[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023053845A1 - Forming method for aluminum alloy sheet - Google Patents

Forming method for aluminum alloy sheet Download PDF

Info

Publication number
WO2023053845A1
WO2023053845A1 PCT/JP2022/033106 JP2022033106W WO2023053845A1 WO 2023053845 A1 WO2023053845 A1 WO 2023053845A1 JP 2022033106 W JP2022033106 W JP 2022033106W WO 2023053845 A1 WO2023053845 A1 WO 2023053845A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
aluminum alloy
forming
alloy plate
hardness
Prior art date
Application number
PCT/JP2022/033106
Other languages
French (fr)
Japanese (ja)
Inventor
渉一 廣澤
智美 前野
准模 金
欣 鈴木
光二 成谷
Original Assignee
国立大学法人横浜国立大学
株式会社ジーテクト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人横浜国立大学, 株式会社ジーテクト filed Critical 国立大学法人横浜国立大学
Priority to JP2023512143A priority Critical patent/JP7410534B2/en
Priority to EP22875717.5A priority patent/EP4411011A1/en
Publication of WO2023053845A1 publication Critical patent/WO2023053845A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/053Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent

Definitions

  • the present invention relates to a method for forming an aluminum alloy plate.
  • high-strength aluminum alloys such as 7000 series have a low ductility of about 10% at room temperature in age-hardened plate materials, making cold press forming difficult.
  • the plate material is subjected to solution heat treatment, and then pressed and molded in an annealed state (see Patent Document 1).
  • the strength of the formed sheet material cannot be set to the desired state, and stress corrosion cracking (Stress Corrosion Cracking) A problem that cracking (SCC) is likely to occur (low SCC resistance) was confirmed.
  • the present invention was made to solve the above problems, and aims to further improve the strength and SCC resistance of press-formed aluminum alloy plate materials.
  • a method for forming an aluminum alloy plate according to the present invention includes a first step of heating a plate material made of a 7000 series aluminum alloy that has undergone a T6 treatment to a first temperature that enables hot press forming, and heating to the first temperature.
  • the first temperature is any temperature in the range of 250°C to 270°C.
  • the first step is to heat the plate material to the first temperature for 150 seconds at the maximum.
  • the second temperature is any temperature in the range of 170°C to 200°C.
  • the plate material is A7075 aluminum alloy.
  • the compact after hot pressing is heated at a second temperature in the range of 170° C. to 200° C. for 20 minutes to 30 minutes, Since the electrical conductivity and hardness are increased, the strength and SCC resistance of the press-formed aluminum alloy sheet material can be further improved.
  • FIG. 1 is a flow chart illustrating a method for forming an aluminum alloy plate according to an embodiment of the present invention.
  • FIG. 2 is a characteristic diagram showing changes in temperature of a plate material and a compact.
  • FIG. 3A is a characteristic diagram showing the results of an experiment in which the first step, second step, and third step of the aluminum alloy plate forming method according to the embodiment of the present invention were simulated at a first temperature of 250°C.
  • FIG. 3B is a characteristic diagram showing the results of an experiment in which the first step, second step, and third step of the aluminum alloy plate forming method according to the embodiment of the present invention were simulated at a first temperature of 255°C. .
  • FIG. 1 is a flow chart illustrating a method for forming an aluminum alloy plate according to an embodiment of the present invention.
  • FIG. 2 is a characteristic diagram showing changes in temperature of a plate material and a compact.
  • FIG. 3A is a characteristic diagram showing the results of an experiment in which the first step, second step, and
  • FIG. 3C is a characteristic diagram showing the results of an experiment in which the first step, second step, and third step of the aluminum alloy plate forming method according to the embodiment of the present invention were simulated at a first temperature of 260°C.
  • FIG. 3D is a characteristic diagram showing the results of an experiment in which the first step, second step, and third step of the aluminum alloy plate forming method according to the embodiment of the present invention were simulated at a first temperature of 265°C.
  • FIG. 4A shows the results of an experiment in which the first, second, and third steps of the aluminum alloy plate forming method according to the embodiment of the present invention were simulated under the conditions of the third step at 170° C. for 20 minutes.
  • FIG. 4 is a characteristic diagram showing differences in Vickers hardness and electrical conductivity after three steps under each condition.
  • FIG. 4B shows the results of an experiment in which the first, second, and third steps of the aluminum alloy plate forming method according to the embodiment of the present invention were simulated under the conditions of the third step at 200° C. for 30 minutes.
  • FIG. 4 is a characteristic diagram showing differences in Vickers hardness and electrical conductivity after three steps under each condition.
  • FIG. 2 shows changes in temperature (temperature of plate material and compact) in each process described below.
  • a plate material made of a 7000 series aluminum alloy that has undergone T6 treatment is heated to a first temperature that enables hot press forming.
  • the first temperature can be any temperature in the range of 250°C to 270°C.
  • the plate may be heated to the first temperature for up to 150 seconds.
  • the heating rate is 10°C/second or more.
  • the heat treatment conditions in the first step by performing rapid heating at 10 ° C./sec to 250 ° C., in addition to reducing deformation resistance (300 MPa) and improving moldability (breaking elongation 17%), room temperature after molding
  • the hardness is 153HV, satisfying the target value (>140).
  • the deformation resistance can be reduced (208 MPa) and the moldability can be improved (breaking elongation 17%).
  • the room temperature hardness is 107 HV, failing to satisfy the target value (>140). The hardness target value will be described later.
  • the plate material is made of an Al--Zn--Mg alloy such as A7075 (JIS) or an Al--Zn--Mg--Cu alloy.
  • the plate material heated to the first temperature is hot press-molded to form a compact.
  • hot press forming a sheet material that is at a moldable temperature is press-formed using a die and at the same time, is rapidly cooled by the die. Due to this rapid cooling, the plate material is cooled from the first temperature to about 20° C. to 25° C., for example.
  • the above-described hot pressing can be performed by using a mold equipped with a cooling mechanism such as water cooling.
  • the direct water cooling method directly cools the object to be pressed.
  • An intermediate press can be performed.
  • the compact is heated at the second temperature for 20 to 30 minutes to increase the electrical conductivity and hardness (strength).
  • the second temperature can be any temperature in the range of 170°C to 200°C.
  • the strength and SCC resistance of the press-formed aluminum alloy plate material (formed body) can be further improved.
  • a plate material made of a 7000 series aluminum alloy that has undergone T6 treatment is used, handling by parts manufacturers is facilitated.
