WO2023067646A1 - 第2無線通信装置及び第1無線通信装置 - Google Patents
第2無線通信装置及び第1無線通信装置 Download PDFInfo
- Publication number
- WO2023067646A1 WO2023067646A1 PCT/JP2021/038389 JP2021038389W WO2023067646A1 WO 2023067646 A1 WO2023067646 A1 WO 2023067646A1 JP 2021038389 W JP2021038389 W JP 2021038389W WO 2023067646 A1 WO2023067646 A1 WO 2023067646A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- scg
- terminal device
- communication device
- wireless communication
- condition
- Prior art date
Links
- 230000006854 communication Effects 0.000 title claims abstract description 176
- 238000004891 communication Methods 0.000 title claims abstract description 169
- 230000009849 deactivation Effects 0.000 claims abstract description 118
- 238000012545 processing Methods 0.000 claims abstract description 114
- 230000005540 biological transmission Effects 0.000 claims abstract description 53
- 238000000034 method Methods 0.000 claims description 107
- 230000008569 process Effects 0.000 claims description 84
- 230000007420 reactivation Effects 0.000 description 62
- 238000010586 diagram Methods 0.000 description 47
- 230000008859 change Effects 0.000 description 43
- 238000013507 mapping Methods 0.000 description 32
- 239000003550 marker Substances 0.000 description 28
- 230000001360 synchronised effect Effects 0.000 description 19
- 230000004913 activation Effects 0.000 description 9
- 101001055444 Homo sapiens Mediator of RNA polymerase II transcription subunit 20 Proteins 0.000 description 8
- 102100026165 Mediator of RNA polymerase II transcription subunit 20 Human genes 0.000 description 8
- 230000006870 function Effects 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 108091005487 SCARB1 Proteins 0.000 description 7
- 102100037118 Scavenger receptor class B member 1 Human genes 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 7
- 238000007726 management method Methods 0.000 description 6
- 101001100327 Homo sapiens RNA-binding protein 45 Proteins 0.000 description 5
- 102100038823 RNA-binding protein 45 Human genes 0.000 description 5
- 230000011664 signaling Effects 0.000 description 5
- 101100150275 Caenorhabditis elegans srb-3 gene Proteins 0.000 description 3
- 230000003213 activating effect Effects 0.000 description 3
- 230000009977 dual effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 101150090033 DRB2 gene Proteins 0.000 description 1
- 239000004235 Orange GGN Substances 0.000 description 1
- 101100117568 Oryza sativa subsp. japonica DRB5 gene Proteins 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 239000004176 azorubin Substances 0.000 description 1
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 description 1
- 239000001679 citrus red 2 Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/0268—Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/24—Cell structures
- H04W16/32—Hierarchical cell structures
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Definitions
- the present invention relates to wireless communication devices.
- DC Dual Connectivity
- a terminal device wirelessly connects to base station devices of a master base station device and a secondary base station device, and performs wireless communication using the carrier of each base station device (hereinafter sometimes referred to as a cell group). is.
- eNodeB which is a base station device compatible with 4G (Four-Generation) and 5G (Five-Generation), and 5G- MR-DC (Multi Radio Dual Connectivity), which is a DC technology using gNodeB (hereinafter sometimes referred to as gNB), which is a base station device compatible with Advanced and NR (New Radio), is attracting attention.
- the terminal device When the amount of data to be transmitted and received in MR-DC is large, the terminal device transmits and receives data to and from both the master base station device and the secondary base station device, for example. On the other hand, when the amount of data to be transmitted and received in the MR-DC is small, the terminal device, for example, deactivates the cell group belonging to the secondary base station device (secondary cell group), thereby transmitting and receiving data to and from the secondary base station device. It is being considered to save power by suspending
- the trigger and timing for the terminal device to shift the secondary cell group from the suspended state (inactive state) to the active state has not been determined as standardized specifications.
- the terminal device activates the secondary cell group at unnecessary timing, unnecessary power will be consumed.
- one disclosure is to provide a wireless communication device that reduces power consumption of a terminal device when activating communication between a terminal device in the secondary cell group inactive state and a secondary base station device in MR-DC.
- a transmitting unit that transmits a message to a first wireless communication device, a receiving unit that receives a message from the first wireless communication device, and deactivating a secondary cell group set in the first wireless communication device and a processing unit that includes a parameter related to deactivation of the secondary cell group in the first message transmitted from the transmitting unit to the first wireless communication device, wherein the first wireless communication device includes , upon receiving the first message including the parameter relating to deactivation of the secondary cell group, deactivate the secondary cell group, and, among the established radio bearers, to the radio bearer that satisfies the first condition, the first 1 is executed.
- One disclosure can suppress the power consumption of the terminal device in activating communication between the terminal device in the secondary cell group inactive state and the secondary base station device in MR-DC.
- FIG. 1 is a diagram showing a configuration example of a communication system 10.
- FIG. 2 is a diagram showing a configuration example of the base station apparatus 200.
- FIG. 3 is a diagram showing a configuration example of the terminal device 100.
- FIG. 4 is a diagram showing an example of a U-Plane protocol stack.
- FIG. 5 is a diagram showing an example of a C-Plane protocol stack.
- FIG. 6 is a diagram showing an example of the RRCReconfiguration message format.
- FIG. 7 is a diagram showing an example of the cell group configuration of the communication system 10.
- FIG. 8 is a diagram showing examples of types of MR-DC.
- FIG. 9 is a diagram illustrating an example of resetting with synchronization.
- FIG. 10 is a diagram showing an example in which an End Marker Control PDU is transmitted.
- FIG. 11 is a diagram showing an example of a sequence in which the SCG state transitions to inactive.
- FIG. 12 is a diagram illustrating an example of a sequence in which the terminal device 100 receives an RRC reconfiguration message during SCG deactivation.
- FIG. 13 is a diagram illustrating an example sequence of UL data arrival during SCG deactivation.
- FIG. 14 is a diagram showing an example of a modified image of the 3GPP specifications.
- FIG. 15 is a diagram showing an example of a modified image of the 3GPP specifications.
- FIG. 16 is a diagram showing an example of a modified image of the 3GPP specifications.
- FIG. 17 is a diagram showing an example of a modified image of the 3GPP specifications.
- FIG. 18 is a diagram showing an example of a modified image of the 3GPP specifications.
- FIG. 19 is a diagram showing an example of a modified image of the 3GPP specifications.
- FIG. 20 is a diagram showing an example of a modified image of the 3GPP specifications.
- FIG. 21 is a diagram showing an example of a modified image of the 3GPP specifications.
- FIG. 22 is a diagram showing an example of a modified image of the 3GPP specifications.
- FIG. 1 is a diagram showing a configuration example of the communication system 10.
- the communication system 10 has a terminal device 100, base station devices 200-1 and 200-2, and a core network 300.
- FIG. The communication system 10 is a radio communication system in which the terminal device 100 communicates with the base station devices 200-1 and 200-2 by MR-DC.
- base station device 200-1 is a master base station device
- base station device 200-2 is a secondary base station device.
- the master base station device is MN (Master Node).
- a secondary base station device may be called an SN (Secondary Node).
- the terminal device 100 wirelessly connects with the base station devices 200-1 and 200-2 and performs wireless communication by MR-DC.
- the terminal device 100 is a tablet terminal compatible with multiple generations (e.g., 4G and 5G, E-UTRA (Evolved Universal Terrestrial Radio Access), which is a 4G radio access technology, and NR, which is a 5G radio access technology), or A smartphone.
- multiple generations e.g., 4G and 5G, E-UTRA (Evolved Universal Terrestrial Radio Access), which is a 4G radio access technology, and NR, which is a 5G radio access technology
- a smartphone e.g., 4G and 5G, E-UTRA (Evolved Universal Terrestrial Radio Access), which is a 4G radio access technology, and NR, which is a 5G radio access technology
- the base station devices 200-1 and 200-2 are communication devices that wirelessly connect with the terminal device 100 and perform wireless communication by MR-DC. Also, the base station apparatuses 200-1 and 200-2 are connected to each other by wire, for example, and communicate with each other.
- the base station device 200 is connected to the core network 300 by wire, for example, and performs communication.
- the base station apparatus 200 is, for example, an eNodeB or gNodeB base station apparatus.
- the core network 300 is a network corresponding to a certain generation.
- the core network 300 is, for example, a core network compatible with 5G (hereinafter sometimes referred to as 5GC) or an EPC (Evolved Packet Core) compatible with 4G.
- 5GC 5G
- EPC Evolved Packet Core
- FIG. 2 is a diagram showing a configuration example of the base station apparatus 200.
- the base station device 200 is a communication device or relay device having a CPU (Central Processing Unit) 210 , a storage 220 , a memory 230 , a wireless communication circuit 240 and a network interface 250 .
- CPU Central Processing Unit
- the storage 220 is an auxiliary storage device such as flash memory, HDD (Hard Disk Drive), or SSD (Solid State Drive) that stores programs and data.
- the storage 220 stores a wireless communication program 221, an MR-DC master node program 222, and an MR-DC secondary node program 223.
- the memory 230 is an area into which programs stored in the storage 220 are loaded.
- the memory 230 may also be used as an area where programs store data.
- the wireless communication circuit 240 is a circuit that wirelessly connects with the terminal device 100 and performs communication.
- the base station device 200 receives a signal transmitted from the terminal device 100 via the wireless communication circuit 240, and transmits the signal to the terminal device 100, for example.
- the NI (network Interface) 250 is, for example, a communication device that connects with another base station device 200 and realizes inter-base station communication. Also, the NI 250 is, for example, a communication device that connects to the core network 300 (a communication device that configures the core network 300) and performs communication. The NI 250 is, for example, a NIC (network Interface Card). Base station apparatus 200 receives signals from other communication apparatuses and transmits signals to other communication apparatuses via NI 250 .
- the CPU 210 is a processor that loads a program stored in the storage 220 into the memory 230, executes the loaded program, constructs each part, and realizes each process.
- the CPU 210 performs wireless communication processing by executing the wireless communication program 221 .
- the wireless communication process is a process of wirelessly connecting to the terminal device 100, wirelessly communicating with the terminal device 100, or relaying communication between the terminal device 100 and another communication device.
- the CPU 210 By executing the MR-DC master node program 222, the CPU 210 builds a second transmission unit, a second reception unit, and a second processing unit, and performs MR-DC master node processing.
- MR-DC master node processing is processing for controlling the master node side in MR-DC.
- the base station apparatus 200 performs communication corresponding to each type of MR-DC described later in the MR-DC master node process.
- the CPU 210 constructs the second transmitting unit, the second receiving unit, and the second processing unit, and performs MR-DC secondary node processing.
- MR-DC secondary node processing is processing for controlling the secondary node side in MR-DC.
- the base station apparatus 200 performs communication corresponding to each type of MR-DC described later in the MR-DC secondary node process.
- FIG. 3 is a diagram showing a configuration example of the terminal device 100.
- Terminal device 100 is a communication device having CPU 110 , storage 120 , memory 130 , and communication circuit 140 .
- the storage 120 is an auxiliary storage device such as flash memory, HDD, or SSD that stores programs and data.
- the storage 120 stores a terminal-side wireless communication program 121 and a terminal-side MR-DC program 122 .
- the memory 130 is an area into which programs stored in the storage 120 are loaded.
- the memory 130 may also be used as an area where programs store data.
- the communication circuit 140 is a circuit that connects with the base station device 200 and performs communication.
- the communication circuit 140 is, for example, a network card that supports wireless connection.
- the CPU 110 is a processor that loads a program stored in the storage 120 into the memory 130, executes the loaded program, constructs each part, and realizes each process.
- the CPU 110 performs terminal-side wireless communication processing by executing the terminal-side wireless communication program 121 .
- the terminal-side wireless communication processing is processing for wirelessly connecting with the base station device 200 and wirelessly communicating with the base station device 200 or communicating with another communication device via the base station device 200 .
- the CPU 110 By executing the terminal-side MR-DC program 122, the CPU 110 constructs a transmitting unit, a receiving unit, and a processing unit, and performs terminal-side MR-DC processing.
- Terminal-side MR-DC processing is processing for controlling communication in MR-DC.
- the terminal device 100 performs communication corresponding to each type of MR-DC described later in the terminal-side MR-DC processing.
- ⁇ Protocol stack> An example protocol stack of the communication system 10 will be described.
- a series of protocols for transmitting and receiving data is referred to as a protocol stack in a hierarchical structure.
- the base station apparatus 200 is gNB and the core network 300 is 5GC will be described.
- the terminal device 100 (UE: User Equipment) shall correspond to gNB and 5G core.
- C-Plane indicates, for example, control signals (messages) transmitted and received in communication.
- U-Plane indicates, for example, a data signal (message) of user data to be transmitted and received.
- FIG. 4 is a diagram showing an example of a U-Plane protocol stack.
- FIG. 5 is a diagram showing an example of a C-Plane protocol stack.
- SDAP, PDCP, RLC, MAC, PHY, NAS, and RRC in FIGS. 4 and 5 indicate layer names.
- SDAP, PDCP, RLC, MAC, PHY, NAS, and RRC are SDAP sublayer, PDCP sublayer, RLC sublayer, MAC sublayer, PHY sublayer, NAS sublayer, RRC sublayer, or SDAP layer, PDCP layer, RLC layer, MAC layer. Layers, PHY layers, NAS layers, and RRC layers may be called.
- SDAP, PDCP, RLC, MAC, PHY, NAS, and RRC may be called SDAP entity, PDCP entity, RLC entity, MAC entity, PHY entity, NAS entity, and RRC entity, respectively.
- the U-Plane is composed of SDAP (Service Data Adaptation Protocol), PDCP (Packet Data Convergence Protocol), RLC (Radio Link Control), MAC (Medium Access Control), PHY (PHYsical), and the terminal device 100 (UE) and base station apparatus 200 (gNB).
- SDAP Service Data Adaptation Protocol
- PDCP Packet Data Convergence Protocol
- RLC Radio Link Control
- MAC Medium Access Control
- PHY Physical
- gNB base station apparatus 200
- the PHY uses physical channels to transmit control information and data between the terminal device 100 and the base station device 200 .
- the direction from the base station device 200 to the terminal device may be called downlink (downlink, DL), and the direction from the terminal device 100 to the base station device may be called uplink (uplink, UL).
- MAC performs logical channel (LCH) and transport channel mapping, multiplexing/demultiplexing of MAC SDUs, scheduling reports, error correction through HARQ (Hybrid Automatic Repeat reQuest), priority control, etc.
- LCH logical channel
- HARQ Hybrid Automatic Repeat reQuest
- An SDU Service Data Unit
- PDU Protocol Data Unit
- RLC, PDCP, and SDAP include control PDUs, which are sometimes called control PDUs.
- Other PDUs may be called data PDUs to distinguish them from control PDUs.
- RLC has three modes: Transparent Mode (TM), Unacknowledged Mode (UM), and Acknowledged Mode (AM).
- TM Transparent Mode
- UM Unacknowledged Mode
- AM Acknowledged Mode
- RLC transfers upper layer PDUs, assigns sequence numbers (for UM and AM), divides data (for UM and AM) and re-segments (for AM), and reassembles SDUs (for UM and AM). ), duplicate detection (for AM), discarding RLC SDUs (for UM and AM), RLC re-establishment, etc.
- PDCP includes U-Plane and C-Plane data transfer, PDCP sequence number management, header compression, encryption/decryption, integrity protection/integrity verification, timer-based SDU discard, routing for split bearers, reordering and In-order delivery, etc.
- SDAP provides mapping between QoS (Quality of service) flows and data radio bearers (DRB), marking QoS flow identifiers (QFI) on downlink (DL) packets and uplink (UL) packets, etc. conduct.
- QoS Quality of service
- DRB data radio bearers
- QFI QoS flow identifiers
- Upper layers of the U-Plane include layers such as IP (Internet Protocol), TCP (Transmission Control Protocol), UDP (User Datagram Protocol), and applications.
- IP Internet Protocol
- TCP Transmission Control Protocol
- UDP User Datagram Protocol
- the C-Plane consists of PDCP, RLC, MAC, and RRC (Radio Resource Control), and terminates at the terminal device 100 and the base station device 200. Also, the C-Plane is configured with NAS (Non Access Stratum) and terminates between terminal device 100 and AMF (Access and Mobility Management Function), which is a device of core network 300 .
- PDCP, RLC and MAC are the same as in U-Plane.
- RRC broadcasts system information (SI) related to AS (Access Stratum) and NAS, paging, establishment/maintenance/release of RRC connection between terminal device 100 and base station device 200, carrier aggregation (CA) addition/ Change/Release, Add/Change/Release Dual Connectivity (DC), Security Functions including Management of Security Keys, Establishment/Configure/Maintenance/Release of Signaling Radio Bearer (SRB) and Data Radio Bearer (DRB) , Controls mobility functions, QoS management functions, terminal measurement reports and reporting, Radio Link Failure (RLF) detection and recovery, forwarding of NAS messages, etc.
- SI system information
- AS Access Stratum
- NAS Access Stratum
- paging paging
- CA carrier aggregation
- DC Add/Change/Release Dual Connectivity
- DC Dual Connectivity
- Security Functions including Management of Security Keys, Establishment/Configure/Maintenance/Release of Signaling Radio Bearer (SRB)
- the NAS performs authentication, mobility management, security control, etc.
- the device of the core network 300 is an EPC (Evolved Packet Core)
- EPC Evolved Packet Core
- the C-Plane NAS is a device of the terminal device 100 and the core network 300, and terminates between the MME (Mobility Management Entity) that configures the EPC.
- MME Mobility Management Entity
- Channels used in the communication system 10 will be described. Examples of channels corresponding to NR are shown below, but the channels to be used are not limited to the following. Channels with the same name can also be used in generations other than NR.
- a PBCH Physical Broadcast CHannel
- a PBCH Physical Broadcast CHannel
- a PDCCH Physical Downlink Control CHannel
- DCI downlink control information
- the PDSCH Physical Downlink Shared CHannel
- the PDSCH is a channel used to transmit data from higher layers from the base station device 200 to the terminal device 100.
- a PUCCH Physical Uplink Control CHannel
- UCI uplink control information
- PUSCH Physical Uplink Shared CHannel
- PUSCH Physical Uplink Shared CHannel
- a PRACH Physical Random Access CHannel
- a PRACH is a channel used to transmit a random access preamble and the like from the terminal device 100 to the base station device 200.
- Transport channel> BCH Broadcast Channel
- PBCH Physical Channel
- DL-SCH Downlink Shared Channel
- PDSCH Downlink Shared Channel
- PCH Packet Control Channel
- PDSCH Physical Channel
- UL-SCH Downlink Shared Channel
- PUSCH Physical channel
- RACH Random Access Channel(s)
- PRACH Physical Channel
- BCCH Broadcast Control Channel
- BCH Broadcast Control Channel
- PCCH Packaging Control Channel
- PCCH is a downlink channel for carrying paging messages, and is mapped to the transport channel PCH.
- CCCH Common Control Channel
- RRC Radio Resource Control Channel
- DCCH Dedicated Control Channel
- RRC Radio Resource Control Channel
- DCCH is a point-to-point bi-directional channel for transmitting dedicated control information (such as RRC messages) between the terminal device 100 and the base station device 200, and establishing an RRC connection with the base station device 200.
- the downlink is mapped to the transport channel DL-SCH and the uplink is mapped to the transport channel UL-SCH.
- DTCH Dedicated Transport Channel
- DL-SCH transport channel
- uplink transport channel. Mapped to the UL-SCH of the port-channel.
- An RRC message is a message containing information necessary for communication in a cell, and includes a MIB (Master Information Block), a system information block (System Information Block), and the like.
- a parameter included in an RRC message may be called a field or an information element (IE: Information Element).
- the RRC message includes a message regarding the establishment of an RRC connection.
- messages related to RRC connection establishment include an RRC setup request message (RRCSetupRequest), an RRC setup message (RRCSetup), and an RRC setup complete message (RRCSetupComplete).
- the RRC message also includes a message regarding the initial activation of AS (Access Stratum) security.
- Messages related to the initial activation of AS security include, for example, a security mode command message (SecurityModeCommand).
- the RRC message includes a message regarding reconfiguration of the RRC connection.
- messages related to RRC connection reconfiguration include an RRC reconfiguration message (RRCReconfiguration) and an RRC reconfiguration complete message (RRCReconfigurationComplete).
- FIG. 6 is a diagram showing an example of the RRCReconfiguration message format.
- Format E1 is a parameter of RRC Reconfiguration.
- RRC Reconfiguration has radioBearerConfig, radioBearerConfig2, masterCellGroup, secondaryCellGroup, masterKeyUpdate, and sk-counter as parameters.
- radioBearerConfig and radioBearerConfig2 are settings related to the MN terminated bearer or SN terminated bearer, and include SRB settings, DRB settings, security settings, and the like.
- the SRB configuration includes an SRB identifier (DRB identifier), PDCP configuration, a parameter for instructing PDCP re-establishment, and the like.
- Security settings include a parameter (keyToUse) that indicates whether to use the master key or the secondary key.
- the masterCellGroup and secondaryCellGroup are MCG settings and SCG settings, respectively, and include cell group identifiers, RLC bearer settings, SpCell settings, and the like.
- the RLC bearer setup includes a logical channel identifier, an RLC setup, a radio bearer identifier (SRB identifier or DRB identifier) with which the RLC bearer is associated, and so on.
- SpCell configuration includes information required for reconfiguration with synchronization.
- masterKeyUpdate contains the information necessary to update the master key.
- the sk-counter contains information necessary for secondary key generation.
- RadioBearerConfig parameters included in RRCReconfiguration is a diagram showing an example of RadioBearerConfig parameters included in RRCReconfiguration.
- Format E12 is a diagram showing an example of parameters of CellGroupConfig included in RRCReconfiguration.
- RadioBearerConfig is a diagram showing an example of parameters of SRB-ToAddMod included in RadioBearerConfig.
- RadioBearerConfig is a diagram showing an example of DRB-ToAddMod parameters included in RadioBearerConfig.
- RadioBearerConfig is a diagram showing an example of SecurityConfig parameters included in RadioBearerConfig.
- E121 is a diagram showing an example of parameters of RLC-BearerConfig included in CellGroupConfig.
- E122 is a diagram showing an example of parameters of SpCellConfig included in CellGroupConfig.
- the RRC message further includes: RRC connection re-establishment message, RRC connection release and suspension message, RRC connection resumption message, terminal device capability message, terminal information message, MCG and SCG radio link failure including messages about
- messages related to RRC connection reconfiguration establish, configure, change, and release radio bearers, cell groups, measurement information, etc., and reconfigure with synchronization.
- Radio Bearer An example radio bearer of the communication system 10 will be described.
- a signaling radio bearer is a radio bearer for transmitting RRC messages and NAS messages.
- SRB0 is a radio bearer for RRC messages using CCCH (Common Control CHannel) logical channel.
- CCCH Common Control CHannel
- SRB1 is a radio bearer for RRC and NAS messages that use a DCCH (Dedicated Control CHannel) logical channel before SRB2, which will be described later, is established.
- DCCH Dedicated Control CHannel
- SRB2 is a radio bearer for NAS messages and RRC messages containing historically logged measurement information, and uses a DCCH (Dedicated Control CHannel) logical channel.
- the priority of SRB2 is lower than that of SRB1 and may be set by base station apparatus 200 after AS security is activated.
- the SRB 3 is a radio bearer for RRC messages when EN-DC, NGEN-DC or NR-DC is set in the terminal device 100, and uses a DCCH (Dedicated Control CHannel) logical channel.
- EN-DC, NGEN-DC, and NR-DC are types of MR-DC, and the details of the types of MR-DC will be described later.
- a data radio bearer is a radio bearer for transmitting user data.
- SRB1 and SRB2 consist of one PDCP and one or more RLC bearers.
- An RLC bearer consists of RLC and MAC logical channels. MAC shall exist for every cell group demonstrated henceforth.
- the mode of RCL is AM.
- SRB3 consists of one PDCP and one RLC bearer.
- the RLC mode is AM.
- a DRB consists of one PDCP and one or more RLC bearers.
- the mode of RLC is UM or AM.
- DBR may be called UM DBR when RLC is UM, and AM DRB when RLC is AM.
- DRB is associated with one SDAP when the core network 300 is 5GC (5G compatible core), and one EPS bearer (or EPS bearer identifier (EPS) when the core network 300 is EPC. associated with the bearer identity)).
- EPS bearer or EPS bearer identifier (EPS) when the core network 300 is EPC. associated with the bearer identity
- 5GC is a core network standardized for 5G, and is described in, for example, 3GPP standards TS 23.501 and TS 23.502.
- EPC is a core network standardized for 4G, and is described in, for example, 3GPP standards TS 23.401 and TS 23.402.
- a cell group indicates the configuration of a cell in MR-DC.
- cell groups are classified into a master cell group (MCG: Master Cell Group) and a secondary cell group (SCG: Secondly Cell Group).
- FIG. 7 is a diagram showing an example of the cell group configuration of the communication system 10.
- the master node (MN) is the base station device 200-1
- the secondary node (SN) is the base station device 200-2.
- a master node is a base station device 200 that provides a C-Plane connection to the core network 300 in MR-DC.
- the secondary node is the base station apparatus 200 that does not provide the C-Plane to the core network 300 but provides additional radio resources to the terminal apparatus 100 in MR-DC.
- a CG consists of one special cell (SpCell: Special Cell), or one SpCell and one or more secondary cells (SCell: Secondary Cell).
- the SpCell in the MCG is sometimes called a primary cell (PCell).
- SpCell in SCG may be called a primary SCG cell (PSCell:PrimaryScgCell).
- the MCG is composed of one PCell and two SCells.
- the SCG is composed of one PSCell and two SCells.
- the MCG is, for example, the CG when the MR-DC is not configured, or the CG belonging to the master node when the MR-DC is configured.
- SCG is a CG belonging to a secondary node in MR-DC.
- the PCell is a cell that operates on the primary frequency in the MCG and is used by the terminal device 100 for an initial connection establishment procedure or a connection re-establishment procedure.
- Connection establishment/re-establishment procedures include random access procedures.
- a PSCell is a cell used in a random access procedure or the like when the terminal device 100 performs reconfiguration with synchronization (Reconfiguration With Sync) in SCG.
- the SCell is a cell that provides additional radio resources in addition to the SpCell to the terminal device 100 for which carrier aggregation is set.
- MR-DC is classified into four types according to the type (supported generation) of the base station apparatus 200 of the master node and the secondary node and the type (supported generation) of the core network 300 .
- FIG. 8 is a diagram showing examples of types of MR-DC. Each type of MR-DC will be described below. Also, in FIG. 8, the master node is assumed to be the base station device 200-1, and the secondary node is assumed to be the base station device 200-2.
- FIG. 8A is a diagram showing an example of EN-DC.
