WO2023066289A1 - 小区重选方法、装置及相关设备 - Google Patents
小区重选方法、装置及相关设备 Download PDFInfo
- Publication number
- WO2023066289A1 WO2023066289A1 PCT/CN2022/126135 CN2022126135W WO2023066289A1 WO 2023066289 A1 WO2023066289 A1 WO 2023066289A1 CN 2022126135 W CN2022126135 W CN 2022126135W WO 2023066289 A1 WO2023066289 A1 WO 2023066289A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- information
- network device
- model
- terminal
- cell
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 123
- 238000013473 artificial intelligence Methods 0.000 claims abstract description 245
- 238000005259 measurement Methods 0.000 claims description 32
- 230000004913 activation Effects 0.000 claims description 18
- 230000002776 aggregation Effects 0.000 claims description 14
- 238000004220 aggregation Methods 0.000 claims description 14
- 230000009977 dual effect Effects 0.000 claims description 14
- 238000012545 processing Methods 0.000 claims description 12
- 238000004891 communication Methods 0.000 abstract description 22
- 210000004027 cell Anatomy 0.000 description 220
- 238000010586 diagram Methods 0.000 description 12
- 230000006870 function Effects 0.000 description 12
- 230000000694 effects Effects 0.000 description 11
- 238000005516 engineering process Methods 0.000 description 6
- 230000033001 locomotion Effects 0.000 description 4
- 238000007726 management method Methods 0.000 description 4
- 238000004590 computer program Methods 0.000 description 3
- 238000013528 artificial neural network Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000012517 data analytics Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 238000012706 support-vector machine Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W48/00—Access restriction; Network selection; Access point selection
- H04W48/20—Selecting an access point
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/0005—Control or signalling for completing the hand-off
- H04W36/0055—Transmission or use of information for re-establishing the radio link
- H04W36/0061—Transmission or use of information for re-establishing the radio link of neighbour cell information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/0005—Control or signalling for completing the hand-off
- H04W36/0083—Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
- H04W36/00837—Determination of triggering parameters for hand-off
- H04W36/008375—Determination of triggering parameters for hand-off based on historical data
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/08—Reselecting an access point
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/16—Performing reselection for specific purposes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/16—Performing reselection for specific purposes
- H04W36/22—Performing reselection for specific purposes for handling the traffic
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/24—Reselection being triggered by specific parameters
- H04W36/30—Reselection being triggered by specific parameters by measured or perceived connection quality data
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/24—Reselection being triggered by specific parameters
- H04W36/32—Reselection being triggered by specific parameters by location or mobility data, e.g. speed data
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/34—Reselection control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W48/00—Access restriction; Network selection; Access point selection
- H04W48/16—Discovering, processing access restriction or access information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W8/00—Network data management
- H04W8/02—Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Definitions
- the present application belongs to the technical field of communications, and in particular relates to a cell reselection method, device and related equipment.
- the terminal When the terminal is in the inactive state or the idle state, it will choose a certain cell to camp on, and when the terminal needs to enter the connected state, it will initiate access in the cell where it resides.
- the terminal In order to balance random access loads among different frequency points, it is necessary to distribute them as evenly as possible when the terminal selects a cell to camp on.
- the terminal In order to enable the terminal to obtain better performance on the serving cell, the terminal needs to select a cell with better signal quality when selecting a cell to camp on.
- RRC Radio Resource Control
- Embodiments of the present application provide a cell reselection method, device, and related equipment, which can solve the problem in the related art that communication performance is degraded due to inappropriate cell selection in a cell reappearance mode.
- a cell reselection method including:
- the terminal inputs the target information into the artificial intelligence AI model to obtain an output result, the target information includes the information of the cell where the terminal resides and the information of the adjacent cell, and the output result includes information about the reselection of the terminal to the Information on neighboring cells;
- the terminal determines whether to reselect to the neighboring cell according to the output result.
- a cell reselection method including:
- the first network device sends first artificial intelligence AI model information, where the first AI model information is information of an AI model used for cell reselection.
- a cell reselection method including:
- the second network device sends information about adjacent cells used for cell reselection, where the information about adjacent cells includes at least one of the following:
- a slice type supported by the second network device
- a wireless signal measurement result of the second network device
- the second network device is a network device corresponding to the adjacent cell.
- a cell reselection device including:
- An acquisition module configured to input target information into the artificial intelligence AI model to obtain an output result, the target information includes information about the cell where the terminal resides and information about adjacent cells, and the output result includes information about the terminal's reoccurrence Information about the selected adjacent cell;
- a determining module configured to determine whether to reselect to the adjacent cell according to the output result.
- a cell reselection device including:
- a sending module configured to send first artificial intelligence AI model information, where the first AI model information is information of an AI model used for cell reselection.
- a cell reselection device including:
- a sending module configured to send information about adjacent cells used for cell reselection, where the information about adjacent cells includes at least one of the following:
- a slice type supported by the second network device
- a wireless signal measurement result of the second network device
- the second network device is a network device corresponding to the adjacent cell.
- a terminal including a processor, a memory, and a program or instruction stored in the memory and operable on the processor, and when the program or instruction is executed by the processor, the following is implemented: The steps of the cell reselection method described in the first aspect.
- a network device including a processor, a memory, and a program or instruction stored on the memory and operable on the processor, and the program or instruction is implemented when executed by the processor.
- a readable storage medium on which programs or instructions are stored, and when the programs or instructions are executed by a processor, the implementation of the first aspect or the second aspect or the third aspect can be achieved.
- the steps of the cell reselection method are provided, on which programs or instructions are stored, and when the programs or instructions are executed by a processor, the implementation of the first aspect or the second aspect or the third aspect can be achieved.
- a chip in a tenth aspect, includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run a network device program or instruction to implement the first aspect or the first The cell reselection method described in the second aspect or the third aspect.
- a communication device configured to perform the steps of the method described in the first aspect, or to perform the steps of the method described in the second aspect, or to perform the steps of the method described in the third aspect step.
- the terminal inputs the target information into the artificial intelligence AI model to obtain an output result
- the target information includes information about the cell where the terminal resides and information about adjacent cells
- the output result includes information about the Information about the terminal reselecting to the neighboring cell
- the terminal determining whether to reselect to the neighboring cell according to the output result.
- the terminal can reselect to a suitable cell, avoiding the need to switch or redirect to other cells in a short period of time due to improper cell selection, and improve communication performance.
- FIG. 1 is a structural diagram of a network system provided by an embodiment of the present application.
- Fig. 2 is a flow chart of the cell reselection method provided by the embodiment of the present application.
- Fig. 3 is another flow chart of the cell reselection method provided by the embodiment of the present application.
- Fig. 4 is another flow chart of the cell reselection method provided by the embodiment of the present application.
- FIG. 5 is a structural diagram of a cell reselection device provided by an embodiment of the present application.
- FIG. 6 is another structural diagram of a cell reselection device provided by an embodiment of the present application.
- FIG. 7 is another structural diagram of a cell reselection device provided by an embodiment of the present application.
- FIG. 8 is a structural diagram of a communication device provided by an embodiment of the present application.
- FIG. 9 is a structural diagram of a terminal provided in an embodiment of the present application.
- FIG. 10 is a structural diagram of a network-side device provided by an embodiment of the present application.
- first, second and the like in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific sequence or sequence. It should be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the application can be practiced in sequences other than those illustrated or described herein and that "first" and “second” distinguish objects It is usually one category, and the number of objects is not limited. For example, there may be one or more first objects.
- “and/or” in the description and claims means at least one of the connected objects, and the character “/” generally means that the related objects are an "or” relationship.
- 'transmission' refers to the transmission of signals, not the sending of signals in a narrow sense.
- LTE Long Term Evolution
- LTE-Advanced LTE-Advanced
- LTE-A Long Term Evolution-Advanced
- CDMA Code Division Multiple Access
- TDMA Time Division Multiple Access
- FDMA Frequency Division Multiple Access
- OFDMA Orthogonal Frequency Division Multiple Access
- SC-FDMA Single-carrier Frequency-Division Multiple Access
- SC-FDMA Single-carrier Frequency-Division Multiple Access
- system and “network” in the embodiments of the present application are often used interchangeably, and the described technologies can be used for the above-mentioned systems and radio technologies as well as other systems and radio technologies.
- NR New Radio
- Gen 6 6th Generation, 6G
- FIG. 1 shows a structural diagram of a wireless communication system to which this embodiment of the present application is applicable.
- the wireless communication system includes a terminal 11 and a network side device 12 (also called a network device).
- the terminal 11 can also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 11 can be a mobile phone, a tablet computer (Tablet Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), handheld computer, netbook, ultra-mobile personal computer (ultra-mobile personal computer, UMPC), mobile Internet device (Mobile Internet Device, MID), wearable device (Wearable Device) or vehicle-mounted device ( Vehicle User Equipment, VUE), pedestrian terminal (Pedestrian User Equipment, PUE) and other terminal-side equipment, wearable devices include: bracelets, earphones, glasses, etc.
- the network side device 12 may be a base station or a core network, where a base station may be called a node B, an evolved node B, an access point, a base transceiver station (Base Transceiver Station, BTS), a radio base station, a radio transceiver, a basic service Basic Service Set (BSS), Extended Service Set (ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, Wireless Local Area Network (WLAN) Area Network, WLAN) access point, WiFi node, Transmitting Receiving Point (Transmitting Receiving Point, TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical terms, It should be noted that, in the embodiment of the present application, only the base station in the NR system is taken as an example, but the specific type of the base station is not limited.
- FIG. 2 is a flowchart of a cell reselection method provided in an embodiment of the present application.
- the cell reselection method includes:
- Step 201 the terminal inputs the target information into the artificial intelligence AI model to obtain an output result, the target information includes the information of the cell where the terminal resides and the information of the adjacent cell, and the output result includes information about the reselection of the terminal information to the neighboring cell.
- the adjacent cell is a cell adjacent to the current cell accessed by the terminal.
- the terminal may acquire first artificial intelligence (AI) model information for cell reselection from the first network device, and determine the AI model according to the first AI model information, and the terminal may be in an inactive state or an idle state.
- AI artificial intelligence
- the first network device may be the network device where the cell that sends the connection release or the cell where the cell resides is located, or the first network device may also be an operation and maintenance management (Operation Administration and Maintenance, OAM) device or a network data analysis function (Network Data Analytics) Function, NWDAF).
- OAM Opera and maintenance management
- NWDAF Network Data Analytics Function
- the terminal may receive the last message sent by the first network device before entering the inactive state or the idle state, and the last message carries the first model information, or the terminal may receive the first AI message sent by the first network device through a broadcast message. model information.
- the first AI model information is carried in the last message received before the terminal enters the inactive state or the idle state, or the first AI model information is carried when the terminal is in the inactive state or the idle state In the message received below.
- the first AI model information may be carried in the last message received before the terminal enters the inactive state or the idle state, or the first AI model information is carried when the terminal is in the inactive state or the idle state In the message received in the state.
- Step 202 the terminal determines whether to reselect to the neighboring cell according to the output result.
- the inference result that is, the output result of the AI model
- it can be used to assist the terminal in reselecting to a neighboring cell.
- the terminal inputs target information into the artificial intelligence AI model to obtain an output result
- the target information includes information about the cell where the terminal resides and information about adjacent cells
- the output result includes information about the terminal Information about reselecting to the adjacent cell
- the terminal determines whether to reselect to the adjacent cell according to the output result.
- the terminal can reselect to a suitable cell, avoiding the need to switch or redirect to other cells in a short period of time due to improper cell selection, and improve communication performance.
- the information of the residential cell includes at least one of the following:
- a radio signal measurement result of a first network device where the first network device is a network device corresponding to the cell where the camping cell is located.
- the radio signal measurement result of the first network device includes at least one of the following:
- Reference Signal Received Power Reference Signal Received Power
- Reference Signal Receiving Quality Reference Signal Receiving Quality (Reference Signal Receiving Quality, RSRQ) of the reference signal of the first network device.
