WO2023062448A1 - Combustion membrane for a gas burner - Google Patents
Combustion membrane for a gas burner Download PDFInfo
- Publication number
- WO2023062448A1 WO2023062448A1 PCT/IB2022/056872 IB2022056872W WO2023062448A1 WO 2023062448 A1 WO2023062448 A1 WO 2023062448A1 IB 2022056872 W IB2022056872 W IB 2022056872W WO 2023062448 A1 WO2023062448 A1 WO 2023062448A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- floats
- fabric
- combustion
- cluster
- areas
- Prior art date
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 125
- 239000012528 membrane Substances 0.000 title claims abstract description 85
- 239000004744 fabric Substances 0.000 claims abstract description 109
- 229910052751 metal Inorganic materials 0.000 claims abstract description 49
- 239000002184 metal Substances 0.000 claims abstract description 49
- 230000035699 permeability Effects 0.000 claims abstract description 18
- 239000000835 fiber Substances 0.000 claims description 14
- 239000007789 gas Substances 0.000 description 49
- 238000009826 distribution Methods 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 238000009413 insulation Methods 0.000 description 6
- 239000010410 layer Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 238000009941 weaving Methods 0.000 description 5
- 239000000956 alloy Substances 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 229910052735 hafnium Inorganic materials 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229910052727 yttrium Inorganic materials 0.000 description 4
- 229910052726 zirconium Inorganic materials 0.000 description 4
- 238000013021 overheating Methods 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 230000003252 repetitive effect Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000001364 causal effect Effects 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- -1 e.g. Substances 0.000 description 1
- 230000030279 gene silencing Effects 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 230000009182 swimming Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D14/00—Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
- F23D14/12—Radiant burners
- F23D14/14—Radiant burners using screens or perforated plates
- F23D14/145—Radiant burners using screens or perforated plates combustion being stabilised at a screen or a perforated plate
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D14/00—Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
- F23D14/02—Premix gas burners, i.e. in which gaseous fuel is mixed with combustion air upstream of the combustion zone
- F23D14/04—Premix gas burners, i.e. in which gaseous fuel is mixed with combustion air upstream of the combustion zone induction type, e.g. Bunsen burner
- F23D14/10—Premix gas burners, i.e. in which gaseous fuel is mixed with combustion air upstream of the combustion zone induction type, e.g. Bunsen burner with elongated tubular burner head
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D2203/00—Gaseous fuel burners
- F23D2203/10—Flame diffusing means
- F23D2203/101—Flame diffusing means characterised by surface shape
- F23D2203/1012—Flame diffusing means characterised by surface shape tubular
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D2203/00—Gaseous fuel burners
- F23D2203/10—Flame diffusing means
- F23D2203/103—Flame diffusing means using screens
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D2203/00—Gaseous fuel burners
- F23D2203/10—Flame diffusing means
- F23D2203/106—Assemblies of different layers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D2212/00—Burner material specifications
- F23D2212/20—Burner material specifications metallic
- F23D2212/201—Fibres
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D2213/00—Burner manufacture specifications
Definitions
- the present invention relates to a combustion membrane for a burner, in particular for a completely or partially premixed burner, for example for boilers, swimming pool heaters, hot air generators, or ovens for industrial processes.
- the burners of the prior art comprise a combustion membrane having:
- a diffuser layer forming an outer surface (or combustion surface) of the membrane, intended to be facing the combustion chamber
- the term “gas” denotes both a “combustible gas” and a “mixture of combustible gas and combustion supporting air”
- the term “gas” is conveyed through the combustion membrane at the outer side of which the combustion takes place, in the form of a flame pattern on the combustion surface.
- a distributor may be provided upstream of the diffuser layer (with reference to the flow direction of the gas) to distribute the gas in the desired manner towards the combustion membrane.
- the known distributors are generally made as walls with a plurality of through openings, for example made of perforated metal sheet, and may form an "inner" layer of the combustion membrane or alternatively, a component which is spaced apart from the combustion membrane.
- the heat generated by the combustion is directed by means of the hot combustion gases (convection) and by means of heat radiation to a heat exchanger to heat a fluid, e.g., water, which is then conveyed to a utility, for example a heating system of an industrial process, residential environments or the like and/or domestic water.
