[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023054502A1 - Solid electrolytic capacitor - Google Patents

Solid electrolytic capacitor Download PDF

Info

Publication number
WO2023054502A1
WO2023054502A1 PCT/JP2022/036243 JP2022036243W WO2023054502A1 WO 2023054502 A1 WO2023054502 A1 WO 2023054502A1 JP 2022036243 W JP2022036243 W JP 2022036243W WO 2023054502 A1 WO2023054502 A1 WO 2023054502A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
solid electrolytic
esr
electrolytic capacitor
electrolytic solution
Prior art date
Application number
PCT/JP2022/036243
Other languages
French (fr)
Japanese (ja)
Inventor
洙光 金
高史 三浦
尚人 武島
慎吾 竹内
健治 町田
健太 佐藤
一平 中村
Original Assignee
日本ケミコン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ケミコン株式会社 filed Critical 日本ケミコン株式会社
Priority to JP2023551619A priority Critical patent/JPWO2023054502A1/ja
Publication of WO2023054502A1 publication Critical patent/WO2023054502A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/035Liquid electrolytes, e.g. impregnating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/145Liquid electrolytic capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors

Definitions

  • the present invention relates to solid electrolytic capacitors.
  • Solid electrolytic capacitors are equipped with valve metals such as tantalum or aluminum as anode and cathode foils.
  • the anode foil is expanded by forming a valve metal into a sintered body or an etched foil, and has a dielectric oxide film on the expanded surface by anodization or the like.
  • a solid electrolyte layer that adheres to the anode foil and acts as a true cathode.
  • TCNQ 7,7,8,8-tetracyanoquinodimethane
  • PES polystyrene sulfonic acid
  • solid electrolytic capacitors are less effective in repairing defects in the dielectric oxide film than liquid-type electrolytic capacitors in which capacitor elements are impregnated with an electrolytic solution, and there is a risk of an increase in leakage current. Therefore, so-called hybrid-type solid electrolytic capacitors in which a solid electrolyte layer is formed on a capacitor element and the voids of the capacitor element are impregnated with an electrolytic solution are attracting attention.
  • the electrolytic solution uses, for example, ⁇ -butyrolactone or sulfolane as a solvent, triethylamine borodisalicylate, ethyldimethylamine phthalate, mono-1,2,3,4-tetramethylimidazolinium phthalate, and mono-1,3-dimethyl phthalate.
  • ⁇ -butyrolactone or sulfolane as a solvent
  • triethylamine borodisalicylate ethyldimethylamine phthalate
  • mono-1,2,3,4-tetramethylimidazolinium phthalate mono-1,3-dimethyl phthalate.
  • 2-ethylimidazolinium and the like as a solute.
  • Electrolytic capacitors have a larger capacity than film capacitors and ceramic capacitors, and solid electrolytic capacitors containing conductive polymers such as poly(3,4-ethylenedioxythiophene) (PEDOT) have conductive polymers. Since it has high conductivity, it has good ESR.
  • PEDOT poly(3,4-ethylenedioxythiophene)
  • the present invention has been proposed to solve the above problems, and an object of the present invention is to provide a solid electrolytic capacitor with low ESR even in a high frequency region.
  • the solid electrolytic capacitor of the present embodiment includes an anode foil containing a valve metal and having a dielectric oxide film formed thereon; a cathode foil containing a valve metal and facing the anode foil; an electrolyte layer interposed between the anode foil and the cathode foil containing a conductive polymer and an electrolytic solution, wherein the electrolytic solution contains a phosphoric acid compound having a butyl group and an aliphatic dicarboxylic acid; and the phosphoric acid compound is 32 mmol or less per 100 g of the electrolytic solution.
  • the amount of the phosphoric acid compound may be 8 mmol or less per 100 g of the electrolytic solution.
  • the phosphoric acid compound may be one or a mixture of two or more selected from the group consisting of dibutyl phosphate, tributyl phosphate, dibutyl phosphite, and tributyl phosphite.
  • the aliphatic dicarboxylic acid may be one or a mixture of two or more selected from the group consisting of azelaic acid, succinic acid, glutaric acid and citraconic acid.
  • the aliphatic dicarboxylic acid may be one or a mixture of two or more selected from the group of azelaic acid, succinic acid, and glutaric acid.
  • the electrolytic solution may contain one or more selected from the group of ethylene glycol, glycerin and sulfolane.
  • the electrolytic solution may contain ammonia.
  • the aliphatic dicarboxylic acid may be contained in the electrolytic solution in a molar ratio of 0.25 or more when the phosphoric acid compound is 1.
  • the solid electrolytic capacitor has a low ESR at least in the high frequency range.
  • a solid electrolytic capacitor according to an embodiment of the present invention will be described below. In addition, this invention is not limited to embodiment described below.
  • a solid electrolytic capacitor is a passive element that stores and discharges electric charges by obtaining capacitance from the dielectric polarization action of a dielectric oxide film.
  • This solid electrolytic capacitor is formed by housing a capacitor element in a case and sealing the case opening with a sealing member.
  • a capacitor element comprises an anode foil, a cathode foil, a separator and an electrolyte layer.
  • the anode foil and the cathode foil are wound or laminated facing each other with a separator interposed therebetween.
  • a dielectric oxide film is formed on the surface of the anode foil.
  • the electrolyte layer is composed of a solid electrolyte layer containing a conductive polymer and an electrolytic solution.
  • the solid electrolyte layer is interposed between the anode foil and the cathode foil and adheres to the dielectric oxide film.
  • the electrolytic solution impregnates the voids of the capacitor element in which the solid electrolyte layer is formed.
  • the anode foil and the cathode foil are long foil bodies obtained by stretching the valve action metal.
  • Valve metals include aluminum, tantalum, niobium, niobium oxide, titanium, hafnium, zirconium, zinc, tungsten, bismuth and antimony.
  • the purity of the anode foil is desirably 99.9% or higher, and the purity of the cathode foil is desirably about 99% or higher. Impurities such as silicon, iron, copper, magnesium and zinc may be contained.
  • the surface of the anode foil is enlarged as a molded body obtained by molding the powder of the valve metal, a sintered body obtained by sintering the molded body, or an etched foil obtained by etching a rolled foil. That is, the surface spreading structure consists of tunnel-like pits, spongy pits, or voids between dense particles.
  • the expanded surface structure is typically formed by direct current or alternating current etching or alternating current etching in an acidic aqueous solution in which halogen ions such as hydrochloric acid are present, or by depositing or sintering metal particles or the like on the core. It is formed by
  • the cathode foil may also have an enlarged surface structure by vapor deposition, sintering or etching.
  • the dielectric oxide film is typically an oxide film formed on the surface layer of the anode foil.
  • the dielectric oxide film is aluminum oxide with an oxidized surface expansion structure.
  • the dielectric oxide film is formed by chemical conversion treatment in which a voltage is applied to the anode foil in an aqueous solution of adipic acid, boric acid, phosphoric acid, or the like.
  • a thin oxide film (about 1 to 10 V) may be formed on the surface layer of the cathode foil by chemical conversion treatment, if necessary.
  • the electrolytic solution impregnates the voids of the capacitor element in which the solid electrolyte layer is formed.
  • This electrolytic solution is a solution in which an anion component and a cation component are added to a solvent.
  • the anion component and the cation component are typically a salt of an organic acid, a salt of an inorganic acid, or a salt of a complex compound of an organic acid and an inorganic acid.
  • An acid as an anionic component and a base as a cationic component may be added separately to the solvent.
  • the electrolytic solution does not have to contain an anion component, a cation component, or both an anion component and a cation component in the solvent.
  • the electrolyte contains both a phosphoric acid compound with a butyl group and an aliphatic dicarboxylic acid.
  • the phosphate compound has at least one butyl group. Since both the phosphate compound having a butyl group and the aliphatic dicarboxylic acid are contained in the electrolyte, even when the solid electrolytic capacitor is used in a high frequency range such as 100 kHz, low ESR is maintained for a long period of time and leakage is low. Current is maintained for a long period of time. This ESR becomes a lower value than when either of the phosphoric acid compound having a butyl group and the aliphatic dicarboxylic acid, which has a good ESR, is added to the electrolytic solution.
  • the amount of the phosphoric acid compound having a butyl group is 32 mmol or less per 100 g of the electrolyte, preferably 8 mmol or less per 100 g of the electrolyte. If it is 48 mmol or more, the ESR becomes worse than when only the phosphoric acid compound having a butyl group is contained in the electrolytic solution, and the synergistic effect of the phosphoric acid compound having a butyl group and the aliphatic dicarboxylic acid cannot be obtained. do not have. On the other hand, when it is 32 mmol or less, the ESR becomes better than when only the phosphoric acid compound having a butyl group is contained in the electrolytic solution.
  • the LC leakage current
  • the electrolyte contains only the phosphoric acid compound having a butyl group
  • the electrolyte contains only the aliphatic dicarboxylic acid. becomes better.
  • the amount of the aliphatic dicarboxylic acid to be added is not particularly limited, and a synergistic effect relating to the ESR of the phosphoric acid compound having a butyl group and the aliphatic dicarboxylic acid can be obtained.
  • the molar ratio of the phosphoric acid compound to 1 is 0.25 or more of the aliphatic dicarboxylic acid. At least in this range, even when the solid electrolytic capacitor is used in a high frequency range such as 100 kHz, the low ESR is maintained for a long period of time, and the LC is also good.
  • a phosphate compound having a butyl group is, for example, dibutyl phosphate, tributyl phosphate, dibutyl phosphite or tributyl phosphite.
  • the electrolytic solution may contain one or more phosphoric acid compounds.
  • Aliphatic dicarboxylic acids are for example azelaic acid, succinic acid, glutaric acid or citraconic acid.
  • the electrolytic solution may contain one or more aliphatic dicarboxylic acids.
  • the aliphatic dicarboxylic acid is one or more selected from the group of azelaic acid, succinic acid or glutaric acid.
  • Azelaic acid, succinic acid and glutaric acid worsen the ESR of solid electrolytic capacitors compared to phosphoric acid compounds having butyl groups.
  • the ESR of the solid electrolytic capacitor is improved and the ESR reduction effect is higher than when only the phosphoric acid compound having a butyl group is contained.
  • the ESR of the solid electrolytic capacitor is higher than that of the electrolyte containing only the phosphoric acid compound having a butyl group and the electrolyte containing only citraconic acid. make good.
  • organic acids include oxalic acid, succinic acid, glutaric acid, pimelic acid, suberic acid, sebacic acid, phthalic acid, isophthalic acid, terephthalic acid, maleic acid, adipic acid, benzoic acid, and toluyl.
  • inorganic acids examples include boric acid, other phosphoric acid, other phosphorous acid, hypophosphorous acid, carbonic acid, silicic acid and the like.
  • Compound compounds of organic acids and inorganic acids include borodisalicylic acid, borodisaliic acid, borodiglycolic acid, borodimalonic acid, borodisuccinic acid, borodiadipic acid, borodiazelaic acid, borodibenzoic acid, borodimaleic acid, borodilactic acid, borodimalic acid, boroditartaric acid, borodicitric acid, borodiphthalic acid, borodi(2-hydroxy)isobutyric acid, borodiresorucic acid, borodimethylsalicylic acid, borodinaphthoic acid, borodimandelic acid and borodi(3-hydroxy)propionic acid.
  • Examples of at least one salt of an organic acid, an inorganic acid, and a composite compound of an organic acid and an inorganic acid include ammonium salts, quaternary ammonium salts, quaternary amidinium salts, amine salts, sodium salts, potassium salts, and the like. be done.
  • the quaternary ammonium ion of the quaternary ammonium salt includes tetramethylammonium, triethylmethylammonium, tetraethylammonium and the like.
  • Quaternary amidinium salts include ethyldimethylimidazolinium, tetramethylimidazolinium, and the like.
  • Amine salts include salts of primary, secondary and tertiary amines.
  • primary amines include methylamine, ethylamine and propylamine
  • secondary amines include dimethylamine, diethylamine, ethylmethylamine and dibutylamine
  • examples of tertiary amines include trimethylamine, triethylamine, tributylamine and ethyldimethylamine
  • ethyldiisopropylamine include salts of primary, secondary and tertiary amines.
  • the solute cationic species is preferably ammonia, an ammonium salt, or a quaternary ammonium salt.
  • the electrolyte contains ammonium, even when the solid electrolytic capacitor is used in a high frequency range such as 100 kHz, the ESR is maintained for a long period of time, compared to when other cationic species are contained.
  • the solvent for the electrolytic solution is not particularly limited, but a protic organic polar solvent or an aprotic organic polar solvent can be used.
  • Protic organic solvents include monohydric alcohols, polyhydric alcohols and oxyalcohol compounds. Examples of monohydric alcohols include ethanol, propanol, butanol, pentanol, hexanol, cyclobutanol, cyclopentanol, cyclohexanol, and benzyl alcohol.
  • polyhydric alcohols and oxyalcohol compounds examples include ethylene glycol, diethylene glycol, propylene glycol, glycerin, methyl cellosolve, ethyl cellosolve, methoxypropylene glycol, dimethoxypropanol, polyglycerin, polyethylene glycol, polyoxyethylene glycerin, polypropylene glycol, and the like.
  • examples include alkylene oxide adducts of polyhydric alcohols.
  • sulfone-based, amide-based, lactones, cyclic amide-based, nitrile-based, sulfoxide-based, and the like may be used.
  • Sulfone-based solvents include dimethylsulfone, ethylmethylsulfone, diethylsulfone, sulfolane, 3-methylsulfolane, 2,4-dimethylsulfolane, and the like.
  • amides include N-methylformamide, N,N-dimethylformamide, N-ethylformamide, N,N-diethylformamide, N-methylacetamide, N,N-dimethylacetamide, N-ethylacetamide, N,N- diethylacetamide, hexamethylphosphoricamide and the like.
  • Lactones and cyclic amides include ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone, N-methyl-2-pyrrolidone, ethylene carbonate, propylene carbonate, butylene carbonate and isobutylene carbonate.
  • Nitrile type includes acetonitrile, 3-methoxypropionitrile, glutaronitrile and the like.
  • the sulfoxide type includes dimethyl sulfoxide and the like.
  • polyhydric alcohols such as ethylene glycol or glycerin, monohydric alcohols, or oxyalcohol compounds are contained as the solvent of the electrolytic solution or other species in the solvent.
  • solvents tend to cause an esterification reaction with aliphatic dicarboxylic acids.
  • the acidity of the electrolytic solution is lowered, and dedoping from the conductive polymer is likely to occur.
  • the electrolytic solution contains a phosphoric acid compound having a butyl group, dedoping of the conductive polymer is suppressed, and low ESR is maintained.
  • Sulfolane may also preferably be included as a solvent in the electrolyte or as another species in the solvent.
  • Additives include complex compounds of boric acid and polysaccharides (mannite, sorbitol, etc.), complex compounds of boric acid and polyhydric alcohol, boric acid esters, nitro compounds (o-nitrobenzoic acid, m-nitrobenzoic acid, acid, p-nitrobenzoic acid, o-nitrophenol, m-nitrophenol, p-nitrophenol, p-nitrobenzyl alcohol, etc.). These may be used alone or in combination of two or more.
  • the conductive polymer is a self-doped conjugated polymer doped with intramolecular dopant molecules or a conjugated polymer doped with external dopant molecules.
  • a conjugated polymer is obtained by subjecting a monomer having a ⁇ -conjugated double bond or a derivative thereof to chemical oxidation polymerization or electrolytic oxidation polymerization.
  • a conductive polymer expresses high conductivity by performing a doping reaction on a conjugated polymer. That is, by adding a small amount of a dopant, such as an acceptor that easily accepts electrons or a donor that easily donates electrons, to the conjugated polymer, conductivity is exhibited.
  • conjugated polymer any known one can be used without any particular limitation. Examples include polypyrrole, polythiophene, polyfuran, polyaniline, polyacetylene, polyphenylene, polyphenylenevinylene, polyacene, polythiophenevinylene and the like. These conjugated polymers may be used alone, may be used in combination of two or more types, and may be a copolymer of two or more types of monomers.
  • conjugated polymers obtained by polymerizing thiophene or derivatives thereof are preferable, and 3,4-ethylenedioxythiophene (that is, 2,3-dihydrothieno[3,4-b][ 1,4]dioxin), 3-alkylthiophenes, 3-alkoxythiophenes, 3-alkyl-4-alkoxythiophenes, 3,4-alkylthiophenes, 3,4-alkoxythiophenes, or conjugated high Molecules are preferred.
  • 3,4-ethylenedioxythiophene that is, 2,3-dihydrothieno[3,4-b][ 1,4]dioxin
  • 3-alkylthiophenes that is, 2,3-dihydrothieno[3,4-b][ 1,4]dioxin
  • 3-alkylthiophenes 3-alkoxythiophenes
  • 3-alkyl-4-alkoxythiophenes 3-alkyl-4-
  • the thiophene derivative is preferably a compound selected from thiophenes having substituents at the 3- and 4-positions, and the substituents at the 3- and 4-positions of the thiophene ring form a ring together with the carbon atoms at the 3- and 4-positions.
  • can be An alkyl group or an alkoxy group preferably has 1 to 16 carbon atoms.
  • a polymer of 3,4-ethylenedioxythiophene called EDOT that is, poly(3,4-ethylenedioxythiophene) called PEDOT is particularly preferred.
  • alkylated ethylenedioxythiophene in which an alkyl group is added to 3,4-ethylenedioxythiophene such as methylated ethylenedioxythiophene (that is, 2-methyl-2,3-dihydro-thieno [ 3,4-b][1,4]dioxin), ethylated ethylenedioxythiophene (i.e., 2-ethyl-2,3-dihydro-thieno[3,4-b][1,4]dioxin), etc. mentioned.
  • a known dopant can be used without any particular limitation.
  • a dopant may be used independently and may be used in combination of 2 or more type.
  • polymers or monomers may be used.