- the information of the adjacent cell includes at least one of the following:
- a cell identity of the second network device
- a slice type supported by the second network device
- a wireless signal measurement result of the second network device
- the second network device is a network device corresponding to the adjacent cell.
- the wireless signal measurement results of the second network device include at least one of the following:
- the RSRQ of the reference signal of the second network device is the RSRQ of the reference signal of the second network device.
- the historical information includes at least one of the following:
- a historical handover report of the terminal on the second network device
- a historical wireless link failure report of the terminal on the second network device
- a random access report of the terminal on the second network device
- the historical service state of the terminal in the second network device is the historical service state of the terminal in the second network device.
- the wireless resource information supported by the second network device includes at least one of the following:
- the carrier aggregation combination supported by the second network device
- the dual connectivity combinations supported by the second network device are the dual connectivity combinations supported by the second network device.
- the load information includes at least one of the following:
- PRB Physical Resource Block
- RRC Radio Resource Control
- Timestamp information that is, the future time corresponding to the load forecast, such as a certain system frame or a certain time slot.
- the target information further includes information about the terminal, and the information about the terminal includes at least one of the following:
- the service demand type prediction parameter of the terminal is the service demand type prediction parameter of the terminal.
- the historical serving cell identification list of the terminal can be represented by cell identifications such as physical cell identification code (Physical Cell Identification, PCI) or cell global identifier (Cell Global Identifier, CGI);
- PCI Physical Cell Identification
- CGI Cell Global Identifier
- the state information of the terminal includes at least one of the following:
- the location information of the terminal for example, a Global Positioning System (Global Positioning System, GPS) measurement result;
- GPS Global Positioning System
- Movement information of the terminal for example, movement direction and movement speed.
- the AI model is determined according to the first AI model information, and the first AI model information is used to indicate at least one of the following:
- AI model identification which uniquely identifies a single AI model in the terminal (hereinafter also referred to as terminal equipment);
- AI model status information indicating whether the AI model is activated during configuration
- the validity period of the AI model The terminal device starts a timer after receiving the AI model (the initial value of the timer is the validity period of the AI model). When the timer exceeds the validity period of the AI model, the AI model becomes invalid and can be Optionally, after the expiration date, the terminal device may release the AI model;
- AI model effective area after the terminal device receives the first AI model information, the AI model is valid if the terminal device is in the effective area; the configuration is invalid when the terminal device moves outside the effective area, optionally, move to After being out of the effective area, the terminal device can release the AI model;
- the AI model requests time-frequency resources, that is, the terminal device can request the AI model in the time-frequency resource through random access (for example, request a new AI model when the AI model fails);
- AI model structure information including the specific type of AI model (such as Gaussian process, support vector machine, various neural network methods, etc.) and the specific structure of the model (such as the number of layers of neural network, the number of neurons in each layer, activation function, etc.);
- specific type of AI model such as Gaussian process, support vector machine, various neural network methods, etc.
- specific structure of the model such as the number of layers of neural network, the number of neurons in each layer, activation function, etc.
- AI model parameter information that is, the hyperparameter configuration of the AI model
- AI model data processing method information that is, the preprocessing of input parameters before being input to the AI model, including but not limited to: normalization, upsampling, downsampling, etc.;
- First description information related to the input parameters of the AI model where the first description information includes a defaultable identifier of each input parameter.
- each input parameter is associated with a defaultable flag, if the defaultable flag indicates that the input parameter can be defaulted, then when the input parameter cannot be obtained, it is not necessary to input the parameter;
- the second description information related to the output parameters of the AI model can describe the output parameters. For example, when the output value of the first output parameter is A, it means the first meaning; the output value of the first output parameter is When B, it means the second meaning.
- the activation conditions of the AI model include at least one of the following:
- the reference signal receiving power (Reference Signal Receiving Power, RSRP) of the reference signal of the first network device is less than or equal to the first threshold;
- the RSRP of the reference signal of the second network device is greater than or equal to a second threshold.
- the terminal no longer uses the original method for cell reselection, but adopts the cell reselection method provided in this application, that is, performs cell reselection based on the first AI model information.
- the running cycle information of the AI model includes at least one of the following:
- the terminal runs the running cycle of the AI model, and the motion cycle can be a fixed value T, that is, the terminal device should run the AI model according to a fixed cycle;
- a first parameter related to the measured value of the wireless signal of the terminal is used to determine the running cycle of the AI model, that is, the interval at which the terminal device runs the AI model is related to the reference signal obtained by the current measurement of the terminal device, For example, the lower the RSRP of the first network device reference signal measured by the terminal device, the shorter the cycle;
- the second parameter related to the moving speed of the terminal is used to determine the running cycle of the AI model, that is, the interval for the terminal device to run the AI model is related to the reference signal obtained by the current measurement of the terminal device, such as the terminal The faster the device moves, the shorter the cycle time.
- the default value of the input parameters of the AI model includes at least one of the following:
- a default value of wireless resource information supported by the second network device
- the default value of the service demand type prediction parameter of the terminal is the default value of the service demand type prediction parameter of the terminal.
- the output result includes indication information, and the indication information is used to indicate whether to reselect to the neighboring cell. Further, the output result also includes at least one of the following:
- the cell identifier of the neighboring cell is the cell identifier of the neighboring cell.
- the output result is: reselect to the neighboring cell.
- the confidence threshold can be configured by the first network device or determined according to protocol regulations.
- the AI model input parameters include at least one of the following:
- the cell identifier of the second network device may be represented by a cell identifier such as a physical cell identification code (Physical Cell Identification, PCI) or a cell global identifier (Cell Global Identifier, CGI);
- a cell identifier such as a physical cell identification code (Physical Cell Identification, PCI) or a cell global identifier (Cell Global Identifier, CGI);
- the state information of the terminal that is, the state information of the terminal device itself
- a slice type supported by the second network device
- the service demand type prediction parameter of the terminal is the service demand type prediction parameter of the terminal.
- the terminal can use the following Way to get:
- the last message received before the terminal enters the non-connected state (that is, the inactive state or the idle state), such as a Release message through RRC;
- Messages received by the terminal in a non-connected state such as broadcast messages.
- the reselection method further includes: when it is determined that the AI model is invalid according to the validity period of the AI model, the terminal performs one of the following operations:
- Perform cell reselection in a preset manner which may be understood as a manner in which cell reselection is not based on AI model information.
- the cell reselection method further includes:
- the terminal When the terminal determines to reselect to the neighboring cell, the terminal initiates a random access request to the neighboring cell;
- the random access request carries a random access report
- the random access report includes at least one of the following:
- a cell reselection type identifier which may be used to indicate that cell reselection is implemented based on the first AI model information
- AI model input parameters and parameter values of the AI model input parameters
- a default list of input parameters of the AI model may include default input parameters among the input parameters of the AI model;
- the default value list may include input parameters using default values among the AI model input parameters.
- the random access report is sent to the second network device to feed back the AI model usage record to the network device, which can be used for iterative optimization of the AI model.
- FIG. 3 is another flow chart of the cell reselection method provided by the embodiment of the present application.
- the cell reselection method includes:
- Step 301 The first network device sends first artificial intelligence AI model information, where the first AI model information is information of an AI model used for cell reselection.
- the first network device sends the first AI model information to the terminal to assist the terminal in cell reselection, so that the terminal can reselect to a suitable cell and avoid handover or reselection in a short period of time due to improper cell selection. Directed to other cells to improve communication performance.
- the first AI model information is used to indicate at least one of the following:
- the AI model requests time-frequency resources
- First description information related to the input parameters of the AI model including the default identification of each input parameter
- Second description information related to the output parameters of the AI model is related to the output parameters of the AI model.
- the activation conditions of the AI model include at least one of the following:
- the reference signal received power RSRP of the reference signal of the first network device is less than or equal to a first threshold
- the RSRP of the reference signal of the second network device is greater than or equal to a second threshold.
- the running cycle information of the AI model includes at least one of the following:
- a second parameter related to the moving speed of the terminal where the second parameter is used to determine the running period of the AI model.
- the default value of the input parameters of the AI model includes at least one of the following:
- a default value of wireless resource information supported by the second network device
- the default value of the service demand type prediction parameter of the terminal is the default value of the service demand type prediction parameter of the terminal.
- the first AI model information is carried in the last message sent by the first network device before the terminal enters the inactive state or idle state, or the first AI model information is carried in the terminal In the broadcast message sent by the first network device received in the inactive state or the idle state.
- the method further includes:
- the first network device sends load information to the terminal.
- the load information includes at least one of the following:
- FIG. 4 is another flowchart of a cell reselection method provided in an embodiment of the present application.
- the cell reselection method includes:
- Step 401 the second network device sends information about adjacent cells used for cell reselection, where the information about adjacent cells includes at least one of the following:
- a slice type supported by the second network device
- a wireless signal measurement result of the second network device
- the second network device is a network device corresponding to the adjacent cell.
- the second network device sends the information of adjacent cells to the terminal to assist the terminal in cell reselection, so that the terminal can reselect to a suitable cell, avoiding the need for handover or reselection in a short period of time due to improper cell selection. Directed to other cells to improve communication performance.
- the load information includes at least one of the following:
- the wireless resource information supported by the second network device includes at least one of the following:
- the carrier aggregation combination supported by the second network device
- the dual connectivity combinations supported by the second network device are the dual connectivity combinations supported by the second network device.
- the cell reselection method provided by this application is illustrated as an example below.
- the terminal receives the first AI model information for cell reselection through an RRC release message or a broadcast message, and the first AI model information may be in an active state or an inactive state.
- the terminal enters an idle state (RRC_IDLE) or an inactive state (RRC_INACTIVE) after receiving the RRC release message.
- the terminal monitors the current air interface parameters, and if the AI model activation condition is met, it performs model inference according to the calculated inference cycle. After the AI model is activated, traditional methods (such as R criterion) are no longer used for cell reselection. in,
- the condition for AI model activation can be that the RSRP of the current cell or the neighboring cell exceeds the threshold
- the AI model inference period can be related to the RSRP measurement result and/or the mobile speed of the terminal;
- the AI model has a validity period and a valid range, that is, it is only valid in a specific time and area;
- the terminal may reselect to a new cell at this moment.
- the terminal can:
- the terminal initiates random access on a new reselected cell and needs to generate a random access report, at least one of the following may be included in the report:
- a cell reselection type identifier indicating that cell reselection is implemented based on the AI model
- AI model input parameters and parameter values of the AI model input parameters including AI model input parameters for judging cell reselection
- Random Access Channel report By adding record information in the Random Access Channel report (RACH report), it can be used for iterative optimization of AI models.
- a terminal in an unconnected state conducts reasoning based on the AI model issued by the network for cell reselection, which facilitates the terminal to select a suitable cell for camping.
- the terminal sends a random access report to the network, which provides a source of training input for the network to train the AI model for AI model iteration.
- the cell reselection method provided in the embodiment of the present application may be executed by a cell reselection device, or a control module in the cell reselection device for executing the cell reselection method.
- the cell reselection method performed by the cell reselection device is taken as an example to describe the cell reselection device provided in the embodiment of the present application.
- FIG. 5 is a structural diagram of a cell reselection device provided in an embodiment of the present application.
- the first cell reselection device 500 includes:
- the acquisition module 501 is used for the terminal to input target information into the artificial intelligence AI model to obtain an output result, the target information includes information about the cell where the terminal resides and information about adjacent cells, and the output result includes information about the Information about the terminal reselecting to the adjacent cell;
- a determining module 502 configured to determine whether to reselect to the adjacent cell according to the output result.
- the information of the camped cell includes at least one of the following:
- a radio signal measurement result of a first network device where the first network device is a network device corresponding to the cell where the camping cell is located.
- the information of the neighboring cell includes at least one of the following:
- a cell identity of the second network device
- a slice type supported by the second network device
- a wireless signal measurement result of the second network device
- the second network device is a network device corresponding to the adjacent cell.
