能を有すると判定されたブラウチア・ウェクスレラエ菌株(即ち、嫌気培養したときに、L-オルニチン、S-アデノシルメチオニン、アセチルコリン、アミロペクチン、酢酸、コハク酸及び乳酸からなる群より選択される2種以上の物質を産生する菌株)の単離した生菌は、生きた状態である限り、上記培養物(菌体)をそのまま、あるいは、該培養物から自体公知の方法、例えば、遠心分離、ろ過、磁性分離等の方法により回収した湿菌体もしくはその洗浄物(滅菌水、培地、PBS等により洗浄することができる)又はそれらの凍結乾燥粉末等の「生菌体処理物」の状態で、本発明の組成物中に配合することができる。
 ブラウチア・ウェクセレラエの死菌は、定法に従って生菌体を物理学的及び/又は化学的に処理して滅菌することにより調製することができる。物理学的処理方法としては、例えば、加熱処理(オートクレーブ処理、低温殺菌、高温殺菌など)、酸素曝露処理、乾燥処理(加熱乾燥、凍結乾燥など)、電磁波処理(紫外線殺菌、ガンマ線殺菌など)、磨砕・破砕処理(ガラスビーズ処理、フレンチプレス処理、超音波処理など)など、又はこれらの組み合わせなどが挙げられる。化学的処理方法としては、例えば、化学薬品処理(ホルムアルデヒド処理、界面活性剤処理、酸処理、アルカリ処理)、酵素処理(プロテアーゼ処理、糖化酵素処理など)など、又はこれらの組み合わせが挙げられる。例えば、加熱処理を行う場合、本発明の細菌の生菌体を、60から120℃程度の温度で、数秒から30分間程度処理することで死菌体を調製することができる。ブラウチア・ウェクセレラエの死菌は、上記死菌体(物理的・科学的な菌体破砕物を含む)をそのまま、あるいは、種々の公知の抽出方法(例、各種溶媒抽出、超臨界流体抽出)により得られる抽出物等の「死菌体処理物」の状態で、本発明の組成物中に配合することができる。
 本発明の組成物における有効成分として、代謝改善機能を有すると判定したブラウチア・ウェクスレラエ菌株を上記の方法により培養して得られる培養上清を用いることもできる。該培養上清は、ブラウチア・ウェクスレラエの培養液から、遠心分離やろ過等の自体公知の方法により菌体を除去することにより調製することができる。培養上清はそのまま、あるいは適宜濃縮して、本発明の組成物中に配合させることができる。
 本発明の組成物中に配合させるブラウティア・ウェクスレラエ菌株は、1種であっても2種以上の菌株を組み合わせて用いてもよい。また、生菌と死菌(各菌体処理物を含む)、生菌とその培養上清(培養物全体であってよい)、死菌と培養上清、並びに、生菌、死菌及び培養上清のいずれの組み合わせであってもよい。
 代謝改善機能を有すると判定したブラウチア・ウェクスレラエ菌株の生菌もしくは死菌、それらの菌体処理物、その培養上清は、それら単独で、あるいは、医薬上又は食品もしくは飼料加工上許容される添加物とともに製剤化することができる。あるいは、医薬品添加物又は食品もしくは飼料添加物として、医薬組成物又は食品もしくは飼料中に配合することができる。
 本発明の組成物が医薬品又は医薬品添加物として提供される場合、該医薬品又は該添加物を配合する医薬品は、例えば、散剤、顆粒剤、丸剤、ソフトカプセル、ハードカプセル、錠剤、チュアブル錠、速崩錠、シロップ、液剤、懸濁剤、坐剤、注入剤等に製剤化することができる。
 例えば、経口投与のための組成物としては、固体または液体の剤形、具体的には錠剤(糖衣錠、フィルムコーティング錠を含む)、丸剤、顆粒剤、散剤、カプセル剤(ソフトカプセル剤を含む)、シロップ剤、乳剤、懸濁剤等が挙げられる。このような組成物は公知の方法によって製造され、製剤分野において通常用いられる添加物、例えば、賦形剤、結合剤、崩壊剤、滑沢剤等を含有していてもよい。賦形剤としては、例えば大豆油、サフラワー油、オリーブ油、胚芽油、ひまわり油、牛脂、いわし油等の動植物性油、ポリエチレングリコール、プロピレングリコール、グリセリン、ソルビトール等の多価アルコール、ソルビタン脂肪酸エステル、ショ糖脂肪酸エステル、グリセリン脂肪酸エステル、ポリグリセリン脂肪酸エステル等の界面活性剤、精製水、乳糖、デンプン、結晶セルロース、D-マンニトール、レシチン、アラビアガム、ソルビトール液、糖液等が挙げられる。結合剤としては、例えば、ヒドロキシプロピルメチルセルロース、ヒドロキシプロピルセルロース、ゼラチン、アルファー化デンプン、ポリビニルピロリドン、ポリビニルアルコール等が挙げられる。崩壊剤としては、例えば、カルメロースカルシウム、カルメロースナトリウム、クロスカルメロースナトリウム、クロスポピドン、低置換度ヒドロキシプロピルセルロース、トウモロコシデンプン等が挙げられる。滑沢剤としては、例えば、タルク、水素添加植物油、ロウ類、軽質無水ケイ酸等の天然物由来及びその誘導体等、ステアリン酸、ステアリン酸マグネシウム、ステアリン酸カルシウム、ステアリン酸アルミニウム等が挙げられる。
 上記組成物には、さらに、甘味料、着色料、pH調整剤、香料、各種アミノ酸等を添加することもできる。また、錠剤、顆粒剤は周知の方法でコーティングしてもよい。液体製剤であれば、服用時に水又は他の適当な媒体に溶解又は懸濁する形であってもよい。
