[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023058599A1 - ジヒドロキシ化合物の製造方法および再生樹脂の製造方法 - Google Patents

ジヒドロキシ化合物の製造方法および再生樹脂の製造方法 Download PDF

Info

Publication number
WO2023058599A1
WO2023058599A1 PCT/JP2022/036961 JP2022036961W WO2023058599A1 WO 2023058599 A1 WO2023058599 A1 WO 2023058599A1 JP 2022036961 W JP2022036961 W JP 2022036961W WO 2023058599 A1 WO2023058599 A1 WO 2023058599A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
dihydroxy compound
solvent
dihydroxy
Prior art date
Application number
PCT/JP2022/036961
Other languages
English (en)
French (fr)
Inventor
宣之 加藤
克吏 西森
篤志 茂木
健太朗 石原
鈴木 章子 村田
一貴 高松
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to KR1020247004619A priority Critical patent/KR20240081479A/ko
Priority to CN202280060034.2A priority patent/CN117957265A/zh
Priority to JP2023552870A priority patent/JPWO2023058599A1/ja
Priority to EP22878468.2A priority patent/EP4414409A1/en
Publication of WO2023058599A1 publication Critical patent/WO2023058599A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/18Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material
    • C08J11/20Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with hydrocarbons or halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/42Chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • C07C41/26Preparation of ethers by reactions not forming ether-oxygen bonds by introduction of hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/34Separation; Purification; Stabilisation; Use of additives
    • C07C41/40Separation; Purification; Stabilisation; Use of additives by change of physical state, e.g. by crystallisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • C07C43/23Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring containing hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • C08G64/06Aromatic polycarbonates not containing aliphatic unsaturation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to a method for producing a dihydroxy compound, a method for producing a recycled resin, and the like.
  • Synthetic resins such as polycarbonate resin, which is the main component of plastic products, are widely used in various applications such as home appliances, electronic/electrical equipment, OA equipment, optical media, automobile parts, and building materials. Since a large amount of waste materials of synthetic resin is discharged when the above-mentioned plastic products are manufactured or after the plastic products are used, these waste materials are recycled.
  • Patent Document 1 describes an invention relating to a method for recovering a polycarbonate resin, which includes a step of pulverizing a discarded optical disc having a polycarbonate resin substrate and/or a recovered optical disc and chemically treating the resulting pulverized product. .
  • the recovery method from the chemically treated product obtained in the chemical treatment step, magnetic metal foreign matter is removed by using a magnet, colored foreign matter is removed by using an optical camera, and a metallic foreign matter detector is used. It is described that a step of removing resin having metallic foreign matter is performed by using
  • synthetic resin can be recovered by removing metals, colored foreign matter, resin containing metallic foreign matter, and the like.
  • the recovery method is carried out based on the appearance of the metal contained and the coloration.
  • plastic products are often manufactured by combining multiple types of synthetic resins, and synthetic resins that are not necessary for plastic products and are removed, as well as defective molded products, contain organic impurities along with the desired synthetic resins. to be included. In this case, the presence or absence of metal content and the degree of coloring may not differ greatly between the desired synthetic resin and organic impurities. As a result, the desired synthetic resin cannot be recovered and recycled by the method described in Patent Document 1. Under such circumstances, a new method for recycling waste resin compositions is desired.
  • an object of the present invention is to provide a method for recycling waste resin compositions containing synthetic resins and organic impurities.
  • a method for producing a dihydroxy compound from a waste resin composition The following general formulas (1) to (4): [In the formula, X a , X b , X c , X d , X e , and X f each independently represent an alkylene group having 1 to 4 carbon atoms, R a , R b , R c , R cc , R d , R dd , R e , Re ee , R f and R ff are each independently a halogen atom, an alkyl group having 1 to 20 carbon atoms, a carbon number one or more hetero groups selected from 1 to 20 alkoxy groups, 5 to 20 carbon cycloalkyl groups, 5 to 20 carbon cycloalkoxy groups, 6 to 20 carbon aryl groups, O, N and S is selected from a heteroaryl group having 3 to 20 carbon atoms containing a ring
  • a method for producing a dihydroxy compound from a waste resin composition The following general formulas (1) to (4): [In the formula, X a , X b , X c , X d , X e , and X f each independently represent an alkylene group having 1 to 4 carbon atoms, R a , R b , R c , R cc , R d , R dd , R e , Re ee , R f and R ff are each independently a halogen atom, an alkyl group having 1 to 20 carbon atoms, a carbon number one or more hetero groups selected from 1 to 20 alkoxy groups, 5 to 20 carbon cycloalkyl groups, 5 to 20 carbon cycloalkoxy groups, 6 to 20 carbon aryl groups, O, N and S is selected from a heteroaryl group having 3 to 20 carbon atoms containing a ring atom, an aryloxy group having 6 to 20
  • the production method, wherein the step (b1) includes heating the reaction solution to 80° C. or higher.
  • each X g independently represents an alkylene group having 1 to 10 carbon atoms
  • R j , R k , and R l are each independently a halogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 5 to 20 carbon atoms, substituted or unsubstituted cycloalkoxy group having 5 to 20 carbon atoms, substituted or unsubstituted aryl group having 6 to 20 carbon atoms, substituted or unsubstituted O, N and S is selected from a C3-C20 heteroaryl group containing one or more hetero ring atoms selected from, a substituted or unsubstituted C6-C20 ary
  • waste resin compositions containing synthetic resins and organic impurities can be recycled.
  • a first embodiment of the present invention provides a method for producing a dihydroxy compound from a waste resin composition.
  • an alkaline solution containing a waste resin composition containing a resin having at least two structural units selected from the group consisting of the following general formulas (1) to (4), a first solvent, and water treated to obtain a first dihydroxy compound selected from the group consisting of the following general formulas (1′) to (4′) and at least one selected from the group consisting of the general formulas (1′) to (4′) a step (a1) of obtaining a reaction solution containing a mixture of dihydroxy compounds containing two other dihydroxy compounds and a first solvent; and a step (b1) of crystallizing the first dihydroxy compound.
  • the difference between the solubility of the first dihydroxy compound in the second solvent at 25 ° C. and the solubility of the other dihydroxy compound in the second solvent at 25 ° C. is 0.1 g/10 mL or more.
  • X a , X b , X c , X d , X e , and X f each independently represent an alkylene group having 1 to 4 carbon atoms
  • R a , R b , R c , R cc , R d , R dd , R e , Re ee , R f and R ff are each independently a halogen atom, an alkyl group having 1 to 20 carbon atoms, a carbon number one or more hetero groups selected from 1 to 20 alkoxy groups, 5 to 20 carbon cycloalkyl groups, 5 to 20 carbon cycloalkoxy groups, 6 to 20 carbon aryl groups, O, N and S is selected from a heteroaryl group having 3 to 20 carbon atoms containing a ring atom, an aryloxy group having 6 to 20 carbon atoms, and -C ⁇ C-R i ; R i represents an aryl group having 6 to
  • each symbol has the same meaning as in the above general formulas (1) to (4).
  • a desired synthetic resin specifically a resin having at least two structural units selected from the group consisting of general formulas (1) to (4), and a waste resin composition containing organic impurities
  • a dihydroxy compound derived from a desired synthetic resin can be produced from a substance.
  • organic impurities can be preferably removed by the above production method.
  • step (a1) at least part of the desired synthetic resin is depolymerized under alkaline conditions.
  • the organic impurities contained in the waste resin composition have different chemical properties (ease of depolymerization in an alkaline aqueous solution) and/or physical properties after depolymerization.
  • Organic impurities can be removed.
  • the desired synthetic resin when the desired synthetic resin contains two or more types of structural units, it can be a mixture of these two or more dihydroxy compounds after depolymerization. In this case, it may be difficult to separate the two or more dihydroxy compounds for reasons such as similar physical properties due to similar structures of the two or more dihydroxy compounds. However, according to the above production method, these dihydroxy compounds can be separated and purified, and dihydroxy compounds with high purity can be produced.
  • a dihydroxy compound with high purity can be produced from a waste resin composition.
  • a resin (recycled resin) using the obtained dihydroxy compound a high-quality resin (recycled resin) can be manufactured. That is, it is possible to suitably recycle the waste resin composition.
  • the manufacturing method may further include a step of preparing a waste resin composition.
  • the manufacturing method includes, in this order, the step of preparing a waste resin composition, step (a1), and step (b1). Each step will be described in detail below.
  • the first embodiment may have a step of preparing a waste resin composition.
  • the step of preparing the waste resin composition is usually performed before step (a1).
  • the step of preparing the waste resin composition includes pulverizing the waste resin composition raw material to prepare the waste resin composition. In one embodiment, the step of preparing the waste resin composition includes removing metals from the waste resin composition raw material.
  • the step of preparing the waste resin composition may include both the pulverization and the metal removal. In this case, the order of pulverization and metal removal is not particularly limited, but metal removal is preferably performed after pulverization because metal removal can be performed efficiently.
  • the raw material for the waste resin composition is not particularly limited, but it may include molded articles collected after being used in the market as part of a product, defective articles generated in the molding process, and molded articles accompanying the molding process ( sprues, runners, gates, etc.), defective products produced in the manufacturing process, and unused molded products that are no longer needed.
  • sprues can be sorted, those that can be recycled as they are removed and used in products, and the remaining ones containing organic impurities can be used as the raw material for the waste resin composition. Moreover, it is good also as a waste resin composition raw material by mixing things with a different origin.
  • the shape of the waste resin composition raw material is not particularly limited, and powders, pellets, sheets, films, molded products, etc., as well as discarded lenses, sheets, films; Burrs: solids recovered from manufacturing wastes, wastes of products using resins, pulverized products thereof, and the like.
  • the longest diameter of the waste resin composition raw material is preferably 100 cm or less, more preferably 50 cm or less, and even more preferably 0.5 to 3 cm. It is preferable that the longest diameter of the waste resin composition raw material is 100 cm or less because the energy required for pulverization is low.
  • the “longest diameter” means the average value of diameters having the longest distance on the contour line of 200 randomly selected objects.
  • the pulverization method is not particularly limited, and any method of compression, impact, shear, and friction may be employed.
  • crushers examples include coarse crushers such as jaw crushers, gyratory crushers, impact crushers, single-screw crushers, and twin-screw crushers; roll crushers, edge runners, disintegrators, SAG (Semi-Autogenous Grinding) mills, Middle pulverizers such as crushing rolls, hammer mills and roller mills; fine pulverizers such as bead mills, ball mills, vibrating ball mills, rod mills, jet mills and planetary mills.
  • coarse crusher such as jaw crushers, gyratory crushers, impact crushers, single-screw crushers, and twin-screw crushers
  • roll crushers edge runners, disintegrators, SAG (Semi-Autogenous Grinding) mills
  • Middle pulverizers such as crushing rolls, hammer mills and roller mills
  • fine pulverizers such as bead mills, ball mills, vibrating ball mills, rod mills, jet mills and planetary mills.
  • Specific crushers include powerful crushers 35-560, 35-720, 55-770, 55-1050 (manufactured by Tanaka Co., Ltd.), low-speed crushers KGA-250, KGA-350 (manufactured by Kawata Co., Ltd.), etc. mentioned.
  • the above-mentioned pulverizer may be used alone or in combination of two or more.
  • the metal removal method is not particularly limited, but includes a method using magnetic force, a method using wind force, a method using a sieve, a method using specific gravity, a method using buoyancy, and the like.
  • the method using magnetic force (method using a magnet, method using a metal detector, etc.), method using specific gravity, and method using buoyancy (method using salt water) are preferable.
  • these methods may be used independently or may be used in combination of 2 or more types.
  • the metals to be removed include metals contained in plastic products, metals mixed in during the molding process, and metals mixed in during the crushing process.
  • the raw material of the waste resin composition may be used as it is, but it is preferably obtained by pulverizing the raw material of the waste resin composition, removing metals, or the like.
  • the waste resin composition raw material does not require pulverization and metal removal, it is preferable to use the waste resin composition raw material as it is as the waste resin composition.
  • the size of the waste resin composition raw material is uniform, the longest diameter of the waste resin composition raw material is small (for example, the longest diameter is 5 cm or less), or the waste resin composition raw material does not contain metal, manufacturing From the viewpoint of cost, it is preferable not to perform the step of preparing the waste resin composition.
  • the waste resin composition contains the desired synthetic resin and organic impurities.
  • resin means a thing with a weight average molecular weight of 1000 or more.
  • weight average molecular weight (Mw) means the weight average molecular weight of polystyrene conversion by gel permeation chromatography (GPC).
  • the desired synthetic resin is a resin having at least two constitutional units selected from the group consisting of the following general formulas (1) to (4).
  • the resin having the structural unit is usually polycarbonate (PC) resin or polyester carbonate resin, preferably polycarbonate resin.
  • X a , X b , X c , X d , X e and X f each independently represent an alkylene group having 1 to 4 carbon atoms.
  • alkylene group having 1 to 4 carbon atoms include methylene, ethylene, propylene, isopropylene, butylene, isobutylene, sec-butylene and tert-butylene. Among these, methylene and ethylene are preferred, and ethylene is more preferred.
  • R a , R b , R c , R cc , R d , R dd , R e , Re ee , R f and R ff are each independently a halogen atom, an alkyl group having 1 to 20 carbon atoms, a carbon number one or more hetero groups selected from 1 to 20 alkoxy groups, 5 to 20 carbon cycloalkyl groups, 5 to 20 carbon cycloalkoxy groups, 6 to 20 carbon aryl groups, O, N and S is selected from heteroaryl groups containing ring atoms and having 3 to 20 carbon atoms, aryloxy groups having 6 to 20 carbon atoms, and —C ⁇ C—R i .
  • the halogen atom includes a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, and the like.
  • alkyl group having 1 to 20 carbon atoms examples include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, heptyl group and octyl group. group, nonyl group, decyl group, undecyl group, dodecyl group, icosyl group and the like.
  • alkoxy group having 1 to 20 carbon atoms examples include a methoxy group, an ethoxy group, a propyloxy group, an isopropyloxy group, a butoxy group, an isobutoxy group, a sec-butoxy group, a tert-butoxy group, a pentyloxy group, a hexyloxy group, A heptyloxy group, an octyloxy group, a nonyloxy group, a decyloxy group, an undecyloxy group, a dodecyloxy group, an icosyloxy group and the like can be mentioned.
  • Examples of the cycloalkyl group having 5 to 20 carbon atoms include a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a cyclododecyl group, a cyclotridecyl group, a cyclotetradecyl group, a cyclopentadecyl group, a cyclooctadecyl group, and a bicyclo[ 2.2.1]heptyl group, bicyclo[2.2.2]octyl group and the like.
  • Examples of the cycloalkoxy group having 5 to 20 carbon atoms include a cyclopentyloxy group, a cyclohexyloxy group, a cycloheptyloxy group, a cyclooctyloxy group, a cyclododecyloxy group, a cyclotridecyloxy group, a cyclotetradecyloxy group, and a cyclopentyloxy group.
  • Examples include a decyloxy group, a cyclooctadecyloxy group, a bicyclo[2.2.1]heptyloxy group, a bicyclo[2.2.2]octyloxy group, and the like.
  • Examples of the aryl group having 6 to 20 carbon atoms include a phenyl group, a tolyl group, a xylyl group, a trimethylphenyl group, a tetramethylphenyl group, an ethylphenyl group, an ethylmethylphenyl group, a diethylphenyl group, a propylphenyl group and an isopropylphenyl group.
  • the heteroaryl group having 3 to 20 carbon atoms containing one or more heterocyclic atoms selected from O, N and S includes furanyl group, benzofuranyl group, isobenzofuranyl group, pyrrolyl group, imidazolyl group, pyrazolyl group, triazolyl group, pyridyl group, pyrazyl group, pyrimidyl group, pyridazyl group, pyrrolidyl group, indolyl group, isoindolyl group, indazolyl group, quinolyl group, isoquinolyl group, naphthyridyl group, quinoxalyl group, quinazolyl group, pteridyl group, phenanthridyl group, acridinyl group, pyrimidinyl group, phenanthrolinyl group, phenazinyl group, thiophenyl group, thiopyranyl group, benzothiopheny
  • Examples of the aryloxy group having 6 to 20 carbon atoms include a phenyloxy group, a tolyloxy group, a xylyloxy group, a trimethylphenyloxy group, a tetramethylphenyloxy group, an ethylphenyloxy group, an ethylmethylphenyloxy group, a diethylphenyloxy group, propylphenyloxy group, isopropylphenyloxy group, isopropylmethylphenyloxy group, naphthyloxy group, anthracenyloxy group, phenanthrenyloxy group, naphthacenyloxy group, chrycerinyloxy group, pyrenyloxy group, biphenyloxy group group, terphenyloxy group, quaterphenyloxy group, and the like.
  • R a , R b , R c , R cc , R d , R dd , R e , Re ee , R f and R ff are preferably phenyl group and naphthyl group, phenyl group, A 1-naphthyl group and a 2-naphthyl group are more preferable.
  • R i represents an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 3 to 20 carbon atoms and containing one or more hetero ring atoms selected from O, N and S;
  • the aryl group having 6 to 20 carbon atoms and the heteroaryl group having 3 to 20 carbon atoms containing one or more hetero ring atoms selected from O, N and S include those described above.
  • R i is preferably a phenyl group or a naphthyl group, more preferably a phenyl group, a 1-naphthyl group or a 2-naphthyl group.
  • a, b, c, d, e, and f each independently represent an integer of 0-10.
  • a, b, c, d, e, and f are each independently preferably 0 to 5, more preferably 0 to 3, and further preferably 0 or 1. preferable.
  • a, b, c, d, e, and f are each independently preferably 1 to 5, more preferably 1 to 3, 1 or 2 It is even more preferable to have
  • h, i, j, j', k, k', m, m', n, and n'n each independently represent an integer of 0 to 4, preferably 0 to 3, 0 to 2 is more preferable, 0 or 1 is more preferable, and 0 is particularly preferable.
  • Each R g independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • the alkyl group having 1 to 3 carbon atoms include methyl group, ethyl group, propyl group and isopropyl group.
  • each Rg is preferably independently a hydrogen atom.
  • structural units represented by formula (1) include 2,2′-bis(1-hydroxymethoxy)-1,1′-binaphthalene, 2,2′-bis(2-hydroxyethoxy)-1 ,1′-binaphthalene (also referred to as “BNE”), 2,2′-bis(2-hydroxyethoxy)-6,6′-diphenyl-1,1′-binaphthalene (also referred to as “DP”), 2,2 Structural units derived from '-bis(3-hydroxypropyloxy)-1,1'-binaphthalene, 2,2'-bis(4-hydroxybutoxy)-1,1'-binaphthalene and the like can be mentioned.
  • the structural unit represented by formula (1) is 2,2′-bis(2-hydroxyethoxy)-1,1′-binaphthalene (BNE), 2,2′-bis(2-hydroxy ethoxy)-6,6'-diphenyl-1,1'-binaphthalene (DP).
  • structural units represented by formula (2) include 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene (also referred to as “BPEF”), 9,9-bis[4-( 2-hydroxyethoxy)-3-methylphenyl]fluorene, 9,9-bis[4-(2-hydroxyethoxy)-3-tert-butylphenyl]fluorene, 9,9-bis[4-(2-hydroxyethoxy )-3-isopropylphenyl]fluorene, 9,9-bis[4-(2-hydroxyethoxy)-3-cyclohexylphenyl]fluorene, 9,9-bis[4-(2-hydroxyethoxy)-3-phenylphenyl ] structural units derived from fluorene (also referred to as “BPPEF”) and the like.
  • BPEF 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene
  • BPPEF structural units derived from fluorene
  • the structural units represented by formula (2) are 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene (BPEF) and 9,9-bis[4-(2-hydroxy ethoxy)-3-phenylphenyl]fluorene (BPPEF).
  • structural units represented by formula (3) include structural units derived from 9,9-bis(hydroxy(poly)alkoxynaphthyl)fluorenes.
  • 9,9-bis[6-(1-hydroxymethoxy)naphthalen-2-yl]fluorene also referred to as “BNEF”
  • 9,9-bis[6-(2-hydroxyethoxy)naphthalen-2-yl ] fluorene 9,9-bis[6-(3-hydroxypropoxy)naphthalen-2-yl]fluorene
  • 9,9-bis[6-(4-hydroxybutoxy)naphthalen-2-yl]fluorene examples include structural units derived from compounds that In one embodiment, structural units represented by formula (3) include structural units derived from 9,9-bis[6-(2-hydroxyethoxy)naphthalen-2-yl]fluorene (BNEF).
  • decahydro-1,4:5,8-dimethanonaphthalenediols also referred to as "D-NDM”
  • decahydro-1,4:5,8-dimethanonaphthalene-2,6-diyl)dimethanol decahydro-1,4:5,8-dimethanonaphthalene-2,6-diyl)dimethanol
  • decahydro-1,4:5,8-dimethanonaphthalene-2,7-diyl)dimethanol (2-methyldecahydro-1,4:5,8-dimethanonaphthalene-2,6-diyl)dimethanol
  • (2-methyldecahydro-1,4:5,8-dimethanonaphthalene-2,7 -diyl)dimethanol (2-ethyldecahydro-1,4:5,8-dimethanonaphthalene-2,6-diyl)dimethanol
  • the structural unit may contain two or more types of structural units represented by the same general formula (for example, two types of structural units represented by the general formula (1)), or may contain two or more types of structural units represented by the general formula (1).
  • Two or more types of structural units represented by the formula eg, one or more types of structural units represented by the general formula (1) and one or more types of the structural units represented by the general formula (2)
  • it may be combined with structural units of other polycarbonate resins, or may be combined with structural units of other resins (polyolefin resins, polyester resins).
  • the weight average molecular weight (Mw) of the desired synthetic resin is not particularly limited, it is preferably 10,000 to 70,000, more preferably 15,000 to 50,000.
  • Mw weight-average molecular weight
  • the desired synthetic resin has a weight-average molecular weight (Mw) of 10,000 or more, it is preferable because it can maintain an appropriate strength as a molded article such as a resin for optical lenses.
  • the desired synthetic resin has a weight average molecular weight (Mw) of 70,000 or less, it is preferable because appropriate fluidity can be maintained during resin molding and moldability can be improved.
  • the content of the desired synthetic resin in the waste resin composition is preferably 80% by mass or more, more preferably 80 to 99% by mass, relative to the mass of the waste resin composition. It is preferable that the content of the desired synthetic resin is 80% by mass or more because the regeneration efficiency is high.
  • Organic Impurities examples include impurity resins and impurity compounds.
  • impurity resin examples include thermoplastic resins other than the desired synthetic resin.