- the target information further includes information about the terminal, and the information about the terminal includes at least one of the following:
- the service demand type prediction parameter of the terminal is the service demand type prediction parameter of the terminal.
- a list of historical serving cell identifiers of the terminal is a list of historical serving cell identifiers of the terminal.
- the state information of the terminal includes at least one of the following:
- the wireless signal measurement result of the first network device includes at least one of the following:
- the reference signal received quality RSRQ of the reference signal of the first network device is the reference signal received quality RSRQ of the reference signal of the first network device.
- the radio signal measurement result of the second network device includes at least one of the following:
- the RSRQ of the reference signal of the second network device is the RSRQ of the reference signal of the second network device.
- the historical information includes at least one of the following:
- a historical handover report of the terminal on the second network device
- a historical wireless link failure report of the terminal on the second network device
- a random access report of the terminal on the second network device
- the historical service state of the terminal in the second network device is the historical service state of the terminal in the second network device.
- the load information includes at least one of the following:
- the wireless resource information supported by the second network device includes at least one of the following:
- the carrier aggregation combination supported by the second network device
- the dual connectivity combinations supported by the second network device are the dual connectivity combinations supported by the second network device.
- the AI model is determined according to the first AI model information, and the first AI model information is used to indicate at least one of the following:
- the AI model requests time-frequency resources
- First description information related to the input parameters of the AI model including the default identification of each input parameter
- Second description information related to the output parameters of the AI model is related to the output parameters of the AI model.
- the activation condition of the AI model includes at least one of the following:
- the reference signal received power RSRP of the reference signal of the first network device is less than or equal to a first threshold
- the RSRP of the reference signal of the second network device is greater than or equal to a second threshold.
- the running cycle information of the AI model includes at least one of the following:
- a second parameter related to the moving speed of the terminal where the second parameter is used to determine the running period of the AI model.
- the output result includes indication information, and the indication information is used to indicate whether to reselect to the neighboring cell.
- the output result also includes at least one of the following:
- the cell identifier of the neighboring cell is the cell identifier of the neighboring cell.
- the output result is: reselect to the neighboring cell.
- the first AI model information is carried in the last message received before the terminal enters the inactive state or the idle state, or the first AI model information is carried when the terminal is in the inactive state or in the idle state. In the message received in the case of idle state.
- the device further includes: an execution module, configured to perform one of the following operations when it is determined that the AI model is invalid according to the validity period of the AI model:
- the device also includes:
- a sending module configured to initiate a random access request to the neighboring cell when the terminal determines to reselect to the neighboring cell
- the random access request carries a random access report
- the random access report includes at least one of the following:
- AI model input parameters and parameter values of the AI model input parameters
- the first cell reselection apparatus 500 in the embodiment of the present application may be a device, or a component, an integrated circuit, or a chip in a terminal.
- the first cell reselection apparatus 500 in this embodiment of the present application may be an apparatus with an operating system.
- the operating system may be an Android (Android) operating system, an ios operating system, or other possible operating systems, which are not specifically limited in this embodiment of the present application.
- the first cell reselection apparatus 500 provided in the embodiment of the present application can implement various processes implemented in the method embodiment in FIG. 2 and achieve the same technical effect. To avoid repetition, details are not repeated here.
- FIG. 6 is a structural diagram of a cell reselection device provided by an embodiment of the present application.
- the second cell reselection device 600 includes:
- the first sending module 601 is configured to send first artificial intelligence AI model information, where the first AI model information is information of an AI model used for cell reselection.
- the first AI model information is used to indicate at least one of the following:
- the AI model requests time-frequency resources
- First description information related to the input parameters of the AI model including the default identification of each input parameter
- Second description information related to the output parameters of the AI model is related to the output parameters of the AI model.
- the activation condition of the AI model includes at least one of the following:
- the reference signal received power RSRP of the reference signal of the first network device is less than or equal to a first threshold
- the RSRP of the reference signal of the second network device is greater than or equal to the second threshold.
- the running cycle information of the AI model includes at least one of the following:
- a second parameter related to the moving speed of the terminal where the second parameter is used to determine the running period of the AI model.
- the default value of the input parameter of the AI model includes at least one of the following:
- a default value of wireless resource information supported by the second network device
- the default value of the service demand type prediction parameter of the terminal is the default value of the service demand type prediction parameter of the terminal.
- the first AI model information is carried in the last message sent by the first network device before the terminal enters the inactive state or the idle state, or the first AI model information is carried in the In the broadcast message sent by the first network device received when the terminal is in an inactive state or an idle state.
- the device also includes:
- the second sending module is configured to send load information to the terminal.
- the load information includes at least one of the following:
- the second cell reselection apparatus 600 provided in the embodiment of the present application can realize each process realized by the method embodiment in FIG. 3 and achieve the same technical effect. To avoid repetition, details are not repeated here.
- FIG. 7 is a structural diagram of a cell reselection device provided in an embodiment of the present application.
- the third cell reselection device 700 includes:
- a sending module 701 configured to send information of neighboring cells used for cell reselection, where the information of neighboring cells includes at least one of the following:
- a slice type supported by the second network device
- a wireless signal measurement result of the second network device
- the second network device is a network device corresponding to the adjacent cell.
- the load information includes at least one of the following:
- the wireless resource information supported by the second network device includes at least one of the following:
- the carrier aggregation combination supported by the second network device
- the dual connectivity combinations supported by the second network device are the dual connectivity combinations supported by the second network device.
- the device further includes a receiving module, configured to receive a random access request initiated by the terminal;
- the random access request carries a random access report
- the random access report includes at least one of the following:
- AI model input parameters and parameter values of the AI model input parameters
- the third cell reselection apparatus 700 provided in the embodiment of the present application can implement various processes implemented in the method embodiment in FIG. 4 and achieve the same technical effect. To avoid repetition, details are not repeated here.
- the embodiment of the present application further provides a communication device 80, including a processor 81, a memory 82, and programs or instructions stored in the memory 82 and operable on the processor 81,
- a communication device 80 including a processor 81, a memory 82, and programs or instructions stored in the memory 82 and operable on the processor 81
- the communication device 80 is a terminal
- the program or instruction is executed by the processor 81
- various processes of the above-mentioned cell reselection method embodiment shown in FIG. 2 can be realized, and the same technical effect can be achieved.
- the communication device 80 is a network device
- each process of the cell reselection method embodiment shown in FIG. 3 or FIG. 4 can be realized, and the same technical effect can be achieved.
- FIG. 9 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
- the terminal 1000 includes but not limited to: a radio frequency unit 1001, a network module 1002, an audio output unit 1003, an input unit 1004, a sensor 1005, a display unit 1006, a user input unit 1007, an interface unit 1008, a memory 1009, and a processor 1010, etc. .
- the terminal 1000 can also include a power supply (such as a battery) for supplying power to various components, and the power supply can be logically connected to the processor 1010 through the power management system, so as to manage charging, discharging, and power consumption through the power management system. Management and other functions.
- a power supply such as a battery
- the terminal structure shown in FIG. 9 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine some components, or arrange different components, which will not be repeated here.
- the input unit 1004 may include a graphics processor (Graphics Processing Unit, GPU) 10041 and a microphone 10042, and the graphics processor 10041 is used for the image capture device (such as the image data of the still picture or video obtained by the camera) for processing.
- the display unit 1006 may include a display panel 10061, and the display panel 10061 may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
- the user input unit 1007 includes a touch panel 10071 and other input devices 10072 .
- the touch panel 10071 is also called a touch screen.
- the touch panel 10071 may include two parts, a touch detection device and a touch controller.
- Other input devices 10072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be repeated here.
- the radio frequency unit 1001 receives the downlink data from the network side equipment, and processes it to the processor 1010; in addition, sends the uplink data to the base station.
- the radio frequency unit 1001 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
- the memory 1009 can be used to store software programs or instructions as well as various data.
- the memory 1009 may mainly include a program or instruction storage area and a data storage area, wherein the program or instruction storage area may store an operating system, at least one application program or instruction required by a function (such as a sound playback function, an image playback function, etc.) and the like.
- the memory 1009 may include a high-speed random access memory, and may also include a nonvolatile memory, wherein the nonvolatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM) , PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
- ROM Read-Only Memory
- PROM programmable read-only memory
- PROM erasable programmable read-only memory
- Erasable PROM Erasable PROM
- EPROM electrically erasable programmable read-only memory
- EEPROM electrically erasable programmable read-only memory
- flash memory for example at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage device.
- the processor 1010 may include one or more processing units; optionally, the processor 1010 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface and application programs or instructions, etc., Modem processors mainly handle wireless communications, such as baseband processors. It can be understood that the foregoing modem processor may not be integrated into the processor 1010 .
- the processor 1010 is configured to input target information into the artificial intelligence AI model to obtain an output result, the target information includes information about the cell where the terminal resides and information about adjacent cells, and the output result includes information about the information that the terminal reselects to the adjacent cell;
- the information of the camped cell includes at least one of the following:
- the radio signal measurement result of the first network device where the first network device is the network device corresponding to the cell where the camping cell is located.
- the information of the neighboring cell includes at least one of the following:
- a cell identity of the second network device
- a slice type supported by the second network device
- a wireless signal measurement result of the second network device
- the second network device is a network device corresponding to the adjacent cell.
- the target information further includes information about the terminal, and the information about the terminal includes at least one of the following:
- the service demand type prediction parameter of the terminal is the service demand type prediction parameter of the terminal.
- a list of historical serving cell identifiers of the terminal is a list of historical serving cell identifiers of the terminal.
- the state information of the terminal includes at least one of the following:
- the wireless signal measurement result of the first network device includes at least one of the following:
- the reference signal received quality RSRQ of the reference signal of the first network device is the reference signal received quality RSRQ of the reference signal of the first network device.
- the radio signal measurement result of the second network device includes at least one of the following:
- the RSRQ of the reference signal of the second network device is the RSRQ of the reference signal of the second network device.
- the historical information includes at least one of the following:
- a historical handover report of the terminal on the second network device
- a historical wireless link failure report of the terminal on the second network device
- a random access report of the terminal on the second network device
- the historical service state of the terminal in the second network device is the historical service state of the terminal in the second network device.
- the load information includes at least one of the following:
- the wireless resource information supported by the second network device includes at least one of the following:
- the carrier aggregation combination supported by the second network device
- the dual connectivity combinations supported by the second network device are the dual connectivity combinations supported by the second network device.
- the AI model is determined according to the first AI model information, and the first AI model information is used to indicate at least one of the following:
- the AI model requests time-frequency resources
- First description information related to the input parameters of the AI model including the default identification of each input parameter
- Second description information related to the output parameters of the AI model is related to the output parameters of the AI model.
- the activation condition of the AI model includes at least one of the following:
- the reference signal received power RSRP of the reference signal of the first network device is less than or equal to a first threshold
- the RSRP of the reference signal of the second network device is greater than or equal to a second threshold.
- the running cycle information of the AI model includes at least one of the following:
- a second parameter related to the moving speed of the terminal where the second parameter is used to determine the running period of the AI model.
- the output result includes indication information, and the indication information is used to indicate whether to reselect to the neighboring cell.
- the output result also includes at least one of the following:
- the cell identifier of the neighboring cell is the cell identifier of the neighboring cell.
- the output result is: reselect to the neighboring cell.
- the first AI model information is carried in the last message received before the terminal enters the inactive state or the idle state, or the first AI model information is carried when the terminal is in the inactive state or in the idle state. In the message received in the case of idle state.
- the processor 1010 is configured to perform one of the following operations:
- the radio frequency unit 1001 is configured to initiate a random access request to the neighboring cell when it is determined to reselect to the neighboring cell;
- the random access request carries a random access report
- the random access report includes at least one of the following:
- AI model input parameters and parameter values of the AI model input parameters
- the terminal 1000 provided in the foregoing embodiment can implement various processes implemented by the method embodiment in FIG. 2 and achieve the same technical effect. To avoid repetition, details are not described here.
