[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023058301A1 - Method for producing trisphenolmethane - Google Patents

Method for producing trisphenolmethane Download PDF

Info

Publication number
WO2023058301A1
WO2023058301A1 PCT/JP2022/028933 JP2022028933W WO2023058301A1 WO 2023058301 A1 WO2023058301 A1 WO 2023058301A1 JP 2022028933 W JP2022028933 W JP 2022028933W WO 2023058301 A1 WO2023058301 A1 WO 2023058301A1
Authority
WO
WIPO (PCT)
Prior art keywords
trisphenolmethanes
catalyst
phenol
phenols
trisphenolmethane
Prior art date
Application number
PCT/JP2022/028933
Other languages
French (fr)
Japanese (ja)
Inventor
一也 竹村
Original Assignee
Jfeケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeケミカル株式会社 filed Critical Jfeケミカル株式会社
Priority to JP2022568921A priority Critical patent/JP7303396B1/en
Priority to CN202280006238.8A priority patent/CN116261573B/en
Priority to KR1020237001365A priority patent/KR102615959B1/en
Publication of WO2023058301A1 publication Critical patent/WO2023058301A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/11Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms
    • C07C37/20Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms using aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/32Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring increasing the number of carbon atoms by reactions without formation of -OH groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/12Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings
    • C07C39/15Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings with all hydroxy groups on non-condensed rings, e.g. phenylphenol
    • C07C39/16Bis-(hydroxyphenyl) alkanes; Tris-(hydroxyphenyl)alkanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • C08G8/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a method for producing trisphenolmethanes useful as raw materials for epoxy resins, curing agents for epoxy resins, and raw materials for photosensitive resins.
  • the present invention relates to a method for producing trisphenolmethanes that are excellent and produce high-purity products, and to a method for producing trisphenolmethanes that gives cured epoxy resins with excellent transparency when the obtained trisphenolmethanes are used.
  • Trisphenolmethanes which are obtained by condensing phenols and aromatic hydroxyaldehydes with an acid catalyst, have traditionally been used as raw materials for heat-resistant epoxy resins and curing agents for epoxy resins.
  • Patent Document 1 A method for producing trisphenolmethanes is disclosed in Patent Document 1, for example. This method uses hydrochloric acid, sulfuric acid, sulfuric anhydride, p-toluenesulfonic acid, methanesulfonic acid, trifluoromethanesulfonic acid, oxalic acid, formic acid, phosphoric acid, trichloroacetic acid, trifluoroacetic acid, etc. as a catalyst, and After reacting at a predetermined temperature, sodium hydroxide or the like is added to neutralize the acid catalyst.
  • a method for removing the sodium salt to the aqueous layer requires waste water treatment and a step of concentrating the organic solvent, resulting in high production costs. Furthermore, the above-described method has a problem of poor transparency because a minute amount of coloring component is by-produced and there is no step of removing it.
  • a phenolic resin is synthesized by reacting a phenol with an unsaturated polycyclic hydrocarbon compound having two or more carbon-carbon double bonds in the presence of a Lewis acid catalyst.
  • a method is known in which hydrotalcites are added to the reaction solution to adsorb the catalyst, and then the hydrotalcites are filtered to produce phenolic resins with little residual catalyst (Patent Document 2).
  • Patent Document 2 When this method is used for the production of trisphenolmethanes, high-purity trisphenolmethane can be obtained with little residual catalyst. There is a problem that it takes time to filter the catalyst/adsorbent, resulting in poor productivity.
  • Patent Document 3 a method of producing a novolac resin by reacting an aromatic amine compound and formaldehyde in an organic solvent is disclosed (Patent Document 3).
  • this method is used to produce trisphenolmethanes and the catalyst is removed by adsorption with hydrotalcites, the viscosity of the reaction solution is lowered by the organic solvent, and the catalyst adsorbent can be filtered in a short time.
  • the organic solvent does not react with the polymerization terminal, it is possible to produce high molecular weight trisphenolmethanes.
  • this method requires separate recovery of the organic solvent and phenol from the reaction mixture and their respective recycling, which complicates the process and increases the cost, as well as the problem that the organic solvent remains in the product. be.
  • this method also makes it difficult to remove the coloring component, resulting in poor transparency.
  • the present invention provides trisphenolmethanes that are excellent in productivity, have high purity, and exhibit excellent transparency when used as raw materials for epoxy resins or curing agents.
  • An object of the present invention is to provide a method for producing trisphenolmethanes.
  • the present inventors have found that the Lewis acid catalyst used in the synthesis of trisphenolmethanes is deactivated with a catalyst deactivator, and then phenols are added and then filtered.
  • the inventors have found that the above problems can be solved, and have completed the present invention. That is, the inventors have found that the above problems can be solved by the following configuration.
  • trisphenolmethanes that are excellent in productivity, have high purity, and exhibit excellent transparency when used as raw materials for epoxy resins or curing agents can be obtained.
  • a method for producing trisphenolmethanes can be provided.
  • the trisphenolmethanes obtained by the method for producing trisphenolmethanes of the present invention are used as raw materials for epoxy resins, they contain few impurities. It is also expected to have the effect of being able to separate liquids in a short time.
  • trisphenolmethanes The method for producing trisphenolmethanes of the present invention is described below.
  • the numerical range represented by "-" means a range including the numerical values before and after "-” as lower and upper limits.
  • each component may be used individually by 1 type, or may use 2 or more types together.
  • the content of that component refers to the total content unless otherwise specified.
  • trisphenolmethanes is also simply referred to as “trisphenolmethane”.
  • Lewis acid catalyst (C) is also simply referred to as "catalyst”.
  • the method for producing trisphenolmethanes of the present invention comprises a trisphenolmethane synthesis step of synthesizing trisphenolmethanes by reacting phenols (A) and aromatic hydroxyaldehydes (B) in the presence of a Lewis acid catalyst (C); a catalyst deactivation step of deactivating the Lewis acid catalyst (C) by adding a catalyst deactivator (D) to the reaction solution obtained in the trisphenolmethanes synthesis step; A phenols addition step of adding phenols (E) to the reaction solution obtained in the catalyst deactivation step; A filtration step of removing the Lewis acid catalyst (C) and the catalyst deactivator (D) from the reaction solution by filtering the reaction solution obtained in the phenol addition step; A method for producing trisphenolmethanes, comprising a phenol removal step of obtaining the trisphenolmethanes by removing phenols from the filtrate obtained in the filtration step.
  • the Lewis acid catalyst used in the synthesis of trisphenolmethanes is deactivated with a catalyst deactivator and these are removed by filtration, so that no neutral salt remains and high-purity tris Phenolic methanes are obtained.
  • the trisphenolmethanes obtained by the production method of the present invention are used as raw materials for epoxy resins or curing agents, they exhibit excellent transparency.
  • the phenols are added again and then filtered, the viscosity of the reaction solution is low and the filtration time is short. That is, the production method of the present invention is also excellent in productivity.
  • the trisphenolmethanes synthesis step is a step of synthesizing trisphenolmethanes by reacting phenols (A) and aromatic hydroxyaldehydes (B) in the presence of a Lewis acid catalyst (C).
  • Phenols (A) are not particularly limited. Specific examples of phenols (A) include phenol, p-cresol, o-cresol, m-cresol, various xylenols, 1-naphthol, 2-naphthol, hydroquinone, resorcinol, catechol, various naphthalene diols, and these Examples thereof include alkyl groups, phenyl groups, naphthyl groups, and compounds substituted with at least one or more halogen atoms. In the present invention, these phenols may be used singly or as a mixture of two or more. Among these, phenol, cresols, and naphthols are preferable because they are readily available and have good heat resistance, and phenol is most preferable because it is inexpensive and has excellent properties.
  • Aromatic hydroxyaldehydes (B) are not particularly limited as long as they are compounds in which a hydroxyl group and an aldehyde group are bonded to an aromatic ring.
  • p-hydroxybenzaldehyde, m-hydroxybenzaldehyde, o-hydroxybenzaldehyde (salicylaldehyde) various hydroxynaphthaldehydes, aromatic hydroxyaldehydes or hydroxynaphthaldehydes, alkyl groups, phenyl groups, naphthyl groups, halogen atoms
  • a compound or the like substituted by at least one can be used.
  • aromatic hydroxyaldehydes may be used alone or as a mixture of two or more.
  • p-hydroxybenzaldehyde and o-hydroxybenzaldehyde are easily available, and trisphenolmethanes obtained from these are used as a raw material for epoxy resins or as curing agents. It is preferable because it has an excellent balance of heat resistance and low melt viscosity.
  • the Lewis acid catalyst (C) is not particularly limited, and examples thereof include boron trifluoride phenol complex, boron trifluoride ether complex, boron trifluoride, aluminum chloride, zinc chloride, titanium chloride, and alkylaluminum.
  • boron trifluoride phenol complex, a boron trifluoride ether complex, and boron trifluoride are preferable because of their high reactivity, and the boron trifluoride phenol complex is most preferable because of its highest reactivity.
  • the softening point and molecular weight of the trisphenolmethanes can be changed by changing the ratio of the raw material phenols (A) and the aromatic hydroxyaldehydes (B).
  • the ratio of phenols (A)/aromatic hydroxyaldehydes (B) is small, the softening point is high and high molecular weight trisphenolmethanes are obtained, and the phenols (A)/aromatic hydroxyaldehydes (B ), a low softening point and low molecular weight trisphenolmethanes can be obtained.
  • the phenol (A) is preferably used in a stoichiometric excess with respect to the aromatic hydroxyaldehyde (B).
  • the molar ratio of phenols (A)/aromatic hydroxyaldehydes (B) is preferably 1.5 to 30, more preferably 2.0 to 20, and most preferably , 2.5-15. If the ratio of phenols (A) is lower than this range, the molecular weight of the obtained trisphenolmethanes becomes too high, and when used as a raw material for epoxy resins or as a curing agent for epoxy resins, the viscosity is high and kneading is difficult. The progress of the curing reaction becomes difficult. On the other hand, if the ratio of the phenol (A) is higher than this range, there is a problem that the yield of trisphenolmethanes obtained is low and the cost is high.
  • the reaction temperature is not particularly limited, but preferably the temperature range is from 50° C. to the boiling point of the phenol (A), more preferably from 70° C. to 160° C., most preferably from 100° C. to A range of 150° C. is preferred. If the temperature is lower than this range, the reaction rate is slow, and it takes a long time to complete the reaction.
  • the reaction time is not particularly limited, but it is usually preferable to carry out until the residual aromatic hydroxyaldehyde (B) in the reaction solution is substantially gone. Aromatic hydroxyaldehydes (B) are consumed and the reaction is completed in 5 to 15 hours. The residual amount of aromatic hydroxyaldehydes (B) can be confirmed, for example, by gel permeation chromatography (GPC).
  • trisphenolmethanes are synthesized in the trisphenolmethanes synthesis step.
  • the trisphenolmethanes include, for example, trinuclear compounds consisting of two phenol skeletons and one aromatic hydroxyaldehyde skeleton, and 5
  • a mixture of a nucleus and a heptene nucleus composed of 4 phenol skeletons and 3 aromatic hydroxyaldehyde skeletons can be mentioned.
  • the catalyst deactivation step is a step of deactivating the Lewis acid catalyst (C) by adding a catalyst deactivator (D) to the reaction solution obtained in the above-described trisphenolmethanes synthesis step. be. In the production method of the present invention, it is necessary to add the catalyst deactivator (D) after the synthesis reaction is completed.
  • the catalyst deactivator (D) is a poorly soluble substance in the reaction solution that deactivates the catalyst, adsorbs the catalyst, and can be removed together with the catalyst by filtration.
  • hydrotalcites, silica, alumina, and activated carbon are excellent in deactivating the catalyst and adsorbing the catalyst, and the resulting trisphenolmethanes contain less catalyst and have a higher purity. It is preferred because it is expensive. In particular, a mixture of hydrotalcites and activated carbon is most preferred because it has higher purity of trisphenolmethanes and more excellent transparency.
  • the amount of the catalyst deactivator (D) added is not particularly limited, but is preferably 1.0 to 20 times, more preferably 2.0 times the Lewis acid catalyst (C) in terms of mass ratio. ⁇ 15 times.
  • the lower limit of the content of the catalyst deactivator (D) is as above, deactivation and adsorption of the catalyst become more favorable, and residual catalyst is further reduced.
  • the upper limit of the content of the catalyst deactivator (D) is as described above, the filtration time is shortened and the productivity is further improved.
  • the time required for deactivation and adsorption of the catalyst is not particularly limited, but preferably, the catalyst deactivator (D) is added and stirred at 70 ° C. to 100 ° C. for 10 minutes to 3 hours to substantially In many cases, catalyst deactivation and adsorption are completed.
  • the phenol addition step is a step of adding phenols (E) to the reaction solution obtained in the catalyst deactivation step.
  • the addition of the phenol (E) reduces the viscosity of the reaction solution, and in the step of filtering the catalyst deactivator (D), the filtration time can be shortened and the productivity improved. Even if the phenol (E) is added after deactivating the catalyst, the condensation reaction does not proceed because the catalyst is deactivated, and the viscosity of the reaction solution can be reduced.
  • phenols (E) are the same as the phenols (A) described above, but it is preferable to use the same phenols as the phenols (A) as the phenols (E).
  • the amount of the phenol (E) added is not particularly limited, but the total amount of the phenol (A) and the aromatic hydroxyaldehyde (B) added at the start of the reaction is 0.1 to 5.0 times the mass ratio. 0 times is preferable, and 0.2 to 3.0 times is more preferable. If the added amount of the phenol (E) is larger than this range, it is necessary to add a large amount of the phenol (E) to the reaction vessel, which is not preferable because the production amount of trisphenolmethanes decreases. It is preferable that the lower limit of the amount of the phenol (E) to be added is as above, since the viscosity of the reaction solution is further lowered and the filtration time is further shortened.
  • the filtration step is a step of removing the Lewis acid catalyst (C) and the catalyst deactivator (D) from the reaction liquid by filtering the reaction liquid obtained in the phenol addition step described above.
  • Filtration can be performed by either vacuum filtration or pressure filtration, and in order to shorten the filtration time, it is preferable to perform filtration at a temperature of 40 ° C. to the boiling point of phenols, preferably 50 ° C. to 100 ° C. .
  • the filtrate obtained by filtration is melted by removing phenols at 100° C. to 250° C., preferably 120° C. to 240° C. under normal pressure or reduced pressure, optionally while introducing steam.
  • the desired trisphenolmethanes are obtained in this state.
  • the target trisphenolmethanes can be obtained by withdrawing this from the reaction vessel while melting it, or by cooling it to solidify it, pulverizing it and taking it out.
  • the removed and recovered phenols can be used as raw materials for the next reaction, and cost can be reduced by recycling the raw materials.
  • the trisphenolmethanes obtained by the production method of the present invention are highly pure with few impurities such as the catalyst deactivator (D).
  • the trisphenolmethanes obtained by the production method of the present invention can be used as they are as a curing agent for epoxy resins that require high purity without performing an operation for purification.
  • it is advantageous as a raw material for epoxy resins because it contains few impurities, so that it produces less emulsion in the water washing process and the like, shortening the oil-water separation time.
  • the epoxy resin cured product thus obtained has excellent transparency and contains few impurities.
  • the trisphenolmethanes obtained by the production method of the present invention can be added or reacted with various resins and additives within a range that does not impair the effects of the present invention.
  • resins and additives include curing agents, flame retardants, carbon fibers, glass fibers, and the like.
  • the production method of the present invention can inexpensively produce trisphenolmethanes with high purity and improved transparency.
  • the trisphenolmethanes obtained by the production method of the present invention are useful as curing agents for epoxy resins and raw materials for epoxy resins, printed circuit boards, semiconductor sealing materials, photosensitive resin raw materials, and resin raw materials for optical lenses.
  • Trisphenolmethane was prepared as follows.
  • ⁇ Phenol addition step filtration step> After that, 1000 g of phenol was added, the temperature was raised to 80° C. again, and the mixture was filtered under reduced pressure while still at 80° C. to remove hydrotalcite and activated carbon. The filtration time was 2 minutes and 33 seconds.
  • Example 2 Trisphenolmethane was obtained in the same manner as in Example 1, except that 45 g of hydrotalcite was used as a catalyst deactivator.
  • Example 3 Trisphenolmethane was obtained in the same manner as in Example 1, except that 45 g of silica was used as a catalyst deactivator.
  • Example 4 Trisphenolmethane was obtained in the same manner as in Example 1, except that 183 g of p-hydroxybenzaldehyde was used instead of 183 g of salicylaldehyde.
  • Example 5 Trisphenolmethane was obtained in the same manner as in Example 1, except that the starting phenol was changed to 404 g (5.25 mol) and the phenol added in the phenol addition step was changed to 2500 g.
  • Example 6 Trisphenolmethane was obtained in the same manner as in Example 1, except that 45 g of activated carbon was used as the catalyst deactivator.
  • Example 7 Trisphenolmethane was obtained in the same manner as in Example 1, except that 45 g of alumina was used as the catalyst deactivator.
  • Example 8 Trisphenolmethane was obtained in the same manner as in Example 1, except that 22.5 g of hydrotalcite and 22.5 g of activated carbon were used as catalyst deactivators.
  • Example 9 Trisphenolmethane was obtained in the same manner as in Example 1, except that 13.5 g of hydrotalcite and 31.5 g of activated carbon were used as catalyst deactivators.
  • Table 1 shows the filtration temperature and the filtration time of the filtration step for each example. It can be said that the shorter the filtration time, the better the productivity.
  • a cured epoxy resin was produced using the obtained trisphenolmethane. Specifically, it is as follows. In an aluminum cup, 4 g of an alicyclic epoxy resin (Celoxide 2021P manufactured by Daicel Corporation, epoxy equivalent: 130 g/equivalent), 3 g of the resulting trisphenolmethane, and 0.14 g of 2-methylimidazole were mixed and heated to 140°C. The mixture was melted and kneaded with a spatula to make it uniform. Then, it was cured at 160° C. for 2 hours, 180° C. for 2 hours, and 200° C. for 2 hours to obtain a cured product with a thickness of 2.5 mm.
  • an alicyclic epoxy resin (Celoxide 2021P manufactured by Daicel Corporation, epoxy equivalent: 130 g/equivalent)
  • 3 g of the resulting trisphenolmethane 3 g of the resulting trisphenolmethane
  • 2-methylimidazole 2-methylimidazole
  • Example 1 to 9 in which the phenol addition step was performed showed short filtration times and excellent productivity.
  • Comparative Example 2 in which the catalyst deactivator (D) was not used Examples 1 to 9 using the catalyst deactivator (D) exhibited high purity and excellent transparency.
  • Example 1 in which the catalyst deactivator (D) contains activated carbon Example 6 and Examples 8-9 showed better productivity.
  • Example 1 and Examples 8-9, in which the catalyst deactivator (D) contains hydrotalcites and activated carbon exhibited superior transparency.
  • Example 1 From the comparison between Example 1 and Example 4 (comparison between aspects in which only the type of aromatic hydroxyaldehyde (D) is different), Example 1 in which the aromatic hydroxyaldehyde (D) is salicylaldehyde is more It showed excellent productivity and transparency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The present invention addresses the problem of providing a method for producing trisphenolmethane that has excellent productivity and with which it is possible to obtain a high purity trisphenolmethane that exhibits excellent transparency when used as a curing agent or a raw material for an epoxy resin. This method for producing a trisphenolmethane has: a trisphenolmethane synthesis step for causing a phenol (A) and an aromatic hydroxy aldehyde (B) to react in the presence of a Lewis acid catalyst (C) to synthesize a trisphenolmethane; a catalyst deactivation step for adding a catalyst deactivator (D) to the reaction liquid to deactivate the Lewis acid catalyst (C); a phenol addition step for adding a phenol (E) to the reaction liquid; a filtration step for filtering the reaction liquid to remove the Lewis acid catalyst (C) and the catalyst deactivator (D) from the reaction liquid; and a phenol removal step for removing the phenol from the filtrate to obtain the trisphenolmethane.