  • dopants include polyanions, inorganic acids such as boric acid, nitric acid and phosphoric acid, acetic acid, oxalic acid, citric acid, tartaric acid, squaric acid, rhodizonic acid, croconic acid, salicylic acid, p-toluenesulfonic acid, 1,2 -dihydroxy-3,5-benzenedisulfonic acid, methanesulfonic acid, trifluoromethanesulfonic acid, borodisalicylic acid, bisoxalateborate acid, sulfonylimidic acid, dodecylbenzenesulfonic acid, propylnaphthalenesulfonic acid, butylnaphthalenesulfonic acid, etc.
  • Polyanions are, for example, substituted or unsubstituted polyalkylenes, substituted or unsubstituted polyalkenylenes, substituted or unsubstituted polyimides, substituted or unsubstituted polyamides, substituted or unsubstituted polyesters, and have anionic groups.
  • Examples include a polymer consisting of only units, and a polymer consisting of a structural unit having an anionic group and a structural unit having no anionic group.
  • polyanions include polyvinylsulfonic acid, polystyrenesulfonic acid, polyallylsulfonic acid, polyacrylsulfonic acid, polymethacrylsulfonic acid, poly(2-acrylamido-2-methylpropanesulfonic acid), and polyisoprenesulfonic acid. , polyacrylic acid, polymethacrylic acid, and polymaleic acid.
  • the solid electrolyte layer may contain various additives such as polyhydric alcohol in addition to the conductive polymer.
  • Polyhydric alcohols include sorbitol, ethylene glycol, diethylene glycol, triethylene glycol, polyoxyethylene glycol, glycerin, polyglycerin, polyoxyethylene glycerin, xylitol, erythritol, mannitol, dipentaerythritol, pentaerythritol, or two of these. The above combination is mentioned. Since the polyhydric alcohol has a high boiling point, it can remain in the solid electrolyte layer even after the drying process, and effects of reducing ESR and improving withstand voltage can be obtained.
  • Separators are made of cellulose such as kraft, manila hemp, esparto, hemp, rayon, and mixed paper thereof, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyester resins such as their derivatives, polytetrafluoroethylene resin, polyfluoride, etc.
  • Polyamide resins such as vinylidene resins, vinylon resins, aliphatic polyamides, semi-aromatic polyamides, and wholly aromatic polyamides, polyimide resins, polyethylene resins, polypropylene resins, trimethylpentene resins, polyphenylene sulfide resins, acrylic resins, polyvinyl alcohol resins, etc., and these resins can be used singly or in combination.
  • Example 1 A solid electrolytic capacitor of Example 1 was produced.
  • the anode foil was an aluminum foil, which was subjected to surface enlargement by etching treatment, and was subjected to chemical conversion treatment at a chemical conversion voltage of 63.6 Vfs to form a dielectric oxide film.
  • the surface of the cathode foil was expanded by etching, and an oxide film was formed by chemical conversion at a chemical conversion voltage of 3 Vfs.
  • a lead wire was connected to each of the anode foil and the cathode foil, and the foil was wound with the anode foil and the cathode foil opposed to each other with a manila separator interposed therebetween.
  • the wound body was immersed in an aqueous solution of ammonium dihydrogen phosphate for 15 minutes to perform repair formation. After that, it was dried at 105°C.
  • the wound body was immersed in a dispersion of polyethylenedioxythiophene (PEDOT/PSS) doped with polystyrenesulfonic acid as a conductive polymer.
  • PEDOT/PSS polyethylenedioxythiophene
  • Ethylene glycol was added to the dispersion.
  • the wound body was dried at 110° C. for 30 minutes after being immersed in the dispersion.
  • the conductive polymer was attached to the wound body, and the solid electrolyte layer containing the conductive polymer was impregnated with ethylene glycol.
  • an electrolytic solution was prepared, and the wound body on which the solid electrolyte was formed was impregnated with the electrolytic solution.
  • Ethylene glycol was used as the solvent for the electrolytic solution.
  • Azelaic acid and dibutyl phosphate were added to the electrolytic solution so as to be 16 mmol each per 100 g of the electrolytic solution.
  • ammonia was included in an amount of 16 mmol with respect to 100 g of the electrolytic solution.
  • the completed capacitor element was impregnated with electrolyte and inserted into a bottomed cylindrical exterior case.
  • a sealing rubber was attached to the open end of the exterior case and sealed by caulking.
  • Each solid electrolytic capacitor was aged by voltage application.
  • Each of the produced solid electrolytic capacitors had a rated withstand voltage of 35 WV and a rated capacity of 270 ⁇ F.
  • solid electrolytic capacitors of Comparative Examples 1 and 2 were produced.
  • the solid electrolytic capacitor of Comparative Example 1 is different from the solid electrolytic capacitor of Example 1 in that only dibutyl phosphate is added to the electrolytic solution without adding azelaic acid. Dibutyl phosphate was added so as to be 32 mmol with respect to 100 g of the electrolytic solution.
  • the solid electrolytic capacitor of Comparative Example 2 differs from the solid electrolytic capacitor of Example 1 in that only azelaic acid is added to the electrolytic solution without adding dibutyl phosphate. Azelaic acid was added so as to be 32 mmol with respect to 100 g of the electrolytic solution.
  • the solid electrolytic capacitors of Comparative Examples 1 and 2 are the same as those of Example 1 in all other respects, including the use of ammonia as a cation component, as well as in other configurations, manufacturing methods, manufacturing conditions, and the like.
  • ESR 1 The ESR of the solid electrolytic capacitors of Example 1 and Comparative Examples 1 and 2 was measured.
  • the measurement frequency of ESR is 100 kHz.
  • the solid electrolytic capacitor was exposed to a temperature environment of 160°C. Then, the ESR was measured at the timing when the elapsed time is 0 hours, which is immediately before exposure to the high temperature environment, and at the timing after 1200 hours of continuous exposure to the high temperature environment.
  • ⁇ ESR which is the ratio of the ESR between the timing at zero time and the timing after 1200 hours, was also calculated.
  • ⁇ ESR is the percentage ratio of the ESR at timing after 1200 hours to the ESR at timing at zero time. The results are shown in Table 1 below.
  • the ESR of the solid electrolytic capacitor of Example 1 changes little even after being exposed to a high temperature environment of 160°C for 1200 hours, and has the smallest value. From this, it was confirmed that adding azelaic acid, which has a relatively poor ESR, to dibutyl phosphate, which has a relatively good ESR, results in a better ESR than dibutyl phosphate.
  • Example 2 to 4 Solid electrolytic capacitors of Examples 2 to 4 were produced.
  • the solid electrolytic capacitors of Examples 2 to 4 differ from the solid electrolytic capacitor of Example 1 in the type of phosphoric acid compound having a butyl group.
  • Example 2 used tributyl phosphate
  • Example 3 used dibutyl phosphite
  • Example 4 used tributyl phosphite.
  • the solid electrolytic capacitors of Examples 2 to 4 were the same as those of Example 1 except that the type of phosphoric acid compound having a butyl group was different from that of Example 1. be.
  • ESR 2 The ESR of the solid electrolytic capacitors of Examples 2 to 4 was measured under the same conditions as in Example 1. The results are shown in Table 2 below. (Table 2)
  • the ESR of the solid electrolytic capacitors of Examples 2 to 4, like Example 1 show little change even when exposed to a high temperature environment of 160°C for 1200 hours, and the values are also small. From this, it was confirmed that the ESR of the solid electrolytic capacitor was improved even when a phosphoric acid compound having a butyl group and azelaic acid were added to the electrolytic solution, not limited to dibutyl phosphate.
  • Example 5 to 7 Solid electrolytic capacitors of Examples 5 to 7 were produced.
  • the solid electrolytic capacitors of Examples 5 to 7 differ from the solid electrolytic capacitor of Example 1 in the type of aliphatic dicarboxylic acid.
  • Example 5 used succinic acid
  • Example 6 used glutaric acid
  • Example 7 used citraconic acid.
  • the solid electrolytic capacitors of Examples 5 to 7 were the same as those of Example 1 except that the type of aliphatic dicarboxylic acid was different from that of Example 1, and other constitutions, manufacturing methods, and manufacturing conditions.
  • solid electrolytic capacitors of Comparative Examples 3 to 5 were produced.
  • the solid electrolytic capacitors of Comparative Examples 3 to 5 differ from those of Examples 5 to 7 in that the electrolytic solution does not contain a phosphoric acid compound having a butyl group.
  • the solid electrolytic capacitors of Comparative Examples 3 to 5 were identical to those of Examples 5 to 7 in all other configurations, production methods, production conditions, etc., except for the presence or absence of the addition of a phosphoric acid compound having a butyl group. is.
  • ESR 3 The ESR of the solid electrolytic capacitors of Examples 5 to 7 and Comparative Examples 3 to 5 were measured under the same conditions as in Example 1. The results are shown in Table 3 below. (Table 3)
  • the ESR of the solid electrolytic capacitors of Examples 5 to 7 changed less than those of the corresponding Comparative Examples 3 to 5 even after exposure to a high temperature environment of 160°C for 1200 hours, and the value is small. From this, it was confirmed that the ESR of the solid electrolytic capacitor was improved not only by azelaic acid but also by adding other kinds of aliphatic dicarboxylic acid and dibutyl phosphate to the electrolytic solution. Overall, as can be seen from the results of Examples 1 to 7, the ESR of solid electrolytic capacitors is improved by containing various phosphoric acid compounds having butyl groups and various aliphatic dicarboxylic acids in the electrolytic solution. confirmed.
  • ESR is worse in Comparative Examples 3 and 4 than in Comparative Example 1.
  • Examples 5 and 6, which correspond to Comparative Examples 3 and 4 have better ESR than Comparative Example 1.
  • the ESR is better than that of a phosphoric acid compound having a butyl group, which has a relatively good ESR.
  • the ESR is much lower than in Comparative Examples 2, 3, and 4, and the ESR is better than in Example 7 as well.
  • Example 7 the ESR is better than in Comparative Examples 1 and 5.
  • citraconic acid is selected as the aliphatic dicarboxylic acid
  • adding a phosphoric acid compound having a butyl group with relatively poor ESR results in a better ESR than citraconic acid, which has relatively good ESR.
  • the ESR of the solid electrolytic capacitor became even better than the one with relatively good ESR.
  • the LC (leakage current) of the solid electrolytic capacitors of Comparative Example 1 and Examples 1 and 5 to 7 was measured. Each solid electrolytic capacitor was left in a temperature environment of 160° C. for 2000 hours, and the leakage current after the standing was measured. The leakage current was obtained by applying a rated withstand voltage of 35 WV to each solid electrolytic capacitor and maintaining the voltage for 2 minutes.
  • Example 8 and 9 As shown in Table 5 below, the ESR and leakage current of various solid electrolytic capacitors with different amounts of dibutyl phosphate added were measured.
  • Example 8, Example 9, and Comparative Example 6 have all the same configurations, manufacturing methods, and manufacturing conditions as those of Example 1, except that the amount of dibutyl phosphate added is different from that of Example 1. Identical to 1.
  • the ESR was measured at the timing of 0 hours just before exposure to the temperature environment of 160° C. and the timing after 1200 hours of exposure to the high temperature environment. Leakage current was measured after 2000 hours of exposure to this high temperature environment.
  • Example 9 and Comparative Example 1 even if azelaic acid, which relatively worsens the ESR, is contained, when dibutyl phosphate is 32 mmol or less per 100 g of the electrolyte, only dibutyl phosphate is contained in the electrolytic solution, the ESR after 1200 hours is better. That is, when the electrolytic solution contains an aliphatic dicarboxylic acid and a phosphoric acid compound having a butyl group, and the amount of the phosphoric acid compound having a butyl group added is 32 mmol or less per 100 g of the electrolytic solution, the ESR becomes favorable. was confirmed.
  • Example 10 to 12 Solid electrolytic capacitors of Examples 10 to 12 were produced. Further, corresponding to Examples 10 to 12, solid electrolytic capacitors of Comparative Examples 7 and 8 were produced. The solid electrolytic capacitors of Examples 10 to 12 and Comparative Examples 7 and 8 differ from the solid electrolytic capacitor of Example 1 in the amount of aliphatic dicarboxylic acid added. The solid electrolytic capacitors of Examples 10 to 12 and Comparative Examples 7 and 8 are the same as those of Example 1 in all other configurations, manufacturing methods, manufacturing conditions, and the like.
  • the ESR and leakage current of the solid electrolytic capacitors of Examples 1, 10 to 12, and Comparative Examples 7 and 8 were measured. As shown in Table 6 below, the ESR was measured at the timing of 0 hours just before exposure to the temperature environment of 150° C. and at the timing of 2700 hours after exposure to this high temperature environment. Leakage current was measured after 2700 hours of exposure to this high temperature environment.
  • a phosphate compound having a butyl group is dibutyl phosphate, and an aliphatic dicarboxylic acid is azelaic acid.
  • Table 6 in Example 1, equimolar amounts of the phosphoric acid compound and azelaic acid were contained in the electrolytic solution.
  • the electrolytic solution contained azelaic acid at a molar ratio of 0.75 to 1 for the phosphoric acid compound.
  • the electrolytic solution contained azelaic acid at a molar ratio of 0.5 to 1 for the phosphoric acid compound.
  • the electrolytic solution contained azelaic acid at a molar ratio of 0.25 to 1 for the phosphoric acid compound.
  • the electrolyte does not contain a phosphoric acid compound.
  • the electrolytic solution contained no aliphatic dicarboxylic acid, and the electrolytic solution contained 0 azelaic acid when the phosphoric acid compound was taken as 1 in molar ratio.
  • Example 13 A solid electrolytic capacitor of Example 13 was produced.
  • the solid electrolytic capacitor of Example 13 differs from the solid electrolytic capacitor of Example 1 in that triethylamine was added as a cationic component.
  • the solid electrolytic capacitor of Example 13 is the same as Example 1 in all other configurations, manufacturing methods, manufacturing conditions, and the like.
  • the ESR of the solid electrolytic capacitors of Examples 1 and 13 was measured. As shown in Table 7 below, the ESR was measured at time zero, which is just before exposure to the temperature environment of 150° C., and at time 260 hours after exposure to this high temperature environment.
  • the ESR of the solid electrolytic capacitor is good regardless of the cation species in the electrolyte, but especially when the cation species is ammonia, the ESR deteriorates at high frequencies even when exposed to a high temperature environment. was confirmed to be suppressed.
  • Example 14 to 20 Solid electrolytic capacitors of Examples 14 to 20 were produced. Also, a solid electrolytic capacitor of Comparative Example 9 was produced. The solid electrolytic capacitors of Examples 14 to 20 and Comparative Example 9 differ from the solid electrolytic capacitor of Example 13 in the solvent type of the electrolytic solution. The solid electrolytic capacitors of Examples 14 to 20 and Comparative Example 9 are the same as those of Example 13 in all other configurations, manufacturing methods, manufacturing conditions, and the like.
  • the ESR of the solid electrolytic capacitors of Examples 13 to 20 and Comparative Example 9 was measured. As shown in Table 8 below, the ESR was measured at the timing of 0 hours, which is just before exposure to the temperature environment of 150° C., and at the timing of 260 hours after exposure to the high temperature environment.
  • the solvent species in Example 13 is ethylene glycol.
  • the solvent species in Example 14 is a mixture of ethylene glycol and glycerin.
  • the solvent species of Example 15 is a mixed liquid of ethylene glycol and glycerin as in Example 14, but the mixing ratio is different between Example 14 and Example 15.
  • ethylene glycol accounts for 90 wt% and glycerin accounts for 10 wt% in the solvent.
  • ethylene glycol accounts for 40 wt% and glycerin accounts for 60 wt% in the solvent.
  • the solvent species in Example 16 is glycerin.
  • the solvent species for Example 17 is sulfolane.
  • the solvent species in Example 18 is a mixture of glycerin and polyethylene glycol with an average molecular weight of about 300.
  • the solvent species in Example 19 is a mixture of glycerin and polyethylene glycol having an average molecular weight of about 300 as in Example 18.
  • glycerin accounts for 70 wt% and polyethylene glycol represents 30 wt% in the solvent.
  • the weight ratio of glycerin and polyethylene glycol in the solvent is equal.
  • the solvent species in Example 20 is ⁇ -butyrolactone.
  • the solvent type in Comparative Example 9 was ⁇ -butyrolactone, but did not contain a phosphoric acid compound having a butyl group.
  • Examples 16 to 19 had better ESR after being exposed to a high-temperature environment than Example 20.
  • Examples 13 to 15 had better ESR at a measurement frequency of 100 kHz than Examples 16 to 19, and even better ESR when exposed to a high temperature environment.
  • Examples 13 to 15 are solid electrolytic capacitors containing ethylene glycol as a solvent species.
  • Examples 16 to 19 are solid electrolytic capacitors containing glycerin or sulfolane as solvent species. This confirms that the low ESR is maintained when the electrolyte contains glycerin or sulfolane. Moreover, it was confirmed that the ESR was maintained even lower when the electrolytic solution contained ethylene glycol.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided is a solid electrolytic capacitor that exhibits low equivalent series resistance even at high frequencies. The solid electrolytic capacitor comprises a positive electrode foil, a negative electrode foil, and an electrolyte layer. The positive electrode foil contains a valve metal, and a dielectric oxide film is formed thereupon. The negative electrode foil contains a valve metal, and faces the positive electrode foil. The electrolyte layer contains an electrically conductive polymer and an electrolyte solution, and is interposed between the positive electrode foil and the negative electrode foil. The electrolyte solution contains an aliphatic dicarboxylic acid and a phosphoric acid compound that has a butyl group, and the phosphoric acid compound is present in the amount of 32 mmol or less per 100 g of the electrolyte solution.