  • the plate material is heated to the first temperature at which hot press forming is possible, it is possible to press form a part having a cross section of a hat, such as the skeleton of an automobile body. Since this press molding can be held at 20° C. for one day, it is possible to ensure the transportation time from the parts manufacturer to the automobile manufacturer.
  • Heat treatment at a temperature of 170°C or 200°C for 20 minutes or 30 minutes has a heat history equivalent to the paint baking treatment conditions generally adopted by automobile manufacturers in Japan, Europe and the United States. Become. Therefore, the heat treatment in the paint drying furnace after the conveyed plate material (part) is assembled to the automobile body can be carried out as the third step. It should be noted that this heat treatment (third step) does not require the use of a coating drying oven. It is also possible to attach this component to the vehicle body with a thermosetting adhesive and cure the adhesive at the same time.
  • test piece (20 mm ⁇ 20 mm, thickness 2 mm) of A7075 plate material subjected to T6 treatment was prepared.
  • test piece was heated to 250-265°C for 60-150 seconds (first step) and cooled to 20°C by water cooling (second step).
  • the heat treatment was performed by immersing the test piece in an oil bath or salt bath at 250-265°C. The temperature of this heat treatment corresponds to the first temperature.
  • water cooling process described above is likened to rapid cooling by a mold in the second step of hot pressing.
  • heat treatment is performed at 170°C or 200°C for a treatment time of 20 minutes or 30 minutes (re-aging treatment).
  • This treatment corresponds to the third step described above, and has a heat history equivalent to the paint baking treatment conditions generally adopted by automobile manufacturers in Japan, Europe, and the United States. Also, the temperature in this process corresponds to the second temperature.
  • FIG. 3A shows the result when the heat treatment condition of the first step is 250° C.
  • FIG. 3B shows the result when the heat treatment condition of the first step is 265° C.
  • FIG. 3C shows the result of the first step.
  • This is the result when the heat treatment condition is 260°C
  • Fig. 3D is the result when the heat treatment condition of the first step is 255°C.
  • the test piece is considered to have reached the temperature (first temperature) of each heat treatment condition.
  • the solid line indicates the second temperature of 170°C
  • the dashed line indicates the second temperature of 200°C.
  • the last plotted point is 30 minutes of processing time
  • the previous plotted point is 20 minutes of processing time.
  • the hardness decreases from the initial state (T6 treatment is performed), and the hardness increases due to the treatment conditions of the third step S103.
  • any temperature (250 ° C., 255 ° C., 260 ° C., 265 ° C.) in the first step S101 compared with the value of A7075 subjected to T6 treatment (195 HV, 32 IACS%), after the second step S102
  • the hardness is greatly reduced and the conductivity is greatly increased. Further, the higher the temperature ( ⁇ first temperature) in the first step S101 and the longer the time of the first step S101, the larger the amount of change.
  • both values increased compared to after the second step S102 under all conditions where the second temperature was 170°C.
  • the conductivity increases under many conditions in the first step S101, but the hardness remains unchanged or decreases.
  • the treatment of the third step S103 improved the SCC resistance of the T6-treated A7075 material T76 material (167HV, 38IACS%) or the hardness equivalent to T73 material (153HV, 40IACS%).
  • the hardness should be HV140 or more
  • the conductivity should be 38%IACS or more
  • the hardness should be HV153 or more. From these results, it is considered that the present invention can provide a formed body made of a sheet material made of a 7000 series aluminum alloy, which is excellent not only in strength but also in SCC resistance.
  • FIG. 4A and FIG. 4B show the differences in Vickers hardness and electrical conductivity after the third step in the above experiment according to each condition.
  • the conditions for the third step are 170° C. and 20 minutes.
  • the conditions for the third step are 200° C. and 30 minutes.
  • the number shown in each plot point is the processing time of the first step.
  • the temperature shown in the figure indicates the result of measuring the temperature of the test piece in the first step using a thermocouple (corresponding to the first temperature). From these results, there are conditions under which the strength (hardness) and SCC resistance can be further improved at each treatment time considering the time margin in actual work, and it can be used in actual use. I understand.
  • test piece (20 mm ⁇ 20 mm, thickness 2 mm) made of A7075 plate material treated with T6 was subjected to the first step under various conditions, held at 20 ° C. for one day, and then 170 ° C. for 20 minutes.
  • Table 1 shows the measurement results of the Vickers hardness and conductivity when the third step was performed under the conditions of .
  • a test piece (20 mm ⁇ 20 mm, thickness 2 mm) made of A7075 plate material treated with T6 was subjected to the first step under various conditions, held at 20 ° C. for one day, and then held at 200 ° C. for 30 minutes.
  • Table 2 shows the measurement results of Vickers hardness and conductivity when the third step was performed under the conditions.
  • the Vickers hardness test is used to roughly estimate the strength
  • the conductivity measurement by the eddy current method is used to roughly estimate the SCC resistance. ⁇ It is clear that the electrical resistivity measurement method can be used for rough estimation. Note that if the first temperature is 270° C. or higher, the hardness is too low, which is not preferable. Moreover, if the first temperature is 250° C. or lower, it is not easy to obtain the desired conductivity within a practical processing time in consideration of mass production.
  • the compact after hot pressing is heated at a second temperature in the range of, for example, 170° C. to 200° C. for 20 minutes to 30 minutes. , the electrical conductivity and hardness are increased, so that the strength and SCC resistance of the press-formed aluminum alloy plate material can be further improved.
  • Appendix 3 In the method for forming an aluminum alloy plate according to Appendix 1 or 2, The forming method of an aluminum alloy plate, wherein the first step heats the plate material to the first temperature for 150 seconds at the maximum.
  • Appendix 4 In the method for forming an aluminum alloy plate according to any one of Appendices 1 to 3, The method of forming an aluminum alloy plate, wherein the second temperature is any temperature in the range of 170°C to 200°C.
  • Appendix 5 In the method for forming an aluminum alloy plate according to any one of Appendices 1 to 4, A method for forming an aluminum alloy plate, wherein the plate material is an A7075 aluminum alloy.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

According to the present invention, in a first step S101, a sheet material composed of a 7000-series aluminum alloy which has been T6 treated is heated to a first temperature at which hot press forming is possible; in a second step S102, the sheet material which was heated to the first temperature is hot press formed and a formed body is produced; and in a third step S103, the formed body is heated at a second temperature for 20-30 minutes and conductivity and hardness are increased. The second temperature may be any temperature 170-200°C.