  • thermoplastic resin is not particularly limited, but polyolefin resins (polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polystyrene (PS), polyvinyl acetate (PVAc), polytetrafluoroethylene (PTFE) ), etc.), polyurethane (PU) resin, acrylic resin, polyester resin (polyethylene terephthalate (PET), polybutylene terephthalate (PBT)), polyamide (PA) resin, polyacetal resin, cyclic polyolefin (cycloolefin polymer), polyphenylene sulfide ( PPS) resin, polysulfone resin, polyether sulfone resin, liquid crystal polymer (LCP), polyetheretherketone (PEEK) resin, polyamideimide (PAI) resin, and copolymers of structural units of these resins (acrylonitrile-styrene copolymer resin (AS resin), acrylonitrile-butylene-st
  • the waste resin composition preferably contains an impurity resin having at least one structural unit selected from the group consisting of the following general formulas (6) to (8).
  • the impurity resin having the structural unit is usually a cyclic polyolefin.
  • each X g independently represents an alkylene group having 1 to 10 carbon atoms.
  • the alkylene group having 1 to 10 carbon atoms include methylene, ethylene, propylene, isopropylene, butylene, isobutylene, sec-butylene, tert-butylene and pentylene.
  • methylene, ethylene, propylene, butylene, isobutylene and sec-butylene are preferred, and methylene, ethylene and propylene are more preferred.
  • R j , R k , and R l are each independently a halogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 5 to 20 carbon atoms, substituted or unsubstituted cycloalkoxy group having 5 to 20 carbon atoms, substituted or unsubstituted aryl group having 6 to 20 carbon atoms, substituted or unsubstituted O, N and S selected from a C3-C20 heteroaryl group containing one or more hetero ring atoms selected from, a substituted or unsubstituted C6-C20 aryloxy group, and -C ⁇ C-R i .
  • R j , R k , and R l include the same as X a , X b ,
  • R j , R k , and R l may have a substituent.
  • the substituents are not particularly limited, but are halogen atoms, alkyl groups having 1 to 10 carbon atoms, cycloalkyl groups having 5 to 10 carbon atoms, alkoxy groups having 1 to 10 carbon atoms, and cycloalkyl groups having 5 to 10 carbon atoms.
  • alkyloxycarbonyl group having 2 to 10 carbon atoms alkyloxycarbonyl group having 2 to 10 carbon atoms, cycloalkyloxycarbonyl group having 5 to 10 carbon atoms, aryloxycarbonyl group having 7 to 15 carbon atoms, alkylcarbonyloxy group having 2 to 10 carbon atoms, carbon number cycloalkylcarbonyloxy group having 5 to 10 carbon atoms, arylcarbonyloxy group having 7 to 15 carbon atoms, hydroxyalkylcarbonyl group having 2 to 10 carbon atoms, glycidyloxycarbonyl group, hydroxy group, carboxy group, cyano group, 1 to 1 carbon atoms 10 amido groups and the like.
  • alkyl group having 1 to 10 carbon atoms examples include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group and pentyl group.
  • Examples of the cycloalkyl group having 5 to 10 carbon atoms include a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a bicyclo[2.2.1]heptyl group, and a bicyclo[2.2.2]octyl group.
  • alkoxy group having 1 to 10 carbon atoms examples include methoxy group, ethoxy group, propyloxy group, isopropyloxy group, butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, pentyloxy group and the like.
  • Examples of the cycloalkyloxy group having 5 to 10 carbon atoms include a cyclopentyloxy group, a cyclohexyloxy group, a bicyclo[2.2.1]heptyloxy group, a bicyclo[2.2.2]octyloxy group, and the like.
  • alkyloxycarbonyl group having 2 to 10 carbon atoms examples include a methyloxycarbonyl group, an ethyloxycarbonyl group, a propyloxycarbonyl group, an isopropyloxycarbonyl group, a butyloxycarbonyl group, an isobutyloxycarbonyl group and a sec-butyloxycarbonyl group. , tert-butyloxycarbonyl group and the like.
  • Examples of the cycloalkyloxycarbonyl group having 5 to 10 carbon atoms include a cyclopentyloxycarbonyl group, a cyclohexyloxycarbonyl group, a bicyclo[2.2.1]heptyloxycarbonyl group, a bicyclo[2.2.2]octyloxycarbonyl group, and the like. is mentioned.
  • Examples of the aryloxycarbonyl group having 7 to 15 carbon atoms include a phenyloxycarbonyl group, a tolyloxycarbonyl group, a xylyloxycarbonyl group, a trimethylphenyloxycarbonyl group, a tetramethylphenyloxycarbonyl group, an ethylphenyloxycarbonyl group, and an ethyl
  • a methylphenyloxycarbonyl group, a diethylphenyloxycarbonyl group, a naphthyloxycarbonyl group and the like can be mentioned.
  • alkylcarbonyloxy group having 2 to 10 carbon atoms examples include a methylcarbonyloxy group, an ethylcarbonyloxy group, a propylcarbonyloxy group, an isopropylcarbonyloxy group and a butylcarbonyloxy group.
  • Examples of the cycloalkylcarbonyloxy group having 5 to 10 carbon atoms include a cyclopentylcarbonyloxy group, a cyclohexylcarbonyloxy group, a bicyclo[2.2.1]heptylcarbonyloxy group, and a bicyclo[2.2.2]octylcarbonyloxy group. etc.
  • Examples of the arylcarbonyloxy group having 7 to 15 carbon atoms include a phenylcarbonyloxy group, a tolylcarbonyloxy group, a xylylcarbonyloxy group, a trimethylphenylcarbonyloxy group, a tetramethylphenylcarbonyloxy group, an ethylphenylcarbonyloxy group, and an ethyl A methylphenylcarbonyloxy group, a diethylphenylcarbonyloxy group, a naphthylcarbonyloxy group and the like can be mentioned.
  • hydroxyalkylcarbonyl group having 2 to 10 carbon atoms examples include a hydroxymethylcarbonyl group, a hydroxyethylcarbonyl group, a hydroxypropylcarbonyl group, and the like.
  • Examples of the amide group having 1 to 10 carbon atoms include a methylaminocarbonyl group, an ethylaminocarbonyl group, a dimethylaminocarbonyl group, an acetylamino group, and the like.
  • R i represents an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 3 to 20 carbon atoms and containing one or more hetero ring atoms selected from O, N and S; Said R i is the same as described above.
  • Each p independently represents an integer of 0 or 1.
  • q, r, and s each independently represent an integer of 0-10, preferably 0-5, more preferably 0-3.
  • t represents an integer of 1 to 3, preferably 1 or 2.
  • general formula (6) when q is 2 or more and two R j are present on adjacent carbon atoms, the two R j may together form a ring structure.
  • general formula (6) when q is 2 and two R j are both substituted or unsubstituted alkyl groups, general formula (6) becomes the following formula (6-1), where q is 2 and two R j are substituted or In the case of unsubstituted alkyl and substituted or unsubstituted cycloalkyl, general formula (6) can be the following formula (6-2), (6-3), or (6-4).
  • X g and p are as defined above.
  • R n is the above-described substituent, specifically, a halogen atom, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, cycloalkyloxy group having 10 carbon atoms, alkyloxycarbonyl group having 2 to 10 carbon atoms, cycloalkyloxycarbonyl group having 5 to 10 carbon atoms, aryloxycarbonyl group having 7 to 15 carbon atoms, alkylcarbonyloxy group having 2 to 10 carbon atoms a cycloalkylcarbonyloxy group having 5 to 10 carbon atoms, an arylcarbonyloxy group having 7 to 15 carbon atoms, a hydroxyalkylcarbonyl group having 2 to 10 carbon atoms, a glycidyloxycarbonyl group, a hydroxy group, a carboxy group,
  • z is not particularly limited, it is preferably 0 to 6, more preferably 0 to 3, and even more preferably 0 or 1.
  • u represents an integer of 1 to 3, preferably 1 or 2;
  • r when r is 2 or more and two R k are present on adjacent carbon atoms, the two R k may combine to form a ring structure.
  • general formula (7) becomes the following formula (7-1) or (7-2), r is 2 and 2
  • general formula (7) can be the following formula (7-3).
  • X g , p, R n , z, and u are as defined above.
  • general formula (8) becomes the following formula (8-1) or (8-2), where s is 2 and 2
  • general formula (8) can be the following formula (8-3) or (8-4).
  • X g , p, R n , z, and u are as defined above.
  • R m represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • alkyl group having 1 to 3 carbon atoms include, but are not limited to, methyl group, ethyl group, propyl group and isopropyl group.
  • impurity resins include those containing at least one selected from the group consisting of structural units represented by formulas 1 to 8 below.
  • the above structural units may be contained alone in the impurity resin, or may be contained in combination of two or more. In addition to the above structural units, it may be combined with structural units of other cyclic polyolefins, or may be combined with structural units of other resins (polyolefin resins, polyester resins).
  • the weight average molecular weight (Mw) of the impurity resin is not particularly limited, it is preferably from 1,000 to 3,000,000, more preferably from 10,000 to 3,000,000. 000 to 1,000,000 is more preferred, and 30,000 to 500,000 is particularly preferred. It is preferable that the weight-average molecular weight (Mw) of the impurity resin is 1,000 or more because separation becomes easy. On the other hand, it is preferable that the weight-average molecular weight (Mw) of the impurity resin is 3,000,000 or less, because even if a trace amount of the impurity resin is contaminated, it hardly becomes a source of gel impurities.
  • the content of the impurity resin in the waste resin composition is preferably 50 mass % or less, more preferably 0.001 to 50 mass %, more preferably 0.001 to 50 mass %, relative to the total mass of the waste resin composition. 01 to 30% by mass is more preferable, and 0.1 to 20% by mass is particularly preferable. It is preferable that the content of the impurity resin is 50% by mass or less because the efficiency is high.
  • impurity compound examples include, but are not limited to, monomers, dimers, copolymers, oligomers, aryl alcohols such as phenol, carbonic acid diesters such as diphenyl carbonate, and the following formulas (A-1) and (A-2) of the impurity resins described above. and desired modified synthetic resin monomers having partial structures represented by the following formulas (B-1) and (B-2).
  • impurity compound means an impurity of an organic compound having a weight-average molecular weight of less than 1,000. Therefore, when the weight-average molecular weight of the recycled resin modified product is 1000 or more, the desired synthetic resin modified product is classified as an impurity resin.
  • Shape of waste resin composition The shape of the waste resin composition is not particularly limited, and examples thereof include powder, granules, rods, and the like.
  • the longest diameter of the waste resin composition is preferably 5 cm or less, more preferably 3 cm or less, still more preferably 0.001 to 3 cm, particularly preferably 0.01 to 2 cm, 0.1 to 1 cm is highly preferred. It is preferable that the longest diameter of the waste resin composition is 5 cm or less from the viewpoints of easy transportation, easy progress of depolymerization, and the like.
  • the step (a1) includes a waste resin composition containing a resin having at least two structural units selected from the group consisting of general formulas (1) to (4), a first solvent, and water. Treating the alkaline solution to obtain a first dihydroxy compound selected from the group consisting of the following general formulas (1′) to (4′) and selected from the group consisting of the general formulas (1′) to (4′) obtaining a reaction solution comprising a mixture of dihydroxy compounds containing at least one other dihydroxy compound, and a first solvent;
  • the alkaline solution contains the waste resin composition, the first solvent, and water.
  • the alkaline solution may further contain metal oxides and the like.
  • Waste Resin Composition contains a resin having at least two constitutional units selected from the group consisting of general formulas (1) to (4). Also, it may further contain organic impurities.
  • Resin Resin is a resin having at least two structural units selected from the group consisting of general formulas (1) to (4). For this reason, the resin is usually a polycarbonate resin.
  • the resin may further contain other structural units.
  • the structural unit include, but are not particularly limited to, an olefin-derived structural unit, an ester-derived structural unit, and the like.
  • the resin may have the other structural unit alone or in combination of two or more.
  • the above-mentioned resins may be contained singly in the waste resin composition, or two or more of them may be mixed and contained.
  • the weight average molecular weight (Mw) of the resin is not particularly limited, it is preferably 10,000 to 70,000, more preferably 15,000 to 50,000.
  • the weight-average molecular weight (Mw) of the resin is 10,000 or more, it is preferable because it is possible to maintain an appropriate strength as a molding such as a resin for optical lenses.
  • the weight average molecular weight (Mw) of the resin is 70,000 or less, it is preferable because appropriate fluidity can be maintained during resin molding and moldability can be improved.
  • the content of the resin in the waste resin composition is preferably 80% by mass or more, more preferably 80 to 99% by mass, based on the mass of the waste resin composition. It is preferable that the content of the resin is 80% by mass or more because the efficiency is high.
  • Organic Impurities examples include impurity resins and impurity compounds.
  • the impurity resin and the impurity compound are as described above.
  • the impurity resin is preferably a polyolefin resin or a cyclic polyolefin from the viewpoint of a large difference in chemical properties from polycarbonate resin (large difference in ease of depolymerization in an alkaline aqueous solution). , more preferably a cyclic polyolefin.
  • the first solvent has functions such as promoting depolymerization and dissolving the dihydroxy compound obtained by depolymerization.
  • the first solvent is not particularly limited, but includes an aliphatic hydrocarbon solvent and an aromatic hydrocarbon solvent.
  • aliphatic hydrocarbon-based solvent examples include, but are not limited to, pentane, hexane, heptane, octane, nonane, decane, cyclohexane, cyclodecane, and the like.
  • the aromatic hydrocarbon-based solvent is not particularly limited, but includes toluene, xylene, mesitylene, and the like.
  • the first solvent is preferably an aromatic hydrocarbon solvent, more preferably toluene or xylene.
  • the above-mentioned reaction solvents may be used alone or in combination of two or more.
  • the amount of the first solvent used is not particularly limited, but is preferably 30 to 2000 parts by mass, more preferably 40 to 1500 parts by mass, with respect to 100 parts by mass of the waste resin composition. More preferably, it is up to 1000 parts by mass.
  • the amount of the first solvent used is 30 parts by mass or more, the organic components of the waste resin composition are sufficiently dissolved in the reaction solvent, and the reaction efficiency is increased, which is preferable.
  • the amount of the first solvent used is 2000 parts by mass or less, the reaction time is shortened, which is preferable.
  • Water Water has functions such as promoting depolymerization.
  • the amount of water used is not particularly limited, but it is preferably 10 to 2000 parts by mass, more preferably 20 to 500 parts by mass, and 30 to 3000 parts by mass with respect to 100 parts by mass of the waste resin composition. It is more preferably 40 to 100 parts by mass.
  • the metal oxide has a function of adjusting the reaction solution to alkalinity and promoting depolymerization.
  • the metal oxide is not particularly limited, but includes alkali metals such as sodium hydroxide, potassium hydroxide and rubicium hydroxide; alkaline earth metals such as calcium hydroxide and barium hydroxide.
  • the metal oxide is preferably an alkali metal, more preferably sodium hydroxide or potassium hydroxide, and still more preferably potassium hydroxide.
  • these metal oxides may be used independently or may be used in combination of 2 or more types.
  • the amount of the metal oxide used is not particularly limited, but is preferably 1.5 to 10 mol, more preferably 2 to 8 mol, and more preferably 2 to 1 mol of the carbonate bond of the polycarbonate resin. More preferably 4 mol.
  • the amount of the metal oxide used is 1.5 mol or more, depolymerization is sufficiently performed, which is preferable.
  • the amount of the metal oxide used is 10 mol or less because the manufacturing cost is reduced.
  • the concentration of the metal oxide in the alkaline aqueous solution is preferably 10 to 60% by mass, more preferably 15 to 55% by mass, and 20 to 50% by mass with respect to the total mass of the alkaline aqueous solution. is more preferred.
  • a concentration of the metal oxide of 10% by mass or more is preferable because the reaction rate of depolymerization increases.
  • the concentration of the metal oxide is 60% by mass or less, the alkaline aqueous solution does not form a slurry, and the reaction easily progresses, which is preferable.
  • the organic impurities contained in the waste resin composition have different chemical properties in depolymerization compared to the resins described above.
  • the organic impurities either do not react, depolymerize earlier than the resin described above, depolymerize later than the resin described above, and the like.
  • organic impurities such as polyolefin resins and cyclic polyolefins generally do not react under basic conditions, so that only the above resins are depolymerized and can be easily removed.
  • the depolymerized product of the organic impurities can be easily removed because the polarity is usually different from that of the dihydroxy compound.
  • the desired resin has at least two structural units selected from the group consisting of general formulas (1) to (4).
  • the desired resin is depolymerized by treatment with an alkaline solution to give a mixture of at least two dihydroxy compounds.
  • Mixtures of dihydroxy compounds may have similar physical properties due to similar structures, and may be difficult to isolate and purify. As a result, the purity of the obtained dihydroxy compound is lowered, and there are sometimes restrictions on recycling.
  • a highly pure dihydroxy compound can be produced by performing the step (b1) described later.
  • the "first dihydroxy compound” is a dihydroxy compound intended to be isolated and purified in step (b1)
  • the “other dihydroxy compound” is a dihydroxy compound not intended to be isolated and purified in step (b1). .
  • the treatment temperature is not particularly limited, but is preferably 120°C or less, more preferably 100°C or less, and even more preferably 30 to 90°C.
  • a treatment temperature of 120° C. or lower is preferable because side reactions can be prevented.
  • the solution obtained after the treatment (depolymerization) can be appropriately purified by washing, extraction, etc. to obtain a reaction solution.
  • the solution obtained after the treatment (depolymerization) usually contains an organic phase derived from the first solvent and an aqueous phase derived from water. At this time, the mixture of dihydroxy compounds obtained by depolymerization may be contained in the organic phase. Therefore, it is preferable to remove the aqueous phase derived from water by liquid-liquid extraction or the like from the solution obtained after the treatment (depolymerization).
  • the organic impurities and the depolymerized product thereof contained in the resulting reaction solution have different physical properties from the dihydroxy compound, they can be removed by appropriate purification at this stage.
  • the reaction solution and the crystallization solution which will be described later, contain no or almost no organic impurities and depolymerized products thereof.
  • reaction solution includes a mixture of dihydroxy compounds and a first solvent.
  • the reaction solution may further contain organic impurities, depolymerization products thereof, and the like.
  • the mixture of dihydroxy compounds is selected from the group consisting of a first dihydroxy compound selected from the group consisting of general formulas (1′) to (4′) above and the group consisting of general formulas (1′) to (4′) above. at least one other dihydroxy compound.
  • the first dihydroxy compound is the dihydroxy compound intended to be isolated and purified in step (b1).
  • the first dihydroxy compound is not particularly limited, but is preferably a dihydroxy compound selected from the group consisting of general formulas (1′) to (3′), and is a dihydroxy compound of general formula (1′). is more preferred, and dihydroxy compounds of general formula (1′) (where R a and R b are phenyl groups and h and i are 1) are particularly preferred.
  • the first hydroxy compound preferably has a low polarity because the solubility of the second solvent at 25° C. is lower than that of the other dihydroxy compounds.
  • general formula (3′) has a skeleton having two naphthyl groups in the fluorene ring, so it tends to be difficult to dissolve in the second solvent, and is preferred.
  • R a to R f when R a to R f have a cycloalkyl group having 5 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, etc., the second solvent preferred because it tends to be difficult to dissolve in
  • the other dihydroxy compound preferably has a higher polarity because the solubility of the second solvent at 25°C is higher than that of the first dihydroxy compound.
  • general formula (4') has a smaller number of carbon atoms than general formulas (1') to (3'), so it has a relatively large polarity and tends to be easily dissolved in the second solvent.
  • First Solvent As the first solvent, those described above can be used.
  • the content of the first solvent can be adjusted by distilling off the solvent or the like in the treatment after depolymerization. Thereby, the content of the first solvent in the crystallization solution described later can be adjusted.
  • the reaction solution may contain organic impurities and depolymerization products thereof.
  • the organic impurities are as described above. Since the organic impurities are significantly different in molecular weight and polarity from the first hydroxy compound, they can be easily removed in step (b1) described later.
  • the depolymerized product of organic impurities is not particularly limited, and examples thereof include monomers, oligomers, etc. obtained by depolymerizing organic impurities.
  • depolymerization can yield alcohols and carboxylic acids. Since these depolymerized products are significantly different in polarity from the dihydroxy compound, they can be easily removed in the step (b1) described below.
  • Step (b1) is a step of crystallizing the first dihydroxy compound from a crystallization solution obtained by adding a second solvent to the reaction solution obtained in step (a1).
  • crystallization solution A crystallization solution is obtained by adding a second solvent to the reaction solution obtained in step (a1).
  • the crystallization solution comprises a first dihydroxy compound, another dihydroxy compound, and a first solvent and a second solvent derived from the reaction solution.
  • it may further contain seed crystals, organic impurities, depolymerized products thereof, and the like.
  • the first dihydroxy compound is a dihydroxy compound intended for isolation and purification, which is obtained by depolymerization of a desired resin (usually a polycarbonate resin).
  • the first dihydroxy compound is a dihydroxy compound selected from the group consisting of general formulas (1′) to (4′), and a dihydroxy compound selected from the group consisting of general formulas (1′) to (3′). and more preferably a dihydroxy compound of general formula (1′), a dihydroxy compound of general formula (1′) (R a and R b are phenyl groups, h and i are 1) Compounds are particularly preferred.
  • the number of the first dihydroxy compounds is usually one.
  • the molar content of the first dihydroxy compound in the mixture of dihydroxy compounds (mixture of the first dihydroxy compound and other dihydroxy compounds) (first dihydroxy compound (mol)/mixture of dihydroxy compounds (mol)) is 30 It is preferably mol % or more, preferably 30 to 95 mol %, more preferably 40 to 80 mol %, particularly preferably 50 to 75 mol %.
  • the molar content of the first dihydroxy compound is 30 mol % or more, it is preferable from the viewpoints of being able to produce a highly pure dihydroxy compound and being excellent in production cost.
  • the content of the first dihydroxy compound in the crystallization solution is preferably 1 to 35% by mass, more preferably 5 to 30% by mass, more preferably 5 to 30% by mass, relative to the total mass of the crystallization solution. It is more preferably 25% by mass, and particularly preferably 10 to 25% by mass.
  • Dihydroxy Compounds Other dihydroxy compounds are obtained by depolymerization of desired resins (usually polycarbonate resins) and are dihydroxy compounds not intended for isolation and purification. One or two or more other dihydroxy compounds may be used.
  • the molar content of other dihydroxy compounds in the mixture of dihydroxy compounds (mixture of first dihydroxy compound and other dihydroxy compounds) is 5 mol% or less, preferably 5 to 70 mol %, more preferably 20 to 60 mol %, and particularly preferably 25 mol % or more and less than 50 mol %.