- EN-DC E-UTRA-NR DC
- eNB which is E-UTRA base station device 200, as a master node
- gNB which is NR base station device 200, as a secondary node
- core network 300 as EPC.
- MR-DC MR-DC.
- FIG. 8B is a diagram showing an example of NGEN-DC.
- NGEN-DC (NG-RAN E-UTRA-NR DC) is MR-DC in which eNB is a master node, gNB is a secondary node, and core network 300 is 5GC.
- FIG. 8C is a diagram showing an example of NE-DC.
- NE-DC (NR-E-UTRA DC) is MR-DC in which gNB is a master node, eNB is a secondary node, and core network 300 is 5GC.
- FIG. 8D is a diagram showing an example of NR-DC.
- NR-DC (NR-NR DC) is an MR-DC in which a gNB is a master node, a different gNB is a secondary node, and a core network 300 is 5GC.
- EN-DC and NGEN-DC are sometimes called (NG) EN-DC.
- a secondary node of an EN-DC may be referred to as an en-gNB.
- the master node of NGEN-DC may be called ng-eNB.
- FIG. 8 assumes a state in which SRB1 and SRB2 are established as C-Palne interfaces between the terminal device 100 and the base station device 200-1.
- split SRB1, split SRB2, or SRB3 part of the C-Plane message may be transmitted and received between the secondary node and the terminal device 100.
- FIG. A part of the C-Plane message received by the secondary node is transmitted to the master node via the inter-base station interface. Also, part of the C-Plane message transmitted from the secondary node is transmitted from the master node to the secondary node via the inter-base station interface.
- Bearer types in MR-DC are explained.
- a configuration in which PDCP is terminated at the master node and PDCP is provided on the master node side may be referred to as MN-terminated.
- a configuration in which PDCP is terminated at a secondary node and PDCP is provided on the secondary node side may be called SN-terminated.
- Bearer types are classified into the following six types.
- An MCG bearer that is SN-terminated and the RLC bearer resides on the MCG side.
- the DRB is configured with one of the above six types of bearer types.
- SRB1 and SRB2 are composed of MN-terminated MCG bearers or MN-terminated Split bearers.
- SRB1 and SRB2 may be referred to as split SBR1 and split SBR2, respectively, when configured with MN-terminated split bearers.
- SBR3 consists of SN-Terminated SCG bearers.
- the Primary Path indicates the base station device 200 to which the terminal device 100 transmits data (preferentially) in the initial state.
- the Primary Path is specified by the cell group (MCG, SCG) and LCH.
- the terminal device 100 transmits data to the base station device 200 of the Primary Path as long as the transmission data amount of uplink data does not exceed the threshold.
- the terminal device 100 may transmit data to either base station device 200 when the threshold is exceeded.
- the security key used in PDCP differs between MN-Terminated (master key) and SN-Terminated (secondary key).
- Synchronous reconfiguration is a parameter for performing reconfiguration with synchronization (reconfigurationWithSync: hereinafter referred to as reconfiguration with synchronization parameter ) indicates the procedure executed in the terminal device 100 .
- FIG. 9 is a diagram showing an example of resetting with synchronization.
- the terminal device (UE) 100 changes the current source PCell to the target PCell (S1).
- Synchronous reconfiguration parameters are separated under parameters for MCG configuration (hereinafter sometimes referred to as MCG configuration parameters) and under parameters for SCG configuration (hereinafter sometimes referred to as SCG configuration parameters). include. That is, when included under the MCG configuration parameter, it means resetting of the MCG with synchronization, and when included under the SCG configuration parameter, it means resetting of the SCG with synchronization.
- Reconfiguration with synchronization is a procedure for the terminal device 100 to change PCell or PSCell, random access to new (change destination, target) PCell or PSCell, MAC reset, RLC re-establishment, PDCP data recovery (AM for DRB).
- resetting with synchronization may involve changing the security key.
- PDCP re-establishment will be carried out in addition to the above.
- the new key is applied to PDCP by generating a new key in the RRC of the terminal device 100 and re-establishing PDCP.
- a QoS flow is a service data flow (SDF: Service Data Flow) that has the same QoS requirements and is identified by a QoS flow identifier (QFI).
- SDF Service Data Flow
- QFI QoS flow identifier
- the SDF is, for example, an IP flow, an Ethernet flow, etc., and differs depending on the upper layer.
- FIG. 10 is a diagram showing an example in which an end marker control PDU is transmitted.
- the DRB associated with the QoS flow 1 is changed from DRB1 to DRB2 (S2).
- the terminal device 100 transmits the data of the QoS flow 1 that remains before the change is instructed, using DRB1 before the change.
- the terminal device 100 transmits, in DRB1, an end marker control PDU (end marker M1) indicating that data of QoS flow 1 is to be transmitted last in DRB1.
- end marker M1 end marker indicating that data of QoS flow 1 is to be transmitted last in DRB1.
- the association between the QoS flow and the DRB may be performed by parameters included in the RRC reconfiguration message or may be performed by header information included in the downlink SDAP data PDU. The latter is called reflective mapping.
- the RRC state of the terminal device 100 indicates the state regarding the RRC connection of the terminal device 100 .
- a state in which an RRC connection with the base station apparatus 200 is not established may be called an RRC idle mode (RRC_IDLE).
- a state in which an RRC connection is established with the base station apparatus 200 may be called an RRC connected mode (RRC_CONNECTED).
- RRC_CONNECTED A state in which the RRC connection with the base station apparatus 200 is temporarily stopped (suspended) may be called an RRC inactive mode (RRC_INACTIVE).
- NG ⁇ SCG non-activation>
- communication between the secondary node and the terminal device 100 may be restricted by deactivating the SCG set in the terminal device 100 .
- the state in which the SCG is in an inactive state may be referred to as “in SCG deactivation” (in SCG deactivation).
- the SCG being in an active state may be referred to as “during SCG (re)activation”.
- deactivation of SCG may be called SCG deactivation.
- Activating an inactive SCG may be called SCG (re)activation.
- the terminal device 100 during SCG deactivation shall satisfy conditions including some or all of the following conditions.
- a first embodiment will be described.
- the communication system 10 switches from SCG deactivation to SCG (re)activation, or switches from SCG (re)activation to SCG deactivation. are properly controlled.
- Appropriate control means for example, controlling to prevent unnecessary switching or delaying the timing of switching until necessary timing in order to save power.
- FIG. 11 is a diagram showing an example of a sequence in which the SCG state transitions to inactive.
- Base station apparatus 200 is, for example, a master node in MR-DC.
- MR-DC in FIG. 11 includes, for example, (NG)EN-DC and NR-DC.
- NG NGEN-DC
- NR-DC NR-DC
- NG NGEN-DC
- NR-DC NR-DC
- the message transmitted from the terminal device 100 to the secondary node shall be transmitted to the master node via inter-base station communication.
- the processing executed by the base station apparatus 200 may be executed by either the master node or the secondary node.
- the terminal device 100 does not transmit a message to the secondary node and does not receive PDCCH from the secondary node during SCG deactivation.
- the terminal device 100 sets the SCG (S101) and is in SCG (re)activation.
- the SCG setting is performed by the terminal device 100 receiving an RRC reconfiguration message including SCG setting parameters from the base station device 200 .
- SGC setting parameters include, for example, NR SGC setting parameters.
- the terminal device 100 transmits a terminal information notification to the base station device 200 (S102).
- the terminal information notification is, for example, an RRC message or a parameter included in the RRC message.
- the terminal information notification may be, for example, UE assistance information in an RRC message, or may be a message with another name.
- the terminal information notification includes, for example, information indicating whether the terminal device 100 requires power saving.
- the terminal device 100 determines whether or not power saving is necessary, for example, according to the remaining battery level.
- the terminal information notification includes, for example, information indicating whether SCG deactivation (or SCG release) is necessary.
- the terminal device 100 determines the necessity according to, for example, the amount of communication (data communication amount) with the secondary node.
- terminal information notification is immediately executed (wants to execute) when SCG synchronous reconfiguration parameter is received during SCG deactivation (instructed to execute SCG synchronous reconfiguration) may include information indicating
- the terminal information notification for example, when UL data occurs, without the permission of the base station device 200 (without transmitting the SCG reactivation request of processing S110 described later), SCG reactivation It may also include information indicating that it is to be executed (wanted to be executed). This makes it possible to omit part of the message between the base station apparatus 200 and the terminal apparatus 100 in SCG reactivation.
- the base station apparatus 200 Upon receiving the terminal information notification (S102), the base station apparatus 200 performs SCG deactivation determination processing (S103). Note that the base station device 200 performs the SCG deactivation determination process S103 when an event requiring (or possibly requiring) SCG deactivation occurs in addition to when the terminal information notification is received. to run.
- the SCG deactivation determination process S103 is a process for determining whether or not to perform SCG deactivation for the terminal device 100.
- the base station apparatus 200 determines in SCG deactivation determination processing S103, for example, according to the amount of communication between the terminal apparatus 100 and the secondary node.
- the communication traffic with the secondary node is low, for example, when the communication traffic with the secondary node is less than or equal to a predetermined value in a predetermined period of time, or when communication with the secondary node does not occur for a predetermined period of time. , to perform SCG deactivation.
- the base station apparatus 200 determines, for example, according to the allocatable radio resource amount of the secondary node.
- the base station device 200 determines to perform SCG deactivation, for example, when the amount of available radio resources in the secondary node is equal to or less than a predetermined value.
- the base station device 200 When the base station device 200 determines to perform SCG deactivation in the SCG deactivation determination process S103, it transmits an SCG deactivation instruction to the terminal device 100 (S104).
- the SCG deactivation instruction is a message that instructs the terminal device 100 to perform SCG deactivation.
- the SCG deactivation instruction is, for example, an RRC message or a parameter included in the RRC message.
- the SCG deactivation instruction may be, for example, an RRC message SCG deactivation or RRCReconfiguration, or may be a message with another name.
- the SCG deactivation instruction is, for example, when the terminal device 100 is instructed to perform SCG reconfiguration with synchronization during SCG deactivation, immediately execute all or part of the SCG reconfiguration processing with synchronization. Includes information on whether or not In the case of information indicating that everything should be executed immediately, the terminal device 100 immediately executes reconfiguration with synchronization of the SCG. In addition, in the case of not executing part or all of it immediately, the terminal device 100 executes the part of the SCG reconfiguration process with synchronization that is not being processed when executing SCG reactivation later (with synchronization reset), or do not execute some or all of the reset processing with synchronization of the SCG (discard some or all of the instructions (parameters) for reset with synchronization).
- the SCG deactivation instruction is, for example, when the terminal device 100 is instructed to perform SCG reconfiguration with synchronization during SCG deactivation, at least if the first condition is not met, immediately reconfigure the SCG with synchronization. It may contain information to the effect that it instructs to execute part or all of the setting process. In this case, if at least the first condition is not met, the terminal device 100 immediately performs reconfiguration with synchronization of the SCG.
- the terminal device 100 executes part or all of the reconfiguration processing with synchronization of the SCG when executing SCG reactivation later (SCG synchronization suspend some or all of the reset processing with synchronization), or do not execute some or all of the reset processing with synchronization of the SCG (some of the instructions (parameters) for reset with synchronization or discard all).
- the first condition is, for example, to satisfy conditions including all or part of conditions 1 to 4 below.
- Condition 1 Synchronous reconfiguration of SCG is accompanied by a change of the masternode security key (KgNB or KeNB) or a change of the AS security key generated from the masternode security key
- Condition 2 SCG Synchronous reconfiguration is associated with a change of the secondary node security key (S-KgNB or S-KeNB) or a change of the AS security key generated from the secondary node security key
- Condition 3 SCG RLC bearer There should be no radio bearers that use the master key among the radio bearers associated with the SCG RLC bearer. , a radio bearer whose master (or primary) parameter (keyToUse) indicating whether to use the master key or the secondary key is set.
- a radio bearer that uses a secondary key may be a radio bearer whose parameter (keyToUse) indicating whether to use the master key or the secondary key is set to secondary.
- the terminal device 100 can perform communication in MR-DC (especially communication using the master node without immediately executing some or all of the reconfiguration processing with synchronization of the SCG ). Thereby, since the terminal device 100 does not perform unnecessary SCG reactivation, power consumption can be suppressed.
- the SCG deactivation instruction is, for example, an instruction to immediately perform SCG resetting with synchronization when the terminal device 100 is instructed to perform SCG resetting with synchronization during SCG deactivation. May contain information. In this case, the terminal device 100 immediately executes reconfiguration with synchronization of the SCG regardless of the first condition.
- the SCG deactivation instruction may include, for example, information indicating an instruction to perform SCG reactivation without the permission of the base station device 200 when UL data is generated. In this case, the terminal device 100 immediately executes SCG reactivation.
- the terminal device 100 Upon receiving the SCG deactivation instruction (S104), the terminal device 100 performs SCG deactivation processing (S105).
- the SCG deactivation process S105 is a process of transitioning to SCG deactivation. Note that the terminal device 100 may determine that it is necessary to perform the SCG deactivation process S105 by receiving the SCG deactivation instruction, and may perform the SCG deactivation process (S105). Moreover, the terminal device 100 does not need to perform the SCG deactivation processing (S105) by determining that it is not necessary to perform the SCG deactivation processing (S105) by not receiving the SCG deactivation instruction.
- the terminal device 100 stops some or all of the timers running for SCG. Also, the terminal device 100 resets some or all of the counters set in the SCG. Also, the terminal device 100 resets the SCG MAC. Furthermore, the terminal device 100 performs the second process on all or part of the radio bearers that satisfy at least the second condition.
- the second condition is, for example, that it is an SCG bearer or that it is a split bearer and the Primary Path is set in the SCG.
- the timer that is activated for the SCG to be stopped may include a timer for detecting a radio link failure of the SCG. Also, the timers activated for the SCG to be stopped may include a timer for the measurement report of the SCG.
- the counter set in the SCG to be reset may include a counter for detecting a radio link failure of the SCG.
- “perform the second process for all or some of the radio bearers that satisfy at least the second condition” means that the terminal device 100 determines whether or not each radio bearer satisfies at least the second condition. If it is determined that at least the second condition is satisfied, the second process may be performed on this radio bearer.
- "perform the second process for all or some of the radio bearers that satisfy at least the second condition” means that the terminal device 100 determines whether or not each radio bearer satisfies at least the second condition. If it is determined that at least the second condition is satisfied, and if it is determined that it is necessary to perform the second processing on this radio bearer, even if the second processing is performed on this radio bearer. good.
- the second condition "to be an SCG bearer” means that one or both of a parameter (moreThanOneRLC) meaning one or more RLCs or a parameter (primaryPath) meaning a Primary Path is set in the radio bearer (PDCP). and that the RLC bearer of the radio bearer is in the SCG. Also, the second condition "being an SCG bearer” may be that the RLC bearer of the radio bearer is only SCG. This "radio bearer's RLC bearer” may be the RLC bearer associated with the radio bearer.
- the second condition ⁇ It is a split bearer and the Primary Path is set in the SCG'' means that the Primary Path (or the parameter meaning the Primary Path) of the radio bearer (PDCP) is set in the SCG (or refer to SCG).
- PDCP radio bearer
- the second process is a process that is executed for all or some of the radio bearers that satisfy at least the second condition.
- the second processing is all or part of the processing and preprocessing when transitioning to SCG deactivation.
- the second processing includes, for example, all or part of the following processing.
- all or part of radio bearers that satisfy at least the second condition may be referred to as second radio bearers.
- the reordering timer is If it is running, stop it and send all the stored PDCP SDUs to the upper layer in order after decompressing the header. Re-establish the RLC of the second radio bearer. and may include the following steps:
- PDCP SDU that has been given a sequence number but has not been handed over to the lower layer has just been received from the upper layer. are regarded as PDCP SDUs, and are transmitted in order. At this time, it is not necessary to restart the discard timer.
- PDCP for which successful transmission has not been confirmed from the lower layer SDUs and PDCP SDUs that have sequence numbers assigned but have not been handed over to the lower layer are sent in order.
- the AM DRB for the Uu interface (the interface between the terminal device 100 and the base station device 200) where the PDCP entity is suspended
- PDCP SDUs for which successful transmission has not been confirmed from the lower layer and PDCP SDUs that have been assigned a sequence number but have not been handed over to the lower layer, are regarded as PDCP SDUs just received from the upper layer, and are sent in order. do. At this time, it is not necessary to restart the discard timer.
- the discard timer may be a timer that is used to discard the applicable PDCP SDU when it expires.
- the RRC of the terminal device 100 makes a second notification to the PDCP of all or part of the radio bearers, which are SCG bearers or split bearers.
- PDCP may be replaced by lower layer(s).
- PDCP that has received the second notification is an SCG bearer (if there is one associated RLC) or a split bearer (two or more associated RLCs), and the Primary path is set on the SCG side If so, the second process is performed.
- the RRC of the terminal device 100 makes a second notification to the second radio bearer.
- PDCP may be replaced by lower layer(s).
- the PDCP that has received the second notification performs a second process.
- Some radio bearers that satisfy at least the second condition may be, for example, SRBs that satisfy at least the second condition, or DRBs that satisfy at least the second condition. Also, this is not the case.
- the second notification is, for example, a notification that includes information instructing the discarding of PDCP data. Also, the second notification may be a notification including information instructing to immediately transmit data for which transmission has not been completed.
- the second notification may include information indicating that the SCG is deactivated, such as SCG deactivated or CG UL transmission prohibited (suspended).
- the second notification may include all or part of this information. Also, the second notification may be multiple messages containing some of these pieces of information.
- the terminal device 100 can suppress unnecessary SCG reactivation and power consumption.
- the RRC of the terminal device 100 transmits the second information to the SDAP associated with the DRB among the second radio bearers.
- the second information indicates that the DRB cannot perform UL transmission, such as that UL transmission of the DRB is prohibited (or stopped) or that the cell group to which the DRB is associated is being deactivated. Information.
- the second information may be sent to SDAP together with all or part of the following information. Also, the second information may be all or part of the following information.
- the second information is transmitted to the SDAP with which the DRB is associated among the second radio bearers. It may be determined whether or not two conditions are satisfied, and if it is determined that at least the second condition is satisfied, the DRB may transmit the second information to the related SDAP.
- the second information is transmitted to the SDAP associated with the DRB among the second radio bearers. If it is determined that the second condition is satisfied, and if it is determined that it is necessary for this DRB to transmit the second information to the related SDAP, this DRB transmits the second information to the related SDAP. You can also send it.
- the process of transmitting the second information may be executed at least when a DRB that satisfies the second condition is associated with SDAP (if SDAP entity associated with this DRB configured).
- the terminal device 100 may determine whether each DRB is related to SDAP, and if it is determined to be related to SDAP, may determine whether this DRB satisfies at least the second condition.
- the terminal device 100 determines whether or not at least the second condition is satisfied for each DRB, and when determining that at least the second condition is satisfied, the terminal device 100 determines whether or not this DRB is related to SDAP. good
- FIG. 12 is a diagram illustrating an example of a sequence in which the terminal device 100 receives an RRC reconfiguration message during SCG deactivation.
- the base station device 200 transmits an RRC reconfiguration message (first message) to the terminal device 100 during SCG deactivation (S106).
- the RRC reconfiguration message is an RRC message related to RRC connection reconfiguration sent from the base station device 200 to the terminal device 100, and is used to establish, configure, change, release, and synchronize radio bearers, cell groups, measurement information, and the like. Perform resetting, etc.
- the RRC reconfiguration message may be, for example, an RRC message RRCReconfiguration, or may be a message with another name.
- the base station apparatus 200 determines that it is necessary to change the settings of the terminal apparatus 100 (change the settings in the RRC connection mode), it generates an RRC reconfiguration message and transmits it to the terminal apparatus 100 .
- the base station apparatus 200 determines that the setting of the terminal apparatus 100 needs to be changed.
- the base station device 200 determines that the setting of the terminal device 100 needs to be changed, for example, when the security key needs to be changed.
- the base station device 200 needs to change the setting of the terminal device 100 when re-establishment of PDCP related to the security key that needs to be changed (using the key generated from the security key) is required. It is judged that it has become.
- the base station device 200 needs to change the setting of the terminal device 100, for example, when it is necessary to change the QoSflow to DRB mapping rule (rule indicating the correspondence relationship (map) between the QoS flow and the DRB). I judge.
- the RRC reconfiguration message includes, for example, the following information.
- ⁇ Information indicating an instruction to perform SCG reconfiguration with synchronization In the case where information indicating an instruction to perform SCG reconfiguration with synchronization is included, if at least the first condition is not met, the SCG is immediately reconfigured. Information indicating that reconfiguration with synchronization is to be performed If information indicating that reconfiguration with synchronization is to be performed for the SCG is included, if at least the first condition is met, the SCG will be reactivated at the time of SCG reactivation. Information instructing to perform reconfiguration with synchronization ⁇ If information indicating that SCG is to be reconfigured with synchronization is included, if SCG deactivation is in progress, reconfiguration of SCG with synchronization is immediately performed.
- the first condition is the first condition described in step S103. That is, the first condition is to satisfy all or part of the following conditions 1 to 4, for example.
- Condition 1 Synchronous reconfiguration of SCG is accompanied by a change of the masternode security key (KgNB or KeNB) or a change of the AS security key generated from the masternode security key
- Condition 2 SCG Synchronous reconfiguration is associated with a change of the secondary node security key (S-KgNB or S-KeNB) or a change of the AS security key generated from the secondary node security key
- Condition 3 SCG RLC bearer There should be no radio bearers that use the master key among the radio bearers associated with the SCG RLC bearer. , a radio bearer whose master (or primary) parameter (keyToUse) indicating whether to use the master key or the secondary key is set.
- a radio bearer that uses a secondary key may be a radio bearer whose parameter (keyToUse) indicating whether to use the master key or the secondary key is set to secondary.
- the parameter meaning the SCG configuration (for example, the name secondaryCellGroup) in the RRC reconfiguration message is May not include synchronous reconfiguration parameters (may not require synchronous reconfiguration of the SCG).
- the base station device 200 optionally includes a reconfiguration parameter with SCG synchronization in the RRC reconfiguration message to the terminal device 100 (not essential). You can judge.
- the base station device 200 needs to update the security key of the secondary node, but the terminal device 100 is in SCG deactivation and there is an MN terminated RLC bearer (related to the master key) on the SCG side. If not, do not include the Reconfigure with Synchronization parameter of the SCG.
- the base station device 200 when the base station device 200 satisfies at least the third condition and the terminal device 100 is not in SCG deactivation, it is essential to include the SCG reconfiguration parameter with synchronization in the RRC reconfiguration message to the terminal device 100. Yes, and may always include the reconfigure parameter with synchronization of the SCG. Further, even when at least the third condition is satisfied, the base station apparatus 200 adds the reconfiguration parameter with synchronization of SCG to the RRC reconfiguration message to the terminal device 100 when the terminal device 100 is in SCG deactivation. It may be determined that its inclusion is optional (not mandatory) and the Reconfiguration with Synchronization parameter of the SCG may not be included.
- the third condition is, for example, a change of the AS security key generated from the secondary node security key (S-KgNB or S-KeNB) in NR-DC, and one or more radio bearers using the secondary key It may be set to 100 and not released even if the radio bearer performs the processing associated with receiving the RRC reconfiguration request.
- S-KgNB secondary node security key
- S-KeNB secondary node security key
- the third condition may be, for example, that the base station apparatus 200 is in MN handover in (NG)EN-DC.
- the third condition may be, for example, the case where the base station device 200 performs SCG reactivation.
- the base station device 200 includes a change of the AS security key generated from the security key (KgNB or KeNB) of the master node in the RRC reset message to the terminal device 100, and resetting with synchronization of the SCG If the parameter is not included, if the terminal device 100 is not in SCG deactivation, it is determined to release all existing SCG RLC bearers associated with radio bearers that use the master key, and radio It may decide to release all existing SCG RLC bearers associated with the bearer.
- KgNB or KeNB security key
- the base station device 200 includes a change of the AS security key generated from the security key (KgNB or KeNB) of the master node in the RRC reset message to the terminal device 100, and resetting with synchronization of the SCG If the parameter is not included, if the terminal device 100 is in SCG deactivation, it is determined that all existing SCG RLC bearers related to radio bearers that use the master key do not need to be released, and the master It may be determined that all existing SCG RLC bearers associated with radio bearers that use keys do not need to be released.
- KgNB or KeNB security key
- the base station apparatus 200 includes a parameter indicating to instruct to perform reconfiguration with synchronization of SCG and a parameter indicating to instruct to perform SCG deactivation in the RRC reconfiguration message. good.
- a radio bearer that uses a master key may be a radio bearer whose parameter (keyToUse) indicating whether to use a master key or a secondary key is set to master (or primary).
- a radio bearer that uses a secondary key may be a radio bearer whose parameter (keyToUse) indicating whether to use the master key or the secondary key is set to secondary.
- the terminal device 100 Upon receiving the RRC reset message (S106), the terminal device 100 performs RRC reset message reception processing during SCG deactivation (S107). The terminal device 100 performs processing according to information (parameters) included in the RRC reconfiguration message in the RRC reconfiguration message reception processing S107 during SCG deactivation.
- the RRC reconfiguration message includes, for example, the following parameters.
- ⁇ Synchronous reset parameter indicates that resetting with synchronization is to be executed
- Parameter for instructing PDCP re-establishment indicating that execution of PDCP re-establishment is instructed
- Parameter meaning setting of QoS flow to DRB mapping rule indicating to instruct execution of re-setting of QoS flow to DRB mapping rule
- the terminal device 100 satisfies a predetermined condition, and if the SCG side radio bearer is suspended, UL communication of the suspended SCG side radio bearer to resume.
- the predetermined condition is, for example, not during SCG deactivation. It should be noted that "when a predetermined condition is satisfied" may be rephrased as "when determining whether or not a predetermined condition is satisfied and when the predetermined condition is satisfied”. Further, the predetermined condition may be, for example, any one of conditions 1 to 3 below.
- the procedure is initiated by an SCG configuration parameter, is in the process of SCG deactivation, and contains a parameter meaning that the SCG is to be reconfigured with synchronization immediately (or The procedure is initiated by the SCG setting parameters and the SCG deactivation is not in progress (Condition 3) Satisfies conditions including all or part of the following conditions: - SCG deactivation is not in progress - SCG deactivation is in progress and a parameter indicating that the SCG is to be reconfigured with synchronization immediately is included (or the SCG is not to be reconfigured with synchronization immediately).
- the SCG side radio bearer is not in a suspended state but in another state (for example, SCG is deactivated). It may be determined that it is activated, that uplink transmission is prohibited, etc.).
- the terminal device 100 may resume the suspended UL communication of the SCG side radio bearer regardless of whether SCG deactivation is in progress.
- the terminal device 100 may perform the following processing when the received RRC reconfiguration message includes a reconfiguration parameter with SCG synchronization.