Description

トリスフェノールメタン類の製造方法Method for producing trisphenolmethanes
 本発明は、エポキシ樹脂の原料、エポキシ樹脂の硬化剤、感光性樹脂原料などに有用なトリスフェノールメタン類の製造方法に関し、具体的には、触媒不活性化剤のろ過が容易で生産性に優れ、生成物が高純度であるトリスフェノールメタン類の製造方法に関し、得られたトリスフェノールメタン類を用いると透明性に優れたエポキシ樹脂硬化物が得られるトリスフェノールメタン類の製造方法に関する。 TECHNICAL FIELD The present invention relates to a method for producing trisphenolmethanes useful as raw materials for epoxy resins, curing agents for epoxy resins, and raw materials for photosensitive resins. The present invention relates to a method for producing trisphenolmethanes that are excellent and produce high-purity products, and to a method for producing trisphenolmethanes that gives cured epoxy resins with excellent transparency when the obtained trisphenolmethanes are used.
 フェノール類と芳香族ヒドロキシアルデヒド類を酸触媒で縮合して得られるトリスフェノールメタン類は、従来から耐熱性エポキシ樹脂の原料やエポキシ樹脂の硬化剤等に用いられている。 Trisphenolmethanes, which are obtained by condensing phenols and aromatic hydroxyaldehydes with an acid catalyst, have traditionally been used as raw materials for heat-resistant epoxy resins and curing agents for epoxy resins.
特開平10-218815号公報JP-A-10-218815 特開平5-214051号公報JP-A-5-214051 国際公開第2017/175590号WO2017/175590
 トリスフェノールメタン類の製造方法は、例えば特許文献1に開示されている。この方法は、触媒として、塩酸、硫酸、無水硫酸、p-トルエンスルホン酸、メタンスルホン酸、トリフルオロメタンスルホン酸、シュウ酸、ギ酸、リン酸、トリクロロ酢酸、トリフルオロ酢酸等を用い、所定時間、所定温度で反応させた後に、酸触媒を中和する水酸化ナトリウムなどを添加する。
 しかし、この方法では、トリスフェノールメタン類に触媒の中和塩が残存するため、純度が低く、半導体封止材の硬化剤などの高純度が求められる用途では、使用が制限される。
 さらには、この方法は、中和に使用した水酸化ナトリウムが、トリスフェノールメタン類のフェノール性水酸基と反応して、樹脂中に残存し、反応液を濾過しても十分にナトリウムを除去できない問題があった。
 また、特許文献1では、触媒を除去して高純度にするため、トリスフェノールメタン類をトルエンやメチルエチルケトンなどの有機溶媒に溶解し、その溶液を何度も水洗して、残存する触媒や触媒中和塩を水層に除去する方法が記載されている。
 しかしながら、この方法は、廃水処理や、有機溶媒を濃縮する工程が必要で、製造コストが高くなる。さらには、上述した方法は、微量の着色成分が副生し、それを除去する工程がない為、透明性が劣る問題がある。
A method for producing trisphenolmethanes is disclosed in Patent Document 1, for example. This method uses hydrochloric acid, sulfuric acid, sulfuric anhydride, p-toluenesulfonic acid, methanesulfonic acid, trifluoromethanesulfonic acid, oxalic acid, formic acid, phosphoric acid, trichloroacetic acid, trifluoroacetic acid, etc. as a catalyst, and After reacting at a predetermined temperature, sodium hydroxide or the like is added to neutralize the acid catalyst.
However, in this method, the neutralized salt of the catalyst remains in the trisphenolmethanes, so the purity is low and the use is restricted in applications requiring high purity such as curing agents for semiconductor encapsulants.
Furthermore, this method has the problem that the sodium hydroxide used for neutralization reacts with the phenolic hydroxyl groups of trisphenolmethanes and remains in the resin, and the sodium cannot be sufficiently removed even by filtering the reaction solution. was there.
In addition, in Patent Document 1, in order to remove the catalyst and make it highly pure, trisphenolmethanes are dissolved in an organic solvent such as toluene or methyl ethyl ketone, and the solution is washed with water many times. A method is described for removing the sodium salt to the aqueous layer.
However, this method requires waste water treatment and a step of concentrating the organic solvent, resulting in high production costs. Furthermore, the above-described method has a problem of poor transparency because a minute amount of coloring component is by-produced and there is no step of removing it.
 一方、フェノール樹脂類の製造方法として、ルイス酸触媒存在下、フェノール類と炭素・炭素二重結合を2個以上有する不飽和多環式炭化水素化合物とを反応させて、フェノール樹脂類を合成し、反応液にハイドロタルサイト類を加えて、触媒を吸着させたあと、ハイドロタルサイト類をろ過して、触媒の残存が少ないフェノール樹脂類を製造する方法が知られている(特許文献2)。
 この方法をトリスフェノールメタン類の製造に用いると、触媒の残存が少なく高純度のトリスフェノールメタンが得られるが、生成物のトリスフェノールメタン類と原料のフェノール類を含む反応液の粘度が高く、触媒吸着剤のろ過に時間がかかり、生産性が悪いという問題がある。
 また、この方法で、反応時にフェノール類を大過剰に用いると、反応液の粘度が低下してろ過時間を短くすることもできるが、触媒存在下で、フェノール類を大過剰に用いると、フェノールが重合末端に結合しやすくなり、低分子量のトリスフェノールメタン類しか製造することができない問題がある。
On the other hand, as a method for producing phenolic resins, a phenolic resin is synthesized by reacting a phenol with an unsaturated polycyclic hydrocarbon compound having two or more carbon-carbon double bonds in the presence of a Lewis acid catalyst. , a method is known in which hydrotalcites are added to the reaction solution to adsorb the catalyst, and then the hydrotalcites are filtered to produce phenolic resins with little residual catalyst (Patent Document 2). .
When this method is used for the production of trisphenolmethanes, high-purity trisphenolmethane can be obtained with little residual catalyst. There is a problem that it takes time to filter the catalyst/adsorbent, resulting in poor productivity.
In this method, if a large excess of phenols is used during the reaction, the viscosity of the reaction solution will decrease and the filtration time can be shortened. becomes easy to bond to the polymer terminal, and there is a problem that only low-molecular-weight trisphenolmethanes can be produced.
 また、芳香族アミン化合物とホルムアルデヒドを有機溶媒中で反応させてノボラック型樹脂を製造する方法が開示されている(特許文献3)。
 この方法をトリスフェノールメタン類の製造に用い、触媒をハイドロタルサイト類で吸着除去すると、有機溶媒により、反応液の粘度が低下して、短時間で触媒吸着剤のろ過を行うことができる。また、有機溶媒は重合末端に反応しないので高分子量のトリスフェノールメタン類の製造も可能である。
 しかしながら、この方法は、反応液から有機溶媒とフェノールを別々に分離回収し、それぞれをリサイクルする必要があり、工程が煩雑となり、高価になるばかりでなく、製品中に有機溶媒が残存する問題がある。さらには、この方法も、着色成分の除去が難しく、透明性が劣るものである。
Further, a method of producing a novolac resin by reacting an aromatic amine compound and formaldehyde in an organic solvent is disclosed (Patent Document 3).
When this method is used to produce trisphenolmethanes and the catalyst is removed by adsorption with hydrotalcites, the viscosity of the reaction solution is lowered by the organic solvent, and the catalyst adsorbent can be filtered in a short time. In addition, since the organic solvent does not react with the polymerization terminal, it is possible to produce high molecular weight trisphenolmethanes.
However, this method requires separate recovery of the organic solvent and phenol from the reaction mixture and their respective recycling, which complicates the process and increases the cost, as well as the problem that the organic solvent remains in the product. be. Furthermore, this method also makes it difficult to remove the coloring component, resulting in poor transparency.
 そこで、本発明は、上記実情を鑑みて、生産性に優れ、且つ、純度が高く、エポキシ樹脂の原料や硬化剤に用いたときに優れた透明性を示す、トリスフェノールメタン類が得られる、トリスフェノールメタン類の製造方法を提供することを目的とする。 Therefore, in view of the above-mentioned circumstances, the present invention provides trisphenolmethanes that are excellent in productivity, have high purity, and exhibit excellent transparency when used as raw materials for epoxy resins or curing agents. An object of the present invention is to provide a method for producing trisphenolmethanes.
 本発明者は、上記課題について鋭意検討した結果、トリスフェノールメタン類の合成に使用したルイス酸触媒を触媒不活性化剤によって不活性化し、その後、フェノール類を添加してからろ過することで、上記課題が解決できることを見出し、本発明に至った。
 すなわち、本発明者は、以下の構成により上記課題が解決できることを見出した。
As a result of intensive studies on the above problems, the present inventors have found that the Lewis acid catalyst used in the synthesis of trisphenolmethanes is deactivated with a catalyst deactivator, and then phenols are added and then filtered. The inventors have found that the above problems can be solved, and have completed the present invention.
That is, the inventors have found that the above problems can be solved by the following configuration.
(1) フェノール類(A)と芳香族ヒドロキシアルデヒド類(B)とをルイス酸触媒(C)の存在下で反応させることで、トリスフェノールメタン類を合成する、トリスフェノールメタン類合成工程と、
 上記トリスフェノールメタン類合成工程で得られた反応液に触媒不活性化剤(D)を添加することで、上記ルイス酸触媒(C)を不活性化する、触媒不活性化工程と、
 上記触媒不活性化工程で得られた反応液にフェノール類(E)を添加する、フェノール類添加工程と、
 上記フェノール類添加工程で得られた反応液をろ過することで、反応液から上記ルイス酸触媒(C)及び上記触媒不活性化剤(D)を除去する、ろ過工程と、
 上記ろ過工程で得られたろ液からフェノール類を除去することで、上記トリスフェノールメタン類を得る、フェノール類除去工程とを有する、トリスフェノールメタン類の製造方法。
(2) 上記フェノール類除去工程で得られたフェノール類を上記トリスフェノールメタン類合成工程のフェノール類(A)として再使用する、上記(1)に記載のトリスフェノールメタン類の製造方法。
(3) 上記触媒不活性化剤(D)が、ハイドロタルサイト類、シリカ、アルミナ及び活性炭からなる群より選択される少なくとも1種を含有する、上記(1)又は(2)に記載のトリスフェノールメタン類の製造方法。
(4) 上記触媒不活性化剤(D)が、ハイドロタルサイト類及び活性炭を含有する、上記(1)~(3)のいずれかに記載のトリスフェノールメタン類の製造方法。
(1) a trisphenolmethane synthesis step of synthesizing trisphenolmethanes by reacting phenols (A) and aromatic hydroxyaldehydes (B) in the presence of a Lewis acid catalyst (C);
a catalyst deactivation step of deactivating the Lewis acid catalyst (C) by adding a catalyst deactivator (D) to the reaction solution obtained in the trisphenolmethanes synthesis step;
A phenols addition step of adding phenols (E) to the reaction solution obtained in the catalyst deactivation step;
