WO2023053532A1 - 固体撮像素子および電子機器 - Google Patents
固体撮像素子および電子機器 Download PDFInfo
- Publication number
- WO2023053532A1 WO2023053532A1 PCT/JP2022/013975 JP2022013975W WO2023053532A1 WO 2023053532 A1 WO2023053532 A1 WO 2023053532A1 JP 2022013975 W JP2022013975 W JP 2022013975W WO 2023053532 A1 WO2023053532 A1 WO 2023053532A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- shared pixel
- transistor
- selection transistor
- imaging device
- shared
- Prior art date
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 95
- 230000003321 amplification Effects 0.000 claims description 40
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 40
- 238000009792 diffusion process Methods 0.000 claims description 8
- 238000005516 engineering process Methods 0.000 abstract description 8
- 238000010586 diagram Methods 0.000 description 32
- 238000012546 transfer Methods 0.000 description 20
- 101100191136 Arabidopsis thaliana PCMP-A2 gene Proteins 0.000 description 10
- 101100422768 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) SUL2 gene Proteins 0.000 description 10
- 101100048260 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) UBX2 gene Proteins 0.000 description 10
- 238000000034 method Methods 0.000 description 7
- 238000012545 processing Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 3
- CNQCVBJFEGMYDW-UHFFFAOYSA-N lawrencium atom Chemical compound [Lr] CNQCVBJFEGMYDW-UHFFFAOYSA-N 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000003796 beauty Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000002583 angiography Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 210000004761 scalp Anatomy 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/40—Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
- H04N25/46—Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by combining or binning pixels
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/76—Addressed sensors, e.g. MOS or CMOS sensors
- H04N25/77—Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
- H04N25/778—Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising amplifiers shared between a plurality of pixels, i.e. at least one part of the amplifier must be on the sensor array itself
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/76—Addressed sensors, e.g. MOS or CMOS sensors
- H04N25/78—Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters
Definitions
- the present disclosure relates to a solid-state imaging device and electronic equipment, and more particularly to a solid-state imaging device and electronic equipment capable of achieving higher performance.
- FD Floating Diffusion
- SF Source follower
- Patent Document 1 discloses a technique for suppressing the occurrence of false colors and preventing a decrease in resolution in SF addition performed by a load MOS circuit connected to a readout signal line.
- shared pixel units in which an FD unit and an amplification transistor are shared by a plurality of pixels are arranged adjacent to each other in the horizontal direction, and each of the shared pixel units is arranged for each of the pixels.
- shared pixel units in which an FD unit and an amplification transistor are shared by a plurality of pixels are arranged adjacent to each other in the horizontal direction, and each of the shared pixel units is arranged for each of the pixels.
- shared pixel units in which an FD section and an amplification transistor are shared by a plurality of pixels are arranged adjacent to each other in the horizontal direction, and each shared pixel unit has an independent pixel
- a first selection transistor connecting an amplification transistor to a first vertical signal line used when outputting a signal
- an amplification transistor connected to a second vertical signal line used when pixel signals are subjected to source follower addition and output. and a second select transistor for connecting the .
- FIG. 1 is a circuit diagram showing a configuration example of a first embodiment of an imaging device to which the present technology is applied;
- FIG. FIG. 10 is a diagram showing an example of a timing chart during normal driving;
- FIG. 10 is a diagram showing an example of a timing chart during SF addition driving;
- FIG. 2 is a diagram showing an example of a first planar layout of the imaging device of FIG. 1;
- FIG. 2 is a diagram showing an example of a second planar layout of the imaging device of FIG. 1;
- FIG. It is a figure which shows an example of the 1st plane layout of a 4x4 arrangement
- FIG. 10 is a diagram showing an example of a timing chart during normal driving
- FIG. 10 is a diagram showing an example of a timing chart during SF addition driving
- FIG. 9 is a diagram showing an example of a first planar layout of the imaging device of FIG. 8
- FIG. 9 is a diagram showing an example of a second planar layout of the imaging device of FIG. 8
- FIG. 14 is a diagram showing an example of a planar layout of the imaging device of FIG.
- FIG. 13 It is a circuit diagram which shows the structural example of 4th Embodiment of the imaging device to which this technique is applied.
- FIG. 16 is a diagram showing an example of a planar layout of the imaging device of FIG. 15; It is a block diagram which shows the structural example of an imaging device.
- FIG. 10 is a diagram showing an example of use using an image sensor;
- FIG. 1 is a circuit diagram showing a configuration example of a first embodiment of an imaging device to which the present technology is applied.
- the image pickup device 11 is configured with a plurality of pixels 12 .
- the image sensor 11 has a pixel sharing structure in which a predetermined number of pixels 12, in the example shown in FIG. is employed.
- a unit of a predetermined number of pixels 12 constituting such a pixel sharing structure is hereinafter referred to as a shared pixel unit 13 .
- the shared pixel unit 13a and the shared pixel unit 13b are arranged adjacent to each other in the horizontal direction.
- the image sensor 11 reads pixel signals corresponding to the charges generated in the pixels 12-1 to 12-4 independently by a driving method (hereinafter referred to as normal driving), or by summing and reading by a source follower.
- a pixel signal can be output by a driving method (hereinafter referred to as SF addition driving). Pixel signals are read out via the vertical signal line 41 during normal driving, and pixel signals are read out via the vertical signal line 42 during SF addition driving.
- the imaging device 11 has a configuration in which the same vertical signal line 42 is used during SF addition driving by two shared pixel units 13a and 13b adjacent in the horizontal direction.
- the shared pixel unit 13a and the shared pixel unit 13b are configured with the same structure, and are referred to as the shared pixel unit 13 when there is no need to distinguish between them. called.
- the shared pixel unit 13 includes four photodiodes 21-1 to 21-4, four transfer transistors 22-1 to 22-4, a main FD section 23, an amplification transistor 24, a first selection transistor 25, a second select transistor 26 and reset transistor 27.
- the photodiodes 21-1 to 21-4 have respective anode terminals grounded, and respective cathode terminals connected to the main FD section 23 via the transfer transistors 22-1 to 22-4.
- the main FD section 23 is connected to the gate electrode of the amplification transistor 24 and is also connected to the power wiring 43 via the reset transistor 27 .
- the drain of the amplification transistor 24 is connected to the power supply wiring 43, the source of the amplification transistor 24 is connected to the vertical signal line 41 via the first selection transistor 25, and is connected to the vertical signal line 41 via the second selection transistor 26. It is connected to the signal line 42 .
- the photodiode 21 generates charges by photoelectric conversion, and the transfer transistor 22 transfers the charges accumulated in the photodiode 21 to the main FD section 23 according to the transfer signal TG. Then, the charge accumulated in the main FD portion 23 is amplified by the amplification transistor 24, and a pixel signal corresponding to the charge is generated.
- the first selection transistor 25 is turned on according to the selection signal SEL1
- the amplification transistor 24 is connected to the vertical signal line 41
- the pixel signal is read out through the vertical signal line 41.
- the second selection transistor 26 is turned on according to the selection signal SEL2 to connect the amplification transistor 24 to the vertical signal line 42, and the pixel signal is read out via the vertical signal line 42.
- FIG. 2 is a diagram showing an example of drive signals for the imaging device 11 during normal driving.
- the selection signal SEL1 goes high, turning on the first selection transistors 25a and 25b. Note that the selection signal SEL2 is always at the low level during normal driving.
- the reset transistors 27a and 27b are turned on according to the pulse-like reset signal RST that becomes high level, and the charges accumulated in the main FD sections 23a and 23b are discharged to the power supply wiring 43.
- the pixel signal in the reset state is output to the vertical signal line 41a via the first selection transistor 25a, and is output to the vertical signal line 41b via the first selection transistor 25b.
- the transfer transistors 22a-1 and 22b-1 are turned on according to the transfer signal TG1 that goes to a pulsed high level, and the charge accumulated in the photodiode 21a-1 is transferred to the main FD section 23a.
- the charges accumulated in the diode 21b-1 are transferred to the main FD section 23b.
- a pixel signal corresponding to the charge generated in the photodiode 21a-1 is output to the vertical signal line 41a through the first selection transistor 25a, and a pixel signal corresponding to the charge generated in the photodiode 21b-1 is output.
- a signal is output to the vertical signal line 41b through the first selection transistor 25b.
- the reset signal RST and the transfer signals TG2 to TG4 are sequentially pulsed to a high level.
- pixel signals corresponding to charges generated in the photodiodes 21a-2 to 21a-4 are output to the vertical signal line 41a through the first selection transistors 25a, and the photodiodes 21b-2 to 21b-4 is output to the vertical signal line 41b through the first selection transistor 25b.
- the selection signal SEL1 becomes low level.
- FIG. 3 is a diagram showing an example of the drive signal for the imaging device 11 during SF addition driving.
- the selection signal SEL2 goes high, turning on the second selection transistors 26a and 26b.
- the selection signal SEL1 is always at low level.
- the reset transistors 27a and 27b are turned on according to the pulse-like reset signal RST that becomes high level, and the charges accumulated in the main FD sections 23a and 23b are discharged to the power supply wiring 43.
- the pixel signal in the reset state is output to the vertical signal line 42 via the second selection transistor 26a and simultaneously output to the vertical signal line 42 via the second selection transistor 26b. Pixel signals are subjected to source follower addition.
- the transfer transistors 22a-1 and 22b-1 are turned on according to the transfer signal TG1 that goes to a pulsed high level, and the charge accumulated in the photodiode 21a-1 is transferred to the main FD section 23a.
- the charges accumulated in the diode 21b-1 are transferred to the main FD section 23b.
- a pixel signal corresponding to the charge generated in the photodiode 21a-1 is output to the vertical signal line 42 via the second selection transistor 26a, and at the same time, a pixel signal corresponding to the charge generated in the photodiode 21b-1 is output.