 非経口投与のための組成物としては、例えば、注入剤、坐剤等が用いられる。注入剤の調製方法としては、例えば、ブラウチア・ウェクスレラエ(Blautia wexlerae)の菌体又は菌体処理物を、通常注入剤に用いられる無菌の水性液、または油性液に懸濁または乳化することによって調製できる。注入用の水性液としては、例えば、生理食塩水、ブドウ糖やその他の補助薬を含む等張液等が用いられる。油性液としては、例えば、ゴマ油、大豆油等が用いられる。直腸投与に用いられる坐剤は、ブラウチア・ウェクスレラエの菌体、菌体処理物及び/又は培養上清を、通常の坐薬用基剤に混合することによって調製され得る。
 さらに、医薬品又は医薬品添加物として提供される場合、本発明の組成物は、対象疾患に応じて、他の薬剤、例えば、抗炎症薬、抗動脈硬化薬、抗糖尿病薬などと併用してもよい。本発明の組成物と併用剤とは、単一の組成物(合剤)として製剤化してもよいし、別個の組成物として提供されてもよい。別個の組成物として提供される場合、本発明の組成物と併用剤とは、同時に又は時間差をおいて、同一経路又は別経路で対象に投与することができる。
 本発明の組成物が食品(もしくは飼料)又は食品添加物(もしくは飼料添加物)として提供される場合、該食品(もしくは飼料)又は該添加物を配合する食品(もしくは飼料)は、溶液、懸濁物、粉末、固体成形物等、経口摂取可能な形態であればよく、特に限定されない。具体例としては、サプリメント(散剤、顆粒剤、ソフトカプセル、ハードカプセル、錠剤、チュアブル錠、速崩錠、シロップ、液剤等)、飲料(炭酸飲料、乳酸飲料、スポーツ飲料、果汁飲料、野菜飲料、豆乳飲料、コーヒー飲料、茶飲料、粉末飲料、濃縮飲料、栄養飲料、アルコール飲料等)、乳製品(ヨーグルト、バター、チーズ、アイスクリーム等)、菓子(グミ、ゼリー、ガム、チョコレート、クッキー、キャンデー、キャラメル、和菓子、スナック菓子等)、即席食品類(即席麺、レトルト食品、缶詰、電子レンジ食品、即席スープ・みそ汁類、フリーズドライ食品等)、油、油脂食品(マヨネーズ、ドレッシング、クリーム、マーガリン等)、小麦粉製品(パン、パスタ、麺、ケーキミックス、パン粉等)、調味料(ソース、トマト加工調味料、風味調味料、調理ミックス、つゆ類等)、畜産加工品(畜肉ハム・ソーセージ等)が挙げられる。
 上記食品(もしくは飼料)には、必要に応じて各種栄養素、各種ビタミン類(ビタミンA、ビタミンB1、ビタミンB2、ビタミンB6、ビタミンC、ビタミンD、ビタミンE、ビタミンK等)、各種ミネラル類(マグネシウム、亜鉛、鉄、ナトリウム、カリウム、セレン等)、食物繊維、分散剤、乳化剤等の安定剤、甘味料、呈味成分(クエン酸、リンゴ酸等)、フレーバー、ローヤルゼリー、プロポリス、アガリクス等を配合することができる。
 本発明の組成物中に含まれるブラウティア・ウェクスレラエの生菌数としては、1日あたりの摂取量として、例えば10~1012コロニー形成ユニット(cfu)、好ましくは10~1010cfuである。死菌体数としては、殺菌処理前の生菌数(cfu)を死菌体数の目安とし、1日あたりの摂取量としては、殺菌処理前で10~1012cfu、好ましくは10~1010cfuである。また、培養上清は、単位容積(組成物への配合量)あたりに上記の数の生菌を含む培養物から調製することができる。
 本発明の組成物には、他の有用な微生物の菌体もしくは菌体処理物をさらに配合することもできる。そのような他の微生物としては、例えば、ラクトバチルス(Lactobacillus)属、ストレプトコッカス(Streptococcus)属、ロイコノストック(Leuconostoc)属、ペディオコッカス(Pediococcus)属、ラクトコッカス(Lactococcus)属、エンテロコッカス(Enterococcus)属、ビフィドバクテリウム(Bifidobacterium)属等に属する乳酸菌、酵母、バチルス(Bacillus)属、酪酸菌(Clostridium butyricum)、麹菌等が挙げられるが、これらに限定されない。これらの併用微生物は、有効性が認められる限り、生菌の状態のみならず、死菌又は菌体破砕物、菌体抽出物、菌体成分などの形態で、本発明の組成物中に配合することもできる。
 併用微生物の配合量としては、1日あたりの摂取量として、例えば10~1012コロニー形成ユニット(cfu)、好ましくは10~1010cfuである。
5.本発明の組成物の用途
 上述のとおり、代謝改善機能を有すると判定したブラウチア・ウェクスレラエ菌株は、腸内で共存することにより、代謝改善作用(即ち、体重増加率低減作用、脂肪組織低減作用、脂肪組織炎症抑制作用、空腹時血糖値低下作用、空腹時血中インスリン低下作用、インスリン抵抗性改善作用)を有するので、腸内細菌叢において該菌種を富化することにより、代謝機能を改善することができる。また、ブラウチア・ウェクスレラエの死菌体や培養上清は、プレバイオティクスとして、生菌と同様に代謝改善作用を発揮し得る。したがって、本発明の組成物は、代謝異常を予防及び/又は改善するための、医薬品又は医薬品添加物、あるいは、機能性食品(もしくは飼料)又は食品(もしくは飼料)添加物として有用である。
