[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023063022A1 - 樹脂前駆体、樹脂、樹脂組成物及び樹脂硬化膜 - Google Patents

樹脂前駆体、樹脂、樹脂組成物及び樹脂硬化膜 Download PDF

Info

Publication number
WO2023063022A1
WO2023063022A1 PCT/JP2022/034689 JP2022034689W WO2023063022A1 WO 2023063022 A1 WO2023063022 A1 WO 2023063022A1 JP 2022034689 W JP2022034689 W JP 2022034689W WO 2023063022 A1 WO2023063022 A1 WO 2023063022A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
group
structural unit
meth
acrylate
Prior art date
Application number
PCT/JP2022/034689
Other languages
English (en)
French (fr)
Inventor
英理 永井
優介 青木
健宏 木下
Original Assignee
株式会社レゾナック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社レゾナック filed Critical 株式会社レゾナック
Priority to KR1020247008360A priority Critical patent/KR20240042104A/ko
Priority to CN202280062603.7A priority patent/CN117980368A/zh
Priority to JP2023555048A priority patent/JPWO2023063022A5/ja
Publication of WO2023063022A1 publication Critical patent/WO2023063022A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/20Esters of polyhydric alcohols or phenols, e.g. 2-hydroxyethyl (meth)acrylate or glycerol mono-(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1808C8-(meth)acrylate, e.g. isooctyl (meth)acrylate or 2-ethylhexyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • C08F220/343Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate in the form of urethane links
    • C08F220/346Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate in the form of urethane links and further oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/81Unsaturated isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/81Unsaturated isocyanates or isothiocyanates
    • C08G18/8141Unsaturated isocyanates or isothiocyanates masked
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
    • G03F7/0007Filters, e.g. additive colour filters; Components for display devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/105Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having substances, e.g. indicators, for forming visible images