A filtration step of removing the Lewis acid catalyst (C) and the catalyst deactivator (D) from the reaction solution by filtering the reaction solution obtained in the phenol addition step;
A method for producing trisphenolmethanes, comprising a phenol removal step of obtaining the trisphenolmethanes by removing phenols from the filtrate obtained in the filtration step.
(2) The method for producing trisphenolmethanes according to (1) above, wherein the phenols obtained in the phenol removal step are reused as the phenols (A) in the trisphenolmethanes synthesis step.
(3) The tris according to (1) or (2) above, wherein the catalyst deactivator (D) contains at least one selected from the group consisting of hydrotalcites, silica, alumina and activated carbon. A method for producing phenolmethanes.
(4) The method for producing trisphenolmethanes according to any one of (1) to (3) above, wherein the catalyst deactivator (D) contains hydrotalcites and activated carbon.
 以下に示すように、本発明によれば、生産性に優れ、且つ、純度が高く、エポキシ樹脂の原料や硬化剤に用いたときに優れた透明性を示す、トリスフェノールメタン類が得られる、トリスフェノールメタン類の製造方法を提供することができる。
 また、本発明のトリスフェノールメタン類の製造方法によって得られるトリスフェノールメタン類は、エポキシ樹脂の原料に用いる場合において、不純物が少ないため、エポキシ樹脂製造プロセスの分液で、エマルジョンなどの生成が抑制され、短時間に分液することができる効果も期待される。
As shown below, according to the present invention, trisphenolmethanes that are excellent in productivity, have high purity, and exhibit excellent transparency when used as raw materials for epoxy resins or curing agents can be obtained. A method for producing trisphenolmethanes can be provided.
In addition, when the trisphenolmethanes obtained by the method for producing trisphenolmethanes of the present invention are used as raw materials for epoxy resins, they contain few impurities. It is also expected to have the effect of being able to separate liquids in a short time.
 以下に、本発明のトリスフェノールメタン類の製造方法について説明する。
 なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 また、各成分は、1種を単独でも用いても、2種以上を併用してもよい。ここで、各成分について2種以上を併用する場合、その成分について含有量とは、特段の断りが無い限り、合計の含有量を指す。
 また、「トリスフェノールメタン類」を単に「トリスフェノールメタン」とも言う。
 また、「ルイス酸触媒(C)」を単に「触媒」とも言う。
 また、トリスフェノールメタン類の製造方法について、「得られるトリスフェノールメタンの純度」を単に「純度」とも言う。
 また、トリスフェノールメタン類の製造方法について、「得られるトリスフェノールメタン類をエポキシ樹脂の原料や硬化剤に用いたときの透明性」を単に「透明性」とも言う。
The method for producing trisphenolmethanes of the present invention is described below.
In this specification, the numerical range represented by "-" means a range including the numerical values before and after "-" as lower and upper limits.
Moreover, each component may be used individually by 1 type, or may use 2 or more types together. Here, when two or more of each component are used in combination, the content of that component refers to the total content unless otherwise specified.
In addition, "trisphenolmethanes" is also simply referred to as "trisphenolmethane".
In addition, "Lewis acid catalyst (C)" is also simply referred to as "catalyst".
In addition, regarding the method for producing trisphenolmethanes, "purity of trisphenolmethane obtained" is also simply referred to as "purity".
Further, regarding the method for producing trisphenolmethanes, "transparency when the obtained trisphenolmethanes are used as raw materials for epoxy resins or curing agents" is also simply referred to as "transparency".
 本発明のトリスフェノールメタン類の製造方法(以下、「本発明の製造方法」とも言う)は、
 フェノール類(A)と芳香族ヒドロキシアルデヒド類(B)とをルイス酸触媒(C)の存在下で反応させることで、トリスフェノールメタン類を合成する、トリスフェノールメタン類合成工程と、
 上記トリスフェノールメタン類合成工程で得られた反応液に触媒不活性化剤(D)を添加することで、上記ルイス酸触媒(C)を不活性化する、触媒不活性化工程と、
 上記触媒不活性化工程で得られた反応液にフェノール類(E)を添加する、フェノール類添加工程と、
 上記フェノール類添加工程で得られた反応液をろ過することで、反応液から上記ルイス酸触媒(C)及び上記触媒不活性化剤(D)を除去する、ろ過工程と、
 上記ろ過工程で得られたろ液からフェノール類を除去することで、上記トリスフェノールメタン類を得る、フェノール除去工程とを有する、トリスフェノールメタン類の製造方法である。
The method for producing trisphenolmethanes of the present invention (hereinafter also referred to as "the production method of the present invention") comprises
a trisphenolmethane synthesis step of synthesizing trisphenolmethanes by reacting phenols (A) and aromatic hydroxyaldehydes (B) in the presence of a Lewis acid catalyst (C);
a catalyst deactivation step of deactivating the Lewis acid catalyst (C) by adding a catalyst deactivator (D) to the reaction solution obtained in the trisphenolmethanes synthesis step;
A phenols addition step of adding phenols (E) to the reaction solution obtained in the catalyst deactivation step;
A filtration step of removing the Lewis acid catalyst (C) and the catalyst deactivator (D) from the reaction solution by filtering the reaction solution obtained in the phenol addition step;
A method for producing trisphenolmethanes, comprising a phenol removal step of obtaining the trisphenolmethanes by removing phenols from the filtrate obtained in the filtration step.
 本発明の製造方法では、トリスフェノールメタン類の合成に使用したルイス酸触媒を触媒不活性化剤によって不活性化し、これらをろ過によって除去するため、中性塩の残存が無く、高純度のトリスフェノールメタン類が得られる。結果として、本発明の製造方法によって得られるトリスフェノールメタン類をエポキシ樹脂の原料や硬化剤に用いた場合、優れた透明性を示す。
 さらに、本発明の製造方法では、フェノール類を再添加してからろ過するため、反応液の粘度が小さく、ろ過時間が短い。すなわち、本発明の製造方法は生産性にも優れる。
In the production method of the present invention, the Lewis acid catalyst used in the synthesis of trisphenolmethanes is deactivated with a catalyst deactivator and these are removed by filtration, so that no neutral salt remains and high-purity tris Phenolic methanes are obtained. As a result, when the trisphenolmethanes obtained by the production method of the present invention are used as raw materials for epoxy resins or curing agents, they exhibit excellent transparency.
Furthermore, in the production method of the present invention, since the phenols are added again and then filtered, the viscosity of the reaction solution is low and the filtration time is short. That is, the production method of the present invention is also excellent in productivity.
 なお、フェノール類の代わりに芳香族ヒドロキシアルデヒド類を再添加した場合、反応液の粘度を下げてろ過時間が短くなる効果はあるが、芳香族ヒドロキシアルデヒド類はフェノール類よりも沸点が高いため、反応の当初に過剰に加えたフェノール類の除去の後、さらに温度を上げて芳香族ヒドロキシアルデヒド類除去する必要があり、操作に時間がかかり、工程が煩雑になる。また、フェノール類、芳香族ヒドロキシアルデヒド類以外の溶媒(例えば、ベンゼン、トルエンなど)を再添加した場合、反応液の粘度を下げてろ過時間が短くなる効果はあるが、ベンゼン、トルエンなどを除去した後に、反応の当初に過剰に加えたフェノール類を除去する必要があり、操作に時間がかかり、工程が煩雑になる。 In addition, when aromatic hydroxyaldehydes are added again instead of phenols, the viscosity of the reaction solution is lowered and the filtration time is shortened. After removing the phenols added in excess at the beginning of the reaction, it is necessary to further raise the temperature to remove the aromatic hydroxyaldehydes, which takes time and complicates the process. In addition, when a solvent other than phenols and aromatic hydroxyaldehydes (e.g., benzene, toluene) is added again, it has the effect of reducing the viscosity of the reaction solution and shortening the filtration time, but removing benzene, toluene, etc. After the reaction, it is necessary to remove the phenols added in excess at the beginning of the reaction, which takes time and complicates the process.
 以下、各工程について説明する。 Each step will be explained below.
[トリスフェノールメタン類合成工程]
 トリスフェノールメタン類合成工程は、フェノール類(A)と芳香族ヒドロキシアルデヒド類(B)とをルイス酸触媒(C)の存在下で反応させることで、トリスフェノールメタン類を合成する工程である。
[Trisphenolmethanes synthesis step]
The trisphenolmethanes synthesis step is a step of synthesizing trisphenolmethanes by reacting phenols (A) and aromatic hydroxyaldehydes (B) in the presence of a Lewis acid catalyst (C).
〔フェノール類(A)〕
 フェノール類(A)は特に制限されない。フェノール類(A)の具体例としては、フェノール、p-クレゾール、o-クレゾール、m-クレゾール、各種キシレノール類、1-ナフトール、2-ナフトール、ヒドロキノン、レゾルシノール、カテコール、各種ナフタレンジオール、およびこれらにアルキル基、フェニル基、ナフチル基、ハロゲン原子が少なくとも1個以上、置換された化合物等を挙げることができる。本発明では、これらのフェノール類は、単独で用いてもよく、2種類以上の混合物として用いてもよい。これらの中でも、フェノール、クレゾール類、ナフトール類が入手容易で、耐熱性が良好で好ましく、さらには、安価で特性に優れたフェノールが最も好ましい。
[Phenols (A)]
Phenols (A) are not particularly limited. Specific examples of phenols (A) include phenol, p-cresol, o-cresol, m-cresol, various xylenols, 1-naphthol, 2-naphthol, hydroquinone, resorcinol, catechol, various naphthalene diols, and these Examples thereof include alkyl groups, phenyl groups, naphthyl groups, and compounds substituted with at least one or more halogen atoms. In the present invention, these phenols may be used singly or as a mixture of two or more. Among these, phenol, cresols, and naphthols are preferable because they are readily available and have good heat resistance, and phenol is most preferable because it is inexpensive and has excellent properties.
〔芳香族ヒドロキシアルデヒド類(B)〕
 芳香族ヒドロキシアルデヒド類(B)は、芳香環にヒドロキシル基とアルデヒド基が結合した化合物であれば特に制限されない。例えば、p-ヒドロキシベンズアルデヒド、m-ヒドロキシベンズアルデヒド、o-ヒドロキシベンズアルデヒド(サリチルアルデヒド)、各種ヒドロキシナフトアルデヒド類、芳香族ヒドロキシアルデヒド類又はヒドロキシナフトアルデヒド類に、アルキル基、フェニル基、ナフチル基、ハロゲン原子が少なくとも1個以上、置換された化合物等を用いることができる。また、これらの芳香族ヒドロキシアルデヒド類は、単独で用いてもよいし、2種類以上の混合物として用いてもよい。