- the resulting pixel signals are output to the vertical signal line 42 via the second selection transistor 26b, and the pixel signals are subjected to source follower addition.
- the reset signal RST and the transfer signals TG2 to TG4 are sequentially pulsed to a high level.
- the pixel signals corresponding to the charges generated in the photodiodes 21a-2 to 21a-4 and the pixel signals corresponding to the charges generated in the photodiodes 21b-2 to 21b-4 are vertical signals at respective timings. They are simultaneously output on line 42 for source follower addition. After that, the selection signal SEL2 becomes low level.
- the imaging device 11 is configured as described above, and in normal driving, pixel signals are output from the shared pixel unit 13a through the vertical signal line 41a, and from the shared pixel unit 13b through the vertical signal line 41b. A pixel signal can be output. As a result, for example, even during normal driving, the time required to read out one horizontal period is longer than that of a conventional image pickup device that alternately uses one vertical signal line to output pixel signals. can be avoided.
- the imaging device 11 is configured such that the shared pixel unit 13a and the shared pixel unit 13b can output pixel signals in parallel during normal driving.
- the image sensor 11 can perform pixel addition by SF addition without adding a capacity for FD addition.
- SF addition driving only the vertical signal line 42 is used and the vertical signal lines 41a and 41b are not used. Therefore, by suppressing the current in the vertical signal lines 41a and 41b, power consumption can be reduced.
- the imaging device 11 can obtain an image with a better S/N ratio than an image obtained by simply compressing horizontal pixel signals to 1/2. Therefore, the imaging device 11 can achieve higher performance than conventional imaging devices.
- FIG. 4 is a diagram showing an example of a first planar layout of the imaging element 11. As shown in FIG.
- each photodiode 21 is provided with a P+ type region 28 for connection to the ground level wiring 44 .
- the main FD section 23 is divided into main FD sections 23-1 to 23-4, which are provided for the photodiodes 21-1 to 21-4, respectively.
- transistors are arranged (left and right mirror arrangement) so as to be symmetrical in the horizontal direction between the shared pixel units 13a and the shared pixel units 13b that are arranged adjacent to each other in the horizontal direction.
- the amplification transistor 24a is arranged in the lower left photodiode 21a-3, and in the shared pixel unit 13b, the amplification transistor 24b is arranged in the lower right photodiode 21b-4.
- the first selection transistor 25a is arranged in the upper left photodiode 21a-1, and in the shared pixel unit 13b, the first selection transistor 25b is arranged in the upper right photodiode 21b-2.
- the second selection transistor 26a is arranged in the upper right photodiode 21a-2, and in the shared pixel unit 13b, the second selection transistor 26b is arranged in the upper left photodiode 21b-1. are placed.
- the reset transistor 27a is arranged in the lower right photodiode 21a-4, and in the shared pixel unit 13b, the reset transistor 27b is arranged in the lower left photodiode 21b-3.
- the vertical signal line 42 can be arranged in the center of the shared pixel unit 13a and the shared pixel unit 13b, and the vertical signal lines 41a and 41b can be arranged near the outside. Therefore, in the imaging device 11, interference between the vertical signal lines 41a and 41b and the vertical signal line 42 can be suppressed.
- FIG. 5 is a diagram showing an example of a second planar layout of the imaging element 11.
- the shared pixel unit 13 As shown in FIG. 5, in the second planar layout, four pixels 12-1 to 12-4 forming the shared pixel unit 13 are arranged in a 1 ⁇ 4 array.
- the shared pixel unit 13a and the shared pixel unit 13b are arranged adjacent to each other in the horizontal direction.
- the imaging element 11 can collect light by an on-chip lens laminated on the light receiving surface.
- an on-chip lens can be arranged for each shared pixel unit 13 in which four pixels 12-1 to 12-4 are arranged in a 2 ⁇ 2 arrangement.
- an on-chip lens may be arranged for every 16 pixels 12 in which the shared pixel unit 13 in which the four pixels 12-1 to 12-4 are arranged in a 2 ⁇ 2 arrangement is arranged in a 2 ⁇ 2 arrangement.
- FIG. 6 shows an imaging device in which shared pixel units 13a, shared pixel units 13b, shared pixel units 13c, and shared pixel units 13d are arranged in a 2 ⁇ 2 array, and 16 pixels 12 are arranged in a 4 ⁇ 4 array. Eleven first planar layouts are shown.
- transistors are arranged symmetrically in the horizontal direction, as described with reference to FIG.
- the transistors are arranged symmetrically in the horizontal direction, similarly to the shared pixel unit 13a and the shared pixel unit 13b.
- the shared pixel unit 13a and the shared pixel unit 13c arranged vertically on the left side have the same transistor arrangement, and the shared pixel unit 13a arranged vertically on the right side.
- the pixel unit 13b and the shared pixel unit 13d have the same arrangement of transistors.
- FIG. 7 shows an imaging device in which shared pixel units 13a, shared pixel units 13b, shared pixel units 13e, and shared pixel units 13f are arranged in a 2 ⁇ 2 array, and 16 pixels 12 are arranged in a 4 ⁇ 4 array. 11 planar layouts are shown.
- transistors are arranged symmetrically in the horizontal direction, as described with reference to FIG.
- the transistors are arranged symmetrically in the horizontal direction in the same manner as in the shared pixel unit 13a and the shared pixel unit 13b.
- the shared pixel unit 13a and the shared pixel unit 13e arranged vertically side by side on the left side have transistors arranged symmetrically in the vertical direction (vertical mirror arrangement). ing.
- the amplification transistor 24a is arranged in the lower left photodiode 21a-3, and in the shared pixel unit 13e, the amplification transistor 24e is arranged in the upper left photodiode 21e-1.
- the first selection transistor 25a is arranged in the upper left photodiode 21a-1, and in the shared pixel unit 13e, the first selection transistor 25e is arranged in the lower left photodiode 21e-3.
- the second selection transistor 26a is arranged in the upper right photodiode 21a-2, and in the shared pixel unit 13e, the second selection transistor 26e is arranged in the lower right photodiode 21e-4.
- the reset transistor 27a is arranged in the lower right photodiode 21a-4, and in the shared pixel unit 13e, the reset transistor 27e is arranged in the upper right photodiode 21e-2.
- transistors are arranged symmetrically in the vertical direction (vertical mirror arrangement).
- FIG. 8 is a circuit diagram showing a configuration example of a second embodiment of an imaging device to which the present technology is applied.
- the same reference numerals are given to the configurations common to the imaging device 11 in FIG. 1, and detailed description thereof will be omitted.
- the image sensor 11_2 has a configuration in which shared pixel units 13a_2 and shared pixel units 13b_2 are adjacent to each other in the horizontal direction, similar to the image sensor 11 of FIG.
- the shared pixel unit 13a_2 has the same configuration as the shared pixel unit 13a in FIG.
- the shared pixel unit 13b_2 includes four photodiodes 21b-1 to 21b-4, four transfer transistors 22b-1 to 22b-4, a main FD section 23b, an amplification transistor 24b, and a reset transistor 27b. It has the same configuration as the shared pixel unit 13b in FIG. On the other hand, the shared pixel unit 13b_2 differs from the shared pixel unit 13b of FIG. 1 in that a dummy transistor 29 and a third selection transistor 30 are arranged instead of the first selection transistor 25b and the second selection transistor 26b. It has a different configuration.
- the dummy transistor 29 is provided to maintain symmetry with the first selection transistor 25a of the shared pixel unit 13a_2 without driving.
- the third selection transistor 30 is driven in accordance with the selection signal SEL3 in the same manner as the first selection transistor 25a during normal driving, and in the same manner as the second selection transistor 26a during SF addition driving.
- the shared pixel unit 13b_2 is configured such that pixel signals are read out via the vertical signal line 42 during both normal driving and SF addition driving. That is, in the image sensor 11_2, the pixel signal of the shared pixel unit 13a_2 is read out through the vertical signal line 41a, and the pixel signal of the shared pixel unit 13b_2 is read out through the vertical signal line 42 during normal driving. In addition, in the image sensor 11_2, pixel signals of the shared pixel unit 13a_2 and the shared pixel unit 13b_2 are simultaneously read through the vertical signal line 42 and subjected to source follower addition during SF addition driving.
- FIG. 9 is a diagram showing an example of the drive signal for the imaging element 11_2 during normal driving.
- the selection signals SEL1 and SEL3 go high, turning the first selection transistor 25a and the third selection transistor 30 on. That is, during normal driving, the selection signal SEL3 has the same waveform as the selection signal SEL1. Note that the selection signal SEL2 is always at the low level during normal driving.
- the reset transistors 27a and 27b are turned on according to the pulse-like reset signal RST which becomes high level, and the charges accumulated in the main FD sections 23a and 23b are discharged to the power supply wiring 43. be.
- the pixel signal in the reset state is output to the vertical signal line 41a via the first selection transistor 25a, and is output to the vertical signal line 42 via the third selection transistor 30.
- the transfer transistors 22a-1 and 22b-1 are turned on according to the transfer signal TG1 that goes to a pulsed high level, and the charge accumulated in the photodiode 21a-1 is transferred to the main FD section 23a.
- the charges accumulated in the diode 21b-1 are transferred to the main FD section 23b.
- a pixel signal corresponding to the charge generated in the photodiode 21a-1 is output to the vertical signal line 41a through the first selection transistor 25a, and a pixel signal corresponding to the charge generated in the photodiode 21b-1 is output.
- a signal is output to the vertical signal line 42 via the third select transistor 30 .
- the reset signal RST and the transfer signals TG2 to TG4 are sequentially pulsed to a high level.