Description

固体電解コンデンサsolid electrolytic capacitor
 本発明は、固体電解コンデンサに関する。 The present invention relates to solid electrolytic capacitors.
 固体電解コンデンサは、タンタルあるいはアルミニウム等のような弁作用金属を陽極箔及び陰極箔として備えている。陽極箔は、弁作用金属を焼結体あるいはエッチング箔等の形状にすることで拡面化され、拡面化された表面に陽極酸化等の処理によって誘電体酸化皮膜を有する。陽極箔と陰極箔との間には、陽極箔に密着して真の陰極として作用する固体電解質層が介在する。 Solid electrolytic capacitors are equipped with valve metals such as tantalum or aluminum as anode and cathode foils. The anode foil is expanded by forming a valve metal into a sintered body or an etched foil, and has a dielectric oxide film on the expanded surface by anodization or the like. Between the anode foil and the cathode foil is interposed a solid electrolyte layer that adheres to the anode foil and acts as a true cathode.
 固体電解質としては、二酸化マンガンや7,7,8,8-テトラシアノキノジメタン(TCNQ)錯体が知られている。近年は、高い導電性を有し、また誘電体酸化皮膜との密着性に優れたポリ(3,4-エチレンジオキシチオフェン)(PEDOT)が固体電解質として急速に普及している。ポリ(3,4-エチレンジオキシチオフェン)は、典型的にはポリスチレンスルホン酸(PSS)がドープされたり、分子内にドーパントとして作用する部分構造を有することで、高い導電性が発現する。 Manganese dioxide and 7,7,8,8-tetracyanoquinodimethane (TCNQ) complexes are known as solid electrolytes. In recent years, poly(3,4-ethylenedioxythiophene) (PEDOT), which has high conductivity and excellent adhesion to dielectric oxide films, has rapidly spread as a solid electrolyte. Poly(3,4-ethylenedioxythiophene) typically exhibits high conductivity by being doped with polystyrene sulfonic acid (PSS) or having a partial structure that acts as a dopant in the molecule.
 但し、固体電解コンデンサは、コンデンサ素子に電解液を含浸させた液体型の電解コンデンサと比べて、誘電体酸化皮膜の欠陥部の修復作用に乏しく、漏れ電流が増大する虞がある。そこで、コンデンサ素子に固体電解質層を形成すると共に、コンデンサ素子の空隙に電解液を含浸させた所謂ハイブリッドタイプの固体電解コンデンサも注目されている。電解液は、例えばγ-ブチロラクトンやスルホランを溶媒とし、ボロジサリチル酸トリエチルアミン、フタル酸エチルジメチルアミン、フタル酸モノ1,2,3,4-テトラメチルイミダゾリニウム、フタル酸モノ1,3-ジメチル-2-エチルイミダゾリニウム等を溶質として含有する。 However, solid electrolytic capacitors are less effective in repairing defects in the dielectric oxide film than liquid-type electrolytic capacitors in which capacitor elements are impregnated with an electrolytic solution, and there is a risk of an increase in leakage current. Therefore, so-called hybrid-type solid electrolytic capacitors in which a solid electrolyte layer is formed on a capacitor element and the voids of the capacitor element are impregnated with an electrolytic solution are attracting attention. The electrolytic solution uses, for example, γ-butyrolactone or sulfolane as a solvent, triethylamine borodisalicylate, ethyldimethylamine phthalate, mono-1,2,3,4-tetramethylimidazolinium phthalate, and mono-1,3-dimethyl phthalate. -Contains 2-ethylimidazolinium and the like as a solute.
特開2008-10657号公報JP 2008-10657 A
 電子機器のディジタル化に伴い、小型、大容量でESR(等価直列抵抗)の小さいコンデンサが求められるようになってきた。電解コンデンサは、フィルムコンデンサやセラミックコンデンサと比べて大容量であり、またポリ(3,4-エチレンジオキシチオフェン)(PEDOT)等の導電性高分子を含む固体電解コンデンサは、導電性高分子が高い導電性を有するため、良好なESRを有する。 With the digitization of electronic devices, there is a growing demand for capacitors that are small, have a large capacity, and have a low ESR (equivalent series resistance). Electrolytic capacitors have a larger capacity than film capacitors and ceramic capacitors, and solid electrolytic capacitors containing conductive polymers such as poly(3,4-ethylenedioxythiophene) (PEDOT) have conductive polymers. Since it has high conductivity, it has good ESR.
 ディジタル機器は数十kHz超の高周波領域で作動するようになり、固体電解コンデンサは高周波領域でも低ESRであることが要望される。本発明は、上記課題を解決するために提案されたものであり、その目的は、高周波領域でも低ESRの固体電解コンデンサを提供することにある。 Digital equipment has come to operate in the high frequency range of several tens of kHz, and solid electrolytic capacitors are required to have low ESR even in the high frequency range. SUMMARY OF THE INVENTION The present invention has been proposed to solve the above problems, and an object of the present invention is to provide a solid electrolytic capacitor with low ESR even in a high frequency region.
 上記課題を解決すべく、本実施形態の固体電解コンデンサは、弁作用金属を含み、誘電体酸化皮膜が形成された陽極箔と、弁作用金属を含み、前記陽極箔に対向する陰極箔と、導電性高分子と電解液とを含み、前記陽極箔と前記陰極箔との間に介在する電解質層と、を備え、前記電解液は、ブチル基を有するリン酸化合物と、脂肪族ジカルボン酸とを含み、前記リン酸化合物は、前記電解液100g当たり32mmol以下である。 In order to solve the above problems, the solid electrolytic capacitor of the present embodiment includes an anode foil containing a valve metal and having a dielectric oxide film formed thereon; a cathode foil containing a valve metal and facing the anode foil; an electrolyte layer interposed between the anode foil and the cathode foil containing a conductive polymer and an electrolytic solution, wherein the electrolytic solution contains a phosphoric acid compound having a butyl group and an aliphatic dicarboxylic acid; and the phosphoric acid compound is 32 mmol or less per 100 g of the electrolytic solution.
 前記リン酸化合物は、前記電解液100g当たり8mmol以下であるようにしてもよい。これにより、固体電解コンデンサのESRは大きく下がり、且つ漏れ電流も大きく低下する。 The amount of the phosphoric acid compound may be 8 mmol or less per 100 g of the electrolytic solution. As a result, the ESR of the solid electrolytic capacitor is greatly reduced, and the leakage current is also greatly reduced.
 前記リン酸化合物は、ジブチルリン酸、トリブチルリン酸、亜リン酸ジブチル、亜リン酸トリブチルの群から選択される1種又は2種以上の混合であるようにしてもよい。 The phosphoric acid compound may be one or a mixture of two or more selected from the group consisting of dibutyl phosphate, tributyl phosphate, dibutyl phosphite, and tributyl phosphite.
 前記脂肪族ジカルボン酸は、アゼライン酸、コハク酸、グルタル酸、シトラコン酸の群から選択される1種又は2種以上の混合であるようにしてもよい。 The aliphatic dicarboxylic acid may be one or a mixture of two or more selected from the group consisting of azelaic acid, succinic acid, glutaric acid and citraconic acid.
 前記脂肪族ジカルボン酸は、アゼライン酸、コハク酸、グルタル酸の群から選択される1種又は2種以上の混合であるようにしてもよい。 The aliphatic dicarboxylic acid may be one or a mixture of two or more selected from the group of azelaic acid, succinic acid, and glutaric acid.
 前記電解液は、エチレングリコール、グリセリン及びスルホランの群から選ばれる1種又は2種以上を含むようにしてもよい。 The electrolytic solution may contain one or more selected from the group of ethylene glycol, glycerin and sulfolane.
 前記電解液は、アンモニアを含むようにしてもよい。 The electrolytic solution may contain ammonia.
 前記脂肪族ジカルボン酸は、モル比においてリン酸化合物を1とすると、前記電解液に0.25以上含有するようにしてもよい。 The aliphatic dicarboxylic acid may be contained in the electrolytic solution in a molar ratio of 0.25 or more when the phosphoric acid compound is 1.
 本発明によれば、固体電解コンデンサは少なくとも高周波領域で低ESRになる。 According to the present invention, the solid electrolytic capacitor has a low ESR at least in the high frequency range.
 以下、本発明の実施形態に係る固体電解コンデンサについて説明する。なお、本発明は、以下に説明する実施形態に限定されるものでない。 A solid electrolytic capacitor according to an embodiment of the present invention will be described below. In addition, this invention is not limited to embodiment described below.
 (固体電解コンデンサ)
 固体電解コンデンサは、誘電体酸化皮膜の誘電分極作用により静電容量を得て電荷の蓄電及び放電を行う受動素子である。この固体電解コンデンサは、コンデンサ素子をケースに収容して、封口体でケース開口を封止して成る。コンデンサ素子は、陽極箔、陰極箔、セパレータ及び電解質層を備える。陽極箔と陰極箔はセパレータを介して対向して巻回又は積層される。誘電体酸化皮膜は陽極箔の表面に形成されている。電解質層は、導電性高分子を含む固体電解質層と電解液とにより成る。固体電解質層は、陽極箔と陰極箔との間に介在し、誘電体酸化皮膜と密着する。電解液は、固体電解質層が形成されたコンデンサ素子の空隙に含浸する。
(solid electrolytic capacitor)
A solid electrolytic capacitor is a passive element that stores and discharges electric charges by obtaining capacitance from the dielectric polarization action of a dielectric oxide film. This solid electrolytic capacitor is formed by housing a capacitor element in a case and sealing the case opening with a sealing member. A capacitor element comprises an anode foil, a cathode foil, a separator and an electrolyte layer. The anode foil and the cathode foil are wound or laminated facing each other with a separator interposed therebetween. A dielectric oxide film is formed on the surface of the anode foil. The electrolyte layer is composed of a solid electrolyte layer containing a conductive polymer and an electrolytic solution. The solid electrolyte layer is interposed between the anode foil and the cathode foil and adheres to the dielectric oxide film. The electrolytic solution impregnates the voids of the capacitor element in which the solid electrolyte layer is formed.
 (電極箔)
 陽極箔及び陰極箔は弁作用金属を延伸した長尺の箔体である。弁作用金属は、アルミニウム、タンタル、ニオブ、酸化ニオブ、チタン、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス及びアンチモン等である。純度は、陽極箔に関して99.9%以上が望ましく、陰極箔に関して99%程度以上が望ましいが、ケイ素、鉄、銅、マグネシウム、亜鉛等の不純物が含まれていても良い。
(electrode foil)
The anode foil and the cathode foil are long foil bodies obtained by stretching the valve action metal. Valve metals include aluminum, tantalum, niobium, niobium oxide, titanium, hafnium, zirconium, zinc, tungsten, bismuth and antimony. The purity of the anode foil is desirably 99.9% or higher, and the purity of the cathode foil is desirably about 99% or higher. Impurities such as silicon, iron, copper, magnesium and zinc may be contained.
 陽極箔は、弁作用金属の粉体を成形した成形体、成形体を焼結した焼結体、又は圧延された箔にエッチング処理を施したエッチング箔として、表面が拡面化される。即ち、拡面構造は、トンネル状のピット、海綿状のピット、又は密集した粉体間の空隙により成る。拡面構造は、典型的には、塩酸等のハロゲンイオンが存在する酸性水溶液中で直流又は交流を印加する直流エッチング又は交流エッチングにより形成され、若しくは芯部に金属粒子等を蒸着又は焼結することにより形成される。陰極箔についても、蒸着、焼結又はエッチングによって拡面構造を有するようにしてもよい。 The surface of the anode foil is enlarged as a molded body obtained by molding the powder of the valve metal, a sintered body obtained by sintering the molded body, or an etched foil obtained by etching a rolled foil. That is, the surface spreading structure consists of tunnel-like pits, spongy pits, or voids between dense particles. The expanded surface structure is typically formed by direct current or alternating current etching or alternating current etching in an acidic aqueous solution in which halogen ions such as hydrochloric acid are present, or by depositing or sintering metal particles or the like on the core. It is formed by The cathode foil may also have an enlarged surface structure by vapor deposition, sintering or etching.
 誘電体酸化皮膜は、典型的には、陽極箔の表層に形成される酸化皮膜である。例えば、陽極箔がアルミニウム箔であれば、誘電体酸化皮膜は、拡面構造を酸化させた酸化アルミニウムである。誘電体酸化皮膜は、アジピン酸、ホウ酸又はリン酸等の水溶液中で陽極箔に電圧を印加する化成処理により形成される。陰極箔の表層に必要に応じて化成処理により薄い酸化皮膜(1~10V程度)を形成しても良い。 The dielectric oxide film is typically an oxide film formed on the surface layer of the anode foil. For example, if the anode foil is an aluminum foil, the dielectric oxide film is aluminum oxide with an oxidized surface expansion structure. The dielectric oxide film is formed by chemical conversion treatment in which a voltage is applied to the anode foil in an aqueous solution of adipic acid, boric acid, phosphoric acid, or the like. A thin oxide film (about 1 to 10 V) may be formed on the surface layer of the cathode foil by chemical conversion treatment, if necessary.
 (電解液)
 電解液は、固体電解質層が形成されたコンデンサ素子の空隙に含浸している。この電解液は、アニオン成分とカチオン成分を溶媒に添加した溶液である。アニオン成分とカチオン成分は、典型的には、有機酸の塩、無機酸の塩、又は有機酸と無機酸との複合化合物の塩であり、アニオン成分とカチオン成分に解離するイオン解離性塩によって溶媒に添加される。アニオン成分となる酸及びカチオン成分となる塩基が別々に溶媒に添加されてもよい。また、電解液は、アニオン成分又はカチオン成分、アニオン成分とカチオン成分の両者が溶媒に含まれていなくてもよい。
(Electrolyte)
The electrolytic solution impregnates the voids of the capacitor element in which the solid electrolyte layer is formed. This electrolytic solution is a solution in which an anion component and a cation component are added to a solvent. The anion component and the cation component are typically a salt of an organic acid, a salt of an inorganic acid, or a salt of a complex compound of an organic acid and an inorganic acid. Added to the solvent. An acid as an anionic component and a base as a cationic component may be added separately to the solvent. Moreover, the electrolytic solution does not have to contain an anion component, a cation component, or both an anion component and a cation component in the solvent.
 電解液には、ブチル基を有するリン酸化合物と脂肪族ジカルボン酸の両方が含まれる。リン酸化合物はブチル基を少なくとも1つ以上有する。電解液にブチル基を有するリン酸化合物と脂肪族ジカルボン酸の両方が含まれることによって、100kHz等の高周波領域で固体電解コンデンサを使用した際にも、低いESRが長期間維持され、且つ低い漏れ電流が長期間維持される。このESRは、ブチル基を有するリン酸化合物と脂肪族ジカルボン酸のうちのESRが良い一方を電解液に添加した場合よりも低い値となる。 The electrolyte contains both a phosphoric acid compound with a butyl group and an aliphatic dicarboxylic acid. The phosphate compound has at least one butyl group. Since both the phosphate compound having a butyl group and the aliphatic dicarboxylic acid are contained in the electrolyte, even when the solid electrolytic capacitor is used in a high frequency range such as 100 kHz, low ESR is maintained for a long period of time and leakage is low. Current is maintained for a long period of time. This ESR becomes a lower value than when either of the phosphoric acid compound having a butyl group and the aliphatic dicarboxylic acid, which has a good ESR, is added to the electrolytic solution.
 もっとも、ブチル基を有するリン酸化合物は、電解液100g当たり32mmol以下であり、好ましくは電解液100g当たり8mmol以下である。48mmol以上であると、ESRは、電解液にブチル基を有するリン酸化合物のみを含有させた場合よりも悪化してしまい、ブチル基を有するリン酸化合物と脂肪族ジカルボン酸の相乗効果は得られない。一方、32mmol以下であると、ESRは、電解液にブチル基を有するリン酸化合物のみを含有させた場合よりも良好になる。8mmol以下であると、低ESRに加え、電解液にブチル基を有するリン酸化合物のみを含有させた場合よりも、電解液に脂肪族ジカルボン酸のみを含有させた場合よりもLC(漏れ電流)が良好になる。 However, the amount of the phosphoric acid compound having a butyl group is 32 mmol or less per 100 g of the electrolyte, preferably 8 mmol or less per 100 g of the electrolyte. If it is 48 mmol or more, the ESR becomes worse than when only the phosphoric acid compound having a butyl group is contained in the electrolytic solution, and the synergistic effect of the phosphoric acid compound having a butyl group and the aliphatic dicarboxylic acid cannot be obtained. do not have. On the other hand, when it is 32 mmol or less, the ESR becomes better than when only the phosphoric acid compound having a butyl group is contained in the electrolytic solution. When it is 8 mmol or less, in addition to the low ESR, the LC (leakage current) is lower than when the electrolyte contains only the phosphoric acid compound having a butyl group and when the electrolyte contains only the aliphatic dicarboxylic acid. becomes better.
 脂肪族ジカルボン酸の添加量には特に限定無く、ブチル基を有するリン酸化合物と脂肪族ジカルボン酸のESRに係る相乗効果が得られる。好ましくは、モル比において、リン酸化合物を1とすると、脂肪族ジカルボン酸は0.25以上である。少なくとも、この範囲では、100kHz等の高周波領域で固体電解コンデンサを使用した際にも、低いESRが長期間維持されており、またLCも良好である。 The amount of the aliphatic dicarboxylic acid to be added is not particularly limited, and a synergistic effect relating to the ESR of the phosphoric acid compound having a butyl group and the aliphatic dicarboxylic acid can be obtained. Preferably, the molar ratio of the phosphoric acid compound to 1 is 0.25 or more of the aliphatic dicarboxylic acid. At least in this range, even when the solid electrolytic capacitor is used in a high frequency range such as 100 kHz, the low ESR is maintained for a long period of time, and the LC is also good.
