WO2023060683A1 - 一种基于三维点云模型的预制梁段表面平整度检测方法 - Google Patents
一种基于三维点云模型的预制梁段表面平整度检测方法 Download PDFInfo
- Publication number
- WO2023060683A1 WO2023060683A1 PCT/CN2021/130515 CN2021130515W WO2023060683A1 WO 2023060683 A1 WO2023060683 A1 WO 2023060683A1 CN 2021130515 W CN2021130515 W CN 2021130515W WO 2023060683 A1 WO2023060683 A1 WO 2023060683A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- point
- coordinate
- point cloud
- cloud model
- coordinate system
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 29
- 239000013598 vector Substances 0.000 claims abstract description 43
- 239000011159 matrix material Substances 0.000 claims abstract description 23
- 230000011218 segmentation Effects 0.000 claims abstract description 5
- 238000000605 extraction Methods 0.000 claims abstract description 4
- 238000012847 principal component analysis method Methods 0.000 claims abstract description 4
- 238000004364 calculation method Methods 0.000 claims description 18
- 238000000513 principal component analysis Methods 0.000 claims description 16
- 238000001514 detection method Methods 0.000 claims description 15
- 230000003746 surface roughness Effects 0.000 claims description 11
- 238000000354 decomposition reaction Methods 0.000 claims description 6
- 230000005484 gravity Effects 0.000 claims description 4
- 239000003086 colorant Substances 0.000 claims description 3
- 230000000877 morphologic effect Effects 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformations in the plane of the image
- G06T3/60—Rotation of whole images or parts thereof
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B21/00—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
- G01B21/02—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
- G01B21/04—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness by measuring coordinates of points
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B21/00—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
- G01B21/30—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring roughness or irregularity of surfaces
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/213—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods
- G06F18/2135—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods based on approximation criteria, e.g. principal component analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
- G06T7/0006—Industrial image inspection using a design-rule based approach
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/50—Depth or shape recovery
- G06T7/521—Depth or shape recovery from laser ranging, e.g. using interferometry; from the projection of structured light
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10028—Range image; Depth image; 3D point clouds
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30108—Industrial image inspection
- G06T2207/30132—Masonry; Concrete
Definitions
- the invention relates to the field of manufacturing quality detection of prefabricated beam sections in bridge engineering, in particular to a method for detecting surface flatness of prefabricated beam sections based on a three-dimensional point cloud model.
- Flatness is an important evaluation index for the quality inspection of precast beam sections. It not only reflects the aesthetics of the construction effect, but also has a certain influence on the mechanical properties of precast beam sections during service. There is unreliable manufacturing quality of this prefabricated beam section.
- contact measurement methods such as feeler gauges and profilometers are usually used to detect the flatness of prefabricated beam sections in actual engineering. The detection efficiency is low and the accuracy is not high, and the detection results are not easy to digitally manage.
- the 3D point cloud model is a collection of massive points including the surface characteristics of the target. Based on the 3D coordinates of each point to reflect the spatial shape of the object surface, the surface feature information of the prefabricated components is collected by methods such as 3D laser scanners.
- Purpose of the invention For prefabricated beams with relatively regular geometric shapes, a surface flatness detection method based on a three-dimensional point cloud model is proposed, which is easy to program and realize, and improves calculation efficiency and automation compared with traditional detection methods.
- a method for detecting the surface roughness of prefabricated beam segments based on a three-dimensional point cloud model includes the following steps:
- the step (1), step (2), and step (3) all need to meet the constraint conditions: the geometric shape of the prefabricated beam section is regular, the placement position of the prefabricated beam section is horizontal, and the origin of the three-dimensional coordinate system is set at the centroid of the point cloud model , and the X-axis, Y-axis, and Z-axis directions of the three-dimensional coordinate system are parallel to the beam width, beam length, and beam height directions of the member, respectively.
- said step (1) specifically includes the following steps:
- Pt c is the three-dimensional point cloud model after centralization;
- x 1 ... x n is the X 0 coordinate value of each point in Pt 0
- y 1 ... y n is the Y 0 coordinate value
- z 1 ... z n is the Z 0 coordinate value ;
- ⁇ X is the mean value of each point X 0 coordinate value in Pt 0
- ⁇ Y is the mean value of the original Y 0 coordinate value
- ⁇ Z is the mean value of the original Z 0 coordinate value;
- Pt c is the 3D point cloud model obtained by centralization
- Pt is the 3D point cloud model after coordinate calibration.
- said step (2) specifically includes the following steps:
- N is the number of Pt points of the 3D point cloud model, is the set of K nearest neighbor points from point p i , is the kth neighboring point;
- the Decentralization, covariance matrix calculation and singular value decomposition are carried out in sequence, and the normal vector at the point p i (xi , y i , z i ) is defined is the eigenvector corresponding to the smallest eigenvalue, and specifies the normal vector The direction points to the positive direction of the coordinate axis;
- the coordinate plane B is any plane among XOY, XOZ, YOZ
- set the reference vector is a unit vector perpendicular to the coordinate plane B
- the angle between the normal vector and the reference vector at each point in the three-dimensional point cloud model Pt is calculated based on the vector angle formula, and the i-th point p i (x i , y in the three-dimensional point cloud Pt
- the included angle ⁇ i is:
- set is the distance threshold, if the constraints are met during the calculation: That is, if the point distance is not greater than the distance threshold, then the point ph (x h , y h , z h ) is a point that composes the surface to be measured, and it is extracted to the surface A to be measured.
- said step (3) specifically includes the following steps:
- the Euclidean distance r j from the jth point p j (x j ,y j , z j ) on the surface A to be measured to the mth reference plane RP m is:
- N A is the number of points in the surface A to be measured
- N n is the number of reference planes
- the surface roughness f j at this point is defined as the Euclidean distance from point p j to the best reference surface RP A distance:
- f j it is marked with different colors to obtain the flatness distribution map of the surface A to be tested, and the surface flatness detection of the prefabricated beam section is completed.