- the embodiment of the present application also provides a network side device.
- the network side device 900 includes: an antenna 91 , a radio frequency device 92 , and a baseband device 93 .
- the antenna 91 is connected to a radio frequency device 92 .
- the radio frequency device 92 receives information through the antenna 91, and sends the received information to the baseband device 93 for processing.
- the baseband device 93 processes the information to be sent and sends it to the radio frequency device 92
- the radio frequency device 92 processes the received information and sends it out through the antenna 91 .
- the foregoing frequency band processing device may be located in the baseband device 93 , and the method performed by the network side device in the above embodiments may be implemented in the baseband device 93 , and the baseband device 93 includes a processor 94 and a memory 95 .
- Baseband device 93 for example can comprise at least one baseband board, and this baseband board is provided with a plurality of chips, as shown in Figure 10, wherein one chip is for example processor 94, is connected with memory 95, to call the program in memory 95, execute The network device operations shown in the above method embodiments.
- the baseband device 93 may also include a network interface 96 for exchanging information with the radio frequency device 92, such as a common public radio interface (common public radio interface, CPRI).
- a network interface 96 for exchanging information with the radio frequency device 92, such as a common public radio interface (common public radio interface, CPRI).
- CPRI common public radio interface
- the network-side device in the embodiment of the present application further includes: instructions or programs stored in the memory 95 and operable on the processor 94, and the processor 94 calls the instructions or programs in the memory 95 to execute the instructions shown in FIGS. 6 and 7 .
- the methods executed by each module are shown to achieve the same technical effect. In order to avoid repetition, the details are not repeated here.
- the embodiment of the present application also provides a readable storage medium, the readable storage medium may be nonvolatile or volatile, the readable storage medium stores programs or instructions, and the programs or instructions are stored in When executed by the processor, each process of the method embodiment described in FIG. 2 , FIG. 3 or FIG. 4 can be realized, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
- the processor is the processor in the terminal or the network side device described in the foregoing embodiments.
- the readable storage medium includes computer readable storage medium, such as computer read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk, etc.
- the embodiment of the present application further provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run a network-side device program or instruction to implement the above-mentioned Figure 2,
- the chip includes a processor and a communication interface
- the communication interface is coupled to the processor
- the processor is used to run a network-side device program or instruction to implement the above-mentioned Figure 2,
- the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
- An embodiment of the present application also provides a computer program product, the computer program product is stored in a non-transitory storage medium, and the computer program product is executed by at least one processor to implement the above-mentioned FIG. 2 , FIG. 3 or FIG. 4 .
- the various processes of the method embodiments can achieve the same technical effect, and are not repeated here to avoid repetition.
- the term “comprising”, “comprising” or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or apparatus comprising a set of elements includes not only those elements, It also includes other elements not expressly listed, or elements inherent in the process, method, article, or device. Without further limitations, an element defined by the phrase “comprising a " does not preclude the presence of additional identical elements in the process, method, article, or apparatus comprising that element.
- the scope of the methods and devices in the embodiments of the present application is not limited to performing functions in the order shown or discussed, and may also include performing functions in a substantially simultaneous manner or in reverse order according to the functions involved. Functions are performed, for example, the described methods may be performed in an order different from that described, and various steps may also be added, omitted, or combined. Additionally, features described with reference to certain examples may be combined in other examples.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Computer Security & Cryptography (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请公开了一种小区重选方法、装置及相关设备,属于通信技术领域。其中,方法包括:终端将目标信息输入到人工智能AI模型,得到输出结果,所述目标信息包括所述终端的驻留小区的信息和相邻小区的信息,所述输出结果包括关于所述终端重选到所述相邻小区的信息;所述终端根据所述输出结果确定是否重选到所述相邻小区。
Description
相关申请的交叉引用
本申请主张在2021年10月21日在中国提交的中国专利申请No.202111228031.9的优先权,其全部内容通过引用包含于此。
本申请属于通信技术领域,具体涉及一种小区重选方法、装置及相关设备。
当终端处于非激活态或空闲态时,会选择某个小区驻留,当终端需要进入连接态时,会在驻留的小区发起接入。对于网络而言,为了平衡不同频点之间的随机接入负荷,需要在终端选择小区驻留时尽量使其均匀分布。同时,为了使终端在服务小区上获得更好的性能,需要终端在选择小区驻留时选择信号质量更优的小区。
相关技术中的小区重选,终端在驻留小区建立无线资源控制(Radio Resource Control,RRC)连接进入连接态后,可能短时间内需要切换或重定向至其他的小区,造成通信性能下降。
发明内容
本申请实施例的提供一种小区重选方法、装置及相关设备,能够解决相关技术中的小区重现方式驻留小区选择不当,造成通信性能下降的问题。
第一方面,提供了一种小区重选方法,包括:
终端将目标信息输入到人工智能AI模型,得到输出结果,所述目标信息包括所述终端的驻留小区的信息和相邻小区的信息,所述输出结果包括关于所述终端重选到所述相邻小区的信息;
所述终端根据所述输出结果确定是否重选到所述相邻小区。
第二方面,提供了一种小区重选方法,包括:
第一网络设备发送第一人工智能AI模型信息,所述第一AI模型信息为用于进行小区重选的AI模型的信息。
第三方面,提供了一种小区重选方法,包括:
第二网络设备发送用于小区重选的相邻小区的信息,所述相邻小区的信息包括如下至少一项:
所述第二网络设备的小区标识;
所述第二网络设备支持的业务类型;
所述第二网络设备支持的无线资源信息;
所述第二网络设备支持的切片类型;
所述第二网络设备的天面法线方向;
所述第二网络设备的负荷信息;
所述第二网络设备的无线信号测量结果;
所述第二网络设备在服务所述终端过程中产生的历史信息;
其中,所述第二网络设备为所述相邻小区对应的网络设备。
第四方面,提供了一种小区重选装置,包括:
获取模块,用于将目标信息输入到人工智能AI模型,得到输出结果,所述目标信息包括所述终端的驻留小区的信息和相邻小区的信息,所述输出结果包括关于所述终端重选到所述相邻小区的信息;
确定模块,用于根据所述输出结果确定是否重选到所述相邻小区。
第五方面,提供了一种小区重选装置,包括:
发送模块,用于发送第一人工智能AI模型信息,所述第一AI模型信息为用于进行小区重选的AI模型的信息。
第六方面,提供了一种小区重选装置,包括:
发送模块,用于发送用于小区重选的相邻小区的信息,所述相邻小区的信息包括如下至少一项:
所述第二网络设备的小区标识;
所述第二网络设备支持的业务类型;
所述第二网络设备支持的无线资源信息;
所述第二网络设备支持的切片类型;
所述第二网络设备的天面法线方向;
所述第二网络设备的负荷信息;
所述第二网络设备的无线信号测量结果;
所述第二网络设备在服务所述终端过程中产生的历史信息;
其中,所述第二网络设备为所述相邻小区对应的网络设备。
第七方面,提供了一种终端,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的小区重选方法的步骤。