- a fluid e.g., water
- a combustion membrane for a gas burner has an inner side, to which combustible gas is conveyed, and an outer side, on which combustion of the combustible gas occurs after it has crossed through the combustion membrane, said combustion membrane comprising a fabric having two opposite fabric surfaces, which respectively form a combustion surface exposed on the outer side and an inner surface facing towards the inner side, wherein:
- the fabric forms an interlacing of metal wires comprising warp threads and weft threads transverse to the warp threads, said fabric being made on a loom (unlike knits that are to be considered excluded from the definition of “fabric”),
- figure 1 is a diagrammatic view of a gas combustion system, for example for a boiler, with a burner provided with a combustion membrane,
- figures 2 and 3 are perspective and sectional views of an exemplary burner, provided with a combustion membrane,
- figure 3A is an enlarged and diagrammatic section view of a combustion membrane according to an embodiment of the invention.
- figures 4A and 4B are views of the two sides of a metal fabric of a combustion membrane according to an embodiment of the invention.
- figure 4C shows a drawing, i.e., a graphic representation of the weaving, of the metal fabric according to figures 4A, 4B,
- figure 4D shows a burner with a combustion membrane having a metal fabric according to figure 4C
- figures 5A and 5B are views of the two sides of a metal fabric of a combustion membrane according to a further embodiment of the invention.
- figure 5C shows a drawing, i.e., a graphic representation of the weaving, of the metal fabric according to figures 5A, 5B,
- figure 5D shows a burner with a combustion membrane having a metal fabric according to figure 5C
- figures 6A and 6B are views of the two sides of a metal fabric of a combustion membrane according to a further embodiment of the invention.
- figure 6C shows a drawing, i.e., a graphic representation of the weaving, of the metal fabric according to figures 6A, 6B,
- figure 6D shows a burner with a combustion membrane having a metal fabric according to figure 6C
- figures 7A and 7B are views of the two sides of a metal fabric of a combustion membrane according to a further embodiment of the invention.
- figure 7C shows a drawing, i.e., a graphic representation of the weaving, of the metal fabric according to figures 7A, 7B,
- figure 7D shows a burner with a combustion membrane having a metal fabric according to figure 7C
- figures 8, 9, and 10 show a metal yarn bound by a water-soluble binding thread, a crimped metal yarn free from binding, and a twisted and hairy spun metal yarn of the metal fabric according to embodiments
- figure 11 shows a first side of a metal fabric of a combustion membrane according to a further embodiment of the invention.
- a gas combustion system 1 for example for a boiler, comprises:
- a feeding system 3 for feeding the combustible gas or gas mixture and combustion air to burner 2, said feeding system 3 comprising a gas control device 4 for controlling a flow of the combustible gas (for example, an electrically controllable gas valve or gas conveying means or gas suction means) and, if provided, an air control device 5 (for example, air conveying means or air suction means, an electric fan, a radial fan, an air valve or gate air valve) to control a flow of combustion air,
- a gas control device 4 for controlling a flow of the combustible gas
- an air control device 5 for example, air conveying means or air suction means, an electric fan, a radial fan, an air valve or gate air valve
- an electric ignition device 6 for igniting the combustion for example an ignition electrode adapted to generate a spark
- an ionization sensor 7 arranged at a combustion area 8 of the burner 2 and adapted to provide an electrical ionization signal which varies as a function of a combustion condition of the burner 2,
- an electronic control unit 9 connected to the feeding system 3, the ignition device 6 and the ionization sensor 7, the electronic control unit 9 having a combustion control module 10 adapted to control the ignition device 6 and the feeding system 3 depending on an operating program and user commands and depending on the ionization signal,
- the gas burner 2 comprises:
- a support wall 11 forming one or more inlet passages 12 for the introduction (of the mixture) of combustible gas 13 (and combustion air) into the burner 2,
- a tubular combustion membrane 14 for example cylindrical, and coaxial with respect to a longitudinal axis 15 of the burner 2 and having a first end connected to the support wall 11 in flow communication with the inlet passage 12, a second end closed by a closing wall 16, and a perforation for the passage of the gas 13 and of the gas-air mixture from inside the burner 2 to an outer side 17 of the combustion membrane 14 where the combustion occurs (combustion area 8).
- the burner 2 in figure 3 further shows a tubular silencing accessory (without reference numeral), which is optional and could be reduced in size or completely eliminated.
- the flat combustion membrane 14 can be substantially flat, e.g., planar or curved or convex, or however of non-tubular or non- cylindrical shape, and having a peripheral edge connected to the support housing wall 11 in flow communication with the inlet passage 12, as well as a perforation for the passage of the gas 13 or of the gas-air mixture from inside burner 2 to an outer side 17 of the combustion membrane 14 where the combustion occurs (combustion area 8).