- pixel signals corresponding to charges generated in the photodiodes 21a-2 to 21a-4 are output to the vertical signal line 41a through the first selection transistors 25a, and the photodiodes 21b-2 to 21b-4
- a pixel signal corresponding to the charge generated in 1 is output to the vertical signal line 42 via the third selection transistor 30 .
- the selection signals SEL1 and SEL3 become low level.
- FIG. 10 is a diagram showing an example of a drive signal for the imaging element 11_2 during SF addition driving.
- the selection signals SEL2 and SEL3 go high and the second selection transistor 26a and the third selection transistor 30 are turned on. That is, during SF addition driving, the selection signal SEL3 has the same waveform as the selection signal SEL2. During SF addition driving, the selection signal SEL1 is always at low level.
- the reset transistors 27a and 27b are turned on according to the pulse-like reset signal RST which becomes high level, and the charges accumulated in the main FD sections 23a and 23b are discharged to the power supply wiring 43. be.
- the pixel signal in the reset state is output to the vertical signal line 42 via the second selection transistor 26a and simultaneously output to the vertical signal line 42 via the third selection transistor 30. Pixel signals are subjected to source follower addition.
- the transfer transistors 22a-1 and 22b-1 are turned on according to the transfer signal TG1 that goes to a pulsed high level, and the charge accumulated in the photodiode 21a-1 is transferred to the main FD section 23a.
- the charges accumulated in the diode 21b-1 are transferred to the main FD section 23b.
- a pixel signal corresponding to the charge generated in the photodiode 21a-1 is output to the vertical signal line 42 via the second selection transistor 26a, and at the same time, a pixel signal corresponding to the charge generated in the photodiode 21b-1 is output.
- the pixel signals obtained are output to the vertical signal line 42 via the third selection transistor 30, and the pixel signals are subjected to source follower addition.
- the reset signal RST and the transfer signals TG2 to TG4 are sequentially pulsed to a high level.
- the pixel signals corresponding to the charges generated in the photodiodes 21a-2 to 21a-4 and the pixel signals corresponding to the charges generated in the photodiodes 21b-2 to 21b-4 are vertical signals at respective timings. They are simultaneously output on line 42 for source follower addition. After that, the selection signals SEL2 and SEL3 become low level.
- FIG. 11 is a diagram showing an example of the first planar layout of the imaging element 11_2.
- the four pixels 12-1 to 12-1 forming the shared pixel unit 13_2 are similar to the first planar layout of the imaging device 11 shown in FIG. 12-4 are arranged in a 2 ⁇ 2 array.
- the vertical signal line 42 can be arranged in the center of the shared pixel unit 13a_2 and the shared pixel unit 13b_2, and the vertical signal line 41a can be arranged near the outside. Therefore, in the imaging device 11_2, interference between the vertical signal lines 41a and the vertical signal lines 42 can be suppressed.
- FIG. 12 is a diagram showing an example of a second planar layout of the imaging device 11_2.
- each of the pixels 12-1 to 12-1 forming the shared pixel unit 13_2 are arranged in the same manner as the second planar layout of the imaging element 11 shown in FIG. 12-4 are arranged in a 1 ⁇ 4 array.
- the shared pixel unit 13a_2 and the shared pixel unit 13b_2 are arranged adjacent to each other in the horizontal direction.
- the imaging element 11_2 configured as described above can achieve higher performance in the same manner as the imaging element 11 in FIG.
- FIG. 13 is a circuit diagram showing a configuration example of a third embodiment of an imaging device to which the present technology is applied.
- the same reference numerals are assigned to the configurations common to the imaging device 11 in FIG. 1, and detailed description thereof will be omitted.
- the imaging device 11_3 has a configuration in which shared pixel units 13a_3 and shared pixel units 13b_3 are adjacent to each other in the horizontal direction, similar to the imaging device 11 of FIG.
- the shared pixel unit 13a_3 and the shared pixel unit 13b_3 are configured with the same structure, and are referred to as the shared pixel unit 13_3 when there is no need to distinguish between them. called.
- the shared pixel unit 13_3 has the same configuration as the shared pixel unit 13 in FIG. It's becoming On the other hand, the shared pixel unit 13_3 includes eight photodiodes 21-1 to 21-8, eight transfer transistors 22-1 to 22-8, a connection transistor 31, and a sub FD section 32. has a configuration different from that of the shared pixel unit 13 of .
- connection transistor 31 connects the main FD section 23 and the sub FD section 32 according to the connection signal FDG.
- the sub FD section 32 When the sub FD section 32 is connected to the main FD section 23 via the connection transistor 31 , the sub FD section 32 accumulates charges together with the main FD section 23 .
- connection transistor 31 when the connection transistor 31 is off, the wiring capacitance and diffusion layer capacitance of the main FD section 23 and the gate capacitance of the amplification transistor 24 are the FD capacitance.
- connection transistor 31 when the connection transistor 31 is on, the wiring capacitance and diffusion layer capacitance of the main FD section 23, the gate capacitance of the amplification transistor 24, the wiring capacitance and diffusion layer capacitance of the sub FD section 32, and the bulk capacitance of the connection transistor 31 are , FD capacity.
- the connection transistor 31 is turned on, and the main FD unit 23 And the load capacity of the sub FD section 32 can be increased.
- FIG. 14 is a diagram showing an example of a planar layout of the imaging device 11_3.
- each of the pixels 12-1 to 12-8 forming a shared pixel unit 13_3 are arranged in a 2 ⁇ 4 array.
- the shared pixel unit 13a_3 and the shared pixel unit 13b_3, which are arranged adjacent to each other in the horizontal direction, have the same arrangement of transistors.
- the amplification transistor 24, the first selection transistor 25, and the second selection transistor 26 are each two transistors arranged in parallel. It is composed of For example, an amplification transistor 24-1 provided in the photodiode 21-5 and an amplification transistor 24-2 provided in the photodiode 21-6 are arranged in parallel. A first selection transistor 25-1 provided in the photodiode 21-3 and a first selection transistor 25-2 provided in the photodiode 21-4 are arranged in parallel. A second selection transistor 26-1 provided in the photodiode 21-1 and a second selection transistor 26-2 provided in the photodiode 21-2 are arranged in parallel. 14, illustration of the sub FD section 32 connected to the connection transistor 31 is omitted.
- the imaging element 11_3 configured as described above can achieve higher performance, like the imaging element 11 in FIG. Furthermore, the imaging element 11_3 can widen the dynamic range, for example, by providing the sub FD section 32 .
- FIG. 15 is a circuit diagram showing a configuration example of a fourth embodiment of an imaging device to which the present technology is applied.
- the same reference numerals are given to the configurations common to the imaging device 11_4 shown in FIG. 1 and the imaging device 11_3 shown in FIG. 13, and detailed description thereof will be omitted.
- the image sensor 11_4 has a configuration in which shared pixel units 13a_4 and shared pixel units 13b_4 are adjacent to each other in the horizontal direction, similar to the image sensor 11 of FIG.
- the shared pixel unit 13a_4 has the same configuration as the shared pixel unit 13a_3 in FIG. 13, and the shared pixel unit 13b_4 has a dummy transistor 29 and a It is configured with a third select transistor 30 .
- the imaging device 11_4 can turn on the connection transistor 31 and increase the load capacitance of the main FD section 23 and the sub FD section 32, like the imaging device 11_3 in FIG.
- FIG. 16 is a diagram showing an example of a planar layout of the imaging element 11_4.
- a shared pixel unit 13_4 As shown in FIG. 16, eight pixels 12-1 to 12-8 forming a shared pixel unit 13_4 are arranged in a 2 ⁇ 4 array.
- the shared pixel unit 13a_3 and the shared pixel unit 13b_3, which are arranged adjacent to each other in the horizontal direction, have the same arrangement of transistors.
- the imaging element 11_4 configured as described above can achieve higher performance in the same manner as the imaging element 11 in FIG. Furthermore, the imaging element 11_4 can widen the dynamic range, for example, by providing the sub FD section 32 .
- the imaging device 11 as described above can be applied to various electronic devices such as imaging systems such as digital still cameras and digital video cameras, mobile phones with imaging functions, and other devices with imaging functions. can be done.
- FIG. 17 is a block diagram showing a configuration example of an imaging device mounted on an electronic device.
- the imaging device 101 is configured with an optical system 102, an imaging device 103, a signal processing circuit 104, a monitor 105, and a memory 106, and is capable of capturing still images and moving images.
- the optical system 102 is configured with one or more lenses, guides the image light (incident light) from the subject to the imaging element 103, and forms an image on the light receiving surface (sensor section) of the imaging element 103.
- the image sensor 103 As the image sensor 103, the image sensor 11 described above is applied. Electrons are accumulated in the imaging element 103 for a certain period of time according to the image formed on the light receiving surface via the optical system 102 . A signal corresponding to the electrons accumulated in the image sensor 103 is supplied to the signal processing circuit 104 .
- the signal processing circuit 104 performs various signal processing on the pixel signals output from the image sensor 103 .
- An image (image data) obtained by the signal processing performed by the signal processing circuit 104 is supplied to the monitor 105 for display or supplied to the memory 106 for storage (recording).
- FIG. 18 is a diagram showing a usage example using the image sensor (imaging element) described above.
- the image sensor described above can be used in various cases for sensing light such as visible light, infrared light, ultraviolet light, and X-rays, for example, as follows.
- ⁇ Devices that capture images for viewing purposes, such as digital cameras and mobile devices with camera functions.
- Devices used for transportation such as in-vehicle sensors that capture images behind, around, and inside the vehicle, surveillance cameras that monitor running vehicles and roads, and ranging sensors that measure the distance between vehicles.
- Devices used in home appliances such as TVs, refrigerators, air conditioners, etc., to take pictures and operate devices according to gestures ⁇ Endoscopes, devices that perform angiography by receiving infrared light, etc.