- the terminal device 100 may immediately execute the SCG resetting process with synchronization. Also, the terminal device 100 does not immediately execute part or all of the SCG resetting process with synchronization. , the processing that is not executed immediately is executed at the time of SCG reactivation.
- the processing to be executed immediately includes, for example, MAC reset on the SCG side, applying the identifier of the new terminal device 100 as the C-RNTI of the relevant Cell Group, and the like.
- the processing to be executed at the time of SCG reactivation is, for example, random access processing on the SCG side (including processing for setting the lower layer according to the received common SpCell configuration parameter (SpCellConfigCommon)), with synchronization Examples include starting a timer to detect reconfiguration failures.
- the terminal device 100 determines whether or not to immediately perform the SCG reconfiguration process with synchronization. parameter indicating whether to immediately execute the setting). For example, the terminal device 100 may execute immediately when at least the first condition is not met, and may be executed during SCG reactivation when the first condition is met. Furthermore, the terminal device 100 may return to SCG deactivation again after executing the above-described processing.
- the first condition is the first condition described in process S103. That is, the first condition is, for example, to satisfy all or part of the following conditions 1 to 4.
- Condition 1 Synchronous reconfiguration of SCG is accompanied by a change of the masternode security key (KgNB or KeNB) or a change of the AS security key generated from the masternode security key
- Condition 2 SCG Synchronous reconfiguration is associated with a change of the secondary node security key (S-KgNB or S-KeNB) or a change of the AS security key generated from the secondary node security key
- Condition 3 SCG RLC bearer There should be no radio bearers that use the master key among the radio bearers associated with the SCG RLC bearer. , a radio bearer whose master (or primary) parameter (keyToUse) indicating whether to use the master key or the secondary key is set.
- a radio bearer that uses a secondary key may be a radio bearer whose parameter (keyToUse) indicating whether to use the master key or the secondary key is set to secondary.
- the terminal device 100 When including a parameter that instructs PDCP re-establishment>
- the terminal device 100 When the received RRC reconfiguration message includes a parameter instructing PDCP re-establishment, the terminal device 100 immediately re-establishes PDCP, for example. In this case, if there is data that has not been completely transmitted in the PDCP of all or part of the radio bearers that satisfy at least the second condition, the terminal device 100 reactivates the SCG and then transmits the data. You may
- the terminal device 100 may perform PDCP re-establishment of all or part of the radio bearers that satisfy at least the second condition after the SCG is reactivated.
- PDCP which performs PDCP re-establishment after SCG reactivation, does not perform processing corresponding to the PDCP SDU even if it receives the PDCP SDU from the upper layer.
- the second condition may be the second condition in process 105, that is, the SCG bearer, or the split bearer and the Primary Path is set in the SCG.
- the terminal device 100 receives PDCP SDUs that have been given a sequence number but have not been delivered to the lower layer from the upper layer. Regard it as the PDCP SDU just received and send it in order. At this time, it is not necessary to restart the discard timer.
- the terminal device 100 confirms successful transmission from the lower layer.
- the terminal device 100 for example, the Uu interface (interface between the terminal device 100 and the base station device 200) in which the PDCP entity is suspended
- the terminal device 100 for example, the Uu interface (interface between the terminal device 100 and the base station device 200) in which the PDCP entity is suspended
- the terminal device 100 for example, the Uu interface (interface between the terminal device 100 and the base station device 200) in which the PDCP entity is suspended
- the terminal device 100 for example, the Uu interface (interface between the terminal device 100 and the base station device 200) in which the PDCP entity is suspended
- the terminal device 100 for example, the Uu interface (interface between the terminal device 100 and the base station device 200) in which the PDCP entity is suspended
- AM DRB PDCP SDUs for which successful transmission has not been confirmed from the lower layer, and PDCP SDUs that have been given a sequence number but have not been handed over to the lower layer are regarded as PDCP SDUs just received from the upper layer, and Send to the street
- the discard timer may be a timer that is used to discard the applicable PDCP SDU when it expires.
- the base station apparatus 200 immediately performs re-establishment processing for PDCP of all or part of the radio bearers that satisfy at least the second condition in the RRC reconfiguration message of processing S106 (or after the SCG is reactivated). ) may be included.
- the terminal device 100 may determine, from the parameters, whether to immediately perform PDCP re-establishment processing for all or part of the radio bearers that satisfy at least the second condition, or to perform the re-establishment processing after the SCG is reactivated.
- the terminal device 100 performs the following process.
- the QoS flow to DRB mapping rule indicates, for example, the correspondence between QoS flows and DRBs.
- the terminal device 100 performs end marker processing when a predetermined condition is satisfied.
- End marker processing is processing to build an end marker control PDU, map it to the DRB before change, and send it to the lower layer.
- end marker processing is processing to build an end marker control PDU, map it to the DRB before change, and send it to the lower layer.
- mappedQoS-FlowToAdd included in the received RRC reconfiguration message is a parameter for the first QoS flow.
- the DRB of the QoS flow to DRB mapping rule stored for the first QoS flow (that is, the already stored DRB When the DRB corresponding to the first QoS flow that is currently in use) is a DRB that does not correspond to the second information received from the RRC of the terminal device 100 in step S105, end marker processing is performed.
- the terminal device 100 is DRB of the QoS flow to DRB mapping rule stored for the first QoS flow. is the DRB corresponding to the second information received from the RRC of the terminal device 100 in step S105, the end marker process is not performed.
- step S105 the second information is notified to the SDAP associated with the data radio bearer that satisfies at least the second condition.
- Condition 2 Stored for the first QoS flow.
- the QoS flow to DRB mapping rule is different from the configured QoS flow to DRB mapping rule (by mappedQoS-FlowToAdd included in the received RRC reconfiguration message).
- the DRB associated with the newly received QoS flow to DRB mapping rule is associated with the first QoS flow with the stored (already received) QoS flow to DRB mapping rule.
- Condition 3) An uplink SDAP header is set in the DRB of the stored QoS flow to DRB mapping rule. , and the QoS flow to DRB mapping rule for the first QoS flow does not exist (is not stored) and a default DRB is set, all or part of the following processing may be performed.
- Process 1 If the default DRB is a DRB that does not correspond to the second information received from the RRC of the terminal device 100 in process S105, construct an end marker control PDU, map it to the default DRB, and transmit it to the lower layer.
- Process 2) If the default DRB is the DRB corresponding to the second information received from the RRC of the terminal device 100 in process S105, constructing an end marker control PDU, mapping the constructed end marker control PDU to the default DRB, lower transmission to the layer, all or part of the QoS flow to DRB mapping rule may be the QoS flow to DRB mapping rule (UL QoS flow to DRB mapping rule) for the uplink.
- the terminal device 100 recognizes that the second notification is made from the RRC of the terminal device 100 to the PDCP (the PDCP is the PDCP of the radio bearer that satisfies at least the second condition). case) Create an end marker control PDU (SDAP Control PDU) and send it to PDCP.
- SDAP Control PDU End marker control PDU
- the PDCP of the terminal device 100 receives the SDAP Control PDU, it discards the received SDAP Control PDU.
- the SDAP Control PDU may be discarded.
- the terminal device 100 may not transmit the end marker control PDU to the SCG during SCG deactivation.
- the base station apparatus 200 does not include mappedQoS-FlowToAdd in the RRC reconfiguration message that the terminal apparatus 100 transmits to the terminal apparatus 100 during SCG deactivation.
- the terminal device 100 sends the end marker control PDU to the SCG side. Set to not send.
- the terminal device 100 determines that it cannot perform processing according to the RRC reconfiguration message received from the base station device 200, the terminal device 100 notifies the base station device 200 of the RRC connection re-establishment procedure or the SCG radio A procedure for link failure may be invoked. For example, when the RRC reconfiguration message received from the base station device 200 does not include the reconfiguration parameter with synchronization even though the RRC reconfiguration message received from the base station device 200 satisfies the condition of including the reconfiguration parameter with synchronization, the received It is determined that processing according to the RRC reconfiguration message cannot be performed.
- the terminal device 100 despite being in SCG deactivation, due to the RRC reset message received from the base station device 200, if the end marker transmission for the SCG occurs, to the received RRC reset message It is judged that the processing according to it is not possible.
- FIG. 13 is a diagram illustrating an example sequence of UL data arrival during SCG deactivation.
- the terminal device 100 receives UL data during SCG deactivation (S108).
- the arrival of UL data indicates that data to be transmitted to the base station apparatus 200 has occurred, for example, it may be that PDCP SDU arrives at PDCP (is transmitted), and MAC SDU is sent to MAC on the SCG side. It may be arriving (sent).
- the terminal device 100 When the UL data arrives (S108), the terminal device 100 performs UL data transmission processing during SCG deactivation (S109).
- UL data transmission processing S109 during SCG deactivation determines whether to transmit the UL data to any of the master node or the secondary node, whether to transmit immediately, etc., and transmits the UL data at an appropriate timing. .
- the UL data transmission processing S109 during SCG deactivation will be described separately for the case where the PDCP SDU arrives at the PDCP and the case where the MAC SDU arrives at the MAC on the SCG side.
- the terminal device 100 receives the second notification from the RRC of the terminal device 100 to the PDCP (when the PDCP recognizes that the radio bearer satisfies at least the second condition). , the PDCP of the terminal device 100 that has detected the arrival of the PDCP SDU notifies the RRC of the terminal device 100 that UL data has been generated.
- the terminal device 100 may notify the RRC of the terminal device 100 when receiving the PDCP SDU from the upper layer.
- the terminal device 100 may notify the RRC of the terminal device 100 when the transmission data amount exceeds or is about to exceed the threshold when the primary path is in the MCG in the split bearer.
- the RRC of the terminal device 100 Upon receiving notification from the PDCP of the terminal device 100 that UL data has been generated, the RRC of the terminal device 100 transmits an SCG reactivation request to the base station device 200 (S110).
- the SCG reactivation request may be a message requesting SCG reactivation or a message containing parameters requesting SCG reactivation.
- the SCG reactivation request is, for example, an RRC message.
- the SCG reactivation request may be, for example, an RRC message SCG reactivation request, or may be a message with another name.
- the RRC processing of the terminal device 100 is the same as when the above-described PDCP SDU arrives at PDCP.
- the MAC of the terminal device 100 detects the arrival of the MAC SDU, it notifies the RRC of the terminal device 100 that UL data has been generated.
- the MAC of the terminal device 100 may perform SCG reactivation and prepare for transmitting UL data (for example, executing a random access procedure for the secondary node, etc.). For example, in processing S107 or the like, if there is an SCG reset with synchronization that was not immediately executed, the terminal device 100 may perform the SCG reset with synchronization in advance. Also, the MAC of the terminal device 100 may perform all processing related to SCG reactivation after receiving the SCG reactivation instruction from the base station device 200 .
- the MAC of the terminal device 100 may perform SCG reactivation and start transmitting UL data without notifying the RRC of the terminal device 100 that UL data has been generated. Before starting transmission of UL data, the terminal device 100 may perform SCG resetting with synchronization if there is resetting with SCG synchronization that was not immediately executed in, for example, processing S107.
- the terminal device 100 for example, received in the process S104, in the SCG deactivation instruction, an instruction for processing when UL data occurs during SCG deactivation (for example, without sending an SCG reactivation request, SCG whether reactivation is allowed), you may follow this instruction.
- the base station device 200 determines whether SCG reactivation of the terminal device 100 is necessary.
- the base station apparatus 200 determines that SCG reactivation of the terminal apparatus 100 is necessary when, for example, the conditions including some or all of the following conditions 1 to 3 are met.
- the base station device 200 When the base station device 200 determines that SCG reactivation is necessary, it transmits an SCG reactivation instruction instructing (permitting) the implementation of SCG reactivation to the terminal device 100 (S111).
- the SCG reactivation indication is, for example, an RRC message.
- the SCG reactivation instruction may be, for example, an RRC message RRCReconfiguration or a message with another name.
- the terminal device 100 Upon receiving the SCG reactivation instruction (S111), the terminal device 100 performs SCG reactivation processing (S112).
- the SCG reactivation process S112 is a process in which the terminal device 100 reactivates the SCG.
- the RRC of the terminal device 100 may transmit the third notification to the PDCP that transmitted the second notification in step S105.
- the third notification may be a notification indicating SCG reactivation or a notification indicating SCG deactivation release, for example, "SCG has been reactivated", "SCG uplink transmission It may be "permitted (resumed)” or the like.
- the PDCP of the terminal device 100 Upon receiving the third notification, the PDCP of the terminal device 100 restarts UL transmission of SCG.
- the terminal device 100 receives the downlink SDAP data PDU with RDI (Reflective QoS flow to DRB mapping indication) set to '1' in the terminal device 100 SDAP entity, and receives the received downlink SDAP Assume that the data PDU contains the QoS Flow Identifier (QFI) for the second QoS flow. Note that the reception of this downlink SDAP data PDU may occur via the DRB with the RLC bearer associated with the MCG.
- RDI Reflective QoS flow to DRB mapping indication
- the DRB of the QoS flow to DRB mapping rule stored for the second QoS flow (that is, the already stored DRB
- the DRB corresponding to the first QoS flow is a DRB that does not correspond to the second information received from the RRC of the terminal device 100
- end marker processing is performed.
- the terminal device 100 is the DRB of the QoS flow to DRB mapping rule stored for the second QoS flow. is the DRB corresponding to the second information received from the RRC of the terminal device 100, the end marker processing is not performed.
- the end marker process is a process of constructing an end marker control PDU, mapping it to the DRB before change, and transmitting it to the lower layer.
- the second information is notified to the SDAP associated with at least the DRB that satisfies the second condition (Condition 2)
- the stored QoS flow to DRB mapping rule is different from the QoS flow to DRB mapping rule of the received downlink SDAP data PDU.
- the DRBs mapped in the newly received QoS flow to DRB mapping rule in the downlink SDAP data PDU are mapped in the stored QoS flow to DRB mapping rule.
- An uplink SDAP header is set in the DRB of the stored QoS flow to DRB mapping rule.
- the terminal device 100 sets the QoS flow to the second QoS flow. If the DRB mapping rule does not exist (is not stored) and a default DRB is set, all or part of the following processing may be performed.
- the terminal device 100 When the terminal device 100 receives the RRC reconfiguration message, if the RRC reconfiguration message contains the SCG synchronous reconfiguration parameter, the terminal device 100 immediately performs some or all of the SCG synchronous reconfiguration processing. Decide whether to execute or not. When the terminal device 100 determines that part or all of the SCG reset processing with synchronization will not be executed immediately, the terminal device 100 executes the SCG reset processing with synchronization that has not been executed at the time of SCG reactivation. The terminal device 100 determines not to execute immediately if, for example, some or all of the following conditions are met.
- the SCG is in the process of deactivation.
- the reconfiguration with synchronization of the SCG is accompanied by a change of the masternode security key (KgNB or KeNB) or a change of the AS security key generated from the masternode security key.
- KgNB or KeNB masternode security key
- the reconfiguration with synchronization of the SCG is accompanied by a change of the secondary node security key (S-KgNB or S-KeNB) or a change of the AS security key generated from the secondary node security key.
- Radio bearers that use the master key do not exist in the radio bearers to which the SCG RLC bearer is associated. All radio bearers to which the SCG RLC bearer is associated must use the secondary key. Therefore, it is possible to suppress the power consumption of the terminal device 100 by suppressing the implementation of the SCG reactivation by performing the reconfiguration with synchronization of the SCG.
- the base station apparatus 200 determines that it does not want the SCG of the terminal apparatus 100 to immediately execute the SCG reconfiguration with synchronization, it does not include the reconfiguration with synchronization parameter in the SCG configuration parameters of the RRC reconfiguration message.
- the base station apparatus 200 determines that it does not want to execute immediately when, for example, the following conditions including some or all of the conditions are satisfied.
- the SCG is in the process of deactivation.
- the reconfiguration with synchronization of the SCG is accompanied by a change of the masternode security key (KgNB or KeNB) or a change of the AS security key generated from the masternode security key.
- KgNB or KeNB masternode security key
- the reconfiguration with synchronization of the SCG is accompanied by a change of the secondary node security key (S-KgNB or S-KeNB) or a change of the AS security key generated from the secondary node security key.
- a radio bearer that uses a secondary key may be a radio bearer whose parameter (keyToUse) indicating whether to use the master key or the secondary key is set to secondary.
- the terminal device 100 when the terminal device 100 includes the reconfiguration parameter with MCG synchronization in the RRC reconfiguration message received from the base station device 200 during SCG deactivation, but does not include the reconfiguration with SCG synchronization , do not restart the UL transmission of the SCG.
- the terminal device 100 when the terminal device 100 receives an SCG deactivation instruction from the base station device 200, the terminal device 100 performs processing A on the radio bearer that satisfies condition A.
- Condition A is that it is an SCG bearer, or that it is a split bearer and the Primary Path is set in the SCG.
- Processing A is processing for immediately transmitting or discarding data that has not been completely transmitted in the PDCP entity of the radio bearer that satisfies condition A.
- processing A when a PDCP entity re-establishment request is made for a radio bearer that satisfies condition A, does not immediately transmit data that has not been transmitted in the PDCP entity re-establishment processing, SCG It may be a process performed at (after) reactivation.
- processing A is processing for discarding an SDAP Control PDU when the PDCP entity of the radio bearer that satisfies condition A receives an SDAP Control PDU from the upper layer.
- the implementation of SCG reactivation due to the occurrence of UL transmission can be suppressed, and the power consumption of the terminal device 100 can be suppressed.
- the RRC of the terminal device 100 receives the SCG deactivation instruction from the base station device 200, it notifies information A to the SDAP associated with the radio bearer (DRB) that satisfies condition A.
- DRB radio bearer
- Information A indicates that UL transmission of the DRB is prohibited (stopped), or that the DRB is in a state where UL transmission is not possible, such as that the cell group to which the DRB is associated is being deactivated. It is information that includes
- the implementation of SCG reactivation due to the occurrence of UL transmission can be suppressed, and the power consumption of the terminal device 100 can be suppressed.
- the terminal device 100 transmits the SDAP Control SDU to the DRB before the change. Not performed.
- the base station apparatus 200 may be implemented so as not to generate an end marker when the terminal apparatus 100 is in SCG deactivation.
- the base station apparatus 200 for example, during SCG deactivation, re-associates a QoS flow associated with a DRB that is an SCG bearer or a split bearer and in which a primary path is set to the SCG, to another DRB.
- the end marker is controlled not to occur by performing control such as not to cause the end marker to occur.
- the base station apparatus 200 is associated with, for example, a DRB that satisfies at least the second condition before the SCG deactivation instruction in process 104 in the first embodiment or in the SCG deactivation instruction. Alternatively, by performing control such as (re)associating some QoS flows with DRBs that do not satisfy at least the second condition, control is performed so that the end marker does not occur.
- the implementation of SCG reactivation due to the occurrence of UL transmission can be suppressed, and the power consumption of the terminal device 100 can be suppressed.
- the terminal device 100 when UL data is generated (arrived), the terminal device 100 requests the base station device for SCG reactivation, or the terminal device 100 spontaneously performs SCG reactivation from the base station device 200. May be indicated (specified). For example, the terminal device 100 performs the following processes.
- the RRC of the terminal device 100 When the RRC of the terminal device 100 receives the SCG deactivation instruction from the base station device 200, it transmits a notification A to the PDCP entity of the radio bearer that satisfies condition A. Notification A is a notification indicating that SCG deactivation is in progress or that UL transmission on the SCG side is prohibited (interrupted).
- the PDCP entity of the radio bearer corresponding to condition A receives data from the upper layer, the PDCP entity of the terminal device 100 notifies the RRC of the terminal device 100 that UL data has been generated.
- the RRC of the terminal device 100 generates an SCG deactivation request and transmits it to the base station device 200 .
- the RRC of the terminal device 100 When the RRC of the terminal device 100 receives the SCG reactivation message from the base station device 200, the SCG is reactivated for the PDCP entity of the radio bearer that transmitted the second notification, or the UL transmission on the SCG side starts Send a notification indicating that it has been (restarted).
- the terminal device 100 executes a random access procedure to enable UL transmission.
- the terminal device 100 executes the reset with synchronization of the SCG, if any, which has not been executed immediately.
- the terminal device 100 can perform appropriate processing when UL transmission occurs in the RLC bearer on the SCG side during SCG deactivation. Further, as a result, the terminal device 100 notifies the base station device 200 that UL transmission has occurred in the RLC bearer on the SCG side during SCG deactivation, or autonomously or according to the instruction of the base station device 200, SCG reactivation can be performed.
- Each embodiment may be combined. Also, the messages in the sequence do not have to be done in order, and the order may be changed. Also, some of the messages on the sequence may not be performed. For example, the processing during SCG deactivation in the terminal device 100 may be performed as long as the terminal device 100 is in SCG deactivation, and messages on the sequence may be omitted.
- the function and processing of the terminal device 100 may be the function and processing of the base station device 200.
- the functions and processes of the base station apparatus 200 may be the functions and processes of the terminal apparatus 100 .
- the "radio bearer” may be a signaling radio bearer, a data radio bearer, or both a signaling radio bearer and a data radio bearer.
- 14 to 22 are diagrams showing examples of modified images of 3GPP specifications.
- the shaded portion indicates the corrected portion. Note that the specification numbers, chapter numbers, and the like are examples, and are not limited to the examples in the figure.
- the first wireless communication device It has a receiving unit that receives from the second wireless communication device (base station device 200), a transmitting unit that performs transmission to the second wireless communication device, and a processing unit. If the first RRC message sent by contains a parameter related to deactivation of the SCG, deactivate the SCG, and out of the radio bearers established in the first wireless communication device, the first condition A first wireless communication device (terminal device 100) that performs a first process on a radio bearer that satisfies
- the first wireless communication device wherein the first condition is that it is an SCG bearer or that it is a split bearer and a primary path is set on the SCG side.
- the first wireless communication device wherein the first process is a process of immediately transmitting data that has not been completely transmitted in the PDCP entity of the radio bearer that satisfies the first condition.
- the first process is a process of discarding all data that has not been completely transmitted in the PDCP entity of the radio bearer that satisfies the first condition, the first wireless communication device.
- the processing unit while the SCG is inactive, among the radio bearers established in the first radio communication device, if a re-establishment request for the PDCP entity of the radio bearer that satisfies the first condition is made, if a re-establishment request for the PDCP entity of the radio bearer that satisfies the first condition is made, In the process of re-establishing the PDCP entity, the PDCP entity of the radio bearer that does not satisfy the first condition among the radio bearers established in the first radio communication device without transmitting data that has not been transmitted is made, the first wireless communication device transmits data that has not been completely transmitted in the process of re-establishing the PDCP entity.
- the SCG has a second transmission unit that transmits to the first wireless communication device, a second reception unit that receives from the first wireless communication device, and a second processing unit.
- the SCG is deactivated by including a parameter related to deactivation of the SCG in the first RRC message transmitted from the second transmission unit.
- a second radio communication device that causes a radio bearer that satisfies a first condition among radio bearers established in the first radio communication device to execute a first process.
- It has a second transmission unit that transmits to the first wireless communication device, a second reception unit that receives from the first wireless communication device, and a second processing unit.
- a second wireless communication device including a parameter indicating that the SCG reconfiguration parameter with synchronization included in the RRC reconfiguration message is to be performed after SCG reactivation without immediately being performed in the RRC reconfiguration message to be transmitted to the communication device. .
- the configuration message contains a parameter indicating that the SCG synchronous reconfiguration parameter included in the RRC reconfiguration message is not to be executed immediately but after SCG reactivation, then according to the SCG synchronous reconfiguration parameter A parameter indicating that the synchronous reconfiguration procedure is to be performed after SCG reactivation, and the SCG synchronous reconfiguration parameter included in the RRC reconfiguration message is not performed immediately but after SCG reactivation. If not, the first wireless communication device immediately performs a reconfiguration with synchronization procedure according to the reconfiguration with synchronization parameter of the SCG.
- It has a second transmission unit that transmits to the first wireless communication device, a second reception unit that receives from the first wireless communication device, and a second processing unit.
- the RRC reconfiguration message When the RRC reconfiguration message is sent to the communication device, if the second condition is satisfied, the RRC reconfiguration message must include the reconfiguration parameter with synchronization of the SCG, and if the second condition is not satisfied, the RRC reconfiguration
- the second wireless communication device optionally including a reconfiguration parameter with synchronization of the SCG in the message.
- the second condition is a change of the AS security key generated from the security key of the secondary node in NR-DC, and among the radio bearers set in the first communication device, at least one radio bearer uses the secondary key. and at least one radio bearer has not been released by an RRC reconfiguration message and the SCG has not been deactivated.
- a second wireless communication device wherein the second condition is a master node handover in EN-DC and the SCG is not deactivated.
- the second wireless communication device which is a condition that the second condition is reactivation of the SCG.
- It has a transmitting unit that transmits to the second wireless communication device, a receiving unit that receives from the second wireless communication device, and a processing unit.
- the third condition is that the procedure is initiated by the MCG configuration parameters and the SCG is not deactivated, the first wireless communication device.
- the third condition is that the procedure is initiated by the SCG configuration parameters, the first wireless communication device.
- It has a second transmission unit that transmits to the first wireless communication device, a second reception unit that receives from the first wireless communication device, and a second processing unit.
- the first wireless communication device When deactivating the secondary cell group set in the communication device, by including a parameter related to SCG deactivation in the first RRC message transmitted from the second transmission unit, the first wireless communication device to make a first notification to an SDAP entity associated with a radio bearer satisfying a fourth condition among radio bearers established in the first radio communication device.
- the second wireless communication device wherein the fourth condition is that it is an SCG bearer, or that it is a split bearer and a primary path is set to the SCG.
- the second wireless communication device wherein the first notification is a notification indicating that the uplink transmission of the radio bearer satisfying the fourth condition is suspended.
- the second wireless communication device where the first notification is made when the SDAP entity is associated with a radio bearer that satisfies the fourth condition.
- It has a transmitting unit that transmits to the second wireless communication device, a receiving unit that receives from the second wireless communication device, and a processing unit, and the processing unit receives from the second transmitting unit of the second wireless communication device If the transmitted first RRC message includes parameters related to SCG deactivation, the SCG is deactivated, and the RRC of the first wireless communication device communicates with the radio established in the first wireless communication device.
- a first wireless communication device that performs a first notification to an SDAP entity associated with a radio bearer that satisfies a fourth condition among bearers.
- the fourth condition is that the first wireless communication device is an SCG bearer or a split bearer and a primary path is set to the SCG.
- the first notification is a notification indicating that the uplink transmission of the radio bearer satisfying the fourth condition is suspended, the first wireless communication device.
- a first wireless communication device where the first notification is made when the SDAP entity is associated with a radio bearer that satisfies the fourth condition.
- the first transmission unit that transmits to the first wireless communication device, a second reception unit that receives from the first wireless communication device, and a second processing unit.
- the first RRC message transmitted from the second transmission unit includes a parameter related to deactivation of the SCG, thereby deactivating the SCG.