 本発明の代謝異常改善用組成物と関連する疾患として、生活習慣病の改善に適用することもできる。「生活習慣病」とは、食習慣、運動習慣、休養、喫煙、飲酒等の生活習慣がその発症、進行に関与する疾患群をいい、成人肥満、小児肥満、栄養失調症、拒食症、胃がん、大腸がん、痛風、高血圧、動脈硬化症、腎臓結石、心筋梗塞、狭心症、胃潰瘍、腎臓病、骨粗しょう症、歯周囲炎、アルコール性肝炎、肝硬変、肝臓がん、肺がん、気管支炎、肺気腫、歯周病、脳卒中、脳梗塞、動脈瘤、過労死、不眠症等の病態が挙げられる。
 さらに、本発明の代謝改善用組成物は、糖尿病(1型糖尿病、2型糖尿病、妊婦糖尿病等)、糖尿病合併症(動脈硬化性疾患、糖尿病性網膜症、糖尿病性腎症、糖尿病性神経障害等)、脂質代謝異常、高脂血症、高コレステロール血症、高トリグリセリド血症、インスリン抵抗性、脂肪肝の予防又は改善に使用することもできる。
 本発明の組成物は、ヒト、又は他の哺乳動物(例えば、イヌ、ネコ、マウス、ラット、ハムスター、モルモット、ウサギ、ブタ、ウシ、ヤギ、ウマ、ヒツジ、サル等)に対して、上記の1日あたりの摂取量を、1日1回、又は数回に分けて、経口的に摂取させることができる。あるいは直腸投与することもできる。
 本発明の組成物が食品として提供される場合、該食品は、代謝異常の改善のために用いられる旨の表示を付して販売することができる。ここで「表示」とは、需要者に対して上記用途を知らしめるための全ての行為を意味し、上記用途を想起・類推させうるような表示であれば、表示の目的、表示の内容、表示する対象物・媒体等の如何に拘わらず、すべて本発明における「表示」に該当する。しかしながら、需要者が上記用途を直接的に認識できるような表現により表示することが好ましい。具体的には、本発明の食品に係る商品又は商品の包装に上記用途を記載する行為、商品又は商品の包装に上記用途を記載したものを譲渡し、引き渡し、譲渡若しくは引渡しのために展示し、輸入する行為、商品に関する広告、価格表若しくは取引書類に上記用途を記載して展示し、若しくは頒布し、又はこれらを内容とする情報に上記用途を記載して電磁気的(インターネット等)方法により提供する行為、等が例示できる。
 一方、表示としては、行政等によって認可された表示(例えば、行政が定める各種制度に基づいて認可を受け、そのような認可に基づいた態様で行う表示)であることが好ましく、特に包装、容器、カタログ、パンフレット、POP等の販売現場における宣伝材、その他の書類等への表示が好ましい。
 また、例えば、健康食品、機能性食品、経腸栄養食品、特別用途食品、栄養機能食品、医薬用部外品等としての表示を例示することができ、その他厚生労働省によって認可される表示、例えば、特定保健用食品、これに類似する制度にて認可される表示を例示できる。後者の例としては、特定保健用食品としての表示、条件付き特定保健用食品としての表示、身体の構造や機能に影響を与える旨の表示、疾病リスク低減表示等を例示することができ、詳細にいえば、健康増進法施行規則(平成15年4月30日日本国厚生労働省令第86号)に定められた特定保健用食品としての表示(特に保健の用途の表示)、及びこれに類する表示が、典型的な例として挙げられる。
 以下の実施例により本発明をより具体的に説明するが、実施例は本発明の単なる例示にすぎず、本発明の範囲を何ら限定するものではない。
実施例1 ブラウチア・ウェクスレラエJCM17041の生菌又は死菌投与によるマウスにおける代謝改善効果
(材料及び方法)
動物
 マウスはC57BL/6JJmsSlcを用いた。すべてのマウスは、国立研究開発法人医薬基盤・健康・栄養研究所内のSPFグレードの動物施設で飼育した。動物には、厳密な12時間明期サイクル下で、自由摂食・自由摂水させた。4週齢マウスを、通常食(オリエンタル酵母、AIN-93M)、高脂肪食(オリエンタル酵母、AIN-93G)、高脂肪食+ブラウチア・ウェクスレラエJCM17041(Blautia)生菌、高脂肪食+ブラウチア・ウェクスレラエJCM17041(Blautia)死菌の4つの群に分けた。ブラウチア・ウェクスレラエJCM17041(Blautia)生菌は、培養液の濁度(OD600値)1~3まで培養したものを0.5mLの用量で週3回経口ゾンデで摂取させた。ブラウチア・ウェクスレラエJCM17041(Blautia)死菌は、ブラウチア・ウェクスレラエJCM17041生菌と同数を60℃で30分熱処理したものを用いた。実験動物の使用に関しては、ヘルシンキ宣言に従い、日本実験動物協会が定める「実験動物の飼養及び保管等に関する基準」に記載されている方法に従って行った。すべての実験は、国立研究開発法人医薬基盤・健康・栄養研究所で承認済みである(機関承認番号DS25-2,DS25-3)。
ブラウチア・ウェクスレラエJCM17041の培養及び調製
 ブラウチア・ウェクスレラエ(JCM17041;Japan Collection of Microorganisms) は、DifcoTM reinforced clostridial medium (♯218081;BD Bioscience,San Jose,CA) 中で、37℃で嫌気的に培養した。10% CO、10% 水素及び80% 窒素を含む嫌気チャンバー(Coy Laboratory Products,Grass Lake,MI)を、すべての嫌気的な微生物工程に使用した。培養されたブラウチア・ウェクスレラエを生菌体とした。また、死菌体については、ブラウチア・ウェクスレラエの生菌を遠心分離により集菌し、DifcoTM reinforced clostridial mediumで再懸濁し、60℃で30分間処理して加熱殺菌した。加熱殺菌が首尾よく行われたことを、加熱処理した細菌をプレーティングし、生育しないことにより確認した。
