[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023054441A1 - Cooling system - Google Patents

Cooling system Download PDF

Info

Publication number
WO2023054441A1
WO2023054441A1 PCT/JP2022/036098 JP2022036098W WO2023054441A1 WO 2023054441 A1 WO2023054441 A1 WO 2023054441A1 JP 2022036098 W JP2022036098 W JP 2022036098W WO 2023054441 A1 WO2023054441 A1 WO 2023054441A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling liquid
heat exchanger
coolant
flow path
temperature
Prior art date
Application number
PCT/JP2022/036098
Other languages
French (fr)
Japanese (ja)
Inventor
蹊男 高山
歩 森宗
Original Assignee
伸和コントロールズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 伸和コントロールズ株式会社 filed Critical 伸和コントロールズ株式会社
Priority to JP2023551579A priority Critical patent/JPWO2023054441A1/ja
Publication of WO2023054441A1 publication Critical patent/WO2023054441A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle

Definitions

  • Embodiments of the present invention relate to a cooling system that cools a coolant with a refrigerant circulated by a refrigeration cycle device.
  • Natural refrigerants have extremely low ozone layer depletion potential and global warming potential compared to common Freon-based refrigerants. Therefore, natural refrigerants are extremely useful from the viewpoint of environmental protection.
  • Examples of natural refrigerants include ammonia, carbon dioxide, air, oxygen, and nitrogen. Of these, carbon dioxide, air, oxygen, and nitrogen have extremely low boiling points, so they can be cooled in an ultra-low temperature zone.
  • an air refrigeration cycle device using air As a refrigeration cycle device using natural refrigerant, an air refrigeration cycle device using air has been conventionally known (for example, WO2018/070893A1). Such an air refrigeration cycle device has already been used in a large freezer or the like.
  • the air refrigeration cycle device has recently attracted attention for its application to the storage of new coronavirus vaccines, which require ultra-low temperature storage.
  • a cooling system called an indirect expansion type generally cools the coolant circulated by the coolant circulation device with the refrigerant circulated by the refrigeration cycle device, and the cooled coolant cools the temperature controlled object.
  • the air refrigeration cycle device described above may be used in an indirect expansion refrigeration system.
  • air as a refrigerant has an extremely low boiling point, so depending on the setting of the cooling temperature during expansion, such as -70°C or lower, the type of cooling liquid circulated by the cooling liquid circulation device may be limited.
  • the limitations described above may force the selection of an undesirable type of cooling liquid for the product or manufacturing facility whose temperature is to be controlled.
  • the situation in which the degree of freedom in selecting the cooling liquid is limited in this way is one of the reasons why adoption of a cooling system using an air refrigeration cycle device is postponed.
  • a cooling fluid that can be used in an ultra-low temperature range around -100°C includes silicone oil.
  • siloxane in silicone oil may cause disconnection of electronic components. Therefore, for example, in semiconductor manufacturing facilities, the use of cooling equipment using silicone oil may be avoided.
  • natural refrigerants have concerns such as toxicity, flammability, and high pressure. Due to such concerns, adoption of a refrigeration cycle device using a natural refrigerant and a cooling system using the refrigeration cycle device may be postponed.
  • the cooling temperature of extremely low-temperature refrigerants may be over-specified for temperature control targets.
  • the temperature may be adjusted to a desired temperature range by heating the cooled coolant with a heater.
  • such an adjustment is not desirable from the viewpoint of suppressing energy consumption.
  • an object of the present invention is to provide a cooling system that can effectively cool a temperature-controlled target with a cooling liquid cooled by a natural refrigerant circulated by a refrigeration cycle device.
  • a cooling system includes a refrigeration cycle device that circulates a natural refrigerant, a first coolant circulation device that circulates a first coolant that is cooled by the natural coolant, and the first coolant. a second cooling liquid flow device for causing a flow of a second cooling liquid cooled by the first cooling liquid circulated by the circulation device.
  • the cooling efficiency of the second coolant by the natural refrigerant is directly improved by the natural refrigerant. Intentionally dropping the second cooling liquid compared to the case of cooling.
  • the temperature of the second cooling liquid can be adjusted without using a heater.
  • the zone can be adjusted to the desired temperature zone.
  • the physical distance between the refrigeration cycle device and the second cooling liquid circulation device can be increased.
  • exposure of the natural refrigerant to the second coolant can be avoided, and inflow of the natural refrigerant into the temperature controlled side can be avoided.
  • the cooling liquid cooled by the natural refrigerant circulated by the refrigeration cycle device can effectively cool the object to be temperature controlled.
  • the type of the first cooling liquid and the type of the second cooling liquid may be different.
  • a cooling liquid that is desirable for cooling by a natural refrigerant, for example, that does not interfere with the operation or the like is selected as the first cooling liquid
  • a cooling liquid that is desirable for the temperature control object, unlike the first cooling liquid is selected as the first cooling liquid.
  • the refrigeration cycle device and the first coolant circulation device are connected by a first heat exchanger, the first coolant is cooled by the natural refrigerant in the first heat exchanger, and the first coolant circulation device and the second coolant circulation device are connected by a second heat exchanger, the second coolant is cooled by the first coolant in the second heat exchanger, and the first coolant circulation device is a first flow path connecting an outlet of the first heat exchanger that discharges the first cooling liquid and an inlet of the second heat exchanger that receives the first cooling liquid; and a second flow path connecting the discharge port of the second heat exchanger for discharging liquid and the receiving port of the first heat exchanger for receiving the first cooling liquid; and for circulating the first cooling liquid. and a pump that generates a driving force of In this case, the very simple first cooling liquid circulating device can effectively cool the temperature controlled object while suppressing the manufacturing cost.
  • the first flow path and the second flow path are connected by an internal heat exchanger, and in the internal heat exchanger, the heat is discharged from the discharge port of the first heat exchanger to the reception port of the second heat exchanger.
  • the first cooling liquid before being received may be heat-exchanged with the first cooling liquid discharged from the discharge port of the second heat exchanger and before being received by the receiving port of the first heat exchanger. .
  • the load on the first heat exchanger can be reduced, and highly reliable operation can be performed.
  • the first cooling liquid circulation device may further include a bypass flow path connecting the first flow path and the second flow path and allowing the first cooling liquid to flow.
  • a bypass flow path connecting the first flow path and the second flow path and allowing the first cooling liquid to flow.
  • the first cooling liquid circulation device includes a branch flow path branched from the second flow path and connected to the second flow path at a position upstream of the branched position, and a second flow path provided on the branch flow path. 3 heat exchangers.
  • the third heat exchanger can perform cooling in a temperature zone higher than that of the second heat exchanger. This can expand the application pattern and application range of the cooling system.
  • a third coolant flow device is connected to the third heat exchanger, and the third coolant is cooled by the first coolant in the third heat exchanger. good too.
  • the cooling temperature of natural refrigerants with extremely low boiling points, such as air, carbon dioxide, and oxygen, may be over-specified for temperature control targets. In such a case, in this configuration, by distributing the refrigerating capacity between the second heat exchanger and the third heat exchanger, it is possible to effectively utilize the refrigerating capacity while avoiding excessive cooling.
  • the second coolant flow device is connected to the third heat exchanger, and the second coolant is cooled by the third heat exchanger and then cooled by the second heat exchanger. good.
  • the temperature difference between the first cooling liquid and the second cooling liquid in the second heat exchanger can be suppressed by cooling the second cooling liquid in stages in the third heat exchanger and the second heat exchanger. Therefore, the load on the second heat exchanger can be reduced, and highly reliable operation can be performed.
  • the first cooling liquid may be silicone oil
  • the second cooling liquid may be an ether-based liquid.
  • the refrigeration cycle device may be an air refrigeration cycle device.
  • the temperature control target can be effectively cooled by the cooling liquid cooled by the natural refrigerant circulated by the refrigeration cycle device.
  • FIG. 1 is a diagram schematically showing a cooling system according to a first embodiment
  • FIG. FIG. 5 is a diagram schematically showing a cooling system according to a second embodiment
  • FIG. FIG. 5 is a diagram schematically showing a cooling system according to a third embodiment
  • FIG. FIG. 12 is a diagram schematically showing a cooling system according to a fourth embodiment
  • FIG. FIG. 11 is a diagram schematically showing a cooling system according to a fifth embodiment
  • FIG. FIG. 11 is a diagram schematically showing a cooling system according to another embodiment
  • FIG. 11 is a diagram schematically showing a cooling system according to another embodiment
  • FIG. 1 is a diagram schematically showing a cooling system S1 according to the first embodiment.
  • a cooling system S1 shown in FIG. a flow device 30;
  • the refrigeration cycle device 10 and the first coolant circulation device 20 are connected by a first heat exchanger 40 .
  • the first coolant circulation device 20 and the second coolant circulation device 30 are connected by a second heat exchanger 50 .
  • the natural refrigerant circulated by the refrigeration cycle device 10 cools the first coolant circulated by the first coolant circulation device 20 in the first heat exchanger 40 .
  • the first coolant circulated by the first coolant circulation device 20 cools the second coolant circulated by the second coolant circulation device 30 in the second heat exchanger 50 .
  • the second cooling liquid After being cooled by the first cooling liquid in the second heat exchanger 50, the second cooling liquid is sent to a temperature control target (not shown). Then, the second cooling liquid returns to the second heat exchanger 50 after cooling the temperature controlled object.
  • the object of temperature control may be, for example, a wafer.
  • the second cooling liquid may pass through the stage on which the wafer is placed and cool the wafer via the stage.
  • the second coolant may then return to the second heat exchanger 50 after passing through the stages.
  • the object of temperature control is not particularly limited, and may be, for example, the space inside the chamber.
  • the refrigeration cycle device 10 circulates air as a natural refrigerant in this embodiment. That is, the refrigeration cycle device 10 is an air refrigerant cycle device.
  • the refrigeration cycle device 10 connects the compressor 11, the cooler 12, the heat recovery exchanger 13, and the expander 14 with a refrigerant circulation path 15 so that air circulates in this order. After being compressed by the compressor 11 , the air is stepwise cooled by the cooler 12 and the heat recovery exchanger 13 and then flows into the expander 14 . The air is then expanded by expander 14 and flows out of expander 14 .
  • the refrigerating cycle device 10 is capable of lowering the temperature of the air expanded by the expander 14 to ⁇ 70° C. or lower, more specifically ⁇ 70° C. to ⁇ 110° C., and allowing the air to flow into the first heat exchanger 40 . However, the refrigeration cycle device 10 can also lower the temperature of the air to a range of -10°C or higher and -70°C or lower.
  • the above-described first heat exchanger 40 is connected to a portion of the refrigerant circuit 15 downstream of the expander 14 , and the air that has been expanded by the expander 14 and cooled to a low temperature flows into the first heat exchanger 40 . . After the air cools the first coolant in the first heat exchanger 40 , the air exits the first heat exchanger 40 toward the compressor 11 .
  • the air that has flowed out of the first heat exchanger 40 exchanges heat with the air that has flowed out of the cooler 12 in the recovery heat exchanger 13 before returning to the compressor 11 .
  • the air before flowing into the expander 14 is cooled in stages by the cooler 12 and the heat recovery exchanger 13 .
  • Cooler 12 may cool the high pressure air exiting compressor 11, for example, by means of cooling water.
  • the cooler 12 may be a liquid-cooled cooler or an air-cooled cooler, and is not particularly limited.
  • the compressor 11 and the expander 14 are connected to a drive shaft 16A of a common motor 16. As a result, the compressor 11 and the expander 14 are interlocked and rotated by the rotation of the drive shaft 16A.
  • a portion of the refrigerant circuit 15 downstream of the compressor 11 and upstream of the cooler 12 and a portion of the refrigerant circuit 15 downstream of the expander 14 and connected to the recovery heat exchanger 13 It is connected to the upstream portion of the position by a hot bypass passage 17 that allows air to flow, and the hot bypass passage 17 is provided with a control valve 18 that controls the flow of air. Accordingly, by opening the adjustment valve 18 , high-temperature air can be mixed with the air flowing out of the first heat exchanger 40 through the hot bypass passage 17 . By such operation, freezing of the air on the downstream side of the first heat exchanger 40 can be suppressed.
  • the refrigeration cycle device 10 is an air refrigerant cycle device in this embodiment, it may be another type of device.
  • the refrigeration cycle device 10 may be a refrigeration cycle device using carbon dioxide, oxygen, nitrogen, butane, propane, isobutane, propylene, or the like as a natural refrigerant.
  • the first cooling liquid circulation device 20 has a first flow path 21 , a second flow path 22 and a first cooling liquid pump 23 .
  • the first flow path 21 connects the discharge port of the first heat exchanger 40 that discharges the first cooling liquid and the receiving port of the second heat exchanger 50 that receives the first cooling liquid.
  • the second flow path 22 connects the discharge port of the second heat exchanger 50 that discharges the first cooling liquid and the receiving port of the first heat exchanger 40 that receives the first cooling liquid.
  • the first cooling liquid pump 23 generates driving force for circulating the first cooling liquid.
  • the first cooling liquid pump 23 is provided on the second flow path 22, but its arrangement position is not particularly limited. After being discharged from the first coolant pump 23, the first coolant flows into the first heat exchanger 40 and is cooled by low-temperature air. After that, the first coolant that has flowed out of the first heat exchanger 40 flows into the second heat exchanger 50 to cool the second coolant. The second coolant that has flowed out of the second heat exchanger 50 circulates through the first coolant pump 23 to the first heat exchanger 40 .
  • the air expanded by the expander 14 as described above can flow into the first heat exchanger 40 after being cooled to -70°C or lower, more specifically -70°C to -110°C. Therefore, the first cooling liquid is not particularly limited as long as it is a heat medium that does not cause problems even when cooled in a temperature range of -70°C to -110°C.