- a second radio communication device that causes a radio bearer that satisfies a first condition among radio bearers established in the first radio communication device to execute a first process.
- the second wireless communication device wherein the first condition is that it is an SCG bearer or that it is a split bearer and a primary path is set to the SCG.
- the first process is transmitting a message for requesting SCG reactivation to the first wireless communication device when uplink data is generated in a radio bearer that satisfies the first condition. 2 wireless communication device.
- It has a receiving unit for receiving from the second wireless communication device, a transmitting unit for transmitting to the second wireless communication device, and a processing unit, and the processing unit receives from the second transmitting unit of the second wireless communication device If the transmitted first RRC message contains a parameter related to SCG deactivation, deactivate the SCG and satisfy the first condition among the radio bearers established in the first wireless communication device.
- a first wireless communication device that performs a first process on a radio bearer.
- the first wireless communication device wherein the first condition is that it is an SCG bearer, or that it is a split bearer and a primary path is set to the SCG.
- the first process is to transmit a message for requesting SCG reactivation to the second wireless communication device when uplink data is generated in the radio bearer that satisfies the first condition. wireless communication device.
- Terminal device 110 CPU 120: Storage 121: Terminal side wireless communication program 122: Terminal side MR-DC program 130: Memory 140: Communication circuit 200: Base station device 210: CPU 220: Storage 221: Wireless communication program 222: MR-DC master node program 223: MR-DC secondary node program 230: Memory 240: Wireless communication circuit 250: Network interface 300: Core network
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
第1無線通信装置へ、メッセージの送信を行う送信部と、前記第1無線通信装置からメッセージの受信を行う受信部と、前記第1無線通信装置に設定されているセカンダリセルグループの非活性化を行う場合、前記送信部より前記第1無線通信装置へ送信される第1メッセージに、前記セカンダリセルグループの非活性化に関するパラメータを含める処理部と、を有し、前記第1無線通信装置は、前記セカンダリセルグループの非活性化に関するパラメータを含む前記第1メッセージを受信すると、セカンダリセルグループを非活性化し、確立している無線ベアラのうち、第1の条件を満たす無線ベアラに対し、第1の処理を実行する。
Description
本発明は、無線通信装置に関する。
現在のネットワークは、モバイル端末(スマートフォンやフューチャーホン)などを利用した無線通信のネットワークが拡大している。無線通信の拡大において、さらなる高速化や大容量化が求められている。
高速化及び大容量化を実現する技術として、DC(Dual Connectivity)がある。DCは、端末装置がマスター基地局装置とセカンダリ基地局装置の基地局装置に無線接続し、それぞれの基地局装置のキャリア(以下、セルグループと呼ぶ場合がある)を用いて無線通信を行う技術である。
さらに、無線通信規格の世代が進むことで、例えば、4G(Four-Generation)や5G(Five-Generation)に対応した基地局装置であるeNodeB(以下、eNBと呼ぶ場合がある)と、5G-AdvancedやNR(New Radio)に対応した基地局装置であるgNodeB(以下、gNBと呼ぶ場合がある)を用いたDC技術である、MR-DC (Multi Radio Dual Connectivity)が注目されている。
端末装置は、MR-DCにおいて送受信するデータ量が多い場合、例えば、マスター基地局装置とセカンダリ基地局装置の両方とデータの送受信を行う。一方、端末装置は、MR-DCにおいて送受信するデータ量が少ない場合、例えば、セカンダリ基地局装置に所属するセルグループ(セカンダリセルグループ)を非活性化する事により、セカンダリ基地局装置とのデータ送受信を一時停止するなどし、省電力化を行う事が検討されている。
MR-DCに関する技術としては、以下の先行技術文献に記載されている。
3GPP TS36.133 LTE-A 無線測定仕様
3GPP TS36.300 LTE-A 概要仕様
3GPP TS36.211 LTE-A PHYチャネル仕様
3GPP TS36.212 LTE-A PHY符号化仕様
3GPP TS36.213 LTE-A PHY手順仕様
3GPP TS36.214 LTE-A PHY測定仕様
3GPP TS36.321 LTE-A MAC仕様
3GPP TS36.322 LTE-A RLC仕様
3GPP TS36.323 LTE-A PDCP仕様
3GPP TS36.331 LTE-A RRC仕様
3GPP TS36.413 LTE-A S1仕様
3GPP TS36.423 LTE-A X2仕様
3GPP TS36.425 LTE-A Xn仕様
3GPP TR36.912 NR 無線アクセス概要
3GPP TR38.913 NR 要求条件
3GPP TR38.913 NR 要求条件
3GPP TR38.801 NR ネットワークアーキテクチャ概要
3GPP TR38.802 NR PHY概要
3GPP TR38.803 NR RF概要
3GPP TR38.804 NR L2概要
3GPP TR38.900 NR 高周波概要
3GPP TS38.300 NR 概要仕様
3GPP TS37.340 NR 多元接続概要仕様
3GPP TS38.201 NR PHY仕様概要仕様
3GPP TS38.202 NR PHYサービス概要仕様
3GPP TS38.211 NR PHYチャネル仕様
3GPP TS38.212 NR PHY符号化仕様
3GPP TS38.213 NR PHYデータチャネル手順仕様
3GPP TS38.214 NR PHYコントロールチャネル手順仕様
3GPP TS38.215 NR PHY測定仕様
3GPP TS38.321 NR MAC仕様
3GPP TS38.322 NR RLC仕様
3GPP TS38.323 NR PDCP仕様
3GPP TS37.324 NR SDAP仕様
3GPP TS38.331 NR RRC仕様
3GPP TS38.401 NR アーキテクチャ概要仕様
3GPP TS38.410 NR コアネットワーク概要仕様
3GPP TS38.413 NR コアネットワークAP仕様
3GPP TS38.420 NR Xnインタフェース概要仕様
3GPP TS38.423 NR XnAP仕様
3GPP TS38.470 NR F1インタフェース概要仕様
3GPP TS38.473 NR F1AP
しかし、端末装置がセカンダリセルグループを一時停止状態(非活性状態)から活性状態に移行させる契機やタイミングについては、標準化仕様としては決定していない。
例えば、端末装置がセカンダリセルグループを不要なタイミングで活性化させると、不要な電力を消費してしまうこととなる。
そこで、一開示は、MR-DCにおけるセカンダリセルグループ非活性状態の端末装置とセカンダリ基地局装置との通信の活性化において、端末装置の消費電力を抑制する無線通信装置を提供することにある。
第1無線通信装置へ、メッセージの送信を行う送信部と、前記第1無線通信装置からメッセージの受信を行う受信部と、前記第1無線通信装置に設定されているセカンダリセルグループの非活性化を行う場合、前記送信部より前記第1無線通信装置へ送信される第1メッセージに、前記セカンダリセルグループの非活性化に関するパラメータを含める処理部と、を有し、前記第1無線通信装置は、前記セカンダリセルグループの非活性化に関するパラメータを含む前記第1メッセージを受信すると、セカンダリセルグループを非活性化し、確立している無線ベアラのうち、第1の条件を満たす無線ベアラに対し、第1の処理を実行する。
一開示は、MR-DCにおけるセカンダリセルグループ非活性状態の端末装置とセカンダリ基地局装置との通信の活性化において、端末装置の消費電力を抑制することができる。
以下、本実施の形態について図面を参照して詳細に説明する。本明細書における課題及び実施例は一例であり、本願の権利範囲を限定するものではない。特に、記載の表現が異なっていたとしても技術的に同等であれば、異なる表現であっても本願の技術を適用可能であり、権利範囲を限定するものではない。
図1は、通信システム10の構成例を示す図である。通信システム10は、端末装置100、基地局装置200-1、2、及びコアネットワーク300を有する。通信システム10は、端末装置100が、基地局装置200-1,2とMR-DCで通信を行う、無線通信システムである。例えば、基地局装置200-1は、マスター基地局装置であり、基地局装置200-2は、セカンダリ基地局装置である。以降、マスター基地局装置をMN(マスターノード:Master Node)。セカンダリ基地局装置をSN(セカンダリノード:Secondly Node)と呼ぶ場合がある。
端末装置100は、基地局装置200-1、2と無線接続し、MR-DCによる無線通信を行う。端末装置100は、複数の世代(例えば、4Gと5G、4Gの無線アクセス技術であるE-UTRA(Evolved Universal Terrestrial Radio Access)と5Gの無線アクセス技術であるNR、など)に対応するタブレット端末やスマートフォンである。
基地局装置200-1,2(以降、基地局装置200と呼ぶ場合がある)は、端末装置100と無線接続し、MR-DCによる無線通信を行う通信装置である。また、基地局装置200-1,2は、例えば、互いに有線で接続し、通信を行う。基地局装置200は、例えば、有線でコアネットワーク300と接続し、通信を行う。基地局装置200は、例えば、eNodeB又はgNodeBのいずれかの基地局装置である。
コアネットワーク300は、ある世代に対応するネットワークである。コアネットワーク300は、例えば、5Gに対応するコアネットワーク(以降、5GCと呼ぶ場合がある)や、4Gに対応するEPC(Evolved Packet Core)である。
通信システム10において実現するMR-DCの詳細については、後述する。
<基地局装置200の構成例>
図2は、基地局装置200の構成例を表す図である。基地局装置200は、CPU(Central Processing Unit)210、ストレージ220、メモリ230、無線通信回路240、及びネットワークインタフェース250を有する、通信装置あるいは中継装置である。
図2は、基地局装置200の構成例を表す図である。基地局装置200は、CPU(Central Processing Unit)210、ストレージ220、メモリ230、無線通信回路240、及びネットワークインタフェース250を有する、通信装置あるいは中継装置である。
ストレージ220は、プログラムやデータを記憶する、フラッシュメモリ、HDD(Hard Disk Drive)、又はSSD(Solid State Drive)などの補助記憶装置である。ストレージ220は、無線通信プログラム221、MR-DCマスターノードプログラム222、及びMR-DCセカンダリノードプログラム223を記憶する。
メモリ230は、ストレージ220に記憶されているプログラムをロードする領域である。また、メモリ230は、プログラムがデータを記憶する領域としても使用されてもよい。
無線通信回路240は、端末装置100と無線接続し、通信を行う回路である。基地局装置200は、例えば、無線通信回路240を介して、端末装置100から送信された信号を受信し、端末装置100に信号を送信する。
NI(network Interface)250は、例えば、他の基地局装置200と接続し、基地局間通信を実現する通信装置である。また、NI250は、例えば、コアネットワーク300(コアネットワーク300を構成する通信装置)と接続し、通信を行う通信装置です。NI250は、例えば、NIC(network Interface Card)である。基地局装置200は、NI250を介して、他の通信装置から信号を受信し、他の通信装置に信号を送信する。
CPU210は、ストレージ220に記憶されているプログラムを、メモリ230にロードし、ロードしたプログラムを実行し、各部を構築し、各処理を実現するプロセッサである。
CPU210は、無線通信プログラム221を実行することで、無線通信処理を行う。無線通信処理は、端末装置100と無線接続し、端末装置100と無線通信したり、端末装置100が他の通信装置と行う通信を中継したりする処理である。
CPU210は、MR-DCマスターノードプログラム222を実行することで、第2送信部、第2受信部、及び第2処理部を構築し、MR-DCマスターノード処理を行う。MR-DCマスターノード処理は、MR-DCにおけるマスターノード側の制御を行う処理である。基地局装置200は、MR-DCマスターノード処理において、後述するMR-DCの各種類に対応した通信を行う。
CPU210は、MR-DCセカンダリノードプログラム223を実行することで、第2送信部、第2受信部、及び第2処理部を構築し、MR-DCセカンダリノード処理を行う。MR-DCセカンダリノード処理は、MR-DCにおけるセカンダリノード側の制御を行う処理である。基地局装置200は、MR-DCセカンダリノード処理において、後述するMR-DCの各種類に対応した通信を行う。
<端末装置100の構成例>
図3は、端末装置100の構成例を表す図である。端末装置100は、CPU110、ストレージ120、メモリ130、及び通信回路140を有する、通信装置である。
図3は、端末装置100の構成例を表す図である。端末装置100は、CPU110、ストレージ120、メモリ130、及び通信回路140を有する、通信装置である。
ストレージ120は、プログラムやデータを記憶する、フラッシュメモリ、HDD、又はSSDなどの補助記憶装置である。ストレージ120は、端末側無線通信プログラム121、端末側MR-DCプログラム122を記憶する。
メモリ130は、ストレージ120に記憶されているプログラムをロードする領域である。また、メモリ130は、プログラムがデータを記憶する領域としても使用されてもよい。
通信回路140は、基地局装置200と接続し、通信を行う回路である。通信回路140は、例えば、無線接続に対応するネットワークカードである。
CPU110は、ストレージ120に記憶されているプログラムを、メモリ130にロードし、ロードしたプログラムを実行し、各部を構築し、各処理を実現するプロセッサである。
CPU110は、端末側無線通信プログラム121を実行することで、端末側無線通信処理を行う。端末側無線通信処理は、基地局装置200と無線接続し、基地局装置200と無線通信、あるいは基地局装置200を介して他の通信装置と通信を行う処理である。
CPU110は、端末側MR-DCプログラム122を実行することで、送信部、受信部、処理部を構築し、端末側MR-DC処理を行う。端末側MR-DC処理は、MR-DCにおける通信を制御する処理である。端末装置100は、端末側MR-DC処理において、後述するMR-DCの各種類に対応した通信を行う。
<プロトコルスタック>
通信システム10のプロトコルスタックの例について説明する。通信システム10において、データの送受信を行う一連のプロトコルを、階層構造で示したものをプロトコルスタックと呼ぶ。以下の例において、基地局装置200がgNB、コアネットワーク300が5GCである場合について説明する。また、端末装置100(UE: User Equipment)は、gNB及び5Gコアに対応するものとする。
通信システム10のプロトコルスタックの例について説明する。通信システム10において、データの送受信を行う一連のプロトコルを、階層構造で示したものをプロトコルスタックと呼ぶ。以下の例において、基地局装置200がgNB、コアネットワーク300が5GCである場合について説明する。また、端末装置100(UE: User Equipment)は、gNB及び5Gコアに対応するものとする。
以下、C-Plane(Control Plane)及びU-Plane(User Plane)のプロトコルスタックについて説明する。C-Planeは、例えば、通信において送受信される制御用信号(メッセージ)を示す。U-Planeは、例えば、送受信されるユーザデータのデータ信号(メッセージ)を示す。
図4は、U-Planeのプロトコルスタックの例を示す図である。また、図5は、C-Planeのプロトコルスタックの例を示す図である。図4、図5における、SDAP、PDCP、RLC、MAC、PHY、NAS、RRCは、それぞれレイヤの名称を示す。以降、SDAP、PDCP、RLC、MAC、PHY、NAS、RRCそれぞれは、SDAPサブレイヤ、PDCPサブレイヤ、RLCサブレイヤ、MACサブレイヤ、PHYサブレイヤ、NASサブレイヤ、RRCサブレイヤ、又はSDAPレイヤ、PDCPレイヤ、RLCレイヤ、MACレイヤ、PHYレイヤ、NASレイヤ、RRCレイヤと呼ぶ場合がある。また、SDAP、PDCP、RLC、MAC、PHY、NAS、RRCそれぞれは、SDAPエンティティ、PDCPエンティティ、RLCエンティティ、MACエンティティ、PHYエンティティ、NASエンティティ、RRCエンティティと呼ぶ場合がある。
図4において、U-Planeは、SDAP (Service Data Adaptation Protocol)、PDCP(Packet Data Convergence Protocol)、RLC (Radio Link Control), MAC(Medium Access Control)、PHY(PHYsical)で構成され、端末装置100(UE)と基地局装置200(gNB)で終端する。
PHYは、物理チャネルを用いて、端末装置100と基地局装置200間の制御情報や、データを伝送する。基地局装置200から端末装置方向をダウンリンク(下り、DL)、端末装置100から基地局装置方向をアップリンク(上り、UL)と呼ぶ場合がある。
MACは、ロジカルチャネル(LCH)とトランスポートチャネルのマッピング、MAC SDUのmultiplexing/demultiplexing、スケジューリングレポート、HARQ(Hybrid Automatic Repeat reQuest)を通したエラー修正、優先制御などを行う。
SDU(Service Data Unit)は、各サブレイヤにおいて、上位のサブレイヤから渡される又は上位のレイヤに渡すデータを示す。また、PDU(Protocol Data Unit)は、各サブレイヤにおいて、下位のサブレイヤから渡される又は下位のサブレイヤに渡すデータを示す。
また、RLC、PDCP、SDAPには、制御用のPDUが存在し、コントロールPDUと呼ぶ場合がある。またコントロールPDUと区別するために、その他のPDUをデータPDUと呼ぶ場合がある。
RLCは、Transparent Mode(TM)、Unacknowledged Mode(UM)、Acknowledged Mode (AM)の3つのモードが存在する。RLCは、上位レイヤのPDUの転送、シーケンス番号の付与(UM, AMの場合)、データの分割(UM, AMの場合)、及び再分割(AMの場合)、SDUの再組立て(UM, AMの場合)、デュプリケート検出(AMの場合)、RLC SDUの破棄(UM, AMの場合)、RLC再確立などを行う。
PDCPは、U-Plane及びC-Planeのデータ転送, PDCPシーケンス番号管理、ヘッダ圧縮、暗号化/復号化、完全性保護/完全性検証、タイマーベースのSDU破棄, スプリットベアラに対するルーティング、リオーダリングとイン・オーダーデリバリーなどを行う。
SDAPは、QoS(Quality of service)フローとデータ無線ベアラ(DRB: Data Radio Bearer)とのマッピング, ダウンリンク(DL)パケット及びアップリンク(UL)パケットへのQoSフロー識別子(QFI)のマーキングなどを行う。
U-Planeの上位レイヤとしては、例えば、IP(Internet Protocol)、TCP(Transmission Control Protocol)、UDP(User Datagram Protocol)、アプリケーションなどのレイヤが存在する。
図5において、C-Planeは、PDCP、RLC、MAC、RRC(Radio Resource Control)で構成され、端末装置100と基地局装置200で終端する。また、C-Planeは、NAS(Non Access Stratum)で構成され、端末装置100とコアネットワーク300の装置であるAMF(Access and Mobility management Function)との間で終端する。PDCP、RLC、MACについては、U-Planeと同様である。
RRCは、AS(Access Stratum)とNASに関連するシステム情報(SI)のブロードキャスト、ページング、端末装置100と基地局装置200間のRRCコネクションの確立/メンテナンス/解放、キャリアアグリゲーション(CA)の追加/変更/解放、デュアルコネクティビティ(DC)の追加/変更/解放, セキュリティ鍵の管理を含むセキュリティ機能、シグナリング無線ベアラ(SRB:Signaling Radio Bearer)及びデータ無線ベアラ(DRB)の確立/設定/メンテナンス/解放, モビリティ機能、QoS管理機能、端末装置測定レポート及びレポーティングの制御、 無線リンク失敗(RLF)の検出とリカバリ、NASメッセージの転送などを行う。
NASは、認証、モビィティ管理、セキュリティ制御などを行う。
なお、コアネットワーク300の装置がEPC(Evolved Packet Core)である場合、U-Planeには、SDAPが存在しない。また、C-PlaneのNASは端末装置100とコアネットワーク300の装置であり、EPCを構成するMME(Mobility Management Entity)との間で終端する。
<チャネル>
通信システム10で使用するチャネルについて説明する。以下、NRに対応するチャネルの例を示すが、使用するチャネルは以下に限定されない。また、同一名称のチャネルが、NR以外の世代においても、使用され得る。
通信システム10で使用するチャネルについて説明する。以下、NRに対応するチャネルの例を示すが、使用するチャネルは以下に限定されない。また、同一名称のチャネルが、NR以外の世代においても、使用され得る。
<1.物理チャネル>
PBCH(Physical Broadcast CHannel)は、基地局装置200から端末装置100へ、報知情報を送信するために用いられるチャネルである。
PBCH(Physical Broadcast CHannel)は、基地局装置200から端末装置100へ、報知情報を送信するために用いられるチャネルである。
PDCCH(Physical Downlink Control CHannel)は、基地局装置200から端末装置100へ、ダウンリンク制御情報(Downlink Control Information: DCI)などを送信するために用いられるチャネルである。
PDSCH(Physical Downlink Shared CHannel)は、基地局装置200から端末装置100へ、上位レイヤからのデータなどを送信するために用いられるチャネルである。
PUCCH(Physical Uplink Control CHannel)は、端末装置100から基地局装置200へ、アップリンク制御情報(Uplink Control Information: UCI)などを送信するために用いられるチャネルである。
PUSCH(Physical Uplink Shared CHannel)は、端末装置100から基地局装置200へ、上位レイヤからのデータなどを送信するために用いられるチャネルである。
PRACH(Physical Random Access CHannel)は、端末装置100から基地局装置200へ、ランダムアクセスプリアンブルなどを送信するために用いられるチャネルである。
<2.トランスポートチャネル>
BCH(Broadcast Channel)は、物理チャネルであるPBCHにマップされる。
BCH(Broadcast Channel)は、物理チャネルであるPBCHにマップされる。
DL-SCH(Downlink Shared Channel)は、物理チャネルであるPDSCHにマップされる。
PCH(Paging Channel)は、物理チャネルであるPDSCHにマップされる。
UL-SCH(Downlink Shared Channel)は、物理チャネルであるPUSCHにマップされる。
RACH(Random Access Channel(s))は、物理チャネルであるPRACHにマップされる。
<3.ロジカルチャネル>
BCCH(Broadcast Control Channel)は、システム情報を報知するための、ダウンリンクチャネルであり、トランスポートチャネルのBCHにマップされる。
BCCH(Broadcast Control Channel)は、システム情報を報知するための、ダウンリンクチャネルであり、トランスポートチャネルのBCHにマップされる。
PCCH(Paging Control Channel)は、ページングメッセージを運ぶためのダウンリンクチャネルであり、トランスポートチャネルのPCHにマップされる。
CCCH(Common Control Channel)は、端末装置100と基地局装置200間で制御情報(RRCメッセージなど)を送信するためのチャネルで、基地局装置200とのRRC接続を維持していない(有さない)端末装置100に対して使用されるチャネルであり、ダウンリンクはトランスポートチャネルのDL-SCHにマップされ、アップリンクはトランスポートチャネルのUL-SCHにマップされる。
DCCH(Dedicated Control Channel)は、ポイント・ツー・ポイントの双方向のチャネルで、端末装置100と基地局装置200間で専用制御情報(RRCメッセージなど)を送信し、基地局装置200とのRRC接続を有する端末装置100に対して使用され、ダウンリンクはトランスポートチャネルのDL-SCHにマップされ、アップリンクはトランスポートチャネルのUL-SCHにマップされる。
DTCH(Dedicated Transport Channel)は、ポイント・ツー・ポイントの端末専用の双方向チャネルで、ユーザ情報(ユーザデータ)を送信し、ダウンリンクはトランスポートチャネルのDL-SCHにマップされ、アップリンクはトランスポートチャネルのUL-SCHにマップされる。
<RRCメッセージ>
RRCメッセージについて説明する。RRCメッセージは、セルにおいて通信を行うために必要な情報を含むメッセージであり、MIB(Master Information Block)、システム情報群(System Information Block)などを含む。RRCメッセージに含むパラメータの事を、フィールド又は情報要素(IE :Information Element)と呼ぶ場合がある。
RRCメッセージについて説明する。RRCメッセージは、セルにおいて通信を行うために必要な情報を含むメッセージであり、MIB(Master Information Block)、システム情報群(System Information Block)などを含む。RRCメッセージに含むパラメータの事を、フィールド又は情報要素(IE :Information Element)と呼ぶ場合がある。
また、RRCメッセージは、RRC接続の確立に関するメッセージを含む。RRC接続の確立に関するメッセージとしては、例えば、RRCセットアップリクエストメッセージ(RRCSetupRequest)、RRCセットアップメッセージ(RRCSetup)、 RRCセットアップ完了メッセージ(RRCSetupComplete)などがある。
また、RRCメッセージは、AS(Access Stratum)セキュリティの初期活性化(activation)に関するメッセージを含む。ASセキュリティの初期活性化に関するメッセージとしては、例えば、セキュリティモードコマンドメッセージ(SecurityModeCommand)などがある。