第八方面,提供了一种网络设备,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第二方面或第三方面所述的小区重选方法的步骤。
第九方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面或第二方面或第三方面所述的小区重选方法的步骤。
第十方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行网络设备程序或指令,实现如第一方面或第二方面或第三方面所述的小区重选方法。
第十一方面,提供一种通信设备,被配置为执行如第一方面所述的方法的步骤,或者执行如第二方面所述的方法的步骤,或者执行如第三方面所述的方法的步骤。
在本申请实施例中,终端将目标信息输入到人工智能AI模型,得到输出结果,所述目标信息包括所述终端的驻留小区的信息和相邻小区的信息,所述输出结果包括关于所述终端重选到所述相邻小区的信息;所述终端根据所述输出结果确定是否重选到所述相邻小区。终端根据AI模型,可使得终端可重选至合适的小区上,避免小区选择不当短时间内需要切换或重定向至其他的小区,提高通信性能。
图1是本申请实施例提供的一种网络系统的结构图;
图2是本申请实施例提供的小区重选方法的一流程图;
图3是本申请实施例提供的小区重选方法的另一流程图;
图4是本申请实施例提供的小区重选方法的又一流程图;
图5是本申请实施例提供的小区重选装置的一结构图;
图6是本申请实施例提供的小区重选装置的另一结构图;
图7是本申请实施例提供的小区重选装置的又一结构图;
图8是本申请实施例提供的通信设备的结构图;
图9是本申请实施例提供的终端的结构图;
图10是本申请实施例提供的网络侧设备的结构图。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。本申请中‘传输’表示信号的传送,并非狭义上的信号发送。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。然而,以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,尽管这些技术也可应用于NR系统应用以外的应用,如第6代(6
th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的结构图。无线通信系统包括终端11和网络侧设备12(也可称为网络设备)。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)等终端侧设备,可穿戴式设备包括:手环、耳机、眼镜等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以是基站或核心网,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(Evolved Node B,eNB)、家用B节点、家用演进型B节点、无线局域网(Wireless Local Area Network,WLAN)接入点、WiFi节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的小区重选方法进行详细地说明。
请参见图2,图2是本申请实施例提供的一种小区重选方法的流程图,该小区重选方法,包括:
步骤201、终端将目标信息输入到人工智能AI模型,得到输出结果,所述目标信息包括所述终端的驻留小区的信息和相邻小区的信息,所述输出结果包括关于所述终端重选到所述相邻小区的信息。
相邻小区为与终端接入的当前小区相邻的小区。终端可从第一网络设备获取用于小区重选的第一人工智能(Artificial Intelligence,AI)模型信息,并根据第一AI模型信息确定AI模型,所述终端可处于非激活态或空闲态。
第一网络设备可以是发送连接释放的小区或驻留小区所在的网络设备,或者,第一网络设备也可以是操作维护管理(Operation Administration and Maintenance,OAM)设备或网络数据分析功能(Network Data Analytics Function,NWDAF)。
终端可在进入非激活态或空闲态之前,接收第一网络设备发送的最后一条消息,最后一条消息中携带第一模型信息,或者,终端可通过广播消息接收第一网络设备发送的第一AI模型信息。所述第一AI模型信息携带在所述终端进入非激活态或空闲态之前接收的最后一条消息中,或者,所述第一AI模型信息携带在所述终端处于非激活态或空闲态的情况下接收的消息中。
也就是说,第一AI模型信息可携带在所述终端进入非激活态或空闲态之前接收的最后一条消息中,或者,所述第一AI模型信息携带在所述终端处于非激活态或空闲态的情况下接收的消息中。
步骤202、所述终端根据所述输出结果确定是否重选到所述相邻小区。
根据AI模型的推理结果(即输出结果),可用于辅助终端是否重选至相邻小区。
本实施例中,终端将目标信息输入到人工智能AI模型,得到输出结果,所述目标信息包括所述终端的驻留小区的信息和相邻小区的信息,所述输出结果包括关于所述终端重选到所述相邻小区的信息;所述终端根据所述输出结果确定是否重选到所述相邻小区。终端根据AI模型,可使得终端可重选至合适的小区上,避免小区选择不当短时间内需要切换或重定向至其他的小区,提高通信性能。
上述中,所述驻留小区的信息包括以下至少一项:
第一网络设备的天面法线方向;
第一网络设备的负荷信息;
第一网络设备的无线信号测量结果,所述第一网络设备为所述驻留小区对应的网络设备。
其中,所述第一网络设备的无线信号测量结果,包括如下至少一项:
所述第一网络设备参考信号的参考信号接收功率(Reference Signal Received Power,RSRP);
所述第一网络设备参考信号的参考信号接收质量(Reference Signal Receiving Quality,RSRQ)。
上述中,所述相邻小区的信息包括以下至少一项:
第二网络设备的小区标识;
所述第二网络设备支持的业务类型;
所述第二网络设备支持的无线资源信息;
所述第二网络设备支持的切片类型;
所述第二网络设备的天面法线方向;
所述第二网络设备的负荷信息;
所述第二网络设备的无线信号测量结果;
所述第二网络设备在服务所述终端过程中产生的历史信息;
其中,所述第二网络设备为所述相邻小区对应的网络设备。
上述中,所述第二网络设备的无线信号测量结果,包括如下至少一项:
所述第二网络设备参考信号的RSRP;
所述第二网络设备参考信号的RSRQ。
上述中,所述历史信息,包括如下至少一项:
所述终端在所述第二网络设备的历史切换报告;
所述终端在所述第二网络设备的历史无线链路故障报告;
所述终端在所述第二网络设备的随机接入报告;
所述终端在所述第二网络设备的历史服务状态。
上述中,所述第二网络设备支持的无线资源信息,包括如下至少一项:
所述第二网络设备支持的带宽;
所述第二网络设备是否支持载波聚合;
所述第二网络设备支持的载波聚合组合;
所述第二网络设备是否支持双连接;
所述第二网络设备支持的双连接组合。
在本申请一种实施例中,所述负荷信息,包括如下至少一项:
物理资源块(Physical Resource Block,PRB)利用率;
无线资源控制(Radio Resource Control,RRC)连接数,即处于连接态的终端数量;
存储的非激活态的终端会话数量;
时间戳信息,即负荷预测对应的未来时间,如某系统帧或某时隙。
在本申请一种实施例中,所述目标信息还包括所述终端的信息,所述终端的信息包括以下至少一项:
所述终端的状态信息;
所述终端的业务需求类型预测参数;
所述终端的历史服务小区标识列表,所述历史服务小区标识可通过物理小区识别码(Physical Cell Identification,PCI)或小区全球标识符(Cell Global Identifier,CGI)等小区标识表示;
其中,所述终端的状态信息包括如下至少一项:
所述终端的位置信息,例如,全球定位系统(Global Positioning System,GPS)测量结果;
所述终端的移动信息,例如,移动方向和移动速度。
上述中,所述AI模型根据所述第一AI模型信息确定,所述第一AI模型信息用于指示如下至少一项:
(1)AI模型标识,该标识在终端(下述中也可称为终端设备)中唯一标识单个AI模型;
(2)AI模型状态信息,指示AI模型在配置时是否为激活状态;
(3)AI模型的激活条件;
(4)AI模型的运行周期信息,即AI模型激活后每隔多长时间执行一次;
(5)AI模型有效期限,终端设备收到所述AI模型后启动计时器(计时器初始值为AI模型有效期限),当计时器时长超过AI模型有效期限后,所述 AI模型失效,可选地,有效期限后,终端设备可以释放所述AI模型;
(6)AI模型有效区域,终端设备收到所述第一AI模型信息后,终端设备在效区域内则AI模型有效;终端设备移动至有效区域外则该配置无效,可选地,移动至有效区域外后,终端设备可以释放AI模型;
(7)AI模型请求时频资源,即终端设备可在该时频资源,通过随机接入的方式请求AI模型(例如,在AI模型失效的情况下,请求新的AI模型);
(8)AI模型结构信息,包括AI模型的具体类型(如高斯过程、支持向量机、各种神经网络方法等)以及模型的具体结构(如神经网络的层数、各层神经元个数、激活函数等);
(9)AI模型参数信息,即AI模型的超参数配置;
(10)AI模型数据处理方式信息,即输入参数在输入到AI模型之前的预处理,包括但不限于:归一化,上采样,降采样等;
(11)与AI模型输入参数相关的第一描述信息,所述第一描述信息包括各输入参数的可缺省标识。例如,各输入参数关联可缺省标识,若可缺省标识该输入参数可缺省,则当该输入参数无法获取时,可无需输入该参数;
(12)AI模型输入参数的默认值,即在终端设备无法获取所需输入值的情况下,可用该默认值作为输入;
(13)与AI模型输出参数相关的第二描述信息,第二描述信息可对输出参数进行描述,例如,第一输出参数输出值为A时,表示第一意义;第一输出参数输出值为B时,表示第二意义。
上述中,所述AI模型的激活条件包括如下至少一项:
所述第一网络设备参考信号的参考信号接收功率(Reference Signal Receiving Power,RSRP)小于或等于第一阈值;
所述第二网络设备参考信号的RSRP大于或等于第二阈值。
需要说明的是,所述AI模型激活后,终端不再使用原有方式进行小区重选,而且采用本申请提供的小区重选方式,即基于第一AI模型信息进行小区重选。
上述中,所述AI模型的运行周期信息包括如下至少一项:
所述终端运行所述AI模型的运行周期,该运动周期可为固定值T,即终 端设备应按照固定周期运行AI模型;
与所述终端的无线信号测量值相关的第一参数,所述第一参数用于确定所述AI模型的运行周期,即终端设备运行AI模型的间隔与终端设备当前测量获得的参考信号相关,如终端设备测得的第一网络设备参考信号的RSRP越低,周期越短;
与所述终端的移动速度相关的第二参数,所述第二参数用于确定所述AI模型的运行周期,即终端设备运行AI模型的间隔与终端设备当前测量获得的参考信号相关,如终端设备移动速度越大,周期越短。
上述中,所述AI模型输入参数的默认值包括如下至少一项:
所述第二网络设备的小区标识默认值;
所述终端的状态信息默认值;
无线信号测量结果默认值;
历史信息默认值;
网络负荷信息默认值;
所述第二网络设备支持的业务类型默认值;
所述第二网络设备支持的切片类型默认值;
所述第二网络设备支持的无线资源信息默认值;
所述第一网络设备的天面法线方向默认值;
所述第二网络设备的天面法线方向默认值;
所述终端的业务需求类型预测参数默认值。
一种实现方式中,所述输出结果包括指示信息,所述指示信息用于指示是否重选至所述相邻小区。进一步的,所述输出结果,还包括如下至少一项:
重选至所述相邻小区的置信系数;
重选至所述相邻小区的时间;
所述相邻小区的小区标识。
在所述置信系数大于置信阈值的情况下,所述输出结果为:重选至所述相邻小区。置信阈值可以通过第一网络设备配置或根据协议规定确定。
所述AI模型输入参数包括如下至少一项:
所述第二网络设备的小区标识,所述第二网络设备的小区标识可通过物 理小区识别码(Physical Cell Identification,PCI)或小区全球标识符(Cell Global Identifier,CGI)等小区标识表示;
所述终端的状态信息,即所述终端设备的自身状态信息;
无线信号测量结果;
历史信息;
负荷信息;
所述第二网络设备支持的业务类型;
所述第二网络设备支持的无线资源信息;
所述第二网络设备支持的切片类型;
所述第一网络设备的天面法线方向;
所述第二网络设备的天面法线方向;
所述终端的业务需求类型预测参数。
本申请中,所述第一AI模型信息,第一网络设备的网络负荷信息,第二网络设备的网络负荷信息,第二网络设备支持的业务类型、切片类型、无线资源信息,终端可以通过以下方式获取:
终端进入非连接态(即非激活态或空闲态)之前接收的最后一条消息,如通过RRC释放(Release)消息;
终端处于非连接态接收的消息,如广播消息。
在另一种实现方式中,所述重选方法还包括:在根据所述AI模型有效期限确定所述AI模型失效的情况下,所述终端执行如下一项操作:
通过广播接收第二AI模型信息;
通过随机接入请求获取第二AI模型信息,其中,随机接入请求的资源可以使用所述第一AI模型信息中AI模型请求时频资源;
按照预设方式进行小区重选,预设方式可理解为不基于AI模型信息进行小区重选的方式。
在一种实现方式中,所述小区重选方法还包括:
在所述终端确定重选至所述相邻小区的情况下,所述终端向所述相邻小区发起随机接入请求;
其中,所述随机接入请求携带随机接入报告,所述随机接入报告包括如 下至少一项:
小区重选类型标识,该标识可用于指示小区重选是基于所述第一AI模型信息实现的;
AI模型输入参数以及所述AI模型输入参数的参数值;
AI模型标识;
所述AI模型输入参数的缺省列表,缺省列表可包括AI模型输入参数中为缺省的输入参数;
使用AI模型输入参数的默认值的默认值列表,默认值列表可包括AI模型输入参数中使用了默认值的输入参数。
将随机接入报告发送给第二网络设备,以向网络设备反馈AI模型使用记录,可用于AI模型的迭代优化。
请参见图3,图3是本申请实施例提供的小区重选方法的另一流程图,该小区重选方法,包括:
步骤301、第一网络设备发送第一人工智能AI模型信息,所述第一AI模型信息为用于进行小区重选的AI模型的信息。
本实施例中,第一网络设备将第一AI模型信息发送给终端,以辅助终端进行小区重选,可使得终端可重选至合适的小区上,避免小区选择不当短时间内需要切换或重定向至其他的小区,提高通信性能。
上述中,所述第一AI模型信息用于指示如下至少一项:
AI模型标识;
AI模型状态信息;
AI模型的激活条件;
AI模型的运行周期信息;
AI模型有效期限;
AI模型有效区域;
AI模型请求时频资源;
AI模型结构信息;
AI模型参数信息;