  • silicone oil is used as an example. Silicone oil can be used in a temperature range as low as -120°C by mixing it with a hydrocarbon additive.
  • the second coolant circulation device 30 has a supply side channel 31 , a return side channel 32 and a second coolant pump 33 .
  • the supply-side channel 31 is connected to a discharge port of the second heat exchanger 50 that discharges the second cooling liquid, and sends the second cooling liquid to the temperature control side.
  • the return-side flow path 32 is connected to a receiving port of the second heat exchanger 50 that receives the second cooling liquid, and sends the second cooling liquid that has cooled the temperature controlled object to the second heat exchanger 50 .
  • the second cooling liquid pump 33 generates driving force for causing the second cooling liquid to flow.
  • the second coolant pump 33 is provided on the return-side flow path 32, but its arrangement position is not particularly limited. After being discharged from the second coolant pump 33, the second coolant flows into the second heat exchanger 50 and is cooled by the first coolant. After that, the second coolant that has flowed out of the second heat exchanger 50 cools the temperature controlled object, and then flows into the second heat exchanger 50 via the second coolant pump 33 .
  • the type of the second cooling liquid is different from the type of the first cooling liquid.
  • an ether-based liquid is used as the second cooling liquid.
  • the freezing point of the first coolant is lower than the freezing point of the second coolant.
  • the kinematic viscosity of the first coolant is lower than the kinematic viscosity of the second coolant.
  • the kinematic viscosity of the first cooling liquid is lower than that of the second cooling liquid.
  • the first coolant can be cooled in the temperature range of -70°C to -110°C.
  • the second cooling liquid is also cooled by the first cooling liquid in a temperature range ranging from -70°C to -110°C or a temperature range close thereto.
  • the second coolant is not directly cooled by low temperature air of -70°C to -110°C. Therefore, the second cooling liquid can be tolerated with less low temperature characteristics than required for the first cooling fluid, which is directly cooled by cold air.
  • a heat medium other than silicone oil which has excellent low-temperature characteristics, as a candidate for the second coolant, and an ether-based liquid is selected as the second coolant.
  • the second coolant may be a fluorine-based liquid, a fluorine-ether-based liquid, an ethylene glycol aqueous solution, or the like.
  • the second coolant may be a liquid containing hydrofluoroether or a liquid containing perfluoropolyether.
  • the second coolant is not particularly limited.
  • the second coolant may be silicone oil.
  • the use of silicone oils may be avoided due to possible siloxane problems.
  • Ether-based or fluorine-based liquids are generally chemically inert and do not have the problems of forming siloxanes. By using an ether-based or fluorine-based liquid as the second cooling liquid, it is possible to expand the application range of the cooling system S1 capable of ultra-low temperature cooling.
  • the cooling system S1 includes the refrigeration cycle device 10 that circulates the natural refrigerant, the first coolant circulation device 20 that circulates the first coolant cooled by the natural coolant, the first and a second cooling liquid flow device 30 for passing a second cooling liquid cooled by the first cooling liquid circulated by the cooling liquid circulation device 20 .
  • the first cooling liquid circulation device 20 is intentionally provided between the refrigerating cycle device 10 and the second cooling liquid circulation device 30, so that the cooling efficiency of the second cooling liquid by the natural refrigerant can be directly In comparison with the case where the second coolant is cooled by the natural refrigerant, it is intentionally dropped.
  • the second coolant selected from the viewpoint of being desirable for the temperature control target can be used to control the temperature. Cooling becomes possible.
  • silicone oil is specifically selected as the first cooling liquid, but an ether-based liquid, which is generally desirable for the temperature control object, may be inferior to silicone oil in low-temperature characteristics. , is selected as the second coolant.
  • the temperature of the second cooling liquid can be adjusted without using a heater.
  • the zone can be adjusted to the desired temperature zone.
  • the reduced efficiency allows the temperature of the second coolant to match the temperature range required by the temperature controlled object without using a heater.
  • the physical distance between the refrigeration cycle device 10 and the second cooling liquid circulation device 30 can be increased.
  • exposure of the natural refrigerant to the second coolant can be avoided, and inflow of the natural refrigerant into the temperature controlled side can be avoided.
  • the natural refrigerant has concerns such as toxicity, combustibility, and high pressure, it is possible to cool the object of temperature control while suppressing the effects of the concerns.
  • the cooling liquid cooled by the natural refrigerant circulated by the refrigeration cycle device 10 can effectively cool the temperature controlled object.
  • the first coolant circulation device 20 in the present embodiment has a first flow path 21, a second flow path 22, and a first coolant pump 23. , the second flow path 22 and the first coolant pump 23 only. As a result, the very simple first coolant circulation device 20 can effectively cool the object to be temperature-controlled while suppressing the manufacturing cost.
  • FIG. 2 is a diagram schematically showing a cooling system S2 according to a second embodiment.
  • the structure of the first coolant circulation device 20 is different from that of the first embodiment.
  • the first flow path 21 and the second flow path 22 are connected by the internal heat exchanger 24 . Then, in the internal heat exchanger 24, the first cooling liquid discharged from the discharge port of the first heat exchanger 40 and before being received by the receiving port of the second heat exchanger 50 and the discharge port of the second heat exchanger 50 heat exchange with the first coolant discharged from the first heat exchanger 40 before being received in the receiving port of the first heat exchanger 40 .
  • the load on the first heat exchanger 40 can be reduced and reliability can be improved. high operating speed.
  • FIG. 3 is a diagram schematically showing a cooling system S3 according to a third embodiment.
  • the structure of the first coolant circulation device 20 is different from that of the first and second embodiments.
  • the first coolant circulation device 20 further has a bypass channel 25 that connects the first channel 21 and the second channel 22 and allows the first coolant to flow.
  • the first cooling liquid returning from the second heat exchanger 50 to the first heat exchanger 40 branches to the first heat exchanger 40 side and the bypass flow path 25 .
  • the first coolant cooled by the first heat exchanger 40 and the first coolant bypassing the first heat exchanger 40 join on the downstream side of the first heat exchanger 40 .
  • the temperature of the first coolant flowing into the second heat exchanger 50 rises.
  • the load on the second heat exchanger 50 can be reduced and reliability can be improved. It is possible to perform high-performance driving.
  • the cooling efficiency of the second cooling liquid by the natural refrigerant can be lowered more easily than when the second cooling liquid is directly cooled by the natural refrigerant. This can improve the degree of freedom in selecting the type of the second cooling liquid.
  • FIG. 4 is a diagram schematically showing a cooling system S4 according to a fourth embodiment.
  • the structure of the first coolant circulation device 20 is different from that of the first to third embodiments.
  • the first coolant circulation device 20 includes a branch flow path 26 branched from the second flow path 22 and connected to the second flow path 22 at a position P2 upstream of the branched position P1; and a third heat exchanger 60 provided on the channel 26 .
  • the third heat exchanger 60 is connected to a third cooling liquid circulation device 70 that allows the third cooling liquid to flow. Then, in the third heat exchanger 60, the third cooling liquid is cooled by the first cooling liquid. Since the third coolant is cooled by the first coolant that does not pass through the first heat exchanger 40, the restrictions on low-temperature characteristics are further relaxed than with the second coolant. Therefore, as the third cooling liquid, a heat medium of a different type from that of the second cooling liquid may be selected.
  • the third coolant may be an ethylene glycol aqueous solution.
  • the third coolant may be silicone oil, an ether-based liquid, or a fluorine-based liquid.
  • the third heat exchanger 60 it is possible for the third heat exchanger 60 to perform cooling in a temperature range higher than that of the second heat exchanger 50 . This can expand the application pattern and application range of the cooling system.
  • the cooling temperature of natural refrigerants with extremely low boiling points such as air, carbon dioxide, and oxygen may be over-specified for temperature control targets.
  • this configuration by distributing the refrigerating capacity between the second heat exchanger 50 and the third heat exchanger 60, it is possible to effectively utilize the refrigerating capacity while avoiding excessive cooling.
  • FIG. 5 is a diagram schematically showing a cooling system S5 according to a fifth embodiment.
  • the structure of the first coolant circulation device 20 is different from that of the first to fourth embodiments.
  • the second coolant flow device 30 is connected to the second heat exchanger 50 and the third heat exchanger 60 .
  • the second cooling liquid After being cooled by the first cooling liquid in the third heat exchanger 60 , the second cooling liquid is further cooled by the first cooling liquid in the second heat exchanger 50 .
  • the third heat exchanger 60 branches from the second flow path 22 and connects to the second flow path 22 at a position P2 upstream of the branched position P1. It is provided on the branch channel 26 .
  • the first coolant circulation device 20 has a tank 27 in the middle of the second flow path 22 that can store a certain amount of the first coolant, and the first coolant pump 23 sucks the first coolant in the tank 27. to dispense.
  • a downstream end of the branch channel 26 is fluidly connected to the tank 27 .
  • the first flow path 21 is provided with a first distribution control valve 21A.
  • the branch flow path 26 is provided with a second distribution control valve 26A.
  • the second cooling liquid circulation device 30 includes a tank 34 in the middle of the return-side flow path 32 that stores a certain amount of the second cooling liquid, and a second cooling liquid that sucks and discharges the second cooling liquid in the tank 34 . and a liquid pump 33 .
  • the return-side flow path 32 is connected to the third heat exchanger 60 at a portion between the second coolant pump 33 and the second heat exchanger 50 .
  • the tank 34 is also connected to a high-temperature flow path 35 through which the second cooling liquid in the tank 34 flows, and the high-temperature flow path 35 has a heater 36 that heats the second cooling liquid to flow through.
  • the supply-side channel 31 is provided with a low-temperature control valve 31A.
  • the low-temperature control valve 31A controls flow rate control and blockage of the second coolant flowing through the supply-side channel 31 toward the temperature controlled object.
  • the intermediate temperature flow path 37 is connected to a position in the return side flow path 32 on the downstream side of the third heat exchanger 60 and on the upstream side of the second heat exchanger 50 .
  • An intermediate temperature control valve 38 is provided in the intermediate temperature flow path 37 .
  • a pattern in which the low-temperature second cooling liquid is supplied from the supply-side flow path 31 to the temperature control target, and a pattern in which the low-temperature second cooling liquid is supplied from the medium-temperature flow path 37 A pattern of supplying a second cooling liquid having a higher temperature than the low temperature second cooling liquid to a temperature controlled object, and a second cooling liquid flowing from a high temperature flow path 35 to an intermediate temperature flow path 37 to a temperature controlled object. It is possible to switch between a pattern of supplying the second cooling liquid having a higher temperature.
  • the second coolant is cooled in stages by the third heat exchanger 60 and the second heat exchanger 50, so that the first coolant in the second heat exchanger 50
  • the load on the second heat exchanger 50 can be reduced, and highly reliable operation can be performed.
  • the first cooling liquid circulating device 20 in the cooling system S2 includes a flow control passage 28 and a flow control valve 29 provided in the flow control passage 28. It is different from the second embodiment in that it further includes The flow control flow path 28 is connected to the upstream side and the downstream side of the portion of the second flow path 22 connected to the internal heat exchanger 24 .
  • the flow rate control valve 29 adjusts the flow rate of the first coolant discharged from the second heat exchanger 50 and flowing through the flow rate control channel 28 .
  • the opening degree of the flow control valve 29 is controlled by a controller (not shown).
  • the controller may be configured by a computer having a CPU, ROM, and the like.
  • the temperature of the first coolant flowing through the portion of the first flow path 21 downstream of the internal heat exchanger 24 and upstream of the second heat exchanger 50 is A first temperature sensor 71 is provided for detection.
  • the second coolant flowing device 30 is provided with a second coolant flowing through a portion of the supply-side channel 31 downstream of the connection with the second heat exchanger 50 and upstream of the temperature controlled target.
  • a second temperature sensor 72 is provided to detect the temperature of the .
  • the opening degree of the flow control valve 29 is increased.
  • the degree of opening of the flow rate control valve 29 is reduced.
  • the flow control valve 29 can be controlled.
  • the opening degree of the flow control valve 29 is increased.
  • the opening degree of the flow rate control valve 29 is reduced.
  • the first coolant circulation device 20 in the cooling system S3 further includes a flow control valve 25A provided in the bypass flow path 25. 3 embodiment.
  • the flow control valve 25A adjusts the flow rate of the first cooling liquid that flows through the bypass flow path 25.
  • the opening degree of the flow control valve 25A is controlled by a controller (not shown).
  • the controller may be configured by a computer having a CPU, ROM, and the like.
  • a first temperature sensor 71 and a second temperature sensor 72 are provided in the same manner as in the configuration shown in FIG. However, the first temperature sensor 71 detects the temperature of the first coolant flowing through a portion of the first flow path 21 downstream of the connection position with the bypass flow path 25 .
  • the opening degree of the flow control valve 25A when the temperature of the first coolant detected by the first temperature sensor 71 is higher than the predetermined first coolant target temperature, the opening degree of the flow control valve 25A is reduced. When the temperature of the first coolant detected by the first temperature sensor 71 is lower than the first coolant target temperature, the opening degree of the flow rate control valve 25A is increased. Thus, the flow control valve 25A can be controlled.
  • the opening degree of the flow control valve 25A is reduced. When the temperature of the second coolant detected by the second temperature sensor 72 is lower than the second coolant target temperature, the opening degree of the flow rate control valve 25A is increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