また、RRCメッセージは、RRC接続の再設定に関するメッセージを含む。RRC接続の再設定に関するメッセージとしては、例えば、RRC再設定メッセージ(RRCReconfiguration)、RRC再設定完了メッセージ(RRCReconfigurationComplete)などがある。
図6は、RRCReconfigurationのメッセージフォーマットの例を示す図である。フォーマットE1は、RRC Reconfigurationのパラメータである。
RRC Reconfigurationは、radioBearerConfig、radioBearerConfig2、masterCellGroup、seconderyCellGroup、masterKeyUpdate、及びsk-counterを、パラメータとして有する。
radioBearerConfig及びradioBearerConfig2は、MN terminatedベアラ、又はSN terminatedベアラに関する設定で、SRB設定、DRB設定、セキュリティ設定などを含む。SRB設定(DRB設定)にはSRB識別子(DRB識別子)、PDCP設定、PDCP再確立を指示するパラメータなどを含む。 セキュリティ設定には、マスター鍵を使うか、セカンダリ鍵を使うかを示すパラメータ(keyToUse)を含む。
masterCellGroup及びseconderyCellGroupは、それぞれMCG設定、SCG設定であり、セルグループ識別子、RLCベアラ設定、SpCell設定などを含む。RLCベアラ設定は、ロジカルチャネル識別子、RLC設定、RLCベアラが関連付く無線ベアラ識別子(SRB識別子又はDRB識別子)などを含む。SpCell設定は、同期付き再設定に必要な情報などを含む。
masterKeyUpdateは、マスター鍵更新に必要な情報を含む。
sk-counterは、セカンダリ鍵生成に必要な情報を含む。
フォーマットE11は、RRCReconfigurationに含まれるRadioBearerConfigのパラメータの例を示す図である。
フォーマットE12は、RRCReconfigurationに含まれるCellGroupConfigのパラメータの例を示す図である。
フォーマットE111は、RadioBearerConfigに含まれるSRB-ToAddModのパラメータの例を示す図である。
フォーマットE112は、RadioBearerConfigに含まれるDRB-ToAddModのパラメータの例を示す図である。
フォーマットE113は、RadioBearerConfigに含まれるSecurityConigのパラメータの例を示す図である。
フォーマットE121は、CellGroupConfigに含まれるRLC-BearerConfigのパラメータの例を示す図である。
フォーマットE122は、CellGroupConfigに含まれるSpCellConfigのパラメータの例を示す図である。
また、RRCメッセージは更に、RRC接続の再確立に関するメッセージ、RRC接続の解放, 一時停止に関するメッセージ、RRC接続再開に関するメッセージ、端末装置の能力に関するメッセージ、端末情報に関するメッセージ、MCGやSCGの無線リンク失敗に関するメッセージなどを含む。
なお、RRC接続の再設定に関するメッセージは、無線ベアラ、セルグループ、測定情報などの確立や設定、変更、解放や、同期付き再設定などを行う。
<無線ベアラ>
通信システム10の無線ベアラの例について説明する。
通信システム10の無線ベアラの例について説明する。
<1.シグナリング無線ベアラ>
シグナリング無線ベアラ(Signaling Radio Bearer: SRB)は、RRCメッセージやNASメッセージを送信するための無線ベアラである。
シグナリング無線ベアラ(Signaling Radio Bearer: SRB)は、RRCメッセージやNASメッセージを送信するための無線ベアラである。
SRB0は、CCCH(Common Control CHannel)ロジカルチャネルを使用するRRCメッセージのための無線ベアラである。
SRB1は、後述するSRB2が確立される前に、DCCH (Dedicated Control CHannel)ロジカルチャネルを使用するRRCメッセージおよびNASメッセージのための無線ベアラである。
SRB2は、履歴が記録された(logged)測定情報を含むNASメッセージ及びRRCメッセージのための無線ベアラであって、DCCH(Dedicated Control CHannel)ロジカルチャネルを使用する。SRB2の優先度は、SRB1より低く、ASセキュリティが活性化された後で、基地局装置200によって設定されても良い。
SRB3は、端末装置100にEN-DC又はNGEN-DC又はNR-DCが設定されている場合のRRCメッセージのための無線ベアラであって、DCCH(Dedicated Control CHannel)ロジカルチャネルを使用する。なお、EN-DCやNGEN-DC、NR-DCは、MR-DCの種類であって、MR-DCの種類の詳細については、後述する。
<2.データ無線ベアラ>
データ無線ベアラ(Data Radio Bearer: DRB)は、ユーザデータを送信するための無線ベアラである。
データ無線ベアラ(Data Radio Bearer: DRB)は、ユーザデータを送信するための無線ベアラである。
<SRB、DRBのプロトコル構成>
SRB1及びSRB2は、1つのPDCPと、1又は複数のRLCベアラで構成される。RLCベアラは、RLCとMACロジカルチャネルで構成される。MACは、以降で説明するセルグループごとに存在するものとする。RCLのモードは、AMである。
SRB1及びSRB2は、1つのPDCPと、1又は複数のRLCベアラで構成される。RLCベアラは、RLCとMACロジカルチャネルで構成される。MACは、以降で説明するセルグループごとに存在するものとする。RCLのモードは、AMである。
SRB3は、1つのPDCPと1つのRLCベアラで構成される。RLCのモードは、AMである。
DRBは、1つのPDCPと、1又は複数のRLCベアラで構成される。RLCのモードは、UM又はAMである。DBRは、RLCがUMである場合、UM DBRと呼び、 RLCがAMである場合、AM DRBと呼ぶ場合がある。また、DRBは、コアネットワーク300が5GC(5G対応のコア)である場合、1つのSDAPに関連付き(associate)、コアネットワーク300がEPCである場合、1つのEPSベアラ(又はEPSベアラ識別子(EPS bearer identity))に関連付く。
なお、5GCは、5G向けに規格化されたコアネットワークであって、例えば、3GPP規格書であるTS 23.501やTS 23.502などに記載されている。
また、EPCは、4G向けに規格化されたコアネットワークであって、例えば、3GPP規格書であるTS 23.401やTS 23.402などに記載されている。
<セルグループ>
セルグループ(CG:Cell Group)は、MR-DCにおけるセルの構成を示す。MR-DCにおいて、セルグループは、マスターセルグループ(MCG: Master Cell Group)とセカンダリセルグループ(SCG: Secondly Cell Group)に分類される。
セルグループ(CG:Cell Group)は、MR-DCにおけるセルの構成を示す。MR-DCにおいて、セルグループは、マスターセルグループ(MCG: Master Cell Group)とセカンダリセルグループ(SCG: Secondly Cell Group)に分類される。
図7は、通信システム10のセルグループの構成の例を示す図である。図6において、マスターノード(MN)は、基地局装置200-1であり、セカンダリノード(SN)は、基地局装置200-2である。 マスターノードは、MR-DCにおいて、コアネットワーク300にC-Planeコネクションを提供する基地局装置200である。セカンダリノードは、MR-DCにおいて、コアネットワーク300にC-Planeを提供せず、端末装置100に追加の無線リソースを提供する基地局装置200である。
CGは、1つのスペシャルセル(SpCell:Special Cell)、又は1つのSpCellと1以上のセカンダリセル(SCell:Secondly Cell)で構成される。
MCGにおけるSpCellは、プライマリセル(PCell:Primary Cell)と呼ばれる場合がある。また、SCGにおけるSpCellは、プライマリSCGセル(PSCell:Primary Scg Cell)と呼ばれる場合がある。
図7において、MCGは、1つのPCellと、2つのSCellで構成される。また、図7において、SCGは、1つのPSCellと、2つのSCellで構成される。
MCGは、例えば、MR-DCが構成されていないときのCG、又はMR-DCが構成されているときのマスターノードに属するCGである。
SCGは、MR-DCにおけるセカンダリノードに属するCGである。
PCellは、MCGにおいて、プライマリ周波数上で動作し(operating on the primary frequency)、端末装置100が初期コネクション確立手順(procedure)又はコネクション再確立手順などに用いられるセルである。コネクション確立・再確立手順は、ランダムアクセス手順を含む。
PSCellは、SCGにおいて、端末装置100が同期付き再設定(Reconfiguration With Sync)を実行するときのランダムアクセス手順などに用いられるセルである。
SCellは、キャリアアグリゲーションが設定される端末装置100に対して、SpCellに加え、追加の無線リソースを提供するセルである。
<MR-DCの種類>
MR-DCの種類について説明する。MR-DCは、マスターノード及びセカンダリノードの基地局装置200の種別(対応世代)や、コアネットワーク300の種別(対応世代)によって、4つの種類に分類される。
MR-DCの種類について説明する。MR-DCは、マスターノード及びセカンダリノードの基地局装置200の種別(対応世代)や、コアネットワーク300の種別(対応世代)によって、4つの種類に分類される。
図8は、MR-DCの種類の例を示す図である。以下、それぞれのMR-DCの種類について説明する。また、図8において、マスターノードを基地局装置200-1とし、セカンダリノードを基地局装置200-2とする。
図8Aは、EN-DCの例を示す図である。EN-DC(E-UTRA-NR DC)は、E-UTRAの基地局装置200であるeNBがマスターノード、NRの基地局装置200であるgNBがセカンダリノード、コアネットワーク300がEPCで構成されるMR-DCである。
図8Bは、NGEN-DCの例を示す図である。NGEN-DC(NG-RAN E-UTRA-NR DC)は、eNBがマスターノード、gNBがセカンダリノード、コアネットワーク300が5GCで構成されるMR-DCである。
図8Cは、NE-DCの例を示す図である。NE-DC(NR-E-UTRA DC)は、gNBがマスターノード、eNBがセカンダリノード、コアネットワーク300が5GCで構成されるMR-DCである。
図8Dは、NR-DCの例を示す図である。NR-DC(NR-NR DC)は、gNBがマスターノード、異なるgNBがセカンダリノード、コアネットワーク300が5GCで構成されるMR-DCである。
EN-DCやNGEN-DCは、(NG)EN-DCと呼ばれる場合がある。EN-DCのセカンダリノードを、en-gNBと呼ぶ場合がある。またNGEN-DCのマスターノードを、ng-eNBと呼ぶ場合がある。
なお、図8は、端末装置100と基地局装置200-1とのC-Palneのインタフェースとして、SRB1、SRB2が確立されている状態を想定している。スプリットSRB1、スプリットSRB2、又はSRB3が確立されている場合、セカンダリノードと端末装置100間で、C-Planeのメッセージの一部が送受信される場合がある。セカンダリノードで受信するC-Planeのメッセージの一部は、基地局間インタフェースを介して、マスターノードに送信される。また、セカンダリノードから送信されるC-Planeのメッセージの一部は、マスターノードから基地局間インタフェースを介してセカンダリノードに送信される。
<MR-DCのベアラタイプ>
MR-DCにおけるベアラタイプについて説明する。以下、マスターノードでPDCPが終端し、マスターノード側にPDCPを有する構成を、MN-terminatedと呼ぶ場合がある。また、セカンダリノードでPDCPが終端し、セカンダリノード側にPDCPを有する構成を、SN-terminatedと呼ぶ場合がある。ベアラタイプは、以下の6種類に分類される。
MR-DCにおけるベアラタイプについて説明する。以下、マスターノードでPDCPが終端し、マスターノード側にPDCPを有する構成を、MN-terminatedと呼ぶ場合がある。また、セカンダリノードでPDCPが終端し、セカンダリノード側にPDCPを有する構成を、SN-terminatedと呼ぶ場合がある。ベアラタイプは、以下の6種類に分類される。
1)MN-terminatedで、RLCベアラがMCG側に存在する、MCGベアラ。
2)MN-terminatedで、RLCベアラがMCG及びSCGの両方に存在する、Spilit(スプリット)ベアラ。
3)MN-terminatedで、RLCベアラがSCG側に存在する、SCGベアラ。
4)SN-terminatedで、RLCベアラがMCG側に存在する、MCGベアラ。
5)SN-terminatedで、RLCベアラがMCG及びSCGの両方に存在する、Spilitベアラ。
6)SN-terminatedで、RLCベアラがSCG側に存在する、SCGベアラ。
DRBは、上記6種類のうちの何れかのベアラタイプで構成される。
SRB1及びSRB2は、MN-terminatedのMCGベアラ、またはMN-terminatedのSpilitベアラで構成される。SRB1及びSRB2は、MN-terminatedのSpilitベアラで構成される場合、それぞれspilit SBR1及びspilitSBR2と呼ばれる場合がある。
SBR3は、SN-TerminatedのSCGベアラで構成される。
また、Spilitベアラの場合、Primary Pathが設定される。Primary Pathは、端末装置100が初期状態で(優先的に)データを送信する基地局装置200を示す。Primary Pathは、セルグループ(MCG、SCG)と、LCHで指定される。端末装置100は、アップリンクデータの送信データ量が閾値を超えない限り、Parimary Pathの基地局装置200にデータを送信する。端末装置100は、閾値を超えた場合、どちらの基地局装置200にデータを送信してもよい。
また、PDCPで使用されるセキュリティ鍵は、MN-Terminatedの場合(master鍵)と、SN-Teminatedの場合(secondary鍵)とで異なる。
<同期付き再設定(ハンドオーバ)>
同期付き再設定(ハンドオーバ)について説明する。同期付き再設定(Reconfiguration With Sync)は、基地局装置200が端末装置100に送信するRRC再設定メッセージ(RRCReconfiguration)に、同期付き再設定を行う旨のパラメータ (reconfigurationWithSync:以降、同期付き再設定パラメータと呼ぶ場合がある)を含める事により、端末装置100において実行される手順を示す。
同期付き再設定(ハンドオーバ)について説明する。同期付き再設定(Reconfiguration With Sync)は、基地局装置200が端末装置100に送信するRRC再設定メッセージ(RRCReconfiguration)に、同期付き再設定を行う旨のパラメータ (reconfigurationWithSync:以降、同期付き再設定パラメータと呼ぶ場合がある)を含める事により、端末装置100において実行される手順を示す。
図9は、同期付き再設定の例を示す図である。端末装置(UE)100は、現状のソースPCellを、ターゲットPCellに変更する(S1)。同期付き再設定パラメータは、MCG設定のためのパラメータ(以降、MCG設定パラメータと呼ぶ場合がある)の下、 SCG設定のためのパラメータ(以降、SCG設定パラメータと呼ぶ場合がある)の下に別々に含まれる。つまり、MCG設定パラメータの下に含まれている場合にはMCGの同期付き再設定を、SCG設定パラメータの下に含まれている場合にはSCGの同期付き再設定を意味する。
同期付き再設定は、端末装置100がPCellやPSCellを変更する手順であり、新しい(変更先の、ターゲットの)PCellやPSCellへのランダムアクセス、MACリセット、RLC re-establishment、PDCPデータリカバリ(AM DRBの場合)などの動作を含む。
また、同期付き再設定は、セキュリティ鍵の変更を伴う事がある。この場合、上記に加え、PDCP re-establishmentが行われる。
セキュリティ鍵の変更が行われる際、端末装置100のRRCで新しい鍵を生成し、PDCPをre-establishする事により、PDCPに新しい鍵が適用される。
<SDAPにおけるQos flow remapping>
端末装置100において、あるQoSフローが対応(map)しているDRBが変更されたとき、変更前のDRBに対してエンドマーカーコントロールPDUが送信される。
端末装置100において、あるQoSフローが対応(map)しているDRBが変更されたとき、変更前のDRBに対してエンドマーカーコントロールPDUが送信される。
QoSフローは、同じQoS要求を有するサービスデータフロー(SDF:Service Data Flow)であり、QoSフロー識別子(QFI)により識別される。SDFは、例えば、IPフロー、Ethernetフローなどであり、上位レイヤによって異なる。
図10は、エンドマーカーコントロールPDUが送信される例を示す図である。例えば、端末装置100において、QoSフロー1が対応づけられるDRBが、DRB1からDRB2に変更される(S2)。このとき、端末装置100は、変更を指示される前に滞留するQoSフロー1のデータを、変更前のDRB1で送信する。そして、端末装置100は、QoSフロー1のデータをDRB1で送信するのが最後であることを示すエンドマーカーコントロールPDU(エンドマーカーM1)をDRB1で送信する。これにより、基地局装置200は、以降QoSフロー1のデータが、変更前のDRB1で送信されないことを認識することができる。なお、QoSフローとDRBとの対応づけは、RRC再設定メッセージに含まれるパラメータによって行われる場合と、ダウンリンクSDAPデータPDUに含まれるヘッダ情報により行われる場合とがある。後者をリフレクティブマッピング(reflective mapping)と呼ぶ。
<RRC状態(モード)>
端末装置100のRRC状態は、端末装置100のRRC接続に関する状態を示す。基地局装置200とのRRC接続が確立されていない状態を、RRCアイドルモード (RRC_IDLE)と呼ぶ場合がある。基地局装置200とのRRC接続が確立されている状態を、RRC接続モード(RRC_CONNECTED)と呼ぶ場合がある。基地局装置200とのRRC接続が一時停止(サスペンド)されている状態を、RRC非活性モード(RRC_INACTIVE)と呼ぶ場合がある。
端末装置100のRRC状態は、端末装置100のRRC接続に関する状態を示す。基地局装置200とのRRC接続が確立されていない状態を、RRCアイドルモード (RRC_IDLE)と呼ぶ場合がある。基地局装置200とのRRC接続が確立されている状態を、RRC接続モード(RRC_CONNECTED)と呼ぶ場合がある。基地局装置200とのRRC接続が一時停止(サスペンド)されている状態を、RRC非活性モード(RRC_INACTIVE)と呼ぶ場合がある。
<SCG非活性>
(NG)EN-DC又はNR-DCにおいて、端末装置100に設定されているSCGを非活性(SCG deactivation)にする事により、セカンダリノードと端末装置100との通信を制限する場合がある。下、SCGが非活性状態にある事をSCG deactivation中(SCGディアクティベーション中)と呼ぶ場合がある。また、SCGが活性状態である事をSCG (re)activation中(SCG(リ)アクティベーション中)と呼ぶ場合がある。また、SCGを非活性状態にする事をSCG deactivation(SCGディアクティベーション)と呼ぶ場合がある。また非活性状態のSCGを活性状態にする事を、SCG (re)activation(SCG(リ)アクティベーション)と呼ぶ場合がある。
(NG)EN-DC又はNR-DCにおいて、端末装置100に設定されているSCGを非活性(SCG deactivation)にする事により、セカンダリノードと端末装置100との通信を制限する場合がある。下、SCGが非活性状態にある事をSCG deactivation中(SCGディアクティベーション中)と呼ぶ場合がある。また、SCGが活性状態である事をSCG (re)activation中(SCG(リ)アクティベーション中)と呼ぶ場合がある。また、SCGを非活性状態にする事をSCG deactivation(SCGディアクティベーション)と呼ぶ場合がある。また非活性状態のSCGを活性状態にする事を、SCG (re)activation(SCG(リ)アクティベーション)と呼ぶ場合がある。
さらに、以降、「リアクティベーション」及び「リアクティベート」ぞれぞれは、「アクティベーション」及び「アクティベート」を含むものとする。
SCGディアクティベーション中の端末装置100は、以下の条件の一部又は全てを含む条件を満たすものとする。
・SCGのRRCの再設定に関するメッセージ(例えば、RRC再設定メッセージ、RRCReconfiguration)を基地局装置200から受信した場合、このメッセージに従った処理を実行する
・SCG側に対するアップリンク送信を行わない
・SCG側に対するアップリンクデータを処理してもよい
・PSCellにおいて、PDCCHのモニタリング(受信)は行わない
・SCG側に対するPUSCHの送信は行わない
なお、SCGディアクティベーション中の端末装置100は、MCGを用いて基地局装置200とRRC接続モードの通信を行っても良い。
・SCG側に対するアップリンク送信を行わない
・SCG側に対するアップリンクデータを処理してもよい
・PSCellにおいて、PDCCHのモニタリング(受信)は行わない
・SCG側に対するPUSCHの送信は行わない
なお、SCGディアクティベーション中の端末装置100は、MCGを用いて基地局装置200とRRC接続モードの通信を行っても良い。
[第1の実施の形態]
第1の実施の形態について説明する。通信システム10は、端末装置100とセカンダリノード(基地局装置200)との通信において、SCG deactivation中からSCG (re)activation中への切り替え、又はSCG (re)activation中からSCG deactivation中への切り替えを、適切に制御する。適切な制御とは、例えば、省電力化を実現するために、不要な切り替えを行わないように制御したり、必要なタイミングまで切り替えタイミングを延期するよう制御したりすることである。
第1の実施の形態について説明する。通信システム10は、端末装置100とセカンダリノード(基地局装置200)との通信において、SCG deactivation中からSCG (re)activation中への切り替え、又はSCG (re)activation中からSCG deactivation中への切り替えを、適切に制御する。適切な制御とは、例えば、省電力化を実現するために、不要な切り替えを行わないように制御したり、必要なタイミングまで切り替えタイミングを延期するよう制御したりすることである。
<SCGディアクティベーションへの遷移処理>
図11は、SCGの状態が非活性に遷移するシーケンスの例を示す図である。基地局装置200は、例えば、MR-DCにおけるマスターノードである。図11におけるMR-DCは、例えば、(NG)EN-DCやNR-DCを含む。また、図11のシーケンス上、基地局装置200は1台であるが、マスターノードとセカンダリノードの複数台の構成であってもよい。また、図11のシーケンス上、基地局装置200と送受信するメッセージは、マスターノード及びセカンダリノードのいずれと送受信されてもよい。図11における基地局装置200が実行する処理をマスターノードが実行する場合、端末装置100からセカンダリノードに送信されたメッセージは、基地局間通信を介して、マスターノードに送信されるものとする。また、基地局装置200が実行する処理は、それぞれマスターノード及びセカンダリノードのいずれで実行されてもよい。なお、上述した条件を満たすため、端末装置100は、SCGディアクティベーション中に、セカンダリノードにメッセージを送信せず、さらに、セカンダリノードからのPDCCHの受信は行わないこととする。
図11は、SCGの状態が非活性に遷移するシーケンスの例を示す図である。基地局装置200は、例えば、MR-DCにおけるマスターノードである。図11におけるMR-DCは、例えば、(NG)EN-DCやNR-DCを含む。また、図11のシーケンス上、基地局装置200は1台であるが、マスターノードとセカンダリノードの複数台の構成であってもよい。また、図11のシーケンス上、基地局装置200と送受信するメッセージは、マスターノード及びセカンダリノードのいずれと送受信されてもよい。図11における基地局装置200が実行する処理をマスターノードが実行する場合、端末装置100からセカンダリノードに送信されたメッセージは、基地局間通信を介して、マスターノードに送信されるものとする。また、基地局装置200が実行する処理は、それぞれマスターノード及びセカンダリノードのいずれで実行されてもよい。なお、上述した条件を満たすため、端末装置100は、SCGディアクティベーション中に、セカンダリノードにメッセージを送信せず、さらに、セカンダリノードからのPDCCHの受信は行わないこととする。
図11のシーケンスにおいて、端末装置100は、SCGを設定し(S101)、SCG(リ)アクティベーション中である。SCGの設定は端末装置100が基地局装置200からSCG設定パラメータを含むRRC再設定メッセージを受信する事により行われる。SGC設定パラメータは、例えば、NR SGC設定パラメータを含む。
端末装置100は、端末情報通知を基地局装置200に送信する(S102)。端末情報通知は、例えば、RRCメッセージやRRCメッセージに含まれるパラメータである。また、端末情報通知は、例えば、RRCメッセージのUE assistance informationであってもよいし、他の名称のメッセージであってもよい。
端末情報通知は、例えば、端末装置100において省電力が必要か否かを示す情報を含む。端末装置100は、例えば、電池残量に応じて、省電力が必要か否かを判定する。
また、端末情報通知は、例えば、SCGディアクティベーション(又はSCGの解放)が必要か否かを示す情報を含む。端末装置100は、例えば、セカンダリノードとの通信量(データ通信量)に応じて、必要性を判定する。
また、端末情報通知は、SCGディアクティベーション中にSCGの同期付き再設定パラメータを受信した(SCGの同期付き再設定を実行するよう指示された)場合、直ちに実行する(実行したい)か否かを示す情報を含んでもよい。
さらに、端末情報通知は、例えば、ULデータが発生したときに、基地局装置200の許可なしに(以降で説明する処理S110のSCGリアクティベーション要求を送信することなしに)、SCGのリアクティベーションを実行する(実行したい)旨を示す情報を含んでもよい。これにより、SCGリアクティベーションにおける基地局装置200と端末装置100間のメッセージの一部を省略することができる。
基地局装置200は、端末情報通知を受信すると(S102)、SCGディアクティベーション判定処理を行う(S103)。なお、基地局装置200は、端末情報通知を受信したとき以外にも、SCGディアクティベーションが必要となる(あるいは必要となる可能性がある)イベントが発生したとき、SCGディアクティベーション判定処理S103を実行する。
SCGディアクティベーション判定処理S103は、端末装置100に対してSCGディアクティベーションを行うか否かを判定する処理である。基地局装置200は、SCGディアクティベーション判定処理S103において、例えば、端末装置100とセカンダリノードとの通信量に応じて判定する。基地局装置200は、例えば、所定期間においてセカンダリノードとの通信量が所定値以下である場合や、セカンダリノードとの通信が所定時間発生していない場合など、セカンダリノードとの通信量が少ないとき、SCGディアクティベーションを行うと判定する。
また、基地局装置200は、SCGディアクティベーション判定処理S103において、例えば、セカンダリノードの割り当て可能な無線リソース量に応じて判定する。基地局装置200は、例えば、セカンダリノードの空き無線リソース量が所定値以下であるとき、SCGディアクティベーションを行うと判定する。
基地局装置200は、SCGディアクティベーション判定処理S103において、SCGディアクティベーションを行うと判定したとき、SCGディアクティベーション指示を端末装置100に送信する(S104)。SCGディアクティベーション指示は、端末装置100にSCGディアクティベーションを実行するよう指示するメッセージである。SCGディアクティベーション指示は、例えば、RRCメッセージやRRCメッセージに含まれるパラメータである。また、SCGディアクティベーション指示は、例えば、RRCメッセージのSCG deactivation、又はRRCReconfigurationであってもよいし、他の名称のメッセージであってもよい。
SCGディアクティベーション指示は、例えば、端末装置100がSCGディアクティベーション中にSCGの同期付き再設定を行うよう指示されたとき、直ちにSCGの同期付き再設定の処理の全て又は一部を実行するか否かの情報を含む。全てを直ちに実行する旨の情報の場合、端末装置100は、直ちにSCGの同期付き再設定を実行する。また、一部又は全てを直ちに実行しない旨の場合、端末装置100は、後でSCGリアクティベーションを実行するときにSCGの同期付き再設定処理のうち処理を行っていない部分を実行する(同期付き再設定を保留する)、又は、SCGの同期付き再設定処理のうちの一部又は全てを実行しない(同期付き再設定の指示(パラメータ)のうちの一部又は全てを破棄する)。