AI模型数据处理方式信息;
与AI模型输入参数相关的第一描述信息,所述第一描述信息包括各输入参数的可缺省标识;
AI模型输入参数的默认值;
与AI模型输出参数相关的第二描述信息。
上述中,所述AI模型的激活条件包括如下至少一项:
所述第一网络设备参考信号的参考信号接收功率RSRP小于或等于第一阈值;
所述第二网络设备参考信号的RSRP大于或等于第二阈值。
上述中,所述AI模型的运行周期信息包括如下至少一项:
所述终端运行所述AI模型的运行周期;
与所述终端的无线信号测量值相关的第一参数,所述第一参数用于确定所述AI模型的运行周期;
与所述终端的移动速度相关的第二参数,所述第二参数用于确定所述AI模型的运行周期。
上述中,所述AI模型输入参数的默认值包括如下至少一项:
所述第二网络设备的小区标识默认值;
所述终端的状态信息默认值;
无线信号测量结果默认值;
历史信息默认值;
网络负荷信息默认值;
所述第二网络设备支持的业务类型默认值;
所述第二网络设备支持的切片类型默认值;
所述第二网络设备支持的无线资源信息默认值;
所述第一网络设备的天面法线方向默认值;
所述第二网络设备的天面法线方向默认值;
所述终端的业务需求类型预测参数默认值。
上述中,所述第一AI模型信息携带在所述终端进入非激活态或空闲态之前所述第一网络设备发送的最后一条消息中,或者,所述第一AI模型信息携带在所述终端处于非激活态或空闲态的情况下接收的第一网络设备发送的广 播消息中。
在一种实现方式中,所述方法还包括:
所述第一网络设备向所述终端发送负荷信息。
其中,所述负荷信息,包括如下至少一项:
物理资源块PRB利用率;
无线资源控制RRC连接数;
存储的非激活态的终端会话数量;
时间戳信息。
请参见图4,图4是本申请实施例提供的一种小区重选方法的又一流程图,该小区重选方法,包括:
步骤401、第二网络设备发送用于小区重选的相邻小区的信息,所述相邻小区的信息包括如下至少一项:
所述第二网络设备的小区标识;
所述第二网络设备支持的业务类型;
所述第二网络设备支持的无线资源信息;
所述第二网络设备支持的切片类型;
所述第二网络设备的天面法线方向;
所述第二网络设备的负荷信息;
所述第二网络设备的无线信号测量结果;
所述第二网络设备在服务所述终端过程中产生的历史信息;
所述第二网络设备为所述相邻小区对应的网络设备。
本实施例中,第二网络设备将相邻小区的信息发送给终端,以辅助终端进行小区重选,可使得终端可重选至合适的小区上,避免小区选择不当短时间内需要切换或重定向至其他的小区,提高通信性能。
其中,所述负荷信息包括如下至少一项:
物理资源块PRB利用率;
无线资源控制RRC连接数;
存储的非激活态的终端会话数量;
时间戳信息。
上述中,所述第二网络设备支持的无线资源信息,包括如下至少一项:
所述第二网络设备支持的带宽;
所述第二网络设备是否支持载波聚合;
所述第二网络设备支持的载波聚合组合;
所述第二网络设备是否支持双连接;
所述第二网络设备支持的双连接组合。
以下对本申请提供的小区重选方法进行举例说明。
1.终端通过RRC释放消息或广播消息接收用于小区重选的第一AI模型信息,第一AI模型信息可以为激活态或非激活态。
2.终端接收RRC释放消息后进入空闲态(RRC_IDLE)或非激活态(RRC_INACTIVE)。
3.终端监测当前空口参数,若AI模型激活条件满足,则根据计算的推理周期,进行模型推理。AI模型激活后,不再使用传统方式(例如R准则)进行小区重选。其中,
AI模型激活的条件可以是本小区或邻小区的RSRP超过阈值;
AI模型推理周期可以跟RSRP测量结果和/或终端的移动速度相关;
AI模型具有有效期和有效范围,即只在特定时间和区域内有效;
4.若推理结果(即AI模型输出结果)为在某一时刻重选到另一小区,则终端可以在该时刻重选至新的小区。
5.若AI模型失效,则终端可以:
通过广播接收第二AI模型信息;
通过随机接入请求第二AI模型信息;
回退至原有方式进行小区重选;
6.若终端在新的重选小区上发起随机接入且需要生成随机接入报告时,可在该报告中包括以下至少之一:
小区重选类型标识,指示小区重选是基于所述AI模型实现的;
AI模型输入参数以及所述AI模型输入参数的参数值,包括判决小区重选的AI模型输入参数;
AI模型标识;
使用所述AI模型的输入默认值列表,即哪些AI模型输入参数使用了默认值;
通过在随机接入报告(Random Access Channel report,RACH report)中增加记录信息,可用于AI模型迭代优化。
本申请提供的小区重选方法,处于非连接态的终端基于网络下发用于小区重选的AI模型进行推理,便于终端选择合适的小区进行驻留。同时,终端向网络发送随机接入报告,可为网络训练AI模型提供了训练输入来源,用于AI模型迭代。
需要说明的是,本申请实施例提供的小区重选方法,执行主体可以为小区重选装置,或者,该小区重选装置中的用于执行小区重选方法的控制模块。
以下实施例中以小区重选装置执行小区重选方法为例,说明本申请实施例提供的小区重选装置。
请参见图5,图5是本申请实施例提供的一种小区重选装置的结构图,第一小区重选装置500,包括:
获取模块501,用于终端将目标信息输入到人工智能AI模型,得到输出结果,所述目标信息包括所述终端的驻留小区的信息和相邻小区的信息,所述输出结果包括关于所述终端重选到所述相邻小区的信息;
确定模块502,用于根据所述输出结果确定是否重选到所述相邻小区。
可选地,所述驻留小区的信息包括以下至少一项:
第一网络设备的天面法线方向;
第一网络设备的负荷信息;
第一网络设备的无线信号测量结果,所述第一网络设备为所述驻留小区对应的网络设备。
可选地,所述相邻小区的信息包括以下至少一项:
第二网络设备的小区标识;
所述第二网络设备支持的业务类型;
所述第二网络设备支持的无线资源信息;
所述第二网络设备支持的切片类型;
所述第二网络设备的天面法线方向;
所述第二网络设备的负荷信息;
所述第二网络设备的无线信号测量结果;
所述第二网络设备在服务所述终端过程中产生的历史信息;
其中,所述第二网络设备为所述相邻小区对应的网络设备。
可选地,所述目标信息还包括所述终端的信息,所述终端的信息包括以下至少一项:
所述终端的状态信息;
所述终端的业务需求类型预测参数;
所述终端的历史服务小区标识列表。
可选地,所述终端的状态信息包括如下至少一项:
所述终端的位置信息;
所述终端的移动信息。
可选地,所述第一网络设备的无线信号测量结果,包括如下至少一项:
所述第一网络设备参考信号的参考信号接收功率RSRP;
所述第一网络设备参考信号的参考信号接收质量RSRQ。
可选地,所述第二网络设备的无线信号测量结果,包括如下至少一项:
所述第二网络设备参考信号的RSRP;
所述第二网络设备参考信号的RSRQ。
可选地,所述历史信息,包括如下至少一项:
所述终端在所述第二网络设备的历史切换报告;
所述终端在所述第二网络设备的历史无线链路故障报告;
所述终端在所述第二网络设备的随机接入报告;
所述终端在所述第二网络设备的历史服务状态。
可选地,所述负荷信息包括如下至少一项:
物理资源块PRB利用率;
无线资源控制RRC连接数;
存储的非激活态的终端会话数量;
时间戳信息。
可选地,所述第二网络设备支持的无线资源信息,包括如下至少一项:
所述第二网络设备支持的带宽;
所述第二网络设备是否支持载波聚合;
所述第二网络设备支持的载波聚合组合;
所述第二网络设备是否支持双连接;
所述第二网络设备支持的双连接组合。
可选地,所述AI模型根据所述第一AI模型信息确定,所述第一AI模型信息用于指示如下至少一项:
AI模型标识;
AI模型状态信息;
AI模型的激活条件;
AI模型的运行周期信息;
AI模型有效期限;
AI模型有效区域;
AI模型请求时频资源;
AI模型结构信息;
AI模型参数信息;
AI模型数据处理方式信息;
与AI模型输入参数相关的第一描述信息,所述第一描述信息包括各输入参数的可缺省标识;
AI模型输入参数的默认值;
与AI模型输出参数相关的第二描述信息。
可选地,所述AI模型的激活条件包括如下至少一项:
所述第一网络设备参考信号的参考信号接收功率RSRP小于或等于第一阈值;
所述第二网络设备参考信号的RSRP大于或等于第二阈值。
可选地,所述AI模型的运行周期信息包括如下至少一项:
所述终端运行所述AI模型的运行周期;
与所述终端的无线信号测量值相关的第一参数,所述第一参数用于确定所述AI模型的运行周期;
与所述终端的移动速度相关的第二参数,所述第二参数用于确定所述AI模型的运行周期。
可选地,所述输出结果包括指示信息,所述指示信息用于指示是否重选至所述相邻小区。
可选地,所述输出结果,还包括如下至少一项:
重选至所述相邻小区的置信系数;
重选至所述相邻小区的时间;
所述相邻小区的小区标识。
可选地,在所述置信系数大于置信阈值的情况下,所述输出结果为:重选至所述相邻小区。
可选地,所述第一AI模型信息携带在所述终端进入非激活态或空闲态之前接收的最后一条消息中,或者,所述第一AI模型信息携带在所述终端处于非激活态或空闲态的情况下接收的消息中。
可选地,所述装置还包括:执行模块,用于在根据所述AI模型有效期限确定所述AI模型失效的情况下,执行如下一项操作:
通过广播接收第二AI模型信息;
通过随机接入请求获取第二AI模型信息;
按照预设方式进行小区重选。
可选地,所述装置还包括:
发送模块,用于在所述终端确定重选至所述相邻小区的情况下,向所述相邻小区发起随机接入请求;
其中,所述随机接入请求携带随机接入报告,所述随机接入报告包括如下至少一项:
小区重选类型标识;
AI模型输入参数以及所述AI模型输入参数的参数值;
AI模型标识;
所述AI模型输入参数的缺省列表;
使用AI模型输入参数的默认值的默认值列表。
本申请实施例中的第一小区重选装置500可以是装置,也可以是终端中 的部件、集成电路、或芯片。
本申请实施例中的第一小区重选装置500可以为具有操作系统的装置。该操作系统可以为安卓(Android)操作系统,可以为ios操作系统,还可以为其他可能的操作系统,本申请实施例不作具体限定。
本申请实施例提供的第一小区重选装置500能够实现图2的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
请参见图6,图6是本申请实施例提供的一种小区重选装置的结构图,第二小区重选装置600,包括:
第一发送模块601,用于发送第一人工智能AI模型信息,所述第一AI模型信息为用于进行小区重选的AI模型的信息。
可选地,所述第一AI模型信息用于指示如下至少一项:
AI模型标识;
AI模型状态信息;
AI模型的激活条件;
AI模型的运行周期信息;
AI模型有效期限;
AI模型有效区域;
AI模型请求时频资源;
AI模型结构信息;
AI模型参数信息;
AI模型数据处理方式信息;
与AI模型输入参数相关的第一描述信息,所述第一描述信息包括各输入参数的可缺省标识;
AI模型输入参数的默认值;
与AI模型输出参数相关的第二描述信息。
可选地,所述AI模型的激活条件包括如下至少一项:
所述第一网络设备参考信号的参考信号接收功率RSRP小于或等于第一阈值;
第二网络设备参考信号的RSRP大于或等于第二阈值。
可选地,所述AI模型的运行周期信息包括如下至少一项:
所述终端运行所述AI模型的运行周期;
与所述终端的无线信号测量值相关的第一参数,所述第一参数用于确定所述AI模型的运行周期;
与所述终端的移动速度相关的第二参数,所述第二参数用于确定所述AI模型的运行周期。
可选地,所述AI模型输入参数的默认值包括如下至少一项:
所述第二网络设备的小区标识默认值;
所述终端的状态信息默认值;
无线信号测量结果默认值;
历史信息默认值;
网络负荷信息默认值;
所述第二网络设备支持的业务类型默认值;
所述第二网络设备支持的切片类型默认值;
所述第二网络设备支持的无线资源信息默认值;
所述第一网络设备的天面法线方向默认值;
所述第二网络设备的天面法线方向默认值;
所述终端的业务需求类型预测参数默认值。
可选地,所述第一AI模型信息携带在所述终端进入非激活态或空闲态之前所述第一网络设备发送的最后一条消息中,或者,所述第一AI模型信息携带在所述终端处于非激活态或空闲态的情况下接收的第一网络设备发送的广播消息中。
可选地,所述装置还包括:
第二发送模块,用于向所述终端发送负荷信息。
可选地,所述负荷信息,包括如下至少一项:
物理资源块PRB利用率;
无线资源控制RRC连接数;
存储的非激活态的终端会话数量;
时间戳信息。
本申请实施例提供的第二小区重选装置600能够实现图3的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
请参见图7,图7是本申请实施例提供的一种小区重选装置的结构图,第三小区重选装置700,包括:
发送模块701,用于发送用于小区重选的相邻小区的信息,所述相邻小区的信息包括如下至少一项:
所述第二网络设备的小区标识;
所述第二网络设备支持的业务类型;
所述第二网络设备支持的无线资源信息;
所述第二网络设备支持的切片类型;
所述第二网络设备的天面法线方向;
所述第二网络设备的负荷信息;
所述第二网络设备的无线信号测量结果;
所述第二网络设备在服务所述终端过程中产生的历史信息;
所述第二网络设备为所述相邻小区对应的网络设备。
可选地,所述负荷信息,包括如下至少一项:
物理资源块PRB利用率;
无线资源控制RRC连接数;
存储的非激活态的终端会话数量;
时间戳信息。
可选地,所述第二网络设备支持的无线资源信息,包括如下至少一项:
所述第二网络设备支持的带宽;
所述第二网络设备是否支持载波聚合;
所述第二网络设备支持的载波聚合组合;
所述第二网络设备是否支持双连接;
所述第二网络设备支持的双连接组合。
可选地,所述装置还包括接收模块,用于接收所述终端发起的随机接入请求;
其中,所述随机接入请求携带随机接入报告,所述随机接入报告包括如 下至少一项:
小区重选类型标识;
AI模型输入参数以及所述AI模型输入参数的参数值;
AI模型标识;
所述AI模型输入参数的缺省列表;
使用AI模型输入参数的默认值的默认值列表。
本申请实施例提供的第三小区重选装置700能够实现图4的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选地,如图8所示,本申请实施例还提供一种通信设备80,包括处理器81,存储器82,存储在存储器82上并可在所述处理器81上运行的程序或指令,例如,该通信设备80为终端时,该程序或指令被处理器81执行时实现上述图2所示的小区重选方法实施例的各个过程,且能达到相同的技术效果。该通信设备80为网络设备时,该程序或指令被处理器81执行时实现上述图3或图4所示的小区重选方法实施例的各个过程,且能达到相同的技术效果。
图9为实现本申请实施例的一种终端的硬件结构示意图。
该终端1000包括但不限于:射频单元1001、网络模块1002、音频输出单元1003、输入单元1004、传感器1005、显示单元1006、用户输入单元1007、接口单元1008、存储器1009、以及处理器1010等部件。