  • the molar content of the first dihydroxy compound is 5 mol % or less, it is preferable from the viewpoints of being able to produce a highly pure dihydroxy compound and being excellent in production cost.
  • the total molar content is preferably within the above range.
  • the content of other dihydroxy compounds in the crystallization solution is preferably 1 to 35% by mass, more preferably 5 to 30% by mass, more preferably 5 to 25% by mass, based on the total mass of the crystallization solution. % by mass is more preferred, and 10 to 25% by mass is particularly preferred. When two or more other dihydroxy compounds are used, the total content is preferably within the above range.
  • the first solvent As the first solvent, those described above can be used.
  • the first solvent usually dissolves the first dihydroxy compound and other dihydroxy compounds.
  • the solubility of the first dihydroxy compound and the other dihydroxy compound in the first solvent at 25° C. is preferably 0.01 g/10 mL or more, and more preferably 0.02 g/10 mL or more. It is preferably 0.05 g/10 mL or more, and more preferably 0.05 g/10 mL or more.
  • the upper limit of the solubility of the first dihydroxy compound and the other dihydroxy compound in the first solvent at 25° C. is not particularly limited, it is preferably 3 g/10 mL or less, preferably 3 g/10 mL or less, from the viewpoint of suitable crystallization. Each is 2 g/10 mL or less, more preferably 1 g/10 mL or less.
  • the content of the first solvent in the crystallization solution is preferably 0.1 to 10 g/g, more preferably 0.5 to 7.5 g/g, relative to the total amount of the mixture of dihydroxy compounds. is more preferred, and 0.75 to 5 g/g is even more preferred. It is preferable that the content of the first solvent is within the above range, since a highly pure dihydroxy compound (first dihydroxy compound) can be obtained by crystallization.
  • the content of the first solvent in the crystallization solution can be adjusted by distilling off the solvent after depolymerization.
  • the total amount of the mixture of dihydroxy compounds means the total amount of the first dihydroxy compound and other dihydroxy compounds.
  • the second solvent is the difference between the solubility of the first dihydroxy compound at 25°C and the solubility of the other dihydroxy compound at 25°C (solubility difference at 25°C: solubility of the other dihydroxy compound (25°C) -
  • the solubility (at 25°C) of the first dihydroxy compound is 0.1 g/10 mL or more, preferably 0.3 g/10 mL or more, more preferably 0.4 to 10 g/10 mL.
  • the second solvent is the difference between the solubility of the first dihydroxy compound at 70° C. and the solubility of the other dihydroxy compound at 70° C. (solubility difference at 70° C.: solubility of other dihydroxy compound (70° C.) ⁇ th
  • the solubility (70° C.) of the dihydroxy compound of 1) is preferably 0.1 g/10 mL or more, more preferably 0.3 g/10 mL or more, and particularly 0.4 to 10 g/10 mL. preferable.
  • a solubility difference of 0.1 g/10 mL or more at 70° C. is preferable because a high-purity dihydroxy compound (first dihydroxy compound) can be efficiently produced even at a relatively high temperature (without cooling).
  • ketone solvents such as acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), diisobutyl ketone (DIBK), and cyclohexanone, which differ depending on the types of the first hydroxy compound and other dihydroxy compounds; ether solvents such as tetrahydrofuran, 1,3-dioxolane and 1,4-dioxane; alcohol solvents such as ethanol, propanol, isopropyl alcohol, butanol and isobutyl alcohol;
  • the second solvent is preferably a ketone solvent, more preferably methyl ethyl ketone (MEK). These solvents may be used alone or in combination of two or more.
  • the first hydroxy compound and other dihydroxy compounds can be determined.
  • a mixture of dihydroxy compounds is 2,2'-bis(2-hydroxyethoxy)-6,6'-diphenyl-1,1'-binaphthalene (DP), 2,2'-bis(2-hydroxyethoxy) -1,1′-binaphthalene (BNE), and 9,9-bis[4-(2-hydroxyethoxy)-3-phenylphenyl]fluorene (BPPEF), the solubility of methyl ethyl ketone (MEK) at 25° C.
  • MEK methyl ethyl ketone
  • DP 0.3 g/10 mL
  • BNE 0.75 g/10 mL
  • BPPEF is 4.5 g/10 mL.
  • the primary hydroxy compound is DP and the other dihydroxy compounds are BNE and BPPEF
  • the solubility difference at 25° C. is 0.45 g/10 mL.
  • the content of the second solvent in the crystallization solution is preferably 0.3 to 3 g/g, more preferably 0.5 to 2.5 g/g, relative to the total amount of the mixture of dihydroxy compounds. is more preferred, and 0.75 to 2 g/g is even more preferred. It is preferable that the content of the second solvent is within the above range, since a highly pure dihydroxy compound (first dihydroxy compound) can be obtained by crystallization.
  • the total content of the first solvent and the second solvent in the crystallization solution is preferably 1-10 g/g, preferably 1.5-7.5 g/g, relative to the total amount of the mixture of dihydroxy compounds. g, more preferably 1.5 to 2.5 g/g. It is preferable that the total content of the first solvent and the second solvent is 1 g/g or more because the purity of the first dihydroxy compound can be increased. On the other hand, when the total content of the first solvent and the second solvent is 10 g/g or less, the yield can be increased, which is preferable.
  • the total content of the first solvent and the second solvent in the crystallization solution is preferably 2 g/g or more, and 4 g/g, relative to the total amount of the mixture of dihydroxy compounds. g or more is more preferable.
  • the upper limit of the total content of the first solvent and the second solvent is preferably 10 g/g or less. It is preferable that the total content of the first solvent and the second solvent is 2 g/g or more because the purity of the first dihydroxy compound can be increased.
  • the ratio of the content (g/g) of the first solvent to the content (g/g) of the second solvent in the crystallization solution (first solvent/second solvent) is 0.8 to 10. is preferably 0.8 to 7, more preferably 0.9 to 4, and particularly preferably 1 to 3. It is preferable that the ratio (first solvent/second solvent) is within the above range because the purity of the first dihydroxy compound can be increased.
  • the crystallization solution may further comprise seed crystals. Addition of seed crystals can promote crystallization of the first dihydroxy compound. Seed crystals are usually added to the reaction solution before, at the same time as, or after the addition of the second solvent.
  • the seed crystals are not particularly limited, but include crystals of the first dihydroxy compound, crystals of other dihydroxy compounds, diphenol compounds such as bisphenol A that can be raw materials for polycarbonate, and the like.
  • the seed crystal is preferably a crystal of the first dihydroxy compound from the viewpoint of increasing the purity of the dihydroxy compound (first dihydroxy compound) obtained by crystallization.
  • the seed crystals described above may be used alone or in combination of two or more.
  • the form of the seed crystal is not particularly limited, it is preferably a crystalline solvate.
  • the compound that forms a crystalline solvate is not particularly limited, but is preferably a dihydroxy compound selected from the group consisting of general formulas (1′) to (3′), and the general formula ( A dihydroxy compound represented by 1') is more preferred.
  • the solvent constituting the solvate is not particularly limited, but the first solvent and the second solvent are preferable, and methanol, toluene and methyl ethyl ketone are more preferable.
  • the content of the solvent in the crystalline solvate is preferably 0.3 to 1.5 mol per 1 mol of the compound forming the crystalline solvate.
  • the ratio of the mode diameter to the median diameter of the seed crystal is preferably 2.0 or less, more preferably 1.0 to 1.6. It is preferable that the ratio (mode diameter/median diameter) is 2.0 or less, because the obtained dihydroxy compound can be a highly pure and easy-to-handle massive crystal.
  • the term "mode diameter” means a mode diameter showing the highest frequency value, and is measured by particle size measurement using a laser diffraction method.
  • the "median diameter” means the cumulative 50% particle diameter in the cumulative particle size distribution, and is measured by particle size measurement using a laser diffraction method.
  • the aspect ratio of the seed crystal is preferably 1-8, more preferably 1-3.
  • the term “aspect ratio” means the ratio (L/W) of the maximum crystal length L and width W in the crystal.
  • the 'maximum crystal length L' means the length of the crystal taken so as to have the longest crystal length from a crystal photograph taken with an optical microscope.
  • “Width W” means the length that makes an angle of 90 degrees with respect to the maximum crystal length and is the maximum length.
  • the maximum crystal length L and width W are average values calculated by measuring at least 30 crystals randomly selected from optical micrographs.
  • the content of seed crystals is preferably 0.001 to 1% by mass, more preferably 0.01 to 1% by mass, relative to the total amount of the dihydroxy compound mixture.
  • the seed crystal content is preferably 0.001 to 1% by mass, more preferably 0.005 to 0.5% by mass, more preferably 0.005 to 0.5% by mass, based on the total mass of the crystallization solution. 01 to 0.1% by mass is more preferable.
  • Organic Impurities and Depolymerized Products Thereof examples include those described above.
  • the content of organic impurities in the crystallization solution is preferably 0.001 to 10% by mass, more preferably 0.01 to 5% by mass, and 0 .1 to 2% by mass is more preferable.
  • the total content is preferably within the above range.
  • the content of depolymerized organic impurities in the crystallization solution is preferably 0.0001 to 1% by weight, preferably 0.001 to 0.5% by weight, based on the total weight of the crystallization solution. is more preferable, and 0.01 to 0.2% by mass is even more preferable.
  • the total content is preferably within the above range.
  • the first dihydroxy compound By carrying out crystallization, the first dihydroxy compound can be obtained from the crystallization solution. At this time, the first dihydroxy compound obtained by crystallization is usually in crystalline form.
  • Crystallization is usually preferably carried out by heating and dissolving the dihydroxy compounds (the first dihydroxy compound and other dihydroxy compounds) and then cooling to crystallize.
  • the heating temperature before crystallization varies depending on the first solvent and second solvent used, but is preferably 50 to 90°C, more preferably 60 to 85°C, and more preferably 65 to 80°C. is more preferable.
  • the crystallization temperature is not particularly limited, it is preferably -10 to 60°C, more preferably 0 to 50°C, and even more preferably 10 to 40°C.
  • the crystallization time is not particularly limited, it is preferably 5 minutes to 5 hours, more preferably 10 minutes to 3 hours, even more preferably 30 minutes to 2 hours.
  • a second embodiment of the present invention provides a method for producing a dihydroxy compound from a waste resin composition.
  • the step (b2) includes heating the reaction solution to 80° C. or higher.
  • X a , X b , X c , X d , X e , and X f each independently represent an alkylene group having 1 to 4 carbon atoms
  • R a , R b , R c , R cc , R d , R dd , R e , Re ee , R f and R ff are each independently a halogen atom, an alkyl group having 1 to 20 carbon atoms, a carbon number one or more hetero groups selected from 1 to 20 alkoxy groups, 5 to 20 carbon cycloalkyl groups, 5 to 20 carbon cycloalkoxy groups, 6 to 20 carbon aryl groups, O, N and S is selected from a heteroaryl group having 3 to 20 carbon atoms containing a ring atom, an aryloxy group having 6 to 20 carbon atoms, and -C ⁇ C-R i ; R i represents an aryl group having 6 to
  • each symbol has the same meaning as in the above general formulas (1) to (4).
  • a desired synthetic resin specifically a resin having at least two structural units selected from the group consisting of general formulas (1) to (4), and a waste resin composition containing organic impurities
  • a dihydroxy compound derived from a desired synthetic resin can be produced from a substance.
  • organic impurities can be preferably removed.
  • step (a2) at least part of the desired synthetic resin is depolymerized under alkaline conditions.
  • the organic impurities contained in the waste resin composition have different chemical properties (ease of depolymerization in an alkaline aqueous solution) and/or physical properties after depolymerization.
  • Organic impurities can be removed.
  • the desired synthetic resin when it contains two or more types of structural units, it can be a mixture of these two or more dihydroxy compounds after depolymerization.
  • a solvent (first solvent) suitable for crystallization if a solvent (first solvent) suitable for crystallization is selected, at least one of the two or more dihydroxy compounds may not be sufficiently dissolved in the first solvent. and yields may be low.
  • a dihydroxy compound can be produced with a high yield.
  • a dihydroxy compound can be produced with a high yield from a waste resin composition. That is, it is possible to suitably recycle the waste resin composition.
  • the manufacturing method may further include a step of preparing a waste resin composition.
  • the manufacturing method includes the steps of preparing a waste resin composition, step (a2), and step (b2) in this order. Each step will be described in detail below.
  • Step of preparing waste resin composition Since the process of preparing the waste resin composition is the same as that described in the first embodiment, the description is omitted here.
  • Step (a2) Since the step (a2) is the same as the step (a1) described in the first embodiment, the explanation is omitted here.
  • Step (b2) is a step of crystallizing at least the first dihydroxy compound from the reaction solution. At this time, step (b2) includes heating the reaction solution to 80° C. or higher.
  • reaction solution includes a mixture of dihydroxy compounds and a first solvent.
  • the reaction solution may further contain organic impurities, depolymerization products thereof, and the like.
  • the mixture of dihydroxy compounds, the first solvent, the organic impurities, and the depolymerized product thereof are the same as in the first embodiment, so descriptions thereof are omitted here.
  • the first hydroxy compound and other dihydroxy compounds can be determined by selecting the first solvent.
  • a mixture of dihydroxy compounds is 2,2'-bis(2-hydroxyethoxy)-6,6'-diphenyl-1,1'-binaphthalene (DP), 2,2'-bis(2-hydroxyethoxy) -1,1′-binaphthalene (BNE), and 9,9-bis[4-(2-hydroxyethoxy)-3-phenylphenyl]fluorene (BPPEF), referring to toluene solubility at 25° C.
  • DP is 0.3 g/10 mL
  • BNE is 0.1 g/10 mL
  • BPPEF is 0.05 g/10 mL.
  • reaction solution according to the second embodiment may have the same structure as the crystallization solution according to the first embodiment.
  • the second solvent and seed crystals are also the same as in the first embodiment, so the description is omitted here.
  • the first dihydroxy compound By performing crystallization, at least the first dihydroxy compound can be obtained from the reaction solution. At this time, the first dihydroxy compound obtained by crystallization may contain other dihydroxy compounds. Thereby, the yield of the dihydroxy compound obtained can be increased.
  • Crystallization is usually preferably carried out by heating and dissolving the dihydroxy compounds (the first dihydroxy compound and other dihydroxy compounds) and then cooling to crystallize.
  • the heating temperature before crystallization is 80°C or higher, preferably higher than 85°C, and more preferably 90°C or higher. That is, step (b2) comprises heating the reaction solution to 80° C. or higher, preferably above 85° C., more preferably 90° C. or higher.
  • the upper limit of the heating temperature before crystallization varies depending on the boiling point of the first solvent, it is preferably 200° C. or lower, more preferably 150° C. or lower.
  • Two or more kinds of dihydroxy compounds obtained by depolymerization usually have similar physical properties because they have similar structures. Other dihydroxy compounds may not dissolve in the first solvent. Therefore, in step (b2), by controlling the heating temperature before crystallization, other dihydroxy compounds that are difficult to dissolve in the first solvent can be more dissolved. By crystallizing such a reaction solution, the yield of the dihydroxy compound can be improved.
  • the crystallization temperature is not particularly limited, it is preferably -10 to 60°C, more preferably 0 to 50°C, and even more preferably 10 to 40°C.
  • the crystallization time is not particularly limited, it is preferably 5 minutes to 5 hours, more preferably 10 minutes to 3 hours, even more preferably 30 minutes to 2 hours.
  • a method for producing recycled resin includes polymerizing the dihydroxy compound produced by the method described above.
  • the method of obtaining the recycled resin from the dihydroxy compound a known polymerization technique is appropriately adopted.
  • the regenerated resin can be produced by subjecting a dihydroxy compound and a diester carbonate to a solution condensation method in the presence or absence of a basic compound catalyst and/or a transesterification catalyst.
  • a separately prepared dihydroxy compound can be used as a monomer together with the dihydroxy compound produced from the waste resin composition.
  • Examples of the carbonic acid diester include, but are not limited to, diphenyl carbonate, ditolyl carbonate, bis(chlorophenyl) carbonate, m-cresyl carbonate, dimethyl carbonate, diethyl carbonate, dibutyl carbonate, dicyclohexyl carbonate, and the like. Among these, diphenyl carbonate is preferred.
  • the amount of the diester carbonate compound used is preferably 0.97 to 1.20 mol, more preferably 0.98 to 1.10 mol, more preferably 1.00 to 1.0 mol, per 1 mol of the dihydroxy compound. More preferably 0.10 moles.
  • the basic compound catalyst is not particularly limited, but includes alkali metal compounds, alkaline earth metal compounds, nitrogen-containing compounds, and the like.
  • the alkali metal compound is not particularly limited, but includes organic acid salts, inorganic salts, oxides, hydroxides, hydrides, and alkoxides of alkali metals.
  • the alkaline earth metal compound is not particularly limited, but examples thereof include organic acid salts, inorganic salts, oxides, hydroxides, hydrides and alkoxides of alkaline earth metal compounds.
  • nitrogen-containing compound examples include, but are not limited to, quaternary ammonium hydroxides, salts thereof, amines, and the like.
  • quaternary ammonium hydroxides having an alkyl group, an aryl group such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, trimethylbenzylammonium hydroxide; tertiary amines such as triethylamine, dimethylbenzylamine, triphenylamine; secondary amines such as diethylamine and dibutylamine; primary amines such as propylamine and butylamine; 2-methylimidazole, 2-phenylimidazole, benzimidazole imidazoles such as; ammonia, tetramethylammonium borohydride, tetrabutylammonium boro
  • transesterification catalysts include salts of zinc, tin, zirconium, lead, and the like. Specifically, zinc acetate, zinc benzoate, zinc 2-ethylhexanoate, tin (II) chloride, tin (IV) chloride, tin (II) acetate, tin (IV) acetate, dibutyltin dilaurate, dibutyltin oxide, dibutyltin dimethoxide, zirconium acetylacetonate, zirconium oxyacetate, zirconium tetrabutoxide, lead (II) acetate, lead (IV) acetate and the like.
  • the above basic compound catalysts and transesterification catalysts may be used alone or in combination of two or more.
  • the amount of the basic compound catalyst and transesterification catalyst used (the total amount when used in combination) is preferably 1 ⁇ 10 ⁇ 9 to 1 ⁇ 10 ⁇ 3 mol per 1 mol of the dihydroxy compound, and 1 ⁇ 10 ⁇ 7 to 1 ⁇ 10 ⁇ 4 mol is more preferable.
  • the pressure can be controlled by closing the reaction apparatus, reducing the pressure, or increasing the pressure.
  • the recycled resin obtained by the above method can be suitably applied to plastic products.
  • the degree of pressure reduction was adjusted to 200 Torr over 20 minutes, and the conditions were maintained at 200° C. and 200 Torr for 10 minutes to carry out transesterification. Further, the temperature was raised to 215° C. in 30 minutes, and the pressure was reduced to 180 Torr. After that, it was adjusted to 230° C. and 150 Torr over 40 minutes. After that, it was adjusted to 120 Torr over 10 minutes. The temperature was further increased to 100 Torr and 240° C. over 10 minutes. After that, the temperature was increased to 1 Torr over 50 minutes, and polymerization was carried out at 240° C. and 1 Torr for 30 minutes.
  • Step (a1) 100 parts by weight of a polycarbonate resin, 88 parts by weight of a 48% sodium hydroxide aqueous solution, and 734 parts by weight of toluene as a first solvent were charged into a reactor equipped with a stirrer and a cooling tube, and reacted for 3 hours while heating under reflux. . After that, the liquid temperature was cooled to 80 to 85° C., and 178 parts by weight of ion-exchanged water was added. After stirring and standing, the aqueous phase was separated, and the organic phase was washed with deionized water. Part of the toluene was distilled off from the organic phase to obtain a reaction solution.
  • Step (b1) A second solvent, methyl ethyl ketone (MEK), was added to the reaction solution so as to have the same weight as toluene.
  • MEK methyl ethyl ketone
  • DP which is insoluble in MEK
  • BPPEF and BNE which are soluble in MEK
  • the mixed solution was heated and controlled at 70 to 75° C., and it was confirmed that the dihydroxy compound was completely dissolved.
  • DP crystals separately prepared as seed crystals were added to the mixed solution to prepare a crystallization solution.
  • Crystallization was carried out by cooling to 30°C and standing still for 1 hour or more. Filtration was performed, the precipitate was washed with toluene, and the obtained crystals were dried to obtain crystals of the dihydroxy compound.
  • DP/BPPEF/BNE molar ratio
  • the purity of the dihydroxy compound crystals was analyzed by high performance liquid chromatography (HPLC). Detailed analysis conditions are as follows.
  • the crystallization solution (mixture of the dihydroxy compound before crystallization) was measured by HPLC, and the peak area % of the obtained chromatograph was used as a reference to obtain the dihydroxy compound from the chromatographic peak area % of the crystal of the dihydroxy compound.
  • the molar ratio of compounds was calculated.
  • DP/BPPEF/BNE (molar ratio) in the dihydroxy compound crystal was 100/0/0. From this result, it can be seen that a highly pure DP monomer was obtained using a polycarbonate resin as a raw material.
  • Example 1-1 showed that the polycarbonate resin was hydrolyzed into a monomer mixture in step (a1), and the monomer mixture could be isolated in step (b1).
  • Step (b1) The mixed solution was charged into a 100 mL eggplant flask, and 8.62 g of MEK (addition amount per 1 g of total dihydroxy compounds (DP+BNE+BPPEF): 0.86 g) was added. After purging with nitrogen, the mixed solution was heated and controlled at 70 to 75° C. to completely dissolve the dihydroxy compound. After cooling the mixed solution to 40° C., 10 mg of DP separately prepared as seed crystals was added to the mixed solution to prepare a crystallization solution.
  • Crystallization was performed by cooling the crystallization solution to 30°C and allowing it to stand still for 1 hour. Filtration was performed, the precipitate was washed with toluene, and the obtained crystals were dried to obtain crystals of the dihydroxy compound.
  • DP/BPPEF/BNE molar ratio
  • DP/BPPEF/BNE molar ratio
  • Examples 1-3 to 1-13 and Comparative Example 1-1 Crystals of a dihydroxy compound were obtained in the same manner as in Example 1-2, except that the amounts of toluene and MEK added were changed. The results obtained are shown in Table 1 below.
  • Step (b2) The above mixed solution was put into a 100 mL eggplant flask, and after nitrogen substitution, the reaction solution was heated and controlled at 90 to 95° C. to completely dissolve the dihydroxy compound. After cooling the reaction solution to 35° C., 10 mg of DP separately prepared as seed crystals was added to the reaction solution.
  • Crystallization was performed by cooling the reaction solution to 30°C and allowing it to stand still for 1 hour. Filtration was performed, the precipitate was washed with toluene, and the obtained crystals were dried to obtain crystals of the dihydroxy compound.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