また、SCGディアクティベーション指示は、例えば、端末装置100がSCGディアクティベーション中にSCGの同期付き再設定を行うよう指示されたとき、少なくとも第1条件に合致しない場合、直ちにSCGの同期付き再設定処理のうちの一部又は全てを実行するよう指示する旨の情報を含んでもよい。この場合、端末装置100は、少なくとも第1条件に合致しない場合、直ちにSCGの同期付き再設定を実行する。また、この場合、端末装置100は、少なくとも第1条件に合致する場合、後でSCGリアクティベーションを実行するときにSCGの同期付き再設定処理のうちの一部又は全てを実行する(SCGの同期付き再設定処理のうちの一部又は全てを保留する)、又は、SCGの同期付き再設定処理のうちの一部又は全てを実行しない(同期付き再設定の指示(パラメータ)のうちの一部又は全てを破棄する)。
第1条件は、例えば、以下の条件1~条件4の全て又は一部を含む条件を満たすことである。
条件1:SCGの同期付き再設定が、マスターノードのセキュリティ鍵(KgNB又はKeNB)の変更、又はマスターノードのセキュリティ鍵から生成されるASセキュリティ鍵の変更に伴うものである事
条件2:SCGの同期付き再設定が、セカンダリノードのセキュリティ鍵(S-KgNB 又は S-KeNB)の変更、又はセカンダリノードのセキュリティ鍵から生成されるASセキュリティ鍵の変更に伴うものであること
条件3:SCG RLCベアラが関連している無線ベアラに、マスター鍵を使う無線ベアラが存在しないこと
条件4:SCG RLCベアラが関連している無線ベアラは、全てセカンダリ鍵を使うこと
なお、マスター鍵を使う無線ベアラとは、マスター鍵を使うか、セカンダリ鍵を使うかを示すパラメータ(keyToUse)が、マスター(又はプライマリ)に設定されている無線ベアラの事であって良い。またセカンダリ鍵を使う無線ベアラとは、マスター鍵を使うか、セカンダリ鍵を使うかを示すパラメータ(keyToUse)が、セカンダリに設定されている無線ベアラの事であって良い。
条件2:SCGの同期付き再設定が、セカンダリノードのセキュリティ鍵(S-KgNB 又は S-KeNB)の変更、又はセカンダリノードのセキュリティ鍵から生成されるASセキュリティ鍵の変更に伴うものであること
条件3:SCG RLCベアラが関連している無線ベアラに、マスター鍵を使う無線ベアラが存在しないこと
条件4:SCG RLCベアラが関連している無線ベアラは、全てセカンダリ鍵を使うこと
なお、マスター鍵を使う無線ベアラとは、マスター鍵を使うか、セカンダリ鍵を使うかを示すパラメータ(keyToUse)が、マスター(又はプライマリ)に設定されている無線ベアラの事であって良い。またセカンダリ鍵を使う無線ベアラとは、マスター鍵を使うか、セカンダリ鍵を使うかを示すパラメータ(keyToUse)が、セカンダリに設定されている無線ベアラの事であって良い。
この第1条件を少なくとも満たす場合、端末装置100は、即時にSCGの同期付き再設定処理のうちの一部又は全てを実行しなくても、MR-DCにおける通信(特にマスターノードを使用した通信)の妨げとならない。これにより、端末装置100は、不要なSCGリアクティベーションを行わないため、消費電力を抑制することができる。
なお、SCGディアクティベーション指示は、例えば、端末装置100がSCGディアクティベーション中にSCGの同期付き再設定を行うよう指示されたとき、直ちにSCGの同期付き再設定を実行するよう指示する旨の情報を含んでもよい。この場合、端末装置100は、第1条件に関係なく、直ちにSCGの同期付き再設定を実行する。
また、SCGディアクティベーション指示は、例えば、ULデータが発生したとき、基地局装置200の許可なしに、SCGリアクティベーションを実行するよう指示する旨を示す情報を含んでもよい。この場合、端末装置100は、直ちにSCGリアクティベーションを実行する。
端末装置100は、SCGディアクティベーション指示を受信すると(S104)、SCGディアクティベーション処理を行う(S105)。SCGディアクティベーション処理S105は、SCGディアクティベーションに遷移する処理である。なお、端末装置100は、SCGディアクティベーション指示を受信する事により、SCGディアクティベーション処理S105を行う必要があると判断し、SCGディアクティベーション処理(S105)を行っても良い。また、端末装置100は、SCGディアクティベーション指示を受信しない事により、SCGディアクティベーション処理S105を行う必要は無いと判断し、SCGディアクティベーション処理(S105)を行わなくても良い。
端末装置100は、SCGディアクティベーション処理S105において、SCGに関して起動しているタイマーのうちの一部又は全てを停止する。また、端末装置100は、SCGに設定されているカウンターのうちの一部又は全てをリセットする。また、端末装置100は、SCGのMACをリセットする。さらに、端末装置100は、少なくとも第2条件を満たす、全部又は一部の無線ベアラに対し、第2処理を行う。第2条件は、例えば、SCGベアラであること、又はスプリットベアラであって、SCGにPrimary Pathが設定されていることである。
なお、停止するSCGに関して起動しているタイマーに、SCGの無線リンク失敗を検出するためのタイマーが含まれていても良い。また、停止するSCGに関して起動しているタイマーに、SCGのメジャメントレポートに関するタイマーが含まれていても良い。
また、リセットするSCGに設定されているカウンターに、SCGの無線リンク失敗を検出するためのカウンターが含まれていても良い。
また、「少なくとも第2条件を満たす、全部又は一部の無線ベアラに対し、第2処理を行う。」とは、端末装置100が各無線ベアラに対し、少なくとも第2条件を満たすか否かを判断し、少なくとも第2条件を満たすと判断した場合、この無線ベアラに対し、第2処理を行う事であっても良い。
また、「少なくとも第2条件を満たす、全部又は一部の無線ベアラに対し、第2処理を行う。」とは、端末装置100が各無線ベアラに対し、少なくとも第2条件を満たすか否かを判断し、少なくとも第2条件を満たすと判断した場合で、更にこの無線ベアラに対し、第2処理を行う事が必要と判断した場合、この無線ベアラに対し第2処理を行う事であっても良い。
第2条件の「SCGベアラであること」は、無線ベアラ(のPDCP)に、1以上のRLCを意味するパラメータ(moreThanOneRLC) や、Primary Pathを意味するパラメータ(primaryPath)の一方又は両方が設定されておらず、かつ無線ベアラのRLCベアラがSCGにあること、であっても良い。また、第2条件の「SCGベアラであること」は、無線ベアラのRLCベアラがSCGのみ存在すること、であっても良い。この「無線ベアラのRLCベアラ」は、無線ベアラに関連しているRLCベアラであっても良い。
また、第2条件の「スプリットベアラであってSCGにPrimary Pathが設定されていること」は、無線ベアラ(のPDCP)のPrimary Path(又はPrimary Pathを意味するパラメータ)がSCGに設定されていること(又はSCGをreferしていること)、であっても良い。
第2処理は、少なくとも第2条件を満たす、全部又は一部の無線ベアラについて実行される処理である。第2処理は、SCGディアクティベーションに遷移するときの処理及び事前処理の全部又は一部の処理である。第2処理は、例えば、以下の処理の全部又は一部を含む。以下、少なくとも第2条件を満たす、全部又は一部の無線ベアラを、第2無線ベアラと呼ぶ場合がある。
・第2無線ベアラのPDCPにおいて送信が完了していないデータを、直ちに(SCGがディアクティベートされるまでの間に)送信する、又は全て破棄する
・第2無線ベアラのPDCPにおいて、リオーダリングタイマーが作動していれば停止し、格納されているすべてのPDCP SDUをヘッダ解凍後に順番通りに上位レイヤに送信する
・第2無線ベアラのRLCを re-establishする
また、第2処理は、以下の手順で行われてもよいし、以下の手順を含んでもよい。
・第2無線ベアラのPDCPにおいて、リオーダリングタイマーが作動していれば停止し、格納されているすべてのPDCP SDUをヘッダ解凍後に順番通りに上位レイヤに送信する
・第2無線ベアラのRLCを re-establishする
また、第2処理は、以下の手順で行われてもよいし、以下の手順を含んでもよい。
なお、PDCPにおいて送信が完了していないデータを、直ちに送信する処理において、例えば、UM DRBの場合、シーケンス番号が付与されているが下位レイヤに引き渡していないPDCP SDUを、上位レイヤから受信したばかりのPDCP SDUとみなし、順番通りに送信する。この際、破棄タイマーをリスタートさせなくても良い。
また、PDCPにおいて送信が完了していないデータを、直ちに送信する処理において、例えば、AM DRBの場合、又はPDCPエンティティがサスペンドされていないAM DRBの場合、下位レイヤから送信成功が確認されていないPDCP SDU、及びシーケンス番号は付与されているが下位レイヤに引き渡していないPDCP SDUを、順番通りに送信する。
また、PDCPにおいて送信が完了していないデータを、直ちに送信する処理において、例えば、PDCPエンティティがサスペンドされている、Uuインタフェース(端末装置100と基地局装置200との間のインタフェース)に対するAM DRBの場合、下位レイヤから送信成功が確認されていないPDCP SDU、及びシーケンス番号は付与されているが下位レイヤに引き渡していないPDCP SDUを、上位レイヤから受信したばかりのPDCP SDUとみなし、順番通りに送信する。この際、破棄タイマーをリスタートさせなくても良い。
なお、破棄タイマーとは満了した際に、該当するPDCP SDUを破棄する事に使われるタイマーであって良い。
少なくとも第2条件を満たす、全部又は一部の無線ベアラに対し、第2処理を行う、端末内部の動作の例について説明する。
例えば、端末装置100のRRCは、SCGベアラ又はスプリットベアラである、全部又は一部の無線ベアラのPDCPに、第2通知を行う。PDCPは、下位レイヤ(lower layer(s))に置き換えられてもよい。第2通知を受信したPDCPは、SCGベアラである(関連しているRLCが1つの場合)、又はスプリットベアラ(関連しているRLCが2以上)であり、かつSCG側にPrimary pathが設定されている場合、第2処理を行う。
また例えば、端末装置100のRRCは、第2無線ベアラに、第2通知行う。PDCPは、下位レイヤ(lower layer(s))に置き換えられてもよい。第2通知を受信したPDCPは、第2処理を行う。
少なくとも第2条件を満たす、一部の無線ベアラとは、例えば少なくとも第2条件を満たすSRBであっても良いし、少なくとも第2条件を満たすDRBの事であっても良い。またこの限りではない。
第2通知は、例えば、PDCPのデータの破棄を指示する旨の情報を含む通知である。また、第2通知は、送信が完了していないデータを直ちに送信することを指示する旨の情報を含む通知であっても良い。
また、第2通知は、SCG deactivatedやCG UL transmission prohibited(suspended)など、SCGがディアクティベートされていることを示す情報を含んでもよい。
さらに、第2通知は、これらの情報の全て又は一部を含んでもよい。また、第2通知は、これらの情報の一部を含む、複数のメッセージであってもよい。
これにより、例えば、端末装置100がSCGの同期付き再設定の指示を受信しているにも関わらず、直ちに実行せずに遅れて実行する場合などに、SCGのPDCPが再確立(re-establishment)された場合においても、送信が成功していないULデータを送信することによるアップリンクの送信が発生することを抑制できる。端末装置100は、不要なSCGリアクティベーションを抑制することでき、消費電力を抑制できる。
また、端末装置100のRRCは、SCGディアクティベーション処理S105において、第2無線ベアラのうちDRBが関連するSDAPに、第2情報を送信する。
第2情報は、当該DRBのUL送信が禁止(又は停止)されていること、又は当該DRBが関連しているセルグループがディアクティベート中であることなど、当該DRBでUL送信ができない旨を示す情報である。
また、第2情報は、以下の情報の全て又は一部と共にSDAPに送信されても良い。また、第2情報は、以下の情報のうちの全て又は一部であってもよい。
・当該DRBのDRB識別子(DRB identity)
・当該DRBに関連付いている、QoSフロー識別子
なお、「第2無線ベアラのうちDRBが関連するSDAPに、第2情報を送信する。」とは、端末装置100が各DRBに対し、少なくとも第2条件を満たすか否かを判断し、少なくとも第2条件を満たすと判断した場合、このDRBが関連するSDAPに対し、第2情報を送信する事であっても良い。
・当該DRBに関連付いている、QoSフロー識別子
なお、「第2無線ベアラのうちDRBが関連するSDAPに、第2情報を送信する。」とは、端末装置100が各DRBに対し、少なくとも第2条件を満たすか否かを判断し、少なくとも第2条件を満たすと判断した場合、このDRBが関連するSDAPに対し、第2情報を送信する事であっても良い。
また、「第2無線ベアラのうちDRBが関連するSDAPに、第2情報を送信する。」とは、端末装置100が各DRBに対し、少なくとも第2条件を満たすか否かを判断し、少なくとも第2条件を満たすと判断した場合で、かつこのDRBが関連するSDAPに対し、第2情報を送信する事が必要であると判断した場合、このDRBが関連するSDAPに対し、第2情報を送信する事であっても良い。
なお、第2情報の送信処理は、少なくとも第2条件を満たすDRBがSDAPに関連している場合に(if SDAP entity associated with this DRB configured)、に実行されてもよい。端末装置100は各DRBに対し、SDAPに関連しているか否かを判断し、SDAPに関連していると判断した場合、このDRBが少なくとも第2条件を満たすか否かを判断して良い。また、端末装置100は、各DRBに対し、少なくとも第2条件を満たすか否かを判断し、少なくとも第2条件を満たすと判断した場合、このDRBがSDAPに関連しているか否かを判断して良い。
<SCGディアクティベーション中のRRC再設定メッセージ受信処理>
図12は、端末装置100がSCGディアクティベーション中に、RRC再設定メッセージを受信するシーケンスの例を示す図である。
図12は、端末装置100がSCGディアクティベーション中に、RRC再設定メッセージを受信するシーケンスの例を示す図である。
基地局装置200は、SCGディアクティベーション中に、端末装置100にRRC再設定メッセージ(第1メッセージ)を送信する(S106)。RRC再設定メッセージは、基地局装置200から端末装置100に送られる、RRC接続の再設定に関するRRCメッセージであり、無線ベアラ、セルグループ、測定情報などの確立や設定、変更、解放や、同期付き再設定などを行う。RRC再設定メッセージは、例えば、RRCメッセージのRRCReconfigurationであってもよいし、他の名称のメッセージであってもよい。
基地局装置200は、端末装置100の設定の変更(RRC接続モードにおける設定の変更)が必要であると判断した場合、RRC再設定メッセージを生成し、端末装置100に送信する。
基地局装置200は、例えば、MGCのハンドオーバが必要となったとき、端末装置100の設定の変更が必要となったと判断する。
また、基地局装置200は、例えば、セキュリティ鍵の変更が必要となったとき、端末装置100の設定の変更が必要となったと判断する。基地局装置200は、変更が必要となったセキュリティ鍵に関連する(当該セキュリティ鍵から生成された鍵を使用する)PDCPのre-establishが必要である場合、端末装置100の設定の変更が必要となったと判断する。
また、基地局装置200は、例えば、QoSflow to DRB mapping rule(QoSフローとDRBの対応関係(マップ)を示すルール)の変更が必要となった場合、端末装置100の設定の変更が必要となったと判断する。
RRC再設定メッセージは、例えば、以下の情報を含む。
・SCGの同期付き再設定を行うことを指示する旨を示す情報
・SCGの同期付き再設定を行うことを指示する旨を示す情報を含む場合、少なくとも第1条件に合致しない場合、直ちにSCGの同期付き再設定を実行するよう指示する旨の情報
・SCGの同期付き再設定を行うことを指示する旨を示す情報を含む場合、少なくとも第1条件に合致する場合、SCGリアクティベーション時に、SCGの同期付き再設定を実行するよう指示する旨の情報
・SCGの同期付き再設定を行うことを指示する旨を示す情報を含む場合、SCGディアクティベーション中であれば、直ちにSCGの同期付き再設定を実行するよう指示する旨の情報
・SCGの同期付き再設定を行うことを指示する旨を示す情報を含む場合、SCGリアクティベーション時に、SCGの同期付き再設定を実行するよう指示する旨の情報
なお、第1条件とは処理S103で記載の第1条件の事である。すなわち、第1条件は、例えば、以下の条件1~条件4の全て又は一部を含む条件満たすことである。
・SCGの同期付き再設定を行うことを指示する旨を示す情報を含む場合、少なくとも第1条件に合致しない場合、直ちにSCGの同期付き再設定を実行するよう指示する旨の情報
・SCGの同期付き再設定を行うことを指示する旨を示す情報を含む場合、少なくとも第1条件に合致する場合、SCGリアクティベーション時に、SCGの同期付き再設定を実行するよう指示する旨の情報
・SCGの同期付き再設定を行うことを指示する旨を示す情報を含む場合、SCGディアクティベーション中であれば、直ちにSCGの同期付き再設定を実行するよう指示する旨の情報
・SCGの同期付き再設定を行うことを指示する旨を示す情報を含む場合、SCGリアクティベーション時に、SCGの同期付き再設定を実行するよう指示する旨の情報
なお、第1条件とは処理S103で記載の第1条件の事である。すなわち、第1条件は、例えば、以下の条件1~条件4の全て又は一部を含む条件満たすことである。
条件1:SCGの同期付き再設定が、マスターノードのセキュリティ鍵(KgNB又はKeNB)の変更、又はマスターノードのセキュリティ鍵から生成されるASセキュリティ鍵の変更に伴うものである事
条件2:SCGの同期付き再設定が、セカンダリノードのセキュリティ鍵(S-KgNB 又は S-KeNB)の変更、又はセカンダリノードのセキュリティ鍵から生成されるASセキュリティ鍵の変更に伴うものであること
条件3:SCG RLCベアラが関連している無線ベアラに、マスター鍵を使う無線ベアラが存在しないこと
条件4:SCG RLCベアラが関連している無線ベアラは、全てセカンダリ鍵を使うこと
なお、マスター鍵を使う無線ベアラとは、マスター鍵を使うか、セカンダリ鍵を使うかを示すパラメータ(keyToUse)が、マスター(又はプライマリ)に設定されている無線ベアラの事であって良い。またセカンダリ鍵を使う無線ベアラとは、マスター鍵を使うか、セカンダリ鍵を使うかを示すパラメータ(keyToUse)が、セカンダリに設定されている無線ベアラの事であって良い。
条件2:SCGの同期付き再設定が、セカンダリノードのセキュリティ鍵(S-KgNB 又は S-KeNB)の変更、又はセカンダリノードのセキュリティ鍵から生成されるASセキュリティ鍵の変更に伴うものであること
条件3:SCG RLCベアラが関連している無線ベアラに、マスター鍵を使う無線ベアラが存在しないこと
条件4:SCG RLCベアラが関連している無線ベアラは、全てセカンダリ鍵を使うこと
なお、マスター鍵を使う無線ベアラとは、マスター鍵を使うか、セカンダリ鍵を使うかを示すパラメータ(keyToUse)が、マスター(又はプライマリ)に設定されている無線ベアラの事であって良い。またセカンダリ鍵を使う無線ベアラとは、マスター鍵を使うか、セカンダリ鍵を使うかを示すパラメータ(keyToUse)が、セカンダリに設定されている無線ベアラの事であって良い。
なお、基地局装置200は、端末装置100に、SCGの同期付き再設定を直ちに実行させたくないと判断した場合、RRC再設定メッセージにSCG設定を意味するパラメータ(例えば、seconderyCellGroupという名称)に、同期付き再設定パラメータを含めなくてもよい(SCGの同期付き再設定を要求しなくてもよい)。
また、基地局装置200は、端末装置100がSCGディアクティベーション中である場合、端末装置100へのRRC再設定メッセージにSCGの同期付き再設定パラメータを含める事はオプショナルである(必須ではない)と判断して良い。
例えば基地局装置200は、例えば、セカンダリノードのセキュリティ鍵の更新が必要だが、端末装置100がSCGディアクティベーション中であり、かつSCG側にMN terminatedの(マスター鍵に関連する)RLCベアラが存在しない場合、SCGの同期付き再設定パラメータを含めない。
また基地局装置200は、少なくとも第3条件を満たし、かつ端末装置100がSCGディアクティベーション中でない場合、端末装置100へのRRC再設定メッセージにSCGの同期付き再設定パラメータを含める事が必須であると判断し、SCGの同期付き再設定パラメータを必ず含めて良い。また基地局装置200は、少なくとも第3条件を満たす場合であっても、端末装置100がSCGディアクティベーション中である場合、端末装置100へのRRC再設定メッセージにSCGの同期付き再設定パラメータを含める事はオプショナルである(必須では無い)と判断し、SCGの同期付き再設定パラメータを含めなくて良い。
第3条件とは、例えば、NR-DCにおけるセカンダリノードのセキュリティ鍵(S-KgNB 又は S-KeNB)から生成されるASセキュリティ鍵の変更であり、セカンダリ鍵を使う1以上の無線ベアラが端末装置100に設定され、当該無線ベアラがRRC再設定要求を受信することに伴う処理を行っても解放されない事、であって良い。
また第3条件とは例えば、例えば基地局装置200は、(NG)EN-DCにおけるMNハンドオーバである事、であって良い。
また第3条件とは例えば、例えば基地局装置200は、SCGリアクティベーションを行う場合であって良い。
また、基地局装置200は、端末装置100へのRRC再設定メッセージに、マスターノードのセキュリティ鍵(KgNB 又は KeNB)から生成されるASセキュリティ鍵の変更を含める場合で、かつSCGの同期付き再設定パラメータを含めない場合、端末装置100がSCGディアクティベーション中で無い場合には、マスター鍵を使う無線ベアラに関連している全ての既存のSCG RLCベアラを解放すると判断し、マスター鍵を使う無線ベアラに関連している全ての既存のSCG RLCベアラを解放すると判断しても良い。
また、基地局装置200は、端末装置100へのRRC再設定メッセージに、マスターノードのセキュリティ鍵(KgNB 又は KeNB)から生成されるASセキュリティ鍵の変更を含める場合で、かつSCGの同期付き再設定パラメータを含めない場合、端末装置100がSCGディアクティベーション中である場合には、マスター鍵を使う無線ベアラに関連している全ての既存のSCG RLCベアラを解放しなくても良い判断し、マスター鍵を使う無線ベアラに関連している全ての既存のSCG RLCベアラを解放しなくても良いと判断しても良い。
また、基地局装置200は、SCGの同期付き再設定を行うことを指示する旨を示すパラメータと、SCGディアクティベーションを行うことを指示する旨を示すパラメータを、RRC再設定メッセージに含めてもよい。
なお、SCGの同期付き再設定パラメータを含めるとは、SCG設定パラメータに同期付き再設定パラメータを含める事であって良い。またマスター鍵を使う無線ベアラとは、マスター鍵を使うか、セカンダリ鍵を使うかを示すパラメータ(keyToUse)が、マスター(又はプライマリ)に設定されている無線ベアラの事であって良い。またセカンダリ鍵を使う無線ベアラとは、マスター鍵を使うか、セカンダリ鍵を使うかを示すパラメータ(keyToUse)が、セカンダリに設定されている無線ベアラの事であって良い。
端末装置100は、RRC再設定メッセージを受信すると(S106)、SCGディアクティベーション中RRC再設定メッセージ受信処理を行う(S107)。端末装置100は、SCGディアクティベーション中RRC再設定メッセージ受信処理S107において、RRC再設定メッセージに含まれる情報(パラメータ)に従った処理を実行する。
RRC再設定メッセージには、例えば、以下のパラメータが含まれる。
・同期付き再設定パラメータ(同期付き再設定の実行を指示する旨を示す)
・PDCP再確立を指示するパラメータ(PDCPの再確立の実行を指示する旨を示す)
・QoS flow to DRB mapping ruleの設定を意味するパラメータ(QoSflow to DRB mapping ruleの再設定の実行を指示する旨を示す)
以下、各パラメータが含まれる場合の処理について説明する。
・PDCP再確立を指示するパラメータ(PDCPの再確立の実行を指示する旨を示す)
・QoS flow to DRB mapping ruleの設定を意味するパラメータ(QoSflow to DRB mapping ruleの再設定の実行を指示する旨を示す)
以下、各パラメータが含まれる場合の処理について説明する。
<1.同期付き再設定パラメータを含む場合>
端末装置100は、受信したRRC再設定メッセージが、同期付き再設定パラメータを含む場合、所定条件を満たすと、SCG側無線ベアラがサスペンドされている場合、サスペンドされているSCG側無線ベアラのUL通信を再開する。所定条件は、例えば、SCGディアクティベーション中でないことである。なお、「所定条件を満たすと」とは、「所定条件を満たすか否かを判断し、満たす場合には」と言いかえても良い。また、所定条件は、例えば、以下の条件1~3のいずれかであってもよい。
端末装置100は、受信したRRC再設定メッセージが、同期付き再設定パラメータを含む場合、所定条件を満たすと、SCG側無線ベアラがサスペンドされている場合、サスペンドされているSCG側無線ベアラのUL通信を再開する。所定条件は、例えば、SCGディアクティベーション中でないことである。なお、「所定条件を満たすと」とは、「所定条件を満たすか否かを判断し、満たす場合には」と言いかえても良い。また、所定条件は、例えば、以下の条件1~3のいずれかであってもよい。
(条件1)以下の条件の全部又は一部を含む条件を満たすこと
・CellGroupConfigの手順(プロシージャー)が、MCG設定パラメータによって開始(initiate)され、かつSCGディアクティベーション中でないこと
・当該プロセスがSCG設定パラメータによって開始されたこと
(条件2)以下の条件の全部又は一部を含む条件を満たすこと
・CellGroupConfigの手順(プロシージャー)が、MCG設定パラメータによって開始(initiate)され、かつSCGディアクティベーション中でないこと
・当該手順がSCG設定パラメータによって開始され、SCGディアクティベーション中であり、かつSCGの同期付き再設定を直ちに行う事を意味するパラメータが含まれている(又はSCGの同期付き再設定を直ちに行わない事を意味するパラメータが含まれていない)こと
・当該手順がSCG設定パラメータによって開始され、SCGディアクティベーション中でないこと
(条件3)以下の条件の全部又は一部を含む条件を満たすこと
・SCGディアクティベーション中でないこと
・SCGディアクティベーション中で、かつSCGの同期付き再設定を直ちに行う事を意味するパラメータが含まれている(又はSCGの同期付き再設定を直ちに行わない事を意味するパラメータが含まれていない)こと
なお、端末装置100は、SCGディアクティベーション中である場合、SCG側無線ベアラはサスペンドされている状態ではなく、別の状態である(例えばSCGがディアクティベートされている状態である、アップリンク送信が禁止されている状態である、など)と判断しても良い。端末装置100は、同期付き再設定パラメータを含む場合、SCGディアクティベーション中である無しに関わらず、サスペンドされているSCG側無線ベアラのUL通信を再開して良い。
・CellGroupConfigの手順(プロシージャー)が、MCG設定パラメータによって開始(initiate)され、かつSCGディアクティベーション中でないこと
・当該プロセスがSCG設定パラメータによって開始されたこと
(条件2)以下の条件の全部又は一部を含む条件を満たすこと
・CellGroupConfigの手順(プロシージャー)が、MCG設定パラメータによって開始(initiate)され、かつSCGディアクティベーション中でないこと
・当該手順がSCG設定パラメータによって開始され、SCGディアクティベーション中であり、かつSCGの同期付き再設定を直ちに行う事を意味するパラメータが含まれている(又はSCGの同期付き再設定を直ちに行わない事を意味するパラメータが含まれていない)こと
・当該手順がSCG設定パラメータによって開始され、SCGディアクティベーション中でないこと
(条件3)以下の条件の全部又は一部を含む条件を満たすこと
・SCGディアクティベーション中でないこと
・SCGディアクティベーション中で、かつSCGの同期付き再設定を直ちに行う事を意味するパラメータが含まれている(又はSCGの同期付き再設定を直ちに行わない事を意味するパラメータが含まれていない)こと
なお、端末装置100は、SCGディアクティベーション中である場合、SCG側無線ベアラはサスペンドされている状態ではなく、別の状態である(例えばSCGがディアクティベートされている状態である、アップリンク送信が禁止されている状態である、など)と判断しても良い。端末装置100は、同期付き再設定パラメータを含む場合、SCGディアクティベーション中である無しに関わらず、サスペンドされているSCG側無線ベアラのUL通信を再開して良い。
また、端末装置100は、受信したRRC再設定メッセージが、SCGの同期付き再設定パラメータを含む場合、以下の処理を行ってもよい。
・端末装置100は、SCGの同期付き再設定処理を直ちに実行してもよい
また、端末装置100は、SCGの同期付き再設定の処理のうち、一部又は全ての処理を直ちには実行せず、直ちに実行しない処理についてはSCGリアクティベーションの際に実行する。直ちに実行する処理は、例えばSCG側での、MACリセット、新たな端末装置100の識別子を当該Cell GroupeのC-RNTIとして適用(apply)、などがある。また、SCGリアクティベーションの際に実行する処理は、例えばSCG側での、ランダムアクセス処理(受信した 共通SpCell設定を意味するパラメータ(SpCellConfigCommon)に従って下位レイヤを設定する処理を含んで良い)、同期付き再設定失敗を検出するためのタイマーの開始などがある。