体重増加率の評価
 各マウスの体重を毎週測定し、投与開始時からの体重増加率として評価した。
精巣周囲脂肪組織量の評価
 各マウスにおいて、投与開始から10週目に剖検を行い、精巣周囲脂肪組織を左右それぞれに分けて切除し、その重量を測定した。
空腹時の血糖値、血漿インスリン値、インスリン抵抗性の評価
 各マウスにおいて、投与開始から8週目の早朝空腹時に採血を行い、空腹時の血糖値(mg/dL)及び血漿インスリン値(μU/mL)を測定した。また、得られた結果からインスリン抵抗性の指標としてHOMA-IR(空腹時インスリン値(μU/mL)×空腹時血糖値(mg/dL)/405)にて評価を行った。血糖値は、尾静脈血からワンタッチウルトラビュー(LifeScan Japan社製)を用いて測定した。血漿インスリン値は、ヘマトクリット毛細管ヘパリン処理(HIRSCHMANN社製)を用いて眼底から採血し、血漿からレビスインスリンマウスT(富士フイルムワコーシバヤギ社製)により測定した。
グルコース負荷試験IPGTTの評価
 各マウスにおいて、投与開始から8週目を用いて腹腔内グルコース負荷試験IPGTTを実施した。投与開始から8週目の早朝空腹時に腹腔内にグルコース溶液0.2g/mLを、マウス体重1gあたり10μL注射して投与した。投与前、投与開始10、20、30、60、90、120分後の採血から血糖値を測定した。
統計解析
 データについては、平均値±標準誤差もしくはBox Plotで表した。Studentの両側t-検定を用いて2群間の有意差を評価し、分散分析(ANOVA)を用いて多群間の有意差を評価した。すべての検定について、P<0.05の数値を統計学的に有意であるとみなした。
(結果)
ブラウチア・ウェクスレラエJCM17041投与による体重増加率の評価
 体重に及ぼすブラウチア・ウェクスレラエJCM17041の効果を判定すべく、4週齢のマウスに、1週間あたり3回、8週間ブラウチア・ウェクスレラエJCM17041の生菌を経口摂取させた。ブラウチア・ウェクスレラエJCM17041の生菌を経口摂取したマウスは、コントロールとして培地のみ投与した高脂肪食マウスと比較して体重増加率が有意に抑制された(図1)。
ブラウチア・ウェクスレラエJCM17041投与による脂肪組織の評価
 ブラウチア・ウェクスレラエの生菌を投与したマウスは、コントロールとして培地のみを投与した高脂肪食マウスと比較して精巣周囲脂肪組織の蓄積が抑制された(図2)。
ブラウチア・ウェクスレラエJCM17041投与による空腹時の血糖値、血中インスリン、インスリン抵抗性の評価
 ブラウチア・ウェクスレラエJCM17041の生菌を投与したマウスは、コントロールとして培地のみを投与した高脂肪食マウスと比較して空腹時の血糖値、血中インスリン、インスリン抵抗性を有意に抑制した(図3、4)。
ブラウチア・ウェクスレラエJCM17041の死菌投与による体重増加率の評価
 ブラウチア・ウェクスレラエJCM17041の死菌を投与したマウスは、コントロールとして培地のみを投与した高脂肪食マウスと比較して体重増加率が有意に抑制され、その効果はブラウチア・ウェクスレラエの生菌と同程度であった(図5A)。
ブラウチア・ウェクスレラエJCM17041投与によるグルコース負荷試験IPGTTの評価
 ブラウチア・ウェクスレラエJCM17041の生菌又は死菌を投与したマウスはコントロールとして培地のみを投与した高脂肪食マウスと比較して血中グルコースの上昇を有意に抑制し、その効果は生菌と死菌で同程度であった(図5B)。
実施例2 ブラウチア・ウェクスレラエJCM17041培養上清のLC-MS/MS分析
 ブラウチア・ウェクスレラエ(JCM17041;Japan Collection of Microorganisms) を、DifcoTM reinforced clostridial medium (♯218081;BD Bioscience,San Jose,CA) 中で、37℃で48時間嫌気的に培養した。培養後の培養上清100μLに水を加えて200μLとし、内部標準としてメチオニンスルホンを含むメタノール溶液400μLと混和し、その後400μLのクロロホルムを混合した。4℃で20,000×gで15分遠心分離後、200μLの上清を5-kDaカットオフフィルター(ヒューマンメタボロームテクノロジー社製)で遠心ろ過した。濾液を凍結乾燥し、水で再懸濁し、液体クロマトグラフィー質量分析法(LC-MS/MS)により分析した。LC-MS/MS分析は、二つのLC-40Dポンプ、DGU-405デガッサー、SIL-40Cオートサンプラー、CTO-40Cカラムオーブン、CBM-40コントロールモジュールを搭載したNexeraシステム(島津製作所製)を使用し、LCMA-8050四重極型質量分析計(島津製作所製)を組み合わせた。