The cooling system S1 according to one embodiment of the present invention comprises: a refrigeration cycle device 10 that circulates a natural refrigerant; a first cooling liquid circulation device 20 that circulates first cooling liquid cooled by the natural refrigerant; and a second cooling liquid flow device 30 that allows passage of second cooling liquid cooled by the first cooling liquid circulated by the first cooling liquid circulation device 20.

Description

冷却システムcooling system
 本発明の実施の形態は、冷凍サイクル装置が循環させる冷媒によって冷却液を冷却する冷却システムに関する。 Embodiments of the present invention relate to a cooling system that cools a coolant with a refrigerant circulated by a refrigeration cycle device.
 最近、自然冷媒を用いる冷凍サイクル装置が注目されている。自然冷媒は、オゾン層破壊係数及び地球温暖化係数が一般的なフロン系の冷媒に対して極めて低い。そのため、自然冷媒は、環境保護の観点で極めて有用である。  Recently, refrigeration cycle equipment that uses natural refrigerants has attracted attention. Natural refrigerants have extremely low ozone layer depletion potential and global warming potential compared to common Freon-based refrigerants. Therefore, natural refrigerants are extremely useful from the viewpoint of environmental protection.
 自然冷媒としては、例えば、アンモニア、二酸化炭素、空気、酸素、窒素等が挙げられる。このうちの二酸化炭素、空気、酸素、窒素は、沸点が極めて低いため、超低温帯での冷却を可能とする。 Examples of natural refrigerants include ammonia, carbon dioxide, air, oxygen, and nitrogen. Of these, carbon dioxide, air, oxygen, and nitrogen have extremely low boiling points, so they can be cooled in an ultra-low temperature zone.
 自然冷媒を用いる冷凍サイクル装置としては、空気を用いる空気冷凍サイクル装置が従来から知られている(例えば、WO2018/070893A1)。このような空気冷凍サイクル装置は大型冷凍庫などで既に用いられている。 As a refrigeration cycle device using natural refrigerant, an air refrigeration cycle device using air has been conventionally known (for example, WO2018/070893A1). Such an air refrigeration cycle device has already been used in a large freezer or the like.
 また、空気冷凍サイクル装置は、最近、超低温保管が必要な新型コロナウィルス用ワクチンの保管庫への適用でも注目を集めた。 In addition, the air refrigeration cycle device has recently attracted attention for its application to the storage of new coronavirus vaccines, which require ultra-low temperature storage.
 間接膨張式と呼ばれる冷却システムは、一般に、冷凍サイクル装置が循環させる冷媒によって冷却液循環装置が循環させる冷却液を冷却し、冷却された冷却液によって温度制御対象を冷却する。例えば上述した空気冷凍サイクル装置は、間接膨張式の冷却システムにおいて使用されてもよい。 A cooling system called an indirect expansion type generally cools the coolant circulated by the coolant circulation device with the refrigerant circulated by the refrigeration cycle device, and the cooled coolant cools the temperature controlled object. For example, the air refrigeration cycle device described above may be used in an indirect expansion refrigeration system.
 しかしながら、上述したように冷媒としての空気は沸点が極めて低いため、例えば-70℃以下等の膨張時の冷却温度の設定によっては、冷却液循環装置が循環させる冷却液の種類が制限される場合がある。 However, as described above, air as a refrigerant has an extremely low boiling point, so depending on the setting of the cooling temperature during expansion, such as -70°C or lower, the type of cooling liquid circulated by the cooling liquid circulation device may be limited. There is
 そして、上記のような制限下では、温度制御対象となる製品や製造設備に対して望ましくない種類の冷却液を選択せざるを得ない場合がある。このように冷却液の選択自由度が制限される状況は、空気冷凍サイクル装置を用いる冷却システムの採用が見送られる一因となる。
 例えば-100℃周辺の超低温帯で採用され得る冷却液としては、シリコーンオイルが挙げられる。しかし、シリコーンオイルのシロキサンは、電子部品の断線を引き起こすことがある。そのため、例えば半導体製造設備ではシリコーンオイルを使用した冷却機器の使用が避けられることがある。
In some cases, the limitations described above may force the selection of an undesirable type of cooling liquid for the product or manufacturing facility whose temperature is to be controlled. The situation in which the degree of freedom in selecting the cooling liquid is limited in this way is one of the reasons why adoption of a cooling system using an air refrigeration cycle device is postponed.
For example, a cooling fluid that can be used in an ultra-low temperature range around -100°C includes silicone oil. However, siloxane in silicone oil may cause disconnection of electronic components. Therefore, for example, in semiconductor manufacturing facilities, the use of cooling equipment using silicone oil may be avoided.
 また、自然冷媒は、毒性、燃焼性、高圧になる等の懸念事項がある。このような懸念事項によって、自然冷媒を用いる冷凍サイクル装置や、これを利用する冷却システムの採用が見送られることもある。 In addition, natural refrigerants have concerns such as toxicity, flammability, and high pressure. Due to such concerns, adoption of a refrigeration cycle device using a natural refrigerant and a cooling system using the refrigeration cycle device may be postponed.
 また、極めて低温の冷媒の冷却温度は、温度制御対象に対してオーバースペックになることがある。この場合、冷却された冷却液をヒータで加熱することにより、所望する温度帯への調節がなされてもよい。しかしながら、このような調節は、エネルギー消費量の抑制の観点では望ましいと言えない。 In addition, the cooling temperature of extremely low-temperature refrigerants may be over-specified for temperature control targets. In this case, the temperature may be adjusted to a desired temperature range by heating the cooled coolant with a heater. However, such an adjustment is not desirable from the viewpoint of suppressing energy consumption.
 以上の事情に鑑みて、本発明の課題は、冷凍サイクル装置が循環させる自然冷媒で冷却する冷却液によって温度制御対象を効果的に冷却できる冷却システムを提供することである。 In view of the above circumstances, an object of the present invention is to provide a cooling system that can effectively cool a temperature-controlled target with a cooling liquid cooled by a natural refrigerant circulated by a refrigeration cycle device.
 本発明の一実施の形態に係る冷却システムは、自然冷媒を循環させる冷凍サイクル装置と、前記自然冷媒によって冷却される第1冷却液を循環させる第1冷却液循環装置と、前記第1冷却液循環装置が循環させる前記第1冷却液によって冷却される第2冷却液を通流させる第2冷却液通流装置と、を備える。 A cooling system according to an embodiment of the present invention includes a refrigeration cycle device that circulates a natural refrigerant, a first coolant circulation device that circulates a first coolant that is cooled by the natural coolant, and the first coolant. a second cooling liquid flow device for causing a flow of a second cooling liquid cooled by the first cooling liquid circulated by the circulation device.
 この冷却システムでは、冷凍サイクル装置と第2冷却液通流装置との間に第1冷却液循環装置を敢えて設けることで、自然冷媒による第2冷却液の冷却効率を、直接的に自然冷媒によって第2冷却液を冷却する場合に比べて意図的に落とす。これにより、直接的に自然冷媒によって第2冷却液を冷却する場合に生じる第2冷却液の種類の選択自由度の制限を緩和できる。したがって、自然冷媒によって直接的に冷却される際に望ましいという観点で第1冷却液を選択しつつ、例えば温度制御対象に対して望ましいという観点で選択した第2冷却液によって温度制御対象を冷却することが可能となる。
 また、自然冷媒による第2冷却液の冷却効率を、直接的に自然冷媒によって第2冷却液を冷却する場合に比べて意図的に落とすことで、ヒータを使用せずに第2冷却液の温度帯を所望する温度帯へ調整し得る。これにより、エネルギー消費量を抑えつつ、温度制御対象を所望の温度帯で冷却することが可能となる。
 また、冷凍サイクル装置と第2冷却液通流装置との物理的な距離を引き離すことができる。また、第2冷却液に対する自然冷媒の曝露を回避でき、自然冷媒の温度制御対象側への流入を回避できる。これにより、自然冷媒に毒性、燃焼性、高圧になる等の懸念事項がある場合であっても、懸念事項の影響を抑えつつ温度制御対象を冷却することが可能となる。
 よって、冷凍サイクル装置が循環させる自然冷媒で冷却する冷却液によって温度制御対象を効果的に冷却できる。
In this cooling system, by intentionally providing the first coolant circulation device between the refrigeration cycle device and the second coolant circulation device, the cooling efficiency of the second coolant by the natural refrigerant is directly improved by the natural refrigerant. Intentionally dropping the second cooling liquid compared to the case of cooling. As a result, it is possible to alleviate the restriction on the degree of freedom in selecting the type of the second cooling liquid that occurs when the second cooling liquid is cooled directly by the natural refrigerant. Therefore, while selecting the first coolant from the viewpoint that it is desirable when directly cooled by the natural refrigerant, for example, the temperature control target is cooled with the second coolant selected from the viewpoint that it is desirable for the temperature control target. becomes possible.
In addition, by intentionally lowering the cooling efficiency of the second cooling liquid by the natural refrigerant compared to the case where the second cooling liquid is cooled directly by the natural refrigerant, the temperature of the second cooling liquid can be adjusted without using a heater. The zone can be adjusted to the desired temperature zone. As a result, it becomes possible to cool the object to be temperature-controlled in a desired temperature range while suppressing energy consumption.
Also, the physical distance between the refrigeration cycle device and the second cooling liquid circulation device can be increased. In addition, exposure of the natural refrigerant to the second coolant can be avoided, and inflow of the natural refrigerant into the temperature controlled side can be avoided. As a result, even if the natural refrigerant has concerns such as toxicity, combustibility, and high pressure, it is possible to cool the object of temperature control while suppressing the effects of the concerns.
Therefore, the cooling liquid cooled by the natural refrigerant circulated by the refrigeration cycle device can effectively cool the object to be temperature controlled.
 前記第1冷却液の種類と、前記第2冷却液の種類とは異なってもよい。
 この場合、例えば、自然冷媒による冷却に対して望ましい例えば動作等に支障が生じない冷却液を第1冷却液として選択し、第1冷却液とは異なり温度制御対象に対して望ましい冷却液を第2冷却液として選択することにより、効果的に温度制御対象を冷却できる。
The type of the first cooling liquid and the type of the second cooling liquid may be different.
In this case, for example, a cooling liquid that is desirable for cooling by a natural refrigerant, for example, that does not interfere with the operation or the like is selected as the first cooling liquid, and a cooling liquid that is desirable for the temperature control object, unlike the first cooling liquid, is selected as the first cooling liquid. By selecting the two cooling liquids, it is possible to effectively cool the object of temperature control.
 前記冷凍サイクル装置及び前記第1冷却液循環装置は、第1熱交換器により接続され、前記第1熱交換器で前記自然冷媒によって前記第1冷却液が冷却され、前記第1冷却液循環装置及び前記第2冷却液通流装置は、第2熱交換器により接続され、前記第2熱交換器で前記第1冷却液によって前記第2冷却液が冷却され、前記第1冷却液循環装置は、前記第1冷却液を吐出する前記第1熱交換器の吐出口と、前記第1冷却液を受け入れる前記第2熱交換器の受入口とを接続する第1流路と、前記第1冷却液を吐出する前記第2熱交換器の吐出口と、前記第1冷却液を受け入れる前記第1熱交換器の受入口とを接続する第2流路と、前記第1冷却液を循環させるための駆動力を発生させるポンプと、で構成されてもよい。
 この場合、非常に簡易な第1冷却液循環装置により製造コストを抑えつつ、効果的に温度制御対象を冷却できる。
The refrigeration cycle device and the first coolant circulation device are connected by a first heat exchanger, the first coolant is cooled by the natural refrigerant in the first heat exchanger, and the first coolant circulation device and the second coolant circulation device are connected by a second heat exchanger, the second coolant is cooled by the first coolant in the second heat exchanger, and the first coolant circulation device is a first flow path connecting an outlet of the first heat exchanger that discharges the first cooling liquid and an inlet of the second heat exchanger that receives the first cooling liquid; and a second flow path connecting the discharge port of the second heat exchanger for discharging liquid and the receiving port of the first heat exchanger for receiving the first cooling liquid; and for circulating the first cooling liquid. and a pump that generates a driving force of
In this case, the very simple first cooling liquid circulating device can effectively cool the temperature controlled object while suppressing the manufacturing cost.
 前記第1流路と前記第2流路とが内部熱交換器で接続され、前記内部熱交換器で、前記第1熱交換器の吐出口から吐出され前記第2熱交換器の受入口に受け入れられる前の前記第1冷却液と、前記第2熱交換器の吐出口から吐出され前記第1熱交換器の受入口に受け入れられる前の前記第1冷却液とが熱交換してもよい。 
 この場合、第1熱交換器における自然冷媒と第1冷却液との温度差を抑えることにより、第1熱交換器への負荷を軽減でき、信頼性の高い運転を行うことができる。
The first flow path and the second flow path are connected by an internal heat exchanger, and in the internal heat exchanger, the heat is discharged from the discharge port of the first heat exchanger to the reception port of the second heat exchanger. The first cooling liquid before being received may be heat-exchanged with the first cooling liquid discharged from the discharge port of the second heat exchanger and before being received by the receiving port of the first heat exchanger. .
In this case, by suppressing the temperature difference between the natural refrigerant and the first coolant in the first heat exchanger, the load on the first heat exchanger can be reduced, and highly reliable operation can be performed.
 前記第1冷却液循環装置は、前記第1流路と前記第2流路とを接続し、前記第1冷却液を通流させるバイパス流路をさらに有してもよい。
 この場合、第2熱交換器における第1冷却液と第2冷却液の温度差を抑えることにより、第2熱交換器への負荷を軽減でき、信頼性の高い運転を行うことができる。 また、自然冷媒による第2冷却液の冷却効率を、直接的に自然冷媒によって第2冷却液を冷却する場合に比べて一層落としやすくなる。これにより第2冷却液の種類の選択自由度を向上できる。
The first cooling liquid circulation device may further include a bypass flow path connecting the first flow path and the second flow path and allowing the first cooling liquid to flow.
In this case, by suppressing the temperature difference between the first cooling liquid and the second cooling liquid in the second heat exchanger, the load on the second heat exchanger can be reduced, and highly reliable operation can be performed. In addition, the cooling efficiency of the second cooling liquid by the natural refrigerant can be lowered more easily than when the second cooling liquid is directly cooled by the natural refrigerant. This can improve the degree of freedom in selecting the type of the second cooling liquid.
 前記第1冷却液循環装置は、前記第2流路から分岐し、且つ分岐した位置よりも上流側の位置で前記第2流路に接続する分岐流路と、前記分岐流路上に設けられる第3熱交換器と、をさらに有してもよい。
 この場合、第2熱交換器よりも高い温度帯での冷却を第3熱交換器で行うことが可能となる。これにより、冷却システムの適用パターン及び適用範囲を拡大できる。
The first cooling liquid circulation device includes a branch flow path branched from the second flow path and connected to the second flow path at a position upstream of the branched position, and a second flow path provided on the branch flow path. 3 heat exchangers.
In this case, the third heat exchanger can perform cooling in a temperature zone higher than that of the second heat exchanger. This can expand the application pattern and application range of the cooling system.
 前記第3熱交換器に、第3冷却液を通流させる第3冷却液通流装置が接続され、前記第3熱交換器で、前記第3冷却液が前記第1冷却液によって冷却されてもよい。
 空気、二酸化炭素、酸素等の沸点が極めて低い自然冷媒の冷却温度は、温度制御対象に対してオーバースペックになることがある。このような場合に、本構成では、第2熱交換器と第3熱交換器とで冷凍能力を分配することで、オーバースペックな冷却を回避しつつ、冷凍能力を有効活用できる。
A third coolant flow device is connected to the third heat exchanger, and the third coolant is cooled by the first coolant in the third heat exchanger. good too.