- the present invention realizes fast and accurate detection of the flatness of the prefabricated beam section by performing coordinate calibration, target surface segmentation, and determination of the optimal reference surface on the three-dimensional point cloud model of the prefabricated beam section, which is conducive to improving calculation efficiency and automation, and avoids the traditional Contact measurement is easy to cause errors and the degree of integration of results is low, which saves calculation time and improves the degree of digital integration of test results.
- Fig. 1 is a method flow chart of a prefabricated beam segment surface roughness detection method based on a three-dimensional point cloud model according to the present invention
- Figure 2 is a schematic diagram of coordinate axis fine calibration based on slice features
- Fig. 3 is a schematic diagram of the normal vector n i at the i-th point p i ;
- Fig. 4 is a schematic diagram of a surface feature histogram
- Fig. 5 is a schematic diagram of a process of finding an optimal reference plane.
- the present invention needs to meet the following constraints:
- Prefabricated beam section geometric shape rules Generally speaking, the prefabricated beam section shape is all regular basic figures, mainly based on rectangle, I-shape, etc., and the present invention illustrates that the case is then taken as an example for the present invention with the cuboid beam section with a square section The specific implementation method is described.
- the placement position of the prefabricated beam segment is basically horizontal, that is, the deviation between the original Z coordinate axis direction of the 3D point cloud model and the beam height direction is small, and this constraint is convenient for coordinate calibration.
- the origin of the three-dimensional rectangular coordinate system is set at the centroid of the three-dimensional point cloud model, the X coordinate axis is parallel to the beam width direction, the Y coordinate axis direction is parallel to the beam length direction, and the Z coordinate axis direction is the opposite direction of gravity and is parallel to the beam height direction Parallel; for regular prefabricated beam segment models, it is more convenient for calculation and programming to calibrate the three-dimensional Cartesian coordinate system according to geometric features.
- a kind of prefabricated beam segment surface roughness detection method based on the three-dimensional point cloud model of the present invention mainly includes the following steps:
- step 1 specifically includes the following steps:
- the algorithm of the present invention is mainly aimed at prefabricated beam sections placed horizontally, so it can be approximately determined that the positive direction of the initial Z1 coordinate axis is the opposite direction of gravity, and is approximately parallel to the beam height direction.
- the projected point cloud is decentralized, the covariance matrix of the decentralized point cloud is calculated, and the singular value decomposition of the covariance matrix is performed to obtain a set of eigenvalues and each eigenvalue
- the only corresponding eigenvector, the eigenvector corresponding to the largest eigenvalue is the first principal component, and the eigenvector corresponding to the second largest eigenvalue is the second principal component.
- the slice thickness is twice the point cloud density.
- the obtained slices should have the following characteristics: a. have sufficient length, b. slice
- the inclusion of point clouds should be as clear and continuous as possible; short slices or insufficient continuity can easily cause recognition errors during principal component analysis.
- the projection can be approximated as a straight line. Compare the angle between the projected straight line and the two coordinate axes. According to the principle of principal component analysis, the angle between the definition and the projected straight line is small
- the direction of the coordinate axis is the direction of the first principal component
- the direction of the other coordinate axis in the slice plane is the direction of the second principal component.
- Pt c is the 3D point cloud model obtained by centralization
- Pt is the 3D point cloud model after coordinate calibration.
- step 2 specifically includes the following steps:
- N is the number of Pt points of the 3D point cloud model, is the set of K nearest neighbor points from point p i ; for neighboring points.
- the Decentralization, covariance matrix calculation and singular value decomposition are carried out in sequence, and the normal vector at the point p i (xi , y i , z i ) is defined is the eigenvector corresponding to the smallest eigenvalue, and specifies the normal vector The direction points to the positive direction of the coordinate axis.
- the principle is, based on the fitting plane of K neighboring points of point p i (xi , y i , z i ), the normal vector at the calculated point p i is transformed into the normal vector of the above-mentioned fitting plane.
- the coordinate plane B is any one of XOY, XOZ, and YOZ.
- set datum vector is a unit vector perpendicular to the coordinate plane B, and the angle between the normal vector and the reference vector at each point in the three-dimensional point cloud model Pt is calculated based on the vector angle formula, and the i-th point p i (x i , y in the three-dimensional point cloud Pt The normal vector at i , z i ) The angle ⁇ i with the reference vector is:
- set up is the distance threshold, if the constraints are met during the calculation: That is, if the point distance is not greater than the distance threshold, then the point ph (x h , y h , z h ) is a point that composes the surface to be measured, and it is extracted to the surface A to be measured.
- step 3 specifically includes the following steps:
- N A is the number of points in the surface A to be measured
- N n is the number of reference planes.
- Marking with different colors according to the numerical value of f j can obtain the flatness distribution map of the surface A to be tested, and complete the surface flatness detection of the prefabricated beam section.
- This algorithm is established under multiple constraint conditions, so it is not suitable for the surface flatness detection of all prefabricated beam sections, but for most commonly used prefabricated beam sections in actual engineering, compared with the current traditional detection method, it can be larger Improve the calculation efficiency and automation of the flatness inspection process.
- the technical scheme of the present invention is further described with specific cases below.
- the case calculation is mainly based on MATLAB algorithm programming to obtain calculation results.
- the prefabricated beam segment studied is a rectangular parallelepiped beam with a square cross section, the beam length is 10m, the beam width is 2m, the beam height is 2m, and the point cloud density is 1/cm 2 .
- the top surface of the beam is preset to be 0.1m long and wide from one end, and the area 0.2m long is moved up 0.003m from the original plane to simulate the unevenness of the prefabricated beam section.
- step 2.1 calculate the normal vector at each point.
- step 2.1 calculates the normal vector at each point.
- step 2.1 calculates the normal vector at each point.