Definitions

  • the present invention relates to a resin precursor, a resin derived from the resin precursor, a method for producing a resin using the resin precursor, a resin composition containing the resin, a cured resin film, a color filter, and an image display device.
  • Image display devices include organic electroluminescence (EL) display devices (in particular, the WRGB system that combines white light emitting organic EL and color filters), liquid crystal display devices, integrated circuit devices, and solid-state imaging devices. These image display elements are generally provided with films and fine patterns such as color filters, photospacers, projections for liquid crystal alignment, microlenses, and insulating films for touch panels.
  • EL organic electroluminescence
  • the color filter one having a black matrix and pixels formed of a colored pattern formed on a substrate and a protective film formed thereon is usually used.
  • thermosetting a resin composition on a substrate, it is desired to lower the temperature for thermosetting the resin composition according to the heat resistance of the substrate made of an organic material.
  • color filters have conventionally been formed by thermosetting a resin composition on a substrate at a temperature of 210 to 230°C.
  • the resin composition is required to be thermally cured at a temperature of 80 to 150° C. because the substrate has poor heat resistance.
  • Patent Document 1 discloses (a) a polymerization initiator having an absorption coefficient at 365 nm in methanol of 1.0 ⁇ 10 3 mL/gcm or more, and (b) an absorption coefficient at 365 nm in methanol of 1.0 ⁇ 10 2 mL/gcm or less, a polymerization initiator having an absorption coefficient at 254 nm of 1.0 ⁇ 10 3 mL/gcm or more, (c) a compound having an unsaturated double bond, (d) an alkali-soluble resin, ( e) A photosensitive coloring composition containing a colorant is disclosed.
  • Patent Document 2 discloses a photosensitive composition for a color filter containing a compound (A) containing a furyl group, a compound (B) containing a photopolymerizable functional group, a photopolymerization initiator (C), and a colorant. disclosed.
  • Resin compositions used for members of image display elements are required to be cured at a low heating temperature.
  • the heating temperature for curing the conventional resin composition is lowered, a cured product having sufficient solvent resistance cannot be obtained. Therefore, there is a demand for a resin composition with good low-temperature curability that can form a cured product with excellent solvent resistance even at a low heating temperature for curing.
  • the present invention has been made in view of the above circumstances, and has excellent low-temperature curability, a resin composition capable of forming a cured product having good solvent resistance, a resin contained in this resin composition, this An object of the present invention is to provide a resin precursor that gives a resin, and a method for producing a resin using this resin precursor. Another object of the present invention is to provide a cured resin film having good solvent resistance, which is made of a cured product of a resin composition having excellent low-temperature curability, a color filter, and an image display device equipped with this color filter.
  • the present invention provides a resin of the following first aspect.
  • a structural unit (a) having a blocked isocyanato group a structural unit (b) having one or more groups selected from the following formula (2-2) and the following formula (3-2); a structural unit (c) having a hydroxy group;
  • R 1 is a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms; R 3 and R 4 are each independently a hydrogen atom or a It is a hydrocarbon group.
  • R 2 is a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms; R 3 and R 4 are each independently a hydrogen atom or a It is a hydrocarbon group.
  • the resin of the first aspect of the present invention preferably has the characteristics described in [2] to [8] below. It is also preferable to arbitrarily combine two or more of the features described in [2] to [8] below. [2]
  • the structural unit (a) having a blocked isocyanato group is a structural unit derived from a monomer having an ethylenically unsaturated bond and a blocked isocyanato group,
  • the monomer having an ethylenically unsaturated bond and a blocked isocyanato group is a compound obtained by blocking the isocyanate group of an isocyanate compound having an ethylenically unsaturated bond and an isocyanato group with a blocking agent, [1] or [ 2].
  • the structural unit (a) having a blocked isocyanato group is a structural unit derived from a blocked isocyanato group-containing (meth)acrylate
  • the blocked isocyanato group-containing (meth)acrylate is a compound obtained by blocking an isocyanato group-containing (meth)acrylate with one or more blocking agents selected from 3,5-dimethylpyrazole and methyl ethyl ketoxime [1]-
  • the resin according to any one of [3].
  • the structural unit (b) is a structural unit derived from a monomer-derived structural unit having a (meth)acryloyloxy group and a group represented by the following formula (1) [1] to [4] The resin according to any one of .
  • R 1 and R 2 are each independently a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms; R 3 and R 4 are each independently a hydrogen atom or a carbon atom. It is a hydrocarbon group of numbers 1 to 20.
  • R 1 and R 2 of the structural unit (b) are each independently a hydrocarbon group having 1 to 3 carbon atoms, and R 3 and R 4 are each independently a hydrogen atom or methyl
  • a second aspect of the present invention provides the following resin precursor. [9] a structural unit (a) having a blocked isocyanato group; a structural unit (pb) having a group represented by the following formula (1); a structural unit (c) having a hydroxy group; A resin precursor characterized by containing
  • R 1 and R 2 are each independently a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms; R 3 and R 4 are each independently a hydrogen atom or a carbon atom. It is a hydrocarbon group of numbers 1 to 20.
  • a third aspect of the present invention provides the following method for producing a resin.
  • the resin precursor (PA) according to [9] is subjected to a dealcoholization reaction and a decarboxylation reaction using a basic catalyst (PB) in a solvent (PC) [1] to [ 8], the method for producing the resin according to any one of
  • a fourth aspect of the present invention provides the following resin composition. [11] the resin (A) according to any one of [1] to [8]; a solvent (C); a reactive diluent (D); a photoinitiator (E); A resin composition containing [12] The resin composition according to [11], further containing a coloring agent (F).
  • a fifth aspect of the present invention provides the following cured resin film. [14] A cured resin film comprising a cured product of the resin composition according to any one of [11] to [13].
  • a sixth aspect of the present invention provides the following color filter. [15] A color filter having a colored pattern made of the cured resin composition of [13].
  • a seventh aspect of the present invention provides the following image display device. [16] An image display device comprising the color filter of [15].
  • a resin composition having excellent low-temperature curability and capable of forming a cured product with good solvent resistance a resin contained as a material in this resin composition, a resin precursor that gives this resin, and a method for producing a resin using a resin precursor. Furthermore, according to the present invention, it is possible to provide a resin cured film having good solvent resistance, a color filter, and an image display device comprising this color filter, which are made of a cured product of the resin composition having excellent low-temperature curability.
  • Example 1 is a graph showing the IR spectrum of the resin precursor composition of Example 1 (before conversion reaction) and the IR spectrum of the reaction solution after conversion reaction (after conversion reaction).
  • the resin precursor of the present invention Preferred examples of the resin precursor of the present invention, a resin derived from the resin precursor, a method for producing a resin using the resin precursor, a resin composition, a cured resin film, a color filter, and an image display element are described in detail below. .
  • this invention is not limited only to embodiment shown below.
  • additions, omissions, substitutions, and changes in numbers, amounts, ratios, types, positions, materials, configurations, and the like are possible without departing from the gist of the present invention.
  • (meth)acrylic acid means at least one selected from methacrylic acid and acrylic acid.
  • (Meth)acrylate means at least one selected from methacrylate and acrylate.
  • "*" in the structural formula means the point of attachment between the structural formula and other structural moieties.
  • the resin precursor (PA) of the present embodiment comprises a structural unit (a) having a blocked isocyanato group (hereinafter also simply referred to as “structural unit (a)”) and a group represented by the following formula (1).
  • a structural unit (pb) having hereinafter also simply referred to as “structural unit (pb)”
  • structural unit (c) having a hydroxy group hereinafter simply referred to as “structural unit (c)”
  • other structural units (d) other than the structural units (a) to (c) hereinafter also simply referred to as “structural units (d)”). may contain.
  • R 1 and R 2 are each independently a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms; R 3 and R 4 are each independently a hydrogen atom or a carbon atom. It is a hydrocarbon group of numbers 1 to 20.
  • the resin precursor (PA) of this embodiment is used as a material for resin (A), which will be described later.
  • the resin precursor (PA) of this embodiment is subjected to dealcoholization and decarboxylation in a solvent (PC) using a basic catalyst (PB).
  • PB basic catalyst
  • the group represented by the formula (1) possessed by the structural unit (pb) is represented by the formula (2-2) and/or the formula (3-2) contained in the structural unit (b) of the resin (A) described later. ) to produce a resin (A).
  • the structural unit (a) having a blocked isocyanato group contained in the resin precursor (PA) does not have a hydroxy group and the group represented by the above formula (1), but has a blocked isocyanato group.
  • the structural unit (a) may be of only one type, or may be of two or more types.
  • the structural unit (a) is a structural unit derived from a blocked isocyanato group-containing monomer (ma) (hereinafter also simply referred to as "monomer (ma)").
  • the monomer (ma) that becomes the structural unit (a) in the present embodiment does not have a hydroxyl group and the group represented by the above formula (1), but has an ethylenically unsaturated bond and a blocked isocyanato group.
  • the monomer (ma) include a compound obtained by blocking the isocyanato group of an isocyanate compound having an ethylenically unsaturated bond and an isocyanato group with a blocking agent.
  • ethylenically unsaturated groups contained in the monomer (ma) include vinyl groups, (meth)acryloyloxy groups and the like.
  • the blocking reaction between the isocyanate compound and the blocking agent during the production of the monomer (ma) can be carried out regardless of the presence or absence of a solvent.
  • a solvent any known solvent can be used as long as it is inert to the isocyanato group.
  • an organic metal salt such as tin, zinc or lead, or a tertiary amine may be used as a catalyst.
  • the blocking reaction can generally be carried out at -20 to 150°C, preferably at 0 to 100°C.
  • Examples of the isocyanate compound used as a raw material for the monomer (ma) include compounds represented by the following formula (4).
  • R 5 represents a hydrogen atom or a methyl group
  • R 6 represents —CO—, —COOR 7 — (wherein R 7 is an alkylene group having 1 to 6 carbon atoms. ) or -COO-R 8 O-CONH-R 9 - (here, R 8 is an alkylene group having 2 to 6 carbon atoms, and R 9 is an optionally substituted C 2 to 12 alkylene group or an arylene group having 6 to 12 carbon atoms.)).
  • R5 is a hydrogen atom or a methyl group.
  • R 6 in formula (4) is -CO-, -COOR 7 - (wherein R 7 is an alkylene group having 1 to 6 carbon atoms) or -COO-R 8 O-CONH-R 9 —(Here, R 8 is an alkylene group having 2 to 6 carbon atoms, and R 9 is an alkylene group having 2 to 12 carbon atoms which may have a substituent or an arylene group having 6 to 12 carbon atoms. is the base.).
  • R 6 is preferably —COOR 7 — in view of good reactivity of the isocyanate after deblocking and ease of preparation of the isocyanate compound, and R 7 is an alkylene group having 1 to 4 carbon atoms. is more preferred.
  • isocyanate compound represented by the above formula (4) examples include 2-isocyanatoethyl (meth)acrylate, 2-isocyanatopropyl (meth)acrylate, 3-isocyanatopropyl (meth)acrylate, 2 -isocyanato-1-methylethyl (meth)acrylate, 2-isocyanato-1,1-dimethylethyl (meth)acrylate, 4-isocyanatocyclohexyl (meth)acrylate, methacryloyl isocyanate and the like.
  • the alkyl group of the 2-hydroxyalkyl (meth)acrylate is preferably an ethyl group or an n-propyl group in view of the good reactivity of the isocyanate after deblocking, the ease of preparation of the isocyanate compound, and the simplicity of the reaction. is preferred, and an ethyl group is more preferred.
  • diisocyanate compound examples include hexamethylene diisocyanate, 2,4- (or 2,6-) tolylene diisocyanate (TDI), 4,4'-diphenylmethane diisocyanate (MDI), 3,5,5-trimethyl-3 -isocyanatomethylcyclohexyl isocyanate (IPDI), m-(or p-)xylene diisocyanate, 1,3-(or 1,4-)bis(isocyanatomethyl)cyclohexane, lysine diisocyanate and the like.
  • TDI 2,4- (or 2,6-) tolylene diisocyanate
  • MDI 4,4'-diphenylmethane diisocyanate
  • IPDI 3,5,5-trimethyl-3 -isocyanatomethylcyclohexyl isocyanate
  • m-(or p-)xylene diisocyanate 1,3-(or 1,4-)bis(isocyanatomethyl
  • isocyanate compounds used as starting materials for the monomer (ma) include 1,1-bis(methacryloyloxymethyl)methyl isocyanate, 1,1-bis(methacryloyloxymethyl)ethyl isocyanate, 1,1 -bis(acryloyloxymethyl)methyl isocyanate and 1,1-bis(acryloyloxymethyl)ethyl isocyanate.
  • the structural unit (a) having a blocked isocyanato group is a block isocyanato group-containing (meth) Structural units derived from acrylate are preferred.
  • the isocyanate compound used as a starting material is an isocyanato group-containing (meth)acrylate.
  • the isocyanato group-containing (meth)acrylate used as a starting material for the monomer (ma) includes 2-isocyanatoethyl (meth)acrylate, 2-isocyanatopropyl (meth)acrylate, and 3-isocyanatopropyl (meth)acrylate.
  • 2-isocyanato-1-methylethyl (meth)acrylate, 1,1-bis(methacryloyloxymethyl)ethyl isocyanate, 2-isocyanato-1,1-dimethylethyl (meth)acrylate, 4-isocyanatocyclohexyl (meth) Acrylate and methacryloyl isocyanate are preferred, and 2-isocyanatoethyl (meth)acrylate and 2-isocyanatopropyl (meth)acrylate, 1,1-bis(methacryloyloxymethyl)ethyl isocyanate are more preferred.
  • the blocking agent for blocking the isocyanate group of the isocyanate compound used as a starting material includes, for example, ⁇ -caprolactam and ⁇ -valerolactam.
  • ⁇ -butyrolactam ⁇ -propiolactam
  • Phenols such as nonylphenol, dinonylphenol, styrenated phenol, methyl 2-hydroxybenzoate, methyl 4-hydroxybenzoate, thymol, p-naphthol, p-nitrophenol, p-chlorophenol
  • dimethyl malonate, diethyl malonate Methyl acetoacetate, ethyl acetoacetate, active methylenes such as acetylacetone
  • Mercaptans such as butyl mercaptan, thiophenol, tert
  • the highly reactive isocyanato group is protected by a blocking agent.
  • the resin composition containing the resin (A) produced using the resin precursor (PA) containing the structural unit (a) is heated, the blocked isocyanato groups possessed by the structural unit (a) are dissociated to form isocyanato
  • the base is regenerated. Therefore, in the present embodiment, the isocyanato group of the structural unit (a) is regenerated when the resin composition described later is heated and cured.
  • the regenerated isocyanato groups react with the reactive functional groups contained in the resin (A) produced using the resin precursor (PA) to form a cured product with a high crosslink density.
  • the reactive functional group contained in the resin (A) includes a hydroxy group contained in the structural unit (c) having a hydroxy group in the resin precursor (PA), other structural units ( d) includes an acid group, an amino group, and the like.
  • the structural unit (a) having a blocked isocyanato group preferably has a dissociation rate of 5 to 99%, more preferably 10 to 90%, when heated at 100°C for 30 minutes. Preferably, 15-80% is most preferred.
  • the dissociation rate may be, for example, 8-70%, 15-60%, or 30-50%, as required.
  • the dissociation rate of the blocked isocyanato group of the structural unit (a) is 99% or less, during the synthesis of the resin (A) produced using the resin precursor (PA), and during the synthesis of the resin containing the resin (A) During storage of the composition, the isocyanato group of the structural unit (a) can be regenerated to prevent an unintended cross-linking reaction, thereby ensuring the stability of the resin (A). Further, when the dissociation rate of the blocked isocyanato group of the structural unit (a) is 5% or more, the resin composition containing the resin (A) produced using the resin precursor (PA) is cured. Even if the heating temperature is sufficiently low, good curability can be obtained, and a cured product having excellent solvent resistance can be obtained.
  • ⁇ -butyrolactam is used as a starting material for the monomer (ma) that forms the structural unit (a) having a dissociation rate of blocked isocyanato groups of 5 to 99% when heated at 100° C. for 30 minutes.
  • 1-methoxy-2-propanol, 2,6-dimethylphenol, diisopropylamine, methylethylketoxime, and 3,5-dimethylpyrazole are more preferable from the viewpoint of low-temperature curability of the resin composition containing the resin (A) produced using the resin precursor (PA).
  • the dissociation rate of the blocked isocyanato group when the structural unit (a) having a blocked isocyanato group is heated at 100° C. for 30 minutes is the same as the dissociation rate of the blocked isocyanato group of , and can be calculated by the method shown below.
  • n-octanol solution with a monomer (ma) concentration of 20% by mass is prepared.
  • Dibutyltin laurate (catalyst) corresponding to 1% by weight and phenothiazine (polymerization inhibitor) corresponding to 3% by weight are added to the resulting n-octanol solution and heated at 100° C. for 30 minutes.
  • the heated n-octanol solution is analyzed by high performance liquid chromatography (HPLC) to determine the mass of the monomer (ma) in the n-octanol solution. Using the results, the mass reduction rate of the blocked isocyanato group-containing monomer (ma) due to heating at 100° C. for 30 minutes is calculated and taken as the dissociation rate.
  • HPLC high performance liquid chromatography
  • the dissociation temperature at which the dissociation rate of the blocked isocyanato group of the structural unit (a) having a blocked isocyanato group reaches 80% or higher in 30 minutes is preferably 80°C or higher.
  • the dissociation temperature of the blocked isocyanato group of the structural unit (a) is 80° C. or higher, during the synthesis of the resin (A) produced using the resin precursor (PA), and during the synthesis of the resin containing the resin (A) During storage of the composition, the isocyanato group of the structural unit (a) can be regenerated to prevent an unintended cross-linking reaction, thereby ensuring the stability of the resin (A).
  • the heating temperature for curing the resin composition containing the resin (A) produced using the resin precursor (PA) is sufficiently low, good curability can be obtained, and a cured product having excellent solvent resistance can be obtained.
  • the dissociation temperature at which the dissociation rate of the blocked isocyanato group of the structural unit (a) having a blocked isocyanato group becomes 80% or more in 30 minutes can be calculated by the method shown below. That is, an n-octanol solution having a monomer (ma) concentration of 20% by mass is prepared. Dibutyltin laurate (catalyst) equivalent to 1% by mass and phenothiazine (polymerization inhibitor) equivalent to 3% by mass are added to the resulting n-octanol solution, and heated for 30 minutes under a plurality of different temperature conditions.
  • n-octanol solution after heating is analyzed by high performance liquid chromatography (HPLC) for each temperature condition to determine the mass of the monomer (ma) in the n-octanol solution.
  • HPLC high performance liquid chromatography
  • the structural unit (a) having a blocked isocyanato group is a structural unit derived from a blocked isocyanato group-containing (meth)acrylate, specifically, MOI-BP (registered trademark) represented by the following formula (6) (Compound obtained by blocking methacryloyloxyethyl isocyanate with 3,5-dimethylpyrazole, manufactured by Showa Denko K.K., the dissociation temperature at which the dissociation rate of the blocked isocyanato group is 80% or more in 30 minutes: 110 ° C., at 100 ° C.
  • MOI-BP registered trademark
  • formula (7) a compound obtained by blocking methacryloyloxyethyl isocyanate with methyl ethyl ketoxime, Showa Denko Co., Ltd., dissociation temperature at which the dissociation rate of the blocked isocyanato group is 80% or more in 30 minutes: 130 ° C., dissociation rate when heated at 100 ° C. for 30 minutes: 18%).
  • the content ratio of the structural unit (a) in the resin precursor (PA) can be appropriately determined according to the application of the resin precursor (PA).
  • the content of the structural unit (a) is preferably 1 to 40 mol%, more preferably 5 to 30 mol%, even more preferably 10 to 25 mol%.
  • the proportion may be 8 to 35 mol %, 15 to 20 mol %, etc., as required.
  • the heating temperature for curing the resin composition containing the resin (A) produced using the resin precursor (PA) is sufficiently low. A cured product having excellent solvent resistance can be obtained.
  • the blocking agent for the blocked isocyanato groups of the structural unit (a) is dissociated by heating for curing the resin composition, and a sufficient number of isocyanato groups are regenerated.
  • the regenerated isocyanato group has high reactivity with the hydroxy group and rapidly reacts with the hydroxy group contained in the structural unit (c) to form a crosslink.
  • the resin composition has better low-temperature curability and gives a cured product having excellent solvent resistance.
  • the content ratio of the structural unit (a) is 40 mol% or less
  • the content ratio of the structural unit (pb) and the structural unit (c) in the resin precursor (PA) can be sufficiently secured, and the temperature can be lowered.
  • a resin composition having good curability is obtained.
  • the structural unit it is possible to suppress the occurrence of an unintended cross-linking reaction due to the regeneration of the isocyanato group of (a), thereby ensuring the stability of the resin (A).
  • the structural unit (pb) contained in the resin precursor (PA) is derived from a monomer (m-pb) having a group represented by the following formula (1) (hereinafter simply referred to as "monomer (m-pb)"). is the building block of Only one type of structural unit (pb) may be used, or two or more types thereof may be used.
  • the monomer (m-pb) is a monomer having no hydroxyl group, isocyanato group or blocked isocyanato group and having an ethylenically unsaturated bond and a group represented by the following formula (1).
  • R 1 and R 2 are each independently a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms; R 3 and R 4 are each independently a hydrogen atom or a carbon atom. It is a hydrocarbon group of numbers 1 to 20.
  • R 1 and R 2 are each independently a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, preferably a hydrocarbon group having 1 to 5 carbon atoms, and represented by the formula ( 2-2) and from the viewpoint of ease of reaction with the structural unit (b) having one or more groups selected from formula (3-2), it should be a hydrocarbon group having 1 to 3 carbon atoms. is more preferred.
  • R 1 and R 2 are preferably alkyl groups, preferably methyl groups or ethyl groups, particularly preferably ethyl groups.
  • R 1 and R 2 may be the same or different, and are preferably the same for easy production of the monomer (m-pb).
  • R 3 and R 4 are each independently a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, preferably a hydrogen atom or a hydrocarbon group having 1 to 5 carbon atoms, and represented by formula (2- 2) and a structural unit (b) having one or more groups selected from the following formula (3-2), more preferably a hydrogen atom or a methyl group from the viewpoint of easiness of reaction with the structural unit (b), and a hydrogen atom is particularly preferred.
  • R 3 and R 4 may be the same or different, and are preferably the same for easier production of the monomer (m-pb).
  • an isocyanato group in an isocyanate compound having an ethylenically unsaturated group such as a vinyl group or a (meth)acryloyloxy group in the molecule and a hydroxy group-containing compound represented by the following formula (8)
  • a compound obtained by subjecting a hydroxy group in the compound to a urethanization reaction can be mentioned.
  • R 1 , R 2 , R 3 and R 4 are the same as R 1 , R 2 , R 3 and R 4 in formula (1).
  • a conventionally known method can be used as a method for urethanizing the isocyanate compound having an ethylenically unsaturated group and the hydroxy group-containing compound represented by the formula (8).
  • the above urethanization reaction can be carried out with or without the presence of a solvent.
  • the solvent used may be any solvent that is inert to isocyanato groups, and known solvents can be used.
  • the above urethanization reaction is generally preferably carried out at a temperature of -10°C or higher and 90°C or lower, more preferably at a temperature of 5°C or higher and 70°C or lower, and preferably at a temperature of 10°C or higher and 40°C or lower. More preferred.
  • a urethanization catalyst such as dibutyltin dilaurate; may be used.
  • the isocyanate compound used as a raw material for the monomer (m-pb) the compounds and preferred examples exemplified as the isocyanate compound that can be used for the above-mentioned blocked isocyanato group-containing monomer (ma) can be used in the same manner. can.
  • Examples of the hydroxy group-containing compound represented by formula (8) used as a starting material for the monomer (m-pb) include malic acid ester, 2-methylmalic acid ester, 3-methylmalic acid ester, 2,3-dimethylmalic acid ester, Acid ester, tartaric acid ester, citric acid ester, etc., and ease of reaction to convert to structural unit (b) having one or more groups selected from the following formula (2-2) and the following formula (3-2) From the standpoint of pods and availability, malic acid esters are preferred.
  • the number of carbon atoms in the two ester moieties contained in the hydroxy group-containing compound represented by formula (8) is 1 to 20, Each is preferably 1 to 5, more preferably 1 to 3.
  • the hydroxy group-containing compound represented by formula (8) is particularly preferably diethyl malate from the viewpoint of availability.
  • the monomer (m-pb) examples include 2-[(diethyl malate)carbonylamino]ethyl acrylate, 2-[(diethyl malate)carbonylamino]methyl acrylate, 2-[(diethyl malate) It is preferably one or more selected from carbonylamino]propyl acrylate and 2-[(diethyl malate)carbonylamino]butyl acrylate, and from the viewpoint of ease of production, particularly 2-[(malic acid Diethyl)carbonylamino]ethyl acrylate is preferred.
  • the structural unit (pb) By including the structural unit (pb) in the resin precursor (PA), a resin composition containing the resin (A) having the structural unit (b) derived from the structural unit (pb) is obtained.
  • the structural unit (b) introduces an ethylenically unsaturated group into the resin (A). Therefore, the resin composition containing the resin (A) having the structural unit (b) has good photocurability and low-temperature curability, and a cured product having excellent solvent resistance can be obtained.
  • the content ratio of the structural unit (pb) in the resin precursor (PA) can be appropriately determined according to the application of the resin precursor (PA).
  • the content of the structural unit (pb) in the resin precursor (PA) is preferably 1 to 50 mol%, more preferably 10 to 40 mol%, and 20 to 35 mol%. More preferred. The proportion may be 5 to 45 mol %, 15 to 30 mol %, etc., as required.
  • the resin (A) derived from the resin precursor (PA) is derived from the structural unit (pb) in the resin precursor (PA). It will contain a sufficient amount of the structural unit (b).
  • the resin composition containing the resin (A) has sufficient ethylenically unsaturated groups introduced into the resin (A), and has good photocurability and low-temperature curability, and excellent solvent resistance.
  • the content ratio of the structural unit (pb) is 50 mol% or less, the content ratio of the structural unit (a) and the structural unit (c) in the resin precursor (PA) can be sufficiently secured, and the temperature can be lowered.
  • a resin composition having good curability is obtained.
  • the structural unit (c) having a hydroxy group contained in the resin precursor (PA) is a structural unit derived from a hydroxy group-containing monomer (mc) (hereinafter also simply referred to as "monomer (mc)"). be.
  • the number of structural units (c) may be one, or two or more.
  • the monomer (mc) is not particularly limited as long as it does not have a blocked isocyanato group and a group represented by the above formula (1) and has an ethylenically unsaturated group and a hydroxy group.
  • Examples of the monomer (mc) include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 2,3-dihydroxypropyl (meth)acrylate, 2 -hydroxy-3-phenoxypropyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate and the like.
  • 2-hydroxyethyl (meth)acrylate is preferable from the viewpoint of availability.
  • These monomers (mc) may be used alone or in combination of two or more.
  • the resin precursor (PA) contains the structural unit (c)
  • the isocyanato groups regenerated by deblocking (dissociating) the blocked isocyanato groups of the structural unit (a) react with the hydroxy groups of the structural unit (c).
  • good curability can be obtained even if the heating temperature for curing the resin composition is sufficiently low, and a cured product having excellent solvent resistance can be obtained.
  • the content ratio of the structural unit (c) in the resin precursor (PA) can be appropriately determined according to the application of the resin precursor (PA).
  • the content of the structural unit (c) in the resin precursor (PA) is preferably 1 to 80 mol%, more preferably 10 to 70 mol%, and 30 to 60 mol%. More preferred. The proportion may be 5 to 50 mol %, 20 to 40 mol %, etc., as required.
  • the content of the structural unit (c) is 1 mol% or more, the hydroxyl reacts with the isocyanato group regenerated by heating for curing the resin composition containing the resin produced using the resin precursor (PA). A sufficient number of bases can be secured.
  • the resin composition has better low-temperature curability and gives a cured product having excellent solvent resistance.
  • the content ratio of the structural unit (c) is 80 mol% or less, the content ratio of the structural unit (pb) and the structural unit (c) in the resin precursor (PA) can be sufficiently secured, and the resin precursor A resin composition containing a resin produced using the body (PA) has well-balanced photocurability and low-temperature curability.
  • the resin precursor (PA) may optionally contain a structural unit (d) other than the structural units (a) to (c).
  • the number of structural units (d) may be one, or two or more.
  • the structural unit (d) is a monomer (md) other than the above monomers (ma) (ma-pb) and (mc) (hereinafter also simply referred to as "monomer (md)").
  • ) is a structural unit derived from
  • the monomer (md) is a monomer that does not have a hydroxyl group, an isocyanato group, a blocked isocyanato group, or a group represented by the above formula (1) and has an ethylenically unsaturated group, and is not particularly limited.
  • Examples of the monomer (md) include dienes such as butadiene, (meth)acrylic acid esters, (meth)acrylic acid amides, vinyl compounds, styrenes, and unsaturated dicarboxylic acid diesters.
  • (meth)acrylates include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, sec- Butyl (meth)acrylate, isobutyl (meth)acrylate, tert-butyl (meth)acrylate, pentyl (meth)acrylate, neopentyl (meth)acrylate, benzyl (meth)acrylate, isoamyl (meth)acrylate, hexyl (meth)acrylate , 2-ethylhexyl (meth)acrylate, lauryl (meth)acrylate, dodecyl (meth)acrylate, cyclopentyl (meth)acrylate, cyclohexyl (meth)acrylate, methylcyclohexyl (meth)acrylate, ethylcyclo
  • (meth)acrylic acid amides include (meth)acrylic acid amide, (meth)acrylic acid N,N-dimethylamide, (meth)acrylic acid N,N-diethylamide, (meth)acrylic acid N, N-dipropylamide, (meth)acrylic acid N,N-di-isopropylamide, (meth)acrylic acid anthracenylamide, N-isopropyl (meth)acrylamide, (meth)acrylic morpholine, diacetone (meth) acrylamide and the like.
  • vinyl compounds include norbornene (bicyclo[2.2.1]hept-2-ene), 5-methylbicyclo[2.2.1]hept-2-ene, 5-ethylbicyclo[2.2 .1]hept-2-ene, tetracyclo[4.4.0.1 2,5 . 1 7,10 ]dodeca-3-ene, 8-methyltetracyclo[4.4.0.1 2,5 . 1 7,10 ]dodeca-3-ene, 8-ethyltetracyclo[4.4.0.1 2,5 .
  • styrenes include styrene, ⁇ -, o-, m-, p-alkyl, nitro, cyano, and amide derivatives of styrene.
  • unsaturated dicarboxylic acid diesters include diethyl citraconate, diethyl maleate, diethyl fumarate, and diethyl itaconate.
  • unsaturated polybasic acid anhydrides include itaconic anhydride and citraconic anhydride. These monomers (md) may be used alone or in combination of two or more.
  • (meth)acrylic acid esters are preferred, and from the viewpoint of ease of availability and ability to express without inhibiting the roles of the structural units (a) to (c), carbon Alkyl (meth)acrylates having an alkyl group of number 1 to 10 are more preferable, and in order to efficiently express the roles of the structural units (a) to (c), methyl (meth)acrylate, ethyl (meth)acrylate, n - propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, sec-butyl (meth) acrylate, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, pentyl (meth) acrylate , neopentyl (meth) acrylate, isoamyl (meth) acrylate, hexyl (meth) acrylate, 2-eth
  • the content ratio in the resin precursor (PA) can be appropriately determined according to the use of the resin precursor (PA).
  • the content of the structural unit (d) in the resin precursor (PA) is preferably 1 to 30 mol%, more preferably 3 to 25 mol%, and 5 to 20 mol%. More preferred. The proportion may be 2 to 18 mol %, 8 to 15 mol %, etc., as required.
  • the content of the structural unit (d) is 1 mol % or more, the effect of including the structural unit (d) becomes remarkable.
  • the resin composition containing the resin produced using the resin precursor (PA) has good low-temperature curability and gives a cured product with excellent solvent resistance.
  • the polystyrene-equivalent weight average molecular weight of the resin precursor (PA) is not particularly limited, but is preferably 1,000 to 40,000, more preferably 3,000 to 30,000, still more preferably 4,000 to 10,000. 000.
  • the weight-average molecular weight of the resin precursor (PA) is 1,000 or more
  • the resin composition containing the resin produced using the resin precursor (PA) is a cured product having superior solvent resistance. be obtained.
  • the weight average molecular weight of the resin precursor (PA) is 40,000 or less, it is possible to impart a suitable viscosity to the resin composition containing the resin produced using the resin precursor (PA), which improves handling. It becomes easy to obtain a resin composition that is easy to dissolve.
  • the resin precursor (PA) of this embodiment contains a structural unit (a) having a blocked isocyanato group, and contains the blocked isocyanato group in the molecule.
  • the content of the blocked isocyanato groups in the resin precursor (PA) may be selected as appropriate. It is more preferably selected in the range of 700 to 3,000 g/mol.
  • the blocked isocyanato group equivalent in the resin precursor (PA) is 400 g/mol or more, the resin composition containing the resin produced using the resin precursor (PA) is cured at a heating temperature for curing. can be sufficiently reduced, and a cured product having better solvent resistance can be obtained.
  • the blocked isocyanato group equivalent in the resin precursor (PA) is 6,000 g/mol or less, the structural unit ( It is possible to suppress the occurrence of unintended cross-linking reaction due to the regeneration of the isocyanato group of a), and to ensure the stability.
  • the blocked isocyanato group equivalent in the resin precursor (PA) is the mass of the resin precursor (PA) per 1 mol of the blocked isocyanato groups contained in the resin precursor (PA). It is obtained by dividing the mass by the number of moles of blocked isocyanato groups contained in the resin precursor (PA) (g/mol).
  • the blocked isocyanato group equivalent in the resin precursor (PA) is a theoretical value calculated from the charged amount of the blocked isocyanato group-containing monomer (ma) used as the starting material for the resin precursor (PA). be.
  • the resin precursor (PA) of this embodiment contains a structural unit (c) having a hydroxy group, and contains a hydroxy group (hydroxyl group) in the molecule.
  • the content of hydroxy groups in the resin precursor (PA) may be appropriately selected, but usually the hydroxy group equivalent is 200 to 5000 g/mol, preferably 300 to 3000 g/mol, more preferably 400 to 2000 g/mol. is selected within the range of It is preferable that the hydroxyl group equivalent weight in the resin precursor (PA) is 200 g/mol or more because the compatibility with other components of the resin precursor composition is not impaired.
  • the resin composition containing the resin produced using the resin precursor (PA) was regenerated by heating for curing. A sufficient number of hydroxy groups to react with isocyanato groups can be ensured. Therefore, the resin composition has better low-temperature curability and gives a cured product having excellent solvent resistance.
  • the hydroxy group equivalent in the resin precursor (PA) is the mass of the resin precursor (PA) per mole of hydroxy groups contained in the resin precursor (PA), and the mass of the resin precursor (PA) is It is obtained by dividing by the number of moles of hydroxyl groups contained in the compound (PA) (g/mol).
  • the hydroxy group equivalent in the resin precursor (PA) is a theoretical value calculated from the charged amount of the structural unit (c) having a hydroxy group used as a starting material for the resin precursor (PA).
  • the resin precursor (PA) comprises monomers (ma), (m-pb), (m- It can be produced by copolymerizing c).
  • the ratio of the structural units (a), (pb), and (c) contained in the resin precursor (PA) is the total of all monomers used as raw materials for the resin precursor (PA) (hereinafter referred to as "raw material monomers"). It is equivalent to the ratio of each monomer (ma), (mpb), and (mc) in the above.
  • the ratio of each monomer (ma), (mpb), and (mc) in the raw material monomer used as the raw material of the resin precursor (PA) is preferably (ma) 1 to 40. mol%, (m-pb) 1 to 50 mol%, and (mc) 1 to 80 mol%, more preferably (ma) 5 to 30 mol%, (m-pb) 10 to 40 mol %, and (m ⁇ c) 10 to 70 mol %, more preferably (m ⁇ a) 10 to 25 mol %, (m ⁇ pb) 20 to 35 mol %, and (m ⁇ c) 30 to 60 mol %.
  • the resin precursor (PA) containing the structural unit (d) When the resin precursor (PA) containing the structural unit (d) is produced, monomers (ma), (m-pb), (m- In addition to c), a monomer (md) may be used.
  • the ratio of the monomer (md) in the raw material monomer used as the raw material of the resin precursor (PA) is preferably 1 to 30 mol%, more preferably 3 to 25 mol%, More preferably, it is 5 to 20 mol %.
  • Raw material monomers (monomers (ma), (mpb), (mc) and optionally used monomers (md)) used in producing the resin precursor (PA)
  • the polymerization reaction can be carried out in the presence or absence of a polymerization solvent according to radical polymerization methods known in the art. Specifically, for example, a raw material monomer solution is prepared by mixing a raw material monomer, a polymerization initiator, and a polymerization solvent, and a polymerization reaction is performed at a temperature of 50 to 100° C. for 1 to 20 hours in a nitrogen gas atmosphere. can.
  • the polymerization solvent used when producing the resin precursor (PA) one or more of those that can be used in the solvent (PC) contained in the resin precursor composition described later can be used.
  • the temperature at which the raw material monomers are copolymerized is preferably lower than the dissociation temperature at which the dissociation rate of the blocked isocyanato groups of the blocked isocyanato group-containing monomer (ma) is 80% or more in 30 minutes. This is because in the raw material monomer solution during the copolymerization reaction, the blocked isocyanato group of the monomer (ma) is dissociated to generate an isocyanato group, which reacts with the hydroxy group of the hydroxy group-containing monomer (mc). This is because it is possible to suppress gelation due to The temperature at which the raw material monomers are copolymerized is more preferably 20 to 50° C.
  • the temperature at which the raw material monomers are copolymerized can be 50 to 100.degree. C., preferably 60 to 90.degree. C., and more preferably 65 to 85.degree.
  • polymerization initiators used in copolymerizing raw material monomers include 2,2′-azobis(2,4-dimethylvaleronitrile), azobisisobutyronitrile, azobisisovaleronitrile, peroxide benzoyl, t-butylperoxy-2-ethylhexanoate and the like. These polymerization initiators may be used alone or in combination of two or more.
  • the amount of the polymerization initiator to be used can be 0.5 to 20 parts by mass, preferably 1.0 to 10 parts by mass, per 100 parts by mass of raw material monomers (the total amount of monomers charged).
  • additives such as polymerization inhibitors, chain transfer agents, photosensitizers, fillers, and plasticizers are added to the extent that the effects of the present invention are not impaired. You can use it.
  • the resin precursor composition of this embodiment contains the resin precursor (PA) of this embodiment, a basic catalyst (PB), and a solvent (PC).
  • the resin precursor composition converts the structural unit (pb) contained in the resin precursor (PA) into the structural unit (b) described later, and the Resin (A) can be produced.
  • the basic catalyst (PB) is a group represented by the formula (1) of the structural unit (pb) contained in the resin precursor (PA), in which the carbon atom to which R3 is bonded and R4 are bonded It is not particularly limited as long as it can form a double bond with the carbon atom.
  • Basic catalysts (PB) corresponding to those having a pKa of 12.5 or more at 25° C. include those having a pKa of 12.5 or more in an aqueous solution, and those that are too acidic to be measured in an aqueous solution. and having a pKa of 12.5 or more in an aqueous solution converted from the measurement results in an organic solvent.
  • the basic catalyst (PB) is preferably a compound represented by the following formula (5).
  • R 11 N CR 12 -NR 13 R 14 (5)
  • R 11 is a hydrogen atom, a hydrocarbon group having 1 to 20 carbon atoms, or a group represented by —N(R 15 ) 2 (wherein R 15 is a hydrogen atom or a carbon atom a hydrocarbon group of numbers 1 to 20, wherein two R 15 may be the same or different), and R 12 , R 13 and R 9 are each a hydrogen atom or a carbon It is a hydrocarbon group having an atom number of 1 to 20. Any two or more of R 11 , R 12 , R 13 , R 14 and two R 15 groups may combine to form a cyclic structure. good.
  • the basic catalyst (PB) may be a compound represented by formula (5-2).
  • R 16 N CR 17 -NR 18 R 19 (5-2) (In formula (5-2), R 16 , R 17 , R 18 and R 19 are hydrocarbon groups. R 16 and R 19 combine to form a cyclic structure. R 16 and R 19 is 3 to 20. R 17 and R 18 combine to form a cyclic structure. The sum of the carbon atoms of R 17 and R 18 is 3 to 20.)
  • the sum of the number of carbon atoms of R 16 and R 19 forming a cyclic structure is 3 to 20, preferably 3 from the viewpoint of availability. ⁇ 10.
  • the sum of the number of carbon atoms of R 17 and R 18 forming a cyclic structure is 3 to 20, preferably 3 from the viewpoint of availability. ⁇ 10.
  • PB basic catalyst
  • DBU 1,8-diazabicyclo[5.4.0]-undecene-7
  • pKa12.5 1,5-diazabicyclo[4.3.0 ]-5-nonene
  • pKa13.6 1,1,3,3-tetramethylguanidine
  • 1,8-diazabicyclo[5.4.0]-undecene-7 is preferably used from the viewpoint of compatibility with solvents, availability, and the like.
  • the content of the basic catalyst (PB) is preferably 0.01 to 10 parts by mass, more preferably 0.05 to 5 parts by mass, relative to 100 parts by mass of the resin precursor (PA). , more preferably 0.1 to 3 parts by mass.
  • the content may be 0.2 to 2 parts by mass, or 0.5 to 1 part by mass, etc., as required.
  • the content of the basic catalyst (PB) is 0.01 parts by mass or more, the reaction rate of converting the structural unit (pb) contained in the resin precursor (PA) into the structural unit (b) is sufficiently fast. It is easy to become, and it is preferable.
  • the content of the basic catalyst (PB) is 10 parts by mass or less, it is possible to suppress the influence of the basic catalyst (PB) when curing the resin composition produced using the resin precursor composition.
  • solvent (PC) examples include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol mono-n-butyl ether, triethylene glycol monomethyl ether, propylene glycol monoethyl ether, dipropylene glycol monomethyl ether, tri (poly)alkylene glycol monoalkyl ethers such as propylene glycol monoethyl ether and 3-methoxy-1-butanol; methyl 2-hydroxypropionate, ethyl 2-hydroxypropionate, methyl 2-hydroxy-2-methylpropionate, Hydroxy group-containing carboxylic acid esters such as ethyl 2-hydroxy-2-methylpropionate, ethyl hydroxyacetate and methyl 2-hydroxy-3-methylbutyrate; hydroxy group-containing solvents such as diethylene glycol, ethylene glycol monomethyl ether acetate, ethylene glycol mono (Poly)alkylene glycol mono
  • ethers from the viewpoint of availability, cost, and stability during resist production.
  • PC solvents
  • ethers from the viewpoint of availability, cost, and stability during resist production.
  • propylene glycol monomethyl ether acetate and diethylene glycol methyl ethyl ether are preferably used.
  • propylene glycol monomethyl ether, ethylene glycol monomethyl ether, and 3-methoxy-1-butanol are preferably used.
  • the content of the solvent (PC) is preferably 30 to 1,000 parts by mass, more preferably 50 parts by mass, with respect to the total 100 parts by mass of the components other than the solvent (PC) contained in the resin precursor composition. ⁇ 800 parts by mass.
  • the content may be 70 to 500 parts by mass, or 100 to 300 parts by mass, etc., as required.
  • the content of the solvent (PC) is 30 parts by mass or more, a stable polymerization reaction can be achieved, which is preferable.
  • the content of the solvent (PC) is 1,000 parts by mass or less, the viscosity of the resin precursor composition can be appropriately adjusted, which is preferable.
  • the resin precursor composition of the present embodiment can be produced by mixing the resin precursor (PA), the basic catalyst (PB) and the solvent (PC) using a known mixing device.
  • the reaction liquid obtained by copolymerizing raw material monomers for producing the resin precursor (PA) may be used as it is.
  • the resin precursor composition of the present embodiment contains additives such as the polymerization initiator used when producing the resin precursor (PA), the solvent used as necessary, and the polymerization inhibitor. may be
  • the resin precursor (PA) is isolated from the reaction liquid obtained by copolymerizing the raw material monomers to produce the resin precursor (PA). You can use what you have.
  • the resin precursor (PA) and/or basic catalyst (PB) used as raw materials may be in the form of a mixture with a solvent.
  • the solvent contained in the mixture with the resin precursor (PA) and/or the basic catalyst (PB) can be used as the solvent (PC) contained in the resin precursor composition.
  • the resin precursor composition of the present embodiment contains a resin precursor (PA), a basic catalyst (PB), a solvent (PC), and optionally a coupling agent, a leveling agent, and a thermal polymerization inhibitor. It may contain one or two or more known additives such as agents. The content of these additives is not particularly limited as long as it does not impair the effects of the present invention.
  • the additive contained in the resin precursor composition may be one added when preparing the resin precursor composition, or one added when producing the resin precursor (PA). Alternatively, it may be a residue of a raw material monomer used in the synthesis of the resin precursor (PA).
  • the resin (A) of the present embodiment comprises a structural unit (a) having a blocked isocyanato group and a structural unit having one or more groups selected from the following formula (2-2) and the following formula (3-2). It is a copolymer containing (b) (hereinafter simply referred to as "structural unit (b)") and a structural unit (c) having a hydroxy group.
  • R 1 is a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms; R 3 and R 4 are each independently a hydrogen atom or a It is a hydrocarbon group.
  • R 2 is a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms; R 3 and R 4 are each independently a hydrogen atom or a It is a hydrocarbon group.
  • the structural unit (a) having a blocked isocyanato group in the resin (A) is the same as the structural unit (a) having a blocked isocyanato group in the resin precursor (PA).
  • the structural unit (c) having a hydroxy group in the resin (A) is the same as the structural unit (c) having a hydroxy group in the resin precursor (PA). Therefore, as a monomer that leads to the structural units (a) and (c) in the resin (A), a monomer that leads to the structural units (a) and (c) in the resin precursor (PA) (monomer (m- Compounds similar to a) and (mc)) can be mentioned.
  • the resin (A) of the present embodiment may optionally contain a structural unit (d) other than the structural units (a) to (c).
  • Other structural units (d) that may be contained in the resin (A) are the same as other structural units (d) that may be contained in the resin precursor (PA).
  • examples of the monomer leading to the structural unit (d) in the resin (A) include the same compounds as the monomer (md) leading to the structural unit (d) in the resin precursor (PA).
  • part of the structural unit (c) having a hydroxy group may contain a carboxy group derived from the polybasic acid (e).
  • the proportions of the structural units (a), (b) and (c) in the resin (A) are the same as the proportions of the structural units (a), (pb) and (c) in the resin precursor (PA). be.
  • the proportions of the structural units (a) to (d) in the resin (A) are the structural units (a) and (pb) in the resin precursor (PA), respectively.
  • (c), and (d) are the structural units (a), (b), and (d).
  • the structural unit (b) is a structural unit having one or more groups selected from the above formula (2-2) and the above formula (3-2), and is a structural unit contained in the resin precursor (PA) described above. (pb). Therefore, the structural unit (b) is preferably a structural unit derived from a monomer (m-pb) having a (meth)acryloyloxy group and a group represented by formula (1).
  • the resin (A) of the present embodiment has an ethylenically unsaturated group introduced by containing the structural unit (b).
  • the resin composition containing the resin (A) contains the structural unit (b)
  • a reactive diluent described later (D) is polymerized to exhibit good photocurability.
  • R 1 is a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms and represented by the formula (1) Like R 1 in the group, it is preferably a hydrocarbon group having 1 to 5 carbon atoms, more preferably a hydrocarbon group having 1 to 3 carbon atoms. Like R 1 in the group represented by formula (1), R 1 in the group represented by formula (2-2) is preferably an alkyl group, preferably a methyl group or an ethyl group, ethyl is particularly preferred.