ペンタフルオロフェニルプロピルカラム(Discovery HS F5,150mm×2.1mm,3μm;シグマアルドリッチ製)を代謝物の分離のために使用し、島津製作所のLC-MS/MSメソッドパッケージを有するソフトウェアLabSolutions LCMSを用いて解析を行った。ブラウチア・ウェクスレラエJCM17041株(Bw)を嫌気培養した培養上清中の成分の減少増加の結果を図6に示す。また、ブラウチア・ウェクスレラエJCM17041と同様に培養し、調製したバクテロイデス・ブルガタス(Bv)、プレボテラ・コプリ(Pc)、フィーカリバクテリウム・プラウスニッツィ(Fp)の培養上清中のS-アデノシルメチオニン、アセチルコリン、L-オルニチンの濃度をあわせて図7に示す。ブラウチア・ウェクスレラエJCM17041は培養後の培養上清中にS-アデノシルメチオニン、アセチルコリン、L-オルニチンが確認でき、これらの物質を培養により産生していることが分かる。
実施例3 ブラウチア・ウェクスレラエJCM17041培養後の凍結乾燥菌体中のアミロペクチンの測定
 実施例2で培養したブラウチア・ウェクスレラエJCM17041培養後の菌体を4℃で10,000×gで10分遠心分離して回収し、-80℃で凍結乾燥した。凍結乾燥して検体中のアミロース及びアミロペクチンの量を、Megazyme社製のアミロース/アミロペクチン分析キットを用いて測定した。バクテロイデス・ブルガタス(Bv)、プレボテラ・コプリ(Pc)、フィーカリバクテリウム・プラウスニッツィ(Fp)についても同様に測定した。結果を図8に示す。ブラウチア・ウェクスレラエJCM17041の培養後の凍結乾燥菌体中にはアミロペクチンが高く蓄積しており、培養によってアミロペクチンを産生していることが分かる。
実施例4 ブラウチア・ウェクスレラエJCM17041培養上清のHPLCによる脂肪酸分析
 実施例2で培養したブラウチア・ウェクスレラエJCM17041培養後の培地上清を株式会社ワイエムシィ社製の脂肪酸分析キットで標識し、製造者の指示に従って、6.0×250mm YMC-Pack FAカラム(ワイエムシィ社製)を用い、高速液体クロマトグラフィー法(HPLC)にてコハク酸、乳酸、酢酸を測定した。検出するUVスペクトルは400nmで測定した。結果を図9に示す。ブラウチア・ウェクスレラエJCM17041の培養上清にはコハク酸、乳酸、酢酸が確認でき、培養によってこれらの短鎖脂肪酸を産生していることが分かる。
 以上の結果から、マウス動物実験により代謝改善機能を有していることが確認されたブラウチア・ウェクスレラエJCM17041は、嫌気培養において、L-オルニチン、S-アデノシルメチオニン、アセチルコリン、アミロペクチン、酢酸、コハク酸、乳酸を特徴的に産生しており、これらの産生を確認することで代謝改善能を有することが判定できる。
実施例5 ブラウチア・ウェクスレラエの他の菌株(JCM31267)による検証
 ブラウチア・ウェクスレラエの別の菌株JCM31267(Japan Collection of Microorganisms)につき、実施例2と同様に嫌気培養後の培養上清のLC-MS/MS分析を行った。ブラウチア・ウェクスレラエJCM31267はJCM17041と同様に培養し、培養上清の調製を行った。結果を図10に示す。ブラウチア・ウェクスレラエJCM31267についても、培養上清中にS-アデノシルメチオニンとL-オルニチンを産生していることが確認できた。
 この結果から、ブラウチア・ウェクスレラエJCM31267は代謝改善機能を有すると判定し、その検証のため、実施例1と同様のマウス実験を実施した。結果を図11に示す。体重増加率の結果(C)から、生菌であるか死菌であるかを問わず、ブラウチア・ウェクスレラエJCM31267を投与した高脂肪食マウスでは、コントロールとして培地のみを投与した高脂肪食マウスに比べて体重増加が抑制されていることが分かる。また、グルコース負荷試験IPGTTの結果(D)においても、ブラウチア・ウェクスレラエJCM31267の投与は、生菌、死菌いずれも、コントロールに比べて血中グルコースの上昇を有意に抑制していることが分かる。
 以上の結果から、ブラウチア・ウェクスレラエの菌株が代謝改善機能を有することを、該菌株の嫌気培養により産生する特定物質を検出することにより検証可能であることが示された。
 本発明を好ましい態様を強調して説明してきたが、好ましい態様が変更され得ることは当業者にとって自明である。
 ここで述べられた特許及び特許出願明細書を含む全ての刊行物に記載された内容は、ここに引用されたことによって、その全てが明示されたと同程度に本明細書に組み込まれるものである。
 本出願は、2021年10月18日付で日本国に出願された特願2021-170540を基礎としており、ここで言及することによりその内容はすべて本明細書に包含される。
 本発明の方法は、腸内細菌であるブラウチア・ウェクスレラエが生活習慣病をはじめとする代謝疾患に有用であるかを簡便に判断できることから、腸内菌叢解析などによる健康指標として有用であり、また、それを用いた医薬用途としても有用である。