The cooling temperature of natural refrigerants with extremely low boiling points, such as air, carbon dioxide, and oxygen, may be over-specified for temperature control targets. In such a case, in this configuration, by distributing the refrigerating capacity between the second heat exchanger and the third heat exchanger, it is possible to effectively utilize the refrigerating capacity while avoiding excessive cooling.
 前記第2冷却液通流装置は、前記第3熱交換器に接続され、前記第2冷却液は、前記第3熱交換器で冷却された後、前記第2熱交換器で冷却されてもよい。
 この場合、第2冷却液を第3熱交換器及び第2熱交換器で段階的に冷却することで、第2熱交換器における第1冷却液と第2冷却液との温度差を抑えることにより、第2熱交換器への負荷を軽減でき、信頼性の高い運転を行うことができる。
The second coolant flow device is connected to the third heat exchanger, and the second coolant is cooled by the third heat exchanger and then cooled by the second heat exchanger. good.
In this case, the temperature difference between the first cooling liquid and the second cooling liquid in the second heat exchanger can be suppressed by cooling the second cooling liquid in stages in the third heat exchanger and the second heat exchanger. Therefore, the load on the second heat exchanger can be reduced, and highly reliable operation can be performed.
 前記第1冷却液は、シリコーンオイルであり、前記第2冷却液は、エーテル系液体でもよい。 The first cooling liquid may be silicone oil, and the second cooling liquid may be an ether-based liquid.
 前記冷凍サイクル装置は、空気冷凍サイクル装置でもよい。 The refrigeration cycle device may be an air refrigeration cycle device.
 本発明によれば、冷凍サイクル装置が循環させる自然冷媒で冷却する冷却液によって温度制御対象を効果的に冷却できる。 According to the present invention, the temperature control target can be effectively cooled by the cooling liquid cooled by the natural refrigerant circulated by the refrigeration cycle device.
第1の実施の形態に係る冷却システムを概略的に示す図である。1 is a diagram schematically showing a cooling system according to a first embodiment; FIG. 第2の実施の形態に係る冷却システムを概略的に示す図である。FIG. 5 is a diagram schematically showing a cooling system according to a second embodiment; FIG. 第3の実施の形態に係る冷却システムを概略的に示す図である。FIG. 5 is a diagram schematically showing a cooling system according to a third embodiment; FIG. 第4の実施の形態に係る冷却システムを概略的に示す図である。FIG. 12 is a diagram schematically showing a cooling system according to a fourth embodiment; FIG. 第5の実施の形態に係る冷却システムを概略的に示す図である。FIG. 11 is a diagram schematically showing a cooling system according to a fifth embodiment; FIG. その他の実施の形態に係る冷却システムを概略的に示す図である。FIG. 11 is a diagram schematically showing a cooling system according to another embodiment; その他の実施の形態に係る冷却システムを概略的に示す図である。FIG. 11 is a diagram schematically showing a cooling system according to another embodiment;
 以下に、添付の図面を参照して、各実施の形態を詳細に説明する。 Each embodiment will be described in detail below with reference to the accompanying drawings.
<第1の実施の形態>
 図1は、第1の実施の形態に係る冷却システムS1を概略的に示す図である。図1に示される冷却システムS1は、自然冷媒を循環させる冷凍サイクル装置10と、第1冷却液を循環させる第1冷却液循環装置20と、第2冷却液を通流させる第2冷却液通流装置30と、を備えている。
<First embodiment>
FIG. 1 is a diagram schematically showing a cooling system S1 according to the first embodiment. A cooling system S1 shown in FIG. a flow device 30;
 冷凍サイクル装置10及び第1冷却液循環装置20は、第1熱交換器40により接続されている。第1冷却液循環装置20及び第2冷却液通流装置30は、第2熱交換器50により接続されている。 The refrigeration cycle device 10 and the first coolant circulation device 20 are connected by a first heat exchanger 40 . The first coolant circulation device 20 and the second coolant circulation device 30 are connected by a second heat exchanger 50 .
 冷凍サイクル装置10が循環させる自然冷媒は、第1熱交換器40で第1冷却液循環装置20が循環させる第1冷却液を冷却する。第1冷却液循環装置20が循環させる第1冷却液は、第2熱交換器50で第2冷却液通流装置30が通流させる第2冷却液を冷却する。 The natural refrigerant circulated by the refrigeration cycle device 10 cools the first coolant circulated by the first coolant circulation device 20 in the first heat exchanger 40 . The first coolant circulated by the first coolant circulation device 20 cools the second coolant circulated by the second coolant circulation device 30 in the second heat exchanger 50 .
 第2冷却液は、第2熱交換器50で第1冷却液によって冷却された後、図示しない温度制御対象に送られる。そして、第2冷却液は温度制御対象を冷却した後、第2熱交換器50に戻る。 After being cooled by the first cooling liquid in the second heat exchanger 50, the second cooling liquid is sent to a temperature control target (not shown). Then, the second cooling liquid returns to the second heat exchanger 50 after cooling the temperature controlled object.
 温度制御対象は、例えばウェハなどでもよい。この場合、第2冷却液は、ウェハを載せるステージを通過し、ステージを介してウェハを冷却してもよい。そして、第2冷却液は、ステージを通過した後、第2熱交換器50に戻ってもよい。ただし、温度制御対象は特に限られるものではなく、例えばチャンバー内の空間等でもよい。 The object of temperature control may be, for example, a wafer. In this case, the second cooling liquid may pass through the stage on which the wafer is placed and cool the wafer via the stage. The second coolant may then return to the second heat exchanger 50 after passing through the stages. However, the object of temperature control is not particularly limited, and may be, for example, the space inside the chamber.
 冷凍サイクル装置10は、本実施の形態では自然冷媒としての空気を循環させる。すなわち、冷凍サイクル装置10は、空気冷媒サイクル装置である。 The refrigeration cycle device 10 circulates air as a natural refrigerant in this embodiment. That is, the refrigeration cycle device 10 is an air refrigerant cycle device.
 冷凍サイクル装置10は、圧縮機11と、冷却器12と、回収熱交換器13と、膨張機14とを空気がこの順で循環するように冷媒循環路15で接続する。空気は、圧縮機11で圧縮された後、冷却器12及び回収熱交換器13で段階的に冷却され、その後、膨張機14に流入する。その後、空気は膨張機14で膨張させられて、膨張機14から流出する。冷凍サイクル装置10は、膨張機14で膨張させた空気を-70℃以下、詳しくは-70℃~-110℃まで降温させて第1熱交換器40に流入させることが可能となっている。ただし、冷凍サイクル装置10は、空気を-10℃以上-70℃以下の範囲に降温させることも可能である。 The refrigeration cycle device 10 connects the compressor 11, the cooler 12, the heat recovery exchanger 13, and the expander 14 with a refrigerant circulation path 15 so that air circulates in this order. After being compressed by the compressor 11 , the air is stepwise cooled by the cooler 12 and the heat recovery exchanger 13 and then flows into the expander 14 . The air is then expanded by expander 14 and flows out of expander 14 . The refrigerating cycle device 10 is capable of lowering the temperature of the air expanded by the expander 14 to −70° C. or lower, more specifically −70° C. to −110° C., and allowing the air to flow into the first heat exchanger 40 . However, the refrigeration cycle device 10 can also lower the temperature of the air to a range of -10°C or higher and -70°C or lower.
 冷媒循環路15における膨張機14の下流側の部分には上述の第1熱交換器40が接続され、膨張機14で膨張して低温となった空気は、第1熱交換器40に流入する。空気は、第1熱交換器40で第1冷却液を冷却した後、第1熱交換器40から流出して圧縮機11に向かう。 The above-described first heat exchanger 40 is connected to a portion of the refrigerant circuit 15 downstream of the expander 14 , and the air that has been expanded by the expander 14 and cooled to a low temperature flows into the first heat exchanger 40 . . After the air cools the first coolant in the first heat exchanger 40 , the air exits the first heat exchanger 40 toward the compressor 11 .
 第1熱交換器40から流出した空気は、圧縮機11に戻る前に、回収熱交換器13で冷却器12を流出した空気と熱交換する。これにより、膨張機14に流入する前の空気が、冷却器12及び回収熱交換器13で段階的に冷却される。冷却器12は、例えば冷却水によって圧縮機11から流出する高圧の空気を冷却してもよい。冷却器12は液冷式の冷却器でもよいし、空冷式の冷却器でもよいし、特に限られるものではない。 The air that has flowed out of the first heat exchanger 40 exchanges heat with the air that has flowed out of the cooler 12 in the recovery heat exchanger 13 before returning to the compressor 11 . Thereby, the air before flowing into the expander 14 is cooled in stages by the cooler 12 and the heat recovery exchanger 13 . Cooler 12 may cool the high pressure air exiting compressor 11, for example, by means of cooling water. The cooler 12 may be a liquid-cooled cooler or an air-cooled cooler, and is not particularly limited.
 圧縮機11と膨張機14とは、共通のモータ16の駆動軸16Aに接続されている。これにより、駆動軸16Aの回転によって圧縮機11と膨張機14とが連動して回転する。 The compressor 11 and the expander 14 are connected to a drive shaft 16A of a common motor 16. As a result, the compressor 11 and the expander 14 are interlocked and rotated by the rotation of the drive shaft 16A.
 また、冷媒循環路15における圧縮機11の下流側であって冷却器12の上流側の部分と、冷媒循環路15における膨張機14の下流側の部分であって回収熱交換器13との接続位置の上流側の部分とは、空気を通流させるホットバイパス路17で接続され、ホットバイパス路17には空気の通流を制御する調節バルブ18が設けられている。これにより、調節バルブ18を開くことで、ホットバイパス路17を通して高温の空気を第1熱交換器40から流出した空気に混ぜることができる。このような操作により、第1熱交換器40の下流側における空気の凍結を抑制できる。 Also, a portion of the refrigerant circuit 15 downstream of the compressor 11 and upstream of the cooler 12 and a portion of the refrigerant circuit 15 downstream of the expander 14 and connected to the recovery heat exchanger 13 It is connected to the upstream portion of the position by a hot bypass passage 17 that allows air to flow, and the hot bypass passage 17 is provided with a control valve 18 that controls the flow of air. Accordingly, by opening the adjustment valve 18 , high-temperature air can be mixed with the air flowing out of the first heat exchanger 40 through the hot bypass passage 17 . By such operation, freezing of the air on the downstream side of the first heat exchanger 40 can be suppressed.
 なお、本実施の形態では冷凍サイクル装置10が空気冷媒サイクル装置であるが、その他の形式の装置でもよい。冷凍サイクル装置10は、自然冷媒として、二酸化炭素、酸素、窒素、ブタン、プロパン、イソブタン、プロピレン等を用いる冷凍サイクル装置でもよい。 Although the refrigeration cycle device 10 is an air refrigerant cycle device in this embodiment, it may be another type of device. The refrigeration cycle device 10 may be a refrigeration cycle device using carbon dioxide, oxygen, nitrogen, butane, propane, isobutane, propylene, or the like as a natural refrigerant.
 第1冷却液循環装置20は、第1流路21と、第2流路22と、第1冷却液ポンプ23とを有する。第1流路21は、第1冷却液を吐出する第1熱交換器40の吐出口と、第1冷却液を受け入れる第2熱交換器50の受入口とを接続する。第2流路22は、第1冷却液を吐出する第2熱交換器50の吐出口と、第1冷却液を受け入れる第1熱交換器40の受入口とを接続する。 The first cooling liquid circulation device 20 has a first flow path 21 , a second flow path 22 and a first cooling liquid pump 23 . The first flow path 21 connects the discharge port of the first heat exchanger 40 that discharges the first cooling liquid and the receiving port of the second heat exchanger 50 that receives the first cooling liquid. The second flow path 22 connects the discharge port of the second heat exchanger 50 that discharges the first cooling liquid and the receiving port of the first heat exchanger 40 that receives the first cooling liquid.
 第1冷却液ポンプ23は、第1冷却液を循環させるための駆動力を発生させる。第1冷却液ポンプ23は、第2流路22上に設けられているが、その配置位置は特に限られるものでない。第1冷却液は、第1冷却液ポンプ23から吐出された後、第1熱交換器40に流入して低温の空気によって冷却される。その後、第1熱交換器40から流出した第1冷却液は、第2熱交換器50に流入して、第2冷却液を冷却する。そして、第2熱交換器50から流出した第2冷却液は、第1冷却液ポンプ23を介して第1熱交換器40に循環する。 The first cooling liquid pump 23 generates driving force for circulating the first cooling liquid. The first cooling liquid pump 23 is provided on the second flow path 22, but its arrangement position is not particularly limited. After being discharged from the first coolant pump 23, the first coolant flows into the first heat exchanger 40 and is cooled by low-temperature air. After that, the first coolant that has flowed out of the first heat exchanger 40 flows into the second heat exchanger 50 to cool the second coolant. The second coolant that has flowed out of the second heat exchanger 50 circulates through the first coolant pump 23 to the first heat exchanger 40 .
 本実施の形態では、上述したように膨張機14で膨張させた空気が、-70℃以下、詳しくは-70℃~-110℃まで降温されて第1熱交換器40に流入し得る。そのため、第1冷却液は、-70℃~-110℃にわたる温度帯で冷却された場合であっても支障が生じない熱媒体であれば特に限られるものではない。本実施の形態では、一例としてシリコーンオイルが用いられる。シリコーンオイルは、炭化水素系の添加物を混合させることで使用温度範囲を-120℃程度まで低下させることができる。 In the present embodiment, the air expanded by the expander 14 as described above can flow into the first heat exchanger 40 after being cooled to -70°C or lower, more specifically -70°C to -110°C. Therefore, the first cooling liquid is not particularly limited as long as it is a heat medium that does not cause problems even when cooled in a temperature range of -70°C to -110°C. In this embodiment, silicone oil is used as an example. Silicone oil can be used in a temperature range as low as -120°C by mixing it with a hydrocarbon additive.
 第2冷却液通流装置30は、供給側流路31と、戻し側流路32と、第2冷却液ポンプ33とを有する。供給側流路31は、第2冷却液を吐出する第2熱交換器50の吐出口に接続され、第2冷却液を温度制御対側に送る。戻し側流路32は、第2冷却液を受け入れる第2熱交換器50の受入口に接続され、温度制御対象を冷却した第2冷却液を第2熱交換器50に送る。 The second coolant circulation device 30 has a supply side channel 31 , a return side channel 32 and a second coolant pump 33 . The supply-side channel 31 is connected to a discharge port of the second heat exchanger 50 that discharges the second cooling liquid, and sends the second cooling liquid to the temperature control side. The return-side flow path 32 is connected to a receiving port of the second heat exchanger 50 that receives the second cooling liquid, and sends the second cooling liquid that has cooled the temperature controlled object to the second heat exchanger 50 .
 第2冷却液ポンプ33は、第2冷却液を通流させるための駆動力を発生させる。第2冷却液ポンプ33は、戻し側流路32上に設けられているが、その配置位置は特に限られるものでない。第2冷却液は、第2冷却液ポンプ33から吐出された後、第2熱交換器50に流入して第1冷却液によって冷却される。その後、第2熱交換器50から流出した第2冷却液は、温度制御対象を冷却した後、第2冷却液ポンプ33を介して第2熱交換器50に流入する。 The second cooling liquid pump 33 generates driving force for causing the second cooling liquid to flow. The second coolant pump 33 is provided on the return-side flow path 32, but its arrangement position is not particularly limited. After being discharged from the second coolant pump 33, the second coolant flows into the second heat exchanger 50 and is cooled by the first coolant. After that, the second coolant that has flowed out of the second heat exchanger 50 cools the temperature controlled object, and then flows into the second heat exchanger 50 via the second coolant pump 33 .
 本実施の形態では、第2冷却液の種類が第1冷却液の種類と異なる。具体的には、第2冷却液として、エーテル系液体が用いられている。例えば、第1冷却液の凝固点は、第2冷却液の凝固点よりも低い。例えば、第1冷却液の動粘度は、第2冷却液の動粘度よりも低い。例えば、-70℃以下での、第1冷却液の動粘度は、第2冷却液の動粘度よりも低い。  In the present embodiment, the type of the second cooling liquid is different from the type of the first cooling liquid. Specifically, an ether-based liquid is used as the second cooling liquid. For example, the freezing point of the first coolant is lower than the freezing point of the second coolant. For example, the kinematic viscosity of the first coolant is lower than the kinematic viscosity of the second coolant. For example, at −70° C. or below, the kinematic viscosity of the first cooling liquid is lower than that of the second cooling liquid.