合成樹脂および有機不純物を含む廃樹脂組成物をリサイクルする方法を提供する。 廃樹脂組成物からジヒドロキシ化合物を製造する方法であって、下記一般式(1)~(4):  からなる群から選択される少なくとも2つの構成単位を有する樹脂を含む廃樹脂組成物と、第1の溶媒と、水と、を含むアルカリ溶液を処理して、下記一般式(1')~(4'):  からなる群から選択される第1のジヒドロキシ化合物および前記一般式(1')~(4')からなる群から選択される少なくとも1つの他のジヒドロキシ化合物を含むジヒドロキシ化合物の混合物と、第1の溶媒とを含む反応溶液を得る工程(a1)と、前記反応溶液に、第2の溶媒を添加して得られる結晶化溶液から前記第1のジヒドロキシ化合物を晶析する工程(b1)と、を含み、第2の溶媒の25℃における第1のジヒドロキシ化合物の溶解度と、第2の溶媒の25℃における他のジヒドロキシ化合物の溶解度との差(他のジヒドロキシ化合物の溶解度-第1のジヒドロキシ化合物の溶解度)が、0.1g/10mL以上である、製造方法。

Description

ジヒドロキシ化合物の製造方法および再生樹脂の製造方法
 本発明は、ジヒドロキシ化合物の製造方法および再生樹脂の製造方法等に関する。
 近年、自然環境の悪化および廃棄物の排出量の増大に対する懸念が高まり、循環型社会の実現を目指して、プラスチック製品をリユースやリサイクルする動きが一段と強まっている。
 プラスチック製品の主な構成成分であるポリカーボネート樹脂などの合成樹脂は、家電製品、電子・電気機器、OA機器、光メディア、自動車部品、建築部材等の各種用途に広く使用されている。上記プラスチック製品が製造される際やプラスチック製品の使用後には、合成樹脂の廃材が大量に排出されるため、これらの廃材の再利用が行われている。
 特に、合成樹脂を成形してプラスチック製品を製造する場合、スプルー、ランナー、ゲート等の金型の通路に由来する部分が除去されてプラスチック製品となる。このようなプラスチック製品には不要で除去される合成樹脂、その他、成形不良品等の廃樹脂は、廃棄することなく、リサイクルして再び製品に利用する取り組みがなされている。
 例えば、特許文献1には、ポリカーボネート樹脂基板を有する廃棄光ディスクおよび/または回収光ディスクを粉砕し、得られた粉砕処理物を化学処理する工程を有するポリカーボネート樹脂の回収方法に係る発明が記載されている。前記回収方法では、前記化学処理工程で得られた化学処理物に対して、磁石を用いることにより磁性金属異物を除去し、光学カメラを用いることにより着色異物を除去する工程、および金属異物検知器を用いることにより金属異物を有する樹脂を除去する工程を行うことが記載されている。
特開2011-131507号公報
 特許文献1に記載の回収方法によれば、金属、着色異物、金属異物を有する樹脂等を除去して、合成樹脂を回収することができる。前記回収方法は、含有される金属や着色の外観に基づき実施される。しかしながら、プラスチック製品は、複数種の合成樹脂を組み合わせて製造されたものであることが多く、プラスチック製品には不要で除去される合成樹脂、成形不良品等は、所望の合成樹脂とともに有機不純物が含まれることとなる。この場合、所望の合成樹脂および有機不純物の間で金属の含有の有無、着色の程度が大きく相違しないこともある。そうすると、特許文献1に記載の方法では所望の合成樹脂を回収してリサイクルをすることができない。このような状況下において、廃樹脂組成物をリサイクルする新たな方法が求められている。
 そこで、本発明は、合成樹脂および有機不純物を含む廃樹脂組成物をリサイクルする方法を提供することを目的とする。
 本発明は、例えば以下の態様を有する。
 [1]廃樹脂組成物からジヒドロキシ化合物を製造する方法であって、
 下記一般式(1)~(4):
Figure JPOXMLDOC01-appb-C000006
[式中、
 X、X、X、X、X、およびXは、各々独立に、炭素数1~4のアルキレン基を表し、
 R、R、R、Rcc、R、Rdd、R、Ree、Rf、およびRffは、各々独立に、ハロゲン原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数5~20のシクロアルキル基、炭素数5~20のシクロアルコキシ基、炭素数6~20のアリール基、O、NおよびSから選択される1つ以上のヘテロ環原子を含む炭素数3~20のヘテロアリール基、炭素数6~20のアリールオキシ基、ならびに-C≡C-Rから選択され、
 Rは炭素数6~20のアリール基またはO、NおよびSから選択される1つ以上のヘテロ環原子を含む炭素数3~20のヘテロアリール基を表し、
 a、b、c、d、e、およびfは、各々独立に、0~10の整数を表し、
 h、i、j、j’、k、k’、m、m’、n、およびn’は、各々独立に、0~4の整数を表し、
 Rは、各々独立に、水素原子または炭素数1~3のアルキル基を表す。]
からなる群から選択される少なくとも2つの構成単位を有する樹脂を含む廃樹脂組成物と、第1の溶媒と、水と、を含むアルカリ溶液を処理して、下記一般式(1’)~(4’):
Figure JPOXMLDOC01-appb-C000007
[式中、各記号は、上記一般式(1)~(4)におけるものと同義である。]
からなる群から選択される第1のジヒドロキシ化合物および前記一般式(1’)~(4’)からなる群から選択される少なくとも1つの他のジヒドロキシ化合物を含むジヒドロキシ化合物の混合物と、第1の溶媒とを含む反応溶液を得る工程(a1)と、
 前記反応溶液に、第2の溶媒を添加して得られる結晶化溶液から前記第1のジヒドロキシ化合物を晶析する工程(b1)と、を含み、
 第2の溶媒の25℃における第1のジヒドロキシ化合物の溶解度と、第2の溶媒の25℃における他のジヒドロキシ化合物の溶解度との差(他のジヒドロキシ化合物の溶解度-第1のジヒドロキシ化合物の溶解度)が、0.1g/10mL以上である、製造方法。
 [2]前記結晶化溶液が、種結晶をさらに含む、上記[1]に記載の製造方法。
 [3]前記結晶化溶液中の第1の溶媒の含有量は、前記ジヒドロキシ化合物の混合物の総量に対して、0.1~10g/gである、上記[1]または[2]に記載の製造方法。
 [4]前記結晶化溶液中の第2の溶媒の含有量は、前記ジヒドロキシ化合物の混合物の総量に対して、0.3~3g/gである、上記[1]~[3]のいずれかに記載の製造方法。
 [5]前記結晶化溶液中の第1の溶媒および第2の溶媒の総含有量は、前記ジヒドロキシ化合物の混合物の総量に対して、1~10g/gである、上記[1]~[4]のいずれかに記載の製造方法。
 [6]前記結晶化溶液中の第2の溶媒の含有量(g/g)に対する第1の溶媒の含有量(g/g)の比(第1の溶媒/第2の溶媒)は、0.8~10である、上記[1]~[5]のいずれかに記載の製造方法。
 [7]廃樹脂組成物からジヒドロキシ化合物を製造する方法であって、
 下記一般式(1)~(4):
Figure JPOXMLDOC01-appb-C000008
[式中、
 X、X、X、X、X、およびXは、各々独立に、炭素数1~4のアルキレン基を表し、
 R、R、R、Rcc、R、Rdd、R、Ree、Rf、およびRffは、各々独立に、ハロゲン原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数5~20のシクロアルキル基、炭素数5~20のシクロアルコキシ基、炭素数6~20のアリール基、O、NおよびSから選択される1つ以上のヘテロ環原子を含む炭素数3~20のヘテロアリール基、炭素数6~20のアリールオキシ基、ならびに-C≡C-Rから選択され、
 Rは炭素数6~20のアリール基またはO、NおよびSから選択される1つ以上のヘテロ環原子を含む炭素数3~20のヘテロアリール基を表し、
 a、b、c、d、e、およびfは、各々独立に、0~10の整数を表し、
 h、i、j、j’、k、k’、m、m’、n、およびn’は、各々独立に、0~4の整数を表し、
 Rは、各々独立に、水素原子または炭素数1~3のアルキル基を表す。]
からなる群から選択される少なくとも2つの構成単位を有する樹脂を含む廃樹脂組成物と、第1の溶媒と、水と、を含むアルカリ溶液を処理して、下記一般式(1’)~(4’):
Figure JPOXMLDOC01-appb-C000009
[式中、各記号は、上記一般式(1)~(4)におけるものと同義である。]
からなる群から選択される第1のジヒドロキシ化合物および前記一般式(1’)~(4’)からなる群から選択される少なくとも1つの他のジヒドロキシ化合物を含むジヒドロキシ化合物の混合物と、第1の溶媒とを含む反応溶液を得る工程(a2)と、
 前記反応溶液から少なくとも前記第1のジヒドロキシ化合物を晶析する工程(b2)と、を含み、
 前記工程(b1)が、反応溶液を80℃以上に加熱することを含む、製造方法。
 [8]前記廃樹脂組成物液が、下記一般式(6)~(8):
Figure JPOXMLDOC01-appb-C000010
[式中、
 Xは、各々独立に、炭素数1~10のアルキレン基を表し、
 R、R、およびRは、各々独立に、ハロゲン原子、置換または非置換の炭素数1~20のアルキル基、置換または非置換の炭素数1~20のアルコキシ基、置換または非置換の炭素数5~20のシクロアルキル基、置換または非置換の炭素数5~20のシクロアルコキシ基、置換または非置換の炭素数6~20のアリール基、置換または非置換のO、NおよびSから選択される1つ以上のヘテロ環原子を含む炭素数3~20のヘテロアリール基、置換または非置換の炭素数6~20のアリールオキシ基、並びに-C≡C-Rから選択され、
 Rは置換または非置換の炭素数6~20のアリール基またはO、NおよびSから選択される1つ以上のヘテロ環原子を含む炭素数3~20のヘテロアリール基を表し、
 pは、各々独立に、0または1の整数を表し、
 q、r、およびsは、各々独立に、0~10の整数を表し、
 tは、1~3の整数を表し、
 ここで、qが2以上であり、2つのRが隣接する炭素原子に存在する場合、2つのRが一緒になって環構造を形成してもよく、
 rが2以上であり、2つのRが隣接する炭素原子に存在する場合、2つのRが一緒になって環構造を形成してもよく、
 sが2以上であり、2つのRが隣接する炭素原子に存在する場合、2つのRが一緒になって環構造を形成してもよく、
 Rは、水素原子または炭素数1~3のアルキル基を表す。]
からなる群から選択される少なくとも1つの構成単位を有する不純物樹脂を含む、上記[1]~[7]のいずれかに記載の製造方法。
 [9]上記[1]~[8]のいずれかに記載の方法で製造されたジヒドロキシ化合物を重合することを含む、再生樹脂の製造方法。
 本発明によれば、合成樹脂および有機不純物を含む廃樹脂組成物をリサイクルすることができる。
 以下、本発明を実施するための形態について詳細に説明する。
 <第1の実施形態:ジヒドロキシ化合物の製造方法>
 本発明の第1の実施形態によれば、廃樹脂組成物からジヒドロキシ化合物を製造する方法が提供される。この際、下記一般式(1)~(4)からなる群から選択される少なくとも2つの構成単位を有する樹脂を含む廃樹脂組成物と、第1の溶媒と、水と、を含むアルカリ溶液を処理して、下記一般式(1’)~(4’)からなる群から選択される第1のジヒドロキシ化合物および前記一般式(1’)~(4’)からなる群から選択される少なくとも1つの他のジヒドロキシ化合物を含むジヒドロキシ化合物の混合物と、第1の溶媒とを含む反応溶液を得る工程(a1)と、前記反応溶液に、第2の溶媒を添加して得られる結晶化溶液から前記第1のジヒドロキシ化合物を晶析する工程(b1)と、を含む。また、第2の溶媒の25℃における第1のジヒドロキシ化合物の溶解度と、第2の溶媒の25℃における他のジヒドロキシ化合物の溶解度との差(他のジヒドロキシ化合物の溶解度-第1のジヒドロキシ化合物の溶解度)が、0.1g/10mL以上である。
Figure JPOXMLDOC01-appb-C000011
 式中、
 X、X、X、X、X、およびXは、各々独立に、炭素数1~4のアルキレン基を表し、
 R、R、R、Rcc、R、Rdd、R、Ree、Rf、およびRffは、各々独立に、ハロゲン原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数5~20のシクロアルキル基、炭素数5~20のシクロアルコキシ基、炭素数6~20のアリール基、O、NおよびSから選択される1つ以上のヘテロ環原子を含む炭素数3~20のヘテロアリール基、炭素数6~20のアリールオキシ基、ならびに-C≡C-Rから選択され、
 Rは炭素数6~20のアリール基またはO、NおよびSから選択される1つ以上のヘテロ環原子を含む炭素数3~20のヘテロアリール基を表し、
 a、b、c、d、e、およびfは、各々独立に、0~10の整数を表し、
 h、i、j、j’、k、k’、m、m’、n、およびn’は、各々独立に、0~4の整数を表し、
 Rは、各々独立に、水素原子または炭素数1~3のアルキル基を表す。
Figure JPOXMLDOC01-appb-C000012
 式中、各記号は、上記一般式(1)~(4)におけるものと同義である。
 上記製造方法によれば、所望の合成樹脂、具体的には一般式(1)~(4)からなる群から選択される少なくとも2つの構成単位を有する樹脂と、有機不純物とを含む廃樹脂組成物から、所望の合成樹脂に由来するジヒドロキシ化合物を製造することができる。
 具体的には、まず、上記製造方法により、有機不純物を好適に除去することができる。工程(a1)では、所望の合成樹脂の少なくとも一部をアルカリ条件下で解重合する。この際、廃樹脂組成物中に含まれる有機不純物は、化学的特性(アルカリ水溶液中での解重合のしやすさ)、および/または解重合後の物性が異なることから、廃樹脂組成物から有機不純物を除去することができる。
 また、所望の合成樹脂が2種以上の構成単位を含む場合、解重合後はこれら2種以上のジヒドロキシ化合物の混合物となりうる。この際、前記2種以上のジヒドロキシ化合物は構造が類似するため物性が類似する等の理由により、2種以上のジヒドロキシ化合物を分離することが難しい場合がある。しかし、上記製造方法によれば、これらのジヒドロキシ化合物を分離精製することができ、純度の高いジヒドロキシ化合物を製造することができる。
 すなわち、上記製造方法によれば、廃樹脂組成物から純度の高いジヒドロキシ化合物を製造することができる。これにより、得られたジヒドロキシ化合物を用いて、樹脂(再生樹脂)を製造する際に、品質の高い樹脂(再生樹脂)を製造することができる。すなわち、廃樹脂組成物を好適にリサイクルすることができる。
 なお、一実施形態において、上記製造方法は、廃樹脂組成物を調製する工程をさらに含んでいてもよい。一実施形態において、上記製造方法は、廃樹脂組成物を調製する工程、工程(a1)、および工程(b1)をこの順で含む。以下、各工程について詳細に説明する。
 [廃樹脂組成物を調製する工程]
 第1の実施形態は廃樹脂組成物を調製する工程を有していてもよい。この際、前記廃樹脂組成物を調製する工程は、通常工程(a1)前に行われる。
 一実施形態において、廃樹脂組成物を調製する工程は、廃樹脂組成物原料を粉砕して廃樹脂組成物を調製することを含む。また、一実施形態において、廃樹脂組成物を調製する工程は、廃樹脂組成物原料から金属除去を行うことを含む。廃樹脂組成物を調製する工程は、前記粉砕および前記金属除去の両方を行ってもよい。この場合の粉砕および金属除去の順序は特に制限されないが、粉砕を行った後に金属除去を行うと、金属除去を効率的に行うことができることから好ましい。
 (廃樹脂組成物原料)
 廃樹脂組成物原料としては、特に制限されないが、製品の一部として市場に利用されたのちに回収された成形品、成形工程で発生する不良品、成形工程で付随して発生する成形物(スプルー、ランナー、ゲート等)、製品化工程で生じる不良品、不要となった未使用の成形品などに由来するものが挙げられる。これらのうち、所望の合成樹脂の劣化が少ない観点から、成形工程で発生する不良品、成形工程で付随して発生する成形物(スプルー、ランナー、ゲート等)、製品化工程で生じる不良品、不要となった未使用の成形品に由来するものであることが好ましく、入手効率の観点から成形工程で発生する不良品、成形工程で付随して発生する成形物(スプルー、ランナー、ゲート等)であることがより好ましい。なお、上述の成形品等を選別し、有機不純物を含むもののみを廃樹脂組成物原料としてもよい。例えば、スプルーを選別し、そのままリサイクルできるものは取り除いて製品に利用し、残った有機不純物を含むものを廃樹脂組成物原料とすることができる。また、由来の異なるものを混合して廃樹脂組成物原料としてもよい。
 廃樹脂組成物原料の形状は、特に制限されず、パウダー、ペレット、シート、フィルム、成形品等の他、廃棄されたレンズ、シート、フィルム;製造時及び/又は成形加工時に発生する不良品、バリ;製造廃棄物、樹脂を使用した製品の廃棄物から回収された固形物、それらの粉砕物等が挙げられる。
 廃樹脂組成物原料の最長径は、100cm以下であることが好ましく、50cm以下であることがより好ましく、0.5~3cmであることがさらに好ましい。廃樹脂組成物原料の最長径が100cm以下であると、粉砕に要するエネルギーが低くなることから好ましい。なお、本明細書において「最長径」とは、無作為に抽出した200の対象物について、当該対象物の輪郭線上のうち最も長い距離を有する径の平均値を意味する。
 (粉砕)
 粉砕方法は、特に制限されず、圧縮、衝撃、せん断、摩擦のいずれの方法を採用してもよい。
 用いられうる粉砕機としては、ジョークラッシャー、ジャイレトリクラッシャー、インパクトクラッシャー、一軸破砕機、二軸破砕機等の粗粉砕機;ロールクラッシャー、エッジランナー、ディスインテグレーター、SAG(Semi-Autogenous Grinding)ミル、クラッシングロール、ハンマーミル、ローラーミル等の中粉砕機;ビーズミル、ボールミル、振動ボールミル、ロッドミル、ジェットミル、遊星ミル等の微粉砕機等が挙げられる。これらのうち、粗粉砕機を用いることが好ましく、一軸破砕機、二軸破砕機を用いることがより好ましい。具体的な粉砕機としては、強力粉砕機35-560、35-720、55-770、55-1050(株式会社タナカ製)、低速粉砕機KGA-250、KGA-350(株式会社カワタ製)等が挙げられる。なお、上述の粉砕機は単独で用いても、2種以上を組み合わせて用いてもよい。
 (金属除去)
 金属除去の方法は、特に制限されないが、磁力を用いる方法、風力を用いる方法、篩を用いる方法、比重を用いる方法、浮力を用いる方法等が挙げられる。これらのうち、磁力を用いる方法(磁石を用いる方法、金属探知機を用いる方法等)、比重を用いる方法、浮力を用いる方法(塩水を用いる方法)であることが好ましい。なお、これらの方法は、単独で用いても、2種以上を組み合わせて用いてもよい。
 なお、除去される金属としては、プラスチック製品に含有される金属、成形過程で混入する金属、粉砕過程で混入する金属等が挙げられる。
 (廃樹脂組成物)
 廃樹脂組成物は、廃樹脂組成物原料をそのまま使用してもよいが、廃樹脂組成物原料を粉砕、金属除去等をして得られたものであることが好ましい。ただし、廃樹脂組成物原料において、粉砕、金属除去が不要の場合には、廃樹脂組成物原料をそのまま廃樹脂組成物とすることが好ましい。例えば、廃樹脂組成物原料の大きさが均一であったり、廃樹脂組成物原料の最長径が小さかったり(例えば、最長径が5cm以下)、金属が含まれていなかったりする場合には、製造コストの観点から、廃樹脂組成物を調製する工程を行わないことが好ましい。
 廃樹脂組成物は、所望の合成樹脂および有機不純物を含む。なお、本明細書において、「樹脂」とは、重量平均分子量が1000以上のものを意味する。また、本明細書において「重量平均分子量(Mw)」は、ゲル浸透クロマトグラフィ(GPC)によるポリスチレン換算の重量平均分子量を意味する。
 所望の合成樹脂
 所望の合成樹脂は、下記一般式(1)~(4)からなる群から選択される少なくとも2つの構成単位を有する樹脂である。
 なお、前記構成単位を有する樹脂は、通常、ポリカーボネート(PC)樹脂、ポリエステルカーボネート樹脂であり、好ましくはポリカーボネート樹脂である。
Figure JPOXMLDOC01-appb-C000013
 上記式中、X、X、X、X、X、およびXは、各々独立に、炭素数1~4のアルキレン基を表す。前記炭素数1~4のアルキレン基としては、メチレン、エチレン、プロピレン、イソプロピレン、ブチレン、イソブチレン、sec-ブチレン、tert-ブチレン等が挙げられる。これらのうち、メチレン、エチレンであることが好ましく、エチレンであることがより好ましい。
 R、R、R、Rcc、R、Rdd、R、Ree、Rf、およびRffは、各々独立に、ハロゲン原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数5~20のシクロアルキル基、炭素数5~20のシクロアルコキシ基、炭素数6~20のアリール基、O、NおよびSから選択される1つ以上のヘテロ環原子を含む炭素数3~20のヘテロアリール基、炭素数6~20のアリールオキシ基、ならびに-C≡C-Rから選択される。
 前記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 前記炭素数1~20のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、イコシル基等が挙げられる。
 前記炭素数1~20のアルコキシ基としては、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、ノニルオキシ基、デシルオキシ基、ウンデシルオキシ基、ドデシルオキシ基、イコシルオキシ基等が挙げられる。
 前記炭素数5~20のシクロアルキル基としては、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロドデシル基、シクロトリデシ基、シクロテトラデシル基、シクロペンタデシル基、シクロオクタデシル基、ビシクロ[2.2.1]ヘプチル基、ビシクロ[2.2.2]オクチル基等が挙げられる。
 前記炭素数5~20のシクロアルコキシ基としては、シクロペンチルオキシ基、シクロヘキシルオキシ基、シクロヘプチルオキシ基、シクロオクチルオキシ基、シクロドデシルオキシ基、シクロトリデシオキシ基、シクロテトラデシルオキシ基、シクロペンタデシルオキシ基、シクロオクタデシルオキシ基、ビシクロ[2.2.1]ヘプチルオキシ基、ビシクロ[2.2.2]オクチル基オキシ等が挙げられる。
 前記炭素数6~20のアリール基としては、フェニル基、トリル基、キシリル基、トリメチルフェニル基、テトラメチルフェニル基、エチルフェニル基、エチルメチルフェニル基、ジエチルフェニル基、プロピルフェニル基、イソプロピルフェニル基、イソプロピルメチルフェニル基、ベンジル基、フェネチル基、フェニルプロピル基、ナフチル基、アントラセニル基、フェナントレニル基、ナフタセニル基、クリセリニル基、ピレニル基、ビフェニル基、テルフェニル基、クアテルフェニル基等が挙げられる。