Claims (9)

  1.  ブラウチア・ウェクスレラエ(Blautia wexlerae)に属する菌株が代謝改善機能を有するか否かを判定する方法であって、
    (i)単離されたブラウチア・ウェクスレラエの被検菌株を嫌気培養する工程;
    (ii)得られる培養物におけるL-オルニチン、S-アデノシルメチオニン、アセチルコリン、アミロペクチン、酢酸、コハク酸及び乳酸からなる群より選択される2種以上の物質の産生を検出する工程;並びに
    (iii)工程(ii)において2種以上の物質の産生が検出できた場合に、該被検菌株は代謝改善機能を有すると判定する工程
    を含む方法。
  2.  2以上の被検菌株から代謝改善機能を有するブラウチア・ウェクスレラエの菌株をスクリーニングする、請求項1に記載の方法。
  3.  被検菌株が、検体中に存在するブラウチア・ウェクスレラエの菌株である、請求項1又は2に記載の方法。
  4.  検体が、ヒト又はヒト以外の哺乳動物の糞便である、請求項3に記載の方法。
  5.  ブラウチア・ウェクスレラエの生菌、死菌及び培養上清からなる群より選択される少なくとも1種を有効成分として含む、代謝異常の予防又は改善用組成物であって、該ブラウチア・ウェクスレラエ菌株は、単離された該菌株を嫌気培養したときに、L-オルニチン、S-アデノシルメチオニン、アセチルコリン、アミロペクチン、酢酸、コハク酸及び乳酸からなる群より選択される2種以上の物質を産生するものである、組成物。
  6.  代謝異常が、肥満、糖尿病、耐糖能異常、高インスリン血症、脂質異常症、脂肪組織の増加及び脂肪肝からなる群より選択される少なくとも1種である、請求項5に記載の組成物。
  7.  食品又は食品添加物である、請求項5又は6に記載の組成物。
  8.  医薬品である、請求項5又は6に記載の組成物。
  9.  飼料又は飼料添加物である、請求項5又は6に記載の組成物。
PCT/JP2022/038803 2021-10-18 2022-10-18 ブラウチア(Blautia)属細菌のスクリーニング方法 WO2023068279A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023554712A JPWO2023068279A1 (ja) 2021-10-18 2022-10-18