 ブチル基を有するリン酸化合物は、例えばジブチルリン酸、トリブチルリン酸、亜リン酸ジブチル又は亜リン酸トリブチルである。電解液には、1種又は2種以上のリン酸化合物が含まれていればよい。脂肪族ジカルボン酸は、例えばアゼライン酸、コハク酸、グルタル酸又はシトラコン酸である。電解液には、1種又は2種以上の脂肪族ジカルボン酸が含まれていればよい。好ましくは、脂肪族ジカルボン酸は、アゼライン酸、コハク酸又はグルタル酸の群から選ばれる1種以上である。アゼライン酸、コハク酸及びグルタル酸は、ブチル基を有するリン酸化合物と比べて、固体電解コンデンサのESRを悪化させる。しかしながら、ブチル基を有するリン酸化合物と共に電解液に含有させると、ブチル基を有するリン酸化合物のみを含有させた場合よりも固体電解コンデンサのESRを良好にし、ESRの低減効果は高い。 A phosphate compound having a butyl group is, for example, dibutyl phosphate, tributyl phosphate, dibutyl phosphite or tributyl phosphite. The electrolytic solution may contain one or more phosphoric acid compounds. Aliphatic dicarboxylic acids are for example azelaic acid, succinic acid, glutaric acid or citraconic acid. The electrolytic solution may contain one or more aliphatic dicarboxylic acids. Preferably, the aliphatic dicarboxylic acid is one or more selected from the group of azelaic acid, succinic acid or glutaric acid. Azelaic acid, succinic acid and glutaric acid worsen the ESR of solid electrolytic capacitors compared to phosphoric acid compounds having butyl groups. However, when it is contained in the electrolytic solution together with the phosphoric acid compound having a butyl group, the ESR of the solid electrolytic capacitor is improved and the ESR reduction effect is higher than when only the phosphoric acid compound having a butyl group is contained.
 尚、脂肪族ジカルボン酸としてESRの低減効果が高いシトラコン酸を採用しても、ブチル基を有するリン酸化合物のみを含む電解液よりも、シトラコン酸のみを含む電解液よりも固体電解コンデンサのESRを良好にする。 Even if citraconic acid, which is highly effective in reducing ESR, is used as the aliphatic dicarboxylic acid, the ESR of the solid electrolytic capacitor is higher than that of the electrolyte containing only the phosphoric acid compound having a butyl group and the electrolyte containing only citraconic acid. make good.
 ブチル基を有するリン酸化合物と脂肪族ジカルボン酸の両方が電解液に含有していれば、溶質として他種のアニオン成分を更に含有させてもよい。他種のアニオン成分のうち、有機酸としては、シュウ酸、コハク酸、グルタル酸、ピメリン酸、スベリン酸、セバシン酸、フタル酸、イソフタル酸、テレフタル酸、マレイン酸、アジピン酸、安息香酸、トルイル酸、エナント酸、マロン酸、1,6-デカンジカルボン酸、1,7-オクタンジカルボン酸、アゼライン酸、ウンデカン二酸、ドデカン二酸、トリデカン二酸、t-ブチルアジピン酸、11-ビニル-8-オクタデセン二酸、レゾルシン酸、フロログルシン酸、没食子酸、ゲンチシン酸、プロトカテク酸、ピロカテク酸、トリメリット酸、ピロメリット酸等のカルボン酸や、フェノール類、スルホン酸が挙げられる。また、無機酸としては、ホウ酸、他のリン酸、他の亜リン酸、次亜リン酸、炭酸、ケイ酸等が挙げられる。有機酸と無機酸の複合化合物としては、ボロジサリチル酸、ボロジ蓚酸、ボロジグリコール酸、ボロジマロン酸、ボロジコハク酸、ボロジアジピン酸、ボロジアゼライン酸、ボロジ安息香酸、ボロジマレイン酸、ボロジ乳酸、ボロジリンゴ酸、ボロジ酒石酸、ボロジクエン酸、ボロジフタル酸、ボロジ(2-ヒドロキシ)イソ酪酸、ボロジレゾルシン酸、ボロジメチルサリチル酸、ボロジナフトエ酸、ボロジマンデル酸及びボロジ(3-ヒドロキシ)プロピオン酸等が挙げられる。 If both the phosphate compound having a butyl group and the aliphatic dicarboxylic acid are contained in the electrolytic solution, other kinds of anion components may be further contained as solutes. Among other anion components, organic acids include oxalic acid, succinic acid, glutaric acid, pimelic acid, suberic acid, sebacic acid, phthalic acid, isophthalic acid, terephthalic acid, maleic acid, adipic acid, benzoic acid, and toluyl. acid, enanthic acid, malonic acid, 1,6-decanedicarboxylic acid, 1,7-octanedicarboxylic acid, azelaic acid, undecanedioic acid, dodecanedioic acid, tridecanedioic acid, t-butyladipic acid, 11-vinyl-8 -Carboxylic acids such as octadecenedioic acid, resorcinic acid, phloroglucic acid, gallic acid, gentisic acid, protocatechuic acid, pyromellitic acid, trimellitic acid, and pyromellitic acid, phenols, and sulfonic acids. Examples of inorganic acids include boric acid, other phosphoric acid, other phosphorous acid, hypophosphorous acid, carbonic acid, silicic acid and the like. Compound compounds of organic acids and inorganic acids include borodisalicylic acid, borodisaliic acid, borodiglycolic acid, borodimalonic acid, borodisuccinic acid, borodiadipic acid, borodiazelaic acid, borodibenzoic acid, borodimaleic acid, borodilactic acid, borodimalic acid, boroditartaric acid, borodicitric acid, borodiphthalic acid, borodi(2-hydroxy)isobutyric acid, borodiresorucic acid, borodimethylsalicylic acid, borodinaphthoic acid, borodimandelic acid and borodi(3-hydroxy)propionic acid.
 有機酸、無機酸、ならびに有機酸と無機酸の複合化合物の少なくとも1種の塩としては、例えばアンモニウム塩、四級アンモニウム塩、四級化アミジニウム塩、アミン塩、ナトリウム塩、カリウム塩等が挙げられる。四級アンモニウム塩の四級アンモニウムイオンとしては、テトラメチルアンモニウム、トリエチルメチルアンモニウム、テトラエチルアンモニウム等が挙げられる。四級化アミジニウム塩としては、エチルジメチルイミダゾリニウム、テトラメチルイミダゾリニウム等が挙げられる。アミン塩としては、一級アミン、二級アミン、三級アミンの塩が挙げられる。一級アミンとしては、メチルアミン、エチルアミン、プロピルアミン等、二級アミンとしては、ジメチルアミン、ジエチルアミン、エチルメチルアミン、ジブチルアミン等、三級アミンとしては、トリメチルアミン、トリエチルアミン、トリブチルアミン、エチルジメチルアミン、エチルジイソプロピルアミン等が挙げられる。 Examples of at least one salt of an organic acid, an inorganic acid, and a composite compound of an organic acid and an inorganic acid include ammonium salts, quaternary ammonium salts, quaternary amidinium salts, amine salts, sodium salts, potassium salts, and the like. be done. The quaternary ammonium ion of the quaternary ammonium salt includes tetramethylammonium, triethylmethylammonium, tetraethylammonium and the like. Quaternary amidinium salts include ethyldimethylimidazolinium, tetramethylimidazolinium, and the like. Amine salts include salts of primary, secondary and tertiary amines. Examples of primary amines include methylamine, ethylamine and propylamine; examples of secondary amines include dimethylamine, diethylamine, ethylmethylamine and dibutylamine; examples of tertiary amines include trimethylamine, triethylamine, tributylamine and ethyldimethylamine; and ethyldiisopropylamine.
 溶質のカチオン種として、好ましくはアンモニア、アンモニウム塩又は4級アンモニウム塩である。電解液にアンモニウムが含有していると、他のカチオン種が含有する場合と比べて、100kHz等の高周波領域で固体電解コンデンサを使用した際にも、更に低いESRが長期間維持される。 The solute cationic species is preferably ammonia, an ammonium salt, or a quaternary ammonium salt. When the electrolyte contains ammonium, even when the solid electrolytic capacitor is used in a high frequency range such as 100 kHz, the ESR is maintained for a long period of time, compared to when other cationic species are contained.
 電解液の溶媒は、特に限定されるものではないが、プロトン性の有機極性溶媒又は非プロトン性の有機極性溶媒を用いることができる。プロトン性の有機溶媒としては、一価アルコール類、多価アルコール類及びオキシアルコール化合物類などが挙げられる。一価アルコール類としては、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、シクロブタノール、シクロペンタノール、シクロヘキサノール、ベンジルアルコール等が挙げられる。多価アルコール類及びオキシアルコール化合物類としては、エチレングリコール、ジエチレングリコール、プロピレングリコール、グリセリン、メチルセロソルブ、エチルセロソルブ、メトキシプロピレングリコール、ジメトキシプロパノール、ポリグリセリン、ポリエチレングリコールやポリオキシエチレングリセリン、ポリプロピレングリコールなどの多価アルコールのアルキレンオキサイド付加物等が挙げられる。 The solvent for the electrolytic solution is not particularly limited, but a protic organic polar solvent or an aprotic organic polar solvent can be used. Protic organic solvents include monohydric alcohols, polyhydric alcohols and oxyalcohol compounds. Examples of monohydric alcohols include ethanol, propanol, butanol, pentanol, hexanol, cyclobutanol, cyclopentanol, cyclohexanol, and benzyl alcohol. Examples of polyhydric alcohols and oxyalcohol compounds include ethylene glycol, diethylene glycol, propylene glycol, glycerin, methyl cellosolve, ethyl cellosolve, methoxypropylene glycol, dimethoxypropanol, polyglycerin, polyethylene glycol, polyoxyethylene glycerin, polypropylene glycol, and the like. Examples include alkylene oxide adducts of polyhydric alcohols.
 非プロトン性の有機極性溶媒として、スルホン系、アミド系、ラクトン類、環状アミド系、ニトリル系、スルホキシド系などが用いられてもよい。スルホン系としては、ジメチルスルホン、エチルメチルスルホン、ジエチルスルホン、スルホラン、3-メチルスルホラン、2,4-ジメチルスルホラン等が挙げられる。アミド系としては、N-メチルホルムアミド、N,N-ジメチルホルムアミド、N-エチルホルムアミド、N,N-ジエチルホルムアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-エチルアセトアミド、N,N-ジエチルアセトアミド、ヘキサメチルホスホリックアミド等が挙げられる。ラクトン類、環状アミド系としては、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、N-メチル-2-ピロリドン、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、イソブチレンカーボネート等が挙げられる。ニトリル系としては、アセトニトリル、3-メトキシプロピオニトリル、グルタロニトリル等が挙げられる。スルホキシド系としてはジメチルスルホキシド等が挙げられる。 As aprotic organic polar solvents, sulfone-based, amide-based, lactones, cyclic amide-based, nitrile-based, sulfoxide-based, and the like may be used. Sulfone-based solvents include dimethylsulfone, ethylmethylsulfone, diethylsulfone, sulfolane, 3-methylsulfolane, 2,4-dimethylsulfolane, and the like. Examples of amides include N-methylformamide, N,N-dimethylformamide, N-ethylformamide, N,N-diethylformamide, N-methylacetamide, N,N-dimethylacetamide, N-ethylacetamide, N,N- diethylacetamide, hexamethylphosphoricamide and the like. Lactones and cyclic amides include γ-butyrolactone, γ-valerolactone, δ-valerolactone, N-methyl-2-pyrrolidone, ethylene carbonate, propylene carbonate, butylene carbonate and isobutylene carbonate. Nitrile type includes acetonitrile, 3-methoxypropionitrile, glutaronitrile and the like. The sulfoxide type includes dimethyl sulfoxide and the like.
 好ましくは、電解液の溶媒又は溶媒中の他の種として、エチレングリコール若しくはグリセリン等の多価アルコール類、一価アルコール類又はオキシアルコール化合物類を含有させる。これら溶媒は、脂肪族ジカルボン酸とエステル化反応を生じさせ易い。脂肪族ジカルボン酸がエステル化反応によって分解すると、電解液の酸性度が下がり、導電性高分子から脱ドープが生じ易くなる。但し、電解液にブチル基を有するリン酸化合物が添加されていると、導電性高分子の脱ドープが抑制され、低ESRが維持される。また、好ましくは、電解液の溶媒又は溶媒中の他の種としてスルホランを含有させてもよい。 Preferably, polyhydric alcohols such as ethylene glycol or glycerin, monohydric alcohols, or oxyalcohol compounds are contained as the solvent of the electrolytic solution or other species in the solvent. These solvents tend to cause an esterification reaction with aliphatic dicarboxylic acids. When the aliphatic dicarboxylic acid is decomposed by the esterification reaction, the acidity of the electrolytic solution is lowered, and dedoping from the conductive polymer is likely to occur. However, when the electrolytic solution contains a phosphoric acid compound having a butyl group, dedoping of the conductive polymer is suppressed, and low ESR is maintained. Sulfolane may also preferably be included as a solvent in the electrolyte or as another species in the solvent.
 電解液には他の添加剤を添加することもできる。添加剤としては、ホウ酸と多糖類(マンニット、ソルビットなど)との錯化合物、ホウ酸と多価アルコールとの錯化合物、ホウ酸エステル、ニトロ化合物(o-ニトロ安息香酸、m-ニトロ安息香酸、p-ニトロ安息香酸、o-ニトロフェノール、m-ニトロフェノール、p-ニトロフェノール、p-ニトロベンジルアルコールなど)などが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。  Other additives can be added to the electrolyte. Additives include complex compounds of boric acid and polysaccharides (mannite, sorbitol, etc.), complex compounds of boric acid and polyhydric alcohol, boric acid esters, nitro compounds (o-nitrobenzoic acid, m-nitrobenzoic acid, acid, p-nitrobenzoic acid, o-nitrophenol, m-nitrophenol, p-nitrophenol, p-nitrobenzyl alcohol, etc.). These may be used alone or in combination of two or more.
 (固体電解質層)
 固体電解質層において、導電性高分子は、分子内のドーパント分子によりドーピングされた自己ドープ型の共役系高分子、又は外部ドーパント分子によりドーピングされた共役系高分子である。共役系高分子は、π共役二重結合を有するモノマー又はその誘導体を化学酸化重合または電解酸化重合することによって得られる。共役系高分子にドープ反応を行うことで導電性高分子は高い導電性を発現する。即ち、共役系高分子に電子を受け入れやすいアクセプター、もしくは電子を与えやすいドナーといったドーパントを少量添加することで導電性を発現する。
(Solid electrolyte layer)
In the solid electrolyte layer, the conductive polymer is a self-doped conjugated polymer doped with intramolecular dopant molecules or a conjugated polymer doped with external dopant molecules. A conjugated polymer is obtained by subjecting a monomer having a π-conjugated double bond or a derivative thereof to chemical oxidation polymerization or electrolytic oxidation polymerization. A conductive polymer expresses high conductivity by performing a doping reaction on a conjugated polymer. That is, by adding a small amount of a dopant, such as an acceptor that easily accepts electrons or a donor that easily donates electrons, to the conjugated polymer, conductivity is exhibited.
 共役系高分子としては、公知のものを特に限定なく使用することができる。例えば、ポリピロール、ポリチオフェン、ポリフラン、ポリアニリン、ポリアセチレン、ポリフェニレン、ポリフェニレンビニレン、ポリアセン、ポリチオフェンビニレンなどが挙げられる。これら共役系高分子は、単独で用いられてもよく、2種類以上を組み合わせても良く、更に2種以上のモノマーの共重合体であってもよい。 As the conjugated polymer, any known one can be used without any particular limitation. Examples include polypyrrole, polythiophene, polyfuran, polyaniline, polyacetylene, polyphenylene, polyphenylenevinylene, polyacene, polythiophenevinylene and the like. These conjugated polymers may be used alone, may be used in combination of two or more types, and may be a copolymer of two or more types of monomers.
 上記の共役系高分子のなかでも、チオフェン又はその誘導体が重合されて成る共役系高分子が好ましく、3,4-エチレンジオキシチオフェン(すなわち、2,3-ジヒドロチエノ[3,4-b][1,4]ジオキシン)、3-アルキルチオフェン、3-アルコキシチオフェン、3-アルキル-4-アルコキシチオフェン、3,4-アルキルチオフェン、3,4-アルコキシチオフェン又はこれらの誘導体が重合された共役系高分子が好ましい。チオフェン誘導体としては、3位と4位に置換基を有するチオフェンから選択された化合物が好ましく、チオフェン環の3位と4位の置換基は、3位と4位の炭素と共に環を形成していても良い。アルキル基やアルコキシ基の炭素数は1~16が適している。 Among the above conjugated polymers, conjugated polymers obtained by polymerizing thiophene or derivatives thereof are preferable, and 3,4-ethylenedioxythiophene (that is, 2,3-dihydrothieno[3,4-b][ 1,4]dioxin), 3-alkylthiophenes, 3-alkoxythiophenes, 3-alkyl-4-alkoxythiophenes, 3,4-alkylthiophenes, 3,4-alkoxythiophenes, or conjugated high Molecules are preferred. The thiophene derivative is preferably a compound selected from thiophenes having substituents at the 3- and 4-positions, and the substituents at the 3- and 4-positions of the thiophene ring form a ring together with the carbon atoms at the 3- and 4-positions. can be An alkyl group or an alkoxy group preferably has 1 to 16 carbon atoms.
 特に、EDOTと呼称される3,4-エチレンジオキシチオフェンの重合体、即ち、PEDOTと呼称されるポリ(3,4-エチレンジオキシチオフェン)が特に好ましい。また、3,4-エチレンジオキシチオフェンにアルキル基が付加された、アルキル化エチレンジオキシチオフェンでもよく、例えば、メチル化エチレンジオキシチオフェン(すなわち、2-メチル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン)、エチル化エチレンジオキシチオフェン(すなわち、2-エチル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン)などが挙げられる。 In particular, a polymer of 3,4-ethylenedioxythiophene called EDOT, that is, poly(3,4-ethylenedioxythiophene) called PEDOT is particularly preferred. Also, alkylated ethylenedioxythiophene in which an alkyl group is added to 3,4-ethylenedioxythiophene, such as methylated ethylenedioxythiophene (that is, 2-methyl-2,3-dihydro-thieno [ 3,4-b][1,4]dioxin), ethylated ethylenedioxythiophene (i.e., 2-ethyl-2,3-dihydro-thieno[3,4-b][1,4]dioxin), etc. mentioned.
 ドーパントは、公知のものを特に限定なく使用することができる。ドーパントは、単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、高分子又は単量体を用いてもよい。例えば、ドーパントとしては、ポリアニオン、ホウ酸、硝酸、リン酸などの無機酸、酢酸、シュウ酸、クエン酸、酒石酸、スクアリン酸、ロジゾン酸、クロコン酸、サリチル酸、p-トルエンスルホン酸、1,2-ジヒドロキシ-3,5-ベンゼンジスルホン酸、メタンスルホン酸、トリフルオロメタンスルホン酸、ボロジサリチル酸、ビスオキサレートボレート酸、スルホニルイミド酸、ドデシルベンゼンスルホン酸、プロピルナフタレンスルホン酸、ブチルナフタレンスルホン酸などの有機酸が挙げられる。 A known dopant can be used without any particular limitation. A dopant may be used independently and may be used in combination of 2 or more type. Also, polymers or monomers may be used. For example, dopants include polyanions, inorganic acids such as boric acid, nitric acid and phosphoric acid, acetic acid, oxalic acid, citric acid, tartaric acid, squaric acid, rhodizonic acid, croconic acid, salicylic acid, p-toluenesulfonic acid, 1,2 -dihydroxy-3,5-benzenedisulfonic acid, methanesulfonic acid, trifluoromethanesulfonic acid, borodisalicylic acid, bisoxalateborate acid, sulfonylimidic acid, dodecylbenzenesulfonic acid, propylnaphthalenesulfonic acid, butylnaphthalenesulfonic acid, etc. Organic acids are mentioned.
 ポリアニオンは、例えば、置換若しくは未置換のポリアルキレン、置換若しくは未置換のポリアルケニレン、置換若しくは未置換のポリイミド、置換若しくは未置換のポリアミド、置換若しくは未置換のポリエステルであって、アニオン基を有する構成単位のみからなるポリマー、アニオン基を有する構成単位とアニオン基を有さない構成単位とからなるポリマーが挙げられる。具体的には、ポリアニオンとしては、ポリビニルスルホン酸、ポリスチレンスルホン酸、ポリアリルスルホン酸、ポリアクリルスルホン酸、ポリメタクリルスルホン酸、ポリ(2-アクリルアミド-2-メチルプロパンスルホン酸)、ポリイソプレンスルホン酸、ポリアクリル酸、ポリメタクリル酸、ポリマレイン酸などが挙げられる。 Polyanions are, for example, substituted or unsubstituted polyalkylenes, substituted or unsubstituted polyalkenylenes, substituted or unsubstituted polyimides, substituted or unsubstituted polyamides, substituted or unsubstituted polyesters, and have anionic groups. Examples include a polymer consisting of only units, and a polymer consisting of a structural unit having an anionic group and a structural unit having no anionic group. Specifically, polyanions include polyvinylsulfonic acid, polystyrenesulfonic acid, polyallylsulfonic acid, polyacrylsulfonic acid, polymethacrylsulfonic acid, poly(2-acrylamido-2-methylpropanesulfonic acid), and polyisoprenesulfonic acid. , polyacrylic acid, polymethacrylic acid, and polymaleic acid.