Description

アルミニウム合金板の成形方法Forming method of aluminum alloy plate
 本発明は、アルミニウム合金板の成形方法に関する。 The present invention relates to a method for forming an aluminum alloy plate.
 現在、自動車の燃費向上のために軽量化が重要となっている。超高張力鋼板による薄肉化を中心に軽量化が進んでいるが、剛性に対して指数的に影響するため、板厚を薄くすることは、部品剛性の確保が難しく限界がある。これに対し、アルミニウム合金は、強度が高いだけでなく比重も軽いため、板厚を確保して軽量化ができる。特に、Al-Zn-Mg系合金またはAl-Zn-Mg-Cu系合金(7000系アルミニウム合金)は、強度が高く有効である。 Currently, it is important to reduce the weight of automobiles in order to improve their fuel efficiency. Weight reduction is progressing mainly through thinning with ultra-high-tensile steel, but since it affects rigidity exponentially, it is difficult to secure the rigidity of parts and there is a limit to reducing the thickness. On the other hand, since aluminum alloy not only has high strength but also has a low specific gravity, it is possible to secure the plate thickness and reduce the weight. In particular, Al--Zn--Mg alloys or Al--Zn--Mg--Cu alloys (7000 series aluminum alloys) are effective due to their high strength.
特開2010-159489号公報JP 2010-159489 A
 しかしながら、7000系などの高強度のアルミニウム合金は、時効硬化している板材の室温における延性が約10%と低く、冷間プレス成形が困難である。このため、従来技術では、板材を溶体化処理し、この後、焼きなましの状態でプレスして成形している(特許文献1参照)。しかしながら、この技術では、例えば、自動車の7000系などの高強度のアルミニウム合金の板材の生産現場において、成形した板材の強度を目的の状態とすることができず、また、応力腐食割れ(Stress Corrosion Cracking;SCC)が発生しやすい(耐SCC性が低い)という問題が確認された。 However, high-strength aluminum alloys such as 7000 series have a low ductility of about 10% at room temperature in age-hardened plate materials, making cold press forming difficult. For this reason, in the prior art, the plate material is subjected to solution heat treatment, and then pressed and molded in an annealed state (see Patent Document 1). However, with this technology, for example, at the production site of high-strength aluminum alloy sheet material such as 7000 series for automobiles, the strength of the formed sheet material cannot be set to the desired state, and stress corrosion cracking (Stress Corrosion Cracking) A problem that cracking (SCC) is likely to occur (low SCC resistance) was confirmed.
 本発明は、以上のような問題点を解消するためになされたものであり、プレス成形したアルミニウム合金の板材の強度および耐SCC性を、さらに向上させることを目的とする。 The present invention was made to solve the above problems, and aims to further improve the strength and SCC resistance of press-formed aluminum alloy plate materials.
 本発明に係るアルミニウム合金板の成形方法は、T6処理がされた7000系アルミニウム合金からなる板材を、熱間プレス成形が可能な第1温度に加熱する第1工程と、第1温度に加熱した板材を熱間プレス成形して成形体を形成する第2工程と、成形体を第2温度で20分~30分加熱して、導電率および硬さを上昇させる第3工程とを備える。 A method for forming an aluminum alloy plate according to the present invention includes a first step of heating a plate material made of a 7000 series aluminum alloy that has undergone a T6 treatment to a first temperature that enables hot press forming, and heating to the first temperature. A second step of hot press-molding the plate to form a compact, and a third step of heating the compact at a second temperature for 20 to 30 minutes to increase the electrical conductivity and hardness.
 上記アルミニウム合金板の成形方法の一構成例において、第1温度は、250℃~270℃の範囲のいずれかの温度である。 In one configuration example of the aluminum alloy plate forming method, the first temperature is any temperature in the range of 250°C to 270°C.
 上記アルミニウム合金板の成形方法の一構成例において、第1工程は、板材を第1温度に最大で150秒間加熱する。 In one structural example of the aluminum alloy plate forming method, the first step is to heat the plate material to the first temperature for 150 seconds at the maximum.
 上記アルミニウム合金板の成形方法の一構成例において、第2温度は、170℃~200℃の範囲のいずれかの温度である。 In one configuration example of the aluminum alloy plate forming method, the second temperature is any temperature in the range of 170°C to 200°C.
 上記アルミニウム合金板の成形方法の一構成例において、板材は、A7075アルミニウム合金である。 In one structural example of the aluminum alloy plate forming method, the plate material is A7075 aluminum alloy.
 以上説明したように、本発明によれば、熱間プレスした後の成形体を、例えば、170℃~200℃の範囲のいずれかの温度の第2温度で20分~30分加熱して、導電率および硬さを上昇させるので、プレス成形したアルミニウム合金の板材の強度および耐SCC性を、さらに向上させることができる。 As described above, according to the present invention, the compact after hot pressing is heated at a second temperature in the range of 170° C. to 200° C. for 20 minutes to 30 minutes, Since the electrical conductivity and hardness are increased, the strength and SCC resistance of the press-formed aluminum alloy sheet material can be further improved.
図1は、本発明の実施の形態に係るアルミニウム合金板の成形方法を説明するフローチャートである。FIG. 1 is a flow chart illustrating a method for forming an aluminum alloy plate according to an embodiment of the present invention. 図2は、板材,成形体の温度の変化を示す特性図である。FIG. 2 is a characteristic diagram showing changes in temperature of a plate material and a compact. 図3Aは、本発明の実施の形態に係るアルミニウム合金板の成形方法の第1工程、第2工程、第3工程を、第1温度を250℃として模擬した実験の結果を示す特性図である。FIG. 3A is a characteristic diagram showing the results of an experiment in which the first step, second step, and third step of the aluminum alloy plate forming method according to the embodiment of the present invention were simulated at a first temperature of 250°C. . 図3Bは、本発明の実施の形態に係るアルミニウム合金板の成形方法の第1工程、第2工程、第3工程を、第1温度を255℃として模擬した実験の結果を示す特性図である。FIG. 3B is a characteristic diagram showing the results of an experiment in which the first step, second step, and third step of the aluminum alloy plate forming method according to the embodiment of the present invention were simulated at a first temperature of 255°C. . 図3Cは、本発明の実施の形態に係るアルミニウム合金板の成形方法の第1工程、第2工程、第3工程を、第1温度を260℃として模擬した実験の結果を示す特性図である。FIG. 3C is a characteristic diagram showing the results of an experiment in which the first step, second step, and third step of the aluminum alloy plate forming method according to the embodiment of the present invention were simulated at a first temperature of 260°C. . 図3Dは、本発明の実施の形態に係るアルミニウム合金板の成形方法の第1工程、第2工程、第3工程を、第1温度を265℃として模擬した実験の結果を示す特性図である。FIG. 3D is a characteristic diagram showing the results of an experiment in which the first step, second step, and third step of the aluminum alloy plate forming method according to the embodiment of the present invention were simulated at a first temperature of 265°C. . 図4Aは、本発明の実施の形態に係るアルミニウム合金板の成形方法の第1工程、第2工程、第3工程を、第3工程の条件を170℃、20分として模擬した実験の、第3工程の後におけるビッカース硬さ、および導電率の、各条件による違いを示す特性図である。FIG. 4A shows the results of an experiment in which the first, second, and third steps of the aluminum alloy plate forming method according to the embodiment of the present invention were simulated under the conditions of the third step at 170° C. for 20 minutes. FIG. 4 is a characteristic diagram showing differences in Vickers hardness and electrical conductivity after three steps under each condition. 図4Bは、本発明の実施の形態に係るアルミニウム合金板の成形方法の第1工程、第2工程、第3工程を、第3工程の条件を200℃、30分として模擬した実験の、第3工程の後におけるビッカース硬さ、および導電率の、各条件による違いを示す特性図である。FIG. 4B shows the results of an experiment in which the first, second, and third steps of the aluminum alloy plate forming method according to the embodiment of the present invention were simulated under the conditions of the third step at 200° C. for 30 minutes. FIG. 4 is a characteristic diagram showing differences in Vickers hardness and electrical conductivity after three steps under each condition.