 これらの中でも、p-ヒドロキシベンズアルデヒド、o-ヒドロキシベンズアルデヒド(サリチルアルデヒド)は、入手が容易で、これらから得られるトリスフェノールメタン類は、エポキシ樹脂の原料や硬化剤に用いたときに、硬化物の耐熱性と溶融粘度が低い点で、バランスが優れているので好ましい。
[Aromatic hydroxyaldehydes (B)]
Aromatic hydroxyaldehydes (B) are not particularly limited as long as they are compounds in which a hydroxyl group and an aldehyde group are bonded to an aromatic ring. For example, p-hydroxybenzaldehyde, m-hydroxybenzaldehyde, o-hydroxybenzaldehyde (salicylaldehyde), various hydroxynaphthaldehydes, aromatic hydroxyaldehydes or hydroxynaphthaldehydes, alkyl groups, phenyl groups, naphthyl groups, halogen atoms A compound or the like substituted by at least one can be used. In addition, these aromatic hydroxyaldehydes may be used alone or as a mixture of two or more.
Among these, p-hydroxybenzaldehyde and o-hydroxybenzaldehyde (salicyaldehyde) are easily available, and trisphenolmethanes obtained from these are used as a raw material for epoxy resins or as curing agents. It is preferable because it has an excellent balance of heat resistance and low melt viscosity.
〔ルイス酸触媒(C)〕
 ルイス酸触媒(C)は、特に制限はなく、例えば、三フッ化ホウ素フェノール錯体、三フッ化ホウ素エーテル錯体、三フッ化ホウ素、塩化アルミ、塩化亜鉛、塩化チタン、アルキルアルミニウムなどが挙げられる。これらの中でも、反応性が高い点で、三フッ化ホウ素フェノール錯体、三フッ化ホウ素エーテル錯体、三フッ化ホウ素が好ましく、反応性が最も高いので、三フッ化ホウ素フェノール錯体が最も好ましい。
[Lewis acid catalyst (C)]
The Lewis acid catalyst (C) is not particularly limited, and examples thereof include boron trifluoride phenol complex, boron trifluoride ether complex, boron trifluoride, aluminum chloride, zinc chloride, titanium chloride, and alkylaluminum. Among these, a boron trifluoride phenol complex, a boron trifluoride ether complex, and boron trifluoride are preferable because of their high reactivity, and the boron trifluoride phenol complex is most preferable because of its highest reactivity.
〔フェノール類(A)/芳香族ヒドロキシアルデヒド類(B)〕
 本発明の製造方法では、原料のフェノール類(A)と芳香族ヒドロキシアルデヒド類(B)の比率を変えると、トリスフェノールメタン類の軟化点や分子量を変えることができる。フェノール類(A)/芳香族ヒドロキシアルデヒド類(B)の比率が小さい場合は、軟化点が高く、高分子量のトリスフェノールメタン類が得られ、フェノール類(A)/芳香族ヒドロキシアルデヒド類(B)の比率が大きい場合は、軟化点が低く、低分子量のトリスフェノールメタン類が得られる。
 本発明の製造方法では、フェノール類(A)は芳香族ヒドロキシアルデヒド類(B)に対して、量論的に過剰に用いるのが好ましい。その比率は、特に制限されないが、好ましくは、モル比で、フェノール類(A)/芳香族ヒドロキシアルデヒド類(B)=1.5~30、更に好ましくは、2.0~20、最も好ましくは、2.5~15である。この範囲より、フェノール類(A)の比率が低いと、得られるトリスフェノールメタン類の分子量が高くなりすぎて、エポキシ樹脂の原料やエポキシ樹脂の硬化剤に用いると、粘度が高く、混錬や硬化反応の進行が難しくなる。一方、この範囲よりフェノール類(A)の比率が高いと、得られるトリスフェノールメタン類の収率が低くなり、コストが高くなる問題がある。
[Phenols (A)/Aromatic Hydroxyaldehydes (B)]
In the production method of the present invention, the softening point and molecular weight of the trisphenolmethanes can be changed by changing the ratio of the raw material phenols (A) and the aromatic hydroxyaldehydes (B). When the ratio of phenols (A)/aromatic hydroxyaldehydes (B) is small, the softening point is high and high molecular weight trisphenolmethanes are obtained, and the phenols (A)/aromatic hydroxyaldehydes (B ), a low softening point and low molecular weight trisphenolmethanes can be obtained.
In the production method of the present invention, the phenol (A) is preferably used in a stoichiometric excess with respect to the aromatic hydroxyaldehyde (B). Although the ratio is not particularly limited, the molar ratio of phenols (A)/aromatic hydroxyaldehydes (B) is preferably 1.5 to 30, more preferably 2.0 to 20, and most preferably , 2.5-15. If the ratio of phenols (A) is lower than this range, the molecular weight of the obtained trisphenolmethanes becomes too high, and when used as a raw material for epoxy resins or as a curing agent for epoxy resins, the viscosity is high and kneading is difficult. The progress of the curing reaction becomes difficult. On the other hand, if the ratio of the phenol (A) is higher than this range, there is a problem that the yield of trisphenolmethanes obtained is low and the cost is high.
〔反応温度〕
 本発明の製造方法では、反応温度は特に制限されないが、好ましくは、50℃~フェノール類(A)の沸点までの温度範囲、更に好ましくは、70℃~160℃、最も好ましくは、100℃~150℃の範囲が好ましい。この範囲より温度が低いと、反応速度が遅く、反応の完結に長時間を要し、この範囲より温度が高いと、生成したトリスフェノールメタン類が熱分解しやすくなるので好ましくない。
 反応時間は、特に制限されないが、通常、反応液中の芳香族ヒドロキシアルデヒド類(B)の残存が実質的に無くなるまで行うことが好ましく、例えば、反応温度が100℃~150℃の場合、反応時間は、5~15時間で芳香族ヒドロキシアルデヒド類(B)が消費され反応が完結する。芳香族ヒドロキシアルデヒド類(B)の残存量は、例えば、ゲル浸透クロマトグラフィー(GPC)で確認することができる。
[Reaction temperature]
In the production method of the present invention, the reaction temperature is not particularly limited, but preferably the temperature range is from 50° C. to the boiling point of the phenol (A), more preferably from 70° C. to 160° C., most preferably from 100° C. to A range of 150° C. is preferred. If the temperature is lower than this range, the reaction rate is slow, and it takes a long time to complete the reaction.
The reaction time is not particularly limited, but it is usually preferable to carry out until the residual aromatic hydroxyaldehyde (B) in the reaction solution is substantially gone. Aromatic hydroxyaldehydes (B) are consumed and the reaction is completed in 5 to 15 hours. The residual amount of aromatic hydroxyaldehydes (B) can be confirmed, for example, by gel permeation chromatography (GPC).
〔トリスフェノールメタン類〕
 上述のとおり、トリスフェノールメタン類合成工程では、トリスフェノールメタン類が合成される。
 ここで、トリスフェノールメタン類としては、例えば、フェノール類骨格2個と芳香族ヒドロキシアルデヒド類骨格1個からなる3核体や、フェノール類骨格3個と芳香族ヒドロキシアルデヒド類骨格2個からなる5核体や、フェノール類骨格4個と芳香族ヒドロキシアルデヒド類骨格3個からなる7核体等の混合物が挙げられる。
[Trisphenolmethanes]
As described above, trisphenolmethanes are synthesized in the trisphenolmethanes synthesis step.
Here, the trisphenolmethanes include, for example, trinuclear compounds consisting of two phenol skeletons and one aromatic hydroxyaldehyde skeleton, and 5 A mixture of a nucleus and a heptene nucleus composed of 4 phenol skeletons and 3 aromatic hydroxyaldehyde skeletons can be mentioned.
[触媒不活性化工程]
 触媒不活性化工程は、上述したトリスフェノールメタン類合成工程で得られた反応液に触媒不活性化剤(D)を添加することで、上記ルイス酸触媒(C)を不活性化する工程である。
 本発明の製造方法では、合成反応が完結した後、触媒不活性化剤(D)を添加する必要がある。
[Catalyst deactivation step]
The catalyst deactivation step is a step of deactivating the Lewis acid catalyst (C) by adding a catalyst deactivator (D) to the reaction solution obtained in the above-described trisphenolmethanes synthesis step. be.
In the production method of the present invention, it is necessary to add the catalyst deactivator (D) after the synthesis reaction is completed.
〔触媒不活性化剤(D)〕
 触媒不活性化剤(D)は、触媒を不活性化し、かつ、触媒を吸着し、触媒とともにろ過されて除去され得る、反応液に難溶性の物質である。
 触媒不活性化剤(D)としては、ハイドロタルサイト類、シリカ、アルミナ、活性炭が触媒の失活や触媒の吸着に優れ、得られるトリスフェノールメタン類に含まれる触媒がより少なく、純度がより高くなるので好ましい。特にハイドロタルサイト類と活性炭の混合物は、トリスフェノールメタン類の純度がより高くなり、透明性もより優れるので最も好ましい。触媒不活性化剤(D)としてハイドロタルサイト類と活性炭の混合物を用いる場合、ハイドロタルサイト類と活性炭の質量比が、ハイドロタルサイト:活性炭=95:5~5:95の範囲にあることが好ましく、さらには、85:15~15:85の範囲にあることが最も好ましい。活性炭の割合が上記範囲であると透明性がさらに改善されるため好ましい。また、ハイドロタルサイト類の割合が上記範囲であると触媒の吸着量がさらに増加するため好ましい。
[Catalyst deactivator (D)]
The catalyst deactivator (D) is a poorly soluble substance in the reaction solution that deactivates the catalyst, adsorbs the catalyst, and can be removed together with the catalyst by filtration.
As the catalyst deactivator (D), hydrotalcites, silica, alumina, and activated carbon are excellent in deactivating the catalyst and adsorbing the catalyst, and the resulting trisphenolmethanes contain less catalyst and have a higher purity. It is preferred because it is expensive. In particular, a mixture of hydrotalcites and activated carbon is most preferred because it has higher purity of trisphenolmethanes and more excellent transparency. When a mixture of hydrotalcites and activated carbon is used as the catalyst deactivator (D), the mass ratio of hydrotalcite to activated carbon is in the range of hydrotalcite:activated carbon=95:5 to 5:95. and most preferably in the range of 85:15 to 15:85. It is preferable that the proportion of activated carbon is within the above range, since the transparency is further improved. Further, it is preferable that the ratio of hydrotalcites is within the above range, since the adsorption amount of the catalyst further increases.
 触媒不活性化剤(D)の添加量は、特に制限されないが、好ましくは、ルイス酸触媒(C)に対して、質量比で1.0~20倍であり、更に好ましくは、2.0~15倍である。触媒不活性化剤(D)の含有量の下限が上記のとおりであると、触媒の失活や吸着がより良好になって、触媒の残存がさらに減少する。また、触媒不活性化剤(D)の含有量の上限が上記のとおりであると、ろ過時間がより短くなって、生産性がさらに向上する。 The amount of the catalyst deactivator (D) added is not particularly limited, but is preferably 1.0 to 20 times, more preferably 2.0 times the Lewis acid catalyst (C) in terms of mass ratio. ~15 times. When the lower limit of the content of the catalyst deactivator (D) is as above, deactivation and adsorption of the catalyst become more favorable, and residual catalyst is further reduced. Moreover, when the upper limit of the content of the catalyst deactivator (D) is as described above, the filtration time is shortened and the productivity is further improved.