 固体電解質層には、導電性高分子に加えて、多価アルコール等の各種添加物を含めてもよい。多価アルコールとしては、ソルビトール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリオキシエチレングリコール、グリセリン、ポリグリセリン、ポリオキシエチレングリセリン、キシリトール、エリスリトール、マンニトール、ジペンタエリスリトール、ペンタエリスリトール、又はこれらの2種以上の組み合わせが挙げられる。多価アルコールは沸点が高いために乾燥工程後も固体電解質層に残留させることができ、ESR低減や耐電圧向上効果が得られる。 The solid electrolyte layer may contain various additives such as polyhydric alcohol in addition to the conductive polymer. Polyhydric alcohols include sorbitol, ethylene glycol, diethylene glycol, triethylene glycol, polyoxyethylene glycol, glycerin, polyglycerin, polyoxyethylene glycerin, xylitol, erythritol, mannitol, dipentaerythritol, pentaerythritol, or two of these. The above combination is mentioned. Since the polyhydric alcohol has a high boiling point, it can remain in the solid electrolyte layer even after the drying process, and effects of reducing ESR and improving withstand voltage can be obtained.
 (セパレータ)
 セパレータは、クラフト、マニラ麻、エスパルト、ヘンプ、レーヨン等のセルロース及びこれらの混合紙、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、それらの誘導体などのポリエステル系樹脂、ポリテトラフルオロエチレン系樹脂、ポリフッ化ビニリデン系樹脂、ビニロン系樹脂、脂肪族ポリアミド、半芳香族ポリアミド、全芳香族ポリアミド等のポリアミド系樹脂、ポリイミド系樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、トリメチルペンテン樹脂、ポリフェニレンサルファイド樹脂、アクリル樹脂、ポリビニルアルコール樹脂等が挙げられ、これらの樹脂を単独で又は混合して用いることができる。
(separator)
Separators are made of cellulose such as kraft, manila hemp, esparto, hemp, rayon, and mixed paper thereof, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyester resins such as their derivatives, polytetrafluoroethylene resin, polyfluoride, etc. Polyamide resins such as vinylidene resins, vinylon resins, aliphatic polyamides, semi-aromatic polyamides, and wholly aromatic polyamides, polyimide resins, polyethylene resins, polypropylene resins, trimethylpentene resins, polyphenylene sulfide resins, acrylic resins, polyvinyl alcohol resins, etc., and these resins can be used singly or in combination.
 以下、実施例の固体電解コンデンサをさらに詳細に説明する。なお、本発明は、以下に説明する実施例に限定されるものでない。 The solid electrolytic capacitors of the examples will be described in more detail below. It should be noted that the present invention is not limited to the examples described below.
 (実施例1)
 実施例1の固体電解コンデンサを作製した。陽極箔は、アルミニウム箔であり、エッチング処理により拡面化し、化成処理により63.6Vfsの化成電圧で誘電体酸化皮膜を形成した。陰極箔は、エッチング処理により拡面化し、化成処理により3Vfsの化成電圧で酸化皮膜を形成した。陽極箔と陰極箔の各々にリード線を接続し、マニラ系セパレータを介して陽極箔と陰極箔を対向させて巻回した。巻回体は、リン酸二水素アンモニウム水溶液に15分間浸漬されることで、修復化成が行われた。その後、105℃で乾燥させた。
(Example 1)
A solid electrolytic capacitor of Example 1 was produced. The anode foil was an aluminum foil, which was subjected to surface enlargement by etching treatment, and was subjected to chemical conversion treatment at a chemical conversion voltage of 63.6 Vfs to form a dielectric oxide film. The surface of the cathode foil was expanded by etching, and an oxide film was formed by chemical conversion at a chemical conversion voltage of 3 Vfs. A lead wire was connected to each of the anode foil and the cathode foil, and the foil was wound with the anode foil and the cathode foil opposed to each other with a manila separator interposed therebetween. The wound body was immersed in an aqueous solution of ammonium dihydrogen phosphate for 15 minutes to perform repair formation. After that, it was dried at 105°C.
 次に、導電性高分子としてポリスチレンスルホン酸がドープされたポリエチレンジオキシチオフェン(PEDOT/PSS)の分散液に、巻回体を浸漬した。分散液にはエチレングリコールを添加した。巻回体は、分散液に浸漬した後に110℃で30分間乾燥させた。これにより、巻回体に導電性高分子を付着させ、また導電性高分子を含む固体電解質層にエチレングリコールを含浸させた。 Next, the wound body was immersed in a dispersion of polyethylenedioxythiophene (PEDOT/PSS) doped with polystyrenesulfonic acid as a conductive polymer. Ethylene glycol was added to the dispersion. The wound body was dried at 110° C. for 30 minutes after being immersed in the dispersion. As a result, the conductive polymer was attached to the wound body, and the solid electrolyte layer containing the conductive polymer was impregnated with ethylene glycol.
 次に、電解液を調製し、固体電解質が形成された巻回体に電解液を含浸させた。電解液の溶媒にはエチレングリコールを用いた。電解液には、アゼライン酸とジブチルリン酸とを電解液100gに対して各々16mmolとなるように添加された。また、カチオン成分としてアンモニアを電解液100gに対して16mmolとなるように含ませた。 Next, an electrolytic solution was prepared, and the wound body on which the solid electrolyte was formed was impregnated with the electrolytic solution. Ethylene glycol was used as the solvent for the electrolytic solution. Azelaic acid and dibutyl phosphate were added to the electrolytic solution so as to be 16 mmol each per 100 g of the electrolytic solution. In addition, as a cation component, ammonia was included in an amount of 16 mmol with respect to 100 g of the electrolytic solution.
 電解液を含浸させて完成したコンデンサ素子は、有底筒状の外装ケースに挿入された。外装ケースの開口端部には封口ゴムが装着され、加締め加工によって封止された。各固体電解コンデンサは、電圧印加によってエージング処理した。作製した各固体電解コンデンサの定格耐電圧は35WVであり、定格容量は270μFであった。 The completed capacitor element was impregnated with electrolyte and inserted into a bottomed cylindrical exterior case. A sealing rubber was attached to the open end of the exterior case and sealed by caulking. Each solid electrolytic capacitor was aged by voltage application. Each of the produced solid electrolytic capacitors had a rated withstand voltage of 35 WV and a rated capacity of 270 μF.
 この実施例1に対応させて、比較例1及び比較例2の固体電解コンデンサを作製した。比較例1の固体電解コンデンサは、実施例1の固体電解コンデンサと比較して、電解液にアゼライン酸を添加せずにジブチルリン酸のみを添加している点が相違する。ジブチルリン酸は、電解液100gに対して32mmolとなるように添加された。比較例2の固体電解コンデンサは、実施例1の固体電解コンデンサと比較して、電解液にジブチルリン酸を添加せずにアゼライン酸のみを添加している点が相違する。アゼライン酸は、電解液100gに対して32mmolとなるように添加された。比較例1及び比較例2の固体電解コンデンサは、その他については、カチオン成分としてアンモニアを用いた点も含め、他の構成、製造方法及び製造条件等が全て、実施例1と同一である。 Corresponding to this Example 1, solid electrolytic capacitors of Comparative Examples 1 and 2 were produced. The solid electrolytic capacitor of Comparative Example 1 is different from the solid electrolytic capacitor of Example 1 in that only dibutyl phosphate is added to the electrolytic solution without adding azelaic acid. Dibutyl phosphate was added so as to be 32 mmol with respect to 100 g of the electrolytic solution. The solid electrolytic capacitor of Comparative Example 2 differs from the solid electrolytic capacitor of Example 1 in that only azelaic acid is added to the electrolytic solution without adding dibutyl phosphate. Azelaic acid was added so as to be 32 mmol with respect to 100 g of the electrolytic solution. The solid electrolytic capacitors of Comparative Examples 1 and 2 are the same as those of Example 1 in all other respects, including the use of ammonia as a cation component, as well as in other configurations, manufacturing methods, manufacturing conditions, and the like.
 (ESRその1)
 実施例1並びに比較例1及び比較例2の固体電解コンデンサのESRを測定した。ESRの測定周波数は100kHzである。ESRの測定のために、固体電解コンデンサを160℃の温度環境下に晒した。そして、この高温環境下に晒す直前である経過時間がゼロ時間のタイミング、及びこの高温環境下に晒し続けて1200時間経過後のタイミングで、各々ESRを測定した。ゼロ時間のタイミングと1200時間経過後のタイミングのESRの比であるΔESRも算出した。ΔESRは、ゼロ時間のタイミングでのESRに対する1200時間経過後のタイミングのESRの比の百分率である。その結果を下表1に示す。
(ESR 1)
The ESR of the solid electrolytic capacitors of Example 1 and Comparative Examples 1 and 2 was measured. The measurement frequency of ESR is 100 kHz. For ESR measurement, the solid electrolytic capacitor was exposed to a temperature environment of 160°C. Then, the ESR was measured at the timing when the elapsed time is 0 hours, which is immediately before exposure to the high temperature environment, and at the timing after 1200 hours of continuous exposure to the high temperature environment. ΔESR, which is the ratio of the ESR between the timing at zero time and the timing after 1200 hours, was also calculated. ΔESR is the percentage ratio of the ESR at timing after 1200 hours to the ESR at timing at zero time. The results are shown in Table 1 below.
 (表1)
Figure JPOXMLDOC01-appb-I000001
(Table 1)
Figure JPOXMLDOC01-appb-I000001
 表1に示すように、実施例1の固体電解コンデンサのESRは、160℃で高温環境下に1200時間晒されても変化が小さく、そして最も値が小さい。これにより、相対的にESRが良好なジブチルリン酸に、相対的にESRが悪いアゼライン酸を加えると、ジブチルリン酸よりもESRが良好になることが確認された。 As shown in Table 1, the ESR of the solid electrolytic capacitor of Example 1 changes little even after being exposed to a high temperature environment of 160°C for 1200 hours, and has the smallest value. From this, it was confirmed that adding azelaic acid, which has a relatively poor ESR, to dibutyl phosphate, which has a relatively good ESR, results in a better ESR than dibutyl phosphate.
 (実施例2乃至4)
 実施例2乃至4の固体電解コンデンサを作製した。実施例2乃至4の固体電解コンデンサは、実施例1の固体電解コンデンサと比較して、ブチル基を有するリン酸化合物の種類が相違する。実施例2ではトリブチルリン酸が用いられ、実施例3では亜リン酸ジブチルが用いられ、実施例4では亜リン酸トリブチルが用いられた。実施例2乃至4の固体電解コンデンサは、実施例1と比べてブチル基を有するリン酸化合物の種類が異なる点を除き、他の構成、製造方法及び製造条件等が全て実施例1と同一である。
(Examples 2 to 4)
Solid electrolytic capacitors of Examples 2 to 4 were produced. The solid electrolytic capacitors of Examples 2 to 4 differ from the solid electrolytic capacitor of Example 1 in the type of phosphoric acid compound having a butyl group. Example 2 used tributyl phosphate, Example 3 used dibutyl phosphite, and Example 4 used tributyl phosphite. The solid electrolytic capacitors of Examples 2 to 4 were the same as those of Example 1 except that the type of phosphoric acid compound having a butyl group was different from that of Example 1. be.
 (ESRその2)
 実施例2乃至4の固体電解コンデンサのESRを、実施例1と同じ条件で測定した。その結果を下表2に示す。
 (表2)
Figure JPOXMLDOC01-appb-I000002
(ESR 2)
The ESR of the solid electrolytic capacitors of Examples 2 to 4 was measured under the same conditions as in Example 1. The results are shown in Table 2 below.
(Table 2)
Figure JPOXMLDOC01-appb-I000002
 表2に示すように、実施例2乃至4の固体電解コンデンサのESRも、実施例1と同様に、160℃で高温環境下に1200時間晒されても変化が小さく、そして値が小さい。これにより、ジブチルリン酸に限らず他種のブチル基を有するリン酸化合物とアゼライン酸を電解液に加えても、固体電解コンデンサのESRが良好になることが確認された。 As shown in Table 2, the ESR of the solid electrolytic capacitors of Examples 2 to 4, like Example 1, show little change even when exposed to a high temperature environment of 160°C for 1200 hours, and the values are also small. From this, it was confirmed that the ESR of the solid electrolytic capacitor was improved even when a phosphoric acid compound having a butyl group and azelaic acid were added to the electrolytic solution, not limited to dibutyl phosphate.
 (実施例5乃至7)
 実施例5乃至7の固体電解コンデンサを作製した。実施例5乃至7の固体電解コンデンサは、実施例1の固体電解コンデンサと比較して、脂肪族ジカルボン酸の種類が相違する。実施例5ではコハク酸が用いられ、実施例6ではグルタル酸が用いられ、実施例7ではシトラコン酸が用いられた。実施例5乃至7の固体電解コンデンサは、実施例1と比べて脂肪族ジカルボン酸の種類が異なる点を除き、他の構成、製造方法及び製造条件等が全て実施例1と同一である。
(Examples 5 to 7)
Solid electrolytic capacitors of Examples 5 to 7 were produced. The solid electrolytic capacitors of Examples 5 to 7 differ from the solid electrolytic capacitor of Example 1 in the type of aliphatic dicarboxylic acid. Example 5 used succinic acid, Example 6 used glutaric acid, and Example 7 used citraconic acid. The solid electrolytic capacitors of Examples 5 to 7 were the same as those of Example 1 except that the type of aliphatic dicarboxylic acid was different from that of Example 1, and other constitutions, manufacturing methods, and manufacturing conditions.
 実施例5乃至7に対応させて、比較例3乃至5の固体電解コンデンサを作製した。比較例3乃至5の固体電解コンデンサは、実施例5乃至7と比較して、電解液にブチル基を有するリン酸化合物が添加されていない点が相違する。比較例3乃至5の固体電解コンデンサは、実施例5乃至7と比べてブチル基を有するリン酸化合物の添加の有無が異なる点を除き、他の構成、製造方法及び製造条件等の全てが同一である。 Corresponding to Examples 5 to 7, solid electrolytic capacitors of Comparative Examples 3 to 5 were produced. The solid electrolytic capacitors of Comparative Examples 3 to 5 differ from those of Examples 5 to 7 in that the electrolytic solution does not contain a phosphoric acid compound having a butyl group. The solid electrolytic capacitors of Comparative Examples 3 to 5 were identical to those of Examples 5 to 7 in all other configurations, production methods, production conditions, etc., except for the presence or absence of the addition of a phosphoric acid compound having a butyl group. is.
 (ESRその3)
 実施例5乃至7並びに比較例3乃至5の固体電解コンデンサのESRを、実施例1と同じ条件で測定した。その結果を下表3に示す。
 (表3)
Figure JPOXMLDOC01-appb-I000003
(ESR 3)
The ESR of the solid electrolytic capacitors of Examples 5 to 7 and Comparative Examples 3 to 5 were measured under the same conditions as in Example 1. The results are shown in Table 3 below.
(Table 3)
Figure JPOXMLDOC01-appb-I000003
 表3に示すように、実施例5乃至7の固体電解コンデンサのESRは、対応する比較例3乃至5と比べて、160℃で高温環境下に1200時間晒されても変化が小さく、そして値が小さい。これにより、アゼライン酸に限らず他種の脂肪族ジカルボン酸とジブチルリン酸を電解液に加えても、固体電解コンデンサのESRが良好になることが確認された。総じて、実施例1乃至7の結果からわかるように、電解液に各種のブチル基を有するリン酸化合物と各種の脂肪族ジカルボン酸が含有することで、固体電解コンデンサのESRが良好になることが確認された。 As shown in Table 3, the ESR of the solid electrolytic capacitors of Examples 5 to 7 changed less than those of the corresponding Comparative Examples 3 to 5 even after exposure to a high temperature environment of 160°C for 1200 hours, and the value is small. From this, it was confirmed that the ESR of the solid electrolytic capacitor was improved not only by azelaic acid but also by adding other kinds of aliphatic dicarboxylic acid and dibutyl phosphate to the electrolytic solution. Overall, as can be seen from the results of Examples 1 to 7, the ESR of solid electrolytic capacitors is improved by containing various phosphoric acid compounds having butyl groups and various aliphatic dicarboxylic acids in the electrolytic solution. confirmed.
 しかも、表3に示すように、比較例3及び4は比較例1よりもESRが悪化している。しかしながら、比較例3及び4に対応する実施例5及び6は、比較例1よりもESRが良好になっている。これにより、実施例1と比較例1の結果も併せると、アゼライン酸、コハク酸又はグルタル酸の群から脂肪族ジカルボン酸が選ばれた場合、相対的にESRが悪い脂肪族ジカルボン酸を加えると、相対的にESRが良好なブチル基を有するリン酸化合物よりも寧ろESRが良好になることが確認された。しかも、実施例1、実施例5及び実施例6は、比較例2、比較例3及び比較例4よりもESRが大きく低下し、実施例7と比べてもESRが良好になっている。 Moreover, as shown in Table 3, ESR is worse in Comparative Examples 3 and 4 than in Comparative Example 1. However, Examples 5 and 6, which correspond to Comparative Examples 3 and 4, have better ESR than Comparative Example 1. Combined with the results of Example 1 and Comparative Example 1, when an aliphatic dicarboxylic acid is selected from the group of azelaic acid, succinic acid, or glutaric acid, adding an aliphatic dicarboxylic acid with relatively poor ESR , it was confirmed that the ESR is better than that of a phosphoric acid compound having a butyl group, which has a relatively good ESR. Moreover, in Examples 1, 5, and 6, the ESR is much lower than in Comparative Examples 2, 3, and 4, and the ESR is better than in Example 7 as well.