 以下、本発明の実施の形態に係るアルミニウム合金板の成形方法について図1、図2を参照して説明する。図2は、以下に説明する各工程における、温度(板材,成形体の温度)の変化を示している。  Hereinafter, a method for forming an aluminum alloy plate according to an embodiment of the present invention will be described with reference to Figs. FIG. 2 shows changes in temperature (temperature of plate material and compact) in each process described below.
 まず、第1工程S101で、T6処理がされた7000系アルミニウム合金からなる板材を、熱間プレス成形が可能な第1温度に加熱する。第1温度は、250℃~270℃の範囲のいずれかの温度とすることができる。また、この工程では、板材を第1温度に最大で150秒間加熱することができる。 First, in the first step S101, a plate material made of a 7000 series aluminum alloy that has undergone T6 treatment is heated to a first temperature that enables hot press forming. The first temperature can be any temperature in the range of 250°C to 270°C. Also, in this step, the plate may be heated to the first temperature for up to 150 seconds.
 この工程では、例えば、昇温速度を10℃/秒以上とすることが好ましい。例えば、第1工程における熱処理条件として、10℃/secで250℃まで急速加熱を行うことで、変形抵抗の低下(300MPa)や成形性の向上(破断伸び17%)に加え、成形後の室温硬さが153HVとなり、目標値(>140)を満足することができる。 In this step, for example, it is preferable to set the heating rate to 10°C/second or more. For example, as the heat treatment conditions in the first step, by performing rapid heating at 10 ° C./sec to 250 ° C., in addition to reducing deformation resistance (300 MPa) and improving moldability (breaking elongation 17%), room temperature after molding The hardness is 153HV, satisfying the target value (>140).
 これに対し、第1工程における熱処理条件として1℃/secで250℃まで低速加熱した場合は、変形抵抗の低下(208MPa)や成形性の向上(破断伸び17%)は図れるが、成形後の室温硬さが107HVとなり、目標値(>140)を満足することができない。なお、硬さの目標値については、後述する。 On the other hand, when low-speed heating is performed at 1 ° C./sec to 250 ° C. as the heat treatment condition in the first step, the deformation resistance can be reduced (208 MPa) and the moldability can be improved (breaking elongation 17%). The room temperature hardness is 107 HV, failing to satisfy the target value (>140). The hardness target value will be described later.
 また、この加熱処理は、昇温速度の観点より、よく知られた接触加熱により実施することが好ましい。この加熱により、後述するプレス成形が可能となる。なお、板材は、A7075(JIS)などのAl-Zn-Mg系合金またはAl-Zn-Mg-Cu系合金から構成されたものである。 In addition, it is preferable that this heat treatment be carried out by well-known contact heating from the viewpoint of temperature increase rate. This heating enables press molding, which will be described later. The plate material is made of an Al--Zn--Mg alloy such as A7075 (JIS) or an Al--Zn--Mg--Cu alloy.
 次に、第2工程S102で、第1温度に加熱した板材を熱間プレス成形して成形体を形成する。熱間プレス成形では、成形可能な温度とされている板材を、金型を用いたプレス成形すると同時に、金型により急冷する。この急冷により、板材は、第1温度から、例えば、20℃~25℃程度となる。例えば、水冷などによる冷却機構を備えた金型を用いることで、上述した熱間プレスが実施できる。また、プレス対象に対して金型の内表面から冷却水を吐出させ、金型表面とプレス対象との間に冷却水を通すことで、プレス対象を直接冷却する直水冷方式により、上述した熱間プレスを実施することができる。 Next, in the second step S102, the plate material heated to the first temperature is hot press-molded to form a compact. In hot press forming, a sheet material that is at a moldable temperature is press-formed using a die and at the same time, is rapidly cooled by the die. Due to this rapid cooling, the plate material is cooled from the first temperature to about 20° C. to 25° C., for example. For example, the above-described hot pressing can be performed by using a mold equipped with a cooling mechanism such as water cooling. In addition, by discharging cooling water from the inner surface of the mold to the object to be pressed and passing the cooling water between the surface of the mold and the object to be pressed, the direct water cooling method directly cools the object to be pressed. An intermediate press can be performed.
 ここで、板材の温度低下を防ぐため、加熱処理を実施する加熱炉から熱間プレス成形を実施するプレス機まで、保温ボックスや加熱ボックスなどに入れて保温または加熱している状態で搬送することが望ましい。 Here, in order to prevent the temperature drop of the sheet material, it is transported in a heat insulating box or a heating box while being kept warm or heated from the heating furnace where heat treatment is performed to the press machine where hot press forming is performed. is desirable.
 次に、第3工程S103で、成形体を第2温度で20分~30分加熱して、導電率および硬さ(強度)を上昇させる。第2温度は、170℃~200℃の範囲のいずれかの温度とすることができる。 Next, in the third step S103, the compact is heated at the second temperature for 20 to 30 minutes to increase the electrical conductivity and hardness (strength). The second temperature can be any temperature in the range of 170°C to 200°C.
 上述した実施の形態に係るアルミニウム合金板の成形方法によれば、プレス成形したアルミニウム合金の板材(成形体)の強度および耐SCC性を、さらに向上させることができる。また、T6処理がされた7000系アルミニウム合金からなる板材を使用するため、部品メーカでの取り扱いが容易となる。実施の形態によれば、板材を熱間プレス成形が可能な第1温度に加熱するため、自動車車体の骨格のようなハット断面の部品のプレス成形が可能になる。このプレス成形から20℃の状態で1日保持することができるため、部品メーカから自動車製造会社までの搬送時間を確保できる。 According to the aluminum alloy plate forming method according to the above-described embodiment, the strength and SCC resistance of the press-formed aluminum alloy plate material (formed body) can be further improved. In addition, since a plate material made of a 7000 series aluminum alloy that has undergone T6 treatment is used, handling by parts manufacturers is facilitated. According to the embodiment, since the plate material is heated to the first temperature at which hot press forming is possible, it is possible to press form a part having a cross section of a hat, such as the skeleton of an automobile body. Since this press molding can be held at 20° C. for one day, it is possible to ensure the transportation time from the parts manufacturer to the automobile manufacturer.