- Equipment used for medical and healthcare purposes such as surveillance cameras for crime prevention and cameras for personal authentication
- microscopes used for beauty such as microscopes used for beauty
- Sports such as action cameras and wearable cameras for use in sports ⁇ Cameras, etc. for monitoring the condition of fields and crops , agricultural equipment
- the present technology can also take the following configuration.
- Shared pixel units in which a plurality of pixels share an FD (Floating Diffusion) unit and an amplification transistor are arranged adjacent to each other in the horizontal direction,
- Each of the shared pixel units is a first selection transistor that connects the amplification transistor to a first vertical signal line that is used when outputting a pixel signal independently for each pixel; and a second selection transistor that connects the amplification transistor to a second vertical signal line that is used when the pixel signal is added by source-follower addition and output.
- the solid-state imaging device according to (1) above which is a planar layout in which transistors are arranged symmetrically in the horizontal direction between the two shared pixel units arranged adjacent to each other in the horizontal direction.
- the pixels are arranged in a 2 ⁇ 2 array,
- an on-chip lens is arranged for each of the 16 pixels in which the shared pixel units in which the pixels are arranged in a 2 ⁇ 2 array are arranged in a 2 ⁇ 2 array;
- an on-chip lens is arranged for 16 pixels in which the shared pixel units in which the pixels are arranged in a 2 ⁇ 2 array are arranged in a 2 ⁇ 2 array;
- one of the shared pixel units includes the first select transistor and the second select transistor;
- the other shared pixel unit is A dummy transistor is provided instead of the first selection transistor, Instead of the second selection transistor, when the pixel signal is output independently for each of the pixels, the same driving as the first selection transistor is performed, and when the pixel signal is added with the source follower and output, the first selection transistor is selected.
- the solid-state imaging device according to any one of (1) to (5) above, further comprising a third selection transistor driven in the same manner as the selection transistor of the second selection transistor.
- Each of the shared pixel units is a first selection transistor that connects the amplification transistor to a first vertical signal line that is used when outputting a pixel signal independently for each pixel; and a second selection transistor that connects the amplification transistor to a second vertical signal line that is used when the pixel signal is added by source follower addition and output.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
- Solid State Image Pick-Up Elements (AREA)
Abstract
本開示は、より高性能化を図ることができるようにする固体撮像素子および電子機器に関する。 複数の画素でFD部および増幅トランジスタが共有して用いられる共有画素単位が水平方向に隣接して配置される。そして、それぞれの共有画素単位は、画素ごとに独立して画素信号を出力するときに用いられる第1の垂直信号線に増幅トランジスタを接続する第1の選択トランジスタと、画素信号をソースフォロワ加算して出力するときに用いられる第2の垂直信号線に増幅トランジスタを接続する第2の選択トランジスタとを備える。本技術は、例えば、CMOSイメージセンサに適用できる。
Description
本開示は、固体撮像素子および電子機器に関し、特に、より高性能化を図ることができるようにした固体撮像素子および電子機器に関する。
従来、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサなどの固体撮像素子において複数の画素信号を加算する技術として、FD(Floating Diffusion)加算やSF(Source Follower)加算などが知られている。
例えば、特許文献1には、読み出し信号線に接続されている負荷MOS回路で加算するSF加算において、偽色の発生を抑止しつつ、解像度の低下を防止する技術が開示されている。
ところで、従来、画素信号を加算せずに読み出す独立読み出しと、SF加算との切り替えは、複数の画素で共有する1本の垂直信号線に対する接続を切り替える選択トランジスタのクロックを制御することで行われている。従って、画素信号の独立読み出しを行う際には、1本の垂直信号線を交互に用いて画素信号を出力することになり、1水平期間の読み出しに要する時間が長くなってしまう結果、例えば、フレームレートが低下することが懸念される。
また、画素信号をFD加算する場合には、FD部の負荷容量を増加させるために容量を追加させることが必要となるが、共有画素が増えるのに伴って、より多くの電荷を受けられるだけの負荷容量を追加することは困難になると考えられる。
そこで、1水平期間の読み出しに要する時間が長くなることを回避するとともに、FD加算のための容量を追加することなく、より高性能な固体撮像素子を提供することが求められている。
本開示は、このような状況に鑑みてなされたものであり、より高性能化を図ることができるようにするものである。
本開示の一側面の固体撮像素子は、複数の画素でFD部および増幅トランジスタが共有して用いられる共有画素単位が水平方向に隣接して配置され、それぞれの前記共有画素単位は、前記画素ごとに独立して画素信号を出力するときに用いられる第1の垂直信号線に前記増幅トランジスタを接続する第1の選択トランジスタと、前記画素信号をソースフォロワ加算して出力するときに用いられる第2の垂直信号線に前記増幅トランジスタを接続する第2の選択トランジスタとを備える。
本開示の一側面の電子機器は、複数の画素でFD部および増幅トランジスタが共有して用いられる共有画素単位が水平方向に隣接して配置され、それぞれの前記共有画素単位は、前記画素ごとに独立して画素信号を出力するときに用いられる第1の垂直信号線に前記増幅トランジスタを接続する第1の選択トランジスタと、前記画素信号をソースフォロワ加算して出力するときに用いられる第2の垂直信号線に前記増幅トランジスタを接続する第2の選択トランジスタとを有する固体撮像素子を備える。
本開示の一側面においては、複数の画素でFD部および増幅トランジスタが共有して用いられる共有画素単位が水平方向に隣接して配置され、それぞれの共有画素単位に、画素ごとに独立して画素信号を出力するときに用いられる第1の垂直信号線に増幅トランジスタを接続する第1の選択トランジスタと、画素信号をソースフォロワ加算して出力するときに用いられる第2の垂直信号線に増幅トランジスタを接続する第2の選択トランジスタとが設けられる。
以下、本技術を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。
<撮像素子の第1の構成例>
図1は、本技術を適用した撮像素子の第1の実施の形態の構成例を示す回路図である。
図1は、本技術を適用した撮像素子の第1の実施の形態の構成例を示す回路図である。
図1に示すように、撮像素子11は、複数の画素12を備えて構成される。また、撮像素子11は、所定数の画素12で、図1に示す例では、4個の画素12-1乃至12-4で、メインFD部23および増幅トランジスタ24を共有して用いる画素共有構造を採用している。以下、このような画素共有構造を構成する所定数の画素12ごとの単位を、共有画素単位13と称する。図1に示す例では、共有画素単位13aと共有画素単位13bとが水平方向に隣接して配置されている。