  • R 3 and R 4 are each independently a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, and R 3 and R 4 in the group represented by formula (1) Similarly, it is preferably a hydrogen atom or one having 1 to 5 carbon atoms, more preferably a hydrogen atom or a methyl group, particularly preferably a hydrogen atom.
  • R 3 and R 4 in formula (2-2) may be the same or different, like R 3 and R 4 in the group represented by formula (1).
  • R 2 is a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, represented by the formula (1) Like R 2 in the group, it is preferably a hydrocarbon group having 1 to 5 carbon atoms, more preferably a hydrocarbon group having 1 to 3 carbon atoms. Like R 2 in the group represented by formula (1), R 2 in the group represented by formula (2-3) is preferably an alkyl group, preferably a methyl group or an ethyl group, ethyl is particularly preferred.
  • R 3 and R 4 are each independently a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, and R 3 and R 4 in the group represented by formula (1) Similarly, it is preferably a hydrogen atom or one having 1 to 5 carbon atoms, more preferably a hydrogen atom or a methyl group, particularly preferably a hydrogen atom.
  • R 3 and R 4 in formula (3-2) may be the same or different, like R 3 and R 4 in the group represented by formula (1).
  • part of the structural unit (c) having a hydroxy group may contain a carboxy group derived from the polybasic acid (e).
  • part of the structural unit (c) contains a carboxy group derived from the polybasic acid (e)
  • alkali developability can be imparted to the resin composition containing the resin (A).
  • a resin composition containing such a resin (A) can obtain a cured product having better curability and more excellent solvent resistance.
  • Polybasic acid (e) is a compound having multiple carboxy groups in one molecule.
  • the polybasic acid (e) is preferably a compound in which at least two carboxy groups are dehydrated and condensed to form an acid anhydride.
  • dibasic acids are preferred, and dibasic acid anhydrides are more preferred.
  • a dibasic acid anhydride is used as the polybasic acid (e)
  • synthesis of the resin (A) is facilitated, and adjustment of the acid value of the resin (A) is also facilitated.
  • polybasic acid (e) examples include maleic anhydride, phthalic anhydride, succinic anhydride, 1,2,3,6-tetrahydrophthalic anhydride, endomethylenetetrahydrophthalic anhydride, and methyltetrahydrophthalic anhydride.
  • acid 3-methyl-1,2,3,6-tetrahydrophthalic anhydride, 4-methyl-1,2,3,6-tetrahydrophthalic anhydride, 3-methyl-hexahydrophthalic anhydride, 4-methyl-hexahydro phthalic anhydride, methyl-3,6-endomethylene-1,2,3,6-tetrahydrophthalic anhydride, trimellitic anhydride and the like.
  • polybasic acids (e) from the viewpoint of availability, succinic anhydride, phthalic anhydride, 1,2,3,6-tetrahydrophthalic anhydride, and maleic anhydride are preferable, and succinic anhydride is It is more preferable because it has the simplest structure and the effect of the polybasic acid (e) is efficiently exhibited.
  • Polybasic acid (e) may be used alone or in combination of two or more.
  • the content of the structural unit (c) containing the carboxy group derived from the polybasic acid (e) is It is preferably 1 to 30 mol, more preferably 5 to 25 mol, more preferably 10 to 23 mol, relative to a total of 100 mol of the structural units (a) to (d) contained in the resin (A). It is even more preferable to have When the content of the structural unit (c) containing a carboxyl group derived from the polybasic acid (e) is 1 mol or more, sufficient alkali developability can be imparted to the resin composition containing the resin (A).
  • the resin composition containing the resin (A) has better curability, and a cured product having excellent solvent resistance can be obtained.
  • the content of the structural unit (c) containing a carboxyl group derived from the polybasic acid (e) is 30 mol or less, the solubility of the resin composition containing the resin (A) in an alkaline developer becomes excessive. can be suppressed.
  • the content of the structural unit (c) containing the carboxy group derived from the polybasic acid (e) is It is preferably 10 to 80 mol, more preferably 20 to 70 mol, even more preferably 30 to 60 mol, per 100 mol of the structural unit (c) contained in the resin (A).
  • the content of the structural unit (c) containing a carboxy group derived from the polybasic acid (e) is 10 mol or more, the resin (A) will have a sufficient number of carboxy groups.
  • the resin (A) contains sufficient hydroxy groups possessed by the structural unit (c). become a thing. Therefore, in the resin composition containing the resin (A), the hydroxy group of the structural unit (c) and the blocking agent for the blocked isocyanato group of the structural unit (a) are dissociated by heating for curing the resin composition. With the isocyanato groups regenerated by this, a cross-linking reaction is performed, and good low-temperature curability can be obtained.
  • the polystyrene equivalent weight average molecular weight of the resin (A) is not particularly limited, but is preferably 1,500 to 50,000, more preferably 3,500 to 40,000, and still more preferably 5,000 to 20,000. be.
  • the resin composition containing the resin (A) can form a cured product having more excellent solvent resistance.
  • the weight average molecular weight of the resin (A) is 50,000 or less, a suitable viscosity can be imparted to the resin composition containing the resin (A), making it easier to obtain a resin composition that is easy to handle. .
  • the weight average molecular weight of the resin (A) is 50,000 or less, the development time can be appropriately controlled when the resin composition containing the resin (A) is a photosensitive material.
  • the resin (A) of the present embodiment contains a structural unit (a) having a blocked isocyanato group, and contains the blocked isocyanato group in the molecule.
  • the content of the blocked isocyanato groups in the resin (A) may be selected as appropriate. ,000 g/mol, preferably 500 to 5,000 g/mol, more preferably 700 to 3,000 g/mol.
  • the blocked isocyanato group equivalent in resin (A) is the mass of resin (A) per 1 mol of blocked isocyanato groups contained in resin (A), and the mass of resin (A) contained in resin (A). (g/mol) by dividing by the number of moles of blocked isocyanato groups.
  • the blocked isocyanato group equivalent in the resin (A) is a theoretical value calculated from the charge amount of the blocked isocyanato group-containing monomer (ma) used as the starting material for the resin precursor (PA).
  • the resin (A) of the present embodiment contains a structural unit (b) having one or more groups selected from formulas (2-2) and (3-2), and has ethylenic Contains unsaturated groups.
  • the content of the ethylenically unsaturated groups in the resin (A) may be selected as appropriate. It is more preferably selected in the range of 500 to 1,500 g/mol. When the ethylenically unsaturated group equivalent in the resin (A) is 200 g/mol or more, the stability of the resin (A) can be sufficiently maintained.
  • the content of the ethylenically unsaturated groups in the resin (A) is 5,000 g/mol or less, and the resin composition containing the resin (A) is a photosensitive material, it can be formed by photocuring.
  • a reactive diluent (D) described later is polymerized together with the ethylenically unsaturated group contained in the unit (b), and good photocurability is exhibited, which is preferable.
  • the ethylenically unsaturated group equivalent in the resin (A) is the mass of the resin (A) per mole of the ethylenically unsaturated group contained in the resin (A), and the mass of the resin (A) is the resin (A) is obtained by dividing by the number of moles of ethylenically unsaturated groups contained in (g/mol).
  • the ethylenically unsaturated group equivalent in the resin (A) is a theoretical value calculated from the charged amount of the monomer (m-pb) having the group represented by formula (1) and the polybasic acid (e). be.
  • the ethylenically unsaturated group equivalent in the resin (A) is the monomer (m-pb) having the group represented by formula (1) and the polybasic acid It is obtained by dividing the mass of resin (A) by the number of moles of (e).
  • the acid value (solid content acid value) of the resin (A) is It is preferably in the range of 20-300 KOH mg/g, more preferably in the range of 30-200 KOH mg/g.
  • the acid value of the resin (A) is 20 KOHmg/g or more
  • the resin composition containing the resin (A) has better alkali developability.
  • the resin composition containing the resin (A) provides a cured product having more excellent solvent resistance.
  • the acid value of the resin (A) is 300 KOHmg/g or less
  • the resin composition containing the resin (A) is a photosensitive material
  • the exposed portion (photocured portion) is exposed to the alkaline developer. It becomes difficult to dissolve, and a good pattern shape can be formed.
  • the acid value of resin (A) in this embodiment is measured by the method described in JIS K6901 5.3.
  • the hydroxy group equivalent weight in the resin (A) may be selected as appropriate, but is generally within the range of 300 to 6000 g/mol, preferably 400 to 4000 g/mol, and more preferably 500 to 2500 g/mol. selected. It is preferable that the hydroxyl group equivalent weight in the resin (A) is 300 g/mol or more because the compatibility with other components of the resin composition is not impaired. When the hydroxy group equivalent weight in the resin (A) is 6000 g/mol or less, a sufficient number of hydroxy groups to react with the isocyanato groups regenerated by heating for curing the resin composition containing the resin (A) can be secured. . Therefore, the resin composition has better low-temperature curability and gives a cured product having excellent solvent resistance.
  • the hydroxy group equivalent in the resin (A) is the mass of the resin (A) per mole of the hydroxy groups contained in the resin (A), and the mass of the resin (A) is the number of hydroxy groups contained in the resin (A). It is obtained by dividing by the number of moles (g/mol).
  • the hydroxy group equivalent in the resin (A) is a theoretical value calculated from the charged amount of the structural unit (c) having a hydroxy group.
  • the resin (A) of this embodiment is derived from the resin precursor (PA) described above. Specifically, a resin precursor composition containing a resin precursor (PA), a basic catalyst (PB) and a solvent (PC) is held at a temperature of 0 to 150° C. for 0.1 to 10 hours, for example. do. As a result, the resin precursor (PA) undergoes a dealcoholization reaction and a decarboxylation reaction to convert the structural unit (pb) contained in the resin precursor (PA) into the structural unit (b), thereby forming the resin (A). A reaction liquid containing a solvent (PC) is generated.
  • PA resin precursor
  • PB basic catalyst
  • PC solvent
  • the dissociation rate of the blocked isocyanato group possessed by the structural unit (a) having the blocked isocyanato group is 70% or more in 30 minutes. It is preferable to carry out under temperature conditions below the temperature. This is because in the resin precursor composition during the conversion reaction, the blocked isocyanato group of the structural unit (a) dissociates to generate an isocyanato group, which reacts with the hydroxy group of the hydroxy-containing structural unit (c). This is because it is possible to suppress gelation due to The temperature conditions for the conversion reaction are more preferably 20 to 50° C.
  • the temperature of the conversion reaction for converting the structural unit (pb) to the structural unit (b) can be 0 to 150°C, preferably 50 to 120°C, more preferably 60 to 100°C. °C. These temperatures are also preferable as temperatures for forming the reaction solution.
  • the holding time for holding the resin precursor composition under the above temperature conditions for the conversion reaction can be 0.1 to 10 hours, preferably 0.3 to 5 hours, more preferably 0. .5 to 3 hours.
  • the retention time can be appropriately determined according to the content of the structural unit (pb) contained in the resin precursor (PA) in the resin precursor composition, the content of the basic catalyst (PB), temperature conditions, and the like.
  • the atmosphere in the reaction vessel in which the conversion reaction is carried out can be, for example, an atmosphere containing air, dry air, nitrogen gas, helium gas, etc., preferably dry air or nitrogen gas atmosphere.
  • the pressure in the reaction vessel for the conversion reaction is not particularly limited, but normal pressure is preferred.
  • reaction path In the method for producing the resin (A) of the present embodiment, it is presumed that the structural unit (pb) contained in the resin precursor (PA) is converted into the structural unit (b) through the reaction pathway shown below. That is, in the structural unit (pb) having the group represented by the formula (1) contained in the resin precursor (PA), the —NH— portion in the urethane bond and the ester portion (—COOR 1 or —COOR 2 ) are , undergoes a dealcoholization reaction.
  • a group having a heterocyclic ring represented by the following formula (2-1) and/or the following formula (3-1) is formed.
  • the group having a heterocyclic ring represented by formula (2-1) is formed by dealcoholization (--R 2 OH) reaction of the ester moiety containing R 2 in the group represented by formula (1).
  • the group having a heterocyclic ring represented by formula (3-1) is formed by dealcoholization (—R 1 OH) of the ester moiety containing R 1 in the group represented by formula (1). .
  • R 1 , R 3 and R 4 are the same as R 1 , R 3 and R 4 in formula (1).
  • R 2 , R 3 and R 4 are the same as R 2 , R 3 and R 4 in formula (1).
  • R 1 is a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms; R 3 and R 4 are each independently a hydrogen atom or a It is a hydrocarbon group.
  • R 2 is a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms; R 3 and R 4 are each independently a hydrogen atom or a It is a hydrocarbon group.
  • a part of the structural unit (c) having a hydroxy group contained in the resin (A) contains a carboxy group derived from the polybasic acid (e), and the polybasic acid (e) is added to the resin ( A reaction solution containing A) is prepared.
  • a metal catalyst such as lithium naphthenate, chromium naphthenate, zirconium naphthenate, cobalt naphthenate, or triphenylphosphine , phosphorus catalysts such as trimethylphosphine, amine catalysts such as triethylamine, and the like may be used.
  • the amount of the catalyst to be used can be appropriately determined according to the conditions such as the temperature and/or time of the addition reaction, the types of the resin (A) and the polybasic acid (e), etc., and is not particularly limited.
  • the reaction between the resin (A) and the polybasic acid (e) can be carried out, for example, at a temperature of 50 to 120°C, preferably at a temperature of 60 to 100°C, and more preferably at a temperature of 65 to 90°C. is more preferable.
  • the temperature at which the resin (A) and the polybasic acid (e) are subjected to the addition reaction is such that the dissociation rate of the blocked isocyanato groups possessed by the structural unit (a) having the blocked isocyanato groups contained in the resin (A) is , 70% or more in 30 minutes.
  • the addition reaction between the resin (A) and the polybasic acid (e) dissociates the blocked isocyanato group of the structural unit (a) to generate an isocyanato group, resulting in a structural unit (c ) can be suppressed from reacting with the hydroxy group of ) and gelling.
  • the addition reaction between the resin (A) and the polybasic acid (e) is 20 to 50° C. lower than the temperature at which the dissociation rate of the blocked isocyanato group of the structural unit (a) is 70% or more in 30 minutes. Temperature is more preferred.
  • the holding time (reaction time) for holding at the above temperature for carrying out the addition reaction between the resin (A) and the polybasic acid (e) can be, for example, 10 to 300 minutes, preferably 15 to 120 minutes. It is preferable to continue until the polybasic acid (e) is consumed. Consumption of the polybasic acid (e) can be confirmed, for example, by an IR spectrum measured using infrared absorption (IR) spectroscopy.
  • IR infrared absorption
  • the resin composition of this embodiment contains the resin (A) of this embodiment, a solvent (C), a reactive diluent (D), and a photopolymerization initiator (E).
  • the resin composition of this embodiment may contain a coloring agent (F), if necessary.
  • the content of the resin (A) in the resin composition is preferably 10 to 90 parts by mass, preferably 30 to 85 parts by mass, with respect to the total of 100 parts by mass of the resin (A) and the reactive diluent (D). It is more preferably 60 to 80 parts by mass.
  • the content of the resin (A) is 10 parts by mass or more, the resin composition has excellent low-temperature curability and can form a cured product with good solvent resistance.
  • the content of the resin (A) is 90 parts by mass or less, a sufficient content of the reactive diluent (D) can be ensured, so that a cured product having good strength and adhesion to the substrate can be formed. Become.
  • solvent (C) As the solvent (C), the same solvent (PC) as used in the resin precursor composition can be used.
  • the solvent (C) in the resin composition and the solvent (PC) in the resin precursor composition used in producing the resin composition may be the same or different.
  • the content of the solvent (C) in the resin composition is preferably 30 to 1,000 parts by mass, more preferably 100 parts by mass in total of the resin (A) and the reactive diluent (D). is 50 to 800 parts by mass. If necessary, the content may be 80 to 500 parts by mass, or 100 to 300 parts by mass.
  • the content of the solvent (C) When the content of the solvent (C) is 30 parts by mass or more, it can have an appropriate viscosity according to the application. When the content of the solvent (C) is 1,000 parts by mass or less, the solvent (C ) can be removed.
  • the reactive diluent (D) is a monomer composed of a compound having at least one ethylenically unsaturated bond as a polymerizable functional group in its molecule.
  • the reactive diluent (D) may be a monofunctional monomer or a polyfunctional monomer having multiple polymerizable functional groups.
  • the resin composition of the present embodiment can have an appropriate viscosity according to the application.
  • the resin composition of the present embodiment contains the reactive diluent (D), it has good photocurability and can form a cured product with good strength and adhesion to the substrate. .
  • Monofunctional monomers used as reactive diluents (D) include (meth)acrylamide, methylol (meth)acrylamide, methoxymethyl (meth)acrylamide, ethoxymethyl (meth)acrylamide, propoxymethyl (meth)acrylamide, butoxymethoxy Methyl (meth)acrylamide, methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth) Acrylate, 4-hydroxybutyl (meth)acrylate, 2-phenoxy-2-hydroxypropyl (meth)acrylate, 2-(meth)acryloyloxy-2-hydroxypropyl phthalate, glycerin mono (meth)acrylate, tetrahydrofurfuryl (meth)acrylate ) acrylate, glycidyl (meth) acrylate,
  • (meth)acrylates aromatic vinyl compounds such as styrene, ⁇ -methylstyrene, ⁇ -chloromethylstyrene and vinyltoluene; carboxylic acid esters such as vinyl acetate and vinyl propionate; These monofunctional monomers may be used alone or in combination of two or more.
  • Polyfunctional monomers used as reactive diluents (D) include ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, propylene glycol di(meth)acrylate, and polypropylene glycol.
  • tolylene diisocyanate Reaction products of trimethylhexamethylene diisocyanate, hexamethylene diisocyanate, etc., and 2-hydroxyethyl (meth)acrylate, (meth)acrylates such as tris(hydroxyethyl)isocyanurate tri(meth)acrylate; divinylbenzene, diallyl phthalate, diallyl Aromatic vinyl compounds such as benzene phosphonate; Dicarboxylic acid esters such as divinyl adipate; and condensates of. These polyfunctional monomers may be used alone or in combination of two or more.
  • a polyfunctional (meth)acrylate as the reactive diluent (D) because it results in a resin composition with good photocurability.
  • a polyfunctional (meth)acrylate Specifically, trimethylolpropane tri(meth) ) acrylate, pentaerythritol tri(meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol hexa(meth)acrylate, and the like.
  • the content of the reactive diluent (D) in the resin composition is preferably 10 to 90 parts by mass with respect to a total of 100 parts by mass of the resin (A) and the reactive diluent (D). It is more preferably up to 70 parts by mass, and even more preferably 20 to 40 parts by mass.
  • the content of the reactive diluent (D) is 10 parts by mass or more, the effect of containing the reactive diluent (D) becomes remarkable.
  • the content of the reactive diluent (D) is 90 parts by mass or less, a sufficient content of the resin (A) can be ensured, resulting in a resin composition with even better low-temperature curability.
  • the photopolymerization initiator (E) is not particularly limited, but for example, 1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl-]-,-1-(O- acetyloxime); benzoins such as benzoin, benzoin methyl ether, benzoin ethyl ether, and benzoin butyl ether; acetophenone, 2,2-dimethoxy-2-phenylacetophenone, 1,1-dichloroacetophenone, 4-(1-t-butyldioxy- 1-methylethyl)acetophenone, 2-methyl-1-[4-(methylthio)phenyl]-2-morpholino-propan-1-one, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)butanone acetophenones such as -1; anthraquinones such as 2-methylanthraquinone,
  • the content of the photopolymerization initiator (E) in the resin composition is preferably 0.1 to 30 parts by mass with respect to a total of 100 parts by mass of the resin (A) and the reactive diluent (D). , more preferably 0.5 to 15 parts by mass, more preferably 1 to 10 parts by mass.
  • the content of the photopolymerization initiator (E) is 0.1 parts by mass or more, the resin composition has good photocurability.
  • the content of the photopolymerization initiator (E) is 30 parts by mass or less, it is possible to prevent the physical properties of the cured product of the resin composition from being adversely affected by the excessive amount of the photopolymerization initiator (E).
  • the resin composition of this embodiment may contain a coloring agent (F).
  • a resin composition containing a coloring agent (F) can be used as a material for a color filter.
  • the coloring agent (F) is not particularly limited as long as it dissolves or disperses in the solvent (C), and examples thereof include dyes and pigments.
  • an acidic dye having an acidic group such as carboxylic acid and / or sulfonic acid It is preferable to use a dye, a salt of an acid dye with a nitrogen compound, a sulfonamide of an acid dye, or the like.
  • dyes examples include acid alizarin violet N; acid black 1,2,24,48; acid blue 1,7,9,25,29,40,45,62,70,74,80,83,90; 92, 112, 113, 120, 129, 147; solvent blue 38, 44, 70; acid chrome violet K; acid Fuchsin; acid green 1, 3, 5, 25, 27, 50; , 50, 51, 52, 56, 63, 74, 95; 52, 57, 69, 73, 80, 87, 88, 91, 92, 94, 97, 103, 111, 114, 129, 133, 134, 138, 143, 145, 150, 151, 158, 176, 183, 198, 211, 215, 216, 217, 249, 252, 257, 260, 266, 274; acid violet 6B, 7, 9, 17, 19; acid yellow 1, 3, 9, 11, 17, 23, 25, 29 , 34, 36, 42, 54, 72, 73, 76, 79, 98
  • pigments examples include C.I. I. Pigment Yellow 1, 3, 12, 13, 14, 15, 16, 17, 20, 24, 31, 53, 83, 86, 93, 94, 109, 110, 117, 125, 128, 137, 138, 139, 147, 148, 150, 153, 154, 166, 173, 194, 214; C.I. I. C.I. Pigment Orange 13, 31, 36, 38, 40, 42, 43, 51, 55, 59, 61, 64, 65, 71, 73; I.
  • red pigments such as Pigment Red 9, 97, 105, 122, 123, 144, 149, 166, 168, 176, 177, 180, 192, 209, 215, 216, 224, 242, 254, 255, 264, 265; C. I. Blue pigments such as Pigment Blue 15, 15:3, 15:4, 15:6, 60; C.I. I. Violet color pigments such as Pigment Violet 1, 19, 23, 29, 32, 36, 38; C.I. I. Green pigments such as Pigment Green 7, 36, 58, 59; C.I. I. Brown pigments such as Pigment Brown 23, 25; C.I. I. Pigment Black 1, 7, carbon black, titanium black, black pigments such as iron oxide, and the like.
  • Blue pigments such as Pigment Blue 15, 15:3, 15:4, 15:6, 60
  • C.I. I. Violet color pigments such as Pigment Violet 1, 19, 23, 29, 32, 36, 38
  • C.I. I. Green pigments such as Pigment Green 7, 36, 58
  • the coloring agent (F) is appropriately selected depending on the color of the desired colored pattern (black matrix and pixels). can decide.
  • the colorant (F) may be used singly or in combination of two or more.
  • the above dyes and the above pigments may be used in combination.
  • a known dispersant may be added to the resin composition from the viewpoint of improving the dispersibility of the colorant (F).
  • the dispersant it is preferable to use a polymer dispersant that exhibits excellent dispersion stability over time.
  • polymer dispersants include urethane dispersants, polyethyleneimine dispersants, polyoxyethylene alkyl ether dispersants, polyoxyethylene glycol diester dispersants, sorbitan aliphatic ester dispersants, and aliphatic modified esters. system dispersants and the like.
  • polymeric dispersants are commercially available under trade names such as EFKA (manufactured by EFKA Chemicals B.V.
  • the content of the dispersant may be appropriately set according to the type and amount of the pigment used as the colorant (F).
  • the content of the coloring agent (F) in the resin composition is preferably 3 to 80 parts by mass, preferably 5 to 70 parts by mass, with respect to the total 100 parts by mass of the resin (A) and the reactive diluent (D). It is more preferably 10 to 60 parts by mass.
  • the content of the coloring agent (F) is 3 parts by mass or more, the effect of containing the coloring agent (F) becomes remarkable, and the resin composition is suitable as a material for a colored pattern of a color filter.
  • the coloring agent (F) in the resin composition does not interfere with the curability of the resin composition and exhibits good low-temperature curability. It becomes a resin composition.
  • the resin composition of the present embodiment comprises a resin (A), a solvent (C), a reactive diluent (D), a photopolymerization initiator (E), and an optional colorant (F ), if necessary, known additives such as a coupling agent, a leveling agent, and a thermal polymerization inhibitor may be blended.
  • known additives such as a coupling agent, a leveling agent, and a thermal polymerization inhibitor may be blended.
  • the blending amount of these additives is not particularly limited as long as it does not impair the effects of the present invention.
  • the resin composition of the present embodiment is prepared by using a known mixing device, using a resin (A), a solvent (C), a reactive diluent (D), a photopolymerization initiator (E), and if necessary It can be produced by a method of mixing the colorant (F) contained in the
  • the resin (A) obtained by converting the structural unit (pb) in the resin precursor composition to the structural unit (b) and the solvent (PC ) may be used as it is, or the reaction solution containing the resin (A) to which the polybasic acid (e) is added may be used as it is.
  • the solvent (PC) contained in the reaction liquid can be used as part or all of the solvent (C) contained in the resin composition.
  • the resin (A) isolated by a known method may be used as a starting material.
  • the resin composition of the present embodiment comprises a resin (A) having a structural unit (b) having one or more groups selected from the formula (2-2) and the above formula (3-2), and a reactive diluent Since it contains (D) and a photopolymerization initiator (E), by photocuring, together with the ethylenically unsaturated group contained in the structural unit (b) of the resin (A), reactive dilution The agent (D) is polymerized to exhibit good photocurability. Moreover, since the resin composition of the present embodiment contains the resin (A) having the structural unit (a) having a blocked isocyanato group and the structural unit (c) having a hydroxy group, it exhibits good low-temperature curability. have
  • the heating temperature for curing can be lowered compared to the case of using a conventional resin composition. Therefore, in the resin composition of the present embodiment, for example, when a coating film formed on a substrate is exposed to light and then subjected to baking treatment, the crosslinking reaction proceeds sufficiently even if the temperature of the baking treatment is lowered. A cured product having excellent solvent resistance can be obtained.
  • a cured product when a cured product is formed using the resin composition of the present embodiment, less energy is required for heating for curing.
  • a cured product can be formed on a base material having poor heat resistance such as a resin substrate without affecting the base material.
  • the resin composition contains the colorant (F)
  • a cured product exhibiting the original properties of the colorant (F) can be formed.
  • the resin composition of the present embodiment can obtain a cured product having excellent solvent resistance even if the temperature of the baking treatment is lowered, the content of the coloring agent (F) in the resin composition is increased. It is possible to A resin composition having a high colorant (F) content can form a color filter having excellent color reproducibility, for example, by using it as a material for a colored pattern of a color filter.
  • the resin (A) contained in the resin composition of the present embodiment contains a carboxy group derived from the polybasic acid (e)
  • some of the structural units (c) having a hydroxy group are more favorable. It has low-temperature curability and also has good storage stability and alkali developability. Since such a resin composition is excellent in alkali developability, for example, it is coated on a substrate to form a coating film, exposed through a photomask corresponding to a predetermined pattern shape, and the unexposed portion is alkali-developed. By performing baking treatment at a sufficiently low temperature after developing with an aqueous solution, a cured product having a predetermined pattern shape and excellent solvent resistance can be formed.
  • the resin composition of this embodiment contains a coloring agent (F), it can be suitably used as a material for a color filter.
  • a coloring agent F
  • the resin composition of the present embodiment can be used for image display elements such as color filter pixels, black matrixes, color filter protective films, photospacers, liquid crystal alignment protrusions, microlenses, and touch panel insulating films. It is extremely useful as a material for forming members.
  • the cured resin film of the present embodiment is composed of a cured product of the resin composition of the present embodiment.
  • the resin composition of the present embodiment is obtained, for example, by coating the resin composition on a substrate, volatilizing and removing the solvent (C) to form a coating film, and exposing the coating film to photocuring. , can be manufactured by a method of performing a baking treatment.
  • the following method can be used. That is, the resin composition is applied onto the substrate, and the solvent (C) is volatilized and removed to form a coating film. Next, the coating film is exposed through a photomask having a predetermined pattern shape, and the exposed portion is photocured. Next, the unexposed portion of the coating film is developed with an alkaline aqueous solution. After that, a cured resin film having a predetermined pattern can be formed by performing a baking process on the developed coating film.
  • the conditions for the baking treatment performed when producing the cured resin film of the present embodiment can be appropriately determined according to the composition of the resin composition, the film thickness of the coating film, the material of the substrate, and the like. Baking can be performed at a temperature of, for example, 70.degree. C. to 250.degree. When the temperature of the baking treatment is 70° C. or higher, the blocked isocyanato groups of the structural unit (a) having a blocked isocyanato group contained in the resin (A) in the resin composition are sufficiently dissociated. As a result, an isocyanato group is generated, which undergoes a cross-linking reaction with the hydroxy group of the structural unit (c) having a hydroxy group.
  • the temperature of the baking treatment is preferably 75° C. or higher, more preferably 80° C. or higher.
  • a baking temperature of 250° C. or less is preferable because it is a condition that a material with low heat resistance can withstand and discoloration of the resin composition can be suppressed.
  • the resin composition of this embodiment has good low-temperature curability. Therefore, the temperature of the baking process can be set to 160° C. or lower depending on the heat resistance of the substrate on which the cured resin film is formed. It may be 120° C. or lower, or 100° C. or lower.
  • the baking treatment performed when producing the cured resin film of the present embodiment can be performed, for example, for 10 minutes to 4 hours, preferably 20 minutes to 2 hours. It can be appropriately determined according to the film thickness of the coating film and the like.
  • the cured resin film of this embodiment is made of a cured product of the resin composition of this embodiment. Therefore, the cured resin film of the present embodiment can be produced using a method of baking treatment at a low temperature, and is excellent in solvent resistance.
  • the color filter of this embodiment includes a member made of a cured product of the resin composition of this embodiment.
  • the color filter of the present embodiment contains 10 to 90 parts by mass of the resin (A) and 30 to 1000 parts by mass of the solvent (C) with respect to a total of 100 parts by mass of the resin (A) and the reactive diluent (D).
  • the color filter of this embodiment includes, for example, a substrate, RGB pixels formed thereon, black matrices formed at the boundaries between the pixels, and a protective film formed over the pixels and the black matrix. may include.
  • the pixels and the black matrix are colored patterns made of the cured resin composition.
  • a known configuration can be adopted except for the materials of the pixels and the black matrix.
  • the substrate used for the color filter of the present embodiment is not particularly limited, and includes a glass substrate, a silicon substrate, a polycarbonate substrate, a polyester substrate, a polyamide substrate, a polyamideimide substrate, a polyimide substrate, an aluminum substrate, a printed wiring board, An array substrate or the like can be appropriately used depending on the application.
  • a colored pattern is formed on a substrate. Specifically, a colored pattern for each pixel of RGB and a colored pattern for a black matrix formed at the boundary of each pixel are sequentially formed on a substrate by the following method.
  • the colored pattern can be formed by photolithography. Specifically, the above resin composition is applied onto a substrate to form a coating film. After that, the coating film is exposed through a photomask having a predetermined pattern shape, and the exposed portion is photocured. Next, the unexposed portion of the coating film is developed with an alkaline aqueous solution. After that, a coloring pattern having a predetermined pattern shape can be formed by performing a baking process on the developed coating film.
  • the method of applying the resin composition is not particularly limited, and known methods such as screen printing, roll coating, curtain coating, spray coating, and spin coating can be used. Further, after coating the resin composition on the substrate, if necessary, by heating the substrate using a heating means such as a circulation oven, an infrared heater, a hot plate, etc., the solvent (C ) may be removed by volatilization.
  • the conditions for heating the substrate to remove the solvent (C) are not particularly limited, and may be appropriately set according to the material of the substrate, the composition of the resin composition, the film thickness of the coating film, and the like.
  • the substrate can be heated, for example, at a temperature of 50° C. to 120° C. for 30 seconds to 30 minutes.
  • the coating film thus formed is irradiated with, for example, active energy rays such as ultraviolet rays and excimer laser light through a negative photomask, partially exposed, and the exposed portion is photocured.
  • active energy rays such as ultraviolet rays and excimer laser light through a negative photomask
  • the active energy dose irradiated to the coating film may be appropriately selected according to the composition of the resin composition, etc., and can be, for example, 30 to 2000 mJ/cm 2 .
  • the light source used for exposure is not particularly limited, but low-pressure mercury lamps, medium-pressure mercury lamps, high-pressure mercury lamps, xenon lamps, metal halide lamps, and the like can be used.
  • the alkaline aqueous solution used for developing the coating film is not particularly limited, but aqueous solutions such as sodium carbonate, potassium carbonate, calcium carbonate, sodium hydroxide, and potassium hydroxide; and amine compounds such as ethylamine, diethylamine, and dimethylethanolamine.
  • Aqueous solution tetramethylammonium, 3-methyl-4-amino-N,N-diethylaniline, 3-methyl-4-amino-N-ethyl-N- ⁇ -hydroxyethylaniline, 3-methyl-4-amino-N -p such as ethyl-N- ⁇ -methanesulfonamidoethylaniline, 3-methyl-4-amino-N-ethyl-N- ⁇ -methoxyethylaniline and their sulfates, hydrochlorides or p-toluenesulfonates -
  • An aqueous solution of a phenylenediamine compound can be used.
  • An antifoaming agent and/or a surfactant may be added to these aqueous solutions, if necessary. After developing the coating film using the aqueous alkaline solution, it is preferable to wash and dry the coating film.
  • the conditions for the baking treatment performed when manufacturing the color filter of this embodiment can be appropriately determined according to the composition of the resin composition, the film thickness of the coating film, the material of the substrate, and the like.
  • the temperature of the baking process can be, for example, 70.degree. C. to 210.degree. When the baking temperature is 70° C. or higher, good curability can be obtained, and a cured product having excellent solvent resistance can be obtained.
  • the temperature of the baking treatment is preferably 75° C. or higher, more preferably 80° C. or higher. When the temperature of the baking treatment is 210° C. or lower, it is preferable because a material with low heat resistance such as a substrate with low heat resistance can be used as the material for the color filter.
  • the temperature of the baking treatment is lower than when using a conventional resin composition while ensuring the solvent resistance of the colored pattern. can be lowered.
  • the temperature of the baking treatment can be set to 160° C. or lower depending on the heat resistance of the substrate on which the cured resin film is formed. In some cases, the temperature may be 150° C. or lower, 120° C. or lower, or 100° C. or lower.
  • the baking treatment performed when manufacturing the color filter of the present embodiment can be performed, for example, for 10 minutes to 4 hours, preferably 20 minutes to 2 hours. It can be appropriately determined according to the thickness of the film.
  • the resin composition of the present embodiment has good photocurability and low-temperature curability. For this reason, when forming a colored pattern using the resin composition of the present embodiment, if the temperature of baking treatment is the same as when forming a colored pattern using a conventional resin composition, the baking treatment time is It can be shortened, and a color filter can be formed efficiently.
  • a colored pattern to be each pixel of RGB and a colored pattern to be a black matrix formed at the boundary of each pixel are formed.
  • the method for producing the protective film is not particularly limited, and it may be formed using the resin composition of the present embodiment, or may be formed using known materials and known methods. Through the steps described above, the color filter of the present embodiment is obtained.
  • the color filter of the present embodiment has a colored pattern made of the cured resin composition described above. Therefore, the colored pattern in the color filter of this embodiment can be formed by a method of performing baking treatment at a low temperature. Therefore, the energy required for baking can be reduced.
  • the color filter of the present embodiment it is possible to use one having poor heat resistance as the colorant (F) contained in the resin composition used as the material. For this reason, it is possible to increase the selection of usable colorants (F). Therefore, for example, it is possible to form a color filter that contains the colorant (F) with poor heat resistance and has a colored pattern that exhibits the inherent properties of the colorant (F) with poor heat resistance.
  • the colored pattern in the color filter of the present embodiment can be formed on a substrate having poor heat resistance such as a resin substrate without interfering with the substrate. Therefore, it is possible to increase the selection of usable base materials. Specifically, for example, a color filter can be formed on a base material having poor heat resistance such as a resin substrate, which contributes to making the display flexible. In addition, since the colored pattern in the color filter of the present embodiment has excellent solvent resistance, the color change is small.
  • the resin composition containing the photopolymerization initiator (E) is used, and the case of producing a colored pattern by a method of photocuring the resin composition is described as an example.
  • a resin composition containing a curing accelerator and a known epoxy resin is used, applied on a substrate by an inkjet method, and then heated.
  • a colored pattern made of a cured product of a resin composition containing the resin (A) may be formed by using the method of forming.
  • the image display element of this embodiment includes the color filter of this embodiment.
  • the image display element of the present embodiment can adopt a known configuration except for the color filter of the present embodiment.
  • Examples of the image display device of this embodiment include a liquid crystal display device, an organic EL display device, a solid-state imaging device such as a CCD device and a CMOS device, and the like.
  • the components other than the color filter of this embodiment can be manufactured by a known method.
  • a liquid crystal display element as an image display element, it can manufacture using the method shown below.
  • a color filter is formed on a substrate using the method described above.
  • electrodes, spacers, and the like are sequentially formed on the substrate having the color filters.
  • electrodes and the like are formed on another substrate, which is arranged opposite to the substrate having the color filter and is attached to the substrate. After that, a predetermined amount of liquid crystal is injected between the opposing substrates and sealed.
  • the image display element of the present embodiment has a color filter with excellent solvent resistance of the present embodiment, so that it has little color change.
  • Example 1 Synthesis of resin precursor (PA)
  • a flask equipped with a stirring device, a dropping funnel, a condenser, a thermometer and a gas inlet tube was charged with 182 g of propylene glycol monomethyl ether (manufactured by Lyondell) as a solvent (PC). The temperature was raised to
  • the entire amount of the prepared mixed solution was dropped into the solvent (PC) in the flask under normal pressure in a nitrogen gas atmosphere over 1 hour. After completion of dropping, the solution in the flask was polymerized at 78° C. for 2 hours while stirring to obtain a solution containing the resin precursor (PA) and the solvent (PC).
  • PB basic catalyst
  • PA resin precursor
  • DBU 1,8-Diazabicyclo[5.4.0]-undecene-7
  • IR spectroscopy For analysis by IR spectroscopy, a NICOLETis10 from Thermo Fisher Scientific was used as an analyzer and a SMART iTR was used as an accessory. Then, the measurement was performed by the ATR method with the peak wavelength of C ⁇ C set to 690 cm ⁇ 1 .
  • FIG. 1 is a graph showing the IR spectrum of the resin precursor composition of Example 1 (before the conversion reaction) and the IR spectrum of the reaction solution after the conversion reaction (after the conversion reaction).
  • an infrared absorption peak appears at a wavelength of 690 cm ⁇ 1 , which was not seen in the IR spectrum before the conversion reaction. From this, it was confirmed that the conversion reaction generated an ethylenically unsaturated group (double bond) derived from the inclusion of the structural unit (b) in the resin (A).
  • Example 2 A resin precursor composition was obtained in the same manner as in Example 1. (Synthesis of resin (A)) In the same manner as in Example 1, a reaction solution containing resin (A) and solvent (PC) was obtained. The IR spectrum obtained by analyzing the reaction solution containing the obtained resin (A) and solvent (PC) in the same manner as in Example 1 shows that the resin (A) contains the structural unit (b). It was confirmed that an ethylenically unsaturated group (double bond) derived from this was present.
  • the resulting reaction solution containing the polybasic acid (e)-added resin (A) was analyzed using infrared absorption (IR) spectroscopy. From the obtained IR spectrum, it was confirmed that the infrared absorption peak derived from the acid anhydride structure of the polybasic acid (e) disappeared, indicating that addition reaction had occurred.
  • IR infrared absorption
  • Example 3 10 mol% of monomer (ma), 20 mol% of monomer (m-pb), 30 mol% of monomer (mc), 30 mol% of monomer (md), basic catalyst (PB)
  • a resin (A) solution of Example 3 was obtained in the same manner as in Example 2, except that the amount of polybasic acid (e) was 0.14 parts by mass and the amount of polybasic acid (e) was 10 mol%.
  • Example 4 2-[0-(1′-methylpropylideneamino) instead of 2-[(3,5-dimethylpyrazolyl)carbonylamino]ethyl methacrylate (MOI-BP) (registered trademark) as the monomer (ma) Carboxyamino]ethyl methacrylate (manufactured by Showa Denko KK, MOI-BM (registered trademark), dissociation temperature at which the dissociation rate of blocked isocyanato group is 80% or more in 30 minutes: 130 ° C., heated at 100 ° C. for 30 minutes A resin (A) solution of Example 4 was obtained in the same manner as in Example 2, except that 20 mol % of the dissociation rate at the time: 18% was used.
  • Example 5 The procedure was the same as in Example 2, except that 40 mol% of 2,3-dihydroxypropyl methacrylate (DHPMA) (manufactured by NOF Corporation) was used instead of hydroxyethyl methacrylate (HEMA) as the monomer (mc). to obtain a resin (A) solution of Example 5.
  • DHPMA 2,3-dihydroxypropyl methacrylate
  • HEMA hydroxyethyl methacrylate
  • Example 6 The resin of Example 6 was prepared in the same manner as in Example 2, except that 10 mol% of methyl methacrylate (manufactured by Mitsubishi Chemical Corporation) was used instead of 2-ethylhexyl acrylate (2EHA) as the monomer (md). (A) A solution was obtained.
  • Example 7 Instead of succinic anhydride (SA) as the polybasic acid (e), 1,2,3,6-tetrahydrophthalic anhydride (THPA) (manufactured by Shin Nippon Rika Co., Ltd.) was used at 20 mol%. A resin (A) solution of Example 7 was obtained in the same manner as in Example 2.
  • SA succinic anhydride
  • THPA 1,2,3,6-tetrahydrophthalic anhydride
  • Example 8 1,1,3,3-tetramethylguanidine (manufactured by Tokyo Chemical Industry Co., Ltd.) instead of 1,8-diazabicyclo[5.4.0]-undecene-7 (DBU) as a basic catalyst (PB)
  • DBU 1,8-diazabicyclo[5.4.0]-undecene-7
  • PB basic catalyst
  • a resin (A) solution of Example 8 was obtained in the same manner as in Example 2, except that 0.21 parts by mass of was used.
  • Example 9 Example except that the monomer (md) was not used, the monomer (ma) was 22 mol%, the monomer (mpb) was 33 mol%, and the monomer (mc) was 45 mol%.
  • a resin (A) solution of Example 9 was obtained in the same manner as in 2.
  • the obtained solution containing the polybasic acid (e)-added resin was analyzed in the same manner as in Example 2. From the obtained IR spectrum, it was confirmed that the infrared absorption peak derived from the acid anhydride structure of the polybasic acid (e) disappeared, indicating that addition reaction had occurred.
  • Comparative Example 3 In place of 2-[(diethyl malate)carbonylamino]ethyl acrylate (AOI-MDE) as monomer (m-pb), 2-[(diethyl lactate)carbonylamino]ethyl as monomer (md) A resin solution of Comparative Example 3 was obtained in the same manner as in Example 2, except that 30 mol % of acrylate (AOI-EL (registered trademark) manufactured by Showa Denko KK) was used.
  • AOI-EL registered trademark
  • Weight average molecular weight (Mw) and blocked isocyanato group equivalent (g/mol) of the resin precursor (PA) used in the production of the resin (A) solutions of Examples 1 to 9 and the resin solutions of Comparative Examples 1 to 4 , hydroxy group equivalents (g/mol) are shown in Table 3.
  • the weight average molecular weight (Mw), solid content acid value (mgKOH/g), and blocked isocyanato group equivalent of the resins contained in the resin (A) solutions of Examples 1 to 9 and the resin solutions of Comparative Examples 1 to 4 (g/mol), hydroxy group equivalent (g/mol), and ethylenically unsaturated group equivalent (g/mol) are shown in Table 3.
  • the weight average molecular weight (Mw) of the resin precursor (PA), the resin (A) solution, and the weight average molecular weight (Mw) of the resin contained in the resin solution were calculated by the following methods.
  • the weight average molecular weight was measured using gel permeation chromatography (GPC) under the following conditions and calculated in terms of polystyrene.
  • GPC gel permeation chromatography
  • a GPC system manufactured by Shimadzu Corporation was used as a GPC measurement apparatus, and a differential refractive index detector RID-10A was used as a detector.
  • RID-10A differential refractive index detector
  • three Shodex (registered trademark) LF804 and one KF-801 manufactured by Showa Denko KK were used.
  • GPC measurement was performed under the conditions of a column temperature of 40° C. and a flow rate of 1.5 mL/min.
  • the amount of resin (A) compounded shown in Tables 4 and 5 does not include the amount of solvent contained in the resin solutions obtained in Examples 1-9 and Comparative Examples 1-4.
  • the amount of solvent (C) shown in Tables 4 and 5 includes the amount of solvent contained in the resin solutions obtained in Examples 1 to 9 and Comparative Examples 1 to 4, and the amount of solvent in the preparation of the resin composition.
  • the amount of solvent added is added together and described.
  • the content of each component of resin (A), solvent (C), reactive diluent (D), photopolymerization initiator (E), and colorant (F) shown in Tables 4 and 5 is and the reactive diluent (D) content (parts by mass) with respect to a total of 100 parts by mass.
  • the coating film was irradiated with ultraviolet rays having a wavelength of 365 nm at an energy dose of 40 mJ/cm 2 to be exposed, and the exposed portions were photocured. After that, the coating film was cured by performing a baking treatment at 80° C. for 30 minutes to obtain a cured film. The thickness of the prepared cured film was measured with a profilometer. The thickness at this time was defined as X. After that, the prepared cured film was immersed in 20 g of propylene glycol monomethyl ether acetate (PGMEA) at 23° C. for 15 minutes. After the coating film after immersion was vacuum-dried at 40° C. for 30 minutes, the thickness of the coating film was measured with a profilometer. Y was the thickness at this time.
  • PGMEA propylene glycol monomethyl ether acetate
  • the cured films of the resin compositions of Examples 11 to 20 had a residual film rate (%) of 85% or more after immersion in PGMEA, and the baking temperature was as low as 80°C. also had good solvent resistance.
  • the cured films of the resin compositions of Comparative Examples 11 to 18 had a residual film ratio (%) of 50% or less after immersion in PGMEA, indicating insufficient solvent resistance. rice field.
  • a resin composition that provides a cured resin film having excellent solvent resistance. Further, according to the present invention, there is provided an image display element comprising a color filter having a colored pattern made of a cured resin film having excellent solvent resistance.
  • the resin composition of the present invention can be preferably used as a material for transparent films, protective films, insulating films, overcoats, photospacers, black matrices, black column spacers, color filter resists, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Emergency Medicine (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