また、端末装置100は、SCGの同期付き再設定の処理のうち、一部又は全ての処理を直ちには実行せず、直ちに実行しない処理についてはSCGリアクティベーションの際に実行する。直ちに実行する処理は、例えばSCG側での、MACリセット、新たな端末装置100の識別子を当該Cell GroupeのC-RNTIとして適用(apply)、などがある。また、SCGリアクティベーションの際に実行する処理は、例えばSCG側での、ランダムアクセス処理(受信した 共通SpCell設定を意味するパラメータ(SpCellConfigCommon)に従って下位レイヤを設定する処理を含んで良い)、同期付き再設定失敗を検出するためのタイマーの開始などがある。
なお、端末装置100は、SCGの同期付き再設定の処理を直ちに行うか否かを、処理S104におけるSCGディアクティベーション指示や、処理S106のRRC再設定メッセージに含まれるパラメータ(SCGの同期付き再設定を直ちに実行するかどうかを示すパラメータ)によって判断しても良い。例えば、端末装置100は、少なくとも第1条件に該当しない場合は直ちに実行し、該当する場合はSCGリアクティベーションの際に実行してもよい。さらに、端末装置100は、上述した処理を実行したのち、再度SCGディアクティベーション中に戻ってもよい。
なお、第1条件とは処理S103で記載の第1条件の事である。すなわち、第1条件は、例えば、以下の条件1~条件4の全て又は一部を含む条件を満たすことである。
条件1:SCGの同期付き再設定が、マスターノードのセキュリティ鍵(KgNB又はKeNB)の変更、又はマスターノードのセキュリティ鍵から生成されるASセキュリティ鍵の変更に伴うものである事
条件2:SCGの同期付き再設定が、セカンダリノードのセキュリティ鍵(S-KgNB 又は S-KeNB)の変更、又はセカンダリノードのセキュリティ鍵から生成されるASセキュリティ鍵の変更に伴うものであること
条件3:SCG RLCベアラが関連している無線ベアラに、マスター鍵を使う無線ベアラが存在しないこと
条件4:SCG RLCベアラが関連している無線ベアラは、全てセカンダリ鍵を使うこと
なお、マスター鍵を使う無線ベアラとは、マスター鍵を使うか、セカンダリ鍵を使うかを示すパラメータ(keyToUse)が、マスター(又はプライマリ)に設定されている無線ベアラの事であって良い。またセカンダリ鍵を使う無線ベアラとは、マスター鍵を使うか、セカンダリ鍵を使うかを示すパラメータ(keyToUse)が、セカンダリに設定されている無線ベアラの事であって良い。
条件2:SCGの同期付き再設定が、セカンダリノードのセキュリティ鍵(S-KgNB 又は S-KeNB)の変更、又はセカンダリノードのセキュリティ鍵から生成されるASセキュリティ鍵の変更に伴うものであること
条件3:SCG RLCベアラが関連している無線ベアラに、マスター鍵を使う無線ベアラが存在しないこと
条件4:SCG RLCベアラが関連している無線ベアラは、全てセカンダリ鍵を使うこと
なお、マスター鍵を使う無線ベアラとは、マスター鍵を使うか、セカンダリ鍵を使うかを示すパラメータ(keyToUse)が、マスター(又はプライマリ)に設定されている無線ベアラの事であって良い。またセカンダリ鍵を使う無線ベアラとは、マスター鍵を使うか、セカンダリ鍵を使うかを示すパラメータ(keyToUse)が、セカンダリに設定されている無線ベアラの事であって良い。
<2.PDCP再確立を指示するパラメータを含む場合>
端末装置100は、受信したRRC再設定メッセージが、PDCP再確立を指示するパラメータを含む場合、例えば、PDCP再確立を直ちに行う。この場合、端末装置100は、少なくとも第2条件を満たす、全て又は一部の無線ベアラのPDCPにおいて、送信が完了していないデータがあれば、SCGがリアクティベーションされたのちに、当該データを送信してもよい。
端末装置100は、受信したRRC再設定メッセージが、PDCP再確立を指示するパラメータを含む場合、例えば、PDCP再確立を直ちに行う。この場合、端末装置100は、少なくとも第2条件を満たす、全て又は一部の無線ベアラのPDCPにおいて、送信が完了していないデータがあれば、SCGがリアクティベーションされたのちに、当該データを送信してもよい。
また、端末装置100は、少なくとも第2条件を満たす、全て又は一部の無線ベアラのPDCP再確立を、SCGがリアクティベーションされたのちに行ってもよい。この場合、PDCP再確立を、SCGリアクティベーション後に行うPDCPは、上位レイヤからPDCP SDUを受信しても、当該PDCP SDUに対応する処理を行わない。
なお、第2条件とは処理105における第2条件、すなわちSCGベアラであること、又はスプリットベアラであって、SCGにPrimary Pathが設定されていること、であって良い。
なお、端末装置100は、PDCPにおいて送信が完了していないデータを送信する処理において、例えば、UM DRBの場合、シーケンス番号が付与されているが下位レイヤに引き渡していないPDCP SDUを、上位レイヤから受信したばかりのPDCP SDUとみなし、順番通りに送信する。この際、破棄タイマーをリスタートさせなくても良い。
また、端末装置100は、PDCPにおいて送信が完了していないデータを送信する処理において、例えば、AM DRBの場合、又はPDCPエンティティがサスペンドされていないAM DRBの場合、下位レイヤから送信成功が確認されていないPDCP SDU、及びシーケンス番号は付与されているが下位レイヤに引き渡していないPDCP SDUを、順番通りに送信する。
また、端末装置100は、PDCPにおいて送信が完了していないデータを送信する処理において、例えば、PDCPエンティティがサスペンドされている、Uuインタフェース(端末装置100と基地局装置200との間のインタフェース)に対するAM DRBの場合、下位レイヤから送信成功が確認されていないPDCP SDU、及びシーケンス番号は付与されているが下位レイヤに引き渡していないPDCP SDUを、上位レイヤから受信したばかりのPDCP SDUとみなし、順番通りに送信する。この際、破棄タイマーをリスタートさせなくても良い。
なお、破棄タイマーとは満了した際に、該当するPDCP SDUを破棄する事に使われるタイマーであって良い。
基地局装置200は、処理S106のRRC再設定メッセージに、少なくとも第2条件を満たす、全て又は一部の無線ベアラのPDCPに対する再確立処理を直ちに行うこと(又はSCGがリアクティベーションされた後に行うこと)を示すパラメータを含んでも良い。端末装置100は、少なくとも第2条件を満たす、全て又は一部の無線ベアラのPDCPに対する再確立処理を直ちに行うか、SCGがリアクティベーションされた後に行うかを、当該パラメータから判断してもよい。
<3.QoS flow to DRB mapping ruleの設定を意味するパラメータを含む場合>
端末装置100は、受信したRRC再設定メッセージが、QoS flow to DRB mapping ruleの設定を意味するパラメータ(mappedQoS-FlowToAdd)を含む場合、以下の処理を行う。QoS flow to DRB mapping ruleは、例えば、QoSフローとDRBの対応関係を示す。
端末装置100は、受信したRRC再設定メッセージが、QoS flow to DRB mapping ruleの設定を意味するパラメータ(mappedQoS-FlowToAdd)を含む場合、以下の処理を行う。QoS flow to DRB mapping ruleは、例えば、QoSフローとDRBの対応関係を示す。
端末装置100は、例えば、所定条件を満たす場合、エンドマーカー処理を行う。エンドマーカー処理とは、エンドマーカーコントロールPDUを構築し、変更前のDRBにマップし、下位レイヤに送信する処理である。なお、「所定条件を満たす場合」とは、「所定条件を満たすか否かを判断し、満たす場合には」と言いかえても良い。
例えば、受信したRRC再設定メッセージに含まれるmappedQoS-FlowToAddが、第1のQoSフローに対するパラメータであるとする。
端末装置100は、以下の条件1から条件3の全て又は一部を含む条件を満たす場合、第1のQoSフローに対して格納されているQoS flow to DRB mapping ruleのDRB(すなわち、すでに格納されている、第1のQoSフローに対応しているDRB)が、処理S105において端末装置100のRRCから受信した第2情報に該当しないDRBであるとき、エンドマーカー処理を行う。また、端末装置100は、以下の条件1~条件3の全て又は一部を含む条件を満たす場合であっても、第1のQoSフローに対して格納されているQoS flow to DRB mapping ruleのDRBが、処理S105において端末装置100のRRCから受信した第2情報に該当するDRBであるとき、エンドマーカー処理を行わない。
(条件1)処理S105において、少なくとも第2条件を満たすデータ無線ベアラが関連しているSDAPに第2情報が通知されていること
(条件2)第1のQoSフローに対して、格納されているQoS flow to DRB mapping ruleが、(受信したRRC再設定メッセージに含まれるmappedQoS-FlowToAddにより)設定されたQoS flow to DRB mapping ruleと異なること。言い換えると、第1のQoSフローに対し、新たに受信したQoS flow to DRB mapping ruleで対応づけられるDRBが、格納されている(すでに受信済みである)QoS flow to DRB mapping ruleで対応づけられているDRBより変更されていること
(条件3)格納されているQoS flow to DRB mapping ruleのDRBにアップリンクSDAPヘッダが設定されていること
また、端末装置100は、SDAPエンティティがすでに確立されていて、かつ第1のQoSフローに対するQoS flow to DRB mapping ruleが存在せず(格納されておらず)、デフォルトDRBが設定されている場合、以下の処理の全てまたは一部を行って良い。
(条件2)第1のQoSフローに対して、格納されているQoS flow to DRB mapping ruleが、(受信したRRC再設定メッセージに含まれるmappedQoS-FlowToAddにより)設定されたQoS flow to DRB mapping ruleと異なること。言い換えると、第1のQoSフローに対し、新たに受信したQoS flow to DRB mapping ruleで対応づけられるDRBが、格納されている(すでに受信済みである)QoS flow to DRB mapping ruleで対応づけられているDRBより変更されていること
(条件3)格納されているQoS flow to DRB mapping ruleのDRBにアップリンクSDAPヘッダが設定されていること
また、端末装置100は、SDAPエンティティがすでに確立されていて、かつ第1のQoSフローに対するQoS flow to DRB mapping ruleが存在せず(格納されておらず)、デフォルトDRBが設定されている場合、以下の処理の全てまたは一部を行って良い。
(処理1)デフォルトDRBが、処理S105において端末装置100のRRCから受信した第2情報に該当しないDRBである場合、エンドマーカーコントロールPDUを構築し、デフォルトDRBにマップし、下位レイヤに送信する
(処理2)デフォルトDRBが、処理S105において端末装置100のRRCから受信した第2情報に該当するDRBである場合、エンドマーカーコントロールPDUの構築、構築したエンドマーカーコントロールPDUのデフォルトDRBへのマップ、下位レイヤへの送信、の全て又は一部を行わない
なお、QoS flow to DRB mapping ruleとは、アップリンクに対するQoS flow to DRB mapping rule(UL QoS flow to DRB mapping rule)であって良い。
(処理2)デフォルトDRBが、処理S105において端末装置100のRRCから受信した第2情報に該当するDRBである場合、エンドマーカーコントロールPDUの構築、構築したエンドマーカーコントロールPDUのデフォルトDRBへのマップ、下位レイヤへの送信、の全て又は一部を行わない
なお、QoS flow to DRB mapping ruleとは、アップリンクに対するQoS flow to DRB mapping rule(UL QoS flow to DRB mapping rule)であって良い。
また、端末装置100は、処理S105において、端末装置100のRRCからPDCPへ第2通知が行われている場合(PDCPが、少なくとも第2条件を満たす無線ベアラのPDCPであることを認識している場合)エンドマーカーコントロールPDU(SDAP Control PDU)を作成し、PDCPへ送信する。端末装置100のPDCPは、SDAP Control PDUを受け取ったら、受け取ったSDAP Control PDUを破棄する。または、端末装置100のPDCPは、スプリットベアラであり、Primary pathがSCGにある場合、SDAP Control PDUを破棄しても良い。
なお、基地局装置200の実装によって、端末装置100がSCGディアクティベーション中に、SCGに対してエンドマーカーコントロールPDUを送信する事の無いようにしても良い。例えば、基地局装置200は、端末装置100がSCGディアクティベーション中に、端末装置100に送信するRRC再設定メッセージにmappedQoS-FlowToAddを含めない。また例えば、基地局装置200は、端末装置100がSCGディアクティベーション中に、端末装置100に送信するRRC再設定メッセージにmappedQoS-FlowToAddを含める場合、端末装置100がエンドマーカーコントロールPDUをSCG側に送信しないよう設定を行う。
また、端末装置100は、基地局装置200から受信したRRC再設定メッセージに従った処理をする事ができないと判断した場合、基地局装置200に対し、RRC接続の再確立手順、又はSCGの無線リンク失敗に関する手順を起動しても良い。例えば端末装置100は、基地局装置200から受信したRRC再設定メッセージが、同期付き再設定パラメータを必須で含む条件に該当するにも関わらず、同期付き再設定パラメータを含んでいない場合、受信したRRC再設定メッセージに従った処理をする事ができないと判断する。また、例えば端末装置100は、SCGディアクティベーション中であるにも関わらず、基地局装置200から受信したRRC再設定メッセージによって、SCGに対するエンドマーカー送信が発生する場合、受信したRRC再設定メッセージに従った処理をする事ができないと判断する。
<SCGディアクティベーション中のULデータ到着>
図13は、SCGディアクティベーション中のULデータ到着のシーケンスの例を示す図である。端末装置100は、SCGディアクティベーション中に、ULデータが到着する(S108)。ULデータの到着は、基地局装置200に送信するデータ発生したことを示し、例えば、PDCP SDUがPDCPに到着する(送信される)ことであっても良いし、SCG側でMAC SDUがMACに到着する(送信される)ことであってもよい。
図13は、SCGディアクティベーション中のULデータ到着のシーケンスの例を示す図である。端末装置100は、SCGディアクティベーション中に、ULデータが到着する(S108)。ULデータの到着は、基地局装置200に送信するデータ発生したことを示し、例えば、PDCP SDUがPDCPに到着する(送信される)ことであっても良いし、SCG側でMAC SDUがMACに到着する(送信される)ことであってもよい。
端末装置100は、ULデータが到着すると(S108)、SCGディアクティベーション中ULデータ送信処理を行う(S109)。SCGディアクティベーション中ULデータ送信処理S109は、ULデータをマスターノード又はセカンダリノードのいずれに送信するか、直ちに送信するか否かなどを判断し、ULデータを適切なタイミングで送信する処理である。以下、SCGディアクティベーション中ULデータ送信処理S109について、PDCP SDUがPDCPに到着した場合と、SCG側でMAC SDUがMACに到着した場合とに分けて説明する。
<1.PDCP SDUがPDCPに到着した場合>
端末装置100は、例えば、処理S105において、端末装置100のRRCからPDCPへ第2通知が行われている場合(PDCPが、少なくとも第2条件を満たす無線ベアラであることを認識している場合)、PDCP SDUが到着した事を検出した端末装置100のPDCPは、端末装置100のRRCに対して、ULデータが発生したことを通知する。ここで、端末装置100は、スプリットベアラでSCGにPrimary pathがある場合、上位レイヤからPDCP SDUを受け取った際に端末装置100のRRCに通知しても良い。一方、端末装置100は、スプリットベアラでMCGにPrimary pathがある場合、送信データ量が閾値を超えた、あるいは超えそうな場合に、端末装置100のRRCに通知しても良い。
端末装置100は、例えば、処理S105において、端末装置100のRRCからPDCPへ第2通知が行われている場合(PDCPが、少なくとも第2条件を満たす無線ベアラであることを認識している場合)、PDCP SDUが到着した事を検出した端末装置100のPDCPは、端末装置100のRRCに対して、ULデータが発生したことを通知する。ここで、端末装置100は、スプリットベアラでSCGにPrimary pathがある場合、上位レイヤからPDCP SDUを受け取った際に端末装置100のRRCに通知しても良い。一方、端末装置100は、スプリットベアラでMCGにPrimary pathがある場合、送信データ量が閾値を超えた、あるいは超えそうな場合に、端末装置100のRRCに通知しても良い。
端末装置100のPDCPから、ULデータが発生したことの通知を受け取った端末装置100のRRCは、SCGリアクティベーション要求を基地局装置200に送信する(S110)。SCGリアクティベーション要求は、SCGリアクティベーションを行うことを要求するメッセージ、又はSCGリアクティベーションを行うことを要求するパラメータを含むメッセージであって良い。
また、SCGリアクティベーション要求は、例えば、RRCメッセージである。また、SCGリアクティベーション要求は、例えば、RRCメッセージのSCG reactivation requestであってもよいし、他の名称のメッセージであってもよい。
<2.SCG側でMAC SDUがMACに到着した場合>
端末装置100のRRCの処理は、上述したPDCP SDUがPDCPに到着した場合と同様である。端末装置100のMACはMAC SDUの到着を検出した場合、端末装置100のRRCに対し、ULデータが発生したことを通知する。また、端末装置100のMACは、SCGリアクティベーションを行い、ULデータを送信するための準備(例えば、セカンダリノードに対してランダムアクセス手順の実行など)を行ってもよい。端末装置100は、例えば、処理S107などで、即時実行しなかったSCGの同期付き再設定があれば、先行してSCGの同期付き再設定を行っても良い。また、端末装置100のMACは、基地局装置200からSCGリアクティベーション指示を受信した後で、SCGリアクティベーションに関する全ての処理を行っても良い。
端末装置100のRRCの処理は、上述したPDCP SDUがPDCPに到着した場合と同様である。端末装置100のMACはMAC SDUの到着を検出した場合、端末装置100のRRCに対し、ULデータが発生したことを通知する。また、端末装置100のMACは、SCGリアクティベーションを行い、ULデータを送信するための準備(例えば、セカンダリノードに対してランダムアクセス手順の実行など)を行ってもよい。端末装置100は、例えば、処理S107などで、即時実行しなかったSCGの同期付き再設定があれば、先行してSCGの同期付き再設定を行っても良い。また、端末装置100のMACは、基地局装置200からSCGリアクティベーション指示を受信した後で、SCGリアクティベーションに関する全ての処理を行っても良い。
また、端末装置100のMACは、端末装置100のRRCに対し、ULデータが発生したことを通知する事無しに、SCGリアクティベーションを行い、ULデータの送信を開始してもよい。端末装置100は、ULデータの送信を開始する前に、例えば、処理S107などで、即時実行しなかったSCG同期付き再設定があれば、SCGの同期付き再設定を行っても良い。
端末装置100は、例えば、処理S104にて受信した、SCGディアクティベーション指示に、SCGディアクティベーション中にULデータが発生した場合の処理に対する指示(例えば、SCGリアクティベーション要求の送信なしに、SCGリアクティベーションを実行してよいか否か)が含まれている場合、この指示に従ってもよい。
基地局装置200は、端末装置100のSCGリアクティベーションが必要か否かを判断する。基地局装置200は、例えば以下の条件1~条件3の一部又は全てを含む条件に該当する場合、端末装置100のSCGリアクティベーションが必要と判断する。
(条件1)端末装置100からSCGリアクティベーション要求を受信した
(条件2)端末装置100にSCGを介して送信するDLデータが発生している
(条件3)セカンダリノードの無線リソース残量が十分(閾値以上)である
なお、基地局装置200は、端末装置100がSCGのディアクティベーション中であれば、いつでも端末装置100のSCGリアクティベーションが必要か否かを判断して良い。
(条件2)端末装置100にSCGを介して送信するDLデータが発生している
(条件3)セカンダリノードの無線リソース残量が十分(閾値以上)である
なお、基地局装置200は、端末装置100がSCGのディアクティベーション中であれば、いつでも端末装置100のSCGリアクティベーションが必要か否かを判断して良い。
基地局装置200は、SCGリアクティベーションが必要と判断した場合、SCGリアクティベーションを実施することを指示する(許可する)SCGリアクティベーション指示を、端末装置100に送信する(S111)。SCGリアクティベーション指示は、例えば、RRCメッセージである。また、SCGリアクティベーション指示は、例えば、RRCメッセージのRRCReconigurationや、他の名称のメッセージであってもよい。
端末装置100は、SCGリアクティベーション指示を受信すると(S111)、SCGリアクティベーション処理を行う(S112)。SCGリアクティベーション処理S112は、端末装置100がSCGをリアクティベートする処理である。
なお、端末装置100のRRCは、処理S105で第2通知を送信したPDCPに対し、第3通知を送信してもよい。第3通知は、SCGリアクティベーションであることを示す通知、又はSCGディアクティベーション解除である事を示す通知であってよく、例えば、「SCG がリアクティベートされた」、「SCGのアップリンク送信が許可された(再開された)」などであって良い。端末装置100のPDCPは、第3通知を受信すると、SCGのUL送信を再開する。
[第2の実施の形態]
端末装置100は、SCGディアクティベーション中に、端末装置100SDAPエンティティにおいて、RDI(Reflective QoS flow to DRB mapping Indication)が‘1’にセットされ、ダウンリンクSDAPデータPDUを受信し、受信したダウンリンクSDAPデータPDUは、第2のQoSフローに対するQoSフロー識別子(QFI)が含まれているとする。なお、このダウンリンクSDAPデータPDUの受信は、MCGにRLCベアラが関連付いているDRBを介して行われて良い。
端末装置100は、SCGディアクティベーション中に、端末装置100SDAPエンティティにおいて、RDI(Reflective QoS flow to DRB mapping Indication)が‘1’にセットされ、ダウンリンクSDAPデータPDUを受信し、受信したダウンリンクSDAPデータPDUは、第2のQoSフローに対するQoSフロー識別子(QFI)が含まれているとする。なお、このダウンリンクSDAPデータPDUの受信は、MCGにRLCベアラが関連付いているDRBを介して行われて良い。
端末装置100は、以下の条件1から条件3の全て又は一部を含む条件を満たす場合、第2のQoSフローに対して格納されているQoS flow to DRB mapping ruleのDRB(すなわち、すでに格納されている、第1のQoSフローに対応しているDRB)が、第1の実施の形態において、端末装置100のRRCから受信した第2情報に該当しないDRBであるとき、エンドマーカー処理を行う。また、端末装置100は、以下の条件1~条件3の全て又は一部を含む条件を満たす場合であっても、第2のQoSフローに対して格納されているQoS flow to DRB mapping ruleのDRBが、端末装置100のRRCから受信した第2情報に該当するDRBであるとき、エンドマーカー処理を行わない。なおエンドマーカー処理とは、エンドマーカーコントロールPDUを構築し、変更前のDRBにマップし、下位レイヤに送信する処理である。
(条件1)第1の実施の形態における処理S105において、少なくとも第2条件を満たすDRBが関連しているSDAPに第2情報が通知されていること
(条件2)第1のQoSフローに対して、格納されているQoS flow to DRB mapping ruleが、受信したダウンリンクSDAPデータPDUのQoS flow to DRB mapping ruleと異なること。言い換えると、第2のQoSフローに対し、新たにダウンリンクSDAPデータPDUにおいて受信したQoS flow to DRB mapping ruleで対応づけられるDRBが、格納されているQoS flow to DRB mapping ruleで対応づけられているDRBより変更されていること
(条件3)格納されているQoS flow to DRB mapping ruleのDRBにアップリンクSDAPヘッダが設定されていること
また、端末装置100は、第2のQoSフローに対するQoS flow to DRB mapping ruleが存在せず(格納されておらず)、デフォルトDRBが設定されている場合、以下の処理の全てまたは一部を行って良い。
(条件2)第1のQoSフローに対して、格納されているQoS flow to DRB mapping ruleが、受信したダウンリンクSDAPデータPDUのQoS flow to DRB mapping ruleと異なること。言い換えると、第2のQoSフローに対し、新たにダウンリンクSDAPデータPDUにおいて受信したQoS flow to DRB mapping ruleで対応づけられるDRBが、格納されているQoS flow to DRB mapping ruleで対応づけられているDRBより変更されていること
(条件3)格納されているQoS flow to DRB mapping ruleのDRBにアップリンクSDAPヘッダが設定されていること
また、端末装置100は、第2のQoSフローに対するQoS flow to DRB mapping ruleが存在せず(格納されておらず)、デフォルトDRBが設定されている場合、以下の処理の全てまたは一部を行って良い。
(処理1)デフォルトDRBが、第1の実施の形態において、端末装置100のRRCから受信した第2情報に該当しないDRBである場合、エンドマーカーコントロールPDUを構築し、デフォルトDRBにマップし、下位レイヤに送信する
(処理2)デフォルトDRBが、第1の実施の形態において、端末装置100のRRCから受信した第2情報に該当するDRBである場合、エンドマーカーコントロールPDUの構築、構築したエンドマーカーコントロールPDUのデフォルトDRBへのマップ、下位レイヤへの送信、の全て又は一部を行わない
なお、QoS flow to DRB mapping ruleとは、アップリンクに対するQoS flow to DRB mapping rule(UL QoS flow to DRB mapping rule)であって良い。
(処理2)デフォルトDRBが、第1の実施の形態において、端末装置100のRRCから受信した第2情報に該当するDRBである場合、エンドマーカーコントロールPDUの構築、構築したエンドマーカーコントロールPDUのデフォルトDRBへのマップ、下位レイヤへの送信、の全て又は一部を行わない
なお、QoS flow to DRB mapping ruleとは、アップリンクに対するQoS flow to DRB mapping rule(UL QoS flow to DRB mapping rule)であって良い。
端末装置100は、RRC再設定メッセージを受信したとき、RRC再設定メッセージメッセージにSCGの同期付き再設定パラメータが含まれていた場合、SCGの同期付き再設定処理のうちの一部又は全てを直ちに実行するか否かを判断する。端末装置100は、SCGの同期付き再設定処理のうちの一部又は全てを直ちに実行しないと判断したとき、実行していないSCGの同期付き再設定処理をSCGリアクティベーション時に実行する。端末装置100は、例えば以下の条件の一部又は全部に該当する場合、直ちに実行しないと判断する。
・SCGディアクティベーション中であること
・SCGの同期付き再設定が、マスターノードのセキュリティ鍵(KgNB又はKeNB)の変更、又はマスターノードのセキュリティ鍵から生成されるASセキュリティ鍵の変更に伴うものである事
・SCGの同期付き再設定が、セカンダリノードのセキュリティ鍵(S-KgNB 又は S-KeNB)の変更、又はセカンダリノードのセキュリティ鍵から生成されるASセキュリティ鍵の変更に伴うものであること
・SCG RLCベアラが関連している無線ベアラに、マスター鍵を使う無線ベアラが存在しないこと
・SCG RLCベアラが関連している無線ベアラは、全てセカンダリ鍵を使うこと
・基地局装置から、SCGリアクティベーション時に実行するよう指示されていること
これにより、SCGの同期付き再設定を実行することによる、SCGリアクティベーションの実施を抑制し、端末装置100の消費電力を抑制することができる。
・SCGの同期付き再設定が、マスターノードのセキュリティ鍵(KgNB又はKeNB)の変更、又はマスターノードのセキュリティ鍵から生成されるASセキュリティ鍵の変更に伴うものである事
・SCGの同期付き再設定が、セカンダリノードのセキュリティ鍵(S-KgNB 又は S-KeNB)の変更、又はセカンダリノードのセキュリティ鍵から生成されるASセキュリティ鍵の変更に伴うものであること
・SCG RLCベアラが関連している無線ベアラに、マスター鍵を使う無線ベアラが存在しないこと
・SCG RLCベアラが関連している無線ベアラは、全てセカンダリ鍵を使うこと
・基地局装置から、SCGリアクティベーション時に実行するよう指示されていること