〔触媒の失活や吸着に必要な時間〕
 触媒の失活や吸着に必要な時間は、特に制限されないが、好ましくは、触媒不活性化剤(D)を添加して70℃~100℃、10分~3時間撹拌することで、実質的に触媒の失活、吸着が完了する場合が多い。
[Time required for catalyst deactivation and adsorption]
The time required for deactivation and adsorption of the catalyst is not particularly limited, but preferably, the catalyst deactivator (D) is added and stirred at 70 ° C. to 100 ° C. for 10 minutes to 3 hours to substantially In many cases, catalyst deactivation and adsorption are completed.
[フェノール類添加工程]
 フェノール類添加工程は、触媒不活性化工程で得られた反応液にフェノール類(E)を添加する工程である。
 フェノール類(E)の添加によって、反応液の粘度が低下し、触媒不活性化剤(D)をろ過する工程で、ろ過時間が短縮でき生産性が向上する。触媒の不活性化後にフェノール類(E)を添加しても、触媒が不活性化しているため縮合反応は進行せずに反応液の粘度を低下させることができる。
[Phenol addition step]
The phenol addition step is a step of adding phenols (E) to the reaction solution obtained in the catalyst deactivation step.
The addition of the phenol (E) reduces the viscosity of the reaction solution, and in the step of filtering the catalyst deactivator (D), the filtration time can be shortened and the productivity improved. Even if the phenol (E) is added after deactivating the catalyst, the condensation reaction does not proceed because the catalyst is deactivated, and the viscosity of the reaction solution can be reduced.
 フェノール類(E)の具体例及び好適な態様は上述したフェノール類(A)と同じであるが、フェノール類(E)としてフェノール類(A)と同じフェノール類を用いるのが好ましい。 Specific examples and suitable aspects of the phenols (E) are the same as the phenols (A) described above, but it is preferable to use the same phenols as the phenols (A) as the phenols (E).
 フェノール類(E)の添加量は特に制限されないが、反応開始時に添加したフェノール類(A)と芳香族ヒドロキシアルデヒド類(B)の合計量に対して、質量比で0.1倍~5.0倍が好ましく、更には、0.2倍~3.0倍が好ましい。この範囲よりフェノール類(E)の添加量が多いと、反応容器に多量のフェノール類(E)を添加する必要があり、トリスフェノールメタン類の製造量が減るので好ましくない。フェノール類(E)の添加量の下限が上記のとおりであると、反応液の粘度がさらに低くなりろ過時間がさらに短くなるので好ましい。 The amount of the phenol (E) added is not particularly limited, but the total amount of the phenol (A) and the aromatic hydroxyaldehyde (B) added at the start of the reaction is 0.1 to 5.0 times the mass ratio. 0 times is preferable, and 0.2 to 3.0 times is more preferable. If the added amount of the phenol (E) is larger than this range, it is necessary to add a large amount of the phenol (E) to the reaction vessel, which is not preferable because the production amount of trisphenolmethanes decreases. It is preferable that the lower limit of the amount of the phenol (E) to be added is as above, since the viscosity of the reaction solution is further lowered and the filtration time is further shortened.
[ろ過工程]
 ろ過工程は、上述したフェノール類添加工程で得られた反応液をろ過することで、反応液からルイス酸触媒(C)及び触媒不活性化剤(D)を除去する工程である。
[Filtration process]
The filtration step is a step of removing the Lewis acid catalyst (C) and the catalyst deactivator (D) from the reaction liquid by filtering the reaction liquid obtained in the phenol addition step described above.
 ろ過は減圧ろ過、加圧ろ過、いずれも行うことができ、ろ過時間を短縮するため、40℃~フェノール類の沸点の温度、好ましくは、50℃~100℃の温度でろ過を行うことが好ましい。 Filtration can be performed by either vacuum filtration or pressure filtration, and in order to shorten the filtration time, it is preferable to perform filtration at a temperature of 40 ° C. to the boiling point of phenols, preferably 50 ° C. to 100 ° C. .
[フェノール類除去工程]
 フェノール類除去工程は、上述したろ過工程で得られたろ液からフェノール類(トリスフェノールメタン類合成工程で過剰に用いたフェノール類(A)やフェノール類添加工程で添加したフェノール類(E))を除去することで、トリスフェノールメタン類を得る工程である。
[Phenols removal step]
In the phenol removal step, phenols (the phenols (A) excessively used in the trisphenolmethane synthesis step and the phenols (E) added in the phenol addition step) are removed from the filtrate obtained in the filtration step described above. This is a step of obtaining trisphenolmethanes by removing them.
 ろ過で得られたろ液は、常圧もしくは減圧下に、場合によって、水蒸気を導入しながら、100℃~250℃、好ましくは、120℃~240℃の範囲でフェノール類を除去することで、溶融状態で目的のトリスフェノールメタン類が得られる。これを溶融しながら反応溶容器から抜き出すか、冷却して固形化し、粉砕して取り出すことで目的のトリスフェノールメタン類を得ることができる。
 除去、回収したフェノール類は、次の反応の原料として用いることができ、原料のリサイクル使用によってコスト低減が可能である。
The filtrate obtained by filtration is melted by removing phenols at 100° C. to 250° C., preferably 120° C. to 240° C. under normal pressure or reduced pressure, optionally while introducing steam. The desired trisphenolmethanes are obtained in this state. The target trisphenolmethanes can be obtained by withdrawing this from the reaction vessel while melting it, or by cooling it to solidify it, pulverizing it and taking it out.
The removed and recovered phenols can be used as raw materials for the next reaction, and cost can be reduced by recycling the raw materials.
〔トリスフェノールメタン類〕
 本発明の製造方法によって得られたトリスフェノールメタン類は、触媒不活性化剤(D)などの不純物が少なく高純度である。また、触媒不活性化剤(D)の効果で触媒以外の着色性不純物も吸着除去され、透明性も改善される。本発明の製造方法で得られたトリスフェノールメタン類は、高純度化の操作を行うことなく、このまま高純度が必要なエポキシ樹脂の硬化剤に用いることができる。また、エポキシ樹脂の原料として用いる場合、不純物が少ない為、水洗工程などでのエマルジョンの生成が少なく、油水分離時間が短くなりエポキシ樹脂の原料としても有利である。得られたエポキシ樹脂硬化物は透明性に優れ、不純物の少ないものとなる。
[Trisphenolmethanes]
The trisphenolmethanes obtained by the production method of the present invention are highly pure with few impurities such as the catalyst deactivator (D). In addition, due to the effect of the catalyst deactivator (D), coloring impurities other than the catalyst are removed by adsorption, and the transparency is also improved. The trisphenolmethanes obtained by the production method of the present invention can be used as they are as a curing agent for epoxy resins that require high purity without performing an operation for purification. In addition, when used as a raw material for epoxy resins, it is advantageous as a raw material for epoxy resins because it contains few impurities, so that it produces less emulsion in the water washing process and the like, shortening the oil-water separation time. The epoxy resin cured product thus obtained has excellent transparency and contains few impurities.
 本発明の製造方法で得られたトリスフェノールメタン類は、本発明の効果を損なわない範囲で様々な樹脂や添加剤を添加したり、反応させることができる。使用可能な、樹脂としては、エポキシ樹脂、フェノール樹脂等があげられ、添加剤としては、硬化剤、難燃剤、カーボン繊維、ガラス繊維等が挙げられる。 The trisphenolmethanes obtained by the production method of the present invention can be added or reacted with various resins and additives within a range that does not impair the effects of the present invention. Examples of usable resins include epoxy resins and phenol resins, and examples of additives include curing agents, flame retardants, carbon fibers, glass fibers, and the like.
 本発明の製造方法は、高純度で、透明性の改善されたトリスフェノールメタン類を安価に製造することができる。本発明の製造方法によって得られたトリスフェノールメタン類は、エポキシ樹脂の硬化剤やポキシ樹脂の原料としてプリント基板や半導体封止材料、感光性樹脂原料、光学レンズ用樹脂原料として有用である。 The production method of the present invention can inexpensively produce trisphenolmethanes with high purity and improved transparency. The trisphenolmethanes obtained by the production method of the present invention are useful as curing agents for epoxy resins and raw materials for epoxy resins, printed circuit boards, semiconductor sealing materials, photosensitive resin raw materials, and resin raw materials for optical lenses.
 以下、実施例により、本発明についてさらに詳細に説明するが、本発明はこれらに限定されるものではない。 The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these.
[トリスフェノールメタンの製造]
 以下のとおり、トリスフェノールメタンを製造した。
[Production of trisphenolmethane]
Trisphenolmethane was prepared as follows.
〔実施例1〕 [Example 1]
<トリスフェノール類合成工程>
 攪拌装置、温度計、還流装置、不活性ガス導入管を備えた5リットルの反応容器(セパラブルフラスコ)にフェノール1833g(19.5mol)、三フッ化ホウ素フェノール錯体3.66g(後述するサリチルアルデヒドに対して2.0質量%)を入れ、オイルバス中で105℃に昇温した。サリチルアルデヒド183g(1.5mol)を不活性ガス導入管からチッソをバブリングさせながら、1時間かけて添加し、135℃に昇温して6時間反応させた。6時間反応させた後、GPCを測定した結果、原料のサリチルアルデヒドは、確認されず、縮合反応が完結していることが確認された。
<Trisphenol Synthesis Step>
1833 g (19.5 mol) of phenol and 3.66 g of boron trifluoride phenol complex (salicylaldehyde to be described later) were placed in a 5-liter reaction vessel (separable flask) equipped with a stirrer, a thermometer, a reflux device, and an inert gas inlet tube. 2.0% by mass based on the total amount) was added, and the temperature was raised to 105° C. in an oil bath. 183 g (1.5 mol) of salicylaldehyde was added over 1 hour while nitrogen was bubbled through an inert gas inlet pipe, and the temperature was raised to 135° C. and reacted for 6 hours. After reacting for 6 hours, GPC was measured. As a result, salicylaldehyde as a raw material was not confirmed, and it was confirmed that the condensation reaction was completed.