 前記O、NおよびSから選択される1つ以上のヘテロ環原子を含む炭素数3~20のヘテロアリール基としては、フラニル基、ベンゾフラニル基、イソベンゾフラニル基、ピロリル基、イミダゾリル基、ピラゾリル基、トリアゾリル基、ピリジル基、ピラジル基、ピリミジル基、ピリダジル基、ピロリジル基、インドリル基、イソインドリル基、インダゾリル基、キノリル基、イソキノリル基、ナフチリジル基、キノキサリル基、キナゾリル基、プテリジル基、フェナントリジル基、アクリジニル基、ピリミジニル基、フェナントロリニル基、フェナジニル基、チオフェニル基、チオピラニル基、ベンゾチオフェニル基、ベンゾチオピラニル基、オキサゾリル基、イソオキサゾリル基、チアゾリル基、イソチアゾリル基、フラザニル基、オキサジアゾリル基、ジチアゾリル基、ベンゾオキサゾリル基、ベンゾイソオキサゾリル基、ベンゾチアゾリル基、ベンゾイソチアゾリル基等が挙げられる。
 前記炭素数6~20のアリールオキシ基としては、フェニルオキシ基、トリルオキシ基、キシリルオキシ基、トリメチルフェニルオキシ基、テトラメチルフェニルオキシ基、エチルフェニルオキシ基、エチルメチルフェニルオキシ基、ジエチルフェニルオキシ基、プロピルフェニルオキシ基、イソプロピルフェニルオキシ基、イソプロピルメチルフェニルオキシ基、ナフチルオキシ基、アントラセニルオキシ基、フェナントレニルオキシ基、ナフタセニルオキシ基、クリセリニルオキシ基、ピレニルオキシ基、ビフェニルオキシ基、テルフェニルオキシ基、クアテルフェニルオキシ基等が挙げられる。
 これらのうち、R、R、R、Rcc、R、Rdd、R、Ree、Rf、およびRffは、フェニル基、ナフチル基であることが好ましく、フェニル基、1-ナフチル基、2-ナフチル基であることがより好ましい。
 Rは炭素数6~20のアリール基またはO、NおよびSから選択される1つ以上のヘテロ環原子を含む炭素数3~20のヘテロアリール基を表す。前記炭素数6~20のアリール基および前記O、NおよびSから選択される1つ以上のヘテロ環原子を含む炭素数3~20のヘテロアリール基としては上述のものが挙げられる。これらのうち、Rは、フェニル基、ナフチル基であることが好ましく、フェニル基、1-ナフチル基、2-ナフチル基であることがより好ましい。
 a、b、c、d、e、およびfは、各々独立に、0~10の整数を表す。一実施形態において、a、b、c、d、e、およびfは、各々独立に、0~5であることが好ましく、0~3であることがより好ましく、0または1であることがさらに好ましい。また、別の一実施形態において、a、b、c、d、e、およびfは、各々独立に、1~5であることが好ましく、1~3であることがより好ましく、1または2であることがさらに好ましい。
 h、i、j、j’、k、k’、m、m’、n、およびn’nは、各々独立に、0~4の整数を表し、0~3であることが好ましく、0~2であることがより好ましく、0または1であることがさらに好ましく、0であることが特に好ましい。
 Rは、各々独立に、水素原子または炭素数1~3のアルキル基を表す。前記炭素数1~3のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基が挙げられる。これらのうち、Rは、各々独立に、水素原子であることが好ましい。
 式(1)で表される構成単位の具体例としては、2,2’-ビス(1-ヒドロキシメトキシ)-1,1’-ビナフタレン、2,2’-ビス(2-ヒドロキシエトキシ)-1,1’-ビナフタレン(「BNE」とも称する)、2,2’-ビス(2-ヒドロキシエトキシ)-6,6’-ジフェニル-1,1’-ビナフタレン(「DP」とも称する)、2,2’-ビス(3-ヒドロキシプロピルオキシ)-1,1’-ビナフタレン、2,2’-ビス(4-ヒドロキシブトキシ)-1,1’-ビナフタレン等に由来する構成単位が挙げられる。一実施形態において、式(1)で表される構成単位は、2,2’-ビス(2-ヒドロキシエトキシ)-1,1’-ビナフタレン(BNE)、2,2’-ビス(2-ヒドロキシエトキシ)-6,6’-ジフェニル-1,1’-ビナフタレン(DP)に由来する構成単位の少なくとも1つを含む。
 式(2)で表される構成単位の具体例としては、9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン(「BPEF」とも称する)、9,9-ビス[4-(2-ヒドロキシエトキシ)-3-メチルフェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシエトキシ)-3-tert-ブチルフェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシエトキシ)-3-イソプロピルフェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシエトキシ)-3-シクロヘキシルフェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシエトキシ)-3-フェニルフェニル]フルオレン(「BPPEF」とも称する)等に由来する構成単位が挙げられる。一実施形態において、式(2)で表される構成単位は、9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン(BPEF)及び9,9-ビス[4-(2-ヒドロキシエトキシ)-3-フェニルフェニル]フルオレン(BPPEF)から選択される化合物に由来する構成単位の少なくとも1つを含む。
 式(3)で表される構成単位の具体例としては、9,9-ビス(ヒドロキシ(ポリ)アルコキシナフチル)フルオレン類に由来する構成単位が挙げられる。例えば、9,9-ビス[6-(1-ヒドロキシメトキシ)ナフタレン-2-イル]フルオレン(「BNEF」とも称する)、9,9-ビス[6-(2-ヒドロキシエトキシ)ナフタレン-2-イル]フルオレン、9,9-ビス[6-(3-ヒドロキシプロポキシ)ナフタレン-2-イル]フルオレン、及び9,9-ビス[6-(4-ヒドロキシブトキシ)ナフタレン-2-イル]フルオレンから選択される化合物に由来する構成単位が挙げられる。一実施形態において、式(3)で表される構成単位は、9,9-ビス[6-(2-ヒドロキシエトキシ)ナフタレン-2-イル]フルオレン(BNEF)に由来する構成単位を含む。
 式(4)で表される構成単位の具体例としては、デカヒドロ-1,4:5,8-ジメタノナフタレンジオール類(「D-NDM」とも称する)に由来する構成単位が挙げられる。例えば、(デカヒドロ-1,4:5,8-ジメタノナフタレン-2,6-ジイル)ジメタノール、(デカヒドロ-1,4:5,8-ジメタノナフタレン-2,7-ジイル)ジメタノール、(2-メチルデカヒドロ-1,4:5,8-ジメタノナフタレン-2,6-ジイル)ジメタノール、(2-メチルデカヒドロ-1,4:5,8-ジメタノナフタレン-2,7-ジイル)ジメタノール、(2-エチルデカヒドロ-1,4:5,8-ジメタノナフタレン-2,6-ジイル)ジメタノール、(2-エチルデカヒドロ-1,4:5,8-ジメタノナフタレン-2,7-ジイル)ジメタノールから選択される化合物に由来する構成単位が挙げられる。
 上述の構成単位は、所望の合成樹脂中に少なくとも2つ有する。この際、前記構成単位は、同じ一般式で表される構成単位を2種以上(例えば、一般式(1)で表される構成単位を2種)含んでいてもよいし、異なる一般式で表される構成単位を2種以上(例えば、一般式(1)で表される構成単位を1種以上および一般式(2)で表される構成単位を1種以上)含んでいてもよい。また、上述の構成単位とともに、他のポリカーボネート樹脂の構成単位と組み合わされてもよいし、他の樹脂(ポリオレフィン樹脂、ポリエステル樹脂)等の構成単位と組み合わされてもよい。
 所望の合成樹脂の重量平均分子量(Mw)としては、特に制限されないが、10000~70000であることが好ましく、15000~50000であることがより好ましい。所望の合成樹脂の重量平均分子量(Mw)が10000以上であると、例えば光学レンズ用の樹脂などの成形体として適切な強度を保持できることから好ましい。一方、所望の合成樹脂の重量平均分子量(Mw)が70000以下であると、樹脂成形時に適切な流動性を保ち成形性が向上できることから好ましい。
 廃樹脂組成物中の所望の合成樹脂の含有率は、廃樹脂組成物の質量に対して、80質量%以上であることが好ましく、80~99質量%であることがより好ましい。所望の合成樹脂の含有率が80質量%以上であると、再生効率が高くなることから好ましい。
 有機不純物
 有機不純物としては、不純物樹脂、不純物化合物等が挙げられる。
 前記不純物樹脂としては、所望の合成樹脂以外の熱可塑性樹脂が挙げられる。
 前記熱可塑性樹脂としては、特に制限されないが、ポリオレフィン樹脂(ポリエチレン(PE)、ポリプロピレン(PP)、ポリ塩化ビニル(PVC)、ポリスチレン(PS)、ポリ酢酸ビニル(PVAc)、ポリテトラフルオロエチレン(PTFE)等)、ポリウレタン(PU)樹脂、アクリル樹脂、ポリエステル樹脂(ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT))、ポリアミド(PA)樹脂、ポリアセタール樹脂、環状ポリオレフィン(シクロオレフィンポリマー)、ポリフェニレンスルフィド(PPS)樹脂、ポリサルフォン樹脂、ポリエーテルサルフォン樹脂、液晶ポリマー(LCP)、ポリエーテエーテルケトン(PEEK)樹脂、ポリアミドイミド(PAI)樹脂、およびこれらの樹脂の構成単位の共重合体(アクリロニトリル-スチレン共重合樹脂(AS樹脂)、アクリロニトリル-ブチレン-スチレン共重合樹脂(ABS樹脂)等)が挙げられる。
 このうち、廃樹脂組成物は、下記一般式(6)~(8)からなる群から選択される少なくとも1つの構成単位を有する不純物樹脂を含むことが好ましい。なお、前記構成単位を有する不純物樹脂は、通常、環状ポリオレフィンである。
Figure JPOXMLDOC01-appb-C000014
 上記式中、Xは、各々独立に、炭素数1~10のアルキレン基を表す。前記炭素数1~10のアルキレン基としては、メチレン、エチレン、プロピレン、イソプロピレン、ブチレン、イソブチレン、sec-ブチレン、tert-ブチレン、ペンチレン等が挙げられる。これらのうち、メチレン、エチレン、プロピレン、ブチレン、イソブチレン、sec-ブチレンであることが好ましく、メチレン、エチレン、プロピレンであることがより好ましい。
 R、R、およびRは、各々独立に、ハロゲン原子、置換または非置換の炭素数1~20のアルキル基、置換または非置換の炭素数1~20のアルコキシ基、置換または非置換の炭素数5~20のシクロアルキル基、置換または非置換の炭素数5~20のシクロアルコキシ基、置換または非置換の炭素数6~20のアリール基、置換または非置換のO、NおよびSから選択される1つ以上のヘテロ環原子を含む炭素数3~20のヘテロアリール基、置換または非置換の炭素数6~20のアリールオキシ基、並びに-C≡C-Rから選択される。前記R、R、およびRとしては、上述のX、X、X、X、X、およびXと同様のものが挙げられる。
 ただし、R、R、およびRは置換基を有していてもよい。当該置換基としては、特に制限されないが、ハロゲン原子、炭素数1~10のアルキル基、炭素数5~10のシクロアルキル基、炭素数1~10のアルコキシ基、炭素数5~10のシクロアルキルオキシ基、炭素数2~10のアルキルオキシカルボニル基、炭素数5~10のシクロアルキルオキシカルボニル基、炭素数7~15のアリールオキシカルボニル基、炭素数2~10のアルキルカルボニルオキシ基、炭素数5~10のシクロアルキルカルボニルオキシ基、炭素数7~15のアリールカルボニルオキシ基、炭素数2~10のヒドロキシアルキルカルボニル基、グリシジルオキシカルボニル基、ヒドロキシ基、カルボキシ基、シアノ基、炭素数1~10のアミド基等が挙げられる。
 前記炭素数1~10のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基等が挙げられる。
 前記炭素数5~10のシクロアルキル基としては、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、ビシクロ[2.2.1]ヘプチル基、ビシクロ[2.2.2]オクチル基等が挙げられる。
 前記炭素数1~10のアルコキシ基としては、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、ペンチルオキシ基等が挙げられる。
 前記炭素数5~10のシクロアルキルオキシ基としては、シクロペンチルオキシ基、シクロヘキシルオキシ基、ビシクロ[2.2.1]ヘプチルオキシ基、ビシクロ[2.2.2]オクチルオキシ基等が挙げられる。
 前記炭素数2~10のアルキルオキシカルボニル基としては、メチルオキシカルボニル基、エチルオキシカルボニル基、プロピルオキシカルボニル基、イソプロピルオキシカルボニル基、ブチルオキシカルボニル基、イソブチルオキシカルボニル基、sec-ブチルオキシカルボニル基、tert-ブチルオキシカルボニル基等が挙げられる。
 前記炭素数5~10のシクロアルキルオキシカルボニル基としては、シクロペンチルオキシカルボニル基、シクロヘキシルオキシカルボニル、ビシクロ[2.2.1]ヘプチルオキシカルボニル基、ビシクロ[2.2.2]オクチルオキシカルボニル基等が挙げられる。
 前記炭素数7~15のアリールオキシカルボニル基としては、フェニルオキシカルボニル基、トリルオキシカルボニル基、キシリルオキシカルボニル基、トリメチルフェニルオキシカルボニル基、テトラメチルフェニルオキシカルボニル基、エチルフェニルオキシカルボニル基、エチルメチルフェニルオキシカルボニル基、ジエチルフェニルオキシカルボニル基、ナフチルオキシカルボニル基等が挙げられる。
 前記炭素数2~10のアルキルカルボニルオキシ基としては、メチルカルボニルオキシ基、エチルカルボニルオキシ基、プロピルカルボニルオキシ基、イソプロピルカルボニルオキシ基、ブチルカルボニルオキシ基等が挙げられる。
 前記炭素数5~10のシクロアルキルカルボニルオキシ基としては、シクロペンチルカルボニルオキシ基、シクロヘキシルカルボニルオキシ基、ビシクロ[2.2.1]ヘプチルカルボニルオキシ基、ビシクロ[2.2.2]オクチルカルボニルオキシ基等が挙げられる。
 前記炭素数7~15のアリールカルボニルオキシ基としては、フェニルカルボニルオキシ基、トリルカルボニルオキシ基、キシリルカルボニルオキシ基、トリメチルフェニルカルボニルオキシ基、テトラメチルフェニルカルボニルオキシ基、エチルフェニルカルボニルオキシ基、エチルメチルフェニルカルボニルオキシ基、ジエチルフェニルカルボニルオキシ基、ナフチルカルボニルオキシ基等が挙げられる。
 前記炭素数2~10のヒドロキシアルキルカルボニル基としては、ヒドロキシメチルカルボニル基、ヒドロキシエチルカルボニル基、ヒドロキシプロピルカルボニル基等が挙げられる。
 前記炭素数1~10のアミド基としては、メチルアミノカルボニル基、エチルアミノカルボニル基、ジメチルアミノカルボニル基、アセチルアミノ基等が挙げられる。
 上述の置換基は単独で有していても、2種以上を組み合わせて有していてもよい。
 Rは炭素数6~20のアリール基またはO、NおよびSから選択される1つ以上のヘテロ環原子を含む炭素数3~20のヘテロアリール基を表す。前記Rは、上述と同様である。
 pは、各々独立に、0または1の整数を表す。
 q、r、およびsは、各々独立に、0~10の整数を表し、好ましくは0~5であり、より好ましくは0~3である。
 tは、1~3の整数を表し、好ましくは1または2である。
 ここで、qが2以上であり、2つのRが隣接する炭素原子に存在する場合、2つのRが一緒になって環構造を形成してもよい。例えば、qが2であり2つのRがともに置換または非置換アルキル基である場合、一般式(6)は下記式(6-1)となり、qが2であり2つのRが置換または非置換アルキルおよび置換または非置換シクロアルキルである場合、一般式(6)は下記式(6-2)、(6-3)、または(6-4)となりうる。
Figure JPOXMLDOC01-appb-C000015
 上記式中、Xおよびpは上述の通りである。
 Rは上述の置換基であり、具体的には、ハロゲン原子、炭素数1~10のアルキル基、炭素数5~10のシクロアルキル基、炭素数1~10のアルコキシ基、炭素数5~10のシクロアルキルオキシ基、炭素数2~10のアルキルオキシカルボニル基、炭素数5~10のシクロアルキルオキシカルボニル基、炭素数7~15のアリールオキシカルボニル基、炭素数2~10のアルキルカルボニルオキシ基、炭素数5~10のシクロアルキルカルボニルオキシ基、炭素数7~15のアリールカルボニルオキシ基、炭素数2~10のヒドロキシアルキルカルボニル基、グリシジルオキシカルボニル基、ヒドロキシ基、カルボキシ基、シアノ基、炭素数1~10のアミド基等が挙げられる。
 zは特に制限されないが、0~6であることが好ましく、0~3であることがより好ましく、0または1であることがさらに好ましい。
 uは1~3の整数を表し、好ましくは1または2である。
 また、rが2以上であり、2つのRが隣接する炭素原子に存在する場合、2つのRが一緒になって環構造を形成してもよい。例えば、rが2であり2つのRがともに置換または非置換アルキル基である場合、一般式(7)は下記式(7-1)または(7-2)となり、rが2であり2つのRが置換または非置換アルキルおよび置換または非置換シクロアルキルである場合、一般式(7)は下記式(7-3)となりうる。
Figure JPOXMLDOC01-appb-C000016
 上記式中、X、p、R、z、およびuは上述の通りである。
 さらに、sが2以上であり、2つのRが隣接する炭素原子に存在する場合、2つのRが一緒になって環構造を形成してもよい。例えば、sが2であり2つのRがともに置換または非置換アルキル基である場合、一般式(8)は下記式(8-1)または(8-2)となり、sが2であり2つのRが置換または非置換アルキルおよび置換または非置換シクロアルキルである場合、一般式(8)は下記式(8-3)または(8-4)となりうる。
Figure JPOXMLDOC01-appb-C000017
 上記式中、X、p、R、z、およびuは上述の通りである。
 Rは、水素原子または炭素数1~3のアルキル基を表す。前記炭素数1~3のアルキル基としては、特に制限されないが、メチル基、エチル基、プロピル基、イソプロピル基が挙げられる。
 不純物樹脂の具体例としては、以下の式1~8で表される構成単位からなる群から選択される少なくとも1つを含むものが挙げられる。
Figure JPOXMLDOC01-appb-C000018
 上述の構成単位は、不純物樹脂中に単独で含まれていても、2種以上が組み合わされて含まれていてもよい。また、上述の構成単位とともに、他の環状ポリオレフィンの構成単位と組み合わされてもよいし、他の樹脂(ポリオレフィン樹脂、ポリエステル樹脂)等の構成単位と組み合わされてもよい。
 不純物樹脂の重量平均分子量(Mw)としては、特に制限されないが、1,000~3,000,000であることが好ましく、10,000~3,000,000であることがより好ましく、20,000~1,000,000であることがさらに好ましく、30,000~500,000であることが特に好ましい。不純物樹脂の重量平均分子量(Mw)が1,000以上であると、分離が容易となることから好ましい。一方、不純物樹脂の重量平均分子量(Mw)が3,000,000以下であると、微量の不純物樹脂がコンタミネーションした場合にゲル不純物の発生源となりにくいことから好ましい。
 廃樹脂組成物中の不純物樹脂の含有率は、廃樹脂組成物の全質量に対して、50質量%以下であることが好ましく、0.001~50質量%であることがより好ましく、0.01~30質量%であることがさらに好ましく、0.1~20質量%であることが特に好ましい。不純物樹脂の含有率が50質量%以下であると、効率が高くなることから好ましい。
 前記不純物化合物としては、特に制限されないが、上述の不純物樹脂のモノマー、ダイマー、コポリマー、オリゴマー、フェノール等のアリールアルコール、ジフェニルカーボネート等の炭酸ジエステル、下記式(A-1)、(A-2)等の所望の合成樹脂原料モノマー変性体、下記式(B-1)、(B-2)で表される部分構造等を有する所望の合成樹脂変性体等が挙げられる。なお、本明細書において、「不純物化合物」とは重量平均分子量が1000未満の有機化合物の不純物を意味する。このため、前記再生樹脂変性体の重量平均分子量が1000以上となる場合には、所望の合成樹脂変性体は不純物樹脂に分類されることとなる。
Figure JPOXMLDOC01-appb-C000019
 上記式(B-1)および式(B-2)において、「*」はポリマー鎖との結合部位を示す。
 廃樹脂組成物の形状
 廃樹脂組成物の形状は、特に制限されず、粉状、粒状、棒状等が挙げられる。
 廃樹脂組成物の最長径は、5cm以下であることが好ましく、3cm以下であることがより好ましく、0.001~3cmであることがさらに好ましく、0.01~2cmであることが特に好ましく、0.1~1cmであることが非常に好ましい。廃樹脂組成物の最長径が5cm以下であると、輸送がしやすい、解重合が進行しやすい等の観点から好ましい。
 [工程(a1)]
 工程(a1)は、上記一般式(1)~(4)からなる群から選択される少なくとも2つの構成単位を有する樹脂を含む廃樹脂組成物と、第1の溶媒と、水と、を含むアルカリ溶液を処理して、下記一般式(1’)~(4’)からなる群から選択される第1のジヒドロキシ化合物および前記一般式(1’)~(4’)からなる群から選択される少なくとも1つの他のジヒドロキシ化合物を含むジヒドロキシ化合物の混合物と、第1の溶媒とを含む反応溶液を得る工程である。
 (アルカリ溶液)
 アルカリ溶液は、廃樹脂組成物と、第1の溶媒と、水と、を含む。アルカリ溶液は、その他、金属酸化物等をさらに含んでいてもよい。
 廃樹脂組成物
 廃樹脂組成物は、上記一般式(1)~(4)からなる群から選択される少なくとも2つの構成単位を有する樹脂を含む。また、有機不純物をさらに含みうる。
 樹脂
 樹脂は、一般式(1)~(4)からなる群から選択される少なくとも2つの構成単位を有する樹脂である。このため、前記樹脂は通常、ポリカーボネート樹脂である。
 一般式(1)~(4)で表される構成単位の具体例については上述した通りである。
 前記樹脂は、他の構成単位をさらに含んでいてもよい。当該構成単位としては、特に制限されないが、オレフィン由来の構成単位、エステル由来の構成単位等が挙げられる。樹脂は、前記他の構成単位を単独で有していても、2種以上を組み合わせて有していてもよい。
 上述の樹脂は、廃樹脂組成物中に単独で含まれていてもよいし、2種以上が混合されて含まれていてもよい。