ブロックイソシアナト基を有する構成単位(a)と、式(2-2)および式(3-2)から選択される一種以上の基を有する構成単位(b)と、ヒドロキシ基を有する構成単位(c)とを有する樹脂(式中、R1~R4は水素原子または炭素原子数1~20の炭化水素基)とする。

Description

樹脂前駆体、樹脂、樹脂組成物及び樹脂硬化膜
 本発明は、樹脂前駆体、前記樹脂前駆体から誘導される樹脂、前記樹脂前駆体を用いる樹脂の製造方法、前記樹脂を含有する樹脂組成物、樹脂硬化膜、カラーフィルター、画像表示素子に関する。
 本願は、2021年10月15日に、日本に出願された特願2021-169527に基づき優先権を主張し、その内容をここに援用する。
 画像表示素子には、有機エレクトロ・ルミネッセンス(EL)表示装置(特に、白色発光有機ELとカラーフィルターとを組み合わせるWRGB方式)、液晶表示素子、集積回路素子、固体撮像素子などがある。これらの画像表示素子には、一般に、カラーフィルター、フォトスペーサー、液晶配向用突起、マイクロレンズ、タッチパネル用絶縁膜などの膜および微細パターンが設けられている。カラーフィルターとしては、通常、基板上に形成された着色パターンからなるブラックマトリックスおよび画素と、その上に形成された保護膜とを有するものが用いられている。
 近年、ディスプレイのフレキシブル化、ウエアラブル化に伴って、基板材料において、ガラスから樹脂などの有機系素材への切り替えが進められている。有機系素材は、ガラスと比較して耐熱性に劣る。このため、基板上で樹脂組成物を熱硬化させて形成する部材においては、有機系素材からなる基板の耐熱性に応じて、樹脂組成物を熱硬化させる温度を下げることが望まれている。
 例えば、カラーフィルターは、従来、基板上で樹脂組成物を210~230℃の温度で熱硬化させて形成していた。しかし、樹脂からなるフレキシブル基板上にカラーフィルターを形成する場合には、基板の耐熱性が劣るため、樹脂組成物を80~150℃の温度で熱硬化させて形成することが要求されている。
 特に、有機EL表示装置に使用されるカラーフィルターにおいては、色再現性を高めるために、樹脂組成物中に含まれる着色剤の含有量を多くする傾向がある。一般に、着色剤を多く含有する樹脂組成物は、光硬化させにくい。このため、有機EL表示装置のカラーフィルターに使用される樹脂組成物では、熱による架橋によって硬化させることがより一層重要である。このことから、有機EL表示装置のカラーフィルターに使用される樹脂組成物では、特に、低温での熱硬化性を向上させる必要性が高まっている。
 従来、カラーフィルターの材料として使用される樹脂組成物として、例えば、特許文献1および特許文献2に記載されたものがある。
 特許文献1には、(a)メタノール中での365nmの吸光係数が1.0×10mL/gcm以上である重合開始剤、(b)メタノール中での365nmの吸光係数が1.0×10mL/gcm以下であり、254nmの吸光係数が1.0×10mL/gcm以上である重合開始剤、(c)不飽和二重結合を有する化合物、(d)アルカリ可溶性樹脂、(e)色材を含有する感光性着色組成物が開示されている。
 特許文献2には、フリル基を含む化合物(A)、光重合性官能基を含む化合物(B)、光重合開始剤(C)、および着色剤を含有する、カラーフィルター用感光性組成物が開示されている。
特開2015-041058号公報 特開2017-194662号公報
 画像表示素子の部材に使用される樹脂組成物においては、硬化させるための加熱温度を低くすることが求められている。
 しかしながら、従来の樹脂組成物は、硬化させるための加熱温度を低くすると、十分な耐溶剤性を有する硬化物が得られなかった。このため、硬化させるための加熱温度が低くても、優れた耐溶剤性を有する硬化物を形成できる低温硬化性の良好な樹脂組成物が要求されている。
 本発明は、上記事情を鑑みてなされたものであり、優れた低温硬化性を有し、耐溶剤性の良好な硬化物を形成できる樹脂組成物、この樹脂組成物に含有される樹脂、この樹脂を与える樹脂前駆体、この樹脂前駆体を用いる樹脂の製造方法を提供することを目的とする。
 また、優れた低温硬化性を有する樹脂組成物の硬化物からなる耐溶剤性の良好な樹脂硬化膜、カラーフィルター、このカラーフィルターを具備する画像表示素子を提供することを目的とする。
 本発明は以下の第一の態様の樹脂を提供する。
[1] ブロックイソシアナト基を有する構成単位(a)と、
 下記式(2-2)および下記式(3-2)から選択される一種以上の基を有する構成単位(b)と、
 ヒドロキシ基を有する構成単位(c)と、
を有することを特徴とする樹脂。
Figure JPOXMLDOC01-appb-C000005

(式(2-2)中、Rは、水素原子または炭素原子数1~20の炭化水素基である;RおよびRは、それぞれ独立に、水素原子または炭素原子数1~20の炭化水素基である。)
Figure JPOXMLDOC01-appb-C000006

(式(3-2)中、Rは、水素原子または炭素原子数1~20の炭化水素基である;RおよびRは、それぞれ独立に、水素原子または炭素原子数1~20の炭化水素基である。)
 本発明の第一の態様の樹脂は、以下の[2]~[8]に記載される特徴を有することが好ましい。以下の[2]~[8]に記載される特徴は、2つ以上を任意に組み合わせることも好ましい。
[2] 前記ブロックイソシアナト基を有する構成単位(a)は、100℃で30分間加熱した際のブロックイソシアナト基の解離率が5~99%である[1]に記載の樹脂。
[3] 前記ブロックイソシアナト基を有する構成単位(a)が、エチレン性不飽和結合とブロックイソシアナト基とを有するモノマー由来の構成単位であり、
 前記エチレン性不飽和結合とブロックイソシアナト基とを有するモノマーが、エチレン性不飽和結合とイソシアナト基とを有するイソシアネート化合物のイソシアナト基をブロック剤でブロック化した化合物であり、
 前記ブロック剤が、γ-ブチロラクタム、1-メトキシ-2-プロパノール、2,6-ジメチルフェノール、ジイソプロピルアミン、メチルエチルケトオキシム、及び3,5-ジメチルピラゾールから選択される一種以上である[1]または[2]に記載の樹脂。
[4] 前記ブロックイソシアナト基を有する構成単位(a)が、ブロックイソシアナト基含有(メタ)アクリレート由来の構成単位であり、
 前記ブロックイソシアナト基含有(メタ)アクリレートが、イソシアナト基含有(メタ)アクリレートを、3,5-ジメチルピラゾールおよびメチルエチルケトオキシムから選択される一種以上のブロック剤でブロック化した化合物である[1]~[3]のいずれかに記載の樹脂。
[5] 前記構成単位(b)が、(メタ)アクリロイルオキシ基と下記式(1)で示される基とを有するモノマー由来の構成単位から誘導された構成単位である[1]~[4]のいずれかに記載の樹脂。
Figure JPOXMLDOC01-appb-C000007

(式(1)中、RおよびRは、それぞれ独立に、水素原子または炭素原子数1~20の炭化水素基である;RおよびRは、それぞれ独立に、水素原子または炭素原子数1~20の炭化水素基である。)
[6] 前記構成単位(b)の有するRおよびRが、それぞれ独立に、炭素原子数1~3の炭化水素基であり、R3およびRが、それぞれ独立に、水素原子またはメチル基である[1]~[5]のいずれかに記載の樹脂。
[7] 前記ヒドロキシ基を有する構成単位(c)が、ヒドロキシ基含有(メタ)アクリレート由来の構成単位である[1]~[6]のいずれかに記載の樹脂。
[8] 前記ヒドロキシ基を有する構成単位(c)の一部が、多塩基酸(e)由来のカルボキシ基を含む[1]~[7]のいずれかに記載の樹脂。
 本発明の第二の態様は、以下の樹脂前駆体を提供する。
[9] ブロックイソシアナト基を有する構成単位(a)と、
 下記式(1)で示される基を有する構成単位(pb)と、
 ヒドロキシ基を有する構成単位(c)と、
を含有することを特徴とする樹脂前駆体。
Figure JPOXMLDOC01-appb-C000008

(式(1)中、RおよびRは、それぞれ独立に、水素原子または炭素原子数1~20の炭化水素基である;RおよびRは、それぞれ独立に、水素原子または炭素原子数1~20の炭化水素基である。)
 本発明の第三の態様は、以下の樹脂の製造方法を提供する。
[10] [9]に記載の樹脂前駆体(PA)を溶剤(PC)中で、塩基性触媒(PB)を用いて脱アルコール反応及び脱炭酸反応させることを特徴とする[1]~[8]のいずれかに記載の樹脂の製造方法。
 本発明の第四の態様は、以下の樹脂組成物を提供する。[11] [1]~[8]のいずれかに記載の樹脂(A)と、
 溶剤(C)と、
 反応性希釈剤(D)と、
 光重合開始剤(E)と、
を含有する樹脂組成物。
[12] 着色剤(F)をさらに含有する、[11]に記載の樹脂組成物。
[13] 前記樹脂(A)および前記反応性希釈剤(D)の合計100質量部に対して、 前記樹脂(A)を10~90質量部含有し、
 前記溶剤(C)を30~1000質量部含有し、
 前記反応性希釈剤(D)を10~90質量部含有し、
 前記光重合開始剤(E)を0.1~30質量部含有し、
 前記着色剤(F)を3~80質量部含有する、
[12]に記載の樹脂組成物。
 本発明の第五の態様は、以下の樹脂硬化膜を提供する。
[14] [11]~[13]のいずれかに記載の樹脂組成物の硬化物からなる樹脂硬化膜。
 本発明の第六の態様は、以下のカラーフィルターを提供する。
[15] [13]に記載の樹脂組成物の硬化物からなる着色パターンを有するカラーフィルター。
 本発明の第七の態様は、以下の画像表示素子を提供する。
[16] [15]に記載のカラーフィルターを具備する画像表示素子。
 本発明によれば、優れた低温硬化性を有し、耐溶剤性の良好な硬化物を形成できる樹脂組成物、この樹脂組成物に材料として含有される樹脂、この樹脂を与える樹脂前駆体、および樹脂前駆体を用いる樹脂の製造方法を提供できる。さらに、本発明によれば、優れた低温硬化性を有する上記樹脂組成物の硬化物からなる耐溶剤性の良好な樹脂硬化膜、カラーフィルター、このカラーフィルターを具備する画像表示素子を提供できる。
実施例1の樹脂前駆体組成物のIRスペクトル(変換反応前)と、変換反応後の反応液のIRスペクトル(変換反応後)を示したグラフである。
 以下、本発明の樹脂前駆体、樹脂前駆体から誘導される樹脂、樹脂前駆体を用いる樹脂の製造方法、樹脂組成物、樹脂硬化膜、カラーフィルター、画像表示素子の好ましい例について詳細に説明する。なお、本発明は、以下に示す実施形態のみに限定されるものではない。本発明は、本発明の趣旨を逸脱しない範囲で、数、量、比率、種類、位置、材料、構成等について、付加、省略、置換、変更が可能である。
 本明細書において、「(メタ)アクリル酸」は、メタクリル酸およびアクリル酸から選択される少なくとも1種を意味する。「(メタ)アクリレート」は、メタクリレートおよびアクリレートから選択される少なくとも1種を意味する。
 また、本明細書において、構造式中の「*」は、前記構成式と、それ以外の構造部分との結合点を意味する。
<樹脂前駆体(PA)>
 本実施形態の樹脂前駆体(PA)は、ブロックイソシアナト基を有する構成単位(a)(以下、単に「構成単位(a)」とも言う。)と、下記式(1)で示される基を有する構成単位(pb)(以下、単に「構成単位(pb)」とも言う。)と、ヒドロキシ基を有する構成単位(c)(以下、単に「構成単位(c)」とも言う。)と、を含有する共重合体である。本実施形態の樹脂前駆体(PA)は、必要に応じて、構成単位(a)~(c)以外のその他の構成単位(d)(以下、単に「構成単位(d)」とも言う。)を含有しても良い。
Figure JPOXMLDOC01-appb-C000009

(式(1)中、RおよびRは、それぞれ独立に、水素原子または炭素原子数1~20の炭化水素基である;RおよびRは、それぞれ独立に、水素原子または炭素原子数1~20の炭化水素基である。)
 本実施形態の樹脂前駆体(PA)は、後述する樹脂(A)の材料として使用される。本実施形態では、本実施形態の樹脂前駆体(PA)を溶剤(PC)中で、塩基性触媒(PB)を用いて脱アルコール反応及び脱炭酸反応させる。このことにより、構成単位(pb)の有する式(1)で示される基は、後述する樹脂(A)の構成単位(b)に含まれる式(2-2)および/または式(3-2)で示される基に変換され、樹脂(A)が生成する。
〔ブロックイソシアナト基を有する構成単位(a)〕
 樹脂前駆体(PA)に含まれるブロックイソシアナト基を有する構成単位(a)は、ヒドロキシ基および上記式(1)で示される基を有さず、ブロックイソシアナト基を有する。構成単位(a)は、1種のみであってもよいし、2種以上であってもよい。構成単位(a)は、ブロックイソシアナト基含有モノマー(m-a)(以下、単に「モノマー(m-a)」とも言う。)由来の構成単位である。
 本実施形態において構成単位(a)となるモノマー(m-a)は、ヒドロキシ基および上記式(1)で示される基を有さず、エチレン性不飽和結合とブロックイソシアナト基とを有する。モノマー(m-a)としては、例えば、エチレン性不飽和結合とイソシアナト基とを有するイソシアネート化合物のイソシアナト基を、ブロック剤でブロック化した化合物が挙げられる。モノマー(m-a)に含まれるエチレン性不飽和基としては、例えば、ビニル基、(メタ)アクリロイルオキシ基等などが挙げられる。
 モノマー(m-a)を製造する際におけるイソシアネート化合物とブロック剤とのブロック化反応は、溶剤の存在の有無に関わらず行うことができる。上記のブロック化反応を、溶剤を用いて行う場合に使用する溶剤は、イソシアナト基に対して不活性な溶剤であればよく、公知の溶剤を用いることができる。ブロック化反応に際しては、錫、亜鉛、鉛等の有機金属塩、3級アミン等を触媒として用いてもよい。ブロック化反応は、一般に-20~150℃で行うことができ、0~100℃で行うことが好ましい。
 モノマー(m-a)の原料として使用される前記イソシアネート化合物としては、例えば、下記式(4)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000010