<触媒不活性化工程>
 反応終了後、温度を80℃まで下げて、ハイドロタルサイト27g、活性炭18gを添加して、1時間撹拌した。
<Catalyst deactivation step>
After completion of the reaction, the temperature was lowered to 80° C., 27 g of hydrotalcite and 18 g of activated carbon were added, and the mixture was stirred for 1 hour.
<フェノール類添加工程、ろ過工程>
 その後、フェノールを1000g添加し、80℃に再度昇温して、80℃のまま、減圧ろ過して、ハイドロタルサイトと活性炭をろ過した。ろ過時間は、2分33秒であった。
<Phenol addition step, filtration step>
After that, 1000 g of phenol was added, the temperature was raised to 80° C. again, and the mixture was filtered under reduced pressure while still at 80° C. to remove hydrotalcite and activated carbon. The filtration time was 2 minutes and 33 seconds.
<フェノール除去工程>
 続いて、真空ポンプ、冷却管を備えた、3リットルの濃縮装置にろ液を入れ、減圧下に、140℃でフェノールを除去し、更に、フェノールの留出が少なくなったところで180℃まで昇温して、ほぼ完全にフェノールを除去した。得られたトリスフェノールメタンは、減圧を解除した後、室温まで冷却し、固体として回収した。
<Phenol removal step>
Subsequently, the filtrate was placed in a 3-liter concentrator equipped with a vacuum pump and a cooling tube, and phenol was removed at 140°C under reduced pressure. Warming removed the phenol almost completely. After releasing the reduced pressure, the resulting trisphenolmethane was cooled to room temperature and recovered as a solid.
〔実施例2〕
 触媒不活性化剤としてハイドロタルサイトを45g用いた点以外は、実施例1と同様の方法でトリスフェノールメタンを得た。
[Example 2]
Trisphenolmethane was obtained in the same manner as in Example 1, except that 45 g of hydrotalcite was used as a catalyst deactivator.
〔実施例3〕
 触媒不活性化剤としてシリカを45g用いた点以外は、実施例1同様の方法でトリスフェノールメタンを得た。
[Example 3]
Trisphenolmethane was obtained in the same manner as in Example 1, except that 45 g of silica was used as a catalyst deactivator.
〔実施例4〕
 サリチルアルデヒド183gの代わりにp-ヒドロキシベンズアルデヒド183gを用いた点以外は、実施例1と同様の方法でトリスフェノールメタンを得た。
[Example 4]
Trisphenolmethane was obtained in the same manner as in Example 1, except that 183 g of p-hydroxybenzaldehyde was used instead of 183 g of salicylaldehyde.
〔実施例5〕
 原料のフェノールを404g(5.25mol)、フェノール類添加工程で添加するフェノールを2500gに変更した点以外は、実施例1と同様の方法でトリスフェノールメタンを得た。
[Example 5]
Trisphenolmethane was obtained in the same manner as in Example 1, except that the starting phenol was changed to 404 g (5.25 mol) and the phenol added in the phenol addition step was changed to 2500 g.
〔実施例6〕
 触媒不活性化剤として活性炭を45g用いた点以外は、実施例1と同様の方法でトリスフェノールメタンを得た。
[Example 6]
Trisphenolmethane was obtained in the same manner as in Example 1, except that 45 g of activated carbon was used as the catalyst deactivator.
〔実施例7〕
 触媒不活性化剤としてアルミナを45g用いた点以外は、実施例1と同様の方法でトリスフェノールメタンを得た。
[Example 7]
Trisphenolmethane was obtained in the same manner as in Example 1, except that 45 g of alumina was used as the catalyst deactivator.
〔実施例8〕
 触媒不活性化剤としてハイドロタルサイトを22.5g、活性炭を22.5g用いた点以外は、実施例1と同様の方法でトリスフェノールメタンを得た。
[Example 8]
Trisphenolmethane was obtained in the same manner as in Example 1, except that 22.5 g of hydrotalcite and 22.5 g of activated carbon were used as catalyst deactivators.
〔実施例9〕
 触媒不活性化剤としてハイドロタルサイトを13.5g、活性炭を31.5g用いた点以外は、実施例1と同様の方法でトリスフェノールメタンを得た。
[Example 9]
Trisphenolmethane was obtained in the same manner as in Example 1, except that 13.5 g of hydrotalcite and 31.5 g of activated carbon were used as catalyst deactivators.
〔比較例1〕
 フェノール添加工程を行わなかった点以外は、実施例1と同様の方法でトリスフェノールメタンを得た。
[Comparative Example 1]
Trisphenolmethane was obtained in the same manner as in Example 1, except that the phenol addition step was not performed.
〔比較例2〕
 三フッ化ホウ素フェノール錯体の代わりにp-トルエンスルホン酸3.66g(0.021mol)を用い、ハイドロタルサイトと活性炭の代わりに水酸化ナトリウム0.84g(0.021mol)(10%水溶液として添加)を用いた以外は、実施例1と同様の方法でトリスフェノールメタンを得た。
[Comparative Example 2]
3.66 g (0.021 mol) of p-toluenesulfonic acid was used instead of the boron trifluoride phenol complex, and 0.84 g (0.021 mol) of sodium hydroxide (added as a 10% aqueous solution) was used instead of hydrotalcite and activated carbon. ) was used to obtain trisphenolmethane in the same manner as in Example 1.
[ろ過温度、ろ過時間]
 各例について、ろ過工程のろ過温度及びろ過時間を表1に示す。ろ過時間が短いほど生産性に優れると言える。
[Filtration temperature, filtration time]
Table 1 shows the filtration temperature and the filtration time of the filtration step for each example. It can be said that the shorter the filtration time, the better the productivity.
[トリスフェノールメタンの評価]
 得られたトリスフェノールメタンについて、軟化点及び水酸基当量を測定した。結果を表1に示す。
 なお、上記軟化点は、JISK2425に記載された、環球式軟化点測定装置(メイテック社製25D5-ASP-MG型)を用いて、5℃/分の昇温速度で測定した値である。
 また、上記水酸基当量は、JIS K 0070:1992「化学製品の酸価,けん化価,エステル価,よう素価,水酸基価及び不けん化物の試験方法」に準じて測定した値である。
[Evaluation of trisphenolmethane]
The softening point and hydroxyl equivalent of the resulting trisphenolmethane were measured. Table 1 shows the results.
The above softening point is a value measured at a heating rate of 5° C./min using a ring and ball type softening point measuring device (25D5-ASP-MG manufactured by Meitec Co., Ltd.) described in JISK2425.
The hydroxyl equivalent is a value measured according to JIS K 0070:1992 "Testing methods for acid value, saponification value, ester value, iodine value, hydroxyl value and unsaponifiable matter of chemical products".
[エポキシ樹脂硬化物の製造]
 得られたトリスフェノールメタンを用いてエポキシ樹脂硬化物を製造した。具体的には以下のとおりである。
 アルミカップに、脂環式エポキシ樹脂(ダイセル株式会社製セロキサイド2021P、エポキシ当量130g/当量)4gと得られたトリスフェノールメタン3gと2-メチルイミダゾール0.14gとを混合して、140℃に加熱し、スパチュラで溶融混錬して、均一にした。その後、160℃で2時間、180℃で2時間、200℃で2時間硬化させて、2.5mm厚の硬化物を得た。
[Production of cured epoxy resin]
A cured epoxy resin was produced using the obtained trisphenolmethane. Specifically, it is as follows.
In an aluminum cup, 4 g of an alicyclic epoxy resin (Celoxide 2021P manufactured by Daicel Corporation, epoxy equivalent: 130 g/equivalent), 3 g of the resulting trisphenolmethane, and 0.14 g of 2-methylimidazole were mixed and heated to 140°C. The mixture was melted and kneaded with a spatula to make it uniform. Then, it was cured at 160° C. for 2 hours, 180° C. for 2 hours, and 200° C. for 2 hours to obtain a cured product with a thickness of 2.5 mm.
[硬化物の評価]
 得られた硬化物について、島津製作所製紫外可視分光光度計(UV1650PC)を用いて、波長540nmの光線透過率を測定した。結果を表1に示す。光線透過率が高いほど、透明性に優れることを意味する。
 また、得られた硬化物について、誘導結合プラズマ質量分析器(ICP-MAS)を用いて、元素分析を行った。各元素の含有量を表1に示す。なお、K、Fe、Cu、Mn、Co、Znの含有量は、いずれの硬化物においても1massppm(質量ppm)未満であった。上記元素の含有量が少ない程、トリスフェノールメタンの純度が高いと言える。
[Evaluation of cured product]
The obtained cured product was measured for light transmittance at a wavelength of 540 nm using an ultraviolet-visible spectrophotometer (UV1650PC, manufactured by Shimadzu Corporation). Table 1 shows the results. Higher light transmittance means more excellent transparency.
Further, the obtained cured product was subjected to elemental analysis using an inductively coupled plasma mass spectrometer (ICP-MAS). Table 1 shows the content of each element. The contents of K, Fe, Cu, Mn, Co, and Zn were less than 1 mass ppm (mass ppm) in any cured product. It can be said that the smaller the content of the above elements, the higher the purity of trisphenolmethane.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から分かるように、フェノール類添加工程を行わなかった比較例1と比較して、フェノール類添加工程を行った実施例1~9は、ろ過時間が短く、優れた生産性を示した。また、触媒不活性化剤(D)を用いなかった比較例2と比較して、触媒不活性化剤(D)を用いた実施例1~9は、高い純度及び優れた透明性を示した。
 実施例1~3及び6~9の対比(触媒不活性化剤(D)の種類のみが異なる態様同士の対比)から、触媒不活性化剤(D)が活性炭を含有する実施例1、実施例6及び実施例8~9は、より優れた生産性を示した。そのなかでも、触媒不活性化剤(D)がハイドロタルサイト類及び活性炭を含有する実施例1及び実施例8~9は、より優れた透明性を示した。そのなかでも、
 実施例1と実施例4との対比(芳香族ヒドロキシアルデヒド類(D)の種類のみが異なる態様同士の対比)から、芳香族ヒドロキシアルデヒド類(D)がサリチルアルデヒドである実施例1は、より優れた生産性及び透明性を示した。
As can be seen from Table 1, compared with Comparative Example 1 in which the phenol addition step was not performed, Examples 1 to 9 in which the phenol addition step was performed showed short filtration times and excellent productivity. Also, compared with Comparative Example 2 in which the catalyst deactivator (D) was not used, Examples 1 to 9 using the catalyst deactivator (D) exhibited high purity and excellent transparency. .
From the comparison of Examples 1 to 3 and 6 to 9 (comparison of embodiments in which only the type of the catalyst deactivator (D) is different), Example 1 in which the catalyst deactivator (D) contains activated carbon, Example 6 and Examples 8-9 showed better productivity. Among them, Example 1 and Examples 8-9, in which the catalyst deactivator (D) contains hydrotalcites and activated carbon, exhibited superior transparency. Among the,
From the comparison between Example 1 and Example 4 (comparison between aspects in which only the type of aromatic hydroxyaldehyde (D) is different), Example 1 in which the aromatic hydroxyaldehyde (D) is salicylaldehyde is more It showed excellent productivity and transparency.

