WO2023047696A1 - Linear vibration motor - Google Patents
Linear vibration motor Download PDFInfo
- Publication number
- WO2023047696A1 WO2023047696A1 PCT/JP2022/020372 JP2022020372W WO2023047696A1 WO 2023047696 A1 WO2023047696 A1 WO 2023047696A1 JP 2022020372 W JP2022020372 W JP 2022020372W WO 2023047696 A1 WO2023047696 A1 WO 2023047696A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- housing
- shaft
- side wall
- vibrator
- vibration motor
- Prior art date
Links
- 229910052751 metal Inorganic materials 0.000 claims abstract description 42
- 239000002184 metal Substances 0.000 claims abstract description 42
- 238000005452 bending Methods 0.000 claims abstract description 25
- 238000005304 joining Methods 0.000 claims abstract description 8
- 238000012986 modification Methods 0.000 description 13
- 230000004048 modification Effects 0.000 description 13
- 239000000463 material Substances 0.000 description 12
- 230000002093 peripheral effect Effects 0.000 description 6
- 229910052761 rare earth metal Inorganic materials 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 238000004804 winding Methods 0.000 description 6
- 239000000843 powder Substances 0.000 description 5
- 150000002910 rare earth metals Chemical class 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 229910000938 samarium–cobalt magnet Inorganic materials 0.000 description 5
- 238000003466 welding Methods 0.000 description 5
- QJVKUMXDEUEQLH-UHFFFAOYSA-N [B].[Fe].[Nd] Chemical compound [B].[Fe].[Nd] QJVKUMXDEUEQLH-UHFFFAOYSA-N 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 4
- KPLQYGBQNPPQGA-UHFFFAOYSA-N cobalt samarium Chemical compound [Co].[Sm] KPLQYGBQNPPQGA-UHFFFAOYSA-N 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 229910001172 neodymium magnet Inorganic materials 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 239000004593 Epoxy Substances 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000004962 Polyamide-imide Substances 0.000 description 2
- -1 SUS304 (JIS/AISI304) Inorganic materials 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229920002312 polyamide-imide Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000000452 restraining effect Effects 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 229920006332 epoxy adhesive Polymers 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002905 metal composite material Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 229920002397 thermoplastic olefin Polymers 0.000 description 1
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B06—GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
- B06B—METHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
- B06B1/00—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
- B06B1/02—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
- B06B1/04—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with electromagnetism
Definitions
- the present invention relates to a linear vibration motor that energizes a coil to vibrate a vibrator.
- FIG. 10A is an exploded perspective view showing Example 1 of the linear vibration motor described in Patent Document 1
- FIG. 10B is an exploded perspective view showing Example 2 of the linear vibration motor described in Patent Document 1.
- a housing is composed of a bottom wall portion, a peripheral wall portion surrounding the bottom wall portion, and a ceiling wall portion covering the upper side thereof. A mover slidably held by two guide shafts is housed in this housing.
- Example 1 shown in FIG. 10A has a structure in which both ends of two guide shafts are supported by an intermediate member. With this structure, it is difficult to reduce the height of the housing because it is necessary to accommodate the intermediate member in the housing.
- Example 2 shown in FIG. 10B there is no intermediate member, and a U-shaped groove is provided in a part of the peripheral wall to support the guide shaft.
- the peripheral wall portion and the bottom wall portion are joined by welding, which requires high manufacturing costs. If the peripheral wall portion and the bottom wall portion were to be made of the same metal plate, the mechanical strength of the peripheral wall portion would be reduced due to the provision of the U-shaped groove, so a thick metal plate would have to be used. This is disadvantageous in reducing the height.
- the purpose of this disclosure is to provide a low-cost, low-profile linear vibration motor.
- a linear vibration motor includes: a housing formed by joining a first housing portion having at least a top surface portion and a second housing portion having at least a bottom surface portion; a vibrator housed in the housing; two shafts arranged substantially in parallel along the vibration direction of the vibrator in the housing and supporting the vibrator in a vibrating state; with The shaft is supported in a state of being sandwiched from both sides by a first support portion provided in the first housing portion and a second support portion provided in the second housing portion,
- the second supporting portion is composed of two second convex portions arranged on each of the shafts at a position overlapping the shaft in a plan view and separated from each other by a predetermined distance along the extension direction of the shaft.
- the second convex portion is formed by bending a metal plate forming the second housing portion.