 尚、実施例7においても、比較例1及び5よりもESRが良好になっている。これにより、脂肪族ジカルボン酸としてシトラコン酸が選ばれた場合、相対的にESRが悪いブチル基を有するリン酸化合物を加えると、相対的にESRが良好なシトラコン酸よりも寧ろESRが良好になっている。即ち、脂肪族ジカルボン酸とブチル基を有するリン酸化合物を電解液に加えると、相対的にESRが良好なほうよりも、固体電解コンデンサのESRが更に良好になることが確認された。 Also in Example 7, the ESR is better than in Comparative Examples 1 and 5. As a result, when citraconic acid is selected as the aliphatic dicarboxylic acid, adding a phosphoric acid compound having a butyl group with relatively poor ESR results in a better ESR than citraconic acid, which has relatively good ESR. ing. That is, it was confirmed that when an aliphatic dicarboxylic acid and a phosphoric acid compound having a butyl group were added to the electrolytic solution, the ESR of the solid electrolytic capacitor became even better than the one with relatively good ESR.
 (漏れ電流測定)
 比較例1並びに実施例1及び実施例5乃至7の固体電解コンデンサのLC(漏れ電流)を測定した。各固体電解コンデンサを160℃の温度環境下に2000時間放置し、放置後の漏れ電流を測定した。漏れ電流は、各固体電解コンデンサに定格耐電圧である35WVを印加し、当該電圧を2分間保持したときに流れる電流値とした。
(Leakage current measurement)
The LC (leakage current) of the solid electrolytic capacitors of Comparative Example 1 and Examples 1 and 5 to 7 was measured. Each solid electrolytic capacitor was left in a temperature environment of 160° C. for 2000 hours, and the leakage current after the standing was measured. The leakage current was obtained by applying a rated withstand voltage of 35 WV to each solid electrolytic capacitor and maintaining the voltage for 2 minutes.
 比較例1並びに実施例1及び実施例5乃至7の固体電解コンデンサのLC(漏れ電流)の測定結果を下表4に示す。
(表4)
Figure JPOXMLDOC01-appb-I000004
The measurement results of LC (leakage current) of the solid electrolytic capacitors of Comparative Example 1 and Examples 1 and 5 to 7 are shown in Table 4 below.
(Table 4)
Figure JPOXMLDOC01-appb-I000004
 表4に示すように、実施例1及び実施例5乃至7の固体電解コンデンサは、比較例1の固体電解コンデンサと比べて大幅に漏れ電流が低減している。これにより、電解液にブチル基を有するリン酸化合物と脂肪族ジカルボン酸を添加すると、ESRが低くなり、且つ漏れ電流も低減することが確認された。 As shown in Table 4, in the solid electrolytic capacitors of Examples 1 and 5 to 7, leakage current is significantly reduced compared to the solid electrolytic capacitor of Comparative Example 1. From this, it was confirmed that adding a phosphoric acid compound having a butyl group and an aliphatic dicarboxylic acid to the electrolytic solution lowered the ESR and also reduced the leakage current.
 (実施例8及び9)
 下表5に示すように、ジブチルリン酸の添加量が異なる各種固体電解コンデンサのESR及び漏れ電流を測定した。尚、表5中、実施例8、実施例9及び比較例6は、実施例1と比べてジブチルリン酸の添加量が異なる点を除き、他の構成、製造方法及び製造条件等が全て実施例1と同一である。また、表5に示すように、ESRは、160℃の温度環境下に晒す直前であるゼロ時間のタイミングと、この高温環境下に晒して1200時間が経過したタイミングで測定された。漏れ電流は、この高温環境下に晒して2000時間が経過したタイミングで測定された。
(Examples 8 and 9)
As shown in Table 5 below, the ESR and leakage current of various solid electrolytic capacitors with different amounts of dibutyl phosphate added were measured. In Table 5, Example 8, Example 9, and Comparative Example 6 have all the same configurations, manufacturing methods, and manufacturing conditions as those of Example 1, except that the amount of dibutyl phosphate added is different from that of Example 1. Identical to 1. In addition, as shown in Table 5, the ESR was measured at the timing of 0 hours just before exposure to the temperature environment of 160° C. and the timing after 1200 hours of exposure to the high temperature environment. Leakage current was measured after 2000 hours of exposure to this high temperature environment.
 (表5)
Figure JPOXMLDOC01-appb-I000005
(Table 5)
Figure JPOXMLDOC01-appb-I000005
 表5の比較例6と比較例2とが示すように、相対的にESRを良好にするジブチルリン酸を電解液100gに対して48mmol加えると、相対的にESRが悪いアゼライン酸よりも1200時間経過後のESRが悪化していることがわかる。また、比較例6と比較例1とが示すように、ジブチルリン酸を電解液100gに対して48mmol加えると、漏れ電流もジブチルリン酸のみを電解液に含む場合より大きく悪化してしまうことがわかる。 As shown in Comparative Examples 6 and 2 in Table 5, when 48 mmol of dibutyl phosphate, which has a relatively good ESR, was added to 100 g of the electrolytic solution, 1200 hours elapsed from the case of azelaic acid, which had a relatively poor ESR. It can be seen that the subsequent ESR is degraded. Moreover, as shown in Comparative Examples 6 and 1, when 48 mmol of dibutyl phosphate is added to 100 g of the electrolytic solution, the leakage current is significantly worse than when only dibutyl phosphate is contained in the electrolytic solution.
 これに対し、実施例9と比較例1とが示すように、相対的にESRを悪化させるアゼライン酸が含まれていても、ジブチルリン酸を電解液100gに対して32mmol以下にすると、ジブチルリン酸のみを電解液に含む場合より1200時間経過後のESRが良好になることがわかる。即ち、電解液に脂肪族ジカルボン酸とブチル基を有するリン酸化合物とを含み、且つブチル基を有するリン酸化合物の添加量が電解液100gに対して32mmol以下であれば、ESRが良好になることが確認された。 On the other hand, as shown in Example 9 and Comparative Example 1, even if azelaic acid, which relatively worsens the ESR, is contained, when dibutyl phosphate is 32 mmol or less per 100 g of the electrolyte, only dibutyl phosphate is contained in the electrolytic solution, the ESR after 1200 hours is better. That is, when the electrolytic solution contains an aliphatic dicarboxylic acid and a phosphoric acid compound having a butyl group, and the amount of the phosphoric acid compound having a butyl group added is 32 mmol or less per 100 g of the electrolytic solution, the ESR becomes favorable. was confirmed.
 そして、表5に示されるように、相対的にESRが良好なブチル基を有するリン酸化合物の量を少なくし、相対的にESRが悪い脂肪族ジカルボン酸の比率を高めると、寧ろ固体電解コンデンサのESRが低下していくことが確認された。また、実施例8が示すように、相対的に漏れ電流が悪いブチル基を有するリン酸化合物を電解液100gに対して8mmol以下の割合で混合すると、脂肪族ジカルボン酸のみを電解液に含む場合より漏れ電流が良好になることが確認された。 Then, as shown in Table 5, when the amount of the phosphoric acid compound having a butyl group, which has a relatively good ESR, is decreased and the ratio of the aliphatic dicarboxylic acid, which has a relatively poor ESR, is increased, the solid electrolytic capacitor It was confirmed that the ESR of Further, as shown in Example 8, when a phosphoric acid compound having a butyl group with relatively poor leakage current is mixed at a ratio of 8 mmol or less with respect to 100 g of the electrolyte, when only the aliphatic dicarboxylic acid is included in the electrolyte It was confirmed that the leakage current was improved.
 (実施例10乃至12)
 実施例10乃至12の固体電解コンデンサを作製した。また、実施例10乃至12に対応し、更に比較例7及び8の固体電解コンデンサを作製した。実施例10乃至12並びに比較例7及び8の固体電解コンデンサは、実施例1の固体電解コンデンサと比較して、脂肪族ジカルボン酸の添加量が相違する。実施例10乃至12並びに比較例7及び8の固体電解コンデンサは、他の構成、製造方法及び製造条件等が全て実施例1と同一である。
(Examples 10 to 12)
Solid electrolytic capacitors of Examples 10 to 12 were produced. Further, corresponding to Examples 10 to 12, solid electrolytic capacitors of Comparative Examples 7 and 8 were produced. The solid electrolytic capacitors of Examples 10 to 12 and Comparative Examples 7 and 8 differ from the solid electrolytic capacitor of Example 1 in the amount of aliphatic dicarboxylic acid added. The solid electrolytic capacitors of Examples 10 to 12 and Comparative Examples 7 and 8 are the same as those of Example 1 in all other configurations, manufacturing methods, manufacturing conditions, and the like.
 そして、実施例1、実施例10乃至12並びに比較例7及び8の固体電解コンデンサのESR及び漏れ電流を測定した。下表6に示すように、ESRは、150℃の温度環境下に晒す直前であるゼロ時間のタイミングと、この高温環境下に晒して2700時間が経過したタイミングで測定された。漏れ電流は、この高温環境下に晒して2700時間が経過したタイミングで測定された。 Then, the ESR and leakage current of the solid electrolytic capacitors of Examples 1, 10 to 12, and Comparative Examples 7 and 8 were measured. As shown in Table 6 below, the ESR was measured at the timing of 0 hours just before exposure to the temperature environment of 150° C. and at the timing of 2700 hours after exposure to this high temperature environment. Leakage current was measured after 2700 hours of exposure to this high temperature environment.
 (表6)
Figure JPOXMLDOC01-appb-I000006
(Table 6)
Figure JPOXMLDOC01-appb-I000006
 ブチル基を有するリン酸化合物はジブチルリン酸であり、脂肪族ジカルボン酸はアゼライン酸である。表6に示すように、実施例1では、リン酸化合物とアゼライン酸が電解液に等モル量含有する。実施例10では、モル比においてリン酸化合物を1とすると、電解液にアゼライン酸が0.75の割合で含有する。実施例11では、モル比においてリン酸化合物を1とすると、電解液にアゼライン酸が0.5の割合で含有する。実施例12では、モル比においてリン酸化合物を1とすると、電解液にアゼライン酸が0.25の割合で含有する。 A phosphate compound having a butyl group is dibutyl phosphate, and an aliphatic dicarboxylic acid is azelaic acid. As shown in Table 6, in Example 1, equimolar amounts of the phosphoric acid compound and azelaic acid were contained in the electrolytic solution. In Example 10, the electrolytic solution contained azelaic acid at a molar ratio of 0.75 to 1 for the phosphoric acid compound. In Example 11, the electrolytic solution contained azelaic acid at a molar ratio of 0.5 to 1 for the phosphoric acid compound. In Example 12, the electrolytic solution contained azelaic acid at a molar ratio of 0.25 to 1 for the phosphoric acid compound.
 比較例7では、リン酸化合物は電解液に非含有である。比較例8では、脂肪族ジカルボン酸は電解液に非含有であり、モル比においてリン酸化合物を1とすると、電解液にアゼライン酸が0である。 In Comparative Example 7, the electrolyte does not contain a phosphoric acid compound. In Comparative Example 8, the electrolytic solution contained no aliphatic dicarboxylic acid, and the electrolytic solution contained 0 azelaic acid when the phosphoric acid compound was taken as 1 in molar ratio.
 表6に示すように、実施例1、10、11及び12の固体電解コンデンサは、脂肪族ジカルボン酸の添加量に限定なく、固体電解コンデンサのESRが良好になることが確認された。特に、表6から、脂肪族ジカルボン酸は、モル比においてリン酸化合物を1とすると、電解液に0.25以上含有すると、高温環境下に晒されてもESRの劣化が抑えられ、漏れ電流(LC)も低くなること確認できる。 As shown in Table 6, it was confirmed that the solid electrolytic capacitors of Examples 1, 10, 11 and 12 had good ESR regardless of the amount of the aliphatic dicarboxylic acid added. In particular, from Table 6, when the molar ratio of the phosphoric acid compound is 1, when the aliphatic dicarboxylic acid is contained in the electrolytic solution in an amount of 0.25 or more, deterioration of ESR is suppressed even when exposed to a high temperature environment, and leakage current It can be confirmed that (LC) is also lowered.
 (実施例13)
 実施例13の固体電解コンデンサを作製した。実施例13の固体電解コンデンサは、実施例1の固体電解コンデンサと比較して、カチオン成分としてトリエチルアミンを添加した点が相違する。実施例13の固体電解コンデンサは、他の構成、製造方法及び製造条件等が全て実施例1と同一である。
(Example 13)
A solid electrolytic capacitor of Example 13 was produced. The solid electrolytic capacitor of Example 13 differs from the solid electrolytic capacitor of Example 1 in that triethylamine was added as a cationic component. The solid electrolytic capacitor of Example 13 is the same as Example 1 in all other configurations, manufacturing methods, manufacturing conditions, and the like.
 実施例1及び実施例13の固体電解コンデンサのESRを測定した。下表7に示すように、ESRは、150℃の温度環境下に晒す直前であるゼロ時間のタイミングと、この高温環境下に晒して260時間が経過したタイミングで測定された。 The ESR of the solid electrolytic capacitors of Examples 1 and 13 was measured. As shown in Table 7 below, the ESR was measured at time zero, which is just before exposure to the temperature environment of 150° C., and at time 260 hours after exposure to this high temperature environment.
 (表7)
Figure JPOXMLDOC01-appb-I000007
(Table 7)
Figure JPOXMLDOC01-appb-I000007
 表7に示すように、電解液中のカチオン種に限らず、固体電解コンデンサのESRが良好であるが、特にカチオン種がアンモニアであると、高温環境下に晒されても高周波におけるESRの劣化が抑えられることが確認された。 As shown in Table 7, the ESR of the solid electrolytic capacitor is good regardless of the cation species in the electrolyte, but especially when the cation species is ammonia, the ESR deteriorates at high frequencies even when exposed to a high temperature environment. was confirmed to be suppressed.
 (実施例14乃至20)
 実施例14乃至20の固体電解コンデンサを作製した。また、比較例9の固体電解コンデンサを作製した。実施例14乃至20並びに比較例9の固体電解コンデンサは、実施例13の固体電解コンデンサと比較して、電解液の溶媒種が異なる。実施例14乃至20並びに比較例9の固体電解コンデンサは、他の構成、製造方法及び製造条件等が全て実施例13と同一である。
(Examples 14 to 20)
Solid electrolytic capacitors of Examples 14 to 20 were produced. Also, a solid electrolytic capacitor of Comparative Example 9 was produced. The solid electrolytic capacitors of Examples 14 to 20 and Comparative Example 9 differ from the solid electrolytic capacitor of Example 13 in the solvent type of the electrolytic solution. The solid electrolytic capacitors of Examples 14 to 20 and Comparative Example 9 are the same as those of Example 13 in all other configurations, manufacturing methods, manufacturing conditions, and the like.
 そして、実施例13乃至20並びに比較例9の固体電解コンデンサのESRを測定した。下表8に示すように、ESRは、150℃の温度環境下に晒す直前であるゼロ時間のタイミングと、この高温環境下に晒して260時間が経過したタイミングで測定された。 Then, the ESR of the solid electrolytic capacitors of Examples 13 to 20 and Comparative Example 9 was measured. As shown in Table 8 below, the ESR was measured at the timing of 0 hours, which is just before exposure to the temperature environment of 150° C., and at the timing of 260 hours after exposure to the high temperature environment.
 (表8)
Figure JPOXMLDOC01-appb-I000008
(Table 8)
Figure JPOXMLDOC01-appb-I000008
 表8に示すように、実施例13の溶媒種は、エチレングリコールである。実施例14の溶媒種は、エチレングリコールとグリセリンの混合液である。実施例15の溶媒種は、実施例14と同じくエチレングリコールとグリセリンの混合液であるが、実施例14と実施例15とは混合比が異なる。実施例14では、溶媒中、エチレングリコールが90wt%を占め、グリセリンが10wt%を占める。実施例15では、溶媒中、エチレングリコールが40wt%を占め、グリセリンが60wt%を占める。 As shown in Table 8, the solvent species in Example 13 is ethylene glycol. The solvent species in Example 14 is a mixture of ethylene glycol and glycerin. The solvent species of Example 15 is a mixed liquid of ethylene glycol and glycerin as in Example 14, but the mixing ratio is different between Example 14 and Example 15. In Example 14, ethylene glycol accounts for 90 wt% and glycerin accounts for 10 wt% in the solvent. In Example 15, ethylene glycol accounts for 40 wt% and glycerin accounts for 60 wt% in the solvent.
 実施例16の溶媒種は、グリセリンである。実施例17の溶媒種は、スルホランである。実施例18の溶媒種は、グリセリンと平均分子量約300のポリエチレングリコールの混合液である。実施例19の溶媒種は、実施例18と同じくグリセリンと平均分子量約300のポリエチレングリコールの混合液である。実施例18では、溶媒中、グリセリンが70wt%を占め、ポリエチレングリコールが30wt%を示す。実施例18では、溶媒中、グリセリンとポリエチレングリコールは重量比で等量である。 The solvent species in Example 16 is glycerin. The solvent species for Example 17 is sulfolane. The solvent species in Example 18 is a mixture of glycerin and polyethylene glycol with an average molecular weight of about 300. The solvent species in Example 19 is a mixture of glycerin and polyethylene glycol having an average molecular weight of about 300 as in Example 18. In Example 18, glycerin accounts for 70 wt% and polyethylene glycol represents 30 wt% in the solvent. In Example 18, the weight ratio of glycerin and polyethylene glycol in the solvent is equal.
 実施例20の溶媒種は、γ-ブチロラクトンである。比較例9の溶媒種は、γ-ブチロラクトンであるが、ブチル基を有するリン酸化合物が非含有である。 The solvent species in Example 20 is γ-butyrolactone. The solvent type in Comparative Example 9 was γ-butyrolactone, but did not contain a phosphoric acid compound having a butyl group.
 表8に示すように、実施例16乃至19は、実施例20と比べて、高温環境下に晒された後のESRが良好であった。実施例13乃至15は、実施例16乃至19と比べて、測定周波数100kHzにおけるESRが良好であり、高温環境下に晒された場合にはESRが更に良好となった。 As shown in Table 8, Examples 16 to 19 had better ESR after being exposed to a high-temperature environment than Example 20. Examples 13 to 15 had better ESR at a measurement frequency of 100 kHz than Examples 16 to 19, and even better ESR when exposed to a high temperature environment.
 実施例13乃至15は、溶媒種にエチレングリコールを含む固体電解コンデンサである。実施例16乃至実施例19は、溶媒種にグリセリン又はスルホランを含む固体電解コンデンサである。これにより、電解液にグリセリン又はスルホランが含まれると、低ESRが維持されることが確認された。また、電解液にエチレングリコールが含まれると、更に低ESRが維持されることが確認された。 Examples 13 to 15 are solid electrolytic capacitors containing ethylene glycol as a solvent species. Examples 16 to 19 are solid electrolytic capacitors containing glycerin or sulfolane as solvent species. This confirms that the low ESR is maintained when the electrolyte contains glycerin or sulfolane. Moreover, it was confirmed that the ESR was maintained even lower when the electrolytic solution contained ethylene glycol.