 170℃または200℃の温度で、20分または30分の加熱処理(再時効処理;第3工程)は、日欧米の自動車製造会社で一般に採用されている塗装焼付処理条件と同等の熱履歴になる。このため、搬送された板材(部品)を自動車の車体に組み付けた後の塗装乾燥炉による加熱処理を、第3工程として実施することができる。なお、この加熱処理(第3工程)は塗装乾燥炉を使う必要はない。また、この部品を車体に熱硬化接着剤で取り付け、接着剤の硬化を同時に行うことができる。 Heat treatment (re-aging treatment; 3rd step) at a temperature of 170°C or 200°C for 20 minutes or 30 minutes has a heat history equivalent to the paint baking treatment conditions generally adopted by automobile manufacturers in Japan, Europe and the United States. Become. Therefore, the heat treatment in the paint drying furnace after the conveyed plate material (part) is assembled to the automobile body can be carried out as the third step. It should be noted that this heat treatment (third step) does not require the use of a coating drying oven. It is also possible to attach this component to the vehicle body with a thermosetting adhesive and cure the adhesive at the same time.
 次に、第1工程、第2工程、第3工程を模擬した実験の結果について説明する。実験として、まず、T6処理されたA7075板材による試験片(20mm×20mm,厚さ2mm)を用意した。 Next, the results of experiments simulating the first, second, and third processes will be explained. As an experiment, first, a test piece (20 mm×20 mm, thickness 2 mm) of A7075 plate material subjected to T6 treatment was prepared.
 次に、試験片を250~265℃に60~150秒の間加熱し(第1工程)、水冷により20℃に冷却した(第2工程)。加熱処理は、250~265℃のオイルバスまたはソルトバスに、試験片を浸漬することで実施した。この加熱処理の温度が、第1温度に対応する。また、上述した水冷の処理を、第2工程の熱間プレスにおける金型による急冷に見立てている。 Next, the test piece was heated to 250-265°C for 60-150 seconds (first step) and cooled to 20°C by water cooling (second step). The heat treatment was performed by immersing the test piece in an oil bath or salt bath at 250-265°C. The temperature of this heat treatment corresponds to the first temperature. Moreover, the water cooling process described above is likened to rapid cooling by a mold in the second step of hot pressing.
 次に、20℃の状態で1日保持した後(自然時効)、170℃、または200℃の温度で、処理時間20分または30分の加熱処理を実施する(再時効処理)。この処理は、前述した第3工程に相当し、日欧米の自動車製造会社で一般に採用されている塗装焼付処理条件と同等の熱履歴になる。また、この処理における温度は、第2温度に対応する。 Next, after holding for one day at 20°C (natural aging), heat treatment is performed at 170°C or 200°C for a treatment time of 20 minutes or 30 minutes (re-aging treatment). This treatment corresponds to the third step described above, and has a heat history equivalent to the paint baking treatment conditions generally adopted by automobile manufacturers in Japan, Europe, and the United States. Also, the temperature in this process corresponds to the second temperature.
 各熱処理の段階でビッカース硬さ試験、ならびに導電率測定を実施した。試験および測定の結果を図3A、図3B、図3C、図3Dに示す。図3Aは、第1工程の熱処理条件を250℃とした場合の結果であり、図3Bは、第1工程の熱処理条件を265℃とした場合の結果であり、図3Cは、第1工程の熱処理条件を260℃とした場合の結果であり、図3Dは、第1工程の熱処理条件を255℃とした場合の結果である。これらの処理において、試験片は各熱処理条件の温度(第1温度)に到達しているものと考えられる。また、実線は、第2温度が170℃、破線は、第2温度が200℃である。また、第3工程S103の点線の楕円内において、最終端のプロット点は、処理時間30分であり、この手前のプロット点は、処理時間20分である。 A Vickers hardness test and conductivity measurement were performed at each heat treatment stage. The results of the tests and measurements are shown in Figures 3A, 3B, 3C and 3D. 3A shows the result when the heat treatment condition of the first step is 250° C., FIG. 3B shows the result when the heat treatment condition of the first step is 265° C., and FIG. 3C shows the result of the first step. This is the result when the heat treatment condition is 260°C, and Fig. 3D is the result when the heat treatment condition of the first step is 255°C. In these treatments, the test piece is considered to have reached the temperature (first temperature) of each heat treatment condition. Further, the solid line indicates the second temperature of 170°C, and the dashed line indicates the second temperature of 200°C. In addition, in the dotted ellipse of the third step S103, the last plotted point is 30 minutes of processing time, and the previous plotted point is 20 minutes of processing time.
 各グラフにおいて、第2工程S102の段階では、初期(T6処理がされている)の状態より硬さが減少し、第3工程S103の処理条件によって、硬さが上昇している。第1工程S101におけるいずれの温度(250℃、255℃、260℃、265℃)においても,T6処理がなされたA7075の値(195HV、32IACS%)と比較して、第2工程S102の後の硬さは大きく減少し、導電率は大きく増加している。また、第1工程S101における温度(≒第1温度)が高いほど、さらに第1工程S101の時間が長いほど、それらの変化量は大きくなった。 In each graph, at the stage of the second step S102, the hardness decreases from the initial state (T6 treatment is performed), and the hardness increases due to the treatment conditions of the third step S103. At any temperature (250 ° C., 255 ° C., 260 ° C., 265 ° C.) in the first step S101, compared with the value of A7075 subjected to T6 treatment (195 HV, 32 IACS%), after the second step S102 The hardness is greatly reduced and the conductivity is greatly increased. Further, the higher the temperature (≈first temperature) in the first step S101 and the longer the time of the first step S101, the larger the amount of change.
 一方、第3工程S103の後の硬さおよび導電率については、第2温度が170℃の条件の全てにおいて、第2工程S102の後よりも両値が増加しているが、第2温度が200℃の条件では、第1工程S101における多くの条件で、導電率は増加するが、硬さは不変または減少している。これらの中で、例えば、第3工程S103の処理によって、T6処理がされたA7075材の耐SCC性を改善したT76材(167HV、38IACS%)あるいはT73材(153HV、40IACS%)と同等の硬さおよび導電率を有するものもある。なお、製品特性としては、硬さはHV140以上、導電率は38%IACS以上あればよく、硬さはHV153以上あればさらによい。これらの結果より、本発明によって、強度のみならず,耐SCC性にも優れた、7000系アルミニウム合金からなる板材による成形体が得られるものと考えられる。 On the other hand, regarding the hardness and conductivity after the third step S103, both values increased compared to after the second step S102 under all conditions where the second temperature was 170°C. Under the condition of 200° C., the conductivity increases under many conditions in the first step S101, but the hardness remains unchanged or decreases. Among these, for example, the treatment of the third step S103 improved the SCC resistance of the T6-treated A7075 material T76 material (167HV, 38IACS%) or the hardness equivalent to T73 material (153HV, 40IACS%). Some have hardness and conductivity. As product characteristics, the hardness should be HV140 or more, the conductivity should be 38%IACS or more, and the hardness should be HV153 or more. From these results, it is considered that the present invention can provide a formed body made of a sheet material made of a 7000 series aluminum alloy, which is excellent not only in strength but also in SCC resistance.