- a low-cost and low-profile linear vibration motor can be provided.
- FIG. 2 is a perspective view of the first housing part that constitutes the housing of the linear vibration motor according to one embodiment of the present invention, viewed from above. It is the perspective view which looked at the 1st housing
- FIG. 4 is a perspective view of a second housing part that constitutes the housing of the linear vibration motor according to one embodiment of the present invention, viewed from above. 3 is an exploded perspective view schematically showing that a coil, a magnet and a wiring board are attached to the second casing shown in FIG. 2, and further a vibrator supported by a shaft is attached;
- FIG. FIG. 4 is a perspective view showing the second housing section after the vibrator is attached from the state shown in FIG. 3 ;
- FIG. 5 is an enlarged view of the state shown in FIG. 4 in which the first housing is attached on top of the second housing, and is a perspective view showing that the shaft is supported by the first support and the second support; is.
- FIG. 5 is a cross-sectional side view taken along AA of FIG. 4 and schematically showing a state in which the first casing is also attached;
- FIG. 7 is a side sectional view schematically showing a section BB of FIG. 6;
- FIG. 7 is a side sectional view schematically showing a modification of the embodiment shown in FIG. 6;
- FIG. 9 is a side sectional view schematically showing a modification of the embodiment shown in FIG. 8;
- 1 is an exploded perspective view showing Example 1 of a linear vibration motor described in Patent Document 1.
- FIG. 1 is an exploded perspective view showing Example 1 of a linear vibration motor described in Patent Document 1.
- FIG. 2 is an exploded perspective view showing Example 2 of the linear vibration motor described in Patent Document 1.
- FIG. FIG. 11 is a side cross-sectional view schematically showing another example of the shaft support structure; 11B is a side sectional view schematically showing a section BB of FIG. 11A.
- FIG. It is a figure for demonstrating the method of forming a recessed part by bending a metal.
- the linear vibration motor 2 includes a housing 10 and a vibrator 50 housed within the housing 10 .
- the housing 10 is configured by joining a first housing section 12 having a top surface and a second housing section 14 having a bottom surface.
- the vibrator 50 is supported by two shafts 60 so as to vibrate.
- the two shafts 60 are respectively supported by a first support portion 20 provided on the first housing portion 12 and a second support portion 30 provided on the second housing portion 14 .
- the vibrator 50 includes a weight portion 52 and a first magnet M1, and further includes a second magnet M2 and a third magnet M3 at both ends in the vibrating direction.
- a coil 70 (see FIG. 3), a magnet holder 40 (M4) having a fourth magnet M4 and a magnet holder 40 (M5) having a fifth magnet M5 are attached to the second housing portion 14 .
- FPC flexible printed circuit
- a second magnet M2 (on the vibrator side) and a fourth magnet M4 (on the housing side), and a third magnet M3 (on the vibrator side) and a fifth magnet M5 (on the housing side), which are arranged to face each other. constitute a magnetic spring. This magnetic spring can strongly transmit the vibration of the vibrator 50 to the main body 10 .
- FIG. 1A is a top perspective view of a first housing part that constitutes a housing of a linear vibration motor according to one embodiment of the present invention.
- FIG. 1B is a perspective view of the first housing shown in FIG. 1A as viewed from below.
- FIG. 2 is a perspective view of the second housing part that constitutes the housing of the linear vibration motor according to one embodiment of the present invention, viewed from the upper surface side.
- the housing 10 is formed by joining a first housing portion 12 and a second housing portion 14 .
- the first housing portion 12 is formed by bending one metal plate.
- the first housing portion 12 includes a top surface portion 12A having a substantially rectangular planar shape and first side wall portions 12B surrounding the top surface portion 12A.
- the first side wall portion 12B is composed of first short side wall portions 12B1 and 12B2 connected to the top surface portion 12A at its short side S, and first long side wall portions 12B3 and 12B4 connected to the top surface portion 12A at its long side L. It is The top surface portion 12A and the first side wall portion 12B are bent so as to be substantially perpendicular to each other.
- the second housing part 14 is also formed by bending one metal plate.
- the second housing portion 14 is composed of a bottom portion 14A having a substantially rectangular planar shape and a second side wall portion 14B surrounding the bottom portion 14A.