撮像素子11は、画素12-1乃至12-4で発生した電荷に応じた画素信号を、それぞれ独立して読み出す駆動方法(以下、通常駆動と称する)によって、または、ソースフォロワにより加算して読み出す駆動方法(以下、SF加算駆動と称する)によって、画素信号を出力することができる。通常駆動時には、垂直信号線41を介して画素信号が読み出され、SF加算駆動時には、垂直信号線42を介して画素信号が読み出される。
そして、撮像素子11は、水平方向に隣接する2つの共有画素単位13aと共有画素単位13bとによって、SF加算駆動時に、同一の垂直信号線42が利用される構成となっている。なお、共有画素単位13aおよび共有画素単位13bは、同一の構造で構成されており、それらを区別する必要がない場合には共有画素単位13と称し、共有画素単位13を構成する各部についても同様に称する。
共有画素単位13は、4個のフォトダイオード21-1乃至21-4、4個の転送トランジスタ22-1乃至22-4、メインFD部23、増幅トランジスタ24、第1の選択トランジスタ25、第2の選択トランジスタ26、およびリセットトランジスタ27を備えて構成される。
フォトダイオード21-1乃至21-4は、それぞれのアノード端子が接地されており、それぞれのカソード端子が転送トランジスタ22-1乃至22-4を介してメインFD部23に接続されている。メインFD部23は、増幅トランジスタ24のゲート電極に接続されるとともに、リセットトランジスタ27を介して電源配線43に接続されている。増幅トランジスタ24のドレインは電源配線43に接続されおり、増幅トランジスタ24のソースは、第1の選択トランジスタ25を介して垂直信号線41に接続されるとともに、第2の選択トランジスタ26を介して垂直信号線42に接続されている。
フォトダイオード21は、光電変換により電荷を生成し、転送トランジスタ22は、転送信号TGに従って、フォトダイオード21に蓄積されている電荷をメインFD部23に転送する。そして、メインFD部23に蓄積されている電荷が増幅トランジスタ24によって増幅され、その電荷に応じた画素信号が生成される。通常駆動時には、選択信号SEL1に従って第1の選択トランジスタ25がオンとなって、増幅トランジスタ24を垂直信号線41に接続し、垂直信号線41を介して画素信号が読み出される。SF加算駆動時には、選択信号SEL2に従って第2の選択トランジスタ26がオンとなって、増幅トランジスタ24を垂直信号線42に接続し、垂直信号線42を介して画素信号が読み出される。
図2は、通常駆動時における撮像素子11の駆動信号の一例を示す図である。
通常駆動時において、共有画素単位13aおよび13bから画素信号を読み出すタイミングになると選択信号SEL1がハイレベルとなって、第1の選択トランジスタ25aおよび25bがオンとなる。なお、通常駆動時には、選択信号SEL2は常にローレベルである。
選択信号SEL1がハイレベルとなると、パルス状にハイレベルとなるリセット信号RSTに従ってリセットトランジスタ27aおよび27bがオンとなり、メインFD部23aおよび23bに蓄積されている電荷が電源配線43に排出される。これにより、リセット状態の画素信号が、第1の選択トランジスタ25aを介して垂直信号線41aに出力され、第1の選択トランジスタ25bを介して垂直信号線41bに出力される。
続いて、パルス状にハイレベルとなる転送信号TG1に従って転送トランジスタ22a-1および22b-1がオンとなり、フォトダイオード21a-1に蓄積されていた電荷がメインFD部23aに転送されるとともに、フォトダイオード21b-1に蓄積されていた電荷がメインFD部23bに転送される。これにより、フォトダイオード21a-1で発生した電荷に応じた画素信号が第1の選択トランジスタ25aを介して垂直信号線41aに出力されるとともに、フォトダイオード21b-1で発生した電荷に応じた画素信号が第1の選択トランジスタ25bを介して垂直信号線41bに出力される。
以下、同様に、リセット信号RSTと転送信号TG2乃至TG4とが順次、パルス状にハイレベルとなる。これにより、フォトダイオード21a-2乃至21a-4で発生した電荷に応じた画素信号が第1の選択トランジスタ25aを介して垂直信号線41aに出力されるとともに、フォトダイオード21b-2乃至21b-4で発生した電荷に応じた画素信号が第1の選択トランジスタ25bを介して垂直信号線41bに出力される。その後、選択信号SEL1がローレベルとなる。
図3は、SF加算駆動時における撮像素子11の駆動信号の一例を示す図である。
SF加算駆動時において、共有画素単位13aおよび13bから画素信号を読み出すタイミングになると選択信号SEL2がハイレベルとなって、第2の選択トランジスタ26aおよび26bがオンとなる。なお、SF加算駆動時には、選択信号SEL1は常にローレベルである。
選択信号SEL2がハイレベルとなると、パルス状にハイレベルとなるリセット信号RSTに従ってリセットトランジスタ27aおよび27bがオンとなり、メインFD部23aおよび23bに蓄積されている電荷が電源配線43に排出される。これにより、リセット状態の画素信号が、第2の選択トランジスタ26aを介して垂直信号線42に出力されるのと同時に、第2の選択トランジスタ26bを介して垂直信号線42に出力され、それらの画素信号がソースフォロワ加算される。
続いて、パルス状にハイレベルとなる転送信号TG1に従って転送トランジスタ22a-1および22b-1がオンとなり、フォトダイオード21a-1に蓄積されていた電荷がメインFD部23aに転送されるとともに、フォトダイオード21b-1に蓄積されていた電荷がメインFD部23bに転送される。これにより、フォトダイオード21a-1で発生した電荷に応じた画素信号が第2の選択トランジスタ26aを介して垂直信号線42に出力されるのと同時に、フォトダイオード21b-1で発生した電荷に応じた画素信号が第2の選択トランジスタ26bを介して垂直信号線42に出力され、それらの画素信号がソースフォロワ加算される。
以下、同様に、リセット信号RSTと転送信号TG2乃至TG4とが順次、パルス状にハイレベルとなる。これにより、フォトダイオード21a-2乃至21a-4で発生した電荷に応じた画素信号と、フォトダイオード21b-2乃至21b-4で発生した電荷に応じた画素信号とが、それぞれのタイミングで垂直信号線42に同時に出力されてソースフォロワ加算される。その後、選択信号SEL2がローレベルとなる。
以上のように撮像素子11は構成されており、通常駆動時において、共有画素単位13aからは垂直信号線41aを介して画素信号を出力し、共有画素単位13bからは垂直信号線41bを介して画素信号を出力することができる。これにより、例えば、通常駆動時においても1本の垂直信号線を交互に用いて画素信号を出力するような従来の撮像素子と比較して、1水平期間の読み出しに要する時間が長くなることを回避することができる。
即ち、撮像素子11は、通常駆動時において、共有画素単位13aと共有画素単位13bとが並列的に画素信号を出力することができるように構成されている。
また、撮像素子11は、FD加算のための容量を追加することなく、SF加算によって画素加算を行うことができる。そして、SF加算駆動時には、垂直信号線42のみを使用し、垂直信号線41aおよび41bは使用しないため、垂直信号線41aおよび41bの電流を抑制することによって低消費電力化が可能となる。さらに、撮像素子11は、単純に横方向の画素信号を1/2に圧縮したような画像よりも、S/N的に良好な画像を得ることができる。従って、撮像素子11は、従来の撮像素子よりも、より高性能化を図ることができる。
図4は、撮像素子11の第1の平面レイアウトの一例を示す図である。
図4に示すように、第1の平面レイアウトでは、共有画素単位13を構成する4個の画素12-1乃至12-4が2×2配列で配置される。また、個々の画素12を構成するフォトダイオード21は、トレンチなどにより構成される素子分離部(FFTI)によって分離されている。従って、それぞれのフォトダイオード21に、接地レベルの配線44に接続するためのP+型領域28が設けられている。また、メインFD部23は、メインFD部23-1乃至23-4に分割されて、フォトダイオード21-1乃至21-4それぞれ対して設けられる。
そして、撮像素子11では、水平方向に隣接して配置される共有画素単位13aと共有画素単位13bとは、水平方向に向かって対称となるようにトランジスタが配置(左右ミラー配置)されている。
例えば、共有画素単位13aでは、増幅トランジスタ24aは左下のフォトダイオード21a-3に配置されており、共有画素単位13bでは、増幅トランジスタ24bは右下のフォトダイオード21b-4に配置されている。また、共有画素単位13aでは、第1の選択トランジスタ25aは左上のフォトダイオード21a-1に配置されており、共有画素単位13bでは、第1の選択トランジスタ25bは右上のフォトダイオード21b-2に配置されている。
同様に、共有画素単位13aでは、第2の選択トランジスタ26aは右上のフォトダイオード21a-2に配置されており、共有画素単位13bでは、第2の選択トランジスタ26bは左上のフォトダイオード21b-1に配置されている。また、共有画素単位13aでは、リセットトランジスタ27aは右下のフォトダイオード21a-4に配置されており、共有画素単位13bでは、リセットトランジスタ27bは左下のフォトダイオード21b-3に配置されている。
このような平面レイアウトの撮像素子11は、共有画素単位13aおよび共有画素単位13bの中央に垂直信号線42を配置し、垂直信号線41aおよび41bを外側近傍に配置することができる。従って、撮像素子11では、垂直信号線41aおよび41bと垂直信号線42との間で干渉が発生することを抑制することができる。
図5は、撮像素子11の第2の平面レイアウトの一例を示す図である。
図5に示すように、第2の平面レイアウトでは、共有画素単位13を構成する4個の画素12-1乃至12-4が1×4配列で配置される。そして、共有画素単位13aと共有画素単位13bとが、水平方向に隣接して配置される。
ところで、撮像素子11は、受光面に積層されたオンチップレンズにより光を集光することができる。例えば、画素12ごとにオンチップレンズを配置する構成の他、4個の画素12-1乃至12-4が2×2配列された共有画素単位13ごとにオンチップレンズを配置することができる。さらに、4個の画素12-1乃至12-4が2×2配列された共有画素単位13が2×2配列で配置された16個の画素12ごとにオンチップレンズを配置してもよい。
図6には、共有画素単位13a、共有画素単位13b、共有画素単位13c、および共有画素単位13dが2×2配列で配置され、16個の画素12が4×4配列で配置された撮像素子11の第1の平面レイアウトが示されている。
共有画素単位13aおよび共有画素単位13bは、図4を参照して説明したように、水平方向に向かって対称となるようにトランジスタが配置される。また、共有画素単位13cおよび共有画素単位13dも、共有画素単位13aおよび共有画素単位13bと同様に、水平方向に向かって対称となるようにトランジスタが配置される。
また、第1の平面レイアウトでは、左側に垂直方向に並んで配置される共有画素単位13aと共有画素単位13cとは、トランジスタの配置が同一とされ、右側に垂直方向に並んで配置される共有画素単位13bと共有画素単位13dとは、トランジスタの配置が同一とされる。
図7には、共有画素単位13a、共有画素単位13b、共有画素単位13e、および共有画素単位13fが2×2配列で配置され、16個の画素12が4×4配列で配置された撮像素子11の平面レイアウトが示されている。