 次に、上述した実験における第3工程の後におけるビッカース硬さ、および導電率の、各条件による違いを図4A,図4Bに示す。図4Aは、第3工程の条件が、170℃、20分である。また、図4Bは、第3工程の条件が、200℃、30分である。また、各プロット点の中に示す数字は、第1工程の処理時間である。また、図中に示している温度は、第1工程における試験片の温度を、熱電対を用いて測定した結果(第1温度に相当)を示している。これらの結果より、実際に作業をする場合の時間的な裕度を考慮した各処理時間において、強度(硬さ)および耐SCC性をさらに向上させ、実使用に供することが可能な条件があることがわかる。 Next, FIG. 4A and FIG. 4B show the differences in Vickers hardness and electrical conductivity after the third step in the above experiment according to each condition. In FIG. 4A, the conditions for the third step are 170° C. and 20 minutes. In FIG. 4B, the conditions for the third step are 200° C. and 30 minutes. Also, the number shown in each plot point is the processing time of the first step. Further, the temperature shown in the figure indicates the result of measuring the temperature of the test piece in the first step using a thermocouple (corresponding to the first temperature). From these results, there are conditions under which the strength (hardness) and SCC resistance can be further improved at each treatment time considering the time margin in actual work, and it can be used in actual use. I understand.
 次に、T6処理されたA7075板材による試験片(20mm×20mm,厚さ2mm)について、第1工程を様々な条件で実施し、20℃の状態で1日保持した後、170℃・20分の条件で第3工程を行った場合のビッカース硬さおよび導電率の測定結果を表1に示す。また、T6処理されたA7075板材による試験片(20mm×20mm,厚さ2mm)について、第1工程を様々な条件で実施し、20℃の状態で1日保持した後、200℃・30分の条件で第3工程を行った場合のビッカース硬さおよび導電率の測定結果を表2に示す。 Next, a test piece (20 mm × 20 mm, thickness 2 mm) made of A7075 plate material treated with T6 was subjected to the first step under various conditions, held at 20 ° C. for one day, and then 170 ° C. for 20 minutes. Table 1 shows the measurement results of the Vickers hardness and conductivity when the third step was performed under the conditions of . In addition, a test piece (20 mm × 20 mm, thickness 2 mm) made of A7075 plate material treated with T6 was subjected to the first step under various conditions, held at 20 ° C. for one day, and then held at 200 ° C. for 30 minutes. Table 2 shows the measurement results of Vickers hardness and conductivity when the third step was performed under the conditions.
 なお、加熱処理は、オイルバスに、試験片を浸漬することで実施した。また、第2工程の熱間プレスにおける金型による急冷に対応する処理として、水冷により20℃に冷却した。表中の「温度」は、試験片の温度を、熱電対を用いて測定した値(第1温度に相当)を示している。これらの結果からも、実際に作業をする場合の時間的な裕度を考慮した各処理時間において、強度(硬さ)および耐SCC性をさらに向上させ、実使用に供することが可能な条件があることがわかる。 Note that the heat treatment was performed by immersing the test piece in an oil bath. In addition, as a treatment corresponding to the rapid cooling by the mold in the hot press in the second step, it was cooled to 20° C. by water cooling. "Temperature" in the table indicates the value (corresponding to the first temperature) of the temperature of the test piece measured using a thermocouple. From these results, it was found that the strength (hardness) and SCC resistance were further improved at each treatment time considering the time margin in the actual work, and the conditions under which it could be used in actual use were found. I know there is.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 ところで、上述では、強度を概算するのにビッカース硬さ試験を用い、耐SCC性を概算するのに渦電流法による導電率測定を用いているが、類似の強度・硬さ試験法や導電率・電気比抵抗測定法でも概算可能であることは明白である。なお、第1温度を270℃以上とすると、硬さが下がりすぎてしまい好ましくない。また、第1温度を250℃以下とすると、量産を考慮した実用的な処理時間内で、目的とする導電率を得ることが容易ではない。 By the way, in the above description, the Vickers hardness test is used to roughly estimate the strength, and the conductivity measurement by the eddy current method is used to roughly estimate the SCC resistance.・It is clear that the electrical resistivity measurement method can be used for rough estimation. Note that if the first temperature is 270° C. or higher, the hardness is too low, which is not preferable. Moreover, if the first temperature is 250° C. or lower, it is not easy to obtain the desired conductivity within a practical processing time in consideration of mass production.
 以上に説明したように、本発明によれば、熱間プレスした後の成形体を、例えば、170℃~200℃の範囲のいずれかの温度の第2温度で20分~30分加熱して、導電率および硬さを上昇させるので、プレス成形したアルミニウム合金の板材の強度および耐SCC性を、さらに向上させることができる。 As described above, according to the present invention, the compact after hot pressing is heated at a second temperature in the range of, for example, 170° C. to 200° C. for 20 minutes to 30 minutes. , the electrical conductivity and hardness are increased, so that the strength and SCC resistance of the press-formed aluminum alloy plate material can be further improved.
 上記の実施形態の一部または全部は、以下の付記のようにも記載されるが、以下には限られない。 Some or all of the above embodiments are also described in the following appendices, but are not limited to the following.
[付記1]
 T6処理がされた7000系アルミニウム合金からなる板材を、熱間プレス成形が可能な第1温度に加熱する第1工程と、
 前記第1温度に加熱した前記板材を熱間プレス成形して成形体を形成する第2工程と、
 前記成形体を第2温度で20分~30分加熱して、導電率および硬さを上昇させる第3工程と
 を備えるアルミニウム合金板の成形方法。
[Appendix 1]
A first step of heating a plate material made of a 7000 series aluminum alloy that has undergone a T6 treatment to a first temperature at which hot press forming is possible;
a second step of hot press-molding the plate material heated to the first temperature to form a compact;
A method of forming an aluminum alloy plate, comprising: a third step of heating the formed body at a second temperature for 20 to 30 minutes to increase conductivity and hardness.
[付記2]
 付記1記載のアルミニウム合金板の成形方法において、
 前記第1温度は、250℃~270℃の範囲のいずれかの温度であることを特徴とするアルミニウム合金板の成形方法。
[Appendix 2]
In the method for forming an aluminum alloy plate according to Supplementary Note 1,
The method of forming an aluminum alloy plate, wherein the first temperature is any temperature in the range of 250°C to 270°C.
[付記3]
 付記1または2記載のアルミニウム合金板の成形方法において、
 前記第1工程は、前記板材を前記第1温度に最大で150秒間加熱することを特徴とするアルミニウム合金板の成形方法。
[Appendix 3]
In the method for forming an aluminum alloy plate according to Appendix 1 or 2,
The forming method of an aluminum alloy plate, wherein the first step heats the plate material to the first temperature for 150 seconds at the maximum.
[付記4]
 付記1~3のいずれか1項に記載のアルミニウム合金板の成形方法において、
 前記第2温度は、170℃~200℃の範囲のいずれかの温度であることを特徴とするアルミニウム合金板の成形方法。
[Appendix 4]
In the method for forming an aluminum alloy plate according to any one of Appendices 1 to 3,
The method of forming an aluminum alloy plate, wherein the second temperature is any temperature in the range of 170°C to 200°C.
[付記5]
 付記1~4のいずれか1項に記載のアルミニウム合金板の成形方法において、
 前記板材は、A7075アルミニウム合金であることを特徴とするアルミニウム合金板の成形方法。
[Appendix 5]
In the method for forming an aluminum alloy plate according to any one of Appendices 1 to 4,
A method for forming an aluminum alloy plate, wherein the plate material is an A7075 aluminum alloy.
 なお、本発明は以上に説明した実施の形態に限定されるものではなく、本発明の技術的思想内で、当分野において通常の知識を有する者により、多くの変形および組み合わせが実施可能であることは明白である。 It should be noted that the present invention is not limited to the embodiments described above, and many modifications and combinations can be implemented by those skilled in the art within the technical concept of the present invention. It is clear.