- the second side wall portion 14B is composed of second short side wall portions 14B1 and 14B2 connected to the bottom surface portion 14A at its short side S, and second long side wall portions 14B3 and 14B4 connected to the bottom surface portion 14A at its long side L. It is The bottom portion 14A and the second side wall portion 14B are bent so as to be substantially perpendicular to each other.
- the first housing portion 12 and the second housing are arranged such that at least a portion of the first side wall portion 12B of the first housing portion 12 and the second side wall portion 14B of the second housing portion 14 overlap each other.
- the portion 14 is fitted to form the housing 10 .
- the first side wall portion 12B of the first housing portion 12 is fitted so as to surround the second side wall portion 14B of the second housing portion 14 .
- first short side wall portion 12B1 is arranged to overlap on the outside of the second short side wall portion 14B1
- first long side wall portion 12B3 is arranged to overlap on the outside of the second long side wall portion 14B3
- the first short side wall portion 12B2 is arranged to overlap on the outside of the second short side wall portion 14B2
- the first long side wall portion 12B4 is arranged to overlap on the outside of the second long side wall portion 14B4.
- first housing portion 12 and the second housing portion 14 are formed with a first support portion 20 and a second support portion 30, respectively, which support two shafts 60 that hold the vibrator 50 so as to vibrate. It is
- Each of the four corners of the top surface portion 12A of the first housing portion 12 has four first protrusions 22A to 22D that are formed by being cut and bent.
- a first convex portion 22A is formed in a corner region CA between the first short side wall portion 12B1 and the first long side wall portion 12B3, and a corner region CB between the first long side wall portion 12B3 and the first short side wall portion 12B2.
- a first convex portion 22B is formed
- a first convex portion 22D is formed in a corner region CD between the first short side wall portion 12B2 and the first long side wall portion 12B4
- the first long side wall portion 12B4 and the first short side wall portion 12B4 are formed in the corner region CD.
- a first convex portion 22C is formed in the corner region CC between the side wall portions 12B1.
- the first supporting portion 20 is configured by the four first protrusions 22A to 22D.
- each of the four corners of the bottom surface portion 14A of the second housing portion 14 there are four second convex portions 32A to 32D formed by partially notching and partially bending, and formed by notching and bending. It has four openings 36A-36D.
- a corner region CA between the second short side wall portion 14B1 and the second long side wall portion 14B3 is formed with a second convex portion 32A and an opening portion 36A.
- a second convex portion 32B and an opening 36B are formed in the corner region CB of the second convex portion 32B and an opening portion 36B, and a second convex portion 32D and an opening portion 36D are formed in the corner region CD between the second short side wall portion 14B2 and the second long side wall portion 14B4.
- the second support portion 30 is configured by the four second convex portions 32A to 32D.
- a central region of the second long side wall portion 14B4 is cut away, and a substrate support portion 14C is formed in the region with the bottom surface portion 14A extending outward.
- the substrate support portion 14C extends to the outside of the second long side wall portion 14B4.
- a concave portion 14C1 is formed in an inner region of the substrate supporting portion 14C excluding the outer edge portion.
- a flexible printed circuit board (FPC) 72 is placed in the concave portion 14C1 of the printed circuit board support portion 14C.
- a part of the long side L and the short side S, which are the boundaries between the bottom surface portion 14A and the second side wall portion 14B, are notched to form a support portion 14D in which the metal plate is not bent.
- the tip of the support portion 14D extends slightly outside the second side wall portion 14B.
- the housing 10 is formed by joining the first housing portion 12 and the second housing portion 14 together by welding or the like.
- a plurality of support portions 14D protruding slightly outward from the second side wall portion 14B of the second housing portion 14 can support the lower portion of the fitted first housing portion 12 .
- the support portion 14D can be used as a base for fillet welding. With such a fitting structure, the housing 10 having an internal space separated from the outside can be obtained. However, there may be a case where the support portion 14D is not provided.
- first housing portion 12 and the second housing portion 14 have high rigidity due to the first side wall portion 12B and the second side wall portion 14B formed by bending, and are firmly joined by the fitting structure. be done. Thereby, the housing 10 having high strength is obtained.
- the first projections 22A to 22D and the second projections 32A to 32D formed at the four corners 32D are arranged at overlapping positions.
- the shaft 60 supporting the vibrator 50 can be sandwiched and supported from both upper and lower sides by the first protrusions 22A to 22D and the second protrusions 32A to 32D. Details will be described later.