(式(4)中、Rは、水素原子又はメチル基を示す;Rは、-CO-、-COOR-(ここで、Rは炭素原子数1~6のアルキレン基である。)又は-COO-RO-CONH-R-(ここで、Rは炭素原子数2~6のアルキレン基であり、Rは置換基を有していてもよい炭素原子数2~12のアルキレン基又は炭素原子数6~12のアリーレン基である。)を示す。)
 式(4)で表されるイソシアネート化合物において、Rは水素原子又はメチル基である。式(4)中のRは、-CO-、-COOR-(ここで、Rは炭素原子数1~6のアルキレン基である。)又は-COO-RO-CONH-R-(ここで、Rは炭素原子数2~6のアルキレン基であり、Rは置換基を有していてもよい炭素原子数2~12のアルキレン基又は炭素原子数6~12のアリーレン基である。)である。Rは、脱ブロック後のイソシアネートの反応性の良さや、イソシアネート化合物の準備の容易さから、-COOR-であることが好ましく、Rが炭素原子数1~4のアルキレン基であることがより好ましい。
 上記式(4)で表されるイソシアネート化合物としては、具体的には、2-イソシアナトエチル(メタ)アクリレート、2-イソシアナトプロピル(メタ)アクリレート、3-イソシアナトプロピル(メタ)アクリレート、2-イソシアナト-1-メチルエチル(メタ)アクリレート、2-イソシアナト-1,1-ジメチルエチル(メタ)アクリレート、4-イソシアナトシクロヘキシル(メタ)アクリレート、メタクリロイルイソシアネート等が挙げられる。
 また、モノマー(m-a)の原料として使用されるイソシアネート化合物としては、2-ヒドロキシアルキル(メタ)アクリレートとジイソシアネート化合物とを等モル(2-ヒドロキシアルキル(メタ)アクリレート:ジイソシアネート化合物=1モル:1モル)で反応させた反応生成物を使用してもよい。
 前記2-ヒドロキシアルキル(メタ)アクリレートのアルキル基は、脱ブロック後のイソシアネートの反応性の良さや、イソシアネート化合物の準備の容易さ、反応の簡便性から、エチル基又はn-プロピル基であることが好ましく、エチル基であることがより好ましい。
 前記ジイソシアネート化合物としては、例えば、ヘキサメチレンジイソシアネート、2,4-(又は2,6-)トリレンジイソシアネート(TDI)、4,4’-ジフェニルメタンジイソシアネート(MDI)、3,5,5-トリメチル-3-イソシアナトメチルシクロヘキシルイソシアネート(IPDI)、m-(又はp-)キシレンジイソシアネート、1,3-(又は1,4-)ビス(イソシアナトメチル)シクロヘキサン、リジンジイソシアネート等が挙げられる。
 モノマー(m-a)の原料として使用される上記の他のイソシアネート化合物としては、1,1-ビス(メタクリロイルオキシメチル)メチルイソシアネート、1,1-ビス(メタクリロイルオキシメチル)エチルイソシアネート、1,1-ビス(アクリロイルオキシメチル)メチルイソシアネートおよび1,1-ビス(アクリロイルオキシメチル)エチルイソシアネート等が挙げられる。
 ブロックイソシアナト基を有する構成単位(a)は、樹脂前駆体(PA)を用いて製造できる樹脂(A)を含有する樹脂組成物の低温硬化性の観点から、ブロックイソシアナト基含有(メタ)アクリレート由来の構成単位であることが好ましい。モノマー(m-a)が、ブロックイソシアナト基含有(メタ)アクリレートある場合、その原料として使用されるイソシアネート化合物は、イソシアナト基含有(メタ)アクリレートである。
 モノマー(m-a)の原料として使用されるイソシアナト基含有(メタ)アクリレートは、2-イソシアナトエチル(メタ)アクリレート、2-イソシアナトプロピル(メタ)アクリレート、3-イソシアナトプロピル(メタ)アクリレート、2-イソシアナト-1-メチルエチル(メタ)アクリレート、1,1-ビス(メタクリロイルオキシメチル)エチルイソシアネート、2-イソシアナト-1,1-ジメチルエチル(メタ)アクリレート、4-イソシアナトシクロヘキシル(メタ)アクリレート及びメタクリロイルイソシアネートであることが好ましく、2-イソシアナトエチル(メタ)アクリレート及び2-イソシアナトプロピル(メタ)アクリレート、1,1-ビス(メタクリロイルオキシメチル)エチルイソシアネートであることがより好ましい。
 モノマー(m-a)が、ブロックイソシアナト基含有(メタ)アクリレートである場合に原料として使用されるイソシアネート化合物のイソシアナト基をブロック化するブロック剤としては、例えば、ε-カプロラクタム、δ-バレロラクタム、γ-ブチロラクタム、β-プロピオラクタム等のラクタム系;メタノール、エタノール、プロパノール、1-メトキシ-2-プロパノール、ブタノール、エチレングリコール、メチルセロソルブ、ブチルセロソルブ、メチルカルビトール、ベンジルアルコール、フェニルセロソルブ、フルフリルアルコール、シクロヘキサノール等のアルコール系;フェノール、2,6-ジメチルフェノール、クレゾール、3,5-キシレノール、エチルフェノール、o-イソプロピルフェノール、p-tert-ブチルフェノール等のブチルフェノール、p-tert-オクチルフェノール、ノニルフェノール、ジノニルフェノール、スチレン化フェノール、2-ヒドロキシ安息香酸メチル、4-ヒドロキシ安息香酸メチル、チモール、p-ナフトール、p-ニトロフェノール、p-クロロフェノール等のフェノール系;マロン酸ジメチル、マロン酸ジエチル、アセト酢酸メチル、アセト酢酸エチル、アセチルアセトン等の活性メチレン系;ブチルメルカプタン、チオフェノール、tert-ドデシルメルカプタン等のメルカプタン系;ジイソプロピルアミン、ジフェニルアミン、フェニルナフチルアミン、アニリン、カルバゾール等のアミン系;アセトアニリド、アセトアニシジド、酢酸アミド、ベンズアミド等の酸アミド系;コハク酸イミド、マレイン酸イミド等の酸イミド系;イミダゾール、2-メチルイミダゾール、2-エチルイミダゾール等のイミダゾール系;ピラゾール、3,5-ジメチルピラゾール等のピラゾール系;尿素、チオ尿素、エチレン尿素等の尿素系;N-フェニルカルバミン酸フェニル、2-オキサゾリドン等のカルバミド酸塩系:エチレンイミン、ポリエチレンイミン等のイミン系;ホルムアルドオキシム、アセトアルドオキシム、アセトオキシム、メチルエチルケトオキシム、メチルイソブチルケトオキシム、シクロヘキサノンオキシム等のオキシム系;重亜硫酸ソーダ、重亜硫酸カリウム等の重亜硫酸塩系などが挙げられ、樹脂前駆体(PA)を用いて製造した樹脂(A)を含有する樹脂組成物の低温硬化性がより良好となるため、3,5-ジメチルピラゾール及びメチルエチルケトオキシムが好ましい。これらのブロック剤は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 ブロックイソシアナト基を有する構成単位(a)においては、反応性の高いイソシアナト基が、ブロック剤によって保護されている。構成単位(a)を含む樹脂前駆体(PA)を用いて製造した樹脂(A)を含有する樹脂組成物が加熱されると、構成単位(a)の有するブロックイソシアナト基が解離してイソシアナト基が再生される。したがって、本実施形態では、後述する樹脂組成物を加熱して硬化させる際に、構成単位(a)の有するイソシアナト基が再生する。再生したイソシアナト基は、樹脂前駆体(PA)を用いて製造した樹脂(A)に含まれる反応性の官能基と反応し、架橋密度の高い硬化物を形成する。樹脂(A)に含まれる反応性の官能基とは、樹脂前駆体(PA)中のヒドロキシ基を有する構成単位(c)に含まれるヒドロキシ基、必要に応じて含有されるその他の構成単位(d)に含まれる酸基、アミノ基などである。
 ブロックイソシアナト基を有する構成単位(a)は、100℃で30分間加熱した際のブロックイソシアナト基の解離率が、5~99%であることが好ましく、10~90%であることがより好ましく、15~80%であることが最も好ましい。前記解離率は、必要に応じて例えば、8~70%や、15~60%や、30~50%などであってもよい。構成単位(a)のブロックイソシアナト基の上記解離率が99%以下であると、樹脂前駆体(PA)を用いて製造される樹脂(A)の合成時、および樹脂(A)を含む樹脂組成物の保管時に、構成単位(a)の有するイソシアナト基が再生して、意図しない架橋反応が起こることを抑制でき、樹脂(A)の安定性を確保できる。また、構成単位(a)のブロックイソシアナト基の上記解離率が5%以上であると、樹脂前駆体(PA)を用いて製造した樹脂(A)を含有する樹脂組成物を硬化させるための加熱温度を十分に低くしても、良好な硬化性が得られ、優れた耐溶剤性を有する硬化物が得られる。
 100℃で30分間加熱した際のブロックイソシアナト基の解離率が5~99%である構成単位(a)となるモノマー(m-a)の原料として使用されるブロック剤としては、γ-ブチロラクタム、1-メトキシ-2-プロパノール、2,6-ジメチルフェノール、ジイソプロピルアミン、メチルエチルケトオキシム、及び3,5-ジメチルピラゾールが挙げられる。これらのブロック剤の中でも、樹脂前駆体(PA)を用いて製造した樹脂(A)を含有する樹脂組成物の低温硬化性の観点から、3,5-ジメチルピラゾール及びメチルエチルケトオキシムがより好ましい。
 ブロックイソシアナト基を有する構成単位(a)の100℃で30分間加熱した際のブロックイソシアナト基の解離率は、ブロックイソシアナト基含有モノマー(m-a)を100℃で30分間加熱した際のブロックイソシアナト基の解離率と同じであり、以下に示す方法により算出できる。
 すなわち、モノマー(m-a)濃度が20質量%であるn-オクタノール溶液を調製する。得られたn-オクタノール溶液に、1質量%相当のジブチルスズラウレート(触媒)及び3質量%相当のフェノチアジン(重合防止剤)を加え、100℃で30分間加熱する。加熱後のn-オクタノール溶液を高速液体クロマトグラフ法(HPLC)により分析し、n-オクタノール溶液中のモノマー(m-a)の質量を求める。その結果を用いて、100℃で30分間加熱することによる前記ブロックイソシアナト基含有モノマー(m-a)の質量減少割合を算出し、解離率とする。
 ブロックイソシアナト基を有する構成単位(a)のブロックイソシアナト基の解離率が、30分で80%以上となる解離温度は、80℃以上であることが好ましい。構成単位(a)のブロックイソシアナト基の上記解離温度が80℃以上であると、樹脂前駆体(PA)を用いて製造される樹脂(A)の合成時、および樹脂(A)を含む樹脂組成物の保管時に、構成単位(a)の有するイソシアナト基が再生して、意図しない架橋反応が起こることを抑制でき、樹脂(A)の安定性を確保できる。構成単位(a)のブロックイソシアナト基の上記解離温度が160℃以下であると、樹脂前駆体(PA)を用いて製造した樹脂(A)を含有する樹脂組成物を硬化させるための加熱温度を十分に低くしても、良好な硬化性が得られ、優れた耐溶剤性を有する硬化物が得られる。
 ブロックイソシアナト基を有する構成単位(a)のブロックイソシアナト基の解離率が30分で80%以上となる解離温度は、以下に示す方法により算出できる。
 すなわち、モノマー(m-a)濃度が20質量%であるn-オクタノール溶液を調製する。得られたn-オクタノール溶液に、1質量%相当のジブチルスズラウレート(触媒)及び3質量%相当のフェノチアジン(重合防止剤)を加え、温度の異なる複数の条件で30分間加熱する。加熱後のn-オクタノール溶液を、温度条件毎にそれぞれ高速液体クロマトグラフ法(HPLC)により分析し、n-オクタノール溶液中のモノマー(m-a)の質量を求める。その結果を用いて、30分間加熱することによる前記ブロックイソシアナト基含有モノマー(m-a)の質量減少割合が30分で80%以上となる最低温度を求め、解離温度とする。
 ブロックイソシアナト基を有する構成単位(a)が、ブロックイソシアナト基含有(メタ)アクリレート由来の構成単位である場合、具体的には、下記式(6)で示されるMOI-BP(登録商標)(メタクロイルオキシエチルイソシアネートを3,5-ジメチルピラゾールでブロック化した化合物、昭和電工株式会社製、ブロックイソシアナト基の解離率が30分で80%以上となる解離温度:110℃、100℃で30分間加熱した際の解離率:70%)由来の構成単位および/または下記式(7)で示されるMOI-BM(登録商標)(メタクロイルオキシエチルイソシアネートをメチルエチルケトオキシムでブロック化した化合物、昭和電工株式会社製、ブロックイソシアナト基の解離率が30分で80%以上となる解離温度:130℃、100℃で30分間加熱した際の解離率:18%)由来の構成単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000011
 樹脂前駆体(PA)中の構成単位(a)の含有割合は、樹脂前駆体(PA)の用途に応じて適宜決定できる。構成単位(a)の含有割合は、1~40モル%であることが好ましく、5~30モル%であることがより好ましく、10~25モル%であることがさらに好ましい。前記割合は必要に応じて、8~35モル%や、15~20モル%などであってもよい。構成単位(a)の含有割合が1モル%以上であると、樹脂前駆体(PA)を用いて製造した樹脂(A)を含有する樹脂組成物を硬化させるための加熱温度を十分に低くしても十分に硬化し、優れた耐溶剤性を有する硬化物が得られる。これは、樹脂組成物を硬化させるための加熱によって、構成単位(a)のブロックイソシアナト基のブロック剤が解離して、十分な数のイソシアナト基が再生するためである。再生したイソシアナト基は、ヒドロキシ基との反応性が高く、構成単位(c)に含まれるヒドロキシ基と速やかにして反応して架橋する。その結果、低温硬化性がより良好であり、優れた耐溶剤性を有する硬化物が得られる樹脂組成物となる。
 構成単位(a)の含有割合が40モル%以下であると、樹脂前駆体(PA)中の構成単位(pb)および構成単位(c)の含有割合を十分に確保することができ、より低温硬化性の良好な樹脂組成物が得られる。また、構成単位(a)の含有割合が40モル%以下であると、これを用いて製造される樹脂(A)の合成時、および樹脂(A)を含む樹脂組成物の保管時に、構成単位(a)の有するイソシアナト基が再生して、意図しない架橋反応が起こることを抑制でき、樹脂(A)の安定性を確保できる。
〔構成単位(pb)〕
 樹脂前駆体(PA)に含まれる構成単位(pb)は、下記式(1)で示される基を有するモノマー(m-pb)(以下、単に「モノマー(m-pb)」とも言う。)由来の構成単位である。構成単位(pb)は、1種のみであってもよいし、2種以上であってもよい。
 モノマー(m-pb)は、ヒドロキシ基、イソシアナト基、ブロックイソシアナト基を有さず、エチレン性不飽和結合と下記式(1)で示される基とを有するモノマーである。
Figure JPOXMLDOC01-appb-C000012

(式(1)中、RおよびRは、それぞれ独立に、水素原子または炭素原子数1~20の炭化水素基である;RおよびRは、それぞれ独立に、水素原子または炭素原子数1~20の炭化水素基である。)
 式(1)中、RおよびRは、それぞれ独立に、水素原子または炭素原子数1~20の炭化水素基であり、好ましくは炭素原子数1~5の炭化水素基であり、式(2-2)および式(3-2)から選択される一種以上の基を有する構成単位(b)への反応のし易さの観点から、炭素原子数1~3の炭化水素基であることがより好ましい。RおよびRは、アルキル基であることが好ましく、メチル基またはエチル基であることが好ましく、エチル基であることが特に好ましい。RおよびRは、同じであってもよいし、異なっていてもよく、モノマー(m-pb)を容易に製造できるため、同じであることが好ましい。
 式(1)中、RおよびRは、それぞれ独立に、水素原子または炭素原子数1~20の炭化水素基であり、好ましくは水素原子または炭素数1~5であり、式(2-2)および下記式(3-2)から選択される一種以上の基を有する構成単位(b)への反応のし易さの観点から、水素原子またはメチル基であることがより好ましく、水素原子であることが特に好ましい。RおよびRは、同じであってもよいし、異なっていてもよく、モノマー(m-pb)を容易に製造できるため、同じであることが好ましい。
 モノマー(m-pb)としては、例えば、分子中にビニル基、(メタ)アクリロイルオキシ基等のエチレン性不飽和基を有するイソシアネート化合物におけるイソシアナト基と、下記式(8)で示されるヒドロキシ基含有化合物におけるヒドロキシ基とをウレタン化反応させた化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000013


(式(8)中、R、R、RおよびRは、式(1)におけるR、R、RおよびRと同じである。)
 上記のエチレン性不飽和基を有するイソシアネート化合物と式(8)で示されるヒドロキシ基含有化合物とをウレタン化反応させる方法としては、従来公知の方法を用いることができる。
 上記のウレタン化反応は、溶剤の存在の有無に関わらず行うことができる。上記のウレタン化反応を、溶剤を用いて行う場合に使用する溶剤は、イソシアナト基に対して不活性な溶剤であればよく、公知の溶剤を用いることができる。
 上記のウレタン化反応は、一般に-10℃以上90℃以下の温度で行うことが好ましく、5℃以上70℃以下の温度で行うことがより好ましく、10℃以上40℃以下の温度で行うことがさらに好ましい。
 上記のウレタン化反応を行う際には、必要に応じて、ジラウリン酸ジブチルスズ等のウレタン化触媒;フェノチアジン、p-メトキシフェノール、2,6-ジ-tert-ブチル-4-メチルフェノール(以下「BHT」ともいう)等の重合禁止剤;などを使用しても良い。
 モノマー(m-pb)の原料として使用されるイソシアネート化合物としては、前述のブロックイソシアナト基含有モノマー(m-a)に用いることができるイソシアネート化合物として挙げた化合物と好ましい例を同様に用いることができる。
 モノマー(m-pb)の原料として使用される式(8)で示されるヒドロキシ基含有化合物としては、リンゴ酸エステル、2-メチルリンゴ酸エステル、3-メチルリンゴ酸エステル、2,3-ジメチルリンゴ酸エステル、酒石酸エステルおよびクエン酸エステルなどが挙げられ、下記式(2-2)および下記式(3-2)から選択される一種以上の基を有する構成単位(b)に変換する反応の容易さや、入手の容易さの観点から、リンゴ酸エステルが好ましい。
 式(8)で示されるヒドロキシ基含有化合物中に含まれる2つのエステル部位の炭素数(-COORおよび-COORにおけるRおよびRの炭素原子数)は、1~20であるが、それぞれ1~5であることが好ましく、1~3であることがより好ましい。 式(8)で示されるヒドロキシ基含有化合物は、入手の容易さの観点から、リンゴ酸ジエチルであることが特に好ましい。
 モノマー(m-pb)としては、具体的には、2-[(リンゴ酸ジエチル)カルボニルアミノ]エチルアクリレート、2-[(リンゴ酸ジエチル)カルボニルアミノ]メチルアクリレート、2-[(リンゴ酸ジエチル)カルボニルアミノ]プロピルアクリレート、2-[(リンゴ酸ジエチル)カルボニルアミノ]ブチルアクリレートから選ばれる1種または2種以上であることが好ましく、製造の容易さの観点から、特に、2-[(リンゴ酸ジエチル)カルボニルアミノ]エチルアクリレートであることが好ましい。
 樹脂前駆体(PA)が構成単位(pb)を含有することにより、構成単位(pb)から誘導される構成単位(b)を有する樹脂(A)を含む樹脂組成物が得られる。構成単位(b)は、樹脂(A)中にエチレン性不飽和基を導入する。このため、構成単位(b)を有する樹脂(A)を含む樹脂組成物は、光硬化性および低温硬化性が良好で、優れた耐溶剤性を有する硬化物が得られる。
 樹脂前駆体(PA)中の構成単位(pb)の含有割合は、樹脂前駆体(PA)の用途に応じて適宜決定できる。樹脂前駆体(PA)中の構成単位(pb)の含有割合は、1~50モル%であることが好ましく、10~40モル%であることがより好ましく、20~35モル%であることがさらに好ましい。前記割合は必要に応じて、5~45モル%や、15~30モル%などであってもよい。構成単位(pb)の含有割合が1モル%以上であると、樹脂前駆体(PA)から誘導される樹脂(A)が、樹脂前駆体(PA)中の構成単位(pb)から誘導される構成単位(b)を十分に含むものとなる。その結果、樹脂(A)を含む樹脂組成物は、樹脂(A)中にエチレン性不飽和基が十分に導入されたものとなり、光硬化性および低温硬化性が良好で、優れた耐溶剤性を有する硬化物が得られるものとなる。構成単位(pb)の含有割合が50モル%以下であると、樹脂前駆体(PA)中の構成単位(a)および構成単位(c)の含有割合を十分に確保することができ、より低温硬化性の良好な樹脂組成物が得られる。
〔構成単位(c)〕
 樹脂前駆体(PA)に含まれるヒドロキシ基を有する構成単位(c)は、ヒドロキシ基含有モノマー(m-c)(以下、単に「モノマー(m-c)」とも言う。)由来の構成単位である。構成単位(c)は、1種のみであってもよいし、2種以上であってもよい。
 モノマー(m-c)は、ブロックイソシアナト基および上記式(1)で示される基を有さず、エチレン性不飽和基とヒドロキシ基とを有していればよく、特に限定されない。
 モノマー(m-c)としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2,3-ジヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートなどが挙げられる。
 これらのモノマー(m-c)の中でも、入手の容易さの観点から、2-ヒドロキシエチル(メタ)アクリレートが好ましい。これらのモノマー(m-c)は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 樹脂前駆体(PA)が構成単位(c)を含有するものであるため、樹脂前駆体(PA)を用いて製造した樹脂(A)を含有する樹脂組成物を加熱して硬化させる際に、構成単位(a)のブロックイソシアナト基が脱ブロック(解離)して再生したイソシアナト基と、構成単位(c)の有するヒドロキシ基とが反応する。このことにより、樹脂組成物を硬化させるための加熱温度を十分に低くしても良好な硬化性が得られ、優れた耐溶剤性を有する硬化物が得られる。
 樹脂前駆体(PA)中の構成単位(c)の含有割合は、樹脂前駆体(PA)の用途に応じて適宜決定できる。樹脂前駆体(PA)中の構成単位(c)の含有割合は、1~80モル%であることが好ましく、10~70モル%であることがより好ましく、30~60モル%であることがさらに好ましい。前記割合は必要に応じて、5~50モル%や、20~40モル%などであってもよい。構成単位(c)の含有割合が1モル%以上であると、樹脂前駆体(PA)を用いて製造した樹脂を含有する樹脂組成物を硬化させるための加熱によって再生したイソシアナト基と反応するヒドロキシ基の数を十分に確保できる。このため、低温硬化性がより良好であり、優れた耐溶剤性を有する硬化物が得られる樹脂組成物となる。構成単位(c)の含有割合が80モル%以下であると、樹脂前駆体(PA)中の構成単位(pb)および構成単位(c)の含有割合を十分に確保することができ、樹脂前駆体(PA)を用いて製造した樹脂を含有する樹脂組成物が、光硬化性及び低温硬化性のバランスの取れたものとなる。
〔その他の構成単位(d)〕
 樹脂前駆体(PA)は、必要に応じて、構成単位(a)~(c)以外のその他の構成単位(d)を含有しても良い。構成単位(d)は、1種のみであってもよいし、2種以上であってもよい。構成単位(d)は、前述のモノマー(m-a)(ma-pb)(m-c)以外のその他のモノマー(m-d)(以下、単に「モノマー(m-d)」とも言う。)由来の構成単位である。
 モノマー(m-d)は、ヒドロキシ基、イソシアナト基、ブロックイソシアナト基、上記式(1)で示される基を有さず、エチレン性不飽和基を有するモノマーであり、特に限定されない。モノマー(m-d)としては、例えば、ブタジエン等のジエン類、(メタ)アクリル酸エステル類、(メタ)アクリル酸アミド類、ビニル化合物類、スチレン類、不飽和ジカルボン酸ジエステルなどが挙げられる。
 (メタ)アクリル酸エステル類の具体例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリルレート、sec-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリルレート、ペンチル(メタ)アクリレート、ネオペンチル(メタ)アクリレート、ベンジル(メタ)アクリレート、イソアミル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ドデシル(メタ)アクリレート、シクロペンチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、メチルシクロヘキシル(メタ)アクリレート、エチルシクロヘキシル(メタ)アクリレート、1,4-シクロヘキサンジメタノールモノ(メタ)アクリレート、ロジン(メタ)アクリレート、ノルボルニル(メタ)アクリレート、5-メチルノルボルニル(メタ)アクリレート、5-エチルノルボルニル(メタ)アクリレート、アリル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、1,1,1-トリフルオロエチル(メタ)アクリレート、パーフルオロエチル(メタ)アクリレート、パーフルオロ-n-プロピル(メタ)アクリレート、パーフルオロ-イソプロピル(メタ)アクリレート、トリフェニルメチル(メタ)アクリレート、クミル(メタ)アクリレート、3-(N,N-ジメチルアミノ)プロピル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、アダマンチル(メタ)アクリレート、ナフタレン(メタ)アクリレート、アントラセン(メタ)アクリレート、グリシジル(メタ)アクリレート、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート、(3-エチルオキセタン-3-イル)メチル(メタ)アクリレート、N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート、N-tert-ブチルアミノエチル(メタ)アクリレート、テトラメチルピペリジル(メタ)アクリレート、ヘキサメチルピペリジル(メタ)アクリレート等が挙げられる。
 (メタ)アクリル酸アミド類の具体例としては、(メタ)アクリル酸アミド、(メタ)アクリル酸N,N-ジメチルアミド、(メタ)アクリル酸N,N-ジエチルアミド、(メタ)アクリル酸N,N-ジプロピルアミド、(メタ)アクリル酸N,N-ジ-イソプロピルアミド、(メタ)アクリル酸アントラセニルアミド、N-イソプロピル(メタ)アクリルアミド、(メタ)アクリルモルフォリン、ダイアセトン(メタ)アクリルアミド等が挙げられる。
 ビニル化合物の具体例としては、ノルボルネン(ビシクロ[2.2.1]ヘプト-2-エン)、5-メチルビシクロ[2.2.1]ヘプト-2-エン、5-エチルビシクロ[2.2.1]ヘプト-2-エン、テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-メチルテトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-エチルテトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、ジシクロペンタジエン、トリシクロ[5.2.1.02,6]デカ-8-エン、トリシクロ[5.2.1.02,6]デカ-3-エン、トリシクロ[4.4.0.12,5]ウンデカ-3-エン、トリシクロ[6.2.1.01,8]ウンデカ-9-エン、トリシクロ[6.2.1.01,8]ウンデカ-4-エン、テトラシクロ[4.4.0.12,5.17,10.01,6]ドデカ-3-エン、8-メチルテトラシクロ[4.4.0.12,5.17,10.01,6]ドデカ-3-エン、8-エチリデンテトラシクロ[4.4.0.12,5.17,12]ドデカ-3-エン、8-エチリデンテトラシクロ[4.4.0.12,5.17,10.01,6]ドデカ-3-エン、ペンタシクロ[6.5.1.13,6.02,7.09,13]ペンタデカ-4-エン、ペンタシクロ[7.4.0.12,5.19,12.08,13]ペンタデカ-3-エン、5-ノルボルネン-2,3-ジカルボン酸無水物、(メタ)アクリル酸アニリド、(メタ)アクリロイルニトリル、アクロレイン、塩化ビニル、塩化ビニリデン、フッ化ビニル、フッ化ビニリデン、ビニルピリジン、酢酸ビニル、ビニルトルエン、ノルボルネン等が挙げられる。
 スチレン類の具体例としては、スチレン、スチレンのα-、o-、m-、p-アルキル、ニトロ、シアノ、アミド誘導体等が挙げられる。
 不飽和ジカルボン酸ジエステルの具体例としては、シトラコン酸ジエチル、マレイン酸ジエチル、フマル酸ジエチル、イタコン酸ジエチル等が挙げられる。
 不飽和多塩基酸無水物の具体例としては、無水イタコン酸、無水シトラコン酸等が挙げられる。
 これらのモノマー(m-d)は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 これらのモノマー(m-d)の中でも、(メタ)アクリル酸エステル類が好ましく、入手の容易さや構成単位(a)~(c)の役割を阻害することなく発現させることができる観点から、炭素数1~10のアルキル基を有するアルキル(メタ)アクリレートがより好ましく、特に構成単位(a)~(c)の役割を効率よく発現させるため、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリルレート、sec-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリルレート、ペンチル(メタ)アクリレート、ネオペンチル(メタ)アクリレート、イソアミル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ドデシル(メタ)アクリレート等の炭素数1~10の環状骨格を持たない直鎖アルキル基を有するアルキル(メタ)アクリレートがさらに好ましい。
 樹脂前駆体(PA)が構成単位(d)を含有する場合、樹脂前駆体(PA)中の含有割合は、樹脂前駆体(PA)の用途に応じて適宜決定できる。樹脂前駆体(PA)中の構成単位(d)の含有割合は、1~30モル%であることが好ましく、3~25モル%であることがより好ましく、5~20モル%であることがさらに好ましい。前記割合は必要に応じて、2~18モル%や、8~15モル%などであってもよい。構成単位(d)の含有割合が1モル%以上であると、構成単位(d)を含むことによる効果が顕著となる。構成単位(d)の含有割合が30モル%以下であると、樹脂前駆体(PA)中の構成単位(a)、構成単位(pb)および構成単位(c)の含有割合を十分に確保することができる。このため、樹脂前駆体(PA)を用いて製造した樹脂を含有する樹脂組成物が、良好な低温硬化性を有し、優れた耐溶剤性を有する硬化物が得られるものとなる。
 樹脂前駆体(PA)のポリスチレン換算の重量平均分子量は、特に制限されないが、好ましくは1,000~40,000、より好ましくは3,000~30,000、さらに好ましくは4,000~10,000である。樹脂前駆体(PA)の重量平均分子量が1,000以上であると、樹脂前駆体(PA)を用いて製造した樹脂を含有する樹脂組成物が、より優れた耐溶剤性を有する硬化物が得られるものとなる。樹脂前駆体(PA)の重量平均分子量が40,000以下であると、樹脂前駆体(PA)を用いて製造した樹脂を含有する樹脂組成物に、好適な粘度を付与することができ、ハンドリングしやすい樹脂組成物が得られやすくなる。
 本実施形態の樹脂前駆体(PA)は、ブロックイソシアナト基を有する構成単位(a)を含有するものであり、分子中にブロックイソシアナト基を含んでいる。樹脂前駆体(PA)中のブロックイソシアナト基の含有量は、適宜選択すればよいが、通常、ブロックイソシアナト基当量が400~6,000g/mol、好ましくは500~5,000g/mol、より好ましくは700~3,000g/molとなる範囲で選択される。樹脂前駆体(PA)中のブロックイソシアナト基当量が400g/mol以上であると、樹脂前駆体(PA)を用いて製造した樹脂を含有する樹脂組成物が、これを硬化させるための加熱温度を十分に低くしても十分に硬化し、より優れた耐溶剤性を有する硬化物が得られるものとなる。樹脂前駆体(PA)中のブロックイソシアナト基当量が6,000g/mol以下であると、これを用いて製造される樹脂の合成時、および樹脂を含む樹脂組成物の保管時に、構成単位(a)の有するイソシアナト基が再生して、意図しない架橋反応が起こることを抑制でき、安定性を確保できる。
 樹脂前駆体(PA)中のブロックイソシアナト基当量は、樹脂前駆体(PA)に含まれるブロックイソシアナト基1モル当たりの樹脂前駆体(PA)の質量であり、樹脂前駆体(PA)の質量を樹脂前駆体(PA)に含まれるブロックイソシアナト基のモル数で除することにより求められる(g/mol)。本発明において、樹脂前駆体(PA)中のブロックイソシアナト基当量は、樹脂前駆体(PA)の原料として使用したブロックイソシアナト基含有モノマー(m-a)の仕込み量から計算した理論値である。
 本実施形態の樹脂前駆体(PA)は、ヒドロキシ基を有する構成単位(c)を含有するものであり、分子中にヒドロキシ基(水酸基)を含んでいる。樹脂前駆体(PA)中のヒドロキシ基の含有量は、適宜選択すればよいが、通常、ヒドロキシ基当量が200~5000g/mol、好ましくは300~3000g/mol、より好ましくは400~2000g/molとなる範囲で選択される。樹脂前駆体(PA)中のヒドロキシ基当量が200g/mol以上であると、樹脂前駆体組成物の他成分との相溶性を損なうことが無い点で好ましい。樹脂前駆体(PA)中のヒドロキシ基当量が5000g/mol以下であると、樹脂前駆体(PA)を用いて製造した樹脂を含有する樹脂組成物は、これを硬化させるための加熱によって再生したイソシアナト基と反応するヒドロキシ基の数を十分に確保できる。このため、低温硬化性がより良好であり、優れた耐溶剤性を有する硬化物が得られる樹脂組成物となる。
 樹脂前駆体(PA)中のヒドロキシ基当量は、樹脂前駆体(PA)に含まれるヒドロキシ基1モル当たりの樹脂前駆体(PA)の質量であり、樹脂前駆体(PA)の質量を樹脂前駆体(PA)に含まれるヒドロキシ基のモル数で除することにより求められる(g/mol)。本発明において、樹脂前駆体(PA)中のヒドロキシ基当量は、樹脂前駆体(PA)の原料として使用したヒドロキシ基を有する構成単位(c)の仕込み量から計算した理論値である。
<樹脂前駆体(PA)の製造方法>
 樹脂前駆体(PA)は、樹脂前駆体(PA)に含まれる構成単位(a)、(pb)、(c)それぞれに対応するモノマー(m-a)、(m-pb)、(m-c)を共重合反応させることにより製造できる。樹脂前駆体(PA)に含まれる構成単位(a)、(pb)、(c)の割合は、樹脂前駆体(PA)の原料として使用する全てのモノマーの合計(以下、「原料モノマー」という場合がある。)中の各モノマー(m-a)、(m-pb)、(m-c)の割合と同等である。
 したがって、樹脂前駆体(PA)の原料として使用する原料モノマー中の各モノマー(m-a)、(m-pb)、(m-c)の割合は、好ましくは(m-a)1~40モル%、(m-pb)1~50モル%、および(m-c)1~80モル%であり、より好ましくは(m-a)5~30モル%、(m-pb)10~40モル%、および(m-c)10~70モル%であり、さらに好ましくは(m-a)10~25モル%、(m-pb)20~35モル%、および(m-c)30~60モル%である。
 樹脂前駆体(PA)として、構成単位(d)を含むものを製造する場合には、樹脂前駆体(PA)の原料モノマーとして、モノマー(m-a)、(m-pb)、(m-c)に加えて、さらにモノマー(m-d)を用いればよい。その場合、樹脂前駆体(PA)の原料として使用される原料モノマー中のモノマー(m-d)の割合は、好ましくは1~30モル%であり、より好ましくは3~25モル%であり、さらに好ましくは5~20モル%である。
 樹脂前駆体(PA)を製造する際に使用する原料モノマー(モノマー(m-a)、(m-pb)、(m-c)および必要に応じて用いられるモノマー(m-d))の共重合反応は、前記技術分野において公知であるラジカル重合方法にしたがって、重合溶剤の存在下又は不存在下で行うことができる。具体的には、例えば、原料モノマーと重合開始剤と重合溶剤とを混合して原料モノマー溶液とし、窒素ガス雰囲気下、50~100℃の温度で1~20時間重合反応させる方法を用いることができる。
 樹脂前駆体(PA)を製造する際に使用する重合溶剤としては、後述する樹脂前駆体組成物に含まれる溶剤(PC)に使用できるものを1種または2種以上用いることができる。
 原料モノマーを共重合反応させる温度は、ブロックイソシアナト基含有モノマー(m-a)の有するブロックイソシアナト基の解離率が、30分で80%以上となる解離温度未満であることが好ましい。これは、共重合反応中の原料モノマー溶液中で、モノマー(m-a)の有するブロックイソシアナト基が解離してイソシアナト基が生じ、ヒドロキシ基含有モノマー(m-c)の有するヒドロキシ基と反応してゲル化することを抑制できるためである。原料モノマーを共重合反応させる温度は、モノマー(m-a)の有するブロックイソシアナト基の解離率が、30分で80%以上となる解離温度よりも20~50℃低いことがより好ましい。
 具体的には、原料モノマーを共重合反応させる温度は、50~100℃とすることができ、好ましくは60~90℃であり、より好ましくは65~85℃である。
 原料モノマーを共重合反応させる際に使用する重合開始剤としては、例えば、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、アゾビスイソブチロニトリル、アゾビスイソバレロニトリル、過酸化ベンゾイル、t-ブチルパーオキシ-2-エチルヘキサノエートなどが挙げられる。これらの重合開始剤は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。重合開始剤の使用量は、原料モノマー(モノマーの全仕込み量)100質量部に対して、0.5~20質量部とすることができ、好ましくは1.0~10質量部である。
 樹脂前駆体(PA)を製造する際には、必要に応じて、本発明の効果を損なわない範囲で、重合禁止剤、連鎖移動剤、光増感剤、フィラー、可塑剤などの添加剤を用いても良い。
<樹脂前駆体組成物>
 本実施形態の樹脂前駆体組成物は、本実施形態の樹脂前駆体(PA)と、塩基性触媒(PB)と、溶剤(PC)とを含有する。樹脂前駆体組成物は、塩基性触媒(PB)を含有することにより、樹脂前駆体(PA)に含まれる構成単位(pb)を後述する構成単位(b)に変換させて、本実施形態の樹脂(A)を製造できる。
〔塩基性触媒(PB)〕
 塩基性触媒(PB)は、樹脂前駆体(PA)に含まれる構成単位(pb)の有する式(1)で示される基において、Rの結合している炭素原子とRの結合している炭素原子との間で、二重結合を形成させることができるものであればよく、特に限定されない。
 塩基性触媒(PB)としては、25℃におけるpKa(酸性度定数)が12.5以上であるものを用いることが好ましい。25℃におけるpKaが12.5以上であるものに該当する塩基性触媒(PB)としては、水溶液中でのpKaが12.5以上であるもの、および酸性が強すぎて水溶液中では測定できないものであって有機溶媒中での測定結果から換算した水溶液中でのpKaが12.5以上であるものを含む。
 塩基性触媒(PB)は、下記式(5)で表される化合物であることが好ましい。
 R11N=CR12-NR1314・・・(5)
(式(5)中、R11は、水素原子、炭素原子数1~20の炭化水素基、または-N(R15で表される基(式中のR15は水素原子または炭素原子数1~20の炭化水素基であって、2つのR15は互いに同じであってもよいし異なっていてもよい。)である。R12、R13およびRは、それぞれ水素原子または炭素原子数1~20の炭化水素基である。R11、R12、R13、R14および2つのR15のうち、任意の2つ以上の基が結合して環状構造を形成していてもよい。)
 塩基性触媒(PB)は、式(5-2)で表される化合物であってもよい。
 R16N=CR17-NR1819・・・(5-2)
(式(5-2)中、R16、R17、R18およびR19は炭化水素基である。R16とR19とは結合して環状構造を形成している。R16とR19の炭素原子数の和は3~20である。R17とR18とは結合して環状構造を形成している。R17とR18の炭素原子数の和は3~20である。)
 式(5-2)で表される化合物において、環状構造を形成しているR16とR19の炭素原子数の和は、3~20であり、入手の容易さの観点から、好ましくは3~10である。
 式(5-2)で表される化合物において、環状構造を形成しているR17とR18の炭素原子数の和は、3~20であり、入手の容易さの観点から、好ましくは3~10である。
 塩基性触媒(PB)としては、具体的には、1,8-ジアザビシクロ[5.4.0]-ウンデセン-7(DBU)(pKa12.5)、1,5-ジアザビシクロ[4.3.0]-5-ノネン(pKa12.7)、1,1,3,3-テトラメチルグアニジン(pKa13.6)から選ばれる1種または2種以上を用いることが好ましく、特に、触媒活性能の強さや溶剤との相溶性、入手の容易さ等の観点から、1,8-ジアザビシクロ[5.4.0]-ウンデセン-7を用いることが好ましい。
 塩基性触媒(PB)の含有量は、樹脂前駆体(PA)100質量部に対して、0.01~10質量部であることが好ましく、0.05~5質量部であることがより好ましく、0.1~3質量部であることがさらに好ましい。前記含有量は必要に応じて、0.2~2質量部や、0.5~1質量部などであってもよい。塩基性触媒(PB)の含有量が0.01質量部以上であると、樹脂前駆体(PA)に含まれる構成単位(pb)を構成単位(b)に変換する反応速度が十分に速いものとなりやすく好ましい。塩基性触媒(PB)の含有量が10質量部以下であると、樹脂前駆体組成物を用いて製造した樹脂組成物を硬化させる際における塩基性触媒(PB)の影響を抑制できる。
〔溶剤(PC)〕
 溶剤(PC)としては、例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノ-n-ブチルエーテル、トリエチレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノエチルエーテル、3-メトキシ-1-ブタノール等の(ポリ)アルキレングリコールモノアルキルエーテル類;2-ヒドロキシプロピオン酸メチル、2-ヒドロキシプロピオン酸エチル、2-ヒドロキシ-2-メチルプロピオン酸メチル、2-ヒドロキシ-2-メチルプロピオン酸エチル、ヒドロキシ酢酸エチル、2-ヒドロキシ-3-メチル酪酸メチル等のヒドロキシ基含有カルボン酸エステル;ジエチレングリコール等のヒドロキシ基含有溶剤、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート等の(ポリ)アルキレングリコールモノアルキルエーテルアセテート類;ジエチレングリコールジメチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジエチルエーテル、テトラヒドロフラン等のエーテル類;メチルエチルケトン、シクロヘキサノン、2-ヘプタノン、3-ヘプタノン等のケトン類;3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチル、エトキシ酢酸エチル、3-メチル-3-メトキシブチルアセテート、3-メチル-3-メトキシブチルプロピオネート、酢酸エチル、酢酸n-ブチル、酢酸i-プロピル、酢酸i-ブチル、酢酸n-アミル、酢酸i-アミル、プロピオン酸n-ブチル、酪酸エチル、酪酸n-プロピル、酪酸i-プロピル、ピルビン酸エチル、ピルビン酸n-プロピル、アセト酢酸メチル、アセト酢酸エチル、2-オキソ酪酸エチル等のエステル類;トルエン、キシレン等の芳香族炭化水素類;N-メチルピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のカルボン酸アミド類等のヒドロキシ基非含有溶剤などが挙げられる。これらの溶剤は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 これらの溶剤(PC)の中でも、入手の容易さ、コスト上およびレジスト作製時の安定性の観点から、エーテル類を用いることが好ましく、具体的には、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールメチルエチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテル、3-メトキシ-1-ブタノールから選ばれる1種または2種以上を用いることがより好ましい。
 溶剤(PC)の含有量は、樹脂前駆体組成物に含まれる溶剤(PC)以外の成分の合計100質量部に対して、30~1,000質量部であることが好ましく、より好ましくは50~800質量部である。前記含有量は必要に応じて、70~500質量部や、100~300質量部などであってもよい。溶剤(PC)の含有量が30質量部以上であると、安定した重合反応ができるため好ましい。溶剤(PC)の含有量が1,000質量部以下であると、樹脂前駆体組成物の粘度を適切に調整することができるため好ましい。
<樹脂前駆体組成物の製造方法>
 本実施形態の樹脂前駆体組成物は、公知の混合装置を用いて、樹脂前駆体(PA)と、塩基性触媒(PB)と、溶剤(PC)とを混合する方法により製造できる。
 本実施形態の樹脂前駆体組成物を製造する際には、原料として、樹脂前駆体(PA)を製造するために原料モノマーを共重合反応させて得られた反応液をそのまま用いてもよい。この場合、本実施形態の樹脂前駆体組成物は、樹脂前駆体(PA)を製造する際に使用した重合開始剤、必要に応じて使用される溶媒、重合禁止剤などの添加剤を含有していてもよい。また、樹脂前駆体組成物を製造する際の原料として、樹脂前駆体(PA)を製造するために原料モノマーを共重合反応させて得られた反応液から、樹脂前駆体(PA)を単離したものを用いてもよい。
 本実施形態の樹脂前駆体組成物を製造する際に、原料として使用する樹脂前駆体(PA)および/または塩基性触媒(PB)は、溶剤との混合物の状態であってもよい。この場合、樹脂前駆体(PA)および/または塩基性触媒(PB)との混合物中に含まれる溶剤は、樹脂前駆体組成物中に含まれる溶剤(PC)として用いることができる。
 本実施形態の樹脂前駆体組成物は、樹脂前駆体(PA)と、塩基性触媒(PB)と、溶剤(PC)に加えて、必要に応じて、カップリング剤、レベリング剤、熱重合禁止剤などの公知の添加剤を1種または2種以上含有していてもよい。これらの添加剤の含有量は、本発明の効果を阻害しない範囲であればよく、特に限定されない。樹脂前駆体組成物中に含まれる添加剤は、樹脂前駆体組成物を調整する際に添加したものであってもよいし、樹脂前駆体(PA)を製造する際に添加したものであってもよいし、樹脂前駆体(PA)を製造する際に使用した原料モノマーの合成時に使用したものの残存物であってもよい。
<樹脂(A)>
 本実施形態の樹脂(A)は、ブロックイソシアナト基を有する構成単位(a)と、下記式(2-2)および下記式(3-2)から選択される一種以上の基を有する構成単位(b)(以下、単に「構成単位(b)」とも言う。)と、ヒドロキシ基を有する構成単位(c)と、を含有する共重合体である。
Figure JPOXMLDOC01-appb-C000014