- a perforated distributor wall in burner 2, upstream of the combustion membrane 14 (with reference to the flow direction of the combustible gas 13) and spaced apart therefrom, a perforated distributor wall can be positioned in order to distribute the combustible gas 13 in a desired manner towards the combustion membrane 14.
- the combustion membrane 14 has an inner side 18 to which a combustible gas 13 is conveyed and an outer side 17 on which the combustion of the combustible gas 13 occurs after it has crossed through the combustion membrane 14, said combustion membrane 14 comprising a fabric 21 having two opposite fabric surfaces 19, 20 which respectively form a combustion surface 19 exposed on the outer side 17 and an inner surface 20 facing towards the inner side 18, wherein the fabric 21 forms an interlacing of metal wires 22 comprising warp threads and weft threads transverse relative to the warp threads, said fabric 21 being made on a loom (unlike knitted cloths that are to be considered excluded from the definition of “fabric”).
- the fabric 21 is advantageously supported by and in contact with a support layer 38, e.g., a perforated metal sheet or wire mesh support, arranged on the inner side 18 of the combustion membrane 14 and forming part of the combustion membrane 14 itself or forming only a support structure for the combustion membrane 14.
- a support layer 38 e.g., a perforated metal sheet or wire mesh support
- the combustion membrane 14 can be a single-layer structure (including only the fabric 21 ) or a multilayer structure (containing at least the fabric 21 and the support layer 38 ( Figures 3, 3A).
- both fabric surfaces 19, 20 form ribs 23 in high relief alternating with valleys 24 in low relief
- both the ribs 23 and the valleys 24 have an extension, in at least one direction in the plane of the fabric 21 , greater than the space occupied by at least three consecutive warp threads in the weft direction and greater than the space occupied by at least three consecutive weft threads in the warp direction.
- the metal fabric 21 of the combustion membrane 14 achieves a technical effect of discrete, repetitive but not continuous spacer, and the thickness of the fabric itself is not completely filled with metal material, which improves the thermal insulation capacity and allows a gas distribution through the metal fabric not only in the direction orthogonal to the plane of the fabric but also in the plane of the fabric itself.
- the fabric 21 is permeable to gas and has localized first areas 26 with reduced permeability alternated with localized second areas 27 with higher permeability than the first areas 26.
- both the first areas 26 and the second areas 27 have an extension, in at least one direction on the plane of the fabric 21 , greater than the space occupied by at least three consecutive warp threads in the weft direction and greater than the space occupied by at least three consecutive weft threads in the warp direction.
- the fabric 21 forms one or more floats 25, while at the second areas 27 the fabric forms areas free from floats or with floats shorter than the floats 25 in the first areas 26 (i.e., bridging passages of one warp/weft thread over a smaller number of consecutive warp/weft threads than the floats 25 in the first areas 26).
- the metal wires 22 forming said floats 25 are locally enlarged with respect to a width of the metal wires 22 at the second areas 27.
- the difference in gas permeability between first areas 26 and second areas 27 is e.g. visible and verifiable against the light as a difference in light transmission through the fabric 21.
- the first localized areas 26 with reduced permeability alternating with the second localized areas 27 with higher permeability than the first localized areas 26 proved advantageous with reference to a reduction in the risk of flame detachment and with reference to a better distribution of gas flow velocity across the combustion membrane 14.
- the fabric 21 forms a plurality of clusters 28 of floats 25 spaced from each other, preferably distributed at a uniform pitch in two directions (but not necessarily equal for the two directions) either transverse or orthogonal in the plane of fabric 21 , each of said clusters 28 comprising:
- the fabric forms extra-cluster areas 30 free from floats 25, 25’, 25”.
- the float clusters 28 form the localized first areas 26 with reduced permeability, and the extra-cluster areas 30 form the localized second areas 27 with higher permeability.
- the first floats 25’ of the same cluster 28 can have equal lengths and their ends can be aligned or staggered.
- the second floats 25’ of the same cluster 28 can have equal lengths and their ends can be aligned or staggered.
- the first floats 25’ of the same cluster 28 can have different lengths.
- the second floats 25” of the same cluster 28 can have different lengths.
- the length of the longest float 25 on the inner surface 20 is greater than the length of the longest float 25 on the combustion surface 19.
- the longer floats of the cluster are arranged on the side of the fabric facing the inner side of the combustion membrane, while the shorter floats of the cluster are on the side of the fabric facing the outer (combustion) side of the combustion membrane. This effectively protects the longer float which would otherwise be too exposed and too poorly supported and stabilized.