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-170540 2021-10-18
JP2021170540 2021-10-18

Publications (1)

Publication Number Publication Date
WO2023068279A1 true WO2023068279A1 (ja) 2023-04-27

Family

ID=86059175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/038803 WO2023068279A1 (ja) 2021-10-18 2022-10-18 ブラウチア(Blautia)属細菌のスクリーニング方法

Country Status (2)

Country Link
JP (1) JPWO2023068279A1 (ja)
WO (1) WO2023068279A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005261361A (ja) * 2004-03-19 2005-09-29 Hiroshima Univ 酵母変異体およびその利用
JP2010516289A (ja) * 2007-02-01 2010-05-20 シージェイ チェイルジェダン コーポレーション 高度分枝状アミロースおよびアミロペクチン・クラスターを酵素的に調製する方法
JP2016508368A (ja) * 2013-02-05 2016-03-22 ラドウィッグ ストッカー ホフフェイステレイ ゲーエムベーハー 腸疾患の予防および治療のための、微生物の使用
JP2016510311A (ja) * 2012-12-20 2016-04-07 コンパニ・ジェルベ・ダノンCompagnie Gervais Danone 体重増加及びインスリン抵抗性を治療又は予防するためのビフィドバクテリウムアニマリスの使用
JP2017193508A (ja) * 2016-04-20 2017-10-26 雪印メグミルク株式会社 肥満抑制剤
JP2019508363A (ja) * 2016-12-12 2019-03-28 フォーディー ファーマ ピーエルシー4D Pharma 細菌株を含む組成物
WO2020079024A1 (en) * 2018-10-15 2020-04-23 Pharmabiome Ag Consortia of living bacteria useful for treatment of colorectal cancer
JP2021122241A (ja) * 2020-02-06 2021-08-30 宮崎県 Gaba及びオルニチンを高産生する新規乳酸菌、並びに当該乳酸菌を用いた経口組成物の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005261361A (ja) * 2004-03-19 2005-09-29 Hiroshima Univ 酵母変異体およびその利用
JP2010516289A (ja) * 2007-02-01 2010-05-20 シージェイ チェイルジェダン コーポレーション 高度分枝状アミロースおよびアミロペクチン・クラスターを酵素的に調製する方法
JP2016510311A (ja) * 2012-12-20 2016-04-07 コンパニ・ジェルベ・ダノンCompagnie Gervais Danone 体重増加及びインスリン抵抗性を治療又は予防するためのビフィドバクテリウムアニマリスの使用
JP2016508368A (ja) * 2013-02-05 2016-03-22 ラドウィッグ ストッカー ホフフェイステレイ ゲーエムベーハー 腸疾患の予防および治療のための、微生物の使用
JP2017193508A (ja) * 2016-04-20 2017-10-26 雪印メグミルク株式会社 肥満抑制剤
JP2019508363A (ja) * 2016-12-12 2019-03-28 フォーディー ファーマ ピーエルシー4D Pharma 細菌株を含む組成物
WO2020079024A1 (en) * 2018-10-15 2020-04-23 Pharmabiome Ag Consortia of living bacteria useful for treatment of colorectal cancer
JP2021122241A (ja) * 2020-02-06 2021-08-30 宮崎県 Gaba及びオルニチンを高産生する新規乳酸菌、並びに当該乳酸菌を用いた経口組成物の製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BENÍTEZ-PÁEZ ALFONSO, GÓMEZ DEL PUGAR EVA M., LÓPEZ-ALMELA INMACULADA, MOYA-PÉREZ ÁNGELA, CODOÑER-FRANCH PILAR, SANZ YOLANDA: "Depletion of Blautia Species in the Microbiota of Obese Children Relates to Intestinal Inflammation and Metabolic Phenotype Worsening", MSYSTEMS, vol. 5, no. 2, 28 April 2020 (2020-04-28), pages e00857 - 19, XP093058444, DOI: 10.1128/mSystems.00857-19 *
C. LIU, S. M. FINEGOLD, Y. SONG, P. A. LAWSON: "Reclassification of Clostridium coccoides, Ruminococcus hansenii, Ruminococcus hydrogenotrophicus, Ruminococcus luti, Ruminococcus productus and Ruminococcus schinkii as Blautia coccoides gen. nov., comb. nov., Blautia hansenii comb. nov., Blautia hydrogenotrophica comb. nov., Blautia luti comb. nov", INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, SOCIETY FOR GENERAL MICROBIOLOGY, vol. 58, no. 8, 1 August 2008 (2008-08-01), pages 1896 - 1902, XP055005236, ISSN: 14665026, DOI: 10.1099/ijs.0.65208-0 *
HOSOMI KOJI, SAITO MAYU, PARK JONGUK, MURAKAMI HARUKA, SHIBATA NAOKO, ANDO MASAHIRO, NAGATAKE TAKAHIRO, KONISHI KANA, OHNO HARUMI,: "Oral administration of Blautia wexlerae ameliorates obesity and type 2 diabetes via metabolic remodeling of the gut microbiota", NATURE COMMUNICATIONS, vol. 13, no. 1, 18 August 2022 (2022-08-18), XP093058447, DOI: 10.1038/s41467-022-32015-7 *
HU XIAOMIN, LIANG GONG, RUILIN ZHOU, ZIYING HAN, LI JI, YAN ZHANG, SHUYANG ZHANG, DONG WU: "Variations in gut microbiome are associated with prognosis of hypertriglyceridemia-associated acute pancreatitis", BIOMOLECULES, vol. 11, 6 May 2021 (2021-05-06), pages 695, XP093058459 *