本领域技术人员可以理解,终端1000还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1010逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图9中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1004可以包括图形处理器(Graphics Processing Unit,GPU)10041和麦克风10042,图形处理器10041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1006可包括显示面板10061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板10061。用户 输入单元1007包括触控面板10071以及其他输入设备10072。触控面板10071,也称为触摸屏。触控面板10071可包括触摸检测装置和触摸控制器两个部分。其他输入设备10072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1001将来自网络侧设备的下行数据接收后,给处理器1010处理;另外,将上行的数据发送给基站。通常,射频单元1001包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1009可用于存储软件程序或指令以及各种数据。存储器1009可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1009可以包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
处理器1010可包括一个或多个处理单元;可选地,处理器1010可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1010中。
其中,处理器1010,用于将目标信息输入到人工智能AI模型,得到输出结果,所述目标信息包括所述终端的驻留小区的信息和相邻小区的信息,所述输出结果包括关于所述终端重选到所述相邻小区的信息;
根据所述输出结果确定是否重选到所述相邻小区。
可选地,所述驻留小区的信息包括以下至少一项:
第一网络设备的天面法线方向;
第一网络设备的负荷信息;
第一网络设备的无线信号测量结果,所述第一网络设备为所述驻留小区 对应的网络设备。
可选地,所述相邻小区的信息包括以下至少一项:
第二网络设备的小区标识;
所述第二网络设备支持的业务类型;
所述第二网络设备支持的无线资源信息;
所述第二网络设备支持的切片类型;
所述第二网络设备的天面法线方向;
所述第二网络设备的负荷信息;
所述第二网络设备的无线信号测量结果;
所述第二网络设备在服务所述终端过程中产生的历史信息;
其中,所述第二网络设备为所述相邻小区对应的网络设备。
可选地,所述目标信息还包括所述终端的信息,所述终端的信息包括以下至少一项:
所述终端的状态信息;
所述终端的业务需求类型预测参数;
所述终端的历史服务小区标识列表。
可选地,,所述终端的状态信息包括如下至少一项:
所述终端的位置信息;
所述终端的移动信息。
可选地,所述第一网络设备的无线信号测量结果,包括如下至少一项:
所述第一网络设备参考信号的参考信号接收功率RSRP;
所述第一网络设备参考信号的参考信号接收质量RSRQ。
可选地,所述第二网络设备的无线信号测量结果,包括如下至少一项:
所述第二网络设备参考信号的RSRP;
所述第二网络设备参考信号的RSRQ。
可选地,所述历史信息,包括如下至少一项:
所述终端在所述第二网络设备的历史切换报告;
所述终端在所述第二网络设备的历史无线链路故障报告;
所述终端在所述第二网络设备的随机接入报告;
所述终端在所述第二网络设备的历史服务状态。
可选地,所述负荷信息包括如下至少一项:
物理资源块PRB利用率;
无线资源控制RRC连接数;
存储的非激活态的终端会话数量;
时间戳信息。
可选地,所述第二网络设备支持的无线资源信息,包括如下至少一项:
所述第二网络设备支持的带宽;
所述第二网络设备是否支持载波聚合;
所述第二网络设备支持的载波聚合组合;
所述第二网络设备是否支持双连接;
所述第二网络设备支持的双连接组合。
可选地,所述AI模型根据所述第一AI模型信息确定,所述第一AI模型信息用于指示如下至少一项:
AI模型标识;
AI模型状态信息;
AI模型的激活条件;
AI模型的运行周期信息;
AI模型有效期限;
AI模型有效区域;
AI模型请求时频资源;
AI模型结构信息;
AI模型参数信息;
AI模型数据处理方式信息;
与AI模型输入参数相关的第一描述信息,所述第一描述信息包括各输入参数的可缺省标识;
AI模型输入参数的默认值;
与AI模型输出参数相关的第二描述信息。
可选地,所述AI模型的激活条件包括如下至少一项:
所述第一网络设备参考信号的参考信号接收功率RSRP小于或等于第一阈值;
所述第二网络设备参考信号的RSRP大于或等于第二阈值。
可选地,所述AI模型的运行周期信息包括如下至少一项:
所述终端运行所述AI模型的运行周期;
与所述终端的无线信号测量值相关的第一参数,所述第一参数用于确定所述AI模型的运行周期;
与所述终端的移动速度相关的第二参数,所述第二参数用于确定所述AI模型的运行周期。
可选地,所述输出结果包括指示信息,所述指示信息用于指示是否重选至所述相邻小区。
可选地,所述输出结果,还包括如下至少一项:
重选至所述相邻小区的置信系数;
重选至所述相邻小区的时间;
所述相邻小区的小区标识。
可选地,在所述置信系数大于置信阈值的情况下,所述输出结果为:重选至所述相邻小区。
可选地,所述第一AI模型信息携带在所述终端进入非激活态或空闲态之前接收的最后一条消息中,或者,所述第一AI模型信息携带在所述终端处于非激活态或空闲态的情况下接收的消息中。
可选地,在根据所述AI模型有效期限确定所述AI模型失效的情况下,处理器1010,用于执行如下一项操作:
通过广播接收第二AI模型信息;
通过随机接入请求获取第二AI模型信息;
按照预设方式进行小区重选。
可选地,射频单元1001,用于在确定重选至所述相邻小区的情况下,向所述相邻小区发起随机接入请求;
其中,所述随机接入请求携带随机接入报告,所述随机接入报告包括如下至少一项:
小区重选类型标识;
AI模型输入参数以及所述AI模型输入参数的参数值;
AI模型标识;
所述AI模型输入参数的缺省列表;
使用AI模型输入参数的默认值的默认值列表。
上述实施例提供的终端1000能够实现图2的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
具体地,本申请实施例还提供了一种网络侧设备。如图10所示,该网络侧设备900包括:天线91、射频装置92、基带装置93。天线91与射频装置92连接。在上行方向上,射频装置92通过天线91接收信息,将接收的信息发送给基带装置93进行处理。在下行方向上,基带装置93对要发送的信息进行处理,并发送给射频装置92,射频装置92对收到的信息进行处理后经过天线91发送出去。
上述频带处理装置可以位于基带装置93中,以上实施例中网络侧设备执行的方法可以在基带装置93中实现,该基带装置93包括处理器94和存储器95。
基带装置93例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图10所示,其中一个芯片例如为处理器94,与存储器95连接,以调用存储器95中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置93还可以包括网络接口96,用于与射频装置92交互信息,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本申请实施例的网络侧设备还包括:存储在存储器95上并可在处理器94上运行的指令或程序,处理器94调用存储器95中的指令或程序执行图6、图7所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质可以是非易失的,也可以是易失的,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现图2、图3或图4所述方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端或者网络侧设备中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行网络侧设备程序或指令,实现上述图2、图3或图4方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品被存储在非瞬态的存储介质中,所述计算机程序产品被至少一个处理器执行以实现上述图2、图3或图4所述方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体 现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。
Claims (38)
- 一种小区重选方法,包括:终端将目标信息输入到人工智能AI模型,得到输出结果,所述目标信息包括所述终端的驻留小区的信息和相邻小区的信息,所述输出结果包括关于所述终端重选到所述相邻小区的信息;所述终端根据所述输出结果确定是否重选到所述相邻小区。
- 根据权利要求1所述的方法,其中,所述驻留小区的信息包括以下至少一项:第一网络设备的天面法线方向;第一网络设备的负荷信息;第一网络设备的无线信号测量结果,所述第一网络设备为所述驻留小区对应的网络设备。
- 根据权利要求1所述的方法,其中,所述相邻小区的信息包括以下至少一项:第二网络设备的小区标识;所述第二网络设备支持的业务类型;所述第二网络设备支持的无线资源信息;所述第二网络设备支持的切片类型;所述第二网络设备的天面法线方向;所述第二网络设备的负荷信息;所述第二网络设备的无线信号测量结果;所述第二网络设备在服务所述终端过程中产生的历史信息;其中,所述第二网络设备为所述相邻小区对应的网络设备。
- 根据权利要求1所述的方法,其中,所述目标信息还包括所述终端的信息,所述终端的信息包括以下至少一项:所述终端的状态信息;所述终端的业务需求类型预测参数;所述终端的历史服务小区标识列表。
- 根据权利要求4所述的方法,其中,所述终端的状态信息包括如下至少一项:所述终端的位置信息;所述终端的移动信息。
- 根据权利要求2所述的方法,其中,所述第一网络设备的无线信号测量结果,包括如下至少一项:所述第一网络设备参考信号的参考信号接收功率RSRP;所述第一网络设备参考信号的参考信号接收质量RSRQ。
- 根据权利要求3所述的方法,其中,所述第二网络设备的无线信号测量结果,包括如下至少一项:所述第二网络设备参考信号的RSRP;所述第二网络设备参考信号的RSRQ。
- 根据权利要求3所述的方法,其中,所述历史信息,包括如下至少一项:所述终端在所述第二网络设备的历史切换报告;所述终端在所述第二网络设备的历史无线链路故障报告;所述终端在所述第二网络设备的随机接入报告;所述终端在所述第二网络设备的历史服务状态。
- 根据权利要求2或3所述的方法,其中,所述负荷信息包括如下至少一项:物理资源块PRB利用率;无线资源控制RRC连接数;存储的非激活态的终端会话数量;时间戳信息。
- 根据权利要求3所述的方法,其中,所述第二网络设备支持的无线资源信息,包括如下至少一项:所述第二网络设备支持的带宽;所述第二网络设备是否支持载波聚合;所述第二网络设备支持的载波聚合组合;所述第二网络设备是否支持双连接;所述第二网络设备支持的双连接组合。
- 根据权利要求1所述的方法,其中,所述AI模型根据第一AI模型信息确定,所述第一AI模型信息用于指示如下至少一项:AI模型标识;AI模型状态信息;AI模型的激活条件;AI模型的运行周期信息;AI模型有效期限;AI模型有效区域;AI模型请求时频资源;AI模型结构信息;AI模型参数信息;AI模型数据处理方式信息;与AI模型输入参数相关的第一描述信息,所述第一描述信息包括各输入参数的可缺省标识;AI模型输入参数的默认值;与AI模型输出参数相关的第二描述信息。
- 根据权利要求11所述的方法,其中,所述AI模型的激活条件包括如下至少一项:第一网络设备参考信号的参考信号接收功率RSRP小于或等于第一阈值;第二网络设备参考信号的RSRP大于或等于第二阈值。
- 根据权利要求11所述的方法,其中,所述AI模型的运行周期信息包括如下至少一项:所述终端运行所述AI模型的运行周期;与所述终端的无线信号测量值相关的第一参数,所述第一参数用于确定所述AI模型的运行周期;与所述终端的移动速度相关的第二参数,所述第二参数用于确定所述AI模型的运行周期。
- 根据权利要求1所述的方法,其中,所述输出结果包括指示信息,所述指示信息用于指示是否重选至所述相邻小区。
- 根据权利要求14所述的方法,其中,所述输出结果,还包括如下至少一项:重选至所述相邻小区的置信系数;重选至所述相邻小区的时间;所述相邻小区的小区标识。
- 根据权利要求15所述的方法,其中,在所述置信系数大于置信阈值的情况下,所述输出结果为:重选至所述相邻小区。
- 根据权利要求11所述的方法,其中,所述第一AI模型信息携带在所述终端进入非激活态或空闲态之前接收的最后一条消息中,或者,所述第一AI模型信息携带在所述终端处于非激活态或空闲态的情况下接收的消息中。
- 根据权利要求10所述的方法,其中,所述方法还包括:在根据所述AI模型有效期限确定所述AI模型失效的情况下,所述终端执行如下一项操作:通过广播接收第二AI模型信息;通过随机接入请求获取第二AI模型信息;按照预设方式进行小区重选。
- 根据权利要求1所述的方法,其中,所述方法还包括:在所述终端确定重选至所述相邻小区的情况下,所述终端向所述相邻小区发起随机接入请求;其中,所述随机接入请求携带随机接入报告,所述随机接入报告包括如下至少一项:小区重选类型标识;AI模型输入参数以及所述AI模型输入参数的参数值;AI模型标识;所述AI模型输入参数的缺省列表;使用AI模型输入参数的默认值的默认值列表。
- 一种小区重选方法,包括:第一网络设备发送第一人工智能AI模型信息,第一AI模型信息为用于进行小区重选的AI模型的信息。
- 根据权利要求20所述的方法,其中,所述第一AI模型信息用于指示如下至少一项:AI模型标识;AI模型状态信息;AI模型的激活条件;AI模型的运行周期信息;AI模型有效期限;AI模型有效区域;AI模型请求时频资源;AI模型结构信息;AI模型参数信息;AI模型数据处理方式信息;与AI模型输入参数相关的第一描述信息,所述第一描述信息包括各输入参数的可缺省标识;AI模型输入参数的默认值;与AI模型输出参数相关的第二描述信息。
- 根据权利要求21所述的方法,其中,所述AI模型的激活条件包括如下至少一项:所述第一网络设备参考信号的参考信号接收功率RSRP小于或等于第一阈值;第二网络设备参考信号的RSRP大于或等于第二阈值。