 前記樹脂の重量平均分子量(Mw)としては、特に制限されないが、10000~70000であることが好ましく、15000~50000であることがより好ましい。前記樹脂の重量平均分子量(Mw)が10000以上であると、例えば光学レンズ用の樹脂などの成形体として適切な強度を保持できることから好ましい。一方、前記樹脂の重量平均分子量(Mw)が70000以下であると、樹脂成形時に適切な流動性を保ち成形性が向上できることから好ましい。
 廃樹脂組成物中の前記樹脂の含有率は、廃樹脂組成物の質量に対して、80質量%以上であることが好ましく、80~99質量%であることがより好ましい。前記樹脂の含有率が80質量%以上であると、効率が高くなることから好ましい。
 有機不純物
 有機不純物としては、不純物樹脂、不純物化合物等を挙げることができる。前記不純物樹脂および不純物化合物は上述の通りである。
 このうち、ポリカーボネート樹脂との間で化学的特性の差異が大きい(アルカリ水溶液中での解重合のしやすさの差異が大きい)観点から、不純物樹脂は、ポリオレフィン樹脂、環状ポリオレフィンであることが好ましく、環状ポリオレフィンであることがより好ましい。
 第1の溶媒
 第1の溶媒は、解重合を促進する、解重合により得られるジヒドロキシ化合物を溶解する機能等を有する。
 前記第1の溶媒としては、特に制限されないが、脂肪族炭化水素系溶媒、芳香族炭化水素系溶媒が挙げられる。
 前記脂肪族炭化水素系溶媒としては、特に制限されないが、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、シクロヘキサン、シクロデカン等が挙げられる。
 前記芳香族炭化水素系溶媒としては、特に制限されないが、トルエン、キシレン、メシチレン等が挙げられる。
 これらのうち、第1の溶媒は、芳香族炭化水素系溶媒であることが好ましく、トルエン、キシレンであることがより好ましい。なお、上述の反応溶媒は単独で用いても、2種以上を組み合わせて用いてもよい。
 第1の溶媒の使用量としては、特に制限されないが、廃樹脂組成物100質量部に対して、30~2000質量部であることが好ましく、40~1500質量部であることがより好ましく、100~1000質量部であることがさらに好ましい。第1の溶媒の使用量が30質量部以上であると、廃樹脂組成物の有機成分が反応溶媒に十分溶解して反応効率が高くなることから好ましい。一方、第1の溶媒の使用量が2000質量部以下であると、反応時間が短くなることから好ましい。
 水
 水は、解重合を促進する機能等を有する。
 水の使用量としては、特に制限されないが、廃樹脂組成物100質量部に対して、10~2000質量部であることが好ましく、20~500質量部であることがより好ましく、30~3000質量部であることがさらに好ましく、40~100質量部であることが特に好ましい。
 金属酸化物
 金属酸化物は、反応溶液をアルカリ性に調整して、解重合を促進する機能等を有する。
 前記金属酸化物としては、特に制限されないが、水酸化ナトリウム、水酸化カリウム、水酸化ルビシウム等のアルカリ金属;水酸化カルシウム、水酸化バリウム等のアルカリ土類金属等が挙げられる。これらのうち、金属酸化物はアルカリ金属であることが好ましく、水酸化ナトリウム、水酸化カリウムであることがより好ましく、水酸化カリウムであることがさらに好ましい。なお、これらの金属酸化物は単独で用いても、2種以上を組み合わせて用いてもよい。
 前記金属酸化物の使用量は、特に制限されないが、ポリカーボネート樹脂のカーボネート結合1モルに対して、1.5~10モルであることが好ましく、2~8モルであることがより好ましく、2~4モルであることがさらに好ましい。金属酸化物の使用量が1.5モル以上であると、解重合が十分に行われることから好ましい。一方、金属酸化物の使用量が10モル以下であると、製造コストが下がることから好ましい。
 アルカリ水溶液中の金属酸化物の濃度は、アルカリ水溶液の全質量に対して、10~60質量%であることが好ましく、15~55質量%であることがより好ましく、20~50質量%であることがさらに好ましい。金属酸化物の濃度が10質量%以上であると、解重合の反応速度が高くなることから好ましい。一方、金属酸化物の濃度が60質量%以下であると、アルカリ水溶液がスラリーとならず反応が進行しやすくなることから好ましい。
 (処理)
 アルカリ溶液を処理することで、一般式(1’)~(4’)からなる群から選択される第1のジヒドロキシ化合物および前記一般式(1’)~(4’)からなる群から選択される少なくとも1つの他のジヒドロキシ化合物を含むジヒドロキシ化合物の混合物と、第1の溶媒とを含む反応溶液を得ることができる。
 なお、廃樹脂組成物に含まれる有機不純物は、上述の樹脂と対比して、解重合における化学的特性が異なる。このため、前記有機不純物は、反応しない、上述の樹脂よりも早期に解重合される、上述の樹脂よりも遅く解重合される等のいずれかとなる。例えば、有機不純物が、ポリオレフィン樹脂、環状ポリオレフィン等は、通常、塩基性条件下で反応しないことから、上述の樹脂のみが解重合されることとなり、容易に除去することができる。また、仮に有機不純物が解重合されたとしても、有機不純物の解重合物は、通常、ジヒドロキシ化合物と極性が異なるため容易に除去することができる。
 また、上述のとおり、所望の樹脂は一般式(1)~(4)からなる群から選択される少なくとも2つの構成単位を有する。このため、アルカリ溶液を処理により前記所望の樹脂が解重合されることで、少なくとも2種のジヒドロキシ化合物の混合物が得られる。ジヒドロキシ化合物の混合物は、構造が類似するため物理的特性が類似することがあり、これらを単離精製することが難しい場合がある。その結果、得られるジヒドロキシ化合物の純度が低くなり、リサイクルに際して制限が生じることがあった。これに対し、後述する工程(b1)を行うことで、純度の高いジヒドロキシ化合物を製造することができる。なお、「第1のジヒドロキシ化合物」は、工程(b1)で単離精製を意図するジヒドロキシ化合物であり、「他のジヒドロキシ化合物」は、工程(b1)で単離精製を意図しないジヒドロキシ化合物である。
 処理温度(解重合の反応温度)としては、特に制限されないが、120℃以下であることが好ましく、100℃以下であることがより好ましく、30~90℃であることがさらに好ましい。処理温度が120℃以下であると、副反応を防止できることから好ましい。
 なお、処理(解重合)後に得られる溶液は洗浄、抽出等の精製を適宜行うことで、反応溶液を得ることができる。なお、処理(解重合)後に得られる溶液は、通常、第1の溶媒に由来する有機相と、水に由来する水相とを、含む。この際、解重合により得られるジヒドロキシ化合物の混合物は、前記有機相に含まれうる。このため、処理(解重合)後に得られる溶液から、液-液抽出等により、水に由来する水相を除去することが好ましい。
 また、得られる反応溶液に含まれる有機不純物およびその解重合物は、ジヒドロキシ化合物と物性が異なる場合には、この段階で適宜精製することにより除去することができる。この場合には、後述する反応溶および結晶化溶液には、有機不純物およびその解重合物が含まれない、またはほとんど含まれない。
 (反応溶液)
 反応溶液は、ジヒドロキシ化合物の混合物と、第1の溶媒とを含む。反応溶液は、有機不純物、その解重合物等をさらに含みうる。
 ジヒドロキシ化合物の混合物は、上記一般式(1’)~(4’)からなる群から選択される第1のジヒドロキシ化合物、および上記一般式(1’)~(4’)からなる群から選択される少なくとも1つの他のジヒドロキシ化合物を含む。
 第1のジヒドロキシ化合物
 第1のジヒドロキシ化合物は、工程(b1)において、単離精製を意図するジヒドロキシ化合物である。
 第1のジヒドロキシ化合物としては、特に制限されないが、一般式(1’)~(3’)からなる群から選択されるジヒドロキシ化合物であることが好ましく、一般式(1’)のジヒドロキシ化合物であることがさらに好ましく、一般式(1’)(RおよびRがフェニル基であり、hおよびiが1である)のジヒドロキシ化合物であることが特に好ましい。
 なお、第1のヒドロキシ化合物は、工程(b1)において、第2の溶媒の25℃における溶解度が他のジヒドロキシ化合物よりも小さいことから、極性が小さいことが好ましい。例えば、一般式(3’)はフルオレン環にナフチル基を2つ有する骨格を有することから、第2の溶媒に溶解しにくい傾向があり好ましい。また、一般式(1’)~(3’)において、R~Rが、炭素数5~20のシクロアルキル基、炭素数6~20のアリール基等を有する場合もまた第2の溶媒に溶解しにくい傾向があり好ましい。
 他のジヒドロキシ化合物
 他のジヒドロキシ化合物は、工程(b1)において、単離精製を意図しないジヒドロキシ化合物である。
 他のジヒドロキシ化合物は、工程(b1)において、第2の溶媒の25℃における溶解度が第1のジヒドロキシ化合物よりも大きいことから、極性が大きいことが好ましい。例えば、一般式(4’)は、一般式(1’)~(3’)と比べると炭素数が小さいために相対的に極性が大きくなり、第2の溶媒に溶解しやすい傾向がある。
 第1の溶媒
 第1の溶媒は上述したものが用いられうる。なお、第1の溶媒の含有量は、解重合後の処理において、溶媒留去等により第1の溶媒の溶媒量を調整することができる。これにより、後述する結晶化溶液中での第1の溶媒の含有量を調整することができる。
 有機不純物およびその解重合物
 反応溶液は、有機不純物、その解重合物が含まれうる。
 有機不純物としては、上述したとおりである。有機不純物は、第1のヒドロキシ化合物と分子量および極性が大きく異なるため、後述する工程(b1)において容易に除去することができる。
 有機不純物の解重合物としては、特に制限されず、有機不純物が解重合することにより得られるモノマー、オリゴマー等が挙げられる。例えば、有機不純物としてポリエステル樹脂を含む場合、解重合によりアルコールおよびカルボン酸が得られうる。これらの解重合物は、ジヒドロキシ化合物と極性が大きく異なるため、後述する工程(b1)において容易に除去することができる。
 [工程(b1)]
 工程(b1)は、工程(a1)で得られた反応溶液に、第2の溶媒を添加して得られる結晶化溶液から前記第1のジヒドロキシ化合物を晶析する工程である。
 (結晶化溶液)
 結晶化溶液は、工程(a1)で得られた反応溶液に、第2の溶媒を添加して得られる。具体的には、結晶化溶液は、前記反応溶液に由来する第1のジヒドロキシ化合物、他のジヒドロキシ化合物、および第1の溶媒、並びに第2の溶媒を含む。その他、種結晶、有機不純物およびその解重合物等をさらに含んでいてもよい。
 第1のジヒドロキシ化合物
 第1のジヒドロキシ化合物は、所望の樹脂(通常、ポリカーボネート樹脂)の解重合により得られるものであり、単離精製を意図するジヒドロキシ化合物である。第1のジヒドロキシ化合物は、一般式(1’)~(4’)からなる群から選択されるジヒドロキシ化合物であり、一般式(1’)~(3’)からなる群から選択されるジヒドロキシ化合物であることが好ましく、一般式(1’)のジヒドロキシ化合物であることがさらに好ましく、一般式(1’)(RおよびRがフェニル基であり、hおよびiが1である)のジヒドロキシ化合物であることが特に好ましい。なお、第1のジヒドロキシ化合物は、通常1つである。
 ジヒドロキシ化合物の混合物(第1のジヒドロキシ化合物および他のジヒドロキシ化合物の混合物)中の第1のジヒドロキシ化合物のモル含有量(第1のジヒドロキシ化合物(モル)/ジヒドロキシ化合物の混合物(モル))は、30モル%以上であることが好ましく、30~95モル%であることが好ましく、40~80モル%であることがより好ましく、50~75モル%であることが特に好ましい。第1のジヒドロキシ化合物のモル含有量が30モル%以上であると、高純度のジヒドロキシ化合物を製造できる、製造コストに優れる等の観点から好ましい。
 結晶化溶液中の第1のジヒドロキシ化合物の含有量は、結晶化溶液の全質量に対して、1~35質量%であることが好ましく、5~30質量%であることがより好ましく、5~25質量%であることがさらに好ましく、10~25質量%であることが特に好ましい。
 他のジヒドロキシ化合物
 他のジヒドロキシ化合物は、所望の樹脂(通常、ポリカーボネート樹脂)の解重合により得られるものであり、単離精製を意図しないジヒドロキシ化合物である。なお、他のジヒドロキシ化合物は、1種でも2種以上であってもよい。
 ジヒドロキシ化合物の混合物(第1のジヒドロキシ化合物および他のジヒドロキシ化合物の混合物)中の他のジヒドロキシ化合物のモル含有量(他のジヒドロキシ化合物(モル)/ジヒドロキシ化合物の混合物(モル))は、5モル%以下であることが好ましく、5~70モル%であることが好ましく、20~60モル%であることがより好ましく、25モル%以上50モル%未満であることが特に好ましい。第1のジヒドロキシ化合物のモル含有量が5モル%以下であると、高純度のジヒドロキシ化合物を製造できる、製造コストに優れる等の観点から好ましい。なお、他のジヒドロキシ化合物が2種以上である場合には、その総モル含有量が上記範囲であることが好ましい。
 結晶化溶液中の他のジヒドロキシ化合物の含有量は、結晶化溶液の全質量に対して、1~35質量%であることが好ましく、5~30質量%であることがより好ましく、5~25質量%であることがさらに好ましく、10~25質量%であることが特に好ましい。なお、他のジヒドロキシ化合物が2種以上である場合には、その総含有量が上記範囲であることが好ましい。
 第1の溶媒
 第1の溶媒は上述したものが用いられうる。第1の溶媒は、通常、第1のジヒドロキシ化合物および他のジヒドロキシ化合物を溶解する。
 この際、第1の溶媒の25℃における第1のジヒドロキシ化合物、他のジヒドロキシ化合物の溶解度は、それぞれ0.01g/10mL以上であることが好ましく、それぞれ0.02g/10mL以上であることがより好ましく、0.05g/10mL以上であることがさらに好ましい。なお、第1の溶媒の25℃における第1のジヒドロキシ化合物および他のジヒドロキシ化合物の溶解度の上限は、特に制限されないが、晶析を好適に行う観点から、それぞれ3g/10mL以下であり、好ましくはそれぞれ2g/10mL以下であり、より好ましくはそれぞれ1g/10mL以下である。
 結晶化溶液中の第1の溶媒の含有量は、前記ジヒドロキシ化合物の混合物の総量に対して、0.1~10g/gであることが好ましく、0.5~7.5g/gであることがより好ましく、0.75~5g/gであることがさらに好ましい。第1の溶媒の含有量が上記範囲であると、晶析により純度の高いジヒドロキシ化合物(第1のジヒドロキシ化合物)が得られ得ることから好ましい。なお、結晶化溶液中の第1の溶媒の含有量は、解重合後の溶媒留去等により調整することができる。また、「ジヒドロキシ化合物の混合物の総量」とは、第1のジヒドロキシ化合物および他のジヒドロキシ化合物の総量を意味する。
 第2の溶媒
 第2の溶媒は、25℃における第1のジヒドロキシ化合物の溶解度と25℃における他のジヒドロキシ化合物の溶解度との差(25℃における溶解度差:他のジヒドロキシ化合物の溶解度(25℃)-第1のジヒドロキシ化合物の溶解度(25℃))が、0.1g/10mL以上であり、好ましくは0.3g/10mL以上であり、より好ましくは0.4~10g/10mLである。結晶化溶液中に第2の溶媒として、前記25℃における溶解度差がある溶媒を添加することで、解重合により得られる2種以上のジヒドロキシ化合物の混合物から、純度の高い第1のジヒドロキシ化合物を製造することができる。なお、他のジヒドロキシ化合物を2種以上含む場合には、25℃における溶解度がより小さいものを用いて、25℃における溶解度差を算出する。
 また、第2の溶媒は、70℃における第1のジヒドロキシ化合物の溶解度と70℃における他のジヒドロキシ化合物の溶解度との差(70℃における溶解度差:他のジヒドロキシ化合物の溶解度(70℃)-第1のジヒドロキシ化合物の溶解度(70℃))は、0.1g/10mL以上であることが好ましく、0.3g/10mL以上であることがより好ましく、0.4~10g/10mLであることが特に好ましい。70℃における溶解度差が0.1g/10mL以上であると、比較的高温側でも(冷却せずとも)効率よく高い純度のジヒドロキシ化合物(第1のジヒドロキシ化合物)を製造できることから好ましい。
 第2の溶媒としては、第1のヒドロキシ化合物および他のジヒドロキシ化合物の種類によっても異なるが、アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)、ジイソブチルケトン(DIBK)、シクロヘキサノン等のケトン溶媒;テトラヒドロフラン、1,3-ジオキソラン、1,4-ジオキサン等のエーテル溶媒;エタノール、プロパノール、イソプロピルアルコール、ブタノール、イソブチルアルコール等のアルコール溶媒等が挙げられる。これらのうち、第2の溶媒は、ケトン溶媒であることが好ましく、メチルエチルケトン(MEK)であることがより好ましい。なお、これらの溶媒は単独で用いても、2種以上を組み合わせて用いてもよい。
 なお、第2の溶媒を選択することによって、第1のヒドロキシ化合物および他のジヒドロキシ化合物を定めることができる。例えば、ジヒドロキシ化合物の混合物が、2,2’-ビス(2-ヒドロキシエトキシ)-6,6’-ジフェニル-1,1’-ビナフタレン(DP)、2,2’-ビス(2-ヒドロキシエトキシ)-1,1’-ビナフタレン(BNE)、および9,9-ビス[4-(2-ヒドロキシエトキシ)-3-フェニルフェニル]フルオレン(BPPEF)を含む場合、25℃におけるメチルエチルケトン(MEK)の溶解度を参照すると、DPが0.3g/10mLであり、BNEが0.75g/10mLであり、BPPEFが4.5g/10mLである。このため、第2の溶媒としてMEKを使用した場合、第1のヒドロキシ化合物がDPであり、他のジヒドロキシ化合物がBNEおよびBPPEFであり、25℃における溶解度差は、0.45g/10mLである。
 結晶化溶液中の第2の溶媒の含有量は、前記ジヒドロキシ化合物の混合物の総量に対して、0.3~3g/gであることが好ましく、0.5~2.5g/gであることがより好ましく、0.75~2g/gであることがさらに好ましい。第2の溶媒の含有量が上記範囲であると、晶析により純度の高いジヒドロキシ化合物(第1のジヒドロキシ化合物)が得られうることから好ましい。
 結晶化溶液中の第1の溶媒および第2の溶媒の総含有量は、前記ジヒドロキシ化合物の混合物の総量に対して、1~10g/gであることが好ましく、1.5~7.5g/gであることがより好ましく、1.5~2.5g/gであることがさらに好ましい。第1の溶媒および第2の溶媒の総含有量が1g/g以上であると、第1のジヒドロキシ化合物の純度が高くなりうることから好ましい。一方、第1の溶媒および第2の溶媒の総含有量が10g/g以下であると、収率が高くなりうることから好ましい。
 また、一実施形態において、結晶化溶液中の第1の溶媒および第2の溶媒の総含有量は、前記ジヒドロキシ化合物の混合物の総量に対して、2g/g以上であることが好ましく、4g/g以上であることがより好ましい。第1の溶媒および第2の溶媒の総含有量の上限値としては、10g/g以下であることが好ましい。第1の溶媒および第2の溶媒の総含有量が2g/g以上であると、第1のジヒドロキシ化合物の純度が高くなりうることから好ましい。
 結晶化溶液中の第2の溶媒の含有量(g/g)に対する第1の溶媒の含有量(g/g)の比(第1の溶媒/第2の溶媒)は、0.8~10であることが好ましく、0.8~7であることがより好ましく、0.9~4であることがさらに好ましく、1~3であることが特に好ましい。前記比(第1の溶媒/第2の溶媒)が上記範囲であると第1のジヒドロキシ化合物の純度が高くなりうることから好ましい。
 種結晶
 結晶化溶液は、種結晶をさらに含んでいてもよい。種結晶を添加することで、第1のジヒドロキシ化合物の晶析を促進することができる。なお、種結晶は、通常、第2の溶媒の添加前、同時、または添加後に反応溶液に添加される。
 種結晶としては、特に制限されないが、第1のジヒドロキシ化合物の結晶、他のジヒドロキシ化合物の結晶、ビスフェノールA等のポリカーボネートの原料となりうるジフェノール化合物等が挙げられる。これらのうち、種結晶は、晶析により得られるジヒドロキシ化合物(第1のジヒドロキシ化合物)の純度を高める観点から、第1のジヒドロキシ化合物の結晶であることが好ましい。なお、上述の種結晶は、単独で用いても、2種以上を組み合わせて用いてもよい。
 種結晶の形態としては、特に制限されないが、結晶性の溶媒和物であることが好ましい。この際、結晶性の溶媒和物を形成する化合物としては、特に制限されないが、一般式(1’)~(3’)からなる群から選択されるジヒドロキシ化合物であることが好ましく、一般式(1’)で表されるジヒドロキシ化合物であることがより好ましい。また、溶媒和物を構成する溶媒としては、特に制限されないが、上記第1の溶媒、上記第2の溶媒であることが好ましく、メタノール、トルエン、メチルエチルケトンであることがより好ましい。さらに、結晶性の溶媒和物における溶媒の含有量は、結晶性の溶媒和物を形成する化合物1モルに対して、0.3~1.5モルであることが好ましい。結晶性の溶媒和物の形態の種結晶を用いることで、純度の高いジヒドロキシ化合物が製造されうる。なお、本明細書において、「結晶性の溶媒和物」とは、種結晶の結晶格子の内部に溶媒を含む結晶形態を意味する。
 種結晶のモード径およびメジアン径の比(モード径/メジアン径)は2.0以下であることが好ましく、1.0~1.6であることがより好ましい。前記比(モード径/メジアン径)が2.0以下であると、得られるジヒドロキシ化合物が高純度かつ取り扱いがしやすい塊状結晶となりうることから好ましい。なお、本明細書において、「モード径」とは、最も高い頻度値を示す最頻径を意味し、レーザー回折法による粒度測定により測定される。また、「メジアン径」とは、累積粒度分布において、累積値50%粒子径を意味し、レーザー回折法による粒度測定により測定される。
 種結晶のアスペクト比は、1~8であることが好ましく、1~3であることがより好ましい。なお、本明細書において、「アスペクト比」とは、結晶中の最大結晶長さLおよび幅Wの比(L/W)を意味する。この際、「最大結晶長さL」は光学顕微鏡で撮影された結晶写真から結晶の長さが最も長くなるようにとった結晶の長さを意味する。また、「幅W」は最大結晶長さに対して90度の角度をなし、かつ、最大の長さとなる長さを意味する。なお、最大結晶長さLと幅Wは光学顕微鏡写真から無作為に選択した少なくとも30個の結晶を測定し算出した平均値である。
 種結晶の含有量は、前記ジヒドロキシ化合物の混合物の総量に対して、0.001~1質量%であることが好ましく、0.01~1質量%であることがより好ましい。
 また、種結晶の含有量は、結晶化溶液の全質量に対して、0.001~1質量%であることが好ましく、0.005~0.5質量%であることがより好ましく、0.01~0.1質量%であることがさらにこのましい。
 有機不純物、その解重合物
 有機不純物およびその解重合物としては、上述したものが挙げられる。