- step 2.3 calculates the extracted point distance, average point distance and standard deviation, and filter beyond the distance threshold points to get the final top surface point cloud.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Quality & Reliability (AREA)
- Optics & Photonics (AREA)
- Data Mining & Analysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
一种基于三维点云模型的预制梁段表面平整度检测方法,包括以下步骤:(1)根据目标构件三维点云模型在三维直角坐标系中的具体形态,依次对模型进行粗校准及精校准,确定空间旋转矩阵并进行点云坐标校准;(2)根据主成分分析法、K最近邻法原理,确定构件三维点云模型各点位置处的法向量,通过限定法向量方向及坐标区间,实现对某一待测表面的分割提取;(3)根据待测表面与三维直角坐标系的形态关系,迭代寻找最优参考面并计算该表面的平整度。
Description
本发明涉及桥梁工程预制梁段制造质量检测领域,具体涉及到一种基于三维点云模型的预制梁段表面平整度检测方法。
平整度是预制梁段制造质量检测的一种重要评价指标,不仅反映了施工效果的美观,而且对预制梁段服役过程中的力学性能有一定影响,超出规范限制的平整度一定程度上也代表了该预制梁段存在不可靠的制造质量。目前,实际工程中对于预制梁段平整度的检测方法通常采用塞尺、轮廓仪等接触式测量方式,检测效率较低且精确程度不高,检测结果也不易进行数字化管理。三维点云模型是包含了目标表面特性的海量点的集合,基于各点的三维坐标反映物体表面的空间形态,通过三维激光扫描仪等方法,对预制构件表面特征信息进行采集。相较于传统检测方法具有非接触、采样率高、自动化程度高等优势,然而基于包含海量三维坐标信息数据的点云模型,如何快速地从整体模型中提取目标表面,如何精确地实现对该表面的平整度检测,如何将其集成自动化计算步骤,亟待解决。
发明内容
发明目的:针对几何形状较为规则的预制梁段,提出基于三维点云模型的表面平整度检测方法,易于编程实现,相较于传统检测方法,提高计算效率与自动化程度。
技术方案:一种基于三维点云模型的预制梁段表面平整度检测方法,该方法包括以下步骤:
(1)根据目标构件三维点云模型在三维直角坐标系中的具体形态,依次对模型进行粗校准及精校准,确定空间旋转矩阵并进行点云坐标校准;
(2)根据主成分分析法、K最近邻法原理,确定构件三维点云模型各点位置处的法向量,通过限定法向量方向及坐标区间,实现对某一待测表面的分割提取;
(3)根据待测表面与三维直角坐标系的形态关系,迭代寻找最优参考面并计算该表面的平整度。
优选的,所述步骤(1)、步骤(2)、步骤(3)均需满足约束条件:预制梁 段几何形状规则、预制梁段放置位置水平、三维坐标系原点设置在点云模型形心,且三维坐标系X轴、Y轴、Z轴方向分别与构件梁宽、梁长、梁高方向平行。
优选的,所述步骤(1)具体包括以下步骤:
1.1对预制梁段的三维点云模型Pt
0,设置原始坐标系X
0Y
0Z
0的原点O在三维点云模型形心位置:
其中,Pt
c为中心化后三维点云模型;x
1…x
n为Pt
0中各点X
0坐标值,y
1…y
n为Y
0坐标值,z
1…z
n为Z
0坐标值;μ
X为Pt
0中各点X
0坐标值的平均值,μ
Y为原始Y
0坐标值的平均值,μ
Z为原始Z
0坐标值的平均值;
1.2针对水平放置的预制梁段,确定初始Z
1坐标轴正方向为重力的反方向,且与梁高方向平行,作三维点云模型Pt
c在X
0OY
0平面投影,对投影做主成分分析,根据主成分分析原理,首先对投影点云进行去中心化处理,计算去中心化后点云的协方差矩阵,并对协方差矩阵进行奇异值分解,得到一组特征值以及与每个特征值唯一对应的特征向量,最大特征值对应的特征向量为第一主成分,第二大特征值对应的特征向量为第二主成分,定义Y
1坐标轴方向为第一主成分方向、X
1坐标轴方向为第二主成分方向,完成对初始坐标系X
1Y
1Z
1的校准,即三维点云模型的坐标粗校准;
1.3在能反映构件梁宽、梁长、梁高特征的合适位置分别作切片,切片厚度取两倍点云密度;将切片中包含的点云向切片平面作投影并进行主成分分析,其投影拟合为一条直线,比较投影直线与两坐标轴夹角,根据主成分分析原理,定义与投影直线夹角较小坐标轴的方向为第一主成分方向,切片平面内另一坐标轴方向为第二主成分方向,在梁宽、梁长、梁高方向均完成上述步骤后,完成对最终坐标系XYZ的校准,即三维点云模型的坐标精校准;
根据最终坐标系XYZ与初始坐标系X
1Y
1Z
1间的夹角,计算点云从初始坐标系X
1Y
1Z
1变化至最终坐标系XYZ所对应的旋转矩阵R
x,R
y,R
z,若自初始坐标系X
1Y
1Z
1旋转至最终坐标系XYZ的旋转方向为逆时针旋转,则得到旋转矩阵R
x,R
y,R
z分别为:
若旋转方向为顺时针旋转,则旋转矩阵R
x,R
y,R
z分别为:
其中,α为坐标系Y
1OZ
1与坐标系YOZ夹角;β为坐标系X
1OZ
1与坐标系XOZ夹角,γ为坐标系X
1OY
1与坐标系XOY夹角;根据上述R
x,R
y,R
z得到空间旋转矩阵R=R
x·R
y·R
z,进而实现点云坐标校准:
Pt=R·Pt
c
其中,Pt
c为中心化得到的三维点云模型,Pt为坐标校准后三维点云模型。
优选的,所述步骤(2)具体包括以下步骤:
2.1根据K最近邻法原理,对于三维点云模型Pt中第i个点p
i(x
i,y
i,z
i),选取最近的K个邻近点:
2.2将预制梁段中欲进行表面平整度检测的待测表面A旋转至与坐标平面B平行:
A||B
其中,坐标平面B为XOY、XOZ、YOZ中任一平面,设定基准向量
为垂直于坐标平面B的单位向量,基于向量夹角公式计算三维点云模型Pt中各点处法向量与基准向量的夹角,三维点云Pt中第i个点p
i(x
i,y
i,z
i)处的法向量
与基 准向量
夹角θ
i为:
设定角度阈值θ
s为|θ
s|≤5°,在计算过程中若满足约束条件:θ
i≤θ
s,即θ
i不大于角度阈值θ
s,则点p
i(x
i,y
i,z
i)是组成待测表面A的点,将此点提取至集合A
1,对集合A
1中的点,取各点位于与待测表面A垂直的坐标轴上的坐标值作直方图,提取频数最大的区间中包含的点至集合A
2;
2.3根据K最近邻法原理,对于集合A
2中第h个点p
h(x
h,y
h,z
h),取其周围K个最临近点组成集合
定义点p
h的点间距d