- 根据权利要求21所述的方法,其中,所述AI模型的运行周期信息包括如下至少一项:终端运行所述AI模型的运行周期;与所述终端的无线信号测量值相关的第一参数,所述第一参数用于确定所述AI模型的运行周期;与所述终端的移动速度相关的第二参数,所述第二参数用于确定所述AI 模型的运行周期。
- 根据权利要求20所述的方法,其中,所述第一AI模型信息携带在终端进入非激活态或空闲态之前所述第一网络设备发送的最后一条消息中,或者,所述第一AI模型信息携带在所述终端处于非激活态或空闲态的情况下接收的第一网络设备发送的广播消息中。
- 根据权利要求20所述的方法,其中,所述方法还包括:所述第一网络设备向终端发送负荷信息。
- 根据权利要求25所述的方法,其中,所述负荷信息包括如下至少一项:物理资源块PRB利用率;无线资源控制RRC连接数;存储的非激活态的终端会话数量;时间戳信息。
- 一种小区重选方法,其中,包括:第二网络设备发送用于小区重选的相邻小区的信息,所述相邻小区的信息包括如下至少一项:所述第二网络设备的小区标识;所述第二网络设备支持的业务类型;所述第二网络设备支持的无线资源信息;所述第二网络设备支持的切片类型;所述第二网络设备的天面法线方向;所述第二网络设备的负荷信息;所述第二网络设备的无线信号测量结果;所述第二网络设备在服务终端过程中产生的历史信息;所述第二网络设备为所述相邻小区对应的网络设备。
- 根据权利要求27所述的方法,其中,所述负荷信息包括如下至少一项:物理资源块PRB利用率;无线资源控制RRC连接数;存储的非激活态的终端会话数量;时间戳信息。
- 根据权利要求27所述的方法,其中,所述第二网络设备支持的无线资源信息,包括如下至少一项:所述第二网络设备支持的带宽;所述第二网络设备是否支持载波聚合;所述第二网络设备支持的载波聚合组合;所述第二网络设备是否支持双连接;所述第二网络设备支持的双连接组合。
- 一种小区重选装置,包括:获取模块,用于将目标信息输入到人工智能AI模型,得到输出结果,所述目标信息包括终端的驻留小区的信息和相邻小区的信息,所述输出结果包括关于所述终端重选到所述相邻小区的信息;确定模块,用于根据所述输出结果确定是否重选到所述相邻小区。
- 根据权利要求30所述的装置,其中,所述驻留小区的信息包括以下至少一项:第一网络设备的天面法线方向;第一网络设备的负荷信息;第一网络设备的无线信号测量结果,所述第一网络设备为所述驻留小区对应的网络设备。
- 根据权利要求30所述的装置,其中,所述相邻小区的信息包括以下至少一项:第二网络设备的小区标识;所述第二网络设备支持的业务类型;所述第二网络设备支持的无线资源信息;所述第二网络设备支持的切片类型;所述第二网络设备的天面法线方向;所述第二网络设备的负荷信息;所述第二网络设备的无线信号测量结果;所述第二网络设备在服务所述终端过程中产生的历史信息;其中,所述第二网络设备为所述相邻小区对应的网络设备。
- 一种小区重选装置,包括:发送模块,用于发送第一人工智能AI模型信息,第一AI模型信息为用于进行小区重选的AI模型的信息。
- 根据权利要求33所述的装置,其中,所述第一AI模型信息用于指示如下至少一项:AI模型标识;AI模型状态信息;AI模型的激活条件;AI模型的运行周期信息;AI模型有效期限;AI模型有效区域;AI模型请求时频资源;AI模型结构信息;AI模型参数信息;AI模型数据处理方式信息;与AI模型输入参数相关的第一描述信息,所述第一描述信息包括各输入参数的可缺省标识;AI模型输入参数的默认值;与AI模型输出参数相关的第二描述信息。
- 一种小区重选装置,包括:发送模块,用于发送用于小区重选的相邻小区的信息,所述相邻小区的信息包括如下至少一项:第二网络设备的小区标识;所述第二网络设备支持的业务类型;所述第二网络设备支持的无线资源信息;所述第二网络设备支持的切片类型;所述第二网络设备的天面法线方向;所述第二网络设备的负荷信息;所述第二网络设备的无线信号测量结果;所述第二网络设备在服务终端过程中产生的历史信息;其中,所述第二网络设备为所述相邻小区对应的网络设备。
- 一种终端,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至19中任一项所述的小区重选方法的步骤。
- 一种网络设备,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求20至29中任一项所述的小区重选方法的步骤。
- 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至19中任一项所述的小区重选方法的步骤,或者,所述程序或指令被处理器执行时实现如权利要求20至29中任一项所述的小区重选方法的步骤。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22882894.3A EP4422279A1 (en) | 2021-10-21 | 2022-10-19 | Cell reselection method and apparatus, and related device |
US18/640,085 US20240267799A1 (en) | 2021-10-21 | 2024-04-19 | Cell reselection method and apparatus, and related device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111228031.9 | 2021-10-21 | ||
CN202111228031.9A CN116017616A (zh) | 2021-10-21 | 2021-10-21 | 小区重选方法、装置及相关设备 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/640,085 Continuation US20240267799A1 (en) | 2021-10-21 | 2024-04-19 | Cell reselection method and apparatus, and related device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023066289A1 true WO2023066289A1 (zh) | 2023-04-27 |
Family
ID=86027190
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/126135 WO2023066289A1 (zh) | 2021-10-21 | 2022-10-19 | 小区重选方法、装置及相关设备 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20240267799A1 (zh) |
EP (1) | EP4422279A1 (zh) |
CN (1) | CN116017616A (zh) |
WO (1) | WO2023066289A1 (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110574403A (zh) * | 2019-07-25 | 2019-12-13 | 北京小米移动软件有限公司 | 信息获取方法和装置、信息发送方法和装置 |
CN111556441A (zh) * | 2020-05-22 | 2020-08-18 | 广州三星通信技术研究有限公司 | 用于移动终端的接入网络小区的方法及装置 |
CN112235821A (zh) * | 2020-09-21 | 2021-01-15 | 杭州红岭通信息科技有限公司 | 一种基于ai模型的异频信号强度预测方法 |
WO2021015553A1 (en) * | 2019-07-22 | 2021-01-28 | Lg Electronics Inc. | Method and apparatus for cell reselection in wireless communication system |
CN112954776A (zh) * | 2019-12-10 | 2021-06-11 | 中国电信股份有限公司 | 小区的节能方法、装置、基站和计算机可读存储介质 |
-
2021
- 2021-10-21 CN CN202111228031.9A patent/CN116017616A/zh active Pending
-
2022
- 2022-10-19 EP EP22882894.3A patent/EP4422279A1/en active Pending
- 2022-10-19 WO PCT/CN2022/126135 patent/WO2023066289A1/zh active Application Filing
-
2024
- 2024-04-19 US US18/640,085 patent/US20240267799A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021015553A1 (en) * | 2019-07-22 | 2021-01-28 | Lg Electronics Inc. | Method and apparatus for cell reselection in wireless communication system |
CN110574403A (zh) * | 2019-07-25 | 2019-12-13 | 北京小米移动软件有限公司 | 信息获取方法和装置、信息发送方法和装置 |
CN112954776A (zh) * | 2019-12-10 | 2021-06-11 | 中国电信股份有限公司 | 小区的节能方法、装置、基站和计算机可读存储介质 |
CN111556441A (zh) * | 2020-05-22 | 2020-08-18 | 广州三星通信技术研究有限公司 | 用于移动终端的接入网络小区的方法及装置 |
CN112235821A (zh) * | 2020-09-21 | 2021-01-15 | 杭州红岭通信息科技有限公司 | 一种基于ai模型的异频信号强度预测方法 |
Also Published As
Publication number | Publication date |
---|---|
US20240267799A1 (en) | 2024-08-08 |
EP4422279A1 (en) | 2024-08-28 |
CN116017616A (zh) | 2023-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230224766A1 (en) | Cell reselection method and related device | |
US10652725B2 (en) | Obtaining and using D2D related information to perform mobility operation(s) | |
US12010576B2 (en) | Communication method, apparatus, and system | |
CN114071369A (zh) | 一种信息传输方法、装置、终端及网络设备 | |
US20230337128A1 (en) | Network selection method and apparatus, device, and storage medium | |
CN114071741A (zh) | 信息传输方法、装置、终端及网络侧设备 | |
WO2022238226A1 (en) | Method and ue for accessing slice-specific rach resources pool | |
CN114650581A (zh) | 中继通信方法及装置 | |
WO2023066287A1 (zh) | 通信方法、装置、终端及网络设备 | |
US20230328789A1 (en) | Busy indication transmission method and apparatus | |
WO2023066289A1 (zh) | 小区重选方法、装置及相关设备 | |
CN115134797B (zh) | 紧急服务的处理方法、网络侧设备及终端 | |
US11812270B2 (en) | Method for identifying pseudo base station, apparatus, and mobile terminal | |
WO2023274072A1 (zh) | 小区评估方法、装置、终端、中继和存储介质 | |
CN114258058A (zh) | 测量方法、测量装置、终端及网络设备 | |
US20240155464A1 (en) | Information acquisition method, information sending method, related device, and readable storage medium | |
WO2022068866A1 (zh) | 工作区域变更方法、终端及网络侧设备 | |
WO2023109679A1 (zh) | 语音回落方法、装置、终端及可读存储介质 | |
WO2024032537A1 (zh) | 通信方法、设备及可读存储介质 | |
US20240205761A1 (en) | User equipment mobility based on network slice considerations | |
US20230262794A1 (en) | Method for establishing connected state, terminal, core network function, and access network device | |
CN117440453A (zh) | 漫游回落的方法、装置、终端及网络侧设备 | |
WO2020133117A1 (zh) | 小区连接处理方法、装置、移动终端及存储介质 | |
CN114980151A (zh) | 系统信息块的有效性检查方法、装置、终端及存储介质 | |
KR20230137454A (ko) | 전송 방법, 장치, 기기 및 판독가능 저장 매체 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22882894 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022882894 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022882894 Country of ref document: EP Effective date: 20240521 |