 結晶化溶液中の有機不純物の含有量は、結晶化溶液の全質量に対して、0.001~10質量%であることが好ましく、0.01~5質量%であることがより好ましく、0.1~2質量%であることがさらに好ましい。なお、有機不純物が2種以上である場合には、その総含有量が上記範囲であることが好ましい。
 結晶化溶液中の有機不純物の解重合物の含有量は、結晶化溶液の全質量に対して、0.0001~1質量%であることが好ましく、0.001~0.5質量%であることがより好ましく、0.01~0.2質量%であることがさらに好ましい。なお、有機不純物の解重合物が2種以上である場合には、その総含有量が上記範囲であることが好ましい。
 (晶析)
 晶析を行うことで、結晶化溶液から第1のジヒドロキシ化合物を得ることができる。この際、晶析により得られる第1のジヒドロキシ化合物は、通常、結晶形態である。
 晶析は、通常、ジヒドロキシ化合物(第1のジヒドロキシ化合物および他のジヒドロキシ化合物)を加熱して溶解した後、冷却して晶析することが好ましい。
 晶析前の加熱温度としては、使用する第1の溶媒および第2の溶媒によっても異なるが、50~90℃であることが好ましく、60~85℃であることがより好ましく、65~80℃であることがさらに好ましい。
 晶析温度としては、特に制限されないが、-10~60℃であることが好ましく、0~50℃であることがより好ましく、10~40℃であることがさらに好ましい。
 晶析時間としては、特に制限されないが、5分~5時間であることが好ましく、10分~3時間であることがより好ましく、30分~2時間であることがさらに好ましい。
 <第2の実施形態:ジヒドロキシ化合物の製造方法>
 本発明の第2の実施形態によれば、廃樹脂組成物からジヒドロキシ化合物を製造する方法が提供される。この際、下記一般式(1)~(4)からなる群から選択される少なくとも2つの構成単位を有する樹脂を含む廃樹脂組成物と、第1の溶媒と、水と、を含むアルカリ溶液を処理して、下記一般式(1’)~(4’)からなる群から選択される第1のジヒドロキシ化合物および前記一般式(1’)~(4’)からなる群から選択される少なくとも1つの他のジヒドロキシ化合物を含むジヒドロキシ化合物の混合物と、第1の溶媒とを含む反応溶液を得る工程(a2)と、前記反応溶液から少なくとも前記第1のジヒドロキシ化合物を晶析する工程(b2)と、を含む。また、前記工程(b2)が、反応溶液を80℃以上に加熱することを含む。
Figure JPOXMLDOC01-appb-C000020
 式中、
 X、X、X、X、X、およびXは、各々独立に、炭素数1~4のアルキレン基を表し、
 R、R、R、Rcc、R、Rdd、R、Ree、Rf、およびRffは、各々独立に、ハロゲン原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数5~20のシクロアルキル基、炭素数5~20のシクロアルコキシ基、炭素数6~20のアリール基、O、NおよびSから選択される1つ以上のヘテロ環原子を含む炭素数3~20のヘテロアリール基、炭素数6~20のアリールオキシ基、ならびに-C≡C-Rから選択され、
 Rは炭素数6~20のアリール基またはO、NおよびSから選択される1つ以上のヘテロ環原子を含む炭素数3~20のヘテロアリール基を表し、
 a、b、c、d、e、およびfは、各々独立に、0~10の整数を表し、
 h、i、j、j’、k、k’、m、m’、n、およびn’は、各々独立に、0~4の整数を表し、
 Rは、各々独立に、水素原子または炭素数1~3のアルキル基を表す。
Figure JPOXMLDOC01-appb-C000021
 式中、各記号は、上記一般式(1)~(4)におけるものと同義である。
 上記製造方法によれば、所望の合成樹脂、具体的には一般式(1)~(4)からなる群から選択される少なくとも2つの構成単位を有する樹脂と、有機不純物とを含む廃樹脂組成物から、所望の合成樹脂に由来するジヒドロキシ化合物を製造することができる。
 具体的には、まず、第1の実施形態と同様に、有機不純物を好適に除去することができる。工程(a2)では、所望の合成樹脂の少なくとも一部をアルカリ条件下で解重合する。この際、廃樹脂組成物中に含まれる有機不純物は、化学的特性(アルカリ水溶液中での解重合のしやすさ)、および/または解重合後の物性が異なることから、廃樹脂組成物から有機不純物を除去することができる。
 また、所望の合成樹脂が2種以上の構成単位を含む場合、解重合後はこれら2種以上のジヒドロキシ化合物の混合物となりうる。ここで、晶析によりジヒドロキシ化合物を得る場合、晶析に適した溶媒(第1の溶媒)を選定すると、2種以上のジヒドロキシ化合物の少なくとも1つが第1の溶媒中に十分に溶解しない場合があり、収率が低くなることがある。しかし、上記製造方法によれば、高い収率でジヒドロキシ化合物を製造することができる。
 すなわち、上記製造方法によれば、廃樹脂組成物から高い収率でジヒドロキシ化合物を製造することができる。すなわち、廃樹脂組成物を好適にリサイクルすることができる。
 なお、一実施形態において、上記製造方法は、廃樹脂組成物を調製する工程をさらに含んでいてもよい。一実施形態において、上記製造方法は、廃樹脂組成物を調製する工程、工程(a2)、および工程(b2)をこの順で含む。以下、各工程について詳細に説明する。
 [廃樹脂組成物を調製する工程]
 廃樹脂組成物を調製する工程は第1の実施形態に記載のものと同様であるから、ここでは説明を省略する。
 [工程(a2)]
 工程(a2)は第1の実施形態に記載の工程(a1)と同様であるから、ここでは説明を省略する。
 [工程(b2)]
 工程(b2)は、反応溶液から少なくとも前記第1のジヒドロキシ化合物を晶析する工程である。この際、工程(b2)は、反応溶液を80℃以上に加熱することを含む。
 (反応溶液)
 反応溶液は、ジヒドロキシ化合物の混合物と、第1の溶媒とを含む。反応溶液は、有機不純物、その解重合物等をさらに含みうる。
 ジヒドロキシ化合物の混合物、第1の溶媒、有機不純物、その解重合物は、第1の実施形態と同様であるからここでは説明を省略する。
 なお、第2の実施形態においては、第1の溶媒を選択することによって、第1のヒドロキシ化合物および他のジヒドロキシ化合物を定めることができる。例えば、ジヒドロキシ化合物の混合物が、2,2’-ビス(2-ヒドロキシエトキシ)-6,6’-ジフェニル-1,1’-ビナフタレン(DP)、2,2’-ビス(2-ヒドロキシエトキシ)-1,1’-ビナフタレン(BNE)、および9,9-ビス[4-(2-ヒドロキシエトキシ)-3-フェニルフェニル]フルオレン(BPPEF)を含む場合、25℃におけるトルエンの溶解度を参照すると、DPが0.3g/10mLであり、BNEが0.1g/10mLであり、BPPEFが0.05g/10mLである。このため、トルエンの溶解度が最も高いDPが第1のジヒドロキシ化合物であり、トルエンの溶解度が低い(温度によっては溶解しない場合がありうる)BNEおよびBPPEFが他のジヒドロキシ化合物である。
 また、反応溶液に第2の溶媒および種結晶をさらに添加してもよい。すなわち、第2の実施形態に係る反応溶液を第1の実施形態に係る結晶化溶液と同様の構成としてもよい。
 第2の溶媒および種結晶についても、第1の実施形態と同様であるからここでは説明を省略する。
 (晶析)
 晶析を行うことで、反応溶液から少なくとも第1のジヒドロキシ化合物を得ることができる。この際、晶析により得られる第1のジヒドロキシ化合物は、他のジヒドロキシ化合物を含みうる。これにより、得られるジヒドロキシ化合物の収率を高くすることができる。
 晶析は、通常、ジヒドロキシ化合物(第1のジヒドロキシ化合物および他のジヒドロキシ化合物)を加熱して溶解した後、冷却して晶析することが好ましい。
 第2の実施形態においては、晶析前の加熱温度は、80℃以上であり、好ましくは85℃超であり、さらに好ましくは90℃以上である。すなわち、工程(b2)は、反応溶液を80℃以上、好ましくは85℃超であり、さらに好ましくは90℃以上に加熱することを含む。なお、晶析前の加熱温度の上限は、第1の溶媒の沸点によっても異なるが、200℃以下であることが好ましく、150℃以下であることがより好ましい。解重合により得られる2種以上のジヒドロキシ化合物は、通常、類似の構造を有するため類似の物性を有するが、晶析に適した溶媒(第1の溶媒)を選定すると、物性の差異に基づき、他のジヒドロキシ化合物が第1の溶媒中に溶解しない場合がある。そこで、工程(b2)において、晶析前の加熱温度を制御することで、第1の溶媒に溶解しにくい他のジヒドロキシ化合物をより溶解させることができる。このような反応溶液を晶析することで、ジヒドロキシ化合物の収率を向上させることができる。
 晶析温度としては、特に制限されないが、-10~60℃であることが好ましく、0~50℃であることがより好ましく、10~40℃であることがさらに好ましい。
 晶析時間としては、特に制限されないが、5分~5時間であることが好ましく、10分~3時間であることがより好ましく、30分~2時間であることがさらに好ましい。
 <再生樹脂の製造方法>
 本発明の一形態によれば、再生樹脂の製造方法が提供される。前記再生樹脂の製造方法は、上述の方法で製造されたジヒドロキシ化合物を重合することを含む。
 ジヒドロキシ化合物から再生樹脂を得る方法は、適宜公知の重合技術が採用される。一実施形態において、再生樹脂は、ジヒドロキシ化合物および炭酸ジエステルを、塩基性化合物触媒および/またはエステル交換触媒の存在下、または無触媒下において、溶液縮合法を行うことで製造することができる。なお、再生樹脂の物性等の調整の観点から、廃樹脂組成物から製造されたジヒドロキシ化合物とともに、別途準備したジヒドロキシ化合物をモノマーとして併用することができる。
 前記炭酸ジエステルとしては、特に制限されないが、ジフェニルカーボネート、ジトリールカーボネート、ビス(クロロフェニル)カーボネート、m-クレジルカーボネート、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジシクロヘキシルカーボネート等が挙げられる。これらのうち、ジフェニルカーボネートであることが好ましい。
 炭酸ジエスル化合物の使用量は、ジヒドロキシ化合物1モルに対して、0.97~1.20モルであることが好ましく、0.98~1.10モルであることがより好ましく、1.00~1.10モルであることがさらに好ましい。
 塩基性化合物触媒としては、特に制限されないが、アルカリ金属化合物、アルカリ土類金属化合物、含窒素化合物等が挙げられる。
 前記アルカリ金属化合物としては、特に制限されないが、アルカリ金属の有機酸塩、無機塩、酸化物、水酸化物、水素化物、アルコキシドが挙げられる。具体的には、水酸化ナトリウム、水酸化カリウム、水酸化セシウム、水酸化リチウム、炭酸水素ナトリウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸リチウム、酢酸ナトリウム、酢酸カリウム、酢酸セシウム、酢酸リチウム、ステアリン酸ナトリウム、ステアリン酸カリウム、ステアリン酸セシウム、ステアリン酸リチウム、水素化ホウ素ナトリウム、フェニル化ホウ素ナトリウム、安息香酸ナトリウム、安息香酸カリウム、安息香酸セシウム、安息香酸リチウム、リン酸水素2ナトリウム、リン酸水素2カリウム、リン酸水素2リチウム、フェニルリン酸2ナトリウム、ビスフェノールAの2ナトリウム塩、2カリウム塩、2セシウム塩もしくは2リチウム塩、フェノールのナトリウム塩、カリウム塩、セシウム塩もしくはリチウム塩等が挙げられる。
 前記アルカリ土類金属化合物としては、特に制限されないが、アルカリ土類金属化合物の有機酸塩、無機塩、酸化物、水酸化物、水素化物又はアルコキシド等が挙げられる。具体的には、水酸化マグネシウム、水酸化カルシウム、水酸化ストロンチウム、水酸化バリウム、炭酸水素マグネシウム、炭酸水素カルシウム、炭酸水素ストロンチウム、炭酸水素バリウム、炭酸マグネシウム、炭酸カルシウム、炭酸ストロンチウム、炭酸バリウム、酢酸マグネシウム、酢酸カルシウム、酢酸ストロンチウム、酢酸バリウム、ステアリン酸マグネシウム、ステアリン酸カルシウム、安息香酸カルシウム、フェニルリン酸マグネシウム等が挙げられる。
 前記含窒素化合物としては、特に制限されないが、4級アンモニウムヒドロキシド、それらの塩、アミン類等が挙げられる。具体的には、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルベンジルアンモニウムヒドロキシド等のアルキル基、アリール基等を有する4級アンモニウムヒドロキシド類;トリエチルアミン、ジメチルベンジルアミン、トリフェニルアミン等の3級アミン類;ジエチルアミン、ジブチルアミン等の2級アミン類;プロピルアミン、ブチルアミン等の1級アミン類;2-メチルイミダゾール、2-フェニルイミダゾール、ベンゾイミダゾール等のイミダゾール類;アンモニア、テトラメチルアンモニウムボロハイドライド、テトラブチルアンモニウムボロハイドライド、テトラブチルアンモニウムテトラフェニルボレート、テトラフェニルアンモニウムテトラフェニルボレート等が挙げられる。
 エステル交換触媒としては、亜鉛、スズ、ジルコニウム、鉛等の塩が挙げられる。具体的には、酢酸亜鉛、安息香酸亜鉛、2-エチルヘキサン酸亜鉛、塩化スズ(II)、塩化スズ(IV)、酢酸スズ(II)、酢酸スズ(IV)、ジブチルスズジラウレート、ジブチルスズオキサイド、ジブチルスズジメトキシド、ジルコニウムアセチルアセトナート、オキシ酢酸ジルコニウム、ジルコニウムテトラブトキシド、酢酸鉛(II)、酢酸鉛(IV)等が挙げられる。
 上述の塩基性化合物触媒、エステル交換触媒は、単独で用いても、2種以上を組み合わせて用いてもよい。
 塩基性化合物触媒、エステル交換触媒の使用量(併用する場合はその総量)は、ジヒドロキシ化合物1モルに対して、1×10-9~1×10-3モルであることが好ましく、1×10-7~1×10-4モルであることがより好ましい。
 溶融重縮合法は、ジヒドロキシ化合物および炭酸ジエステルを、反応容器中で溶融後、生成するモノヒドロキシ化合物を滞留させた状態で反応を行うことが望ましい。前記モノヒドロキシ化合物を滞留させるために、反応装置を閉塞したり、減圧したり加圧したりするなど圧力を制御することができる。
 上述の方法で得られる再生樹脂は好適にプラスチック製品への用途に好適に適用することができる。
 以下、本発明について実施例を参照して詳述するが、本発明の技術的範囲はこれに限定されるものではない。なお、別段の記載がない限り、実施例中の「部」および「%」は、それぞれ「質量部」および「質量%」を表す。
 [製造例]
 原料として、2,2’-ビス(2-ヒドロキシエトキシ)-6,6’-ジフェニル-1,1’-ビナフタレン(DP)8.50kg(16.1モル)、2,2’-ビス(2-ヒドロキシエトキシ)-1,1’-ビナフタレン(BNE)1.12kg(3.0モル)、9,9-ビス[4-(2-ヒドロキシエトキシ)-3-フェニルフェニル]フルオレン(BPPEF)6.36kg(10.8モル)、ジフェニルカーボネート(DPC)6.62kg(30.9モル)、および2.5×10-2モル/リットルの炭酸水素ナトリウム(NaHCO)水溶液12ミリリットル(3.0×10-4モル、即ち、ジヒドロキシ化合物の合計1モルに対して、10×10-6モル)を、撹拌機および留出装置付きの50リットル反応器に入れ、窒素置換を行った後、窒素雰囲気700Torrの下、1時間かけて200℃に加熱し撹拌した。加熱開始20分後に原料の完全溶解を確認し、その後同条件で80分間撹拌した。その後、20分かけて減圧度を200Torrに調整し、200℃、200Torrの条件で10分保持し、エステル交換反応を行った。さらに30分間で215℃まで昇温、180Torrまで減圧した。その後、40分かけて230℃、150Torrに調整した。その後、10分かけて120Torrに調整した。さらに10分かけて100Torr、240℃とした。その後50分かけて1Torrとし、240℃、1Torrで30分間重合を行った。反応終了後、反応器内に窒素を導入して加圧し、生成したポリカーボネート樹脂をペレタイズしながら抜き出して、ポリカーボネート樹脂を製造した。なお、ポリカーボネート樹脂を構成するモノマー単位であるDP、BNE、BPPEF、DPCの構造式は以下のとおりである。
Figure JPOXMLDOC01-appb-C000022
 <第1の実施形態>
 [実施例1-1]
 (工程(a1))
 撹拌機、冷却管をつけた反応器にポリカーボネート樹脂100重量部、48%水酸化ナトリウム水溶液88重量部、および第1の溶媒であるトルエン734重量部を仕込み、加熱還流下で3時間反応させた。その後、液温を80~85℃まで冷却し、イオン交換水178重量部を加えた。撹拌、静置後に水相を分離し、有機相をイオン交換水で水洗した。有機相からトルエンを一部蒸留留去して反応溶液を得た。
 (工程(b1))
 反応溶液に、トルエンと同重量になるように第2の溶媒であるメチルエチルケトン(MEK)を添加した。なお、MEKに溶解しないDPが第1のジヒドロキシ化合物であり、MEKに溶解するBPPEFおよびBNEが他のジヒドロキシ化合物である。窒素置換を行った後、混合溶液を70~75℃に加熱制御し、ジヒドロキシ化合物が完全に溶解していることを確認した。次いで、混合溶液を40℃まで冷却した後、当該混合溶液に種結晶として別途用意したDP結晶を添加して結晶化溶液を調製した。
 30℃まで冷却して1時間以上静置することで晶析を行った。ろ過を行い、析出物をトルエンにて洗浄し、得られた結晶を乾燥することでジヒドロキシ化合物の結晶を得た。以下の方法で、ジヒドロキシ化合物の結晶中のDP/BPPEF/BNE(モル比)を測定した。
 ジヒドロキシ化合物の結晶の純度を高速液体クロマトグラフィ(HPLC)により分析した。詳細な分析条件は以下のとおりである。
 装置:Agilent Technologies 1260 Infinity
 カラム:TOSOY TSK-GEL ODS-80-Ts (5 μm, 4.6 mmφ x 250 mm)
 溶離液:0 min アセトニトリル/水 = 46.3/53.7 (vol%)
    :15 min アセトニトリル/水 = 46.3/53.7 (vol%)
    :30 min アセトニトリル/水 = 95/5 (vol%)
    :40 min アセトニトリル/水 = 95/5 (vol%)
 流速:1 mL/min
 カラム温度:25℃
 測定波長:254 nm
 注入量:5μm
 サンプル濃度:10 mg/10 mL (アセトニトリル溶媒)
 なお、結晶化溶液(晶析前のジヒドロキシ化合物の混合物)をHPLCにて測定し、得られたクロマトグラフのピーク面積%を基準することで、ジヒドロキシ化合物の結晶のクロマトグラフのピーク面積%からジヒドロキシ化合物のモル比を算出した。
 ジヒドロキシ化合物の結晶中のDP/BPPEF/BNE(モル比)=100/0/0であった。本結果から、ポリカーボネート樹脂を原料として、高純度のDPモノマーが得られたことが分かる。
 [実施例1-2]
 実施例1-1において、ポリカーボネート樹脂は工程(a1)において加水分解されてモノマー混合物となり、工程(b1)においてモノマー混合物を単離できることが示された。
 実施例1-2以降では、工程(b1)の条件を検討するべく、工程(a1)で得られる反応溶液として、これを模した以下の組成の混合溶液、すなわち、5.32gのDPと、0.7gのBNEと、3.98gのBPPEFと、8.62g(総ジヒドロキシ化合物(DP+BNE+BPPEF)1g当たりの添加量:0.86g)のトルエンと、を含む混合溶液を用いた。この際、DP/BPPEF/BNE(モル比)=54/36/10である。
 (工程(b1))
 上記混合溶液を100mL容量のナスフラスコに投入し、8.62gのMEK(総ジヒドロキシ化合物(DP+BNE+BPPEF)1g当たりの添加量:0.86g)を添加した。窒素置換を行った後、混合溶液を加熱して70~75℃に制御しながらジヒドロキシ化合物を完全に溶解させた。混合溶液を40℃まで冷却した後、当該混合溶液に種結晶として別途用意した10mgのDPを添加して結晶化溶液を調製した。なお、MEKの25℃における各ジヒドロキシ化合物の溶解度は以下のとおりである。
 DP=0.3g/10mL
 BNE=0.75g/10mL
 BPPEF=4.5g/10mL
 結晶化溶液を30℃まで冷却して1時間静置することで晶析を行った。ろ過を行い、析出物をトルエンにて洗浄し、得られた結晶を乾燥することでジヒドロキシ化合物の結晶を得た。実施例1と同様の方法で、ジヒドロキシ化合物の結晶中のDP/BPPEF/BNE(モル比)を測定したところ、DP/BPPEF/BNE(モル比)=100/0/0であった。
 また、収率を以下の式により算出したところ79%であった。なお、前記収率はジヒドロキシ化合物の結晶すべてがDPであるとして換算した場合の値である。
Figure JPOXMLDOC01-appb-M000023
 [実施例1-3~1-13および比較例1-1]
 トルエンおよびMEKの添加量を変更することを除いては、実施例1-2と同様の方法でジヒドロキシ化合物の結晶を得た。得られた結果を下記表1に示す。
Figure JPOXMLDOC01-appb-T000024
 表1の結果から、実施例1-2~1-13ではジヒドロキシ化合物中にDPが多く含有される純度の高いジヒドロキシ化合物の結晶が得られたことが分かる。
 <第2の実施形態>
 [実施例2-1]
 実施例2-1では、工程(b2)の条件を検討するべく、工程(a2)で得られる反応溶液として、これを模した以下の組成の混合溶液、すなわち、5.32gのDPと、0.70gのBNEと、3.98gのBPPEFと、51.72g(総ジヒドロキシ化合物(DP+BNE+BPPEF)1g当たりの添加量:5.17g)のトルエンと、を含む混合溶液を用いた。この際、DP/BPPEF/BNE(モル比)=54/36/10である。なお、トルエンの25℃における各ジヒドロキシ化合物の溶解度は以下のとおりである。
 DP=0.3g/10mL
 BNE=0.1g/10mL
 BPPEF=0.05g/10mL
 (工程(b2))
 上記混合溶液を100mL容量のナスフラスコに投入し、窒素置換を行った後、反応溶液を加熱して90~95℃に制御しながらジヒドロキシ化合物を完全に溶解させた。反応溶液を35℃まで冷却した後、当該反応溶液に種結晶として別途用意した10mgのDPを添加した。
 反応溶液を30℃まで冷却して1時間静置することで晶析を行った。ろ過を行い、析出物をトルエンにて洗浄し、得られた結晶を乾燥することでジヒドロキシ化合物の結晶を得た。
 実施例1-1と同様の方法で、ジヒドロキシ化合物の結晶中のDP/BPPEF/BNE(モル比)を測定したところ、DP/BPPEF/BNE(モル比)=57/42/1であった。また、実施例1-1と同様の方法で収率を算出したところ、137%であった。
 よって、実施例2-1の結果から、高い収率でジヒドロキシ化合物が得られたことが分かる。
 