h为该点到集合
中各点距离的平均值,假设结果为高斯分布,计算集合A
2中各点间距的平均值
及标准差σ:
优选的,所述步骤(3)具体包括以下步骤:
3.1由于待测表面A是由三维坐标点组成的,存在一定厚度,过待测表面A中距坐标平面B最近的点,作参考平面RP
1平行于坐标平面B,参考平面RP
1为a
1x+b
1y+c
1z+d
1=0;过待测表面A中距坐标平面B最远的点,作参考平面RP
n平行于坐标平面B,参考平面RP
n为a
nx+b
ny+c
nz+d
n=0;其中,a
1,b
1,c
1,d
1,a
n,b
n,c
n,d
n为系数;
设定迭代间距t为待测表面A中点云密度,将参考平面由RP
1以t为增量逐步向RP
n平移,计算每一移动时刻待测表面A中各点至参考平面的距离,待测表面A中第j个点p
j(x
j,y
j,z
j)距第m个参考平面RP
m的欧几里得距离r
j为:
其中,N
A为待测表面A中点的个数,N
n为参考平面的个数,参考平面RP
m的 表达式为a
mx+b
my+c
mz+d
m=0,其中,a
m,b
m,c
m,d
m为系数;根据最小一乘法原理,定义最佳参考平面RP
A为待测表面A中各点的r
j之和最小时对应的参考平面:
最佳参考平面RP
A的表达式为a
Ax+b
Ay+c
Az+d
A=0,a
A,b
A,c
A,d
A为系数;
3.2对于待测表面A中第j个点p
j(x
j,y
j,z
j),此点处的表面平整度f
j定义为点p
j到最佳参考面RP
A的欧几里得距离:
根据f
j数值大小以不同颜色进行标注以得到该待测表面A的平整度分布图,完成对预制梁段的表面平整度检测。
有益效果:与现有技术相比,本发明的技术方案具有以下有益技术效果:
本发明通过对预制梁段三维点云模型进行坐标校准、目标表面分割、最优参考面确定,实现了对预制梁段平整度的快速精确检测,有利于提高计算效率及自动化程度,避免了传统接触式测量易造成误差且结果集成化程度较低的问题,节省计算时间,提高检测结果数字化集成程度。
图1是根据本发明一种基于三维点云模型的预制梁段表面平整度检测方法的方法流程图;
图2是根据切片特征实现坐标轴精校准示意图;
图3是第i个点p
i处法向量n
i示意图;
图4是表面特征直方图示意图;
图5是最优参考平面寻找过程示意图。
下面结合附图和具体实施例对本发明的技术方案作进一步说明。
本发明需要满足以下约束条件:
(1)预制梁段几何形状规则;一般来说预制梁段形状都为规则的基本图形,以矩形、工字形等为主,本发明说明案例则以截面为正方形的长方体梁段为例对本发明的具体实施方法进行说明。
(2)预制梁段放置位置基本水平,即三维点云模型原始Z坐标轴方向与梁高方向偏差较小,此约束便于坐标校准的进行。
(3)三维直角坐标系原点设置在三维点云模型形心,X坐标轴与梁宽方向平行,Y坐标轴方向与梁长方向平行,Z坐标轴方向为重力的反方向且与梁高方向平行;对于规则的预制梁段模型,根据几何特征校准三维直角坐标系更方便计算和编程。
如图1所示,本发明一种基于三维点云模型的预制梁段表面平整度检测方法,主要包括以下几个步骤:
(1)根据目标构件三维点云模型在三维直角坐标系中的具体形态,依次对模型进行粗校准及精校准,确定空间旋转矩阵并进行点云坐标校准;
(2)根据主成分分析法、K最近邻法原理,确定构件三维点云模型各点位置处的法向量,通过限定法向量方向及坐标区间,实现对某一待测表面的分割提取;
(3)根据待测表面与三维直角坐标系的形态关系,迭代寻找最优参考面并计算该表面的平整度。
在本实施例中,步骤1具体包括以下步骤:
1.1对预制梁段的三维点云模型Pt
0,设置原始坐标系X
0Y
0Z
0的原点O在三维点云模型形心位置:
其中,Pt
c为中心化后三维点云模型;x
1…x
n为Pt
0中各点X
0坐标值,y
1…y
n为Y
0坐标值,z
1…z
n为Z
0坐标值;μ
X为Pt
0中各点X
0坐标值的平均值,μ
Y为原始Y
0坐标值的平均值,μ
Z为原始Z
0坐标值的平均值;本发明算法针对的主要是几何形状规则的预制梁段,将坐标轴原点设置在模型的形心位置,可以有效简化计算,提高效率。
1.2本发明算法针对的主要是水平放置的预制梁段,因此可近似确定初始Z
1坐标轴正方向为重力的反方向,且近似与梁高方向平行。作三维点云模型Pt
c在X
0OY
0平面投影,对投影做主成分分析。根据主成分分析原理,首先对投影点云进行去中心化处理,计算去中心化后点云的协方差矩阵,并对协方差矩阵进行奇异值分解,得到一组特征值以及与每个特征值唯一对应的特征向量,最大特征值对应的特征向量为第一主成分,第二大特征值对应的特征向量为第二主成分。定义Y
1坐标轴方向为第一主成分方向、X
1坐标轴方向为第二主成分方向,完成对初始坐标系X
1Y
1Z
1的校准,即三维点云模型的坐标粗校准。
1.3参照图2,在能反映构件梁宽、梁长、梁高特征的合适位置分别作切片,切片厚度取两倍点云密度,所得切片宜具有以下特点:a.具有足够长度,b.切片包含点云应尽量保证清晰连续;切片较短或连续性不足易造成主成分分析时的识别误差。
将切片中包含的点云向切片平面作投影并进行主成分分析,其投影可近似为一条直线,比较投影直线与两坐标轴夹角,根据主成分分析原理,定义与投影直线夹角较小坐标轴的方向为第一主成分方向、切片平面内另一坐标轴方向为第二主成分方向。在梁宽、梁长、梁高方向均完成上述步骤后,完成对最终坐标系XYZ的校准,即三维点云模型的坐标精校准。
根据最终坐标系XYZ与初始坐标系X
1Y
1Z
1间的夹角,计算点云从初始坐标系X
1Y
1Z
1变化至最终坐标系XYZ所对应的旋转矩阵R
x,R
y,R
z。若自初始坐标系X
1Y
1Z
1旋转至最终坐标系XYZ的旋转方向为逆时针旋转,则得到旋转矩阵R
x,R
y,R
z分别为:
若旋转方向为顺时针旋转,则旋转矩阵R
x,R
y,R
z分别为:
其中,α为坐标系Y
1OZ
1与坐标系YOZ夹角;β为坐标系X
1OZ
1与坐标系XOZ夹角,γ为坐标系X
1OY
1与坐标系XOY夹角。
综上,得到空间旋转矩阵R=R
x·R
y·R
z,进而实现点云坐标校准:
Pt=R·Pt
c
其中,Pt
c为中心化得到的三维点云模型,Pt为坐标校准后三维点云模型。
在本实施例中,步骤2具体包括以下步骤:
2.1参照图3,根据K最近邻法原理,对于三维点云模型Pt中第i个点p
i(x
i,y
i,z
i),选取最近的K个邻近点:
根据主成分分析原理,对
依次进行去中心化、协方差矩阵计算和奇异值分解,定义点p
i(x
i,y
i,z
i)处的法向量
为最小特征值对应的特征向量,规定法向量
方向指向坐标轴正向。其原理是,基于点p
i(x
i,y
i,z
i)的K个邻近点拟合平面,将计算点p
i处的法向量转化为计算上述拟合平面的法向量。