Claims (4)

  1.  フェノール類(A)と芳香族ヒドロキシアルデヒド類(B)とをルイス酸触媒(C)の存在下で反応させることで、トリスフェノールメタン類を合成する、トリスフェノールメタン類合成工程と、
     前記トリスフェノールメタン類合成工程で得られた反応液に触媒不活性化剤(D)を添加することで、前記ルイス酸触媒(C)を不活性化する、触媒不活性化工程と、
     前記触媒不活性化工程で得られた反応液にフェノール類(E)を添加する、フェノール類添加工程と、
     前記フェノール類添加工程で得られた反応液をろ過することで、反応液から前記ルイス酸触媒(C)及び前記触媒不活性化剤(D)を除去する、ろ過工程と、
     前記ろ過工程で得られたろ液からフェノール類を除去することで、前記トリスフェノールメタン類を得る、フェノール類除去工程とを有する、トリスフェノールメタン類の製造方法。
    a trisphenolmethane synthesis step of synthesizing trisphenolmethanes by reacting phenols (A) and aromatic hydroxyaldehydes (B) in the presence of a Lewis acid catalyst (C);
    a catalyst deactivation step of deactivating the Lewis acid catalyst (C) by adding a catalyst deactivator (D) to the reaction solution obtained in the trisphenolmethanes synthesis step;
    A phenols addition step of adding phenols (E) to the reaction solution obtained in the catalyst deactivation step;
    a filtration step of removing the Lewis acid catalyst (C) and the catalyst deactivator (D) from the reaction solution by filtering the reaction solution obtained in the phenol addition step;
    A method for producing trisphenolmethanes, comprising a phenol removal step of obtaining the trisphenolmethanes by removing phenols from the filtrate obtained in the filtration step.
  2.  前記フェノール類除去工程で得られたフェノール類を前記トリスフェノールメタン類合成工程のフェノール類(A)として再使用する、請求項1に記載のトリスフェノールメタン類の製造方法。 The method for producing trisphenolmethanes according to claim 1, wherein the phenols obtained in the phenol removal step are reused as the phenols (A) in the trisphenolmethanes synthesis step.
  3.  前記触媒不活性化剤(D)が、ハイドロタルサイト類、シリカ、アルミナ及び活性炭からなる群より選択される少なくとも1種を含有する、請求項1又は2に記載のトリスフェノールメタン類の製造方法。 3. The method for producing trisphenolmethanes according to claim 1 or 2, wherein the catalyst deactivator (D) contains at least one selected from the group consisting of hydrotalcites, silica, alumina and activated carbon. .
  4.  前記触媒不活性化剤(D)が、ハイドロタルサイト類及び活性炭を含有する、請求項1又は2に記載のトリスフェノールメタン類の製造方法。 The method for producing trisphenolmethanes according to claim 1 or 2, wherein the catalyst deactivator (D) contains hydrotalcites and activated carbon.
PCT/JP2022/028933 2021-10-06 2022-07-27 Method for producing trisphenolmethane WO2023058301A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022568921A JP7303396B1 (en) 2021-10-06 2022-07-27 Method for producing trisphenolmethanes
CN202280006238.8A CN116261573B (en) 2021-10-06 2022-07-27 Process for producing triphenolmethane
KR1020237001365A KR102615959B1 (en) 2021-10-06 2022-07-27 Method for producing trisphenolmethane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-164710 2021-10-06
JP2021164710 2021-10-06