共有画素単位13aおよび共有画素単位13bは、図4を参照して説明したように、水平方向に向かって対称となるようにトランジスタが配置される。また、共有画素単位13eおよび共有画素単位13fも、共有画素単位13aおよび共有画素単位13bと同様に、水平方向に向かって対称となるようにトランジスタが配置される。
また、第2の平面レイアウトでは、左側に垂直方向に並んで配置される共有画素単位13aと共有画素単位13eとは、垂直方向に向かって対称となるようにトランジスタが配置(上下ミラー配置)されている。
例えば、共有画素単位13aでは、増幅トランジスタ24aは左下のフォトダイオード21a-3に配置されており、共有画素単位13eでは、増幅トランジスタ24eは左上のフォトダイオード21e-1に配置されている。また、共有画素単位13aでは、第1の選択トランジスタ25aは左上のフォトダイオード21a-1に配置されており、共有画素単位13eでは、第1の選択トランジスタ25eは左下のフォトダイオード21e-3に配置されている。
同様に、共有画素単位13aでは、第2の選択トランジスタ26aは右上のフォトダイオード21a-2に配置されており、共有画素単位13eでは、第2の選択トランジスタ26eは右下のフォトダイオード21e-4に配置されている。また、共有画素単位13aでは、リセットトランジスタ27aは右下のフォトダイオード21a-4に配置されており、共有画素単位13eでは、リセットトランジスタ27eは右上のフォトダイオード21e-2に配置されている。
また、右側に垂直方向に並んで配置される共有画素単位13bと共有画素単位13fとについても同様に、垂直方向に向かって対称となるようにトランジスタが配置(上下ミラー配置)されている。
<撮像素子の第2の構成例>
図8は、本技術を適用した撮像素子の第2の実施の形態の構成例を示す回路図である。図8に示す撮像素子11_2において、図1の撮像素子11と共通する構成については、同一の符号を付し、その詳細な説明は省略する。
図8は、本技術を適用した撮像素子の第2の実施の形態の構成例を示す回路図である。図8に示す撮像素子11_2において、図1の撮像素子11と共通する構成については、同一の符号を付し、その詳細な説明は省略する。
図8に示すように、撮像素子11_2は、図1の撮像素子11と同様に、共有画素単位13a_2と共有画素単位13b_2が水平方向に隣接した構成となっている。また、共有画素単位13a_2は、図1の共有画素単位13aと同一の構成となっている。
共有画素単位13b_2は、4個のフォトダイオード21b-1乃至21b-4、4個の転送トランジスタ22b-1乃至22b-4、メインFD部23b、増幅トランジスタ24b、およびリセットトランジスタ27bを備える点で、図1の共有画素単位13bと同一の構成となっている。一方、共有画素単位13b_2は、第1の選択トランジスタ25bおよび第2の選択トランジスタ26bに替えて、ダミートランジスタ29および第3の選択トランジスタ30が配置されている点で、図1の共有画素単位13bと異なる構成となっている。
ダミートランジスタ29は、駆動することなく、共有画素単位13a_2の第1の選択トランジスタ25aとの対称性を維持するために設けられる。
第3の選択トランジスタ30は、選択信号SEL3に従って、通常駆動時には第1の選択トランジスタ25aと同様に駆動し、SF加算駆動時には第2の選択トランジスタ26aと同様に駆動する。
従って、共有画素単位13b_2は、通常駆動時およびSF加算駆動のどちらにおいても、垂直信号線42を介して画素信号が読み出されるように構成されている。即ち、撮像素子11_2では、通常駆動時において、共有画素単位13a_2の画素信号は垂直信号線41aを介して読み出され、共有画素単位13b_2の画素信号は垂直信号線42を介して読み出される。また、撮像素子11_2では、SF加算駆動時において、共有画素単位13a_2および共有画素単位13b_2の画素信号は、垂直信号線42を介して同時に読み出されてソースフォロワ加算される。
図9は、通常駆動時における撮像素子11_2の駆動信号の一例を示す図である。
通常駆動時において、共有画素単位13a_2および13b_2から画素信号を読み出すタイミングになると選択信号SEL1およびSEL3がハイレベルとなって、第1の選択トランジスタ25aおよび第3の選択トランジスタ30がオンとなる。即ち、通常駆動時には、選択信号SEL3は、選択信号SEL1と同一の波形となる。なお、通常駆動時には、選択信号SEL2は常にローレベルである。
選択信号SEL1およびSEL3がハイレベルとなると、パルス状にハイレベルとなるリセット信号RSTに従ってリセットトランジスタ27aおよび27bがオンとなり、メインFD部23aおよび23bに蓄積されている電荷が電源配線43に排出される。これにより、リセット状態の画素信号が、第1の選択トランジスタ25aを介して垂直信号線41aに出力され、第3の選択トランジスタ30を介して垂直信号線42に出力される。
続いて、パルス状にハイレベルとなる転送信号TG1に従って転送トランジスタ22a-1および22b-1がオンとなり、フォトダイオード21a-1に蓄積されていた電荷がメインFD部23aに転送されるとともに、フォトダイオード21b-1に蓄積されていた電荷がメインFD部23bに転送される。これにより、フォトダイオード21a-1で発生した電荷に応じた画素信号が第1の選択トランジスタ25aを介して垂直信号線41aに出力されるとともに、フォトダイオード21b-1で発生した電荷に応じた画素信号が第3の選択トランジスタ30を介して垂直信号線42に出力される。
以下、同様に、リセット信号RSTと転送信号TG2乃至TG4とが順次、パルス状にハイレベルとなる。これにより、フォトダイオード21a-2乃至21a-4で発生した電荷に応じた画素信号が第1の選択トランジスタ25aを介して垂直信号線41aに出力されるとともに、フォトダイオード21b-2乃至21b-4で発生した電荷に応じた画素信号が第3の選択トランジスタ30を介して垂直信号線42に出力される。その後、選択信号SEL1およびSEL3がローレベルとなる。
図10は、SF加算駆動時における撮像素子11_2の駆動信号の一例を示す図である。
SF加算駆動時において、共有画素単位13a_2および13b_2から画素信号を読み出すタイミングになると選択信号SEL2およびSEL3がハイレベルとなって、第2の選択トランジスタ26aおよび第3の選択トランジスタ30がオンとなる。即ち、SF加算駆動時には、選択信号SEL3は、選択信号SEL2と同一の波形となる。なお、SF加算駆動時には、選択信号SEL1は常にローレベルである。
選択信号SEL2およびSEL3がハイレベルとなると、パルス状にハイレベルとなるリセット信号RSTに従ってリセットトランジスタ27aおよび27bがオンとなり、メインFD部23aおよび23bに蓄積されている電荷が電源配線43に排出される。これにより、リセット状態の画素信号が、第2の選択トランジスタ26aを介して垂直信号線42に出力されるのと同時に、第3の選択トランジスタ30を介して垂直信号線42に出力され、それらの画素信号がソースフォロワ加算される。
続いて、パルス状にハイレベルとなる転送信号TG1に従って転送トランジスタ22a-1および22b-1がオンとなり、フォトダイオード21a-1に蓄積されていた電荷がメインFD部23aに転送されるとともに、フォトダイオード21b-1に蓄積されていた電荷がメインFD部23bに転送される。これにより、フォトダイオード21a-1で発生した電荷に応じた画素信号が第2の選択トランジスタ26aを介して垂直信号線42に出力されるのと同時に、フォトダイオード21b-1で発生した電荷に応じた画素信号が第3の選択トランジスタ30を介して垂直信号線42に出力され、それらの画素信号がソースフォロワ加算される。
以下、同様に、リセット信号RSTと転送信号TG2乃至TG4とが順次、パルス状にハイレベルとなる。これにより、フォトダイオード21a-2乃至21a-4で発生した電荷に応じた画素信号と、フォトダイオード21b-2乃至21b-4で発生した電荷に応じた画素信号とが、それぞれのタイミングで垂直信号線42に同時に出力されてソースフォロワ加算される。その後、選択信号SEL2およびSEL3がローレベルとなる。
図11は、撮像素子11_2の第1の平面レイアウトの一例を示す図である。
図11に示す撮像素子11_2の第1の平面レイアウトでは、上述した図4に示した撮像素子11の第1の平面レイアウトと同様に、共有画素単位13_2を構成する4個の画素12-1乃至12-4が2×2配列で配置される。
そして、撮像素子11_2においても、撮像素子11と同様に、共有画素単位13a_2および共有画素単位13b_2の中央に垂直信号線42を配置し、垂直信号線41aを外側近傍に配置することができる。従って、撮像素子11_2では、垂直信号線41aと垂直信号線42との間で干渉が発生することを抑制することができる。
図12は、撮像素子11_2の第2の平面レイアウトの一例を示す図である。
図12に示す撮像素子11_2の第2の平面レイアウトでは、上述した図5に示した撮像素子11の第2の平面レイアウトと同様に、共有画素単位13_2を構成する4個の画素12-1乃至12-4が1×4配列で配置される。そして、共有画素単位13a_2と共有画素単位13b_2とが、水平方向に隣接して配置される。
以上のように構成される撮像素子11_2は、図1の撮像素子11と同様に、より高性能化を図ることができる。
<撮像素子の第3の構成例>
図13は、本技術を適用した撮像素子の第3の実施の形態の構成例を示す回路図である。図13に示す撮像素子11_3において、図1の撮像素子11と共通する構成については、同一の符号を付し、その詳細な説明は省略する。
図13は、本技術を適用した撮像素子の第3の実施の形態の構成例を示す回路図である。図13に示す撮像素子11_3において、図1の撮像素子11と共通する構成については、同一の符号を付し、その詳細な説明は省略する。
図13に示すように、撮像素子11_3は、図1の撮像素子11と同様に、共有画素単位13a_3と共有画素単位13b_3が水平方向に隣接した構成となっている。また、共有画素単位13a_3および共有画素単位13b_3は、同一の構造で構成されており、それらを区別する必要がない場合には共有画素単位13_3と称し、共有画素単位13_3を構成する各部についても同様に称する。
共有画素単位13_3は、メインFD部23、増幅トランジスタ24、第1の選択トランジスタ25、第2の選択トランジスタ26、およびリセットトランジスタ27を備える点で、図1の共有画素単位13と同一の構成となっている。一方、共有画素単位13_3は、8個のフォトダイオード21-1乃至21-8、8個の転送トランジスタ22-1乃至22-8、接続トランジスタ31、およびサブFD部32を備える点で、図1の共有画素単位13と異なる構成となっている。
接続トランジスタ31は、接続信号FDGに従って、メインFD部23とサブFD部32とを接続する。サブFD部32は、接続トランジスタ31を介してメインFD部23に接続されると、メインFD部23とともに電荷を蓄積する。