2.2将预制梁段中欲进行表面平整度检测的待测表面A,旋转至与坐标平面B平行:
A||B
其中,坐标平面B为XOY、XOZ、YOZ中任一平面。设定基准向量
为垂直于坐标平面B的单位向量,基于向量夹角公式计算三维点云模型Pt中各点处法向量与基准向量的夹角,三维点云Pt中第i个点p
i(x
i,y
i,z
i)处的法向量
与基准向量夹角θ
i为:
设定角度阈值θ
s为|θ
s|≤5°。在计算过程中若满足约束条件:θ
i≤θ
s,即θ
i不大于角度阈值θ
s,则点p
i(x
i,y
i,z
i)是组成待测表面A的点,将此点提取至集合A
1。
参照图4,对集合A
1中的点,取各点位于与待测表面A垂直的坐标轴上的坐标值作直方图,提取频数最大的区间中包含的点至集合A
2。
2.3根据K最近邻法原理,对于集合A
2中第h个点p
h(x
h,y
h,z
h),取其周围K个最临近点组成集合
定义点p
h的点间距d
h为该点到集合
中各点距离的 平均值,假设结果为高斯分布,计算集合A
2中各点间距的平均值
及标准差σ:
在本实施例中,步骤3具体包括以下步骤:
3.1由于待测表面A是由三维坐标点组成的,存在一定厚度。过待测表面A中距坐标平面B最近的点,作参考平面RP
1(a
1x+b
1y+c
1z+d
1=0)平行于坐标平面B;过待测表面A中距坐标平面B最远的点,作参考平面RP
n(a
nx+b
ny+c
nz+d
n=0)平行于坐标平面B。
参照图5,设定迭代间距t为待测表面A中点云密度,将参考平面由RP
1以t为增量逐步向RP
n平移,计算每一移动时刻待测表面A中各点至参考平面的距离,待测表面A中第j个点p
j(x
j,y
j,z
j)距第m个参考平面RP
m(a
mx+b
my+c
mz+d
m=0)的欧几里得距离r
j为:
其中,N
A为待测表面A中点的个数,N
n为参考平面的个数。
根据最小一乘法原理,定义最佳参考平面RP
A(a
Ax+b
Ay+c
Az+d
A=0)为待测表面A中各点r
j之和最小时对应的参考平面:
3.2对于待测表面A中第j个点p
j(x
j,y
j,z
j),此点处的表面平整度f
j定义为点p
j到最佳参考面RP
A(a
Ax+b
Ay+c
Az+d
A=0)的欧几里得距离:
根据f
j数值大小以不同颜色进行标注,可得到该待测表面A的平整度分布图, 完成对预制梁段的表面平整度检测。
此算法建立在多个约束条件下,因而并不能适应于所有预制梁段的表面平整度检测,但对于实际工程中大多数常用的预制梁段类型,相较于现行传统检测方法,可较大提升平整度检测环节的计算效率及自动化程度。
下面用具体案例进一步说明本发明的技术方案。案例计算主要基于MATLAB进行算法编程得出计算结果。
研究的预制梁段是截面为正方形的长方体梁,梁长10m,梁宽2m,梁高2m,点云密度为1/cm
2。在梁顶面距一端预设长0.1m宽,0.2m长的距原平面上移0.003m区域以模拟预制梁段存在不平整情况。对其预先施加旋转矩阵:
与预设旋转矩阵一致。
2、根据步骤2.1,计算在每个点处法向量。为提取顶面包含的点云,设基准法向量
计算各点处法向量与基准法向量夹角。设角度阈值θ
s为±5°,依次判断各点处法向量是否符合标准并将满足判定条件θ
i≤θ
s的点提取至集合A
2;取集合A
2中点的z坐标以0.1m为宽度作直方图,提取包含三维点数多于5000且z坐标大于0的单元对应的点。根据步骤2.3,,计算提取出的各点点距离、平均点距离及标准差,过滤超过距离阈值
的点,得到最终顶面点云。
3、根据步骤3.1,作参考平面z=minz并以0.0001m的增量向z=maxz移 动,对每一个参考平面z=z
i,计算各点至参考平面的距离。最终确定最佳参考平面为z=0.9991,不平整部分与最佳参考平面距离为0.003m,与初始设定一致。
本发明涉及符号及参数一览表如下:
以上内容仅是通过一个具体实施例对本发明所作的进一步详细说明,不能认定本发明只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替代,都应视为属于本发明的保护范围。
Claims (5)
- 一种基于三维点云模型的预制梁段表面平整度检测方法,其特征在于:包括以下步骤:(1)根据目标构件三维点云模型在三维直角坐标系中的具体形态,依次对模型进行粗校准及精校准,确定空间旋转矩阵并进行点云坐标校准;(2)根据主成分分析法、K最近邻法原理,确定构件三维点云模型各点位置处的法向量,通过限定法向量方向及坐标区间,实现对某一待测表面的分割提取;(3)根据待测表面与三维直角坐标系的形态关系,迭代寻找最优参考面并计算该表面的平整度。
- 根据权利要求1所述的一种基于三维点云模型的预制梁段表面平整度检测方法,其特征在于,所述步骤(1)、步骤(2)、步骤(3)均需满足约束条件:预制梁段几何形状规则、预制梁段放置位置水平、三维坐标系原点设置在点云模型形心,且三维坐标系X轴、Y轴、Z轴方向分别与构件梁宽、梁长、梁高方向平行。
- 根据权利要求1所述的一种基于三维点云模型的预制梁段表面平整度检测方法,其特征在于,所述步骤(1)具体包括以下步骤:1.1对预制梁段的三维点云模型Pt 0,设置原始坐标系X 0Y 0Z 0的原点O在三维点云模型形心位置:其中,Pt c为中心化后三维点云模型;x 1…x n为Pt 0中各点X 0坐标值,y 1…y n为Y 0坐标值,z 1…z n为Z 0坐标值;μ X为Pt 0中各点X 0坐标值的平均值,μ Y为原始Y 0坐标值的平均值,μ Z为原始Z 0坐标值的平均值;1.2针对水平放置的预制梁段,确定初始Z 1坐标轴正方向为重力的反方向,且与梁高方向平行,作三维点云模型Pt c在X 0OY 0平面投影,对投影做主成分分析,根据主成分分析原理,首先对投影点云进行去中心化处理,计算去中心化后点云的协方差矩阵,并对协方差矩阵进行奇异值分解,得到一组特征值以及与每个特征值唯一对应的特征向量,最大特征值对应的特征向量为第一主成分,第二大特征值对应的特征向量为第二主成分,定义Y 1坐标轴方向为第一主成分方向、X 1坐 标轴方向为第二主成分方向,完成对初始坐标系X 1Y 1Z 1的校准,即三维点云模型的坐标粗校准;1.3在能反映构件梁宽、梁长、梁高特征的合适位置分别作切片,切片厚度取两倍点云密度;将切片中包含的点云向切片平面作投影并进行主成分分析,其投影拟合为一条直线,比较投影直线与两坐标轴夹角,根据主成分分析原理,定义与投影直线夹角较小坐标轴的方向为第一主成分方向,切片平面内另一坐标轴方向为第二主成分方向,在梁宽、梁长、梁高方向均完成上述步骤后,完成对最终坐标系XYZ的校准,即三维点云模型的坐标精校准;根据最终坐标系XYZ与初始坐标系X 1Y 1Z 1间的夹角,计算点云从初始坐标系X 1Y 1Z 1变化至最终坐标系XYZ所对应的旋转矩阵R x,R y,R z,若自初始坐标系X 1Y 1Z 1旋转至最终坐标系XYZ的旋转方向为逆时针旋转,则得到旋转矩阵R x,R y,R z分别为:若旋转方向为顺时针旋转,则旋转矩阵R x,R y,R z分别为:其中,α为坐标系Y 1OZ 1与坐标系YOZ夹角;β为坐标系X 1OZ 1与坐标系XOZ夹角,γ为坐标系X 1OY 1与坐标系XOY夹角;根据上述R x,R y,R z得到空间旋转矩阵R=R x·R y·R z,进而实现点云坐标校准:Pt=R·Pt c其中,Pt c为中心化得到的三维点云模型,Pt为坐标校准后三维点云模型。