 上述したように、第1冷却液は-70℃~-110℃の温度帯で冷却され得る。この場合、第2冷却液も、第1冷却液によって-70℃~-110℃にわたる温度帯又はそれに近い温度帯で冷却される。ただし、第2冷却液は、-70℃~-110℃の低温の空気によって直接的に冷却されない。そのため、第2冷却液は、低温の空気によって直接的に冷却される第1冷却液に要求される低温時特性よりも、緩和された低温時特性でも許容され得る。その結果、本実施の形態では、第2冷却液の候補として、優れた低温時特性を有するシリコーンオイル以外の熱媒体を選択することが可能となり、エーテル系液体が第2冷却液として選択されている。なお、第2冷却液は、フッ素系液体や、フッ素エーテル系液体でもよいし、エチレングリコール水溶液等でもよい。 As described above, the first coolant can be cooled in the temperature range of -70°C to -110°C. In this case, the second cooling liquid is also cooled by the first cooling liquid in a temperature range ranging from -70°C to -110°C or a temperature range close thereto. However, the second coolant is not directly cooled by low temperature air of -70°C to -110°C. Therefore, the second cooling liquid can be tolerated with less low temperature characteristics than required for the first cooling fluid, which is directly cooled by cold air. As a result, in the present embodiment, it is possible to select a heat medium other than silicone oil, which has excellent low-temperature characteristics, as a candidate for the second coolant, and an ether-based liquid is selected as the second coolant. there is The second coolant may be a fluorine-based liquid, a fluorine-ether-based liquid, an ethylene glycol aqueous solution, or the like.
 第2冷却液は、ハイドロフルオロエーテルを含む液体や、パーフルオロポリエーテルを含む液体でもよい。ただし、第2冷却液は特に限られるものではない。例えば第2冷却液はシリコーンオイルでもよい。しかし、シリコーンオイルではシロキサンの問題が生じ得るため、使用を回避される場合がある。一方で、エーテル系又はフッ素系液体は、一般に化学的に不活性で、シロキサンを生じさせるような問題を有さない。第2冷却液としてエーテル系又はフッ素系液体を使用することで、超低温の冷却が可能な冷却システムS1の適用範囲を拡げることが可能となる。 The second coolant may be a liquid containing hydrofluoroether or a liquid containing perfluoropolyether. However, the second coolant is not particularly limited. For example, the second coolant may be silicone oil. However, the use of silicone oils may be avoided due to possible siloxane problems. Ether-based or fluorine-based liquids, on the other hand, are generally chemically inert and do not have the problems of forming siloxanes. By using an ether-based or fluorine-based liquid as the second cooling liquid, it is possible to expand the application range of the cooling system S1 capable of ultra-low temperature cooling.
 以上に説明した本実施の形態に係る冷却システムS1は、自然冷媒を循環させる冷凍サイクル装置10と、自然冷媒によって冷却される第1冷却液を循環させる第1冷却液循環装置20と、第1冷却液循環装置20が循環させる第1冷却液によって冷却される第2冷却液を通流させる第2冷却液通流装置30と、を備える。 The cooling system S1 according to the present embodiment described above includes the refrigeration cycle device 10 that circulates the natural refrigerant, the first coolant circulation device 20 that circulates the first coolant cooled by the natural coolant, the first and a second cooling liquid flow device 30 for passing a second cooling liquid cooled by the first cooling liquid circulated by the cooling liquid circulation device 20 .
 この冷却システムS1では、冷凍サイクル装置10と第2冷却液通流装置30との間に第1冷却液循環装置20を敢えて設けることで、自然冷媒による第2冷却液の冷却効率を、直接的に自然冷媒によって第2冷却液を冷却する場合に比べて意図的に落とす。これにより、直接的に自然冷媒によって第2冷却液を冷却する場合に生じる第2冷却液の種類の選択自由度の制限を緩和できる。したがって、自然冷媒によって直接的に冷却される際に望ましいという観点で第1冷却液の種類を選択しつつ、例えば温度制御対象に対して望ましいという観点で選択した第2冷却液によって温度制御対象を冷却することが可能となる。本実施の形態では、具体的には第1冷却液としてシリコーンオイルが選択される一方で、シリコーンオイルよりも低温時特性が劣る場合はあり得るが温度制御対象に対して一般に望ましいエーテル系液体が、第2冷却液として選択されている。 In this cooling system S1, the first cooling liquid circulation device 20 is intentionally provided between the refrigerating cycle device 10 and the second cooling liquid circulation device 30, so that the cooling efficiency of the second cooling liquid by the natural refrigerant can be directly In comparison with the case where the second coolant is cooled by the natural refrigerant, it is intentionally dropped. As a result, it is possible to alleviate the restriction on the degree of freedom in selecting the type of the second cooling liquid that occurs when the second cooling liquid is cooled directly by the natural refrigerant. Therefore, while selecting the type of the first coolant from the viewpoint of being desirable when directly cooled by the natural refrigerant, for example, the second coolant selected from the viewpoint of being desirable for the temperature control target can be used to control the temperature. Cooling becomes possible. In the present embodiment, silicone oil is specifically selected as the first cooling liquid, but an ether-based liquid, which is generally desirable for the temperature control object, may be inferior to silicone oil in low-temperature characteristics. , is selected as the second coolant.
 また、自然冷媒による第2冷却液の冷却効率を、直接的に自然冷媒によって第2冷却液を冷却する場合に比べて意図的に落とすことで、ヒータを使用せずに第2冷却液の温度帯を所望する温度帯へ調整し得る。これにより、エネルギー消費量を抑えつつ、温度制御対象を所望の温度帯で冷却することが可能となる。すなわち、自然冷媒には沸点が非常に低いものが多く、自然冷媒が出力される冷凍能力は温度制御対象に対してオーバースペックになる場合が生じ得るが、本実施の形態では、意図的な冷却効率の低下によって、第2冷却液の温度を温度制御対象が求める温度帯にヒータを使用せずに適合させ得る。 In addition, by intentionally lowering the cooling efficiency of the second cooling liquid by the natural refrigerant compared to the case where the second cooling liquid is cooled directly by the natural refrigerant, the temperature of the second cooling liquid can be adjusted without using a heater. The zone can be adjusted to the desired temperature zone. As a result, it becomes possible to cool the object to be temperature-controlled in a desired temperature range while suppressing energy consumption. That is, many natural refrigerants have very low boiling points, and the refrigerating capacity output by the natural refrigerant may be overspecified for the temperature control target. The reduced efficiency allows the temperature of the second coolant to match the temperature range required by the temperature controlled object without using a heater.
 また、冷凍サイクル装置10と第2冷却液通流装置30との物理的な距離を引き離すことができる。また、第2冷却液に対する自然冷媒の曝露を回避でき、自然冷媒の温度制御対象側への流入を回避できる。これにより、自然冷媒に毒性、燃焼性、高圧になる等の懸念事項がある場合であっても、懸念事項の影響を抑えつつ温度制御対象を冷却することが可能となる。 Also, the physical distance between the refrigeration cycle device 10 and the second cooling liquid circulation device 30 can be increased. In addition, exposure of the natural refrigerant to the second coolant can be avoided, and inflow of the natural refrigerant into the temperature controlled side can be avoided. As a result, even if the natural refrigerant has concerns such as toxicity, combustibility, and high pressure, it is possible to cool the object of temperature control while suppressing the effects of the concerns.
 よって、本実施の形態に係る冷却システムS1によれば、冷凍サイクル装置10が循環させる自然冷媒で冷却する冷却液によって温度制御対象を効果的に冷却できる。 Therefore, according to the cooling system S1 according to the present embodiment, the cooling liquid cooled by the natural refrigerant circulated by the refrigeration cycle device 10 can effectively cool the temperature controlled object.
 また、本実施の形態における第1冷却液循環装置20は、第1流路21と、第2流路22と、第1冷却液ポンプ23とを有し、詳しくは、これら第1流路21、第2流路22及び第1冷却液ポンプ23のみで構成される。これにより、非常に簡易な第1冷却液循環装置20により製造コストを抑えつつ、効果的に温度制御対象を冷却できる。 Also, the first coolant circulation device 20 in the present embodiment has a first flow path 21, a second flow path 22, and a first coolant pump 23. , the second flow path 22 and the first coolant pump 23 only. As a result, the very simple first coolant circulation device 20 can effectively cool the object to be temperature-controlled while suppressing the manufacturing cost.
<第2の実施の形態>
 次に、第2の実施の形態について説明する。本実施の形態における構成部分のうちの第1の実施の形態と同じものには、同一の符号を付し、重複する説明は省略する。図2は、第2の実施の形態に係る冷却システムS2を概略的に示す図である。図2に示される冷却システムS2では、第1冷却液循環装置20の構造が第1の実施の形態と異なる。
<Second Embodiment>
Next, a second embodiment will be described. Components of the present embodiment that are the same as those of the first embodiment are denoted by the same reference numerals, and overlapping descriptions are omitted. FIG. 2 is a diagram schematically showing a cooling system S2 according to a second embodiment. In the cooling system S2 shown in FIG. 2, the structure of the first coolant circulation device 20 is different from that of the first embodiment.
 詳しくは、第1流路21と第2流路22とが内部熱交換器24で接続される。そして、内部熱交換器24で、第1熱交換器40の吐出口から吐出され第2熱交換器50の受入口に受け入れられる前の第1冷却液と、第2熱交換器50の吐出口から吐出され第1熱交換器40の受入口に受け入れられる前の第1冷却液とが熱交換する。 Specifically, the first flow path 21 and the second flow path 22 are connected by the internal heat exchanger 24 . Then, in the internal heat exchanger 24, the first cooling liquid discharged from the discharge port of the first heat exchanger 40 and before being received by the receiving port of the second heat exchanger 50 and the discharge port of the second heat exchanger 50 heat exchange with the first coolant discharged from the first heat exchanger 40 before being received in the receiving port of the first heat exchanger 40 .
 以上に説明した第2の実施の形態では、第1熱交換器40における自然冷媒と第1冷却液との温度差を抑えることにより、第1熱交換器40への負荷を軽減でき、信頼性の高い運転を行うことができる。 In the second embodiment described above, by suppressing the temperature difference between the natural refrigerant and the first cooling liquid in the first heat exchanger 40, the load on the first heat exchanger 40 can be reduced and reliability can be improved. high operating speed.
<第3の実施の形態>
 次に、第3の実施の形態について説明する。本実施の形態における構成部分のうちの第1及び第2の実施の形態と同じものには、同一の符号を付し、重複する説明は省略する。図3は、第3の実施の形態に係る冷却システムS3を概略的に示す図である。図3に示される冷却システムS3では、第1冷却液循環装置20の構造が第1及び第2の実施の形態と異なる。
<Third Embodiment>
Next, a third embodiment will be described. Components in this embodiment that are the same as those in the first and second embodiments are denoted by the same reference numerals, and overlapping descriptions are omitted. FIG. 3 is a diagram schematically showing a cooling system S3 according to a third embodiment. In the cooling system S3 shown in FIG. 3, the structure of the first coolant circulation device 20 is different from that of the first and second embodiments.
 詳しくは、第1冷却液循環装置20が、第1流路21と第2流路22とを接続し、第1冷却液を通流させるバイパス流路25をさらに有する。このような構成では、第2熱交換器50から第1熱交換器40に戻る第1冷却液が、第1熱交換器40側と、バイパス流路25とに分岐する。そして、第1熱交換器40で冷却された第1冷却液と、第1熱交換器40をバイパスした第1冷却液とが、第1熱交換器40の下流側で合流する。これにより、第2熱交換器50に流入する第1冷却液の温度が上がる。 Specifically, the first coolant circulation device 20 further has a bypass channel 25 that connects the first channel 21 and the second channel 22 and allows the first coolant to flow. In such a configuration, the first cooling liquid returning from the second heat exchanger 50 to the first heat exchanger 40 branches to the first heat exchanger 40 side and the bypass flow path 25 . Then, the first coolant cooled by the first heat exchanger 40 and the first coolant bypassing the first heat exchanger 40 join on the downstream side of the first heat exchanger 40 . As a result, the temperature of the first coolant flowing into the second heat exchanger 50 rises.
 以上に説明した第3の実施の形態では、第2熱交換器50における第1冷却液と第2冷却液の温度差を抑えることにより、第2熱交換器50への負荷を軽減でき、信頼性の高い運転を行うことができる。また、自然冷媒による第2冷却液の冷却効率を、直接的に自然冷媒によって第2冷却液を冷却する場合に比べて一層落としやすくなる。これにより第2冷却液の種類の選択自由度を向上できる。 In the third embodiment described above, by suppressing the temperature difference between the first cooling liquid and the second cooling liquid in the second heat exchanger 50, the load on the second heat exchanger 50 can be reduced and reliability can be improved. It is possible to perform high-performance driving. In addition, the cooling efficiency of the second cooling liquid by the natural refrigerant can be lowered more easily than when the second cooling liquid is directly cooled by the natural refrigerant. This can improve the degree of freedom in selecting the type of the second cooling liquid.
<第4の実施の形態>
 次に、第4の実施の形態について説明する。本実施の形態における構成部分のうちの第1乃至第3の実施の形態と同じものには、同一の符号を付し、重複する説明は省略する。図4は、第4の実施の形態に係る冷却システムS4を概略的に示す図である。図4に示される冷却システムS4では、第1冷却液循環装置20の構造が第1乃至第3の実施の形態と異なる。
<Fourth Embodiment>
Next, a fourth embodiment will be described. Components in this embodiment that are the same as those in the first to third embodiments are denoted by the same reference numerals, and overlapping descriptions are omitted. FIG. 4 is a diagram schematically showing a cooling system S4 according to a fourth embodiment. In the cooling system S4 shown in FIG. 4, the structure of the first coolant circulation device 20 is different from that of the first to third embodiments.
 詳しくは、第1冷却液循環装置20は、第2流路22から分岐し、且つ分岐した位置P1よりも上流側の位置P2で第2流路22に接続する分岐流路26と、分岐流路26上に設けられる第3熱交換器60と、をさらに有する。 Specifically, the first coolant circulation device 20 includes a branch flow path 26 branched from the second flow path 22 and connected to the second flow path 22 at a position P2 upstream of the branched position P1; and a third heat exchanger 60 provided on the channel 26 .
 そして、第3熱交換器60に、第3冷却液を通流させる第3冷却液通流装置70が接続される。そして、第3熱交換器60で、第3冷却液が第1冷却液によって冷却される。第3冷却液は、第1熱交換器40を通過しない第1冷却液によって冷却されるため、第2冷却液よりも更に低温特性に関する制約が緩和される。したがって、第3冷却液として、第2冷却液とは異なる種類の熱媒体が選択されてもよい。例えば、第3冷却液はエチレングリコール水溶液でもよい。ただし、第3冷却液は、シリコーンオイルや、エーテル系又はフッ素系液体でもよい。 The third heat exchanger 60 is connected to a third cooling liquid circulation device 70 that allows the third cooling liquid to flow. Then, in the third heat exchanger 60, the third cooling liquid is cooled by the first cooling liquid. Since the third coolant is cooled by the first coolant that does not pass through the first heat exchanger 40, the restrictions on low-temperature characteristics are further relaxed than with the second coolant. Therefore, as the third cooling liquid, a heat medium of a different type from that of the second cooling liquid may be selected. For example, the third coolant may be an ethylene glycol aqueous solution. However, the third coolant may be silicone oil, an ether-based liquid, or a fluorine-based liquid.
 以上に説明した第4の実施の形態では、第2熱交換器50よりも高い温度帯での冷却を第3熱交換器60で行うことが可能となる。これにより、冷却システムの適用パターン及び適用範囲を拡大できる。 In the fourth embodiment described above, it is possible for the third heat exchanger 60 to perform cooling in a temperature range higher than that of the second heat exchanger 50 . This can expand the application pattern and application range of the cooling system.