例えば、接続トランジスタ31がオフの場合、メインFD部23の配線容量および拡散層容量、並びに、増幅トランジスタ24のゲート容量が、FD容量となる。一方、接続トランジスタ31がオンの場合、メインFD部23の配線容量および拡散層容量、増幅トランジスタ24のゲート容量、サブFD部32の配線容量および拡散層容量、並びに、接続トランジスタ31のバルク容量が、FD容量となる。
従って、共有画素単位13_3では、例えば、明るい被写体が撮像されたときなど、増幅トランジスタ24が電荷を画素信号に変換する変換効率を低下させる際に、接続トランジスタ31をオンにして、メインFD部23およびサブFD部32による負荷容量を増大させることができる。
図14は、撮像素子11_3の平面レイアウトの一例を示す図である。
図14に示すように、共有画素単位13_3を構成する8個の画素12-1乃至12-8が2×4配列で配置される。また、撮像素子11_3では、水平方向に隣接して配置される共有画素単位13a_3と共有画素単位13b_3とは、トランジスタの配置が同一とされている。
そして、共有画素単位13_3では、トランジスタのチャネル幅Wを広げるために、増幅トランジスタ24、第1の選択トランジスタ25、および、第2の選択トランジスタ26は、それぞれ並列的に配置される2個のトランジスタにより構成されている。例えば、フォトダイオード21-5に設けられた増幅トランジスタ24-1とフォトダイオード21-6に設けられた増幅トランジスタ24-2とが並列的に配置されている。また、フォトダイオード21-3に設けられた第1の選択トランジスタ25-1とフォトダイオード21-4に設けられた第1の選択トランジスタ25-2とが並列的に配置されている。また、フォトダイオード21-1に設けられた第2の選択トランジスタ26-1とフォトダイオード21-2に設けられた第2の選択トランジスタ26-2とが並列的に配置されている。なお、図14では、接続トランジスタ31に接続されるサブFD部32の図示は省略されている。
以上のように構成される撮像素子11_3は、図1の撮像素子11と同様に、より高性能化を図ることができる。さらに、撮像素子11_3は、サブFD部32を設けることによって、例えば、ダイナミックレンジを広げることができる。
<撮像素子の第4の構成例>
図15は、本技術を適用した撮像素子の第4の実施の形態の構成例を示す回路図である。図15に示す撮像素子11_4において、図1の撮像素子11および図13の撮像素子11_3と共通する構成については、同一の符号を付し、その詳細な説明は省略する。
図15は、本技術を適用した撮像素子の第4の実施の形態の構成例を示す回路図である。図15に示す撮像素子11_4において、図1の撮像素子11および図13の撮像素子11_3と共通する構成については、同一の符号を付し、その詳細な説明は省略する。
図15に示すように、撮像素子11_4は、図1の撮像素子11と同様に、共有画素単位13a_4と共有画素単位13b_4が水平方向に隣接した構成となっている。例えば、共有画素単位13a_4は、図13の共有画素単位13a_3と同一の構成となっており、共有画素単位13b_4は、図8を参照して上述した共有画素単位13b_2と同様に、ダミートランジスタ29および第3の選択トランジスタ30を備えて構成される。
従って、撮像素子11_4は、図13の撮像素子11_3と同様に、接続トランジスタ31をオンにして、メインFD部23およびサブFD部32による負荷容量を増大させることができる。
図16は、撮像素子11_4の平面レイアウトの一例を示す図である。
図16に示すように、共有画素単位13_4を構成する8個の画素12-1乃至12-8が2×4配列で配置される。また、撮像素子11_3では、水平方向に隣接して配置される共有画素単位13a_3と共有画素単位13b_3とは、トランジスタの配置が同一とされている。
以上のように構成される撮像素子11_4は、図1の撮像素子11と同様に、より高性能化を図ることができる。さらに、撮像素子11_4は、サブFD部32を設けることによって、例えば、ダイナミックレンジを広げることができる。
<電子機器の構成例>
上述したような撮像素子11は、例えば、デジタルスチルカメラやデジタルビデオカメラなどの撮像システム、撮像機能を備えた携帯電話機、または、撮像機能を備えた他の機器といった各種の電子機器に適用することができる。
上述したような撮像素子11は、例えば、デジタルスチルカメラやデジタルビデオカメラなどの撮像システム、撮像機能を備えた携帯電話機、または、撮像機能を備えた他の機器といった各種の電子機器に適用することができる。
図17は、電子機器に搭載される撮像装置の構成例を示すブロック図である。
図17に示すように、撮像装置101は、光学系102、撮像素子103、信号処理回路104、モニタ105、およびメモリ106を備えて構成され、静止画像および動画像を撮像可能である。
光学系102は、1枚または複数枚のレンズを有して構成され、被写体からの像光(入射光)を撮像素子103に導き、撮像素子103の受光面(センサ部)に結像させる。
撮像素子103としては、上述した撮像素子11が適用される。撮像素子103には、光学系102を介して受光面に結像される像に応じて、一定期間、電子が蓄積される。そして、撮像素子103に蓄積された電子に応じた信号が信号処理回路104に供給される。
信号処理回路104は、撮像素子103から出力された画素信号に対して各種の信号処理を施す。信号処理回路104が信号処理を施すことにより得られた画像(画像データ)は、モニタ105に供給されて表示されたり、メモリ106に供給されて記憶(記録)されたりする。
このように構成されている撮像装置101では、上述した撮像素子11を適用することで、例えば、より高画質な画像を撮像することができる。
<イメージセンサの使用例>
図18は、上述のイメージセンサ(撮像素子)を使用する使用例を示す図である。
図18は、上述のイメージセンサ(撮像素子)を使用する使用例を示す図である。
上述したイメージセンサは、例えば、以下のように、可視光や、赤外光、紫外光、X線等の光をセンシングする様々なケースに使用することができる。
・ディジタルカメラや、カメラ機能付きの携帯機器等の、鑑賞の用に供される画像を撮影する装置
・自動停止等の安全運転や、運転者の状態の認識等のために、自動車の前方や後方、周囲、車内等を撮影する車載用センサ、走行車両や道路を監視する監視カメラ、車両間等の測距を行う測距センサ等の、交通の用に供される装置
・ユーザのジェスチャを撮影して、そのジェスチャに従った機器操作を行うために、TVや、冷蔵庫、エアーコンディショナ等の家電に供される装置
・内視鏡や、赤外光の受光による血管撮影を行う装置等の、医療やヘルスケアの用に供される装置
・防犯用途の監視カメラや、人物認証用途のカメラ等の、セキュリティの用に供される装置
・肌を撮影する肌測定器や、頭皮を撮影するマイクロスコープ等の、美容の用に供される装置
・スポーツ用途等向けのアクションカメラやウェアラブルカメラ等の、スポーツの用に供される装置
・畑や作物の状態を監視するためのカメラ等の、農業の用に供される装置
・自動停止等の安全運転や、運転者の状態の認識等のために、自動車の前方や後方、周囲、車内等を撮影する車載用センサ、走行車両や道路を監視する監視カメラ、車両間等の測距を行う測距センサ等の、交通の用に供される装置
・ユーザのジェスチャを撮影して、そのジェスチャに従った機器操作を行うために、TVや、冷蔵庫、エアーコンディショナ等の家電に供される装置
・内視鏡や、赤外光の受光による血管撮影を行う装置等の、医療やヘルスケアの用に供される装置
・防犯用途の監視カメラや、人物認証用途のカメラ等の、セキュリティの用に供される装置
・肌を撮影する肌測定器や、頭皮を撮影するマイクロスコープ等の、美容の用に供される装置
・スポーツ用途等向けのアクションカメラやウェアラブルカメラ等の、スポーツの用に供される装置
・畑や作物の状態を監視するためのカメラ等の、農業の用に供される装置
<構成の組み合わせ例>
なお、本技術は以下のような構成も取ることができる。
(1)
複数の画素でFD(Floating Diffusion)部および増幅トランジスタが共有して用いられる共有画素単位が水平方向に隣接して配置され、
それぞれの前記共有画素単位は、
前記画素ごとに独立して画素信号を出力するときに用いられる第1の垂直信号線に前記増幅トランジスタを接続する第1の選択トランジスタと、
前記画素信号をソースフォロワ加算して出力するときに用いられる第2の垂直信号線に前記増幅トランジスタを接続する第2の選択トランジスタと
を備える固体撮像素子。
(2)
水平方向に隣接して配置される2つの前記共有画素単位どうしで、水平方向に向かって対称にトランジスタが配置される平面レイアウトである
上記(1)に記載の固体撮像素子。
(3)
前記共有画素単位は、前記画素が2×2配列で配置されており、
前記第2の垂直信号線が前記共有画素単位どうしの中央に配置されるとともに、それぞれの前記第1の垂直信号線が外側近傍に配置される
上記(2)に記載の固体撮像素子。
(4)
前記画素が2×2配列で配置された前記共有画素単位が2×2配列で配置された16個の前記画素ごとにオンチップレンズが配置され、
垂直方向に並ぶ前記共有画素単位どうしで、トランジスタの配置が同一となる平面レイアウトである
上記(2)または(3)に記載の固体撮像素子。
(5)
前記画素が2×2配列で配置された前記共有画素単位が2×2配列で配置された16個の前記画素に対してオンチップレンズが配置され、
垂直方向に並ぶ前記共有画素単位どうしで、垂直方向に向かって対称にトランジスタが配置される平面レイアウトである
上記(2)または(3)に記載の固体撮像素子。
(6)
水平方向に隣接する2つの前記共有画素単位のうち、
一方の前記共有画素単位は、前記第1の選択トランジスタおよび前記第2の選択トランジスタを備えており、
他方の前記共有画素単位は、
前記第1の選択トランジスタに替えてダミートランジスタを備え、
前記第2の選択トランジスタに替えて、前記画素ごとに独立して前記画素信号を出力するときには前記第1の選択トランジスタと同じ駆動をし、前記画素信号をソースフォロワ加算して出力するときには前記第2の選択トランジスタと同じ駆動をする第3の選択トランジスタを備える
上記(1)から(5)までのいずれかに記載の固体撮像素子。
(7)
前記FD部に対して接続トランジスタを介して接続されるサブFD部
をさらに備える上記(1)から(6)までのいずれかに記載の固体撮像素子。
(8)
複数の画素でFD(Floating Diffusion)部および増幅トランジスタが共有して用いられる共有画素単位が水平方向に隣接して配置され、
それぞれの前記共有画素単位は、
前記画素ごとに独立して画素信号を出力するときに用いられる第1の垂直信号線に前記増幅トランジスタを接続する第1の選択トランジスタと、
前記画素信号をソースフォロワ加算して出力するときに用いられる第2の垂直信号線に前記増幅トランジスタを接続する第2の選択トランジスタと
を有する固体撮像素子を備える電子機器。
なお、本技術は以下のような構成も取ることができる。
(1)
複数の画素でFD(Floating Diffusion)部および増幅トランジスタが共有して用いられる共有画素単位が水平方向に隣接して配置され、
それぞれの前記共有画素単位は、
前記画素ごとに独立して画素信号を出力するときに用いられる第1の垂直信号線に前記増幅トランジスタを接続する第1の選択トランジスタと、
前記画素信号をソースフォロワ加算して出力するときに用いられる第2の垂直信号線に前記増幅トランジスタを接続する第2の選択トランジスタと