Claims (8)

  1.  弁作用金属を含み、誘電体酸化皮膜が形成された陽極箔と、
     弁作用金属を含み、前記陽極箔に対向する陰極箔と、
     導電性高分子と電解液とを含み、前記陽極箔と前記陰極箔との間に介在する電解質層と、
     を備え、
     前記電解液は、ブチル基を有するリン酸化合物と、脂肪族ジカルボン酸とを含み、
     前記リン酸化合物は、前記電解液100g当たり32mmol以下であること、
     を特徴とする固体電解コンデンサ。
    an anode foil containing a valve metal and having a dielectric oxide film formed thereon;
    a cathode foil containing a valve metal and facing the anode foil;
    an electrolyte layer containing a conductive polymer and an electrolytic solution and interposed between the anode foil and the cathode foil;
    with
    The electrolytic solution contains a phosphoric acid compound having a butyl group and an aliphatic dicarboxylic acid,
    The phosphoric acid compound is 32 mmol or less per 100 g of the electrolytic solution,
    A solid electrolytic capacitor characterized by:
  2.  前記リン酸化合物は、前記電解液100g当たり8mmol以下であること、
     を特徴とする請求項1記載の固体電解コンデンサ。
    The phosphoric acid compound is 8 mmol or less per 100 g of the electrolytic solution,
    The solid electrolytic capacitor according to claim 1, characterized by:
  3.  前記リン酸化合物は、ジブチルリン酸、トリブチルリン酸、亜リン酸ジブチル、亜リン酸トリブチルの群から選択される1種又は2種以上の混合であること、
     を特徴とする請求項1又は2記載の固体電解コンデンサ。
    The phosphoric acid compound is one or a mixture of two or more selected from the group consisting of dibutyl phosphate, tributyl phosphate, dibutyl phosphite, and tributyl phosphite;
    3. The solid electrolytic capacitor according to claim 1 or 2, characterized by:
  4.  前記脂肪族ジカルボン酸は、アゼライン酸、コハク酸、グルタル酸、シトラコン酸の群から選択される1種又は2種以上の混合であること、
     を特徴とする請求項1又は2記載の固体電解コンデンサ。
    The aliphatic dicarboxylic acid is one or a mixture of two or more selected from the group consisting of azelaic acid, succinic acid, glutaric acid, and citraconic acid;
    3. The solid electrolytic capacitor according to claim 1 or 2, characterized by:
  5.  前記脂肪族ジカルボン酸は、アゼライン酸、コハク酸、グルタル酸の群から選択される1種又は2種以上の混合であること、
     を特徴とする請求項1又は2記載の固体電解コンデンサ。
    The aliphatic dicarboxylic acid is one or a mixture of two or more selected from the group consisting of azelaic acid, succinic acid, and glutaric acid;
    3. The solid electrolytic capacitor according to claim 1 or 2, characterized by:
  6.  前記電解液は、エチレングリコール、グリセリン及びスルホランの群から選ばれる1種又は2種以上を含むこと、
     を特徴とする請求項1又は2記載の固体電解コンデンサ。
    The electrolytic solution contains one or more selected from the group consisting of ethylene glycol, glycerin and sulfolane;
    3. The solid electrolytic capacitor according to claim 1 or 2, characterized by:
  7.  前記電解液は、アンモニアを含むこと、
     を特徴とする請求項1又は2記載の固体電解コンデンサ。
    the electrolytic solution containing ammonia;
    3. The solid electrolytic capacitor according to claim 1 or 2, characterized by:
  8.  前記脂肪族ジカルボン酸は、モル比においてリン酸化合物を1とすると、前記電解液に0.25以上含有すること、
     を特徴とする請求項1又は2記載の固体電解コンデンサ。
    The aliphatic dicarboxylic acid is contained in the electrolytic solution in a molar ratio of 0.25 or more when the phosphoric acid compound is 1,
    3. The solid electrolytic capacitor according to claim 1 or 2, characterized by:
PCT/JP2022/036243 2021-09-30 2022-09-28 Solid electrolytic capacitor WO2023054502A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023551619A JPWO2023054502A1 (en) 2021-09-30 2022-09-28