 また、空気、二酸化炭素、酸素等の沸点が極めて低い自然冷媒の冷却温度は、温度制御対象に対してオーバースペックになることがある。このような場合に、本構成では、第2熱交換器50と第3熱交換器60とで冷凍能力を分配することで、オーバースペックな冷却を回避しつつ、冷凍能力を有効活用できる。 In addition, the cooling temperature of natural refrigerants with extremely low boiling points such as air, carbon dioxide, and oxygen may be over-specified for temperature control targets. In such a case, in this configuration, by distributing the refrigerating capacity between the second heat exchanger 50 and the third heat exchanger 60, it is possible to effectively utilize the refrigerating capacity while avoiding excessive cooling.
<第5の実施の形態>
 次に、第5の実施の形態について説明する。本実施の形態における構成部分のうちの第1乃至第4の実施の形態と同じものには、同一の符号を付し、重複する説明は省略する。図5は、第5の実施の形態に係る冷却システムS5を概略的に示す図である。図5に示される冷却システムS5では、第1冷却液循環装置20の構造が第1乃至第4の実施の形態と異なる。
<Fifth Embodiment>
Next, a fifth embodiment will be described. Components in this embodiment that are the same as those in the first to fourth embodiments are denoted by the same reference numerals, and overlapping descriptions are omitted. FIG. 5 is a diagram schematically showing a cooling system S5 according to a fifth embodiment. In the cooling system S5 shown in FIG. 5, the structure of the first coolant circulation device 20 is different from that of the first to fourth embodiments.
 詳しくは、本実施の形態では、第2冷却液通流装置30が第2熱交換器50及び第3熱交換器60に接続される。そして、第2冷却液が、第3熱交換器60で第1冷却液によって冷却された後、第2熱交換器50でさらに第1冷却液によって冷却される。なお、第4の実施の形態と同様に、第3熱交換器60は、第2流路22から分岐し、且つ分岐した位置P1よりも上流側の位置P2で第2流路22に接続する分岐流路26上に設けられる。 Specifically, in this embodiment, the second coolant flow device 30 is connected to the second heat exchanger 50 and the third heat exchanger 60 . After being cooled by the first cooling liquid in the third heat exchanger 60 , the second cooling liquid is further cooled by the first cooling liquid in the second heat exchanger 50 . As in the fourth embodiment, the third heat exchanger 60 branches from the second flow path 22 and connects to the second flow path 22 at a position P2 upstream of the branched position P1. It is provided on the branch channel 26 .
 第1冷却液循環装置20は、第2流路22の途中に一定量の第1冷却液を溜められるタンク27を有し、第1冷却液ポンプ23はタンク27内の第1冷却液を吸い込んで吐出する。分岐流路26の下流側端部は、タンク27に流体的に接続されている。 The first coolant circulation device 20 has a tank 27 in the middle of the second flow path 22 that can store a certain amount of the first coolant, and the first coolant pump 23 sucks the first coolant in the tank 27. to dispense. A downstream end of the branch channel 26 is fluidly connected to the tank 27 .
 また、第1流路21には第1分配調節バルブ21Aが設けられる。分岐流路26には第2分配調節バルブ26Aが設けられる。第1分配調節バルブ21A及び第2分配調節バルブ26Aはそれぞれの開度を調節することで、第2熱交換器50に流入する第1冷却液の流量と、第3熱交換器60に流入する第2冷却液の流量とを調節できる。 Also, the first flow path 21 is provided with a first distribution control valve 21A. The branch flow path 26 is provided with a second distribution control valve 26A. By adjusting the respective opening degrees of the first distribution control valve 21A and the second distribution control valve 26A, the flow rate of the first coolant flowing into the second heat exchanger 50 and the flow rate of the first cooling liquid flowing into the third heat exchanger 60 The flow rate of the second coolant can be adjusted.
 また、第2冷却液通流装置30は、戻し側流路32の途中に一定量の第2冷却液を溜められるタンク34と、タンク34内の第2冷却液を吸い込んで吐出する第2冷却液ポンプ33とを有する。そして、戻し側流路32は、第2冷却液ポンプ33と第2熱交換器50との間の部分で第3熱交換器60と接続している。また、タンク34には、タンク34内の第2冷却液を通流させる高温用流路35が接続され、高温用流路35は通流させる第2冷却液を加熱するヒータ36を有する。 In addition, the second cooling liquid circulation device 30 includes a tank 34 in the middle of the return-side flow path 32 that stores a certain amount of the second cooling liquid, and a second cooling liquid that sucks and discharges the second cooling liquid in the tank 34 . and a liquid pump 33 . The return-side flow path 32 is connected to the third heat exchanger 60 at a portion between the second coolant pump 33 and the second heat exchanger 50 . The tank 34 is also connected to a high-temperature flow path 35 through which the second cooling liquid in the tank 34 flows, and the high-temperature flow path 35 has a heater 36 that heats the second cooling liquid to flow through.
 一方で、供給側流路31には、低温調節バルブ31Aが設けられる。低温調節バルブ31Aは、供給側流路31を通して温度制御対象に向かう第2冷却液の流量調節及び遮断を制御する。また、戻し側流路32における第3熱交換器60の下流側で且つ第2熱交換器50の上流側の位置には、中温用流路37が接続される。中温用流路37には、中温調節バルブ38が設けられる。本実施の形態では、上述の複数の流路やバルブが設けられることで、例えば、供給側流路31から温度制御対象に低温の第2冷却液を供給するパターンと、中温用流路37から温度制御対象に上記低温の第2冷却液よりも温度の高い第2冷却液を供給するパターンと、高温用流路35から温度制御対象に中温用流路37を通流する第2冷却液よりも温度の高い第2冷却液を供給するパターンと、を切り替えることができる。 On the other hand, the supply-side channel 31 is provided with a low-temperature control valve 31A. The low-temperature control valve 31A controls flow rate control and blockage of the second coolant flowing through the supply-side channel 31 toward the temperature controlled object. Further, the intermediate temperature flow path 37 is connected to a position in the return side flow path 32 on the downstream side of the third heat exchanger 60 and on the upstream side of the second heat exchanger 50 . An intermediate temperature control valve 38 is provided in the intermediate temperature flow path 37 . In the present embodiment, by providing the plurality of flow paths and valves described above, for example, a pattern in which the low-temperature second cooling liquid is supplied from the supply-side flow path 31 to the temperature control target, and a pattern in which the low-temperature second cooling liquid is supplied from the medium-temperature flow path 37 A pattern of supplying a second cooling liquid having a higher temperature than the low temperature second cooling liquid to a temperature controlled object, and a second cooling liquid flowing from a high temperature flow path 35 to an intermediate temperature flow path 37 to a temperature controlled object. It is possible to switch between a pattern of supplying the second cooling liquid having a higher temperature.
 以上に説明した第5の実施の形態では、第2冷却液を第3熱交換器60及び第2熱交換器50で段階的に冷却することで、第2熱交換器50における第1冷却液と第2冷却液との温度差を抑えることにより、第2熱交換器50への負荷を軽減でき、信頼性の高い運転を行うことができる。 In the fifth embodiment described above, the second coolant is cooled in stages by the third heat exchanger 60 and the second heat exchanger 50, so that the first coolant in the second heat exchanger 50 By suppressing the temperature difference between the second cooling liquid and the second cooling liquid, the load on the second heat exchanger 50 can be reduced, and highly reliable operation can be performed.
 以上、本発明の各実施の形態について説明したが、本発明は、上述の実施の形態に限定されるものではない。例えば、以下に説明する実施の形態も採用され得る。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments. For example, the embodiments described below can also be adopted.
<その他の実施の形態>
 図6に示す実施の形態は、第2の実施の形態に係る冷却システムS2における第1冷却液循環装置20が、流量調節流路28と、流量調節流路28に設けられた流量調節弁29とをさらに備える点で、第2の実施の形態と異なる。流量調節流路28は、第2流路22における内部熱交換器24に接続される部分の上流側と下流側とに接続されている。流量調節弁29は、第2熱交換器50から吐出され、流量調節流路28を通流する第1冷却液の流量を調節する。流量調節弁29の開度は、図示しないコントローラによって制御される。コントローラは、CPU、ROM等を有するコンピュータで構成されてもよい。
<Other embodiments>
In the embodiment shown in FIG. 6, the first cooling liquid circulating device 20 in the cooling system S2 according to the second embodiment includes a flow control passage 28 and a flow control valve 29 provided in the flow control passage 28. It is different from the second embodiment in that it further includes The flow control flow path 28 is connected to the upstream side and the downstream side of the portion of the second flow path 22 connected to the internal heat exchanger 24 . The flow rate control valve 29 adjusts the flow rate of the first coolant discharged from the second heat exchanger 50 and flowing through the flow rate control channel 28 . The opening degree of the flow control valve 29 is controlled by a controller (not shown). The controller may be configured by a computer having a CPU, ROM, and the like.
 また、図6に示す実施の形態では、第1流路21における内部熱交換器24の下流側であって第2熱交換器50の上流側の部分を通流する第1冷却液の温度を検出する第1温度センサ71が設けられている。また、第2冷却液通流装置30には、供給側流路31における第2熱交換器50との接続部分の下流側であって温度制御対象の上流の部分を通流する第2冷却液の温度を検出する第2温度センサ72が設けられている。 Further, in the embodiment shown in FIG. 6, the temperature of the first coolant flowing through the portion of the first flow path 21 downstream of the internal heat exchanger 24 and upstream of the second heat exchanger 50 is A first temperature sensor 71 is provided for detection. In addition, the second coolant flowing device 30 is provided with a second coolant flowing through a portion of the supply-side channel 31 downstream of the connection with the second heat exchanger 50 and upstream of the temperature controlled target. A second temperature sensor 72 is provided to detect the temperature of the .
 そして、図6に示す実施の形態は、第1温度センサ71が検出する第1冷却液の温度が、所定の第1冷却液目標温度よりも大きい場合に、流量調節弁29の開度が大きくなるように流量調節弁29を制御し、第1温度センサ71が検出する第1冷却液の温度が、上記第1冷却液目標温度よりも小さい場合に、流量調節弁29の開度が小さくなるように流量調節弁29を制御することができるようになっている。あるいは、図6に示す実施の形態は、第2温度センサ72が検出する第2冷却液の温度が、所定の第2冷却液目標温度よりも大きい場合に、流量調節弁29の開度が大きくなるように流量調節弁29を制御し、第2温度センサ72が検出する第2冷却液の温度が、上記第2冷却液目標温度よりも小さい場合に、流量調節弁29の開度が小さくなるように流量調節弁29を制御することができるようにもなっている。これにより、温度制御対象を所望の温度で、エネルギー消費量を抑えつつ温度制御しやすくなる。特に後者によれば、温度制御対象と熱交換した第2冷却液の温度変動が大きい場合において、温度制御の応答性を効果的に向上できる。 In the embodiment shown in FIG. 6, when the temperature of the first coolant detected by the first temperature sensor 71 is higher than the predetermined first coolant target temperature, the opening degree of the flow control valve 29 is increased. When the temperature of the first coolant detected by the first temperature sensor 71 is lower than the first coolant target temperature, the degree of opening of the flow rate control valve 29 is reduced. Thus, the flow control valve 29 can be controlled. Alternatively, in the embodiment shown in FIG. 6, when the temperature of the second coolant detected by the second temperature sensor 72 is higher than the predetermined second coolant target temperature, the opening degree of the flow control valve 29 is increased. When the temperature of the second coolant detected by the second temperature sensor 72 is lower than the second coolant target temperature, the opening degree of the flow rate control valve 29 is reduced. It is also possible to control the flow control valve 29 in this manner. This makes it easier to control the temperature of the object to be temperature-controlled at a desired temperature while suppressing energy consumption. In particular, according to the latter, when the temperature of the second coolant that has exchanged heat with the object to be temperature-controlled undergoes large temperature fluctuations, it is possible to effectively improve the responsiveness of the temperature control.
 図7に示す実施の形態は、第3の実施の形態に係る冷却システムS3における第1冷却液循環装置20が、バイパス流路25に設けられる流量調節弁25Aをさらに備えている点で、第3の実施の形態と異なる。流量調節弁25Aは、バイパス流路25を通流する第1冷却液の流量を調節する。流量調節弁25Aの開度は、図示しないコントローラによって制御される。コントローラは、CPU、ROM等を有するコンピュータで構成されてもよい。 In the embodiment shown in FIG. 7, the first coolant circulation device 20 in the cooling system S3 according to the third embodiment further includes a flow control valve 25A provided in the bypass flow path 25. 3 embodiment. The flow control valve 25A adjusts the flow rate of the first cooling liquid that flows through the bypass flow path 25. As shown in FIG. The opening degree of the flow control valve 25A is controlled by a controller (not shown). The controller may be configured by a computer having a CPU, ROM, and the like.
 また、図7に示す実施の形態では、図6に示した構成と同様に、第1温度センサ71と、第2温度センサ72とが設けられている。ただし、第1温度センサ71は、第1流路21におけるバイパス流路25との接続位置の下流側の部分を通流する第1冷却液の温度を検出する。 Also, in the embodiment shown in FIG. 7, a first temperature sensor 71 and a second temperature sensor 72 are provided in the same manner as in the configuration shown in FIG. However, the first temperature sensor 71 detects the temperature of the first coolant flowing through a portion of the first flow path 21 downstream of the connection position with the bypass flow path 25 .
 そして、図7に示す実施の形態は、第1温度センサ71が検出する第1冷却液の温度が、所定の第1冷却液目標温度よりも大きい場合に、流量調節弁25Aの開度が小さくなるように流量調節弁25Aを制御し、第1温度センサ71が検出する第1冷却液の温度が、上記第1冷却液目標温度よりも小さい場合に、流量調節弁25Aの開度が大きくなるように流量調節弁25Aを制御することができるようになっている。あるいは、図7に示す実施の形態は、第2温度センサ72が検出する第2冷却液の温度が、所定の第2冷却液目標温度よりも大きい場合に、流量調節弁25Aの開度が小さくなるように流量調節弁25Aを制御し、第2温度センサ72が検出する第2冷却液の温度が、上記第2冷却液目標温度よりも小さい場合に、流量調節弁25Aの開度が大きくなるように流量調節弁25Aを制御することができるようにもなっている。これにより、温度制御対象を所望の温度で、エネルギー消費量を抑えつつ温度制御しやすくなる。そして、特に後者によれば、温度制御対象と熱交換した第2冷却液の温度変動が大きい場合において、温度制御の応答性を効果的に向上できる。 In the embodiment shown in FIG. 7, when the temperature of the first coolant detected by the first temperature sensor 71 is higher than the predetermined first coolant target temperature, the opening degree of the flow control valve 25A is reduced. When the temperature of the first coolant detected by the first temperature sensor 71 is lower than the first coolant target temperature, the opening degree of the flow rate control valve 25A is increased. Thus, the flow control valve 25A can be controlled. Alternatively, in the embodiment shown in FIG. 7, when the temperature of the second coolant detected by the second temperature sensor 72 is higher than the predetermined second coolant target temperature, the opening degree of the flow control valve 25A is reduced. When the temperature of the second coolant detected by the second temperature sensor 72 is lower than the second coolant target temperature, the opening degree of the flow rate control valve 25A is increased. It is also possible to control the flow control valve 25A in this manner. This makes it easier to control the temperature of the object to be temperature-controlled at a desired temperature while suppressing energy consumption. In particular, according to the latter, the responsiveness of the temperature control can be effectively improved when the temperature of the second coolant that has exchanged heat with the object to be temperature-controlled undergoes large temperature fluctuations.