(式(2-2)中、Rは、水素原子または炭素原子数1~20の炭化水素基である;RおよびRは、それぞれ独立に、水素原子または炭素原子数1~20の炭化水素基である。)
Figure JPOXMLDOC01-appb-C000015

(式(3-2)中、Rは、水素原子または炭素原子数1~20の炭化水素基である;RおよびRは、それぞれ独立に、水素原子または炭素原子数1~20の炭化水素基である。)
 樹脂(A)中のブロックイソシアナト基を有する構成単位(a)は、樹脂前駆体(PA)中のブロックイソシアナト基を有する構成単位(a)と同じである。樹脂(A)中のヒドロキシ基を有する構成単位(c)は、樹脂前駆体(PA)中のヒドロキシ基を有する構成単位(c)と同じである。したがって、樹脂(A)中の構成単位(a)、(c)をそれぞれ導くモノマーとしては、樹脂前駆体(PA)中の構成単位(a)、(c)をそれぞれ導くモノマー(モノマー(m-a)、(m-c))と同様の化合物が挙げられる。
 本実施形態の樹脂(A)は、必要に応じて、構成単位(a)~(c)以外のその他の構成単位(d)を含有してもよい。
 樹脂(A)中に含まれていてもよいその他の構成単位(d)は、樹脂前駆体(PA)中に含まれていてもよいその他の構成単位(d)と同じである。したがって、樹脂(A)中の構成単位(d)を導くモノマーとしては、樹脂前駆体(PA)中の構成単位(d)を導くモノマー(m-d)と同様の化合物が挙げられる。
 本実施形態の樹脂(A)は、ヒドロキシ基を有する構成単位(c)の一部が、多塩基酸(e)由来のカルボキシ基を含むものであってもよい。
 樹脂(A)中の構成単位(a)、(b)、(c)の割合は、それぞれ樹脂前駆体(PA)中の構成単位(a)、(pb)、(c)の割合と同様である。
 樹脂(A)が構成単位(d)を含む場合、樹脂(A)中の構成単位(a)~(d)の割合は、それぞれ樹脂前駆体(PA)中の構成単位(a)、(pb)、(c)、(d)の割合と同様である。
〔構成単位(b)〕
 構成単位(b)は、上記式(2-2)および上記式(3-2)から選択される一種以上の基を有する構成単位であり、前述の樹脂前駆体(PA)の含有する構成単位(pb)から導かれる。したがって、構成単位(b)は、(メタ)アクリロイルオキシ基と式(1)で示される基とを有するモノマー(m-pb)から誘導される構成単位であることが好ましい。
 本実施形態の樹脂(A)は、構成単位(b)を含有することにより、エチレン性不飽和基が導入されたものである。樹脂(A)を含む樹脂組成物は、構成単位(b)を含有しているので、光硬化させることにより、構成単位(b)に含まれるエチレン性不飽和基とともに、後述する反応性希釈剤(D)が重合し、良好な光硬化性を発現する。
 構成単位(b)に含まれてもよい式(2-2)で示される基において、Rは、水素原子または炭素原子数1~20の炭化水素基であり、式(1)で示される基におけるRと同様に、好ましくは炭素原子数1~5の炭化水素基であり、より好ましくは炭素原子数1~3の炭化水素基である。式(2-2)で示される基におけるRは、式(1)で示される基におけるRと同様に、アルキル基であることが好ましく、メチル基またはエチル基であることが好ましく、エチル基であることが特に好ましい。
 式(2-2)中、RおよびRは、それぞれ独立に、水素原子または炭素原子数1~20の炭化水素基であり、式(1)で示される基におけるRおよびRと同様に、好ましくは水素原子または炭素数1~5であり、水素原子またはメチル基であることがより好ましく、水素原子であることが特に好ましい。式(2-2)中のRおよびRは、式(1)で示される基におけるRおよびRと同様に、同じであってもよいし、異なっていてもよい。
 構成単位(b)に含まれてもよい式(3-2)で示される基において、Rは、水素原子または炭素原子数1~20の炭化水素基であり、式(1)で示される基におけるRと同様に、好ましくは炭素原子数1~5の炭化水素基であり、より好ましくは炭素原子数1~3の炭化水素基である。式(2-3)で示される基におけるRは、式(1)で示される基におけるRと同様に、アルキル基であることが好ましく、メチル基またはエチル基であることが好ましく、エチル基であることが特に好ましい。
 式(3-2)中、RおよびRは、それぞれ独立に、水素原子または炭素原子数1~20の炭化水素基であり、式(1)で示される基におけるRおよびRと同様に、好ましくは水素原子または炭素数1~5であり、水素原子またはメチル基であることがより好ましく、水素原子であることが特に好ましい。式(3-2)中のRおよびRは、式(1)で示される基におけるRおよびRと同様に、同じであってもよいし、異なっていてもよい。
〔多塩基酸(e)〕
 本実施形態の樹脂(A)は、ヒドロキシ基を有する構成単位(c)の一部が、多塩基酸(e)由来のカルボキシ基を含むものであってもよい。構成単位(c)の一部が、多塩基酸(e)由来のカルボキシ基を含む場合、樹脂(A)を含む樹脂組成物に、アルカリ現像性を付与できる。また、このような樹脂(A)を含む樹脂組成物は、より良好な硬化性が得られ、より優れた耐溶剤性を有する硬化物が得られるものとなる。
 多塩基酸(e)は、カルボキシ基を一分子内に複数個有する化合物である。多塩基酸(e)としては、少なくとも2個のカルボキシ基が脱水縮合して、酸無水物を形成している化合物であることが好ましい。このような多塩基酸(e)の中でも、二塩基酸が好ましく、二塩基酸無水物を用いることがより好ましい。多塩基酸(e)として二塩基酸無水物を用いた場合、樹脂(A)の合成が容易であり、樹脂(A)の酸価の調整も容易となる。
 多塩基酸(e)としては、具体的には、無水マレイン酸、無水フタル酸、無水コハク酸、1,2,3,6-テトラヒドロ無水フタル酸、エンドメチレンテトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、3-メチル-1,2,3,6-テトラヒドロ無水フタル酸、4-メチル-1,2,3,6-テトラヒドロ無水フタル酸、3-メチル-ヘキサヒドロ無水フタル酸、4-メチル-ヘキサヒドロ無水フタル酸、メチル-3,6-エンドメチレン-1,2,3,6-テトラヒドロ無水フタル酸、無水トリメリット酸等が挙げられる。これらの多塩基酸(e)の中でも、入手の容易さの観点から、無水コハク酸、無水フタル酸、1,2,3,6-テトラヒドロ無水フタル酸、無水マレイン酸が好ましく、無水コハク酸が最も単純構造であり多塩基酸(e)の効果が効率的に発現する点でより好ましい。多塩基酸(e)は、1種のみ単独で用いてもよいし、2種以上併用してもよい。
 ヒドロキシ基を有する構成単位(c)の一部が、多塩基酸(e)由来のカルボキシ基を含む場合、多塩基酸(e)由来のカルボキシ基を含む構成単位(c)の含有量は、樹脂(A)に含まれる構成単位(a)~(d)の合計100モルに対して、1~30モルであることが好ましく、5~25モルであることがより好ましく、10~23モルであることがさらに好ましい。多塩基酸(e)由来のカルボキシ基を含む構成単位(c)の含有量が1モル以上であると、樹脂(A)を含む樹脂組成物に、十分なアルカリ現像性を付与できる。また、樹脂(A)を含む樹脂組成物が、より良好な硬化性が得られ、優れた耐溶剤性を有する硬化物が得られるものとなる。多塩基酸(e)由来のカルボキシ基を含む構成単位(c)の含有量が30モル以下であると、樹脂(A)を含む樹脂組成物のアルカリ現像液に対する溶解性が過剰となることを抑制できる。
 ヒドロキシ基を有する構成単位(c)の一部が、多塩基酸(e)由来のカルボキシ基を含む場合、多塩基酸(e)由来のカルボキシ基を含む構成単位(c)の含有量は、樹脂(A)に含まれる構成単位(c)100モルに対して、10~80モルであることが好ましく、20~70モルであることがより好ましく、30~60モルであることがさらに好ましい。多塩基酸(e)由来のカルボキシ基を含む構成単位(c)の含有量が10モル以上であると、樹脂(A)がカルボキシ基を十分に有するものとなる。多塩基酸(e)由来のカルボキシ基を含む構成単位(c)の含有量が80モル以下であると、樹脂(A)中に構成単位(c)の有するヒドロキシ基が十分に含まれているものとなる。したがって、樹脂(A)を含む樹脂組成物は、樹脂組成物を硬化させるための加熱によって、構成単位(c)の有するヒドロキシ基と、構成単位(a)のブロックイソシアナト基のブロック剤が解離して再生したイソシアナト基とが架橋反応して、良好な低温硬化性が得られるものとなる。
 樹脂(A)のポリスチレン換算の重量平均分子量は、特に制限されないが、好ましくは1,500~50,000、より好ましくは3,500~40,000、さらに好ましくは5,000~20,000である。樹脂(A)の重量平均分子量が1,500以上であると、樹脂(A)を含有する樹脂組成物が、より優れた耐溶剤性を有する硬化物を形成できるものとなる。樹脂(A)の重量平均分子量が50,000以下であると、樹脂(A)を含有する樹脂組成物に、好適な粘度を付与することができ、ハンドリングしやすい樹脂組成物が得られやすくなる。また、樹脂(A)の重量平均分子量が50,000以下であると、樹脂(A)を含有する樹脂組成物が感光性材料である場合に、現像時間を適切に制御できるものとなる。
 本実施形態の樹脂(A)は、ブロックイソシアナト基を有する構成単位(a)を含有するものであり、分子中にブロックイソシアナト基を含んでいる。樹脂(A)中のブロックイソシアナト基の含有量は、適宜選択すればよいが、樹脂前駆体(PA)中のブロックイソシアナト基当量と同様に、通常、ブロックイソシアナト基当量が400~6,000g/mol、好ましくは500~5,000g/mol、より好ましくは700~3,000g/molとなる範囲で選択される。
 樹脂(A)中のブロックイソシアナト基当量は、樹脂(A)に含まれるブロックイソシアナト基1モル当たりの樹脂(A)の質量であり、樹脂(A)の質量を樹脂(A)に含まれるブロックイソシアナト基のモル数で除することにより求められる(g/mol)。本発明において、樹脂(A)中のブロックイソシアナト基当量は、樹脂前駆体(PA)の原料として使用したブロックイソシアナト基含有モノマー(m-a)の仕込み量から計算した理論値である。
 本実施形態の樹脂(A)は、式(2-2)および式(3-2)から選択される一種以上の基を有する構成単位(b)を含有するものであり、分子中にエチレン性不飽和基を含んでいる。樹脂(A)中のエチレン性不飽和基の含有量は、適宜選択すればよいが、通常、エチレン性不飽和基当量が200~5,000g/mol、好ましくは500~3,000g/mol、より好ましくは500~1,500g/molとなる範囲で選択される。樹脂(A)中のエチレン性不飽和基当量が200g/mol以上であると、樹脂(A)の安定性を十分に保つことができる。樹脂(A)中のエチレン性不飽和基の含有量が5,000g/mol以下であると、樹脂(A)を含有する樹脂組成物が感光性材料である場合、光硬化させることにより、構成単位(b)に含まれるエチレン性不飽和基とともに、後述する反応性希釈剤(D)が重合し、良好な光硬化性を発現するため、好ましい。
 樹脂(A)中のエチレン性不飽和基当量は、樹脂(A)に含まれるエチレン性不飽和基1モル当たりの樹脂(A)の質量であり、樹脂(A)の質量を樹脂(A)に含まれるエチレン性不飽和基のモル数で除することにより求められる(g/mol)。本発明において、樹脂(A)中のエチレン性不飽和基当量は、式(1)で示される基を有するモノマー(m-pb)および多塩基酸(e)の仕込み量から計算した理論値である。多塩基酸(e)として、無水マレイン酸を使用した場合、樹脂(A)中のエチレン性不飽和基当量は、式(1)で示される基を有するモノマー(m-pb)および多塩基酸(e)のモル数で、樹脂(A)の質量を除することにより求められる。
 樹脂(A)が、ヒドロキシ基を有する構成単位(c)の一部が、多塩基酸(e)由来のカルボキシ基を含むものである場合、樹脂(A)の酸価(固形分酸価)は、好ましくは20~300KOHmg/gの範囲であり、より好ましくは30~200KOHmg/gの範囲である。樹脂(A)の酸価が20KOHmg/g以上であると、樹脂(A)を含む樹脂組成物のアルカリ現像性がより良好となる。また、樹脂(A)を含む樹脂組成物が、より優れた耐溶剤性を有する硬化物が得られるものとなる。一方、樹脂(A)の酸価が300KOHmg/g以下であると、樹脂(A)を含む樹脂組成物が感光性材料である場合に、アルカリ現像液に対して露光部分(光硬化部分)が溶解し難いものとなり、良好なパターン形状を形成できるものとなる。
 本実施形態における樹脂(A)の酸価は、JIS K6901 5.3に記載の方法により測定される。
 樹脂(A)中のヒドロキシ基当量は、適宜選択すればよいが、通常、ヒドロキシ基当量が300~6000g/mol、好ましくは400~4000g/mol、より好ましくは500~2500g/molとなる範囲で選択される。樹脂(A)中のヒドロキシ基当量が300g/mol以上であると、樹脂組成物の他成分との相溶性を損なうことが無い点で好ましい。樹脂(A)中のヒドロキシ基当量が6000g/mol以下であると、樹脂(A)を含む樹脂組成物を硬化させるための加熱によって再生したイソシアナト基と反応するヒドロキシ基の数を十分に確保できる。このため、低温硬化性がより良好であり、優れた耐溶剤性を有する硬化物が得られる樹脂組成物となる。
 樹脂(A)中のヒドロキシ基当量は、樹脂(A)に含まれるヒドロキシ基1モル当たりの樹脂(A)の質量であり、樹脂(A)の質量を樹脂(A)に含まれるヒドロキシ基のモル数で除することにより求められる(g/mol)。本発明において、樹脂(A)中のヒドロキシ基当量は、ヒドロキシ基を有する構成単位(c)の仕込み量から計算した理論値である。
<樹脂(A)の製造方法>
 本実施形態の樹脂(A)は、前述の樹脂前駆体(PA)から誘導される。具体的には、樹脂前駆体(PA)と塩基性触媒(PB)と溶剤(PC)とを含有する樹脂前駆体組成物を、例えば、0~150℃の温度で0.1~10時間保持する。このことにより、樹脂前駆体(PA)を脱アルコール反応及び脱炭酸反応させて、樹脂前駆体(PA)に含まれる構成単位(pb)を構成単位(b)に変換し、樹脂(A)と溶剤(PC)とを含む反応液を生成させる。
 構成単位(pb)を構成単位(b)に変換する変換反応は、ブロックイソシアナト基を有する構成単位(a)の有しているブロックイソシアナト基の解離率が、30分で70%以上となる温度未満の温度条件で行うことが好ましい。これは、変換反応中の樹脂前駆体組成物中で、構成単位(a)の有するブロックイソシアナト基が解離してイソシアナト基が生じ、ヒドロキシ基を有する構成単位(c)の有するヒドロキシ基と反応してゲル化することを抑制できるためである。上記変換反応を行う温度条件は、構成単位(a)の有するブロックイソシアナト基の解離率が、30分で70%以上となる温度よりも20~50℃低いことがより好ましい。
 具体的には、構成単位(pb)を構成単位(b)に変換する変換反応の温度は、0~150℃とすることができ、好ましくは50~120℃であり、より好ましくは60~100℃である。これら温度は、前記反応液を形成する温度としても好ましい。
 上記変換反応を行うために樹脂前駆体組成物を上記温度条件で保持する保持時間は、0.1~10時間とすることができ、好ましくは0.3~5時間であり、より好ましくは0.5~3時間である。保持時間は、樹脂前駆体組成物中の樹脂前駆体(PA)に含まれる構成単位(pb)の含有量、塩基性触媒(PB)の含有量、温度条件などに応じて適宜決定できる。
 上記変換反応を行う反応容器内の雰囲気は、例えば、空気、乾燥空気、窒素ガス、ヘリウムガス等を含む雰囲気とすることができ、乾燥空気または窒素ガス雰囲気であることが好ましい。
 上記変換反応を行う反応容器内の圧力は、特に限定されないが、常圧であることが好ましい。
(反応経路)
 本実施形態の樹脂(A)の製造方法において、樹脂前駆体(PA)に含まれる構成単位(pb)は、以下に示す反応経路により構成単位(b)に変換するものと推定される。
 すなわち、樹脂前駆体(PA)に含まれる式(1)で示される基を有する構成単位(pb)において、ウレタン結合における-NH-部分と、エステル部分(-COORまたは-COOR)とが、脱アルコール反応する。
 このことにより、下記式(2-1)および/または下記式(3-1)で示される複素環を有する基が形成される。式(2-1)で示される複素環を有する基は、式(1)で示される基におけるRを含むエステル部分が、脱アルコール(-ROH)反応して形成されたものである。式(3-1)で示される複素環を有する基は、式(1)で示される基におけるRを含むエステル部分が、脱アルコール(-ROH)反応して形成されたものである。
Figure JPOXMLDOC01-appb-C000016

(式(2-1)中、R、RおよびRは、式(1)中のR、RおよびRと同じである。)
Figure JPOXMLDOC01-appb-C000017

(式(3-1)中、R、RおよびRは、式(1)中のR、RおよびRと同じである。)
 次いで、上記式(2-1)で示される複素環を有する基において、複素環部分で脱炭酸(-CO)が生じる。このことにより、式(2-1)で示される複素環を有する基は、下記式(2-2)で示される基に変換される。
Figure JPOXMLDOC01-appb-C000018