- the first floats 25’ of the cluster 28 are precisely three and the second floats 25” of the same cluster 28 are precisely three.
- the first floats 25’ of the cluster 28 have a first central float 31’ and two first lateral floats 32’ on two opposite sides of the first central float 31’ and a length shorter than the length of the first central float 31’.
- the second floats 25” of the cluster 28 have a second central float 31” and two second lateral floats 32” on two opposite sides of the second central float 31” and having a length shorter than the length of the second central float 31” (figure 6C, first floats 25’ dashed, second floats 25” black).
- the first floats 25’ can be positioned and oriented mirror - symmetrically with respect to the second central float 31” (forming the mirror-symmetry line) of the same cluster 28.
- the second floats 25 can be positioned and oriented mirror-symmetrical with respect to the first central float 3T (forming the mirror-symmetry line) of the same cluster 28.
- the first central float 3T can have a length of 5 passes (five bypassed threads) and the first lateral floats 32’ can have a length of 3 passes (three bypassed threads).
- the second central float 31” can have a length of 5 passes (five bypassed threads) and the second lateral floats 32” can have a length of 3 passes (three bypassed threads).
- the first floats 25’ of the cluster 28 are precisely four and the second floats 25” of the same cluster are precisely two.
- the first floats 25’ of the cluster 28 all have the same length but are placed in a mutually staggered manner, such as in an alternating staggered manner, as shown in figure 4C (first floats 25’ dashed, second floats 25” black).
- the second floats 25” of the cluster 28 all have the same length but are positioned in a mutually staggered manner.
- the first floats 25’ can have a length of 3 passes (three bypassed threads) and the second floats 25” can have a length of 5 passes (five bypassed threads).
- the first floats 25’ of the cluster 28 all have the same length but are placed in a staggered manner with each other, preferably in an alternating staggered manner, as shown in figure 5C (first floats 25’ black, second floats 25” dashed).
- the second floats 25” of the cluster 28 have different lengths and are positioned symmetrically relative to a first central float 31’ (symmetry-line) of the three first floats 25’ of the cluster 28.
- the first floats 25’ can have a length of 3 passes (three bypassed threads) and the two second floats 25” can have, respectively, a length of 5 passes (five bypassed threads), and the other the length of three passes (three bypassed threads).
- the fabric 21 may comprise a plurality of simple intersections 33 of floats, said intersections 33 comprising:
- the first floats 25’ of the cluster 28 are precisely eight and the second floats 25” of the same cluster 28 are precisely nine.
- the first floats 25’ of the cluster 28 are arranged in a staggered step-like manner, defining as a whole a first strip 34 which is oblique relative to the orientation of the individual first floats 25’.
- the second floats 25” of the cluster 28 are arranged in a staggered steplike manner defining as a whole a second strip 34” oblique to the orientation of the single second floats 25” and superimposed on the first oblique strip 34.
- first clusters 28 there can be second clusters 35 of a different shape and location than the first clusters 28.
- the first floats 25’ of the second cluster 35 are precisely nine and the second floats 25” of the same cluster 35 are precisely six.
- said first floats 25’ of the second cluster 35 are arranged to form a further first strip 36 oblique relative to the orientation of the individual first floats 25’ but preferably of a different shape from the shape of the first strip 34 of the first cluster 28, e.g., in a zigzag shape.
- the second floats 25” of the second cluster 35 are arranged to form a further second strip 36’ oblique relative to the orientation of the individual second floats 25”, but preferably of a different shape from the shape of the second strip 34’ of the first cluster 28, e.g., zigzag-shaped and superimposed on the further first oblique strip 36 ( Figures 7.1 C and 7.2C).
- the first floats 25’ (with solid contours) of the first clusters 28 on the surface of fabric 21 facing towards the observer
- the second floats 25” (with dashed contours) of the first clusters 28 on the surface of fabric 21 facing away from the observer
- the first floats 25’ (with solid contours) of the first clusters 28 and the second clusters 35 on the surface of the fabric 21 facing towards the observer
- the second floats 25” (in bold print) of the first clusters 28 and the second clusters 35 on the surface of fabric 21 facing away from the observer.
- the drawing in figure 7.1C shows the first floats 25’ (in bold print) of the first clusters 28 and of the second clusters 35 on the surface of the fabric 21 facing towards the observer
- the drawing in figure 7.2C shows the first floats 25’ (with solid contours) of the first clusters 28 and of the second clusters 35 on the surface of the fabric 21 facing toward the observer
- the second floats 25” in bold print
- the first clusters 28 and/or second clusters 35 may be arranged to define a plurality of sequences of clusters 28, 35 extended in the weft or warp direction of the fabric 21 and formed by strips 34, 36; 34’, 36’ oblique relative to the warp and weft directions.