Claims (5)

  1.  T6処理がされた7000系アルミニウム合金からなる板材を、熱間プレス成形が可能な第1温度に加熱する第1工程と、
     前記第1温度に加熱した前記板材を熱間プレス成形して成形体を形成する第2工程と、
     前記成形体を第2温度で20分~30分加熱して、導電率および硬さを上昇させる第3工程と
     を備えるアルミニウム合金板の成形方法。
    A first step of heating a plate material made of a 7000 series aluminum alloy that has undergone a T6 treatment to a first temperature at which hot press forming is possible;
    a second step of hot press-molding the plate material heated to the first temperature to form a compact;
    A method of forming an aluminum alloy plate, comprising: a third step of heating the formed body at a second temperature for 20 to 30 minutes to increase conductivity and hardness.
  2.  請求項1記載のアルミニウム合金板の成形方法において、
     前記第1温度は、250℃~270℃の範囲のいずれかの温度であることを特徴とするアルミニウム合金板の成形方法。
    In the method for forming an aluminum alloy plate according to claim 1,
    The method of forming an aluminum alloy plate, wherein the first temperature is any temperature in the range of 250°C to 270°C.
  3.  請求項1記載のアルミニウム合金板の成形方法において、
     前記第1工程は、前記板材を前記第1温度に最大で150秒間加熱することを特徴とするアルミニウム合金板の成形方法。
    In the method for forming an aluminum alloy plate according to claim 1,
    The forming method of an aluminum alloy plate, wherein the first step heats the plate material to the first temperature for 150 seconds at the maximum.
  4.  請求項1記載のアルミニウム合金板の成形方法において、
     前記第2温度は、170℃~200℃の範囲のいずれかの温度であることを特徴とするアルミニウム合金板の成形方法。
    In the method for forming an aluminum alloy plate according to claim 1,
    The method of forming an aluminum alloy plate, wherein the second temperature is any temperature in the range of 170°C to 200°C.
  5.  請求項1~4のいずれか1項に記載のアルミニウム合金板の成形方法において、
     前記板材は、A7075アルミニウム合金であることを特徴とするアルミニウム合金板の成形方法。
    In the method for forming an aluminum alloy plate according to any one of claims 1 to 4,
    A method for forming an aluminum alloy plate, wherein the plate material is an A7075 aluminum alloy.
PCT/JP2022/033106 2021-09-30 2022-09-02 Forming method for aluminum alloy sheet WO2023053845A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023512143A JP7410534B2 (en) 2021-09-30 2022-09-02 Forming method of aluminum alloy plate
EP22875717.5A EP4411011A1 (en) 2021-09-30 2022-09-02 Forming method for aluminum alloy sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-161291 2021-09-30
JP2021161291 2021-09-30