- 根据权利要求3所述的一种基于三维点云模型的预制梁段表面平整度检测方法,其特征在于,所述步骤(2)具体包括以下步骤:2.1根据K最近邻法原理,对于三维点云模型Pt中第i个点p i(x i,y i,z i),选取最近的K个邻近点:2.2将预制梁段中欲进行表面平整度检测的待测表面A旋转至与坐标平面B平行:A||B其中,坐标平面B为XOY、XOZ、YOZ中任一平面,设定基准向量 为垂直于坐标平面B的单位向量,基于向量夹角公式计算三维点云模型Pt中各点处法向量与基准向量的夹角,三维点云Pt中第i个点p i(x i,y i,z i)处的法向量 与基准向量 夹角θ i为:设定角度阈值θ s为|θ s|≤5°,在计算过程中若满足约束条件:θ i≤θ s,即θ i不大于角度阈值θ s,则点p i(x i,y i,z i)是组成待测表面A的点,将此点提取至集合A 1,对集合A 1中的点,取各点位于与待测表面A垂直的坐标轴上的坐标值作直方图,提取频数最大的区间中包含的点至集合A 2;2.3根据K最近邻法原理,对于集合A 2中第h个点p h(x h,y h,z h),取其周围K个最临近点组成集合 定义点p h的点间距d h为该点到集合 中各点距离的平均值,假设结果为高斯分布,计算集合A 2中各点间距的平均值 及标准差σ:
- 根据权利要求4所述的一种基于三维点云模型的预制梁段表面平整度检测方法,其特征在于,所述步骤(3)具体包括以下步骤:3.1由于待测表面A是由三维坐标点组成的,存在一定厚度,过待测表面A中距坐标平面B最近的点,作参考平面RP 1平行于坐标平面B,参考平面RP 1为a 1x+b 1y+c 1z+d 1=0;过待测表面A中距坐标平面B最远的点,作参考平面RP n平行于坐标平面B,参考平面RP n为a nx+b ny+c nz+d n=0;其中,a 1,b 1,c 1,d 1,a n,b n,c n,d n为系数;设定迭代间距t为待测表面A中点云密度,将参考平面由RP 1以t为增量逐步向RP n平移,计算每一移动时刻待测表面A中各点至参考平面的距离,待测表面A中第j个点p j(x j,y j,z j)距第m个参考平面RP m的欧几里得距离r j为:其中,N A为待测表面A中点的个数,N n为参考平面的个数,参考平面RP m的表达式为a mx+b my+c mz+d m=0,其中,a m,b m,c m,d m为系数;根据最小一乘法原理,定义最佳参考平面RP A为待测表面A中各点的r j之和最小时对应的参考平面:最佳参考平面RP A的表达式为a Ax+b Ay+c Az+d A=0,a A,b A,c A,d A为系数;3.2对于待测表面A中第j个点p j(x j,y j,z j),此点处的表面平整度f j定义为点p j到最佳参考面RP A的欧几里得距离:根据f j数值大小以不同颜色进行标注以得到该待测表面A的平整度分布图,完成对预制梁段的表面平整度检测。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/785,909 US12136206B2 (en) | 2021-10-13 | 2021-11-15 | Method for detecting surface flatness of precast beam based on three-dimensional point cloud model |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111200770.7A CN114037706B (zh) | 2021-10-13 | 一种基于三维点云模型的预制梁段表面平整度检测方法 | |
CN202111200770.7 | 2021-10-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023060683A1 true WO2023060683A1 (zh) | 2023-04-20 |
Family
ID=80134997
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/130515 WO2023060683A1 (zh) | 2021-10-13 | 2021-11-15 | 一种基于三维点云模型的预制梁段表面平整度检测方法 |
Country Status (2)
Country | Link |
---|---|
US (1) | US12136206B2 (zh) |
WO (1) | WO2023060683A1 (zh) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116503409A (zh) * | 2023-06-28 | 2023-07-28 | 矽瞻科技(成都)有限公司 | 一种焊缝缺陷3d点云检测方法、设备和介质 |
CN116512384A (zh) * | 2023-05-04 | 2023-08-01 | 西安建筑科技大学 | 一种基于点云数据处理的预制件表面抹平及拉毛控制方法 |
CN116977331A (zh) * | 2023-09-22 | 2023-10-31 | 武汉展巨华科技发展有限公司 | 基于机器视觉的3d模型表面检测方法 |
CN117152374A (zh) * | 2023-07-25 | 2023-12-01 | 北京建筑大学 | 基于三维激光点云的高效索穹顶结构数字孪生建立方法 |
CN117313221A (zh) * | 2023-11-28 | 2023-12-29 | 北京理工大学 | 一种用于目标易损性的建筑目标建模方法 |
CN117471427A (zh) * | 2023-11-15 | 2024-01-30 | 北京金航远景科技有限公司 | 一种获取起重机的激光雷达位置信息的数据处理系统 |