- the aesthetic impression or features visible from only one side of the fabric 21 or the combustion membrane 14 or visible from only the outer side (the only visible side) of the burner 2, and resulting from the light reflection effect, the orientation of the metal fabric 21 relative to the burner 2, color, etc.), may be subject to significant variability and do not contribute to achieving the technical effect of the invention.
- the invention has the additional advantage of leaving wide freedom of aesthetic choice to burner 2 manufacturers and the technical characteristics described can be obtained even with different exterior aesthetic choices than the illustrated embodiments.
- the metal wires 22 comprise bundles of metal fibers, e.g., non spun, or bundles of parallel or twisted or spun metal fibers, e.g., of the long fiber filament or short fiber filament type.
- the metal wires 22 can be at least or only initially bonded by means of a binder, e.g., water-soluble or non-soluble bonding thread 37, e.g., PVA or polyester, or by means of a water-soluble or non-soluble bonding adhesive, e.g., polymeric.
- a binder e.g., water-soluble or non-soluble bonding thread 37, e.g., PVA or polyester
- a water-soluble or non-soluble bonding adhesive e.g., polymeric.
- the fabric 21 is a “heavy” or “coarse” fabric, i.e., a fabric with a weight per fabric area equal to or greater than 1 .3 kg/m 2 or in the range from 1 .3 kg/m 2 to 1 .6 kg/m 2 .
- the metal wire 22 is a yarn of weight per length in the range from 0.8 g/m to 1.4 g/m, advantageously from 0.9 g/m to 1.1 g/m, e.g., 1g/m.
- the metal wire 22 consists of fibers with diameters in the range from 30 micrometers to 50 micrometers, e.g., approximately 40 micrometers.
- the material of the metal wires 22 or metal fibers can be, for example, a ferritic steel, or a FeCrAI alloy, e.g., doped by means of Yttrium, Hafnium, Zirconium.
- the metal wire 22 may be, for example, a Y, Hf, Zr doped FeCrAI alloy yarn, weighing 1g/m and consists of fibers having a diameter of 40 micrometers, untwisted, possibly crimped (wavy), retained by means of a binding thread 37, possibly PVA or polyester binding thread, and having, for example, the following “doped” composition:
- the material of metal wires or metal fibers can be, for example, a ferritic steel, or a FeCrAI alloy, e.g., additionally containing Yttrium, Hafnium, Zirconium.
- the metal wire may be, for example, a Y, Hf, Zr doped FeCrAI alloy yarn, weighing 1 g/m and composed of fibers 40 micrometers in diameter, spun, e.g., with 30 to 150 twists per meter, possibly with fiber ends divergently protruding from the yarn (“hairy”), with fibers shorter than the yarn, e.g., with fiber lengths in the range of 7cm to 30cm, not necessarily but possibly restrained by means of a binding thread 37, possibly made of PVA or polyester, and having, for example, the same “doped” composition as shown in the table above.
- the ribs 23 and the valleys 24 define a repetitive pattern of first rows 133, preferably straight, inclined with respect to the weft 36_T and warp 36_O directions in a first direction, and second rows 134, preferably straight, inclined with respect to the weft 36_T and warp 36_O directions in a second direction transverse to the first direction, wherein said first rows 133 and second rows 134 intersect delimiting rhombus-shaped areas 135, wherein the two diagonals of the rhombus-shaped area 135 (the segments joining the opposite vertices of the rhombus) are parallel to the warp and weft directions of fabric 21 .
- the shape of the fabric 21 thus configured has proven to be surprisingly advantageous with reference to the characteristics of porosity, thermal insulation, deformability in various three-dimensional shapes, and fabrication by industrial weaving.