Publications (1)

Publication Number Publication Date
WO2023053845A1 true WO2023053845A1 (en) 2023-04-06

Family

ID=85780639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/033106 WO2023053845A1 (en) 2021-09-30 2022-09-02 Forming method for aluminum alloy sheet

Country Status (3)

Country Link
EP (1) EP4411011A1 (en)
JP (1) JP7410534B2 (en)
WO (1) WO2023053845A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010159489A (en) 2008-12-09 2010-07-22 Sumitomo Light Metal Ind Ltd Method for molding 7,000 series aluminum alloy material, and formed product molded by the same
JP2015071823A (en) * 2013-09-04 2015-04-16 株式会社神戸製鋼所 Aluminum alloy sheet
JP2021123798A (en) * 2020-02-04 2021-08-30 アイシン軽金属株式会社 Method for producing high-strength aluminum alloy extruded material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112264498B (en) 2020-09-30 2022-04-15 武汉理工大学 Aluminum alloy pre-strengthening hot stamping forming method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010159489A (en) 2008-12-09 2010-07-22 Sumitomo Light Metal Ind Ltd Method for molding 7,000 series aluminum alloy material, and formed product molded by the same
JP2015071823A (en) * 2013-09-04 2015-04-16 株式会社神戸製鋼所 Aluminum alloy sheet
JP2021123798A (en) * 2020-02-04 2021-08-30 アイシン軽金属株式会社 Method for producing high-strength aluminum alloy extruded material

Also Published As

Publication number Publication date
JP7410534B2 (en) 2024-01-10
EP4411011A1 (en) 2024-08-07
JPWO2023053845A1 (en) 2023-04-06

Similar Documents

Publication Publication Date Title
US8211251B2 (en) Local heat treatment of aluminum panels
CN104862551B (en) Al Mg Cu Zn line aluminium alloys and aluminum alloy plate materials preparation method
US20120291510A1 (en) Hot press forming process of plated steel and hot press formed articles using the same
CN107580635B (en) Impact heat treatment of aluminum alloy articles
WO2019154094A1 (en) Method for forming an aluminum alloy sheet part
JP5923665B2 (en) Highly formable intergranular corrosion-resistant AlMg strip
EP3359699B1 (en) A process for warm forming an age hardenable aluminum alloy in t4 temper
JP2010280002A (en) Method for manufacturing forged piece from gamma titanium-aluminum-based alloy
JP2004124151A (en) Heat treatment method for aluminum alloy
CN105714223A (en) Homogenization heat treatment method of Al-Zn-Mg-Cu-Zr aluminum alloy
CN112708836A (en) Aluminum alloy part, automobile comprising aluminum alloy part and preparation method of aluminum alloy part
JP2004360024A (en) METHOD FOR MANUFACTURING beta-TYPE TITANIUM ALLOY MATERIAL
WO2023053845A1 (en) Forming method for aluminum alloy sheet
JP2011063868A (en) Methods for manufacturing aluminum molded component and metal structure including the aluminum molded component
JP7117364B2 (en) Forming method of aluminum alloy
KR20100122097A (en) Process for heat-treating and coating a component and component produced by the process
JP2003103311A (en) Press forming method for magnesium alloy thin plate
JP5098352B2 (en) Steel plate for hot press
JP2019188453A (en) Molding method for aluminum alloy
JP4272579B2 (en) Press-molded and quenched steel material with excellent fatigue characteristics and method for producing the same
JP2020056082A (en) Method of forming aluminum alloy
JP5203773B2 (en) Press forming method of aluminum alloy plate
KR101427293B1 (en) Forming method of high-strength magnesium blanks employing the tailored softening process, and magnesium plate thereby
JP2001254161A (en) METHOD OF MANUFACTURING HIGH STRENGTH Al-Cu-Mg ALLOY EXCELLENT IN WORKABILITY
Başer Effect of aging parameters on the mechanical properties of naturally aged Al–Mg–Si alloy: Einfluss der Alterung bei Kaltauslagerung auf die mechanischen Eigenschaften einer AlMgSi‐Legierung

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023512143

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22875717

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022875717

Country of ref document: EP

Effective date: 20240430