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021161149 2021-09-30
JP2021-161149 2021-09-30

Publications (1)

Publication Number Publication Date
WO2023054502A1 true WO2023054502A1 (en) 2023-04-06

Family

ID=85780739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036243 WO2023054502A1 (en) 2021-09-30 2022-09-28 Solid electrolytic capacitor

Country Status (3)

Country Link
JP (1) JPWO2023054502A1 (en)
TW (1) TW202338873A (en)
WO (1) WO2023054502A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024225389A1 (en) * 2023-04-27 2024-10-31 日本ケミコン株式会社 Solid electrolyte capacitor and method for manufacturing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017038010A (en) * 2015-08-12 2017-02-16 日本ケミコン株式会社 Solid electrolytic capacitor and method for manufacturing solid electrolytic capacitor
JP2017069537A (en) * 2015-09-30 2017-04-06 カーリットホールディングス株式会社 Electrolytic capacitor
US20200111622A1 (en) * 2018-10-09 2020-04-09 Capxon Electronic(Shen Zhen)Co.,Ltd Hybrid aluminum electrolytic capacitor and method of producing same
WO2021149739A1 (en) * 2020-01-22 2021-07-29 日本ケミコン株式会社 Solid electrolytic capacitor
JP2021150452A (en) * 2020-03-18 2021-09-27 三洋化成工業株式会社 Liquid component for hybrid type electrolytic capacitor, and hybrid electrolytic capacitor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017038010A (en) * 2015-08-12 2017-02-16 日本ケミコン株式会社 Solid electrolytic capacitor and method for manufacturing solid electrolytic capacitor
JP2017069537A (en) * 2015-09-30 2017-04-06 カーリットホールディングス株式会社 Electrolytic capacitor
US20200111622A1 (en) * 2018-10-09 2020-04-09 Capxon Electronic(Shen Zhen)Co.,Ltd Hybrid aluminum electrolytic capacitor and method of producing same
WO2021149739A1 (en) * 2020-01-22 2021-07-29 日本ケミコン株式会社 Solid electrolytic capacitor
JP2021150452A (en) * 2020-03-18 2021-09-27 三洋化成工業株式会社 Liquid component for hybrid type electrolytic capacitor, and hybrid electrolytic capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024225389A1 (en) * 2023-04-27 2024-10-31 日本ケミコン株式会社 Solid electrolyte capacitor and method for manufacturing same

Also Published As

Publication number Publication date
TW202338873A (en) 2023-10-01
JPWO2023054502A1 (en) 2023-04-06

Similar Documents

Publication Publication Date Title
JP7196919B2 (en) solid electrolytic capacitor
JP7226593B2 (en) solid electrolytic capacitor
JP2023176004A (en) solid electrolytic capacitor
WO2023054502A1 (en) Solid electrolytic capacitor
WO2024070288A1 (en) Solid electrolytic capacitor and manufacturing method
WO2024070287A1 (en) Solid electrolytic capacitor
WO2023149357A1 (en) Solid electrolytic capacitor and production method
WO2023054504A1 (en) Solid electrolytic capacitor and manufacturing method
JP7509337B1 (en) Solid electrolytic capacitor and manufacturing method
WO2024181509A1 (en) Solid electrolytic capacitor and manufacturing method
WO2023171618A1 (en) Electrolytic solution for solid electrolytic capacitor and solid electrolytic capacitor
WO2024143420A1 (en) Solid electrolytic capacitor and manufacturing method
JP2024050386A (en) Solid electrolytic capacitor and manufacturing method
JP2024093013A (en) Solid electrolytic capacitor
WO2023048243A1 (en) Electrolytic capacitor
TW202437288A (en) Solid electrolytic capacitor and manufacturing method
JP2024052275A (en) Solid electrolytic capacitor and manufacturing method
CN117941021A (en) Electrolytic capacitor
JP2022144277A (en) Conductive polymer fluid dispersion, solid electrolytic capacitor, and production method of solid electrolytic capacitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22876368

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023551619

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22876368

Country of ref document: EP

Kind code of ref document: A1