これにより、SCGの同期付き再設定を実行することによる、SCGリアクティベーションの実施を抑制し、端末装置100の消費電力を抑制することができる。
また、基地局装置200は、端末装置100のSCGに、SCGの同期付き再設定を直ちに実行させたくないと判断した場合、RRC再設定メッセージのSCG設定パラメータに同期付き再設定パラメータを含めない。基地局装置200は、例えば以下の条件の一部又は全部を含む条件に該当する場合、直ちに実行させたくないと判断する。
・SCGディアクティベーション中であること
・SCGの同期付き再設定が、マスターノードのセキュリティ鍵(KgNB又はKeNB)の変更、又はマスターノードのセキュリティ鍵から生成されるASセキュリティ鍵の変更に伴うものである事
・SCGの同期付き再設定が、セカンダリノードのセキュリティ鍵(S-KgNB 又は S-KeNB)の変更、又はセカンダリノードのセキュリティ鍵から生成されるASセキュリティ鍵の変更に伴うものであること
・SCG RLCベアラが関連している無線ベアラに、マスター鍵を使う無線ベアラが存在しないこと
・SCG RLCベアラが関連している無線ベアラは、全てセカンダリ鍵を使うこと
なお、マスター鍵を使う無線ベアラとは、マスター鍵を使うか、セカンダリ鍵を使うかを示すパラメータ(keyToUse)が、マスター(又はプライマリ)に設定されている無線ベアラの事であって良い。またセカンダリ鍵を使う無線ベアラとは、マスター鍵を使うか、セカンダリ鍵を使うかを示すパラメータ(keyToUse)が、セカンダリに設定されている無線ベアラの事であって良い。
・SCGの同期付き再設定が、マスターノードのセキュリティ鍵(KgNB又はKeNB)の変更、又はマスターノードのセキュリティ鍵から生成されるASセキュリティ鍵の変更に伴うものである事
・SCGの同期付き再設定が、セカンダリノードのセキュリティ鍵(S-KgNB 又は S-KeNB)の変更、又はセカンダリノードのセキュリティ鍵から生成されるASセキュリティ鍵の変更に伴うものであること
・SCG RLCベアラが関連している無線ベアラに、マスター鍵を使う無線ベアラが存在しないこと
・SCG RLCベアラが関連している無線ベアラは、全てセカンダリ鍵を使うこと
なお、マスター鍵を使う無線ベアラとは、マスター鍵を使うか、セカンダリ鍵を使うかを示すパラメータ(keyToUse)が、マスター(又はプライマリ)に設定されている無線ベアラの事であって良い。またセカンダリ鍵を使う無線ベアラとは、マスター鍵を使うか、セカンダリ鍵を使うかを示すパラメータ(keyToUse)が、セカンダリに設定されている無線ベアラの事であって良い。
これにより、同期付き再設定を実行することによる、SCGリアクティベーションの実施を抑制し、端末装置100の消費電力を抑制することができる。
また、端末装置100は、SCGディアクティベーション中に基地局装置200から受信したRRC再設定メッセージに、MCGの同期付き再設定パラメータが含まれるが、SCGの同期付き再設定が含まれていない場合、SCGのUL送信を再開しない。
これにより、同期付き再設定を実行することによる、SCGリアクティベーションの実施を抑制し、端末装置100の消費電力を抑制することができる。
また、端末装置100は、SCGディアクティベーション指示を基地局装置200から受信したとき、条件Aに該当する無線ベアラに処理Aを行う。
条件Aは、SCGベアラであること、又はスプリットベアラであってSCGにPrimary Pathが設定されていることである。
処理Aは、条件Aを満たす無線ベアラのPDCPエンティティにおいて、送信が完了していないデータを、直ちに送信する、又は破棄する処理である。また、処理Aは、条件Aを満たす無線ベアラのPDCPエンティティの再確立要求が行われた場合、PDCPエンティティの再確立の処理において、送信が完了していないデータの送信を直ちには行わず、SCGリアクティベーション時(後)に行う処理であってもよい。また、処理Aは、条件Aを満たす無線ベアラのPDCPエンティティが、上位レイヤからSDAP Control PDUを受け取った場合、これを破棄する処理である。
これにより、UL送信の発生によるSCGリアクティベーションの実施を抑制し、端末装置100の消費電力を抑制することができる。
また、端末装置100のRRCは、SCGディアクティベーション指示を基地局装置200から受信したとき、条件Aを満たす無線ベアラ(DRB)が関連しているSDAPに、情報Aを通知する。
情報Aは、当該DRBのUL送信が禁止(停止)されていること、又は当該DRBが関連しているセルグループがディアクティベーション中であることなど、当該DRBでUL送信ができない状態であることを含む情報である。
これにより、UL送信の発生によるSCGリアクティベーションの実施を抑制し、端末装置100の消費電力を抑制することができる。
また、端末装置100は、SDAPにおいて、第1のQoSフローと対応するDRBが変更になり、変更前のDRBがRRCから通知されたDRBである場合、変更前のDRBへSDAP Control SDUの送信を行わない。
また、基地局装置200は、端末装置100がSCGディアクティベーション中である場合、エンドマーカーを発生させないよう実装されていてもよい。基地局装置200は、例えば、SCGディアクティベーション中において、SCGベアラ又はスプリットベアラであってSCGにプライマリパスが設定されているDRBに対応づけられているQoSフローを、別のDRBに再対応付けさせないなどの制御を行うことで、エンドマーカーが発生しないように制御する。また基地局装置200は、例えば、第1の実施の形態における処理104のSCGディアクティベーション指示の前、又はSCGディアクティベーション指示において、少なくとも第2条件を満たすDRBに対応付けられている、全て又は一部のQoSフローを、少なくとも第2条件を満たさないDRBに(再)対応付けするなどの制御を行うことで、エンドマーカーが発生しないように制御する。
これにより、UL送信の発生によるSCGリアクティベーションの実施を抑制し、端末装置100の消費電力を抑制することができる。
また、端末装置100は、ULデータが発生(到着)した際、基地局装置にSCGリアクティベーションの要求を出すか、端末装置100が自発的にSCGリアクティベーションを行うかを、基地局装置200から指示(指定)されてもよい。例えば、端末装置100は、以下の処理を行う。
端末装置100のRRCは、SCGディアクティベーション指示を基地局装置200から受信すると、条件Aに該当する無線ベアラのPDCPエンティティに対し、通知Aを送信する。通知Aは、SCGディアクティベーション中であることを示す、又はSCG側のUL送信が禁止(中断)されていることを示す通知である。条件Aに該当する無線ベアラのPDCPエンティティが上位レイヤからデータを受け取った際、端末装置100のPDCPエンティティは、端末装置100のRRCに対し、ULデータが発生したことを通知する。端末装置100のRRCは、SCGディアクティベーション要求を生成し、基地局装置200に送信する。端末装置100のRRCは、基地局装置200から SCGリアクティベーションメッセージを受け取ったら、第2通知を送信した無線ベアラのPDCPエンティティに対してSCGがリアクティベートされたこと、又はSCG側のUL送信が開始(再開)された事などを示す通知を送信する。
又は、端末装置100は、MACにULデータが発生した場合、ランダムアクセス手順を実行し、UL送信が行えるようにする。端末装置100は、即時実行しなかったSCGの同期付き再設定があれば、先行して実行する。
これにより、端末装置100は、SCGディアクティベーション中にSCG側のRLCベアラにUL送信が発生した場合、適切な処理を行うことができる。また、これにより、端末装置100は、SCGディアクティベーション中にSCG側のRLCベアラにUL送信が発生したことを、基地局装置200に通知したり、自律的又は基地局装置200の指示によって、SCGリアクティベートを行ったりすることができる。
[その他の実施の形態]
各実施の形態は、それぞれ組み合わせても良い。また、シーケンス上のメッセージは、順序通りに行われる必要はなく、順序が入れ変わってもよい。また、シーケンス上のメッセージは、一部行われなくてもよい。例えば、端末装置100におけるSCGディアクティベーション中の処理は、端末装置100がSCGディアクティベーション中であればよく、シーケンス上のメッセージが省略されてもよい。
各実施の形態は、それぞれ組み合わせても良い。また、シーケンス上のメッセージは、順序通りに行われる必要はなく、順序が入れ変わってもよい。また、シーケンス上のメッセージは、一部行われなくてもよい。例えば、端末装置100におけるSCGディアクティベーション中の処理は、端末装置100がSCGディアクティベーション中であればよく、シーケンス上のメッセージが省略されてもよい。
また各実施の形態において、端末装置100の機能や処理として記述されているものは、基地局装置200の機能や処理であっても良い。また各実施の形態において、基地局装置200の機能や処理として記述されているものは、端末装置100の機能や処理であっても良い。
また各実子の形態において、「無線ベアラ」とは、シグナリング無線ベアラであっても良いし、データ無線ベアラであっても良いし、シグナリング無線ベアラ及びデータ無線ベアラの、両方であっても良い。
図14から図22は、3GPPの仕様書の修正イメージの例を示す図である。網掛け部分が修正箇所を示す。なお、仕様書番号、章番号などは一例であり、図の例に限定されない。
まとめると、以下のようになる。
第2無線通信装置(基地局装置200)からの受信を行う受信部と、第2無線通信装置への送信を行う送信部と、処理部とを有し、処理部は、対向の無線通信装置より送信された第1のRRCメッセージに、SCGの非活性化に関するパラメータが含まれている場合、SCGを非活性化し、第1無線通信装置に確立されている無線ベアラのうち、第1の条件を満たす無線ベアラに対し、第1の処理を行う、第1無線通信装置(端末装置100)。
第1の条件は、SCGベアラであること、又はスプリットベアラであってSCG側にプライマリパスが設定されていることである、第1無線通信装置。
第1の処理は、第1の条件を満たす無線ベアラのPDCPエンティティにおいて、送信が完了していないデータを、直ちに送信する処理である、第1無線通信装置。
第1の処理とは、第1の条件を満たす無線ベアラのPDCPエンティティにおいて、送信が完了していないデータを、全て破棄する処理である、第1無線通信装置。
処理部は更に、SCGが非活性である間に、第1無線通信装置に確立されている無線ベアラのうち、第1の条件を満たす無線ベアラのPDCPエンティティの再確立要求が行われた場合、前記PDCPエンティティの再確立の処理において、送信が完了していないデータの送信は行わず、第1無線通信装置に確立されている無線ベアラのうち、第1の条件を満たさない無線ベアラのPDCPエンティティの再確立要求が行われた場合、PDCPエンティティの再確立の処理において、送信が完了していないデータの送信を行う、第1無線通信装置。
第1無線通信装置への送信を行う第2送信部と、第1無線通信装置からの受信を行う第2受信部と、第2処理部とを有し、第2処理部は、第1無線通信装置に設定されているセカンダリセルグループの非活性化を行う場合、第2送信部より送信される第1のRRCメッセージに、SCGの非活性化に関するパラメータを含める事により、SCGを非活性化し、第1無線通信装置に確立されている無線ベアラのうち、第1の条件を満たす無線ベアラに対し、第1の処理を実行させる、第2無線通信装置。
第1無線通信装置への送信を行う第2送信部と、第1無線通信装置からの受信を行う第2受信部と、第2処理部とを有し、第2処理部は、第1無線通信装置に送信するRRC再設定メッセージに、RRC再設定メッセージに含まれるSCGの同期付き再設定パラメータを、直ちに実行せずSCG再活性化後に実行することを示すパラメータを含む、第2無線通信装置。
第2無線通信装置への送信を行う送信部と、第2無線通信装置からの受信を行う受信部と、処理部とを有し、処理部は、第2無線通信装置から受信した、RRC再設定メッセージに、RRC再設定メッセージに含まれるSCGの同期付き再設定パラメータを直ちに実行せずSCG再活性化後に実行することを示すパラメータが含まれている場合、SCGの同期付き再設定パラメータに応じた同期付き再設定手順を、SCG再活性化後に実行し、RRC再設定メッセージに含まれるSCGの同期付き再設定パラメータを直ちに実行せずSCG再活性化後に実行することを示すパラメータが含まれていない場合、SCGの同期付き再設定パラメータに応じた同期付き再設定手順を、直ちに実行する、第1無線通信装置。
第1無線通信装置への送信を行う第2送信部と、第1無線通信装置からの受信を行う第2受信部と、第2処理部とを有し、第2処理部は、第1無線通信装置に、RRC再設定メッセージを送信するとき、第2の条件を満たす場合、RRC再設定メッセージにSCGの同期付き再設定パラメータを必須で含め、第2の条件を満たさない場合、RRC再設定メッセージにSCGの同期付き再設定パラメータを必要に応じて含める、第2無線通信装置。
第2の条件は、NR-DCにおけるセカンダリノードのセキュリティ鍵から生成されるASセキュリティ鍵の変更であり、第1通信装置に設定されている無線ベアラのうち、少なくとも1つの無線ベアラがセカンダリ鍵を持ち、少なくとも1つの無線ベアラがRRC再設定メッセージによって解放されず、かつSCGが非活性化されていない、という条件である、第2無線通信装置。
第2の条件は、EN-DCにおけるマスターノードのハンドオーバであって、かつSCGが非活性化されていない、という条件である、第2無線通信装置。
第2の条件は、SCGの再活性化である、という条件である、第2無線通信装置。
第2無線通信装置への送信を行う送信部と、第2無線通信装置からの受信を行う受信部と、処理部とを有し、処理部は、第2無線通信装置から受信した、RRC再設定メッセージに同期付き再設定パラメータが含まれている場合、第3の条件を満たす場合、一時停止されているSCG無線ベアラのアップリンク送信を再開する、第1無線通信装置。
第3の条件とは、MCG設定パラメータによって開始した手順であり、かつSCGが非活性化されていない、という条件である、第1無線通信装置。
第3の条件とは、SCG設定パラメータによって開始された手順である、という条件である、第1無線通信装置。
第1無線通信装置への送信を行う第2送信部と、第1無線通信装置からの受信を行う第2受信部と、第2処理部とを有し、第2処理部は、第1無線通信装置に設定されているセカンダリセルグループの非活性化を行う場合、第2送信部より送信される第1のRRCメッセージに、SCGの非活性化に関するパラメータを含める事により、第1無線通信装置のRRCに、第1無線通信装置に確立されている無線ベアラのうち、第4の条件を満たす無線ベアラが関連付くSDAPエンティティに対し、第1の通知を行わせる、第2無線通信装置。
第4の条件は、SCGベアラであること、又はスプリットベアラであってSCGにプライマリパスが設定されていることである、第2無線通信装置。
第1の通知は、第4の条件を満たす無線ベアラのアップリンク送信が一時停止されていることを示す通知である、第2無線通信装置。
第1の通知は、第4の条件を満たす無線ベアラに、SDAPエンティティが関連している場合に行われる、第2無線通信装置。
第2無線通信装置への送信を行う送信部と、第2無線通信装置からの受信を行う受信部と、処理部とを有し、処理部は、第2無線通信装置の第2送信部より送信された第1のRRCメッセージに、SCGの非活性化に関するパラメータが含まれている場合、SCGを非活性化し、第1無線通信装置のRRCは、第1無線通信装置に確立されている無線ベアラのうち、第4の条件を満たす無線ベアラが関連付くSDAPエンティティに対し、第1の通知を行う、第1無線通信装置。
第4の条件とは、SCGベアラであること、又はスプリットベアラであってSCGにプライマリパスが設定されていることである、第1無線通信装置。
第1の通知とは、第4の条件を満たす無線ベアラのアップリンク送信が一時停止されていることを示す通知である、第1無線通信装置。
第1の通知は、第4の条件を満たす無線ベアラに、SDAPエンティティが関連している場合に行われる、第1無線通信装置。
第1無線通信装置への送信を行う第2送信部と、第1無線通信装置からの受信を行う第2受信部と、第2処理部とを有し、第2処理部は、第1無線通信装置に設定されているセカンダリセルグループの非活性化を行う場合、第2送信部より送信される第1のRRCメッセージに、SCGの非活性化に関するパラメータを含めることにより、SCGを非活性化し、第1無線通信装置に確立されている無線ベアラのうち、第1の条件を満たす無線ベアラに対し、第1の処理を実行させる、第2無線通信装置。
第1の条件とは、SCGベアラであること、又はスプリットベアラであってSCGにプライマリパスが設定されていることである、第2無線通信装置。
第1の処理とは、第1の条件を満たす無線ベアラにアップリンクデータが発生した場合、第1無線通信装置に対し、SCG再活性化を要求するためのメッセージを送信することである、第2無線通信装置。
第2無線通信装置からの受信を行う受信部と、第2無線通信装置への送信を行う送信部と、処理部とを有し、処理部は、第2無線通信装置の第2送信部より送信され第1のRRCメッセージに、SCGの非活性化に関するパラメータが含まれている場合、SCGを非活性化し、第1無線通信装置に確立されている無線ベアラのうち、第1の条件を満たす無線ベアラに対し、第1の処理を行う、第1無線通信装置。
第1の条件とは、SCGベアラであること、又はスプリットベアラであってSCGにプライマリパスが設定されていることである、第1無線通信装置。
第1の処理は、第1の条件を満たす無線ベアラにアップリンクデータが発生した場合、第2無線通信装置に対し、SCG再活性化を要求するためのメッセージを送信する事である、第1無線通信装置。
10 :通信システム
100 :端末装置
110 :CPU
120 :ストレージ
121 :端末側無線通信プログラム
122 :端末側MR-DCプログラム
130 :メモリ
140 :通信回路
200 :基地局装置
210 :CPU
220 :ストレージ
221 :無線通信プログラム
222 :MR-DCマスターノードプログラム
223 :MR-DCセカンダリノードプログラム
230 :メモリ
240 :無線通信回路
250 :ネットワークインタフェース
300 :コアネットワーク
100 :端末装置
110 :CPU
120 :ストレージ
121 :端末側無線通信プログラム
122 :端末側MR-DCプログラム
130 :メモリ
140 :通信回路
200 :基地局装置
210 :CPU
220 :ストレージ
221 :無線通信プログラム
222 :MR-DCマスターノードプログラム
223 :MR-DCセカンダリノードプログラム
230 :メモリ
240 :無線通信回路
250 :ネットワークインタフェース
300 :コアネットワーク
Claims (9)
- 第1無線通信装置へ、メッセージの送信を行う送信部と、
前記第1無線通信装置からメッセージの受信を行う受信部と、
前記第1無線通信装置に設定されているセカンダリセルグループの非活性化を行う場合、前記送信部より前記第1無線通信装置へ送信される第1メッセージに、セカンダリセルグループの非活性化に関するパラメータを含める処理部と、を有し、
前記第1無線通信装置は、前記セカンダリセルグループの非活性化に関するパラメータを含む前記第1メッセージを受信すると、セカンダリセルグループを非活性化し、確立している無線ベアラのうち、第1の条件を満たす無線ベアラに対し、第1の処理を実行する、
第2無線通信装置。 - 前記第1の条件は、セカンダリセルグループのベアラであること、又はスプリットベアラであってセカンダリセルグループにプライマリパスが設定されていることである
請求項1に記載の第2無線通信装置。 - 前記第1の処理は、前記第1の条件を満たす無線ベアラのPDCPエンティティにおいて、送信が完了していないデータを、直ちに前記第1無線通信装置へ送信する処理である、
請求項1又は請求項2に記載の第2無線通信装置。 - 前記第1の処理は、前記第1の条件を満たす無線ベアラのPDCPエンティティにおいて、送信が完了していないデータを、全て破棄する処理である、
請求項1又は請求項2に記載の第2無線通信装置。 - 第2無線通信装置からのメッセージの受信を行う第1受信部と、
前記第2無線通信装置へメッセージの送信を行う第1送信部と、
前記第2無線通信装置から送信された第1メッセージに、セカンダリセルグループの非活性化に関するパラメータが含まれている場合、セカンダリセルグループを非活性化し、確立している無線ベアラのうち、第1の条件を満たす無線ベアラに対し、第1の処理を行う第1処理部と、を有する
第1無線通信装置。 - 前記第1の条件とは、セカンダリセルグループのベアラであること、又はスプリットベアラであってセカンダリセルグループにプライマリパスが設定されていることである
請求項5に記載の第1無線通信装置。 - 前記第1の処理とは、前記第1の条件を満たす無線ベアラのPDCPエンティティにおいて、送信が完了していないデータを、直ちに送信する処理である
請求項5又は請求項6に記載の第1無線通信装置。 - 前記第1の処理とは、前記第1の条件を満たす無線ベアラのPDCPエンティティにおいて、送信が完了していないデータを、全て破棄する処理である
請求項5又は請求項6に記載の第1無線通信装置。 - 前記第1処理部は、セカンダリセルグループが非活性である間に、確立している無線ベアラのうち、前記第1の条件を満たす無線ベアラの第1PDCPエンティティの再確立要求を受信した場合、前記第1PDCPエンティティの再確立の処理において、送信が完了していないデータの送信は行わず、前記確立している無線ベアラのうち、前記第1の条件を満たさない無線ベアラの第2PDCPエンティティの再確立要求を受信した場合、前記第2PDCPエンティティの再確立の処理において、送信が完了していないデータの送信を行う、
請求項5又は6に記載の第1無線通信装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023553902A JPWO2023067646A1 (ja) | 2021-10-18 | 2021-10-18 | |
PCT/JP2021/038389 WO2023067646A1 (ja) | 2021-10-18 | 2021-10-18 | 第2無線通信装置及び第1無線通信装置 |
US18/630,652 US20240259865A1 (en) | 2021-10-18 | 2024-04-09 | Second radio communication device and first radio communication device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/038389 WO2023067646A1 (ja) | 2021-10-18 | 2021-10-18 | 第2無線通信装置及び第1無線通信装置 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/630,652 Continuation US20240259865A1 (en) | 2021-10-18 | 2024-04-09 | Second radio communication device and first radio communication device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023067646A1 true WO2023067646A1 (ja) | 2023-04-27 |
Family
ID=86058868
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/038389 WO2023067646A1 (ja) | 2021-10-18 | 2021-10-18 | 第2無線通信装置及び第1無線通信装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20240259865A1 (ja) |
JP (1) | JPWO2023067646A1 (ja) |
WO (1) | WO2023067646A1 (ja) |
-
2021
- 2021-10-18 WO PCT/JP2021/038389 patent/WO2023067646A1/ja active Application Filing
- 2021-10-18 JP JP2023553902A patent/JPWO2023067646A1/ja active Pending
-
2024
- 2024-04-09 US US18/630,652 patent/US20240259865A1/en active Pending
Non-Patent Citations (6)
Title |
---|
APPLE: "SCG bearer handling for the SCG deactivation feature", 3GPP TSG RAN WG2 #115-E, R2-2107605, 6 August 2021 (2021-08-06), XP052034254 * |
ERICSSON: "Efficient SCG (de)activation", 3GPP TSG RAN WG2 #115-E, R2-2108388, 5 August 2021 (2021-08-05), XP052032562 * |
LG ELECTRONICS INC.: "Deactivation of SCG", 3GPP TSG RAN WG2 #114-E, R2-2106106, 11 May 2021 (2021-05-11), XP052007466 * |
NOKIA, NOKIA SHANGHAI BELL: "Deactivation of SCG", 3GPP TSG RAN WG2 #115-E, R2-2107983, 6 August 2021 (2021-08-06), XP052034565 * |
SAMSUNG: "Bearer handling for SCG deactivation", 3GPP TSG RAN WG2 #115-E, R2-2107669, 5 August 2021 (2021-08-05), XP052032353 * |
ZTE CORPORATION, SANECHIPS: "Consideration on UE-triggered SCG activation", 3GPP TSG RAN WG2 #115-E, R2-2107747, 6 August 2021 (2021-08-06), XP052034365 * |
Also Published As
Publication number | Publication date |
---|---|
US20240259865A1 (en) | 2024-08-01 |
JPWO2023067646A1 (ja) | 2023-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20240334266A1 (en) | Managing mcg fast recovery | |
CN113615252B (zh) | 终端装置、方法以及集成电路 | |
US20230413356A1 (en) | Managing Secondary Cell Group Deactivation and Activation | |
US20230199578A1 (en) | Managing configurations | |
CN116158118A (zh) | 终端装置、通信方法以及基站装置 | |
WO2023067646A1 (ja) | 第2無線通信装置及び第1無線通信装置 | |
WO2023112179A1 (ja) | 第1無線通信装置、第2無線通信装置、通信方法及び通信プログラム | |
WO2023145094A1 (ja) | 無線通信装置、通信方法及び通信プログラム | |
WO2024024110A1 (ja) | 端末装置、基地局装置、及び通信システム | |
US20240381477A1 (en) | Radio communication apparatus, communication method, and non-transitory computer-readable recording medium | |
WO2024224564A1 (ja) | 端末装置、基地局装置及び無線通信システム | |
WO2024161489A1 (ja) | 端末装置、基地局装置及び無線通信システム | |
WO2023106315A1 (ja) | 端末装置、基地局装置、および、方法 | |
WO2023042752A1 (ja) | 端末装置、基地局装置および、方法 | |
US12075510B2 (en) | Terminal apparatus, base station apparatus, and method | |
WO2023042747A1 (ja) | 端末装置、基地局装置および、方法 | |
WO2023013292A1 (ja) | 端末装置、基地局装置および、方法 | |
WO2023008043A1 (ja) | 端末装置、方法、および、集積回路 | |
WO2023132370A1 (ja) | 端末装置、方法、および、集積回路 | |
WO2023136231A1 (ja) | 端末装置、方法、および、集積回路 | |
WO2023112531A1 (ja) | 端末装置、方法、および、集積回路 | |
US20230328817A1 (en) | Terminal apparatus, base station apparatus, method, and integrated circuit | |
JP7426383B2 (ja) | 通信制御方法 | |
WO2023112792A1 (ja) | 端末装置、方法、および、集積回路 | |
WO2023100981A1 (ja) | 端末装置、方法、および、集積回路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21961300 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2023553902 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21961300 Country of ref document: EP Kind code of ref document: A1 |