を備える固体撮像素子。
(2)
水平方向に隣接して配置される2つの前記共有画素単位どうしで、水平方向に向かって対称にトランジスタが配置される平面レイアウトである
上記(1)に記載の固体撮像素子。
(3)
前記共有画素単位は、前記画素が2×2配列で配置されており、
前記第2の垂直信号線が前記共有画素単位どうしの中央に配置されるとともに、それぞれの前記第1の垂直信号線が外側近傍に配置される
上記(2)に記載の固体撮像素子。
(4)
前記画素が2×2配列で配置された前記共有画素単位が2×2配列で配置された16個の前記画素ごとにオンチップレンズが配置され、
垂直方向に並ぶ前記共有画素単位どうしで、トランジスタの配置が同一となる平面レイアウトである
上記(2)または(3)に記載の固体撮像素子。
(5)
前記画素が2×2配列で配置された前記共有画素単位が2×2配列で配置された16個の前記画素に対してオンチップレンズが配置され、
垂直方向に並ぶ前記共有画素単位どうしで、垂直方向に向かって対称にトランジスタが配置される平面レイアウトである
上記(2)または(3)に記載の固体撮像素子。
(6)
水平方向に隣接する2つの前記共有画素単位のうち、
一方の前記共有画素単位は、前記第1の選択トランジスタおよび前記第2の選択トランジスタを備えており、
他方の前記共有画素単位は、
前記第1の選択トランジスタに替えてダミートランジスタを備え、
前記第2の選択トランジスタに替えて、前記画素ごとに独立して前記画素信号を出力するときには前記第1の選択トランジスタと同じ駆動をし、前記画素信号をソースフォロワ加算して出力するときには前記第2の選択トランジスタと同じ駆動をする第3の選択トランジスタを備える
上記(1)から(5)までのいずれかに記載の固体撮像素子。
(7)
前記FD部に対して接続トランジスタを介して接続されるサブFD部
をさらに備える上記(1)から(6)までのいずれかに記載の固体撮像素子。
(8)
複数の画素でFD(Floating Diffusion)部および増幅トランジスタが共有して用いられる共有画素単位が水平方向に隣接して配置され、
それぞれの前記共有画素単位は、
前記画素ごとに独立して画素信号を出力するときに用いられる第1の垂直信号線に前記増幅トランジスタを接続する第1の選択トランジスタと、
前記画素信号をソースフォロワ加算して出力するときに用いられる第2の垂直信号線に前記増幅トランジスタを接続する第2の選択トランジスタと
を有する固体撮像素子を備える電子機器。
なお、本実施の形態は、上述した実施の形態に限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更が可能である。また、本明細書に記載された効果はあくまで例示であって限定されるものではなく、他の効果があってもよい。
11 撮像素子, 12 画素, 13 共有画素単位, 21 フォトダイオード, 22 転送トランジスタ, 23 メインFD部, 24 増幅トランジスタ, 25 第1の選択トランジスタ, 26 第2の選択トランジスタ, 27 リセットトランジスタ, 28 P+型領域, 29 ダミートランジスタ, 30 第3の選択トランジスタ, 31 接続トランジスタ, 32 サブFD部, 41および42 垂直信号線, 43 電源配線, 44 配線
Claims (8)
- 複数の画素でFD(Floating Diffusion)部および増幅トランジスタが共有して用いられる共有画素単位が水平方向に隣接して配置され、
それぞれの前記共有画素単位は、
前記画素ごとに独立して画素信号を出力するときに用いられる第1の垂直信号線に前記増幅トランジスタを接続する第1の選択トランジスタと、
前記画素信号をソースフォロワ加算して出力するときに用いられる第2の垂直信号線に前記増幅トランジスタを接続する第2の選択トランジスタと
を備える固体撮像素子。 - 水平方向に隣接して配置される2つの前記共有画素単位どうしで、水平方向に向かって対称にトランジスタが配置される平面レイアウトである
請求項1に記載の固体撮像素子。 - 前記共有画素単位は、前記画素が2×2配列で配置されており、
前記第2の垂直信号線が前記共有画素単位どうしの中央に配置されるとともに、それぞれの前記第1の垂直信号線が外側近傍に配置される
請求項2に記載の固体撮像素子。 - 前記画素が2×2配列で配置された前記共有画素単位が2×2配列で配置された16個の前記画素ごとにオンチップレンズが配置され、
垂直方向に並ぶ前記共有画素単位どうしで、トランジスタの配置が同一となる平面レイアウトである
請求項2に記載の固体撮像素子。 - 前記画素が2×2配列で配置された前記共有画素単位が2×2配列で配置された16個の前記画素に対してオンチップレンズが配置され、
垂直方向に並ぶ前記共有画素単位どうしで、垂直方向に向かって対称にトランジスタが配置される平面レイアウトである
請求項2に記載の固体撮像素子。 - 水平方向に隣接する2つの前記共有画素単位のうち、
一方の前記共有画素単位は、前記第1の選択トランジスタおよび前記第2の選択トランジスタを備えており、
他方の前記共有画素単位は、
前記第1の選択トランジスタに替えてダミートランジスタを備え、
前記第2の選択トランジスタに替えて、前記画素ごとに独立して前記画素信号を出力するときには前記第1の選択トランジスタと同じ駆動をし、前記画素信号をソースフォロワ加算して出力するときには前記第2の選択トランジスタと同じ駆動をする第3の選択トランジスタを備える
請求項1に記載の固体撮像素子。 - 前記FD部に対して接続トランジスタを介して接続されるサブFD部
をさらに備える請求項1に記載の固体撮像素子。 - 複数の画素でFD(Floating Diffusion)部および増幅トランジスタが共有して用いられる共有画素単位が水平方向に隣接して配置され、
それぞれの前記共有画素単位は、
前記画素ごとに独立して画素信号を出力するときに用いられる第1の垂直信号線に前記増幅トランジスタを接続する第1の選択トランジスタと、
前記画素信号をソースフォロワ加算して出力するときに用いられる第2の垂直信号線に前記増幅トランジスタを接続する第2の選択トランジスタと
を有する固体撮像素子を備える電子機器。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-160955 | 2021-09-30 | ||
JP2021160955A JP2023050707A (ja) | 2021-09-30 | 2021-09-30 | 固体撮像素子および電子機器 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023053532A1 true WO2023053532A1 (ja) | 2023-04-06 |
Family
ID=85782191
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/013975 WO2023053532A1 (ja) | 2021-09-30 | 2022-03-24 | 固体撮像素子および電子機器 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2023050707A (ja) |
WO (1) | WO2023053532A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016005068A (ja) * | 2014-06-16 | 2016-01-12 | ソニー株式会社 | 固体撮像装置および電子機器 |
WO2018181583A1 (ja) * | 2017-03-28 | 2018-10-04 | 株式会社ニコン | 撮像素子および電子カメラ |
JP2020080377A (ja) * | 2018-11-13 | 2020-05-28 | 国立大学法人静岡大学 | 固体撮像装置 |
-
2021
- 2021-09-30 JP JP2021160955A patent/JP2023050707A/ja active Pending
-
2022
- 2022-03-24 WO PCT/JP2022/013975 patent/WO2023053532A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016005068A (ja) * | 2014-06-16 | 2016-01-12 | ソニー株式会社 | 固体撮像装置および電子機器 |
WO2018181583A1 (ja) * | 2017-03-28 | 2018-10-04 | 株式会社ニコン | 撮像素子および電子カメラ |
JP2020080377A (ja) * | 2018-11-13 | 2020-05-28 | 国立大学法人静岡大学 | 固体撮像装置 |
Also Published As
Publication number | Publication date |
---|---|
JP2023050707A (ja) | 2023-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10741605B2 (en) | Solid-state image sensor, imaging device, and electronic equipment | |
US9866771B2 (en) | Solid-state imaging device, signal processing method of solid-state imaging device, and electronic apparatus | |
KR102547435B1 (ko) | 촬상 소자, 촬상 방법, 및 전자 기기 | |
US12047700B2 (en) | Imaging element, driving method, and electronic device | |
US10811447B2 (en) | Solid-state imaging device, driving method, and electronic equipment | |
JP2021057795A (ja) | 固体撮像装置、固体撮像装置の駆動方法、および電子機器 | |
US20130092820A1 (en) | Solid-state imaging device and imaging device | |
JPWO2018207731A1 (ja) | 固体撮像装置、固体撮像装置の駆動方法、および電子機器 | |
JP6026102B2 (ja) | 固体撮像素子および電子機器 | |
WO2016199588A1 (ja) | 撮像素子および駆動方法、並びに電子機器 | |
WO2023053532A1 (ja) | 固体撮像素子および電子機器 | |
CN116419085A (zh) | 光检测装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 18693287 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22875415 Country of ref document: EP Kind code of ref document: A1 |