(式(2-2)中、Rは、水素原子または炭素原子数1~20の炭化水素基である;RおよびRは、それぞれ独立に、水素原子または炭素原子数1~20の炭化水素基である。)
 また、上記式(3-1)で示される複素環を有する基において、複素環部分で脱炭酸(-CO)が生じる。このことにより、式(3-1)で示される複素環を有する基は、下記式(3-2)で示される基に変換される。
Figure JPOXMLDOC01-appb-C000019

(式(3-2)中、Rは、水素原子または炭素原子数1~20の炭化水素基である;RおよびRは、それぞれ独立に、水素原子または炭素原子数1~20の炭化水素基である。)
 密度汎関数法において汎関数にwB97XDを、基底関数に6-31+g(d)を使用して各生成物の生成経路における遷移状態計算を実施した結果、上述した構成単位(pb)を構成単位(b)に変換する変換反応は、式(1)、式(3-1)、および式(3-2)の反応経路の方が、式(1)、式(2-1)、および式(2-2)の変換ルートと比較して、活性化障壁が低かった。その為、前者は、主な変換ルートになっているものと推測される。したがって、樹脂(A)中には、式(3-2)で示される基を有する構成単位と、式(2-2)で示される基を有する構成単位とが混在しており、かつ式(3-2)で示される基を有する構成単位が、式(2-2)で示される基を有する構成単位よりも多く存在しているものと推定される。
(多塩基酸(e)の付加反応)
 本実施形態の樹脂(A)として、ヒドロキシ基を有する構成単位(c)の一部が、多塩基酸(e)由来のカルボキシ基を含むものを製造する場合、以下に示す方法により製造できる。まず、上記の方法により、樹脂前駆体(PA)に含まれる構成単位(pb)を構成単位(b)に変換する変換反応を行って、樹脂(A)と溶剤(PC)とを含む反応液とする。その後、反応液に多塩基酸(e)を添加し、樹脂(A)と多塩基酸(e)とを付加反応させる。このことにより、樹脂(A)に含まれるヒドロキシ基を有する構成単位(c)の一部を、多塩基酸(e)由来のカルボキシ基を含むものとし、多塩基酸(e)が付加した樹脂(A)を含む反応液とする。
 樹脂(A)と、多塩基酸(e)とを付加反応させる際には、必要に応じて、ナフテン酸リチウム、ナフテン酸クロム、ナフテン酸ジルコニウム、ナフテン酸コバルト等の金属触媒や、トリフェニルホスフィン、トリメチルホスフィン等のリン触媒、トリエチルアミン等のアミン触媒等を用いてもよい。触媒の使用量は、付加反応の温度および/時間などの条件、樹脂(A)および多塩基酸(e)の種類などに応じて適宜決定でき、特に限定されない。
 樹脂(A)と多塩基酸(e)との反応は、例えば、50~120℃の温度で行うことができ、60~100℃の温度で行うことが好ましく、65~90℃の温度で行うことがより好ましい。
 樹脂(A)と多塩基酸(e)とを付加反応させる温度は、樹脂(A)に含まれるブロックイソシアナト基を有する構成単位(a)の有しているブロックイソシアナト基の解離率が、30分で70%以上となる温度未満であることが好ましい。これは、樹脂(A)と多塩基酸(e)とを付加反応させることにより、構成単位(a)の有するブロックイソシアナト基が解離してイソシアナト基が生じ、ヒドロキシ基を有する構成単位(c)の有するヒドロキシ基と反応してゲル化することを抑制できるためである。上記樹脂(A)と多塩基酸(e)との付加反応は、構成単位(a)の有するブロックイソシアナト基の解離率が、30分で70%以上となる温度よりも20~50℃低い温度で行うことがより好ましい。
 樹脂(A)と多塩基酸(e)との付加反応を行うために上記温度で保持する保持時間(反応時間)は、例えば、10~300分間とすることができ、15~120分間であることが好ましく、多塩基酸(e)が消費されるまで継続して行うことが好ましい。多塩基酸(e)が消費したことは、例えば、赤外吸収(IR)分光法を用いて測定したIRスペクトルにより確認できる。
<樹脂組成物>
 次に、本実施形態の樹脂組成物について詳細に説明する。
 本実施形態の樹脂組成物は、本実施形態の樹脂(A)と、溶剤(C)と、反応性希釈剤(D)と、光重合開始剤(E)と、を含有する。本実施形態の樹脂組成物は、必要に応じて、着色剤(F)を含有していても良い。
 樹脂組成物中の樹脂(A)の含有量は、樹脂(A)と反応性希釈剤(D)の合計100質量部に対して、10~90質量部であることが好ましく、30~85質量部であることがより好ましく、60~80質量部であることがさらに好ましい。樹脂(A)の含有量が10質量部以上であると、より優れた低温硬化性を有し、耐溶剤性の良好な硬化物を形成できる樹脂組成物となる。樹脂(A)の含有量が90質量部以下であると、反応性希釈剤(D)の含有量を十分に確保できるため、強度および基材に対する密着性の良好な硬化物を形成できるものとなる。
〔溶剤(C)〕
 溶剤(C)としては、樹脂前駆体組成物に用いる溶剤(PC)と同様のものを用いることができる。樹脂組成物中の溶剤(C)と、樹脂組成物を製造する際に使用した樹脂前駆体組成物中の溶剤(PC)とは、同じものであってもよいし、異なっていてもよい。
 樹脂組成物中の溶剤(C)の含有量は、樹脂(A)と反応性希釈剤(D)の合計100質量部に対して、30~1,000質量部であることが好ましく、より好ましくは50~800質量部である。必要に応じて前記含有量は、80~500質量部や、100~300質量部などであってもよい。溶剤(C)の含有量が30質量部以上であると、用途に応じた適正な粘度を有するものとすることができる。溶剤(C)の含有量が1,000質量部以下であると、樹脂組成物を基材上に塗布して形成した塗布膜中の溶剤(C)を除去する場合に、容易に溶剤(C)を除去できる。
〔反応性希釈剤(D)〕
 反応性希釈剤(D)は、分子内に重合性官能基として少なくとも1つのエチレン性不飽和結合を有する化合物からなるモノマーである。反応性希釈剤(D)は、単官能モノマーであってもよいし、重合性官能基を複数有する多官能モノマーであってもよい。本実施形態の樹脂組成物は、反応性希釈剤(D)を含有することにより、用途に応じた適正な粘度を有するものとすることができる。また、本実施形態の樹脂組成物は、反応性希釈剤(D)を含有するため、良好な光硬化性を有し、強度および基材に対する密着性の良好な硬化物を形成できるものとなる。
 反応性希釈剤(D)として用いられる単官能モノマーとしては、(メタ)アクリルアミド、メチロール(メタ)アクリルアミド、メトキシメチル(メタ)アクリルアミド、エトキシメチル(メタ)アクリルアミド、プロポキシメチル(メタ)アクリルアミド、ブトキシメトキシメチル(メタ)アクリルアミド、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルへキシル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-フェノキシ-2-ヒドロキシプロピル(メタ)アクリレート、2-(メタ)アクリロイルオキシ-2-ヒドロキシプロピルフタレート、グリセリンモノ(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、グリシジル(メタ)アクリレート、2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,3,3-テトラフルオロプロピル(メタ)アクリレート、フタル酸誘導体のハーフ(メタ)アクリレートなどの(メタ)アクリレート類;スチレン、α-メチルスチレン、α-クロロメチルスチレン、ビニルトルエンなどの芳香族ビニル化合物類;酢酸ビニル、プロピオン酸ビニルなどのカルボン酸エステル類などが挙げられる。これらの単官能モノマーは、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 反応性希釈剤(D)として用いられる多官能モノマーとしては、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6-へキサングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、2,2-ビス(4-(メタ)アクリロキシジエトキシフェニル)プロパン、2,2-ビス(4-(メタ)アクリロキシポリエトキシフェニル)プロパン、2-ヒドロキシ-3-(メタ)アクリロイルオキシプロピル(メタ)アクリレート、エチレングリコールジグリシジルエーテルジ(メタ)アクリレート、ジエチレングリコールジグリシジルエーテルジ(メタ)アクリレート、フタル酸ジグリシジルエステルジ(メタ)アクリレート、グリセリントリアクリレート、グリセリンポリグリシジルエーテルポリ(メタ)アクリレート、ウレタン(メタ)アクリレート(すなわち、トリレンジイソシアネート)、トリメチルヘキサメチレンジイソシアネートとヘキサメチレンジイソシアネート等と2-ビドロキシエチル(メタ)アクリレートとの反応物、トリス(ヒドロキシエチル)イソシアヌレートのトリ(メタ)アクリレートなどの(メタ)アクリレート類;ジビニルベンゼン、ジアリルフタレート、ジアリルベンゼンホスホネートなどの芳香族ビニル化合物類;アジピン酸ジビニルなどのジカルボン酸エステル類;トリアリルシアヌレート、メチレンビス(メタ)アクリルアミド、(メタ)アクリルアミドメチレンエーテル、多価アルコールとN-メチロール(メタ)アクリルアミドとの縮合物などが挙げられる。これらの多官能モノマーは、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 これらのモノマーの中でも、光硬化性の良好な樹脂組成物となるため、反応性希釈剤(D)として多官能(メタ)アクリレートを用いることが好ましく、具体的には、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の3官能以上の多官能(メタ)アクリレートを用いることがより好ましい。
 樹脂組成物中の反応性希釈剤(D)の含有量は、樹脂(A)と反応性希釈剤(D)の合計100質量部に対して、10~90質量部であることが好ましく、15~70質量部であることがより好ましく、20~40質量部であることがさらに好ましい。反応性希釈剤(D)の含有量が10質量部以上であると、反応性希釈剤(D)を含有することによる効果が顕著となる。反応性希釈剤(D)の含有量が90質量部以下であると、樹脂(A)の含有量を十分に確保することができるため、より一層低温硬化性の良好な樹脂組成物となる。
〔光重合開始剤(E)〕
 光重合開始剤(E)としては、特に限定されないが、例えば、1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル-]-,-1-(O-アセチルオキシム);ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインブチルエーテルなどのベンゾイン類;アセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、1,1-ジクロロアセトフェノン、4-(1-t-ブチルジオキシ-1-メチルエチル)アセトフェノン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノ-プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)ブタノン-1などのアセトフェノン類;2-メチルアントラキノン、2-アミルアントラキノン、2-t-ブチルアントラキノン、1-クロロアントラキノンなどのアントラキノン類;キサントン、チオキサントン、2,4-ジメチルチオキサントン、2,4-ジイソプロピルチオキサントン、2-クロロチオキサントンなどのチオキサントン類;アセトフェノンジメチルケタール、ベンジルジメチルケタールなどのケタール類;ベンゾフェノン、4-(1-t-ブチルジオキシ-1-メチルエチル)ベンゾフェノン、3,3’,4,4’-テトラキス(t-ブチルジオキシカルボニル)ベンゾフェノンなどのベンゾフェノン類;アシルホスフィンオキサイド類;などが挙げられる。これらの光重合開始剤(E)は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 樹脂組成物中の光重合開始剤(E)の含有量は、樹脂(A)と反応性希釈剤(D)の合計100質量部に対して、0.1~30質量部であることが好ましく、0.5~15質量部であることがより好ましく、1~10質量部であることがさらに好ましい。光重合開始剤(E)の含有量が0.1質量部以上であると、光硬化性の良好な樹脂組成物となる。光重合開始剤(E)の含有量が30質量部以下であると、光重合開始剤(E)が多すぎることによって樹脂組成物の硬化物の物性に悪影響を来すことを防止できる。
〔着色剤(F)〕
 本実施形態の樹脂組成物は、着色剤(F)を含有していてもよい。着色剤(F)を含有する樹脂組成物は、カラーフィルターの材料として用いることができる。
 着色剤(F)は、溶剤(C)に溶解又は分散するものであれば特に限定されず、例えば、染料、顔料などが挙げられる。
 染料としては、溶剤(C)およびアルカリ現像液に対する溶解性、樹脂組成物中の他の成分との相互作用、耐熱性などの観点から、カルボン酸および/またはスルホン酸などの酸性基を有する酸性染料、酸性染料の窒素化合物との塩、酸性染料のスルホンアミド体などを用いることが好ましい。
 このような染料の例としては、acid alizarin violet N;acid black1、2、24、48;acid blue1、7、9、25、29、40、45、62、70、74、80、83、90、92、112、113、120、129、147;solvent blue38、44、70;acid chrome violet K;acid Fuchsin;acid green1、3、5、25、27、50;acid orange6、7、8、10、12、50、51、52、56、63、74、95;acid red1、4、8、14、17、18、26、27、29、31、34、35、37、42、44、50、51、52、57、69、73、80、87、88、91、92、94、97、103、111、114、129、133、134、138、143、145、150、151、158、176、183、198、211、215、216、217、249、252、257、260、266、274;acid violet 6B、7、9、17、19;acid yellow1、3、9、11、17、23、25、29、34、36、42、54、72、73、76、79、98、99、111、112、114、116;food yellow3及びこれらの誘導体などが挙げられる。これらの中でも、アゾ系、キサンテン系、アンスラキノン系もしくはフタロシアニン系の酸性染料が好ましい。
 顔料の例としては、C.I.ピグメントイエロー1、3、12、13、14、15、16、17、20、24、31、53、83、86、93、94、109、110、117、125、128、137、138、139、147、148、150、153、154、166、173、194、214などの黄色顔料;C.I.ピグメントオレンジ13、31、36、38、40、42、43、51、55、59、61、64、65、71、73などの橙色顔料;C.I.ピグメントレッド9、97、105、122、123、144、149、166、168、176、177、180、192、209、215、216、224、242、254、255、264、265などの赤色顔料;C.I.ピグメントブルー15、15:3、15:4、15:6、60などの青色顔料;C.I.ピグメントバイオレット1、19、23、29、32、36、38などのバイオレット色顔料;C.I.ピグメントグリーン7、36、58、59などの緑色顔料;C.I.ピグメントブラウン23、25などの茶色顔料;C.I.ピグメントブラック1、7、カーボンブラック、チタンブラック、酸化鉄などの黒色顔料などが挙げられる。
 着色剤(F)は、本実施形態の樹脂組成物が、カラーフィルターの着色パターンの材料として用いられるものである場合、目的とする着色パターン(ブラックマトリックスおよび画素)の色などに応じて、適宜決定できる。着色剤(F)は、1種のみ単独で用いてもよいし、2種以上を組み合わせて用いてもよい。着色剤(F)として2種以上のものを用いる場合、上記の染料と上記の顔料とを組み合わせて用いてもよい。
 着色剤(F)として顔料を用いる場合、着色剤(F)の分散性を向上させる観点から、公知の分散剤を樹脂組成物に配合してもよい。分散剤としては、経時の分散安定性に優れる高分子分散剤を用いることが好ましい。高分子分散剤としては、例えば、ウレタン系分散剤、ポリエチレンイミン系分散剤、ポリオキシエチレンアルキルエーテル系分散剤、ポリオキシエチレングリコールジエステル系分散剤、ソルビタン脂肪族エステル系分散剤、脂肪族変性エステル系分散剤などが挙げられる。このような高分子分散剤として、EFKA(エフカーケミカルズビーブイ(EFKA)社製)、Disperbyk(ビックケミー社製)、ディスパロン(楠本化成株式会社製)、SOLSPERSE(ゼネカ社製)などの商品名で市販されているものを用いてもよい。分散剤の含有量は、着色剤(F)として使用する顔料などの種類および量に応じて適宜設定すればよい。
 樹脂組成物中の着色剤(F)の含有量は、樹脂(A)と反応性希釈剤(D)の合計100質量部に対して、3~80質量部であることが好ましく、5~70質量部であることがより好ましく、10~60質量部であることがさらに好ましい。着色剤(F)の含有量が3質量部以上であると、着色剤(F)を含有することによる効果が顕著となり、カラーフィルターの着色パターンの材料として好適な樹脂組成物となる。着色剤(F)の含有量が80質量部以下であると、樹脂組成物中の着色剤(F)が、樹脂組成物の硬化性に支障を来すことがなく、低温硬化性の良好な樹脂組成物となる。
 本実施形態の樹脂組成物は、樹脂(A)と、溶剤(C)と、反応性希釈剤(D)と、光重合開始剤(E)と、必要に応じて含有される着色剤(F)に加えて、必要に応じて、カップリング剤、レベリング剤、熱重合禁止剤などの公知の添加剤を配合してもよい。これらの添加剤の配合量は、本発明の効果を阻害しない範囲であればよく、特に限定されない。
<樹脂組成物の製造方法>
 本実施形態の樹脂組成物は、公知の混合装置を用いて、樹脂(A)と、溶剤(C)と、反応性希釈剤(D)と、光重合開始剤(E)と、必要に応じて含有される着色剤(F)とを、混合する方法により製造できる。
 本実施形態の樹脂組成物を製造する際には、原料として、樹脂前駆体組成物中の構成単位(pb)を構成単位(b)に変換して得られた樹脂(A)と溶剤(PC)とを含む反応液をそのまま用いても良いし、多塩基酸(e)が付加した樹脂(A)を含む反応液をそのまま用いても良い。この場合、反応液中に含まれる溶剤(PC)は、樹脂組成物中に含まれる溶剤(C)の一部または全部として用いることができる。
 本実施形態の樹脂組成物を製造する際には、上記の樹脂(A)と溶剤(PC)とを含む反応液、または多塩基酸(e)が付加した樹脂(A)を含む反応液から、公知の方法により単離した樹脂(A)を、原料として用いても良い。
 本実施形態の樹脂組成物は、式(2-2)および上記式(3-2)から選択される一種以上の基を有する構成単位(b)を有する樹脂(A)と、反応性希釈剤(D)と、光重合開始剤(E)とを含有しているため、光硬化させることにより、樹脂(A)の有する構成単位(b)に含まれるエチレン性不飽和基とともに、反応性希釈剤(D)が重合し、良好な光硬化性を発現する。
 しかも、本実施形態の樹脂組成物は、ブロックイソシアナト基を有する構成単位(a)とヒドロキシ基を有する構成単位(c)を有する樹脂(A)を含有しているため、良好な低温硬化性を有する。
 これらのことから、本実施形態の樹脂組成物を用いて硬化物を形成する場合、従来の樹脂組成物を用いる場合と比較して硬化させるための加熱温度を低くできる。よって、本実施形態の樹脂組成物は、例えば、基材上に形成した塗布膜を露光した後に、ベーキング処理を行う場合、ベーキング処理の温度を低くしても、架橋反応が十分に進行し、優れた耐溶剤性を有する硬化物が得られる。
 したがって、本実施形態の樹脂組成物を用いて硬化物を形成する場合、硬化させるための加熱に必要なエネルギーが少なくて済む。また、本実施形態の樹脂組成物を用いることで、樹脂基板など耐熱性の劣る基材上に、基材に支障を来すことなく硬化物を形成できる。さらに、樹脂組成物が着色剤(F)を含む場合、着色剤(F)として耐熱性の劣るものを用いることが可能となる。その結果、着色剤(F)本来の特性が発揮された硬化物を形成できる。
 また、本実施形態の樹脂組成物は、ベーキング処理の温度を低くしても、優れた耐溶剤性を有する硬化物が得られるため、樹脂組成物中の着色剤(F)の含有量を多くすることが可能である。着色剤(F)含有量の多い樹脂組成物は、例えば、カラーフィルターの着色パターンの材料として用いることにより、優れた色再現性を有するカラーフィルターを形成できる。
 また、本実施形態の樹脂組成物に含まれる樹脂(A)が、ヒドロキシ基を有する構成単位(c)の一部が、多塩基酸(e)由来のカルボキシ基を含むものである場合、より良好な低温硬化性を有し、しかも良好な保存安定性およびアルカリ現像性を有するものとなる。このような樹脂組成物は、アルカリ現像性に優れるので、例えば、基材上に塗布して塗布膜を形成し、所定のパターン形状に対応するフォトマスクを介して露光し、未露光部分をアルカリ水溶液で現像した後、十分に低い温度でベーキング処理することにより、所定のパターン形状を有する耐溶剤性に優れた硬化物を形成できる。
 また、本実施形態の樹脂組成物が、着色剤(F)を含有している場合、カラーフィルターの材料として好適に用いることができる。
 これらのことから、本実施形態の樹脂組成物は、例えば、カラーフィルターの画素、ブラックマトリックス、カラーフィルター保護膜、フォトスペーサー、液晶配向用突起、マイクロレンズ、タッチパネル用絶縁膜などの画像表示素子の部材を形成するための材料として極めて有用である。
<樹脂硬化膜>
 次に、本実施形態の樹脂硬化膜について詳細に説明する。
 本実施形態の樹脂硬化膜は、本実施形態の樹脂組成物の硬化物からなる。
 本実施形態の樹脂組成物は、例えば、基材上に樹脂組成物を塗布し、溶媒(C)を揮発させて除去して塗布膜を形成し、塗布膜を露光して光硬化させた後、ベーキング処理を行う方法により製造できる。
 本実施形態の樹脂硬化膜として、所定のパターン形状を有するものを形成する場合には、例えば、以下に示す方法を用いることができる。すなわち、基材上に樹脂組成物を塗布し、溶媒(C)を揮発させて除去し、塗布膜を形成する。次に、所定のパターン形状を有するフォトマスクを介して、塗布膜を露光して露光部分を光硬化させる。次いで、塗布膜の未露光部分をアルカリ水溶液で現像する。その後、現像した塗布膜に対してベーキング処理を行うことにより、所定のパターン形状を有する樹脂硬化膜を形成できる。
 本実施形態の樹脂硬化膜を製造する際における、樹脂組成物の塗布方法、塗布膜の露光方法、現像方法としては、公知の方法を用いることができる。
 本実施形態の樹脂硬化膜を製造する際に行うベーキング処理の条件は、樹脂組成物の組成、塗布膜の膜厚、基板の材質などに応じて適宜決定できる。ベーキング処理は、例えば、70℃~250℃の温度で行うことができる。ベーキング処理の温度が70℃以上であると、樹脂組成物中の樹脂(A)に含まれるブロックイソシアナト基を有する構成単位(a)が有しているブロックイソシアナト基が十分に解離する。このことにより、イソシアナト基が生成し、ヒドロキシ基を有する構成単位(c)の有するヒドロキシ基と架橋反応する。その結果、良好な硬化性が得られ、優れた耐溶剤性を有する硬化物が得られる。ベーキング処理の温度は、好ましくは75℃以上であり、より好ましくは80℃以上である。ベーキング処理の温度が250℃以下であると、耐熱性の低い材料が耐えられる条件であり、樹脂組成物の変色を抑えることができるため好ましい。本実施形態の樹脂組成物は、良好な低温硬化性を有する。このため、ベーキング処理の温度を、樹脂硬化膜を形成する基材の耐熱性に応じて、160℃以下とすることができ、例えば、基材として樹脂基板を用いる場合には150℃以下としてもよく、120℃以下であってもよいし、100℃以下であってもよい。
 本実施形態の樹脂硬化膜を製造する際に行うベーキング処理は、例えば、10分~4時間行うことができ、好ましくは20分~2時間であり、樹脂組成物の組成、ベーキング処理の温度、塗布膜の膜厚などに応じて適宜決定できる。
 本実施形態の樹脂硬化膜は、本実施形態の樹脂組成物の硬化物からなる。このため、本実施形態の樹脂硬化膜は、低い温度でベーキング処理する方法を用いて製造でき、しかも耐溶剤性に優れる。
<カラーフィルター>
 次に、本実施形態のカラーフィルターについて詳細に説明する。
 本実施形態のカラーフィルターは、本実施形態の樹脂組成物の硬化物からなる部材を備える。本実施形態のカラーフィルターは、樹脂(A)および反応性希釈剤(D)の合計100質量部に対して、樹脂(A)を10~90質量部、溶剤(C)を30~1000質量部、反応性希釈剤(D)を10~90質量部、光重合開始剤(E)を0.1~30質量部、着色剤(F)を3~80質量部含有する樹脂組成物の硬化物からなる着色パターンを有することが好ましい。
 本実施形態のカラーフィルターは、例えば、基板と、その上に形成されるRGBの画素と、それぞれの画素の境界に形成されるブラックマトリックスと、画素およびブラックマトリックスの上に形成される保護膜とを含むものであってもよい。
 本実施形態のカラーフィルターにおいて、画素およびブラックマトリックスは、上記の樹脂組成物の硬化物からなる着色パターンである。本実施形態のカラーフィルターにおいて、画素およびブラックマトリックスの材料以外の構成は、公知のものを採用できる。
 本実施形態のカラーフィルターに用いられる基板としては、特に限定されるものではなく、ガラス基板、シリコン基板、ポリカーボネート基板、ポリエステル基板、ポリアミド基板、ポリアミドイミド基板、ポリイミド基板、アルミニウム基板、プリント配線基板、アレイ基板などからなるものを用途に応じて適宜用いることができる。
<カラーフィルターの製造方法>
 次に、本実施形態のカラーフィルターの製造方法について説明する。まず、基板上に着色パターンを形成する。具体的には、基板上に、RGBの各画素となる着色パターン、および各画素の境界に形成されるブラックマトリックスとなる着色パターンを、以下に示す方法により、順次形成する。
 着色パターンは、フォトリソグラフィ法により形成できる。具体的には、上記の樹脂組成物を基板上に塗布して塗布膜を形成する。その後、所定のパターン形状を有するフォトマスクを介して、塗布膜を露光して露光部分を光硬化させる。次いで、塗布膜の未露光部分をアルカリ水溶液で現像する。その後、現像した塗布膜に対してベーキング処理を行うことにより、所定のパターン形状を有する着色パターンを形成できる。
 樹脂組成物の塗布方法は、特に限定されないが、スクリーン印刷法、ロールコート法、カーテンコート法、スプレーコート法、スピンコート法など公知の方法を用いることができる。
 また、基板上に樹脂組成物を塗布した後、必要に応じて、循環式オーブン、赤外線ヒーター、ホットプレートなどの加熱手段を用いて基板を加熱することにより、塗布膜中に含まれる溶剤(C)を揮発させて除去してもよい。溶剤(C)を除去するために基板を加熱する条件は、特に限定されるものではなく、基板の材質および樹脂組成物の組成、塗布膜の膜厚などに応じて適宜設定すればよい。基板の加熱は、例えば、50℃~120℃の温度で30秒~30分間行うことができる。
 次いで、このようにして形成された塗布膜に、例えば、紫外線、エキシマレーザー光等の活性エネルギー線を、ネガ型のフォトマスクを介して照射し、部分的に露光し、露光部分を光硬化させる。塗布膜に照射する活性エネルギー線量は、樹脂組成物の組成などに応じて適宜選択すればよく、例えば、30~2000mJ/cmとすることができる。露光に用いる光源としては、特に限定されないが、低圧水銀ランプ、中圧水銀ランプ、高圧水銀ランプ、キセノンランプ、メタルハライドランプなどを用いることができる。
 塗布膜の現像に用いられるアルカリ水溶液としては、特に限定されないが、炭酸ナトリウム、炭酸カリウム、炭酸カルシウム、水酸化ナトリウム、水酸化カリウムなどの水溶液;エチルアミン、ジエチルアミン、ジメチルエタノールアミンなどのアミン系化合物の水溶液;テトラメチルアンモニウム、3-メチル-4-アミノ-N,N-ジエチルアニリン、3-メチル-4-アミノ-N-エチル-N-β-ヒドロキシエチルアニリン、3-メチル-4-アミノ-N-エチル-N-β-メタンスルホンアミドエチルアニリン、3-メチル-4-アミノ-N-エチル-N-β-メトキシエチルアニリン及びこれらの硫酸塩、塩酸塩又はp-トルエンスルホン酸塩などのp-フェニレンジアミン系化合物の水溶液などを用いることができる。なお、これらの水溶液には、必要に応じて消泡剤および/または界面活性剤を添加してもよい。
 上記のアルカリ水溶液を用いて塗布膜を現像した後、塗布膜を水洗して乾燥させることが好ましい。
 本実施形態のカラーフィルターを製造する際に行うベーキング処理の条件は、樹脂組成物の組成、塗布膜の膜厚、基板の材質などに応じて適宜決定できる。ベーキング処理の温度は、例えば、70℃~210℃とすることができる。ベーキング温度が70℃以上であると、良好な硬化性が得られ、優れた耐溶剤性を有する硬化物が得られる。ベーキング処理の温度は、好ましくは75℃以上であり、より好ましくは80℃以上である。ベーキング処理の温度が210℃以下であると、カラーフィルターの材料として、耐熱性の低い基板などの耐熱性の低い材料を使用できるため好ましい。
 従来の樹脂組成物を用いてカラーフィルターの着色パターンを形成する場合、ベーキング処理の温度を200℃以下にすると、着色パターンの耐溶剤性が不足する。これに対し、本実施形態の樹脂組成物は、良好な低温硬化性を有するため、着色パターンの耐溶剤性を確保しつつ、従来の樹脂組成物を用いる場合と比較して、ベーキング処理の温度を低くできる。具体的には、ベーキング処理の温度は、樹脂硬化膜を形成する基材の耐熱性に応じて、160℃以下とすることができ、例えば、基材として樹脂基板を用いて着色パターンを形成する場合には150℃以下としてもよく、120℃以下であってもよいし、100℃以下であってもよい。
 本実施形態のカラーフィルターを製造する際に行うベーキング処理は、例えば、10分~4時間行うことができ、好ましくは20分~2時間であり、樹脂組成物の組成、ベーキング処理の温度、塗布膜の膜厚などに応じて適宜決定できる。
 本実施形態の樹脂組成物は、良好な光硬化性および低温硬化性を有する。このため、本実施形態の樹脂組成物を用いて着色パターンを形成する場合、従来の樹脂組成物を用いて着色パターンを形成する場合とベーキング処理の温度を同等にした場合、ベーキング処理の時間を短縮でき、効率よくカラーフィルターを形成できる。
 上述した着色パターンの製造方法を用いて、RGBの各画素となる着色パターン、および各画素の境界に形成されるブラックマトリックスとなる着色パターンを形成した後、着色パターン(RGBの各画素及びブラックマトリックス)上に保護膜を形成する。
 保護膜の製造方法は、特に限定されず、本実施形態の樹脂組成物を用いて形成しても良いし、公知の材料および公知の方法を用いて形成してもよい。
 以上の工程により、本実施形態のカラーフィルターが得られる。
 本実施形態のカラーフィルターは、上述した樹脂組成物の硬化物からなる着色パターンを有する。このため、本実施形態のカラーフィルターにおける着色パターンは、低温でベーキング処理を行う方法により形成できる。したがって、ベーキング処理に必要なエネルギーを少なくできる。
 また、本実施形態のカラーフィルターでは、材料として使用する樹脂組成物に含まれる着色剤(F)として、耐熱性の劣るものを用いることが可能である。このため、使用可能な着色剤(F)の選択肢を多くできる。したがって、例えば、耐熱性の劣る着色剤(F)を含み、かつ耐熱性の劣る着色剤(F)本来の特性が発揮された着色パターンを有するカラーフィルターを形成することが可能である。
 また、本実施形態のカラーフィルターにおける着色パターンは、樹脂基板などの耐熱性の劣る基材上に、基材に支障を来すことなく形成できる。したがって、使用可能な基材の選択肢を多くできる。具体的には、例えば、樹脂基板など耐熱性の劣る基材上にカラーフィルターを形成できるため、ディスプレイのフレキシブル化に寄与できる。また、本実施形態のカラーフィルターにおける着色パターンは、優れた耐溶剤性を有するため、色変化の少ないものとなる。
 本実施形態では、光重合開始剤(E)を含有する樹脂組成物を使用し、樹脂組成物を光硬化させる方法を用いて着色パターンを製造する場合を例に挙げて説明したが、例えば、本実施形態の樹脂組成物に含まれる光重合開始剤(E)の代わりに、硬化促進剤及び公知のエポキシ樹脂を含有する樹脂組成物を使用し、基板上にインクジェット法により塗布した後、加熱する方法を用いて、樹脂(A)を含む樹脂組成物の硬化物からなる着色パターンを形成してもよい。
<画像表示素子>
 本実施形態の画像表示素子は、本実施形態のカラーフィルターを具備する。本実施形態の画像表示素子は、本実施形態のカラーフィルター以外の構成は、公知のものを採用できる。本実施形態の画像表示素子としては、例えば、液晶表示素子、有機EL表示素子、CCD素子やCMOS素子などの固体撮像素子などが挙げられる。
 本実施形態の画像表示素子においては、本実施形態のカラーフィルター以外の構成は、公知の方法により製造できる。例えば、画像表示素子として、液晶表示素子を製造する場合、以下に示す方法を用いて製造できる。まず、基板上に上述した方法を用いてカラーフィルターを形成する。その後、カラーフィルターを有する基板上に、電極、スペーサー等を順次形成する。次に、別の基板上に電極等を形成し、カラーフィルターを有する基板と対向配置させて張り合わせる。その後、対向する基板間に所定量の液晶を注入し、封止する。
 本実施形態の画像表示素子は、本実施形態の優れた耐溶剤性を有するカラーフィルターを具備しているので、色変化の少ないものとなる。
 以下、本発明を実施例および比較例により具体的に説明する。なお、以下に示す実施例は、本発明の内容の理解をより容易にするためのものである。本発明は、これらの実施例のみに制限されるものではない。
[実施例1]
(樹脂前駆体(PA)の合成)
 攪拌装置、滴下ロート、コンデンサー、温度計及びガス導入管を備えたフラスコに、溶剤(PC)として182gのプロピレングリコールモノメチルエーテル(ライオンデル社製)を入れ、窒素ガス置換しながら攪拌し、78℃に昇温した。
 次に、モノマー(m-a)として29.5g(20モル%)の2-[(3,5-ジメチルピラゾリル)カルボニルアミノ]エチルメタクリレート(昭和電工株式会社製、MOI-BP(登録商標)、ブロックイソシアナト基の解離率が30分で80%以上となる解離温度:110℃、100℃で30分間加熱した際の解離率:70%)と、モノマー(m-pb)として46.4g(30モル%)の2-[(リンゴ酸ジエチル)カルボニルアミノ]エチルアクリレート(昭和電工株式会社製、AOI-MDE(登録商標))と、モノマー(m-c)として24.3g(40モル%)のヒドロキシエチルメタクリレート(HEMA)(株式会社日本触媒製)と、モノマー(m-d)として8.6g(10モル%)の2-エチルヘキシルアクリレート(2EHA)(東亜合成株式会社製)と、重合開始剤として17.4g(前記モノマー成分の合計100質量部に対して16部)の2,2’-アゾビス(2,4-ジメチルバレロニトリル)(和光純薬工業株式会社製)とを混合して、混合溶液を作製した。
 作製した混合溶液の全量を、窒素ガス雰囲気とされた常圧のフラスコ内の溶剤(PC)に、滴下ロートを用いて1時間かけて滴下した。滴下終了後、フラスコ内の溶液を攪拌しながら78℃で2時間重合反応させて樹脂前駆体(PA)と溶剤(PC)とを含む溶液を得た。
(樹脂前駆体組成物の調製)
 窒素ガス雰囲気とされた常圧のフラスコ内の樹脂前駆体(PA)と溶剤(PC)とを含む溶液に、さらに塩基性触媒(PB)として0.2g(樹脂前駆体(PA)のモノマー成分合計100質量部に対して0.21質量部)の1,8-ジアザビシクロ[5.4.0]-ウンデセン-7(DBU)(サンアプロ株式会社製)を投入し、樹脂前駆体組成物を得た。
(樹脂(A)の合成)
 窒素ガス雰囲気とされた常圧のフラスコ内で、樹脂前駆体組成物を攪拌しながら78℃で30分間保持して、樹脂前駆体(PA)に含まれる式(1)で示される基を有する構成単位(pb)を、式(2-2)および式(3-2)から選択される一種以上の基を有する構成単位(b)に変換反応させた。このことにより、樹脂(A)と溶剤(PC)とを含む反応液を生成させた。得られた樹脂(A)と溶剤(PC)とを含む反応液を、以下に示す赤外吸収(IR)分光法を用いて分析した。
[赤外吸収(IR)分光法]
 IR分光法による分析には、分析装置としてサーモフィッシャーサイエンティフィック社のNICOLETis10を使用し、アクセサリーとしてSMART iTRを使用した。そして、ATR法にて、C=Cのピーク波長を690cm-1として、測定を実施した。
 図1は、実施例1の樹脂前駆体組成物のIRスペクトル(変換反応前)と、変換反応後の反応液のIRスペクトル(変換反応後)を示したグラフである。図1に示すように、変換反応後のIRスペクトルでは、波長690cm-1に変換反応前のIRスペクトルには見られなかった赤外吸収ピークが出現している。このことから、変換反応により、樹脂(A)中に構成単位(b)を含有することに由来するエチレン性不飽和基(二重結合)が生成していることを確認できた。
 このようにして得られた樹脂(A)と溶剤(PC)とを含む反応液に、溶剤以外の成分が35質量%となるように、溶剤(C)としてプロピレングリコールモノメチルエーテルアセテート(ダウ・ケミカル社製)を加え、実施例1の樹脂(A)溶液を得た。
[実施例2]
 実施例1と同様にして、樹脂前駆体組成物を得た。
(樹脂(A)の合成)
 実施例1と同様にして、樹脂(A)と溶剤(PC)とを含む反応液を得た。得られた樹脂(A)と溶剤(PC)とを含む反応液を、実施例1と同様にして分析して得られたIRスペクトルにより、樹脂(A)中に構成単位(b)を含有することに由来するエチレン性不飽和基(二重結合)が存在していることを確認した。
(多塩基酸(e)の付加反応)
 次いで、窒素ガス雰囲気とされた常圧のフラスコ内で、樹脂(A)と溶剤(PC)とを含む反応液に、多塩基酸(e)として9.4g(樹脂前駆体(PA)の合成に用いたモノマーの合計100モルに対し、20モル)の無水コハク酸(SA)(新日本理化株式会社製)と、触媒として0.5g(樹脂前駆体(PA)の合成に用いたモノマーと無水コハク酸の合計100質量部に対し、0.4質量部)のナフテン酸リチウム(東栄化工株式会社製)とを投入し、78℃で60分間保持して付加反応させることにより、多塩基酸(e)が付加した樹脂(A)を含む反応液を得た。
 得られた多塩基酸(e)が付加した樹脂(A)を含む反応液を、赤外吸収(IR)分光法を用いて分析した。得られたIRスペクトルにより、多塩基酸(e)の酸無水物構造由来の赤外吸収ピークが消失し、付加反応したことを確認した。
 IR分光法による分析は、樹脂(A)と溶剤(PC)とを含む反応液の分析と同じ分析装置およびアクセサリーを用いて行った。
 このようにして得られた多塩基酸(e)が付加した樹脂(A)を含む反応液に、溶剤以外の成分が35質量%となるように、溶剤(C)としてプロピレングリコールモノメチルエーテルアセテートを加え、実施例2の樹脂(A)溶液を得た。
[実施例3]
 モノマー(m-a)を10モル%、モノマー(m-pb)を20モル%、モノマー(m-c)を30モル%、モノマー(m-d)を30モル%、塩基性触媒(PB)を0.14質量部、多塩基酸(e)を10モル%としたこと以外は、実施例2と同様にして、実施例3の樹脂(A)溶液を得た。
[実施例4]
 モノマー(m-a)として2-[(3,5-ジメチルピラゾリル)カルボニルアミノ]エチルメタクリレート(MOI-BP)(登録商標)に代えて、2-[0-(1’-メチルプロピリデンアミノ)カルボキシアミノ]エチルメタクリラート(昭和電工株式会社製、MOI-BM(登録商標)、ブロックイソシアナト基の解離率が30分で80%以上となる解離温度:130℃、100℃で30分間加熱した際の解離率:18%)を20モル%用いたこと以外は、実施例2と同様にして、実施例4の樹脂(A)溶液を得た。
[実施例5]
 モノマー(m-c)としてヒドロキシエチルメタクリレート(HEMA)に代えて、2,3-ジヒドロキシプロピルメタクリレート(DHPMA)(日油株式会社製)を40モル%用いたこと以外は、実施例2と同様にして、実施例5の樹脂(A)溶液を得た。
[実施例6]
 モノマー(m-d)として2-エチルヘキシルアクリレート(2EHA)に代えて、メチルメタクリレート(三菱ケミカル株式会社製)を10モル%用いたこと以外は、実施例2と同様にして、実施例6の樹脂(A)溶液を得た。
[実施例7]
 多塩基酸(e)として無水コハク酸(SA)に代えて、1,2,3,6-テトラヒドロ無水フタル酸(THPA)(新日本理化株式会社製)を20モル%用いたこと以外は、実施例2と同様にして、実施例7の樹脂(A)溶液を得た。
[実施例8]
 塩基性触媒(PB)としてとして1,8-ジアザビシクロ[5.4.0]-ウンデセン-7(DBU)に代えて、1,1,3,3-テトラメチルグアニジン(東京化成工業株式会社製)を0.21質量部用いたこと以外は、実施例2と同様にして、実施例8の樹脂(A)溶液を得た。
[実施例9]
 モノマー(m-d)を用いず、モノマー(m-a)を22モル%、モノマー(m-pb)を33モル%、モノマー(m-c)を45モル%としたこと以外は、実施例2と同様にして、実施例9の樹脂(A)溶液を得た。
[比較例1]
 実施例1と同様にして、樹脂前駆体(PA)と溶剤(PC)を含む溶液を得た。得られた樹脂前駆体(PA)と溶剤(PC)を含む溶液に、溶剤以外の成分が35質量%となるように、プロピレングリコールモノメチルエーテルアセテートを加え、比較例1の樹脂溶液を得た。
[比較例2]
 実施例1と同様にして、樹脂前駆体(PA)と溶剤(PC)を含む溶液を得た。
 次いで、窒素ガス雰囲気とされた常圧のフラスコ内で、樹脂前駆体(PA)と溶剤(PC)を含む溶液に、多塩基酸(e)として9.4g(樹脂前駆体(PA)の合成に用いたモノマーの合計100モルに対し、20モル)の無水コハク酸(SA)と、0.5g(樹脂前駆体(PA)の合成に用いたモノマーと無水コハク酸の合計100質量部に対し、0.4質量部)のナフテン酸リチウム(触媒)を投入し、78℃で60分間保持して付加反応させることにより、多塩基酸(e)が付加した樹脂を含む溶液を得た。
 得られた多塩基酸(e)が付加した樹脂を含む溶液を、実施例2と同様にして分析した。得られたIRスペクトルにより、多塩基酸(e)の酸無水物構造由来の赤外吸収ピークが消失し、付加反応したことを確認した。
 このようにして得られた多塩基酸(e)が付加した樹脂を含む溶液に、溶剤以外の成分が35質量%となるように、プロピレングリコールモノメチルエーテルアセテートを加え、比較例2の樹脂溶液を得た。
[比較例3]
 モノマー(m-pb)としての2-[(リンゴ酸ジエチル)カルボニルアミノ]エチルアクリレート(AOI-MDE)に代えて、その他モノマー(m-d)である2-[(乳酸ジエチル)カルボニルアミノ]エチルアクリレート(昭和電工株式会社製、AOI-EL(登録商標))を30モル%用いたこと以外は、実施例2と同様にして、比較例3の樹脂溶液を得た。
[比較例4]
 ヒドロキシ基含有モノマー(m-c)としてのヒドロキシエチルメタクリレート(HEMA)を使用せず、その他モノマー(m-d)の使用量を50モル%としたこと以外は、実施例2と同様にして、比較例4の樹脂溶液を得た。
 実施例1~9の樹脂(A)溶液、および比較例1~4の樹脂溶液の製造に使用したブロックイソシアナト基含有モノマー(m-a)、式(1)で示される基を有するモノマー(m-pb)、ヒドロキシ基含有モノマー(m-c)、その他のモノマー(m-d)、塩基性触媒(PB)、溶剤(PC)、多塩基酸(e)と、その使用量を、それぞれ表1または表2に示す。
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
 実施例1~9の樹脂(A)溶液、および比較例1~4の樹脂溶液の製造に使用した樹脂前駆体(PA)の重量平均分子量(Mw)、ブロックイソシアナト基当量(g/mol)、ヒドロキシ基当量(g/mol)を表3に示す。
 また、実施例1~9の樹脂(A)溶液、および比較例1~4の樹脂溶液に含まれる樹脂の重量平均分子量(Mw)、固形分酸価(mgKOH/g)、ブロックイソシアナト基当量(g/mol)、ヒドロキシ基当量(g/mol)、エチレン性不飽和基当量(g/mol)を表3に示す。
 樹脂前駆体(PA)の重量平均分子量(Mw)、樹脂(A)溶液、樹脂溶液に含まれる樹脂の重量平均分子量(Mw)は、以下に示す方法により算出した。
[重量平均分子量(Mw)]
 重量平均分子量は、ゲル・パーミエーション・クロマトグラフィー(GPC)を用いて、下記条件にて測定し、ポリスチレン換算にて算出した。
 GPC測定には、GPC測定装置として株式会社島津製作所のGPCシステムを使用し、検出器として示差屈折率検出器RID-10Aを使用した。また、カラムとして昭和電工株式会社製のShodex(登録商標)LF804を3本とKF-801を1本使用した。GPC測定は、カラム温度40℃、流速1.5mL/分という条件で行った。
Figure JPOXMLDOC01-appb-T000022
[実施例11~20、比較例11~18]
 表4に示す実施例1~9の樹脂(A)溶液、または表5に示す比較例1~4で得られた樹脂溶液(樹脂(A))、溶剤(C)、反応性希釈剤(D)としてのジペンタエリスリトールペンタアクリレート(東亜合成株式会社製)、光重合開始剤(E)としての1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル-]-,-1-(O-アセチルオキシム)(チバ・ジャパン株式会社製)、着色剤(F)としてのフタロシアニン系の染料であるValifast Blue 2620(オリエント化学工業株式会社製)を、それぞれ表4または表5に示す割合で混合し、実施例11~20、比較例11~18の樹脂組成物を調整した。
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
 表4および表5に示す樹脂(A)の配合量には、実施例1~9、比較例1~4で得られた樹脂溶液に含まれる溶剤の量は含まれない。また、表4および表5に示す溶剤(C)の配合量には、実施例1~9、比較例1~4で得られた樹脂溶液に含まれる溶剤の量と、樹脂組成物の調製時に添加した溶剤の量とを合算して記載した。
 表4および表5に示す樹脂(A)、溶剤(C)、反応性希釈剤(D)、光重合開始剤(E)、着色剤(F)の各成分の含有量は、樹脂(A)と反応性希釈剤(D)との合計100質量部に対する含有量(質量部)である。
[耐溶剤性の評価]
 実施例11~20、比較例11~18の樹脂組成物をそれぞれ、縦5cm、横5cmの平面視正方形のガラス基板(無アルカリガラス基板)上に、露光後の厚さが2.5μmとなるようにスピンコート法により塗布し、塗布膜を形成した。次いで、100℃で3分間加熱することにより塗布膜中の溶剤(C)を揮発させて除去した。
 次に、塗布膜に波長365nmの紫外線をエネルギー線量40mJ/cmで照射して露光し、露光部分を光硬化させた。その後、80℃で30分間ベーキング処理を行うことにより塗布膜を硬化させて硬化膜とした。作製した硬化膜の厚さを段差計で測定した。この時の厚さをXとした。
 その後、作製した硬化膜を20gのプロピレングリコールモノメチルエーテルアセテート(PGMEA)に23℃で15分間浸漬した。浸漬後の塗布膜を40℃で30分間真空乾燥した後、塗布膜の厚さを段差計で測定した。この時の厚さをYとした。
 そして、以下の式により、PGMEA浸漬前の硬化膜の厚さXに対する、PGMEA浸漬後の硬化膜の厚さYの割合を残膜率として算出し、硬化膜の耐溶剤性を評価した。すなわち、残膜率が100%に近いほど、硬化膜の耐溶剤性は良好である。評価としては、残膜率80%が以上を合格ラインとした。その結果を表4および表5に示す。
 残膜率=(Y/X)×100  (%)
 表4に示すように、実施例11~20の樹脂組成物の硬化膜は、PGMEA浸漬後の残膜率(%)が85%以上であり、ベーキング処理の温度が80℃という低温であっても耐溶剤性が良好であった。
 これに対し、表5に示すように、比較例11~18の樹脂組成物の硬化膜は、PGMEA浸漬後の残膜率(%)が50%以下であり、耐溶剤性が不十分であった。
 本発明によれば、優れた耐溶剤性を有する樹脂硬化膜を与える樹脂組成物が提供される。また、本発明によれば、耐溶剤性に優れた樹脂硬化膜からなる着色パターンを有するカラーフィルターを具備する画像表示素子が提供される。本発明の樹脂組成物は、透明膜、保護膜、絶縁膜、オーバーコート、フォトスペーサー、ブラックマトリックス、ブラックカラムスペーサー、カラーフィルター用のレジストなどの材料として好ましく用いることができる。