CN118154825A (zh) * | 2024-05-13 | 2024-06-07 | 山东科技大学 | 一种旋转不变的点云数据处理方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118410557B (zh) * | 2024-07-02 | 2024-10-15 | 江西汉唐智慧城市建设运营有限公司 | 一种桥梁建模方法及系统 |
CN118691829A (zh) * | 2024-08-28 | 2024-09-24 | 浙江大学 | 一种适用于建筑群外墙面的窗户构件点云分割方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110823077A (zh) * | 2019-11-19 | 2020-02-21 | 广东博智林机器人有限公司 | 一种基于三维点云的墙面靠尺检测方法及系统 |
CN112581421A (zh) * | 2019-09-27 | 2021-03-30 | 广东博智林机器人有限公司 | 三维点云处理方法、建筑物检测方法、装置、设备及介质 |
WO2021136509A1 (zh) * | 2019-12-31 | 2021-07-08 | 杭州海康机器人技术有限公司 | 检测包裹的方法、装置、计算设备、物流系统及存储介质 |
CN113240637A (zh) * | 2021-05-11 | 2021-08-10 | 杭州钱塘智慧城投资开发有限公司 | 一种基于机器学习的墙面平整度信息化检测方法和系统 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE112010004767B4 (de) * | 2009-12-11 | 2024-09-12 | Kabushiki Kaisha Topcon | Punktwolkedaten-Verarbeitungsvorrichtung, Punktwolkedaten-Verarbeitungsverfahren und Punktwolkedaten-Verarbeitungsprogramm |
WO2012141235A1 (ja) * | 2011-04-13 | 2012-10-18 | 株式会社トプコン | 三次元点群位置データ処理装置、三次元点群位置データ処理システム、三次元点群位置データ処理方法およびプログラム |
US10450053B2 (en) * | 2016-05-11 | 2019-10-22 | The Boeing Company | Methods using predictive shimming to optimize part-to-part alignment |
US10223810B2 (en) * | 2016-05-28 | 2019-03-05 | Microsoft Technology Licensing, Llc | Region-adaptive hierarchical transform and entropy coding for point cloud compression, and corresponding decompression |
GB2559157A (en) * | 2017-01-27 | 2018-08-01 | Ucl Business Plc | Apparatus, method and system for alignment of 3D datasets |
US10989795B2 (en) * | 2017-11-21 | 2021-04-27 | Faro Technologies, Inc. | System for surface analysis and method thereof |
CN108010036B (zh) * | 2017-11-21 | 2020-01-21 | 江南大学 | 一种基于rgb-d相机的物体对称轴检测方法 |
US11003804B2 (en) * | 2017-12-22 | 2021-05-11 | Symbol Technologies, Llc | Container loading/unloading time estimation |
DE112019000125B4 (de) * | 2018-10-30 | 2021-07-01 | Mujin, Inc. | Systeme, vorrichtungen und verfahren zur automatisierten verpackungsregistrierung |
CN110335295B (zh) * | 2019-06-06 | 2021-05-11 | 浙江大学 | 一种基于tof相机的植物点云采集配准与优化方法 |
CN111054782B (zh) * | 2019-12-31 | 2021-08-13 | 太原科技大学 | 一种宽厚板板形检测装置及方法 |
US11633857B2 (en) * | 2020-10-27 | 2023-04-25 | Solomon Technology Corporation | Method for picking up an object from a bin |
TWI802827B (zh) * | 2020-12-01 | 2023-05-21 | 財團法人國家實驗研究院 | 校正異常點雲資料之方法 |
-
2021
- 2021-11-15 WO PCT/CN2021/130515 patent/WO2023060683A1/zh active Application Filing
- 2021-11-15 US US17/785,909 patent/US12136206B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112581421A (zh) * | 2019-09-27 | 2021-03-30 | 广东博智林机器人有限公司 | 三维点云处理方法、建筑物检测方法、装置、设备及介质 |
CN110823077A (zh) * | 2019-11-19 | 2020-02-21 | 广东博智林机器人有限公司 | 一种基于三维点云的墙面靠尺检测方法及系统 |
WO2021136509A1 (zh) * | 2019-12-31 | 2021-07-08 | 杭州海康机器人技术有限公司 | 检测包裹的方法、装置、计算设备、物流系统及存储介质 |
CN113240637A (zh) * | 2021-05-11 | 2021-08-10 | 杭州钱塘智慧城投资开发有限公司 | 一种基于机器学习的墙面平整度信息化检测方法和系统 |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116512384A (zh) * | 2023-05-04 | 2023-08-01 | 西安建筑科技大学 | 一种基于点云数据处理的预制件表面抹平及拉毛控制方法 |