- the first housing part 12 and the second housing part 14 are formed from non-magnetic metal plates such as stainless steel plates.
- SUS316 JIS/AISI316
- SUS304 JIS/AISI304
- SUS304 JIS/AISI304
- the drive magnet is provided on the vibrator side. , the magnetic force of the drive magnet can also be increased.
- the thickness of the metal plates that constitute the first casing portion 12 and the second casing portion 14 can be exemplified to be approximately 0.1 to 0.5 mm.
- the vertical (short side), horizontal (long side), and height dimensions of the housing 10 according to the present embodiment are approximately 12 mm, approximately 19 mm, and approximately 1.6 mm, respectively. can be adopted. In any case, a low profile (low height) housing 10 is preferred.
- the first housing portion 12 is formed by bending one metal plate, a housing having sufficient strength can be obtained at low cost.
- the second housing portion 14 is also formed by bending one metal plate, a housing having sufficient strength can be obtained at low cost.
- a thin metal plate can be used as the material of the housing 10 because metal has sufficient strength even if it is thin.
- the low first side wall portion 12B and the low second side wall portion 14B can be reliably formed by bending, so that the low-profile housing 10 can be realized at low cost.
- FIG. 3 is an exploded perspective view schematically showing that a coil, a magnet, and a wiring board are attached to the second housing portion shown in FIG. 2, and further a vibrator supported by a shaft is attached.
- FIG. 4 is a perspective view showing the second housing section after the vibrator is mounted in the state shown in FIG. 3.
- FIG. 5 is an enlarged view of a state in which the first housing is attached on the second housing from the state shown in FIG. It is a perspective view showing a place to do.
- the coil 70 arranged on the bottom surface portion 14A of the second housing portion 14 is formed by winding a conductor wire around an imaginary winding axis.
- the coil 70 is fixed to the housing 10 so that its winding axis is substantially perpendicular to the upper surface of the bottom surface portion 14A and faces the first magnet M1 of the vibrator 50 .
- the shape of the coil 70 when viewed from the winding axis direction is a rectangular shape with rounded corners.
- the coil 70 When a current flows through the coil 70, a Lorentz force is applied to the coil 70 by the magnetic field of the first magnet M1 in a direction orthogonal to the direction of the magnetic field and the direction of current flow.
- the coil 70 since the coil 70 is fixed to the housing 10, the reaction force of the Lorentz force is applied to the first magnet M1. Therefore, the coil 70 can apply a driving force along the vibration direction (long side direction) to the first magnet M1 and, by extension, to the vibrator 50 by energization. That is, the first magnet M1 functions as a driving magnet in the linear vibration motor 2. As shown in FIG.
- the direction of the Lorentz force described above is more likely to align with the vibration direction than when the coil 70 is annular. Therefore, the driving force along the vibration direction applied to the vibrator 50 is increased, which is preferable.
- a conductor wire in which a core wire having a thickness of 0.02 to 0.05 mm and a width of 0.14 to 0.15 mm is coated with a polyamideimide insulating film having a thickness of 4 ⁇ m is wound in a single layer with 36 to 60 turns.
- a coil 70 is formed by winding.
- a flexible printed circuit (FPC) 72 is arranged in the concave portion 14C1 of the substrate supporting portion 14C of the second housing portion 14. As shown in FIG. A flexible printed circuit board (FPC) 72 extends from the inner peripheral side of the coil 70 to the outside of the second long side wall portion 14B4. Two electrodes 72A and 72B are provided in a region outside the second long side wall portion 14B4 of the flexible printed circuit board (FPC) 72 . Conductor wires drawn from the inner and outer peripheries of the coil 70 are electrically connected to electrodes 72A and 72B by wiring printed on a flexible printed circuit board (FPC) 72, respectively.
- FPC flexible printed circuit board
- the coil 70 can be connected to an electronic circuit of an electronic device such as a portable information terminal, which will be described later, via the electrodes 72A and 72B.
- the coil 70 can be energized by power supply from the electronic device side. Since the flexible printed circuit (FPC) 72 is arranged in the recess 14C1, it is possible to reliably supply power to the coil 70 while suppressing the dimension in the height direction. This can contribute to thinning (reducing the height) of the linear vibration motor 2 .
- FPC flexible printed circuit
- the fourth magnet M4 and the fifth magnet M5, which constitute the magnetic spring, are attached with metal parts 42 made of soft iron for enhancing the magnetic force, and magnet holders 40 (M4) and 40 (M5) are formed.