Claims (10)

  1.  自然冷媒を循環させる冷凍サイクル装置と、
     前記自然冷媒によって冷却される第1冷却液を循環させる第1冷却液循環装置と、
     前記第1冷却液循環装置が循環させる前記第1冷却液によって冷却される第2冷却液を通流させる第2冷却液通流装置と、を備える、冷却システム。
    a refrigeration cycle device that circulates a natural refrigerant;
    a first cooling liquid circulation device for circulating a first cooling liquid cooled by the natural refrigerant;
    and a second cooling liquid flow device for causing flow of a second cooling liquid cooled by the first cooling liquid circulated by the first cooling liquid circulation device.
  2.  前記第1冷却液の種類と、前記第2冷却液の種類とが異なる、請求項1に記載の冷却システム。 The cooling system according to claim 1, wherein the type of the first cooling liquid and the type of the second cooling liquid are different.
  3.  前記冷凍サイクル装置及び前記第1冷却液循環装置は、第1熱交換器により接続され、前記第1熱交換器で前記自然冷媒によって前記第1冷却液が冷却され、
     前記第1冷却液循環装置及び前記第2冷却液通流装置は、第2熱交換器により接続され、前記第2熱交換器で前記第1冷却液によって前記第2冷却液が冷却され、
     前記第1冷却液循環装置は、前記第1冷却液を吐出する前記第1熱交換器の吐出口と、前記第1冷却液を受け入れる前記第2熱交換器の受入口とを接続する第1流路と、前記第1冷却液を吐出する前記第2熱交換器の吐出口と、前記第1冷却液を受け入れる前記第1熱交換器の受入口とを接続する第2流路と、前記第1冷却液を循環させるための駆動力を発生させるポンプと、で構成される、請求項1に記載の冷却システム。
    The refrigeration cycle device and the first coolant circulation device are connected by a first heat exchanger, and the first coolant is cooled by the natural refrigerant in the first heat exchanger,
    The first coolant circulation device and the second coolant circulation device are connected by a second heat exchanger, and the second coolant is cooled by the first coolant in the second heat exchanger,
    The first cooling liquid circulation device is a first heat exchanger that connects a discharge port of the first heat exchanger that discharges the first cooling liquid and a receiving port of the second heat exchanger that receives the first cooling liquid. a second flow path connecting a flow path, a discharge port of the second heat exchanger that discharges the first cooling liquid, and a receiving port of the first heat exchanger that receives the first cooling liquid; 2. The cooling system according to claim 1, comprising a pump that generates driving force for circulating the first cooling liquid.
  4.  前記第1流路と前記第2流路とが内部熱交換器で接続され、前記内部熱交換器で、前記第1熱交換器の吐出口から吐出され前記第2熱交換器の受入口に受け入れる前の前記第1冷却液と、前記第2熱交換器の吐出口から吐出され前記第1熱交換器の受入口に受け入れる前の前記第1冷却液とが熱交換する、請求項3に記載の冷却システム。 The first flow path and the second flow path are connected by an internal heat exchanger, and in the internal heat exchanger, the heat is discharged from the discharge port of the first heat exchanger to the reception port of the second heat exchanger. 4. The method according to claim 3, wherein heat is exchanged between the first cooling liquid before being received and the first cooling liquid discharged from the discharge port of the second heat exchanger and before being received by the receiving port of the first heat exchanger. Cooling system as described.
  5.  前記第1冷却液循環装置は、前記第1流路と前記第2流路とを接続して前記第1冷却液を通流させるバイパス流路をさらに有する、請求項3に記載の冷却システム。 4. The cooling system according to claim 3, wherein the first cooling liquid circulation device further has a bypass flow path that connects the first flow path and the second flow path and allows the first cooling liquid to flow.
  6.  前記第1冷却液循環装置は、前記第2流路から分岐し、且つ分岐した位置よりも上流側の位置で前記第2流路に接続する分岐流路と、前記分岐流路上に設けられる第3熱交換器と、をさらに有する、請求項3に記載の冷却システム。 The first cooling liquid circulation device includes a branch flow path branched from the second flow path and connected to the second flow path at a position upstream of the branched position, and a second flow path provided on the branch flow path. 4. The cooling system of claim 3, further comprising: 3 heat exchangers.
  7.  前記第3熱交換器に、第3冷却液を通流させる第3冷却液通流装置が接続され、
     前記第3熱交換器で、前記第3冷却液が前記第1冷却液によって冷却される、請求項6に記載の冷却システム。
    A third cooling liquid circulation device for causing a third cooling liquid to flow is connected to the third heat exchanger,
    7. The cooling system of claim 6, wherein in said third heat exchanger said third coolant is cooled by said first coolant.
  8.  前記第2冷却液通流装置は、前記第3熱交換器に接続され、
     前記第2冷却液は、前記第3熱交換器で冷却された後、前記第2熱交換器で冷却される、請求項6に記載の冷却システム。
    The second coolant flow device is connected to the third heat exchanger,
    7. The cooling system according to claim 6, wherein said second coolant is cooled by said second heat exchanger after being cooled by said third heat exchanger.
  9.  前記第1冷却液は、シリコーンオイルであり、
     前記第2冷却液は、エーテル系液体である、請求項1に記載の冷却システム。
    The first cooling liquid is silicone oil,
    2. The cooling system of claim 1, wherein said second cooling liquid is an ether-based liquid.
  10.  前記冷凍サイクル装置は、空気冷凍サイクル装置である、請求項1に記載の冷却システム。 The cooling system according to claim 1, wherein the refrigeration cycle device is an air refrigeration cycle device.
PCT/JP2022/036098 2021-09-29 2022-09-28 Cooling system WO2023054441A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023551579A JPWO2023054441A1 (en) 2021-09-29 2022-09-28