CN116503409A (zh) * | 2023-06-28 | 2023-07-28 | 矽瞻科技(成都)有限公司 | 一种焊缝缺陷3d点云检测方法、设备和介质 |
CN116503409B (zh) * | 2023-06-28 | 2023-09-12 | 矽瞻科技(成都)有限公司 | 一种焊缝缺陷3d点云检测方法、设备和介质 |
CN117152374A (zh) * | 2023-07-25 | 2023-12-01 | 北京建筑大学 | 基于三维激光点云的高效索穹顶结构数字孪生建立方法 |
CN117152374B (zh) * | 2023-07-25 | 2024-04-26 | 北京建筑大学 | 基于三维激光点云的高效索穹顶结构数字孪生建立方法 |
CN116977331A (zh) * | 2023-09-22 | 2023-10-31 | 武汉展巨华科技发展有限公司 | 基于机器视觉的3d模型表面检测方法 |
CN116977331B (zh) * | 2023-09-22 | 2023-12-12 | 武汉展巨华科技发展有限公司 | 基于机器视觉的3d模型表面检测方法 |
CN117471427A (zh) * | 2023-11-15 | 2024-01-30 | 北京金航远景科技有限公司 | 一种获取起重机的激光雷达位置信息的数据处理系统 |
CN117313221A (zh) * | 2023-11-28 | 2023-12-29 | 北京理工大学 | 一种用于目标易损性的建筑目标建模方法 |
CN117313221B (zh) * | 2023-11-28 | 2024-02-13 | 北京理工大学 | 一种用于目标易损性的建筑目标建模方法 |
CN118154825A (zh) * | 2024-05-13 | 2024-06-07 | 山东科技大学 | 一种旋转不变的点云数据处理方法 |
Also Published As
Publication number | Publication date |
---|---|
US12136206B2 (en) | 2024-11-05 |
CN114037706A (zh) | 2022-02-11 |
US20240177291A1 (en) | 2024-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023060683A1 (zh) | 一种基于三维点云模型的预制梁段表面平整度检测方法 | |
EP2673589B1 (en) | Tolerance evaluation with reduced measured points | |
US7327857B2 (en) | Non-contact measurement method and apparatus | |
CN100538261C (zh) | 基于探路法的未知自由曲面自适应测量方法与测头装置 | |
CN112082493B (zh) | 基于双目成像的管道法兰内半径视觉测量方法 | |
CN103106632B (zh) | 一种基于均值漂移的不同精度三维点云数据的融合方法 | |
CN110716194B (zh) | 同时参考球与面的多波束三维激光成像系统的检校方法 | |
CN109297436A (zh) | 双目线激光立体测量基准标定方法 | |
CN111540001A (zh) | 航空发动机涡轮叶片气膜孔轴线方向检测方法 | |
CN112669460B (zh) | 一种工件缺陷检测方法、系统及计算机可读存储介质 | |
CN115578429B (zh) | 一种基于点云数据的模具在线精度检测方法 | |
CN102506753A (zh) | 基于十四点球面小波变换的不规则零件形状差异检测方法 | |
CN102230786A (zh) | 基于光学测量空心涡轮叶片蜡模壁厚检测方法 | |
CN117589063B (zh) | 尺寸检测方法及尺寸检测系统 | |
CN110208777B (zh) | 精确的角反射器几何误差测量方法 | |
CN113743483B (zh) | 一种基于空间平面偏移分析模型的道路点云误差场景分析方法 | |
CN114037706B (zh) | 一种基于三维点云模型的预制梁段表面平整度检测方法 | |
CN108871204B (zh) | 摄影测量中长度测量相对误差的绝对评价方法 | |
CN102980529B (zh) | 基于多尺度网格顶点平均坡度的零件外形差异检测方法 | |
Franaszek et al. | Gauging the repeatability of 3-d imaging systems by sphere fitting | |
CN118478254A (zh) | 基于测量可达域的多视角测量路径规划与配准方法 | |
Huang et al. | Bi-Directional Line Structured Light Scanning Measurement Method for Maximum Thickness of Aero-Engine Blade Cross-Sections Based on Profile Features | |
Wang et al. | Study of aircraft skin defect detection and characterization methods | |
CN118294467A (zh) | 一种考虑纹理影响的塑料制品曲面缩痕三维扫描测量方法 | |
Tian et al. | Notice of Retraction: Comparing evaluated precision of straightness error among two spot, least square method and minimum envelope zone method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 17785909 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21960410 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21960410 Country of ref document: EP Kind code of ref document: A1 |