Claims (16)

  1.  ブロックイソシアナト基を有する構成単位(a)と、
     下記式(2-2)および下記式(3-2)から選択される一種以上の基を有する構成単位(b)と、
     ヒドロキシ基を有する構成単位(c)と、
    を有することを特徴とする樹脂。
    Figure JPOXMLDOC01-appb-C000001

    (式(2-2)中、Rは、水素原子または炭素原子数1~20の炭化水素基である;RおよびRは、それぞれ独立に、水素原子または炭素原子数1~20の炭化水素基である。)
    Figure JPOXMLDOC01-appb-C000002

    (式(3-2)中、Rは、水素原子または炭素原子数1~20の炭化水素基である;RおよびRは、それぞれ独立に、水素原子または炭素原子数1~20の炭化水素基である。)
  2.  前記ブロックイソシアナト基を有する構成単位(a)は、100℃で30分間加熱した際のブロックイソシアナト基の解離率が5~99%である請求項1に記載の樹脂。
  3.  前記ブロックイソシアナト基を有する構成単位(a)が、エチレン性不飽和結合とブロックイソシアナト基とを有するモノマー由来の構成単位であり、
     前記エチレン性不飽和結合とブロックイソシアナト基とを有するモノマーが、エチレン性不飽和結合とイソシアナト基とを有するイソシアネート化合物のイソシアナト基をブロック剤でブロック化した化合物であり、
     前記ブロック剤が、γ-ブチロラクタム、1-メトキシ-2-プロパノール、2,6-ジメチルフェノール、ジイソプロピルアミン、メチルエチルケトオキシム、及び3,5-ジメチルピラゾールから選択される一種以上である請求項1または2に記載の樹脂。
  4.  前記ブロックイソシアナト基を有する構成単位(a)が、ブロックイソシアナト基含有(メタ)アクリレート由来の構成単位であり、
     前記ブロックイソシアナト基含有(メタ)アクリレートが、イソシアナト基含有(メタ)アクリレートを、3,5-ジメチルピラゾールおよびメチルエチルケトオキシムから選択される一種以上のブロック剤でブロック化した化合物である請求項1~3のいずれか一項に記載の樹脂。
  5.  前記構成単位(b)が、(メタ)アクリロイルオキシ基と下記式(1)で示される基とを有するモノマー由来の構成単位から誘導された構成単位である請求項1~4のいずれか一項に記載の樹脂。
    Figure JPOXMLDOC01-appb-C000003

    (式(1)中、RおよびRは、それぞれ独立に、水素原子または炭素原子数1~20の炭化水素基である;RおよびRは、それぞれ独立に、水素原子または炭素原子数1~20の炭化水素基である。)
  6.  前記構成単位(b)の有するRおよびRが、それぞれ独立に、炭素原子数1~3の炭化水素基であり、R3およびRが、それぞれ独立に、水素原子またはメチル基である請求項1~5のいずれか一項に記載の樹脂。
  7.  前記ヒドロキシ基を有する構成単位(c)が、ヒドロキシ基含有(メタ)アクリレート由来の構成単位である請求項1~6のいずれか一項に記載の樹脂。
  8.  前記ヒドロキシ基を有する構成単位(c)の一部が、多塩基酸(e)由来のカルボキシ基を含む請求項1~7のいずれか一項に記載の樹脂。
  9.  ブロックイソシアナト基を有する構成単位(a)と、
     下記式(1)で示される基を有する構成単位(pb)と、
     ヒドロキシ基を有する構成単位(c)と、
    を含有することを特徴とする樹脂前駆体。
    Figure JPOXMLDOC01-appb-C000004

    (式(1)中、RおよびRは、それぞれ独立に、水素原子または炭素原子数1~20の炭化水素基である;RおよびRは、それぞれ独立に、水素原子または炭素原子数1~20の炭化水素基である。)
  10.  請求項9に記載の樹脂前駆体(PA)を溶剤(PC)中で、塩基性触媒(PB)を用いて脱アルコール反応及び脱炭酸反応させることを特徴とする請求項1~8のいずれか一項に記載の樹脂の製造方法。
  11.  請求項1~8のいずれか一項に記載の樹脂(A)と、
     溶剤(C)と、
     反応性希釈剤(D)と、
     光重合開始剤(E)と、
    を含有する樹脂組成物。
  12.  着色剤(F)をさらに含有する、請求項11に記載の樹脂組成物。
  13.  前記樹脂(A)および前記反応性希釈剤(D)の合計100質量部に対して、
     前記樹脂(A)を10~90質量部含有し、
     前記溶剤(C)を30~1000質量部含有し、
     前記反応性希釈剤(D)を10~90質量部含有し、
     前記光重合開始剤(E)を0.1~30質量部含有し、
     前記着色剤(F)を3~80質量部含有する、
    請求項12に記載の樹脂組成物。
  14.  請求項11~請求項13のいずれか一項に記載の樹脂組成物の硬化物からなる樹脂硬化膜。
  15.  請求項13に記載の樹脂組成物の硬化物からなる着色パターンを有するカラーフィルター。
  16.  請求項15に記載のカラーフィルターを具備する画像表示素子。
PCT/JP2022/034689 2021-10-15 2022-09-16 樹脂前駆体、樹脂、樹脂組成物及び樹脂硬化膜 WO2023063022A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020247008360A KR20240042104A (ko) 2021-10-15 2022-09-16 수지 전구체, 수지, 수지 조성물 및 수지 경화막
CN202280062603.7A CN117980368A (zh) 2021-10-15 2022-09-16 树脂前体、树脂、树脂组合物及树脂固化膜
JP2023555048A JPWO2023063022A5 (ja) 2022-09-16 樹脂前駆体、樹脂、樹脂の製造方法、樹脂組成物、樹脂硬化膜、カラーフィルター、及び画像表示素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021169527 2021-10-15
JP2021-169527 2021-10-15

Publications (1)

Publication Number Publication Date
WO2023063022A1 true WO2023063022A1 (ja) 2023-04-20

Family

ID=85987480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034689 WO2023063022A1 (ja) 2021-10-15 2022-09-16 樹脂前駆体、樹脂、樹脂組成物及び樹脂硬化膜

Country Status (4)

Country Link
KR (1) KR20240042104A (ja)
CN (1) CN117980368A (ja)
TW (1) TW202336066A (ja)
WO (1) WO2023063022A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3928113A (en) * 1973-06-14 1975-12-23 Clairol Inc Method for coating human nails
JPS5225830A (en) * 1975-08-22 1977-02-26 Takeda Chem Ind Ltd Powder coating composition
JP2017049373A (ja) * 2015-08-31 2017-03-09 富士フイルム株式会社 感光性樹脂組成物、硬化膜の製造方法および硬化膜

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6178164B2 (ja) 2013-08-23 2017-08-09 富士フイルム株式会社 感光性着色組成物、カラーフィルタ、カラーフィルタの製造方法、有機el液晶表示装置
JP6281826B2 (ja) 2015-06-15 2018-02-21 東洋インキScホールディングス株式会社 感光性組成物、カラーフィルタ用感光性組成物、およびカラーフィルタ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3928113A (en) * 1973-06-14 1975-12-23 Clairol Inc Method for coating human nails
JPS5225830A (en) * 1975-08-22 1977-02-26 Takeda Chem Ind Ltd Powder coating composition
JP2017049373A (ja) * 2015-08-31 2017-03-09 富士フイルム株式会社 感光性樹脂組成物、硬化膜の製造方法および硬化膜

Also Published As

Publication number Publication date
CN117980368A (zh) 2024-05-03
KR20240042104A (ko) 2024-04-01
TW202336066A (zh) 2023-09-16
JPWO2023063022A1 (ja) 2023-04-20

Similar Documents

Publication Publication Date Title
JP7563509B2 (ja) 硬化塗膜の製造方法
KR101758690B1 (ko) 경화성 수지 조성물, 컬러 필터, 화상 표시 소자 및 컬러 필터의 제조 방법
WO2014141731A1 (ja) ブロックイソシアナト基含有ポリマー、該ポリマーを含む組成物及びその用途
JP7364020B2 (ja) 感光性樹脂組成物
WO2022138159A1 (ja) 共重合体およびその共重合体の製造方法
WO2023063022A1 (ja) 樹脂前駆体、樹脂、樹脂組成物及び樹脂硬化膜
WO2022138173A1 (ja) 共重合体およびその共重合体の製造方法
JP2019031627A (ja) アルカリ可溶性樹脂、それを含むカラーフィルター用感光性樹脂組成物及びカラーフィルター
WO2024024195A1 (ja) 感光性樹脂組成物、樹脂硬化膜、及び画像表示素子
WO2023119900A1 (ja) 感光性樹脂組成物およびカラーフィルター
WO2024116596A1 (ja) 共重合体及び感光性樹脂組成物
WO2024134926A1 (ja) 共重合体、感光性樹脂組成物、樹脂硬化膜、及び画像表示素子
JP2023074384A (ja) 共重合体、樹脂組成物、層間絶縁膜、保護膜および画像表示素子
JP2023060757A (ja) 樹脂組成物、感光性樹脂組成物、樹脂硬化膜、カラーフィルターおよび画像表示素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22880718

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023555048

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280062603.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22880718

Country of ref document: EP

Kind code of ref document: A1