Publications (1)

Publication Number Publication Date
WO2023058301A1 true WO2023058301A1 (en) 2023-04-13

Family

ID=85804137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028933 WO2023058301A1 (en) 2021-10-06 2022-07-27 Method for producing trisphenolmethane

Country Status (5)

Country Link
JP (1) JP7303396B1 (en)
KR (1) KR102615959B1 (en)
CN (1) CN116261573B (en)
TW (1) TWI812399B (en)
WO (1) WO2023058301A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008184417A (en) * 2007-01-30 2008-08-14 Jfe Chemical Corp Manufacturing method of trisphenolmethanes
WO2015146504A1 (en) * 2014-03-25 2015-10-01 Dic株式会社 Epoxy resin, method for producing epoxy resin, curable resin composition and cured product thereof, fiber-reinforced composite material, and molded article
JP2018188590A (en) * 2017-05-11 2018-11-29 Jfeケミカル株式会社 Thermosetting resin composition and thermosetting resin cured product

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3028385B2 (en) 1992-01-31 2000-04-04 日石三菱株式会社 Method for producing phenolic resin
JP3729554B2 (en) * 1995-03-23 2005-12-21 日本化薬株式会社 Production method of epoxy resin
JPH10218815A (en) 1997-02-14 1998-08-18 Honshu Chem Ind Co Ltd New trisphenol compound
TW527372B (en) * 1999-04-30 2003-04-11 Nippon Petrochemicals Co Ltd Processes for preparing a hydrocarbon-phenol resin and an epoxy resin
CN101050261B (en) * 2006-04-07 2012-11-28 三菱瓦斯化学株式会社 Method of producing low viscosity phenol-modified aromatic hydrocarbon formaldehyde resin
JP5255813B2 (en) * 2007-10-19 2013-08-07 Jfeケミカル株式会社 Method for producing dicyclopentadiene-modified phenolic resin and method for reusing unreacted phenols
JP5553737B2 (en) * 2010-12-07 2014-07-16 日本化薬株式会社 Epoxy resin composition, prepreg and cured products thereof
JP6059515B2 (en) * 2012-01-26 2017-01-11 Jfeケミカル株式会社 Method for producing trisphenol methane and method for producing epoxy resin
JP6426966B2 (en) * 2014-10-06 2018-11-21 日鉄ケミカル&マテリアル株式会社 Semiconductor sealing resin composition and semiconductor device
TW201806995A (en) 2016-04-06 2018-03-01 迪愛生股份有限公司 Method for producing novolac type resin

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008184417A (en) * 2007-01-30 2008-08-14 Jfe Chemical Corp Manufacturing method of trisphenolmethanes
WO2015146504A1 (en) * 2014-03-25 2015-10-01 Dic株式会社 Epoxy resin, method for producing epoxy resin, curable resin composition and cured product thereof, fiber-reinforced composite material, and molded article
JP2018188590A (en) * 2017-05-11 2018-11-29 Jfeケミカル株式会社 Thermosetting resin composition and thermosetting resin cured product

Also Published As

Publication number Publication date
KR102615959B1 (en) 2023-12-19
TW202315856A (en) 2023-04-16
CN116261573A (en) 2023-06-13
JP7303396B1 (en) 2023-07-04
TWI812399B (en) 2023-08-11
CN116261573B (en) 2024-03-22
JPWO2023058301A1 (en) 2023-04-13
KR20230051158A (en) 2023-04-17

Similar Documents

Publication Publication Date Title
TWI633096B (en) Method for purification of compound or resin
CN102026950B (en) Ethylenically unsaturated monomers comprising aliphatic and aromatic moieties
TW201940459A (en) Compound having fluorene skeleton, and method for manufacturing same
JP6925853B2 (en) New benzoxazine resin composition and cured product thereof
JP6087738B2 (en) Fluorene compound having phenolic hydroxyl group and epoxy compound thereof
TW202222755A (en) Bisphenol production method, recycled polycarbonate resin production method, carbon dioxide production method, carbonic diester production method, epoxy resin production method, and epoxy resin cured product production method
JP7303396B1 (en) Method for producing trisphenolmethanes
JP2866747B2 (en) Method for producing phenolic polymer
CN117362594B (en) Preparation method and application of high-purity biphenyl novolac epoxy resin
CN117430789B (en) Preparation method and application of high-purity colorless transparent biphenyl phenolic resin
TW201144342A (en) Purifying method of alkylnaphthaleneformaldehyde polymer
CN110325500A (en) The manufacturing method of the purification process and composition of compound or resin
TWI502015B (en) Resin composition and cured product thereof
JP3755629B2 (en) Method for producing phenol aralkyl resin
JP5719631B2 (en) Compound, derivative, composition, cured product, and method for producing compound and derivative
JP6228081B2 (en) Method for producing dicyclopentadiene-modified phenolic resin, method for producing epoxy resin, and method for producing cured product
JPH07196568A (en) Bis(hydroxybenzyl)benzene compound, its epoxy resin and their production
JPH0853539A (en) Production of phenol resin and epoxy resin
JP3862958B2 (en) Process for producing hydrocarbon-phenolic resin and epoxy resin
JP2897850B2 (en) Method for producing high-purity tetrakisphenolethane
JPH01252624A (en) Production of polyphenol glycidyl ether
JP4616947B2 (en) Method for producing epoxy resin and epoxy resin obtained by the method
CN107849227B (en) Method for producing dicyclopentadiene-modified phenol resin
JP4004787B2 (en) Phenol resin, epoxy resin, production method thereof, and resin composition for semiconductor encapsulant
JPH06329741A (en) Resin, epoxy resin, its production, resin composition and cured product of said composition

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022568921

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22878172

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22878172

Country of ref document: EP

Kind code of ref document: A1