- the metal fabric of the combustion membrane achieves a technical effect of discrete, repetitive but not continuous spacing, and of a thickness of the fabric which itself is not completely filled with metal material, which improves the thermal insulation capacity and allows gas distribution through the metal fabric not only in the direction orthogonal to the plane of the fabric but also in the plane of the fabric itself.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Woven Fabrics (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280069287.6A CN118103636A (en) | 2021-10-15 | 2022-07-26 | Combustion film for gas burner |
EP22754922.7A EP4416429A1 (en) | 2021-10-15 | 2022-07-26 | Combustion membrane for a gas burner |
KR1020247006742A KR20240073854A (en) | 2021-10-15 | 2022-07-26 | Combustion membrane for gas burner |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IT102021000026447 | 2021-10-15 | ||
IT102021000026447A IT202100026447A1 (en) | 2021-10-15 | 2021-10-15 | COMBUSTION MEMBRANE FOR A GAS BURNER |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023062448A1 true WO2023062448A1 (en) | 2023-04-20 |
Family
ID=79602321
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2022/056872 WO2023062448A1 (en) | 2021-10-15 | 2022-07-26 | Combustion membrane for a gas burner |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP4416429A1 (en) |
KR (1) | KR20240073854A (en) |
CN (1) | CN118103636A (en) |
IT (1) | IT202100026447A1 (en) |
WO (1) | WO2023062448A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014067744A1 (en) * | 2012-10-31 | 2014-05-08 | Bekaert Combustion Technology B.V. | Gas premix burner |
EP2789911A1 (en) * | 2013-04-09 | 2014-10-15 | Bekaert Combustion Technology B.V. | Gas premix burner |
WO2015000869A1 (en) * | 2013-07-02 | 2015-01-08 | Bekaert Combustion Technology B.V. | Gas premix burner |
US20200096193A1 (en) * | 2017-04-28 | 2020-03-26 | Voith Patent Gmbh | Infrared radiator and method of assembling same |
-
2021
- 2021-10-15 IT IT102021000026447A patent/IT202100026447A1/en unknown
-
2022
- 2022-07-26 EP EP22754922.7A patent/EP4416429A1/en active Pending
- 2022-07-26 WO PCT/IB2022/056872 patent/WO2023062448A1/en active Application Filing
- 2022-07-26 CN CN202280069287.6A patent/CN118103636A/en active Pending
- 2022-07-26 KR KR1020247006742A patent/KR20240073854A/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014067744A1 (en) * | 2012-10-31 | 2014-05-08 | Bekaert Combustion Technology B.V. | Gas premix burner |
EP2789911A1 (en) * | 2013-04-09 | 2014-10-15 | Bekaert Combustion Technology B.V. | Gas premix burner |
WO2015000869A1 (en) * | 2013-07-02 | 2015-01-08 | Bekaert Combustion Technology B.V. | Gas premix burner |
US20200096193A1 (en) * | 2017-04-28 | 2020-03-26 | Voith Patent Gmbh | Infrared radiator and method of assembling same |
Also Published As
Publication number | Publication date |
---|---|
CN118103636A (en) | 2024-05-28 |
IT202100026447A1 (en) | 2023-04-15 |
EP4416429A1 (en) | 2024-08-21 |
KR20240073854A (en) | 2024-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6896512B2 (en) | Radiator element | |
EP0608783B1 (en) | Electrically regenerable diesel particulate filter cartridge and filter | |
JP3463934B2 (en) | Porous metal fiber plate | |
US5989015A (en) | Variable flame retention device utilizing an interwoven flexible wire metal gauze | |
EP2914903B1 (en) | Gas premix burner | |
US20030134247A1 (en) | Gas burner membrane | |
WO2023062448A1 (en) | Combustion membrane for a gas burner | |
WO2023062447A1 (en) | Combustion membrane for a gas burner | |
US11359809B2 (en) | Infrared radiator and method of assembling same | |
EP4166846A1 (en) | Combustion membrane for a gas burner | |
JP2001235117A (en) | Surface combusting burner | |
EP4310395A1 (en) | Combustion membrane for a gas burner made with continuous fiber threads | |
WO2024023692A1 (en) | Combustion membrane for a gas burner | |
WO2017194394A1 (en) | Gas premix burner with a cylindrical burner deck | |
EP2844920B1 (en) | Gas premix burner | |
US20200088403A1 (en) | Infrared radiator | |
US3144073A (en) | Burners | |
KR20240011818A (en) | Atomizing core liquid guide body and its heated atomizing core | |
EP4006417B1 (en) | Combustion membrane for a burner | |
JP2000018525A (en) | Hydrogen surface combustion burner | |
WO2009015508A1 (en) | Fabric used as a burner cover | |
EP2690360A1 (en) | Seamless cylindrical metal fiber mat and method of manufacturing the same | |
KR20130067238A (en) | Double weave metallic fiber fabric and surface combustion met using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22754922 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18700344 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280069287.6 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022754922 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022754922 Country of ref document: EP Effective date: 20240515 |