Claims (9)

  1.  廃樹脂組成物からジヒドロキシ化合物を製造する方法であって、
     下記一般式(1)~(4):
    Figure JPOXMLDOC01-appb-C000001
    [式中、
     X、X、X、X、X、およびXは、各々独立に、炭素数1~4のアルキレン基を表し、
     R、R、R、Rcc、R、Rdd、R、Ree、Rf、およびRffは、各々独立に、ハロゲン原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数5~20のシクロアルキル基、炭素数5~20のシクロアルコキシ基、炭素数6~20のアリール基、O、NおよびSから選択される1つ以上のヘテロ環原子を含む炭素数3~20のヘテロアリール基、炭素数6~20のアリールオキシ基、ならびに-C≡C-Rから選択され、
     Rは炭素数6~20のアリール基またはO、NおよびSから選択される1つ以上のヘテロ環原子を含む炭素数3~20のヘテロアリール基を表し、
     a、b、c、d、e、およびfは、各々独立に、0~10の整数を表し、
     h、i、j、j’、k、k’、m、m’、n、およびn’は、各々独立に、0~4の整数を表し、
     Rは、各々独立に、水素原子または炭素数1~3のアルキル基を表す。]
    からなる群から選択される少なくとも2つの構成単位を有する樹脂を含む廃樹脂組成物と、第1の溶媒と、水と、を含むアルカリ溶液を処理して、下記一般式(1’)~(4’):
    Figure JPOXMLDOC01-appb-C000002
    [式中、各記号は、上記一般式(1)~(4)におけるものと同義である。]
    からなる群から選択される第1のジヒドロキシ化合物および前記一般式(1’)~(4’)からなる群から選択される少なくとも1つの他のジヒドロキシ化合物を含むジヒドロキシ化合物の混合物と、第1の溶媒とを含む反応溶液を得る工程(a1)と、
     前記反応溶液に、第2の溶媒を添加して得られる結晶化溶液から前記第1のジヒドロキシ化合物を晶析する工程(b1)と、を含み、
     第2の溶媒の25℃における第1のジヒドロキシ化合物の溶解度と、第2の溶媒の25℃における他のジヒドロキシ化合物の溶解度との差(他のジヒドロキシ化合物の溶解度-第1のジヒドロキシ化合物の溶解度)が、0.1g/10mL以上である、製造方法。
  2.  前記結晶化溶液が、種結晶をさらに含む、請求項1に記載の製造方法。
  3.  前記結晶化溶液中の第1の溶媒の含有量は、前記ジヒドロキシ化合物の混合物の総量に対して、0.1~10g/gである、請求項1または2に記載の製造方法。
  4.  前記結晶化溶液中の第2の溶媒の含有量は、前記ジヒドロキシ化合物の混合物の総量に対して、0.3~3g/gである、請求項1~3のいずれか1項に記載の製造方法。
  5.  前記結晶化溶液中の第1の溶媒および第2の溶媒の総含有量は、前記ジヒドロキシ化合物の混合物の総量に対して、1~10g/gである、請求項1~4のいずれか1項に記載の製造方法。
  6.  前記結晶化溶液中の第2の溶媒の含有量(g/g)に対する第1の溶媒の含有量(g/g)の比(第1の溶媒/第2の溶媒)は、0.8~10である、請求項1~5のいずれか1項に記載の製造方法。
  7.  廃樹脂組成物からジヒドロキシ化合物を製造する方法であって、
     下記一般式(1)~(4):
    Figure JPOXMLDOC01-appb-C000003
    [式中、
     X、X、X、X、X、およびXは、各々独立に、炭素数1~4のアルキレン基を表し、
     R、R、R、Rcc、R、Rdd、R、Ree、Rf、およびRffは、各々独立に、ハロゲン原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数5~20のシクロアルキル基、炭素数5~20のシクロアルコキシ基、炭素数6~20のアリール基、O、NおよびSから選択される1つ以上のヘテロ環原子を含む炭素数3~20のヘテロアリール基、炭素数6~20のアリールオキシ基、ならびに-C≡C-Rから選択され、
     Rは炭素数6~20のアリール基またはO、NおよびSから選択される1つ以上のヘテロ環原子を含む炭素数3~20のヘテロアリール基を表し、
     a、b、c、d、e、およびfは、各々独立に、0~10の整数を表し、
     h、i、j、j’、k、k’、m、m’、n、およびn’は、各々独立に、0~4の整数を表し、
     Rは、各々独立に、水素原子または炭素数1~3のアルキル基を表す。]
    からなる群から選択される少なくとも2つの構成単位を有する樹脂を含む廃樹脂組成物と、第1の溶媒と、水と、を含むアルカリ溶液を処理して、下記一般式(1’)~(4’):
    Figure JPOXMLDOC01-appb-C000004
    [式中、各記号は、上記一般式(1)~(4)におけるものと同義である。]
    からなる群から選択される第1のジヒドロキシ化合物および前記一般式(1’)~(4’)からなる群から選択される少なくとも1つの他のジヒドロキシ化合物を含むジヒドロキシ化合物の混合物と、第1の溶媒とを含む反応溶液を得る工程(a2)と、
     前記反応溶液から少なくとも前記第1のジヒドロキシ化合物を晶析する工程(b2)と、を含み、
     前記工程(b2)が、反応溶液を80℃以上に加熱することを含む、製造方法。
  8.  前記廃樹脂組成物液が、下記一般式(6)~(8):
    Figure JPOXMLDOC01-appb-C000005
    [式中、
     Xは、各々独立に、炭 素数1~10のアルキレン基を表し、
     R、R、およびRは、各々独立に、ハロゲン原子、置換または非置換の炭素数1~20のアルキル基、置換または非置換の炭素数1~20のアルコキシ基、置換または非置換の炭素数5~20のシクロアルキル基、置換または非置換の炭素数5~20のシクロアルコキシ基、置換または非置換の炭素数6~20のアリール基、置換または非置換のO、NおよびSから選択される1つ以上のヘテロ環原子を含む炭素数3~20のヘテロアリール基、置換または非置換の炭素数6~20のアリールオキシ基、並びに-C≡C-Rから選択され、
     Rは置換または非置換の炭素数6~20のアリール基またはO、NおよびSから選択される1つ以上のヘテロ環原子を含む炭素数3~20のヘテロアリール基を表し、
     pは、各々独立に、0または1の整数を表し、
     q、r、およびsは、各々独立に、0~10の整数を表し、
     tは、1~3の整数を表し、
     ここで、qが2以上であり、2つのRが隣接する炭素原子に存在する場合、2つのRが一緒になって環構造を形成してもよく、
     rが2以上であり、2つのRが隣接する炭素原子に存在する場合、2つのRが一緒になって環構造を形成してもよく、
     sが2以上であり、2つのRが隣接する炭素原子に存在する場合、2つのRが一緒になって環構造を形成してもよく、
     Rは、水素原子または炭素数1~3のアルキル基を表す。]
    からなる群から選択される少なくとも1つの構成単位を有する不純物樹脂を含む、請求項1~7のいずれか1項に記載の製造方法。
  9.  請求項1~8のいずれか1項に記載の方法で製造されたジヒドロキシ化合物を重合することを含む、再生樹脂の製造方法。
PCT/JP2022/036961 2021-10-05 2022-10-03 ジヒドロキシ化合物の製造方法および再生樹脂の製造方法 WO2023058599A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020247004619A KR20240081479A (ko) 2021-10-05 2022-10-03 디하이드록시 화합물의 제조 방법 및 재생 수지의 제조 방법
CN202280060034.2A CN117957265A (zh) 2021-10-05 2022-10-03 二羟基化合物的制造方法和再生树脂的制造方法
JP2023552870A JPWO2023058599A1 (ja) 2021-10-05 2022-10-03
EP22878468.2A EP4414409A1 (en) 2021-10-05 2022-10-03 Dihydroxy compound manufacturing method and recycled resin manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021164219 2021-10-05
JP2021-164219 2021-10-05

Publications (1)

Publication Number Publication Date
WO2023058599A1 true WO2023058599A1 (ja) 2023-04-13

Family

ID=85804269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036961 WO2023058599A1 (ja) 2021-10-05 2022-10-03 ジヒドロキシ化合物の製造方法および再生樹脂の製造方法

Country Status (6)

Country Link
EP (1) EP4414409A1 (ja)
JP (1) JPWO2023058599A1 (ja)
KR (1) KR20240081479A (ja)
CN (1) CN117957265A (ja)
TW (1) TW202323413A (ja)
WO (1) WO2023058599A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003171324A (ja) * 2001-11-30 2003-06-20 Teijin Ltd 芳香族ポリカーボネートのケミカルリサイクル方法
JP2011131507A (ja) 2009-12-24 2011-07-07 Idemitsu Kosan Co Ltd 廃棄光ディスク及び/又は回収光ディスクからのポリカーボネート樹脂の回収方法及び回収したポリカーボネート樹脂を成形して得られる光学成形品
JP2015110555A (ja) * 2013-11-11 2015-06-18 田岡化学工業株式会社 フルオレン構造を含む樹脂からビスフェノールフルオレン類を回収する方法
WO2016052370A1 (ja) * 2014-09-30 2016-04-07 三菱瓦斯化学株式会社 ポリカーボネート樹脂および光学レンズ
WO2019146507A1 (ja) * 2018-01-23 2019-08-01 三菱瓦斯化学株式会社 ポリカーボネート樹脂組成物、その製造方法及び光学レンズ
WO2021200892A1 (ja) * 2020-03-31 2021-10-07 三菱瓦斯化学株式会社 再生樹脂の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003171324A (ja) * 2001-11-30 2003-06-20 Teijin Ltd 芳香族ポリカーボネートのケミカルリサイクル方法
JP2011131507A (ja) 2009-12-24 2011-07-07 Idemitsu Kosan Co Ltd 廃棄光ディスク及び/又は回収光ディスクからのポリカーボネート樹脂の回収方法及び回収したポリカーボネート樹脂を成形して得られる光学成形品
JP2015110555A (ja) * 2013-11-11 2015-06-18 田岡化学工業株式会社 フルオレン構造を含む樹脂からビスフェノールフルオレン類を回収する方法
WO2016052370A1 (ja) * 2014-09-30 2016-04-07 三菱瓦斯化学株式会社 ポリカーボネート樹脂および光学レンズ
WO2019146507A1 (ja) * 2018-01-23 2019-08-01 三菱瓦斯化学株式会社 ポリカーボネート樹脂組成物、その製造方法及び光学レンズ
WO2021200892A1 (ja) * 2020-03-31 2021-10-07 三菱瓦斯化学株式会社 再生樹脂の製造方法

Also Published As

Publication number Publication date
TW202323413A (zh) 2023-06-16
CN117957265A (zh) 2024-04-30
KR20240081479A (ko) 2024-06-07
JPWO2023058599A1 (ja) 2023-04-13
EP4414409A1 (en) 2024-08-14

Similar Documents

Publication Publication Date Title
Paszun et al. Chemical recycling of poly (ethylene terephthalate)
JP4647625B2 (ja) 廃棄ポリエチレンテレフタレート(pet)の化学的リサイクル手法
CN105764878B (zh) 从包含芴结构的树脂回收双酚芴类的方法
WO2001030729A1 (fr) Procede de separation et de recuperation de dimethylterephthalate et d'ethylene glycol de residus de polyester
JP2002509962A (ja) 汚染されたポリエチレンテレフタレートを汚染除去されたポリブチレンテレフタレートに転化するための改良された方法
WO2015053130A1 (ja) フルオレン構造を有するポリカーボネート樹脂の解重合方法
WO2023058599A1 (ja) ジヒドロキシ化合物の製造方法および再生樹脂の製造方法
WO2021200892A1 (ja) 再生樹脂の製造方法
TW500740B (en) Method of crystallizing low-molecular polycarbonate and process for producing polycarbonate resin from the same
US20240376286A1 (en) Dihydroxy compound manufacturing method and recycled resin manufacturing method
JPH03223330A (ja) ポリカーボネートプレポリマー多孔体とその製造方法、及びそれを用いる芳香族ポリカーボネートの製造方法
JP2023013730A (ja) ポリカーボネート樹脂の分解方法、ウレアの製造方法、ビスフェノールの製造方法、及び再生ポリカーボネート樹脂の製造方法
WO2024203984A1 (ja) 再生樹脂の製造方法
JP2009120766A (ja) テレフタル酸ジメチル及びエチレングリコールの回収方法
JP4272123B2 (ja) 廃芳香族ポリカーボネートから精製された芳香族ジヒドロキシ化合物のアルカリ水溶液を得る方法
JP7524721B2 (ja) ビスフェノールの製造方法および再生ポリカーボネート樹脂の製造方法
KR101582457B1 (ko) 폴리에스테르 합성 공정 슬러지의 화학적 재활용 방법
ISLAS Development of Multifunctional Polymeric Catalyst and their Application In Polyester Recycling (Desarrollo de Catalizadores Poliméricos Multifuncionales y su Aplicación en la Depolimerización de Poliésteres)
EP4194490A1 (en) A method of recycling plastic waste
JP5526402B2 (ja) 不飽和ポリエステル樹脂を含む成形品廃材を分解して不飽和ポリエステル樹脂を再合成するための再生原料を生産する方法とその不飽和ポリエステル樹脂を再合成する方法と不飽和ポリエステル樹脂の製造方法。
WO2024154816A1 (ja) ビスフェノールの製造方法、及び、再生ポリカーボネート樹脂の製造方法
WO2023203980A1 (ja) ビス-(2-ヒドロキシエチル)テレフタレートの製造方法および再生ポリエチレンテレフタレートの製造方法
WO2024143358A1 (ja) リサイクルポリカーボネート樹脂及びその製造方法
JP2004323664A (ja) ポリアルキレンテレフタレートのリサイクル方法
JP2024032229A (ja) ビスフェノールの製造方法及び再生ポリカーボネート樹脂の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22878468

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023552870

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280060034.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18691960

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022878468

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022878468

Country of ref document: EP

Effective date: 20240506