Also Published As

Publication number Publication date
JPWO2023068279A1 (ja) 2023-04-27

Similar Documents

Publication Publication Date Title
US11122828B2 (en) Microbial compositions comprising ellagitannin and methods of use
US11730772B2 (en) Lipopolysaccharide-regulated enteric bacteria and use thereof
US11104878B2 (en) Lactic acid bacteria capable of controlling blood sugar and use thereof
CN106103696B (zh) 新颖的拟干酪乳杆菌菌株
US20240131081A1 (en) Obligate anaerobic human intestinal microbe for cancer treatment, and use thereof
CN105229142A (zh) 免疫刺激剂
KR102641644B1 (ko) 락토바실러스 플란타룸의 치료적 용도
JP2017132763A (ja) 腸内細菌数抑制剤、食品、及び医薬品
WO2023068279A1 (ja) ブラウチア(Blautia)属細菌のスクリーニング方法
KR20190067527A (ko) 비만, 당뇨와 지방간의 예방과 치료 효과를 갖는 바실러스 혼합 조성물 및 이의 용도
JP7419404B2 (ja) 抗老化用組成物
KR20230116027A (ko) F. 프라우스니치이 존재도를 촉진하는 데 사용하기위한 2'-푸코실락토스
JP7431964B2 (ja) ミトコンドリア機能改善用組成物
KR101376629B1 (ko) 신규한 락토바실러스 아리조넨시스 bcnu 9200 균주 및 이를 유효성분으로 포함하는 생균제 조성물
WO2023068374A1 (en) Composition for promoting the assimilation of an oligosaccharide
JP2023116876A (ja) 抗酸化用組成物
KR20240118626A (ko) 락티플란티바실러스 플란타럼 y7 균주를 포함하는 장 기능 개선용 조성물
JP2021112181A (ja) 老化細胞の蓄積抑制用組成物
JP2024529268A (ja) ラクトバチルス属の菌株3種を含む組成物、およびその用途
CN118119286A (zh) 用于促进低聚糖的同化的组合物
JP2022156305A (ja) エリスロポエチン産生促進用組成物
KR20220120643A (ko) 비피도박테리아로부터의 리포테이코산의 용도

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22883583

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023554712

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22883583

Country of ref document: EP

Kind code of ref document: A1