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-159096 2021-09-29
JP2021159096 2021-09-29

Publications (1)

Publication Number Publication Date
WO2023054441A1 true WO2023054441A1 (en) 2023-04-06

Family

ID=85782791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036098 WO2023054441A1 (en) 2021-09-29 2022-09-28 Cooling system

Country Status (3)

Country Link
JP (1) JPWO2023054441A1 (en)
TW (1) TW202323741A (en)
WO (1) WO2023054441A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002543363A (en) * 1999-04-26 2002-12-17 スリーエム イノベイティブ プロパティズ カンパニー Apparatus and method for multi-stage rapid product refrigeration
JP2005249258A (en) * 2004-03-03 2005-09-15 Mitsubishi Electric Corp Cooling system
JP2010501404A (en) * 2006-08-28 2010-01-21 エアバス ドイチェランド ゲゼルシャフト ミット ベシュレンクテル ハフツング Cooling system for cooling a heat load in an aircraft and method for operating such a cooling system
JP2013238325A (en) * 2012-05-14 2013-11-28 Mayekawa Mfg Co Ltd Cooling apparatus
JP2016199203A (en) * 2015-04-14 2016-12-01 株式会社デンソー Heat management system for vehicle
JP2017190829A (en) * 2016-04-13 2017-10-19 美浜株式会社 System that integrates gas supply facility and cooling facility
JP2018035951A (en) * 2016-08-29 2018-03-08 株式会社デンソー Refrigeration cycle device
WO2020095464A1 (en) * 2018-11-07 2020-05-14 伸和コントロールズ株式会社 Temperature adjustment system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002543363A (en) * 1999-04-26 2002-12-17 スリーエム イノベイティブ プロパティズ カンパニー Apparatus and method for multi-stage rapid product refrigeration
JP2005249258A (en) * 2004-03-03 2005-09-15 Mitsubishi Electric Corp Cooling system
JP2010501404A (en) * 2006-08-28 2010-01-21 エアバス ドイチェランド ゲゼルシャフト ミット ベシュレンクテル ハフツング Cooling system for cooling a heat load in an aircraft and method for operating such a cooling system
JP2013238325A (en) * 2012-05-14 2013-11-28 Mayekawa Mfg Co Ltd Cooling apparatus
JP2016199203A (en) * 2015-04-14 2016-12-01 株式会社デンソー Heat management system for vehicle
JP2017190829A (en) * 2016-04-13 2017-10-19 美浜株式会社 System that integrates gas supply facility and cooling facility
JP2018035951A (en) * 2016-08-29 2018-03-08 株式会社デンソー Refrigeration cycle device
WO2020095464A1 (en) * 2018-11-07 2020-05-14 伸和コントロールズ株式会社 Temperature adjustment system

Also Published As

Publication number Publication date
JPWO2023054441A1 (en) 2023-04-06
TW202323741A (en) 2023-06-16

Similar Documents

Publication Publication Date Title
AU2005258416B2 (en) Hot water supply system
JP6537986B2 (en) Temperature control system
JP7214227B2 (en) temperature control system
CN103221760A (en) Refrigerating device
CN103917834A (en) Air-conditioning apparatus
JP7558531B2 (en) Fluid temperature control system and refrigeration device
TWI659186B (en) Liquid temperature adjusting device and temperature control system
CN101346592B (en) Heat pump hot water supply device
JP2006194518A (en) Refrigerating device
JP2011058663A (en) Refrigerating air-conditioning device
TW201923295A (en) Liquid temperature adjustment apparatus and temperature adjustment method using same
CN102753910A (en) Refrigeration cycle device
JP6602395B2 (en) Refrigeration cycle equipment
WO2023054441A1 (en) Cooling system
JP6801873B2 (en) Refrigeration equipment, temperature control equipment and semiconductor manufacturing system
JP2007187358A (en) Refrigerating system and cold insulation device
JP6094859B2 (en) Refrigeration equipment
JP2013124843A (en) Refrigeration cycle system
WO2023074826A1 (en) Cooling system, semiconductor manufacturing system, etching method, and device manufacturing method
JP2013104574A (en) Refrigeration device for fishing boat
KR20150133966A (en) Cooling system
KR102436005B1 (en) Hybrid step temperature control system
JP2004232905A (en) Refrigerator
CN116745561A (en) Fluid temperature regulating system
KR20240026226A (en) Circulating cryogenic chiller system placed in series

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22876307

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023551579

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22876307

Country of ref document: EP

Kind code of ref document: A1