- the metal portions 42 of the magnet holders 40 (M4) and 40 (M5) have a central region 44 in contact with the magnets M4 and M5, respectively, and two extended regions 46 extending from the central region 44 along the short side S to both sides. have. Accordingly, it can be said that the magnet holders 40 (M4) and 40 (M5) are arranged along the two short sides S of the bottom surface portion 14A in plan view.
- the short side S means that the magnet holders 40 (M4) and 40 (M5) are arranged near the short side S or in contact with the short side S, and the magnet holders 40 (M4) and 40 ( M5) extends substantially parallel to the short side S.
- the openings 36A to 36D provided at the four corners are closed by the magnet holder 40 (M4), and the openings arranged along the short side S are closed.
- the parts 36B and 36D are closed by the magnet holder 40 (M5).
- Rare earth magnets such as neodymium-iron-boron or samarium-cobalt are used as materials for the fourth magnet M4 and the fifth magnet M5.
- a samarium-cobalt-based rare earth magnet that has a small temperature change rate of magnetic force and can stably exert the magnetic spring effect described later.
- an epoxy-based adhesive can be used for fixing the fourth magnet M4 and the fifth magnet to the metal portion 42.
- the vibrator 50 includes a weight portion 52, a first magnet M1, a second magnet M2 and a third magnet M3.
- Sleeves 54 for engaging the vibrator 50 with the shaft 60 are attached to both sides of the weight portion 52 .
- the weight portion 52 is formed of a laminated body, but instead of the laminated body, an integrally molded sintered body or molded body can be adopted.
- Each thin plate constituting the laminate includes a metal thin plate, a metal composite thin plate that is a composite material of metal powder and a resin material, a ceramic composite thin plate that is a composite material of ceramic powder and a resin material, metal powder and ceramic Included are resin-containing sheets, such as powder-free resin sheets.
- Materials for the thin metal plate and metal powder include tungsten and alloys containing it, stainless steel such as SUS304 (JIS/AISI304), aluminum and alloys containing it, and the like.
- As the material of the resin material for example, an olefinic thermoplastic elastomer or the like can be used.
- tungsten carbide can be used as tungsten carbide.
- the material of the thin plate should be a material with a large specific gravity such as tungsten or an alloy containing it. preferable.
- the plurality of thin plates are maintained in a laminated state by adhesion using, for example, an epoxy adhesive.
- the maintenance of the laminated state is not limited to the above. For example, methods such as spot welding may be used.
- the first magnet M1 which serves as the driving magnet, is arranged so that five magnets form a Halbach array along the vibration direction.
- the number of magnets forming the Halbach array of the first magnets M1 is not limited to five, and may include an odd number of three or more magnets arrayed along the vibration direction.
- a Halbach array is broadly referred to as an array of drive magnets that allows the magnetic field of the drive magnets to be concentrated between the drive magnets and the coil that drives the oscillator. Therefore, the number of magnets forming the Halbach array should be an odd number of 3 or more.
- the material of the first magnet M1 for example, a rare earth magnet such as a neodymium-iron-boron system or a samarium-cobalt system can be used.
- a rare earth magnet such as a neodymium-iron-boron system or a samarium-cobalt system
- An epoxy-based adhesive for example, can be used to fix the first magnet M1 to the weight portion 52 .
- a second magnet M2 and a third magnet M3 are attached to both ends of the vibrator 50 in the vibration direction.
- the second magnet M2 and the fourth magnet M4 attached to the housing 10, and the third magnet M3 and the fifth magnet M5 attached to the housing 10 are arranged to face each other so as to magnetically repel each other. ing.
- Each constitutes a magnetic spring mechanism for vibration of the vibrator 50 .
- the vibration of the vibrator 50 is transmitted to the housing 10 by this magnetic spring mechanism.
- Rare earth magnets such as neodymium-iron-boron or samarium-cobalt are used as materials for the second magnet M2 and the third magnet M3.
- a samarium-cobalt rare earth magnet that has a small rate of change in magnetic force with temperature and that can stably exhibit a magnetic spring effect to be described later.
- An epoxy-based adhesive for example, can be used to fix the second magnet M2 and the third magnet M3 to the weight portion 52 .
- the two shafts 60 are slidably inserted into sleeves 54 fixed to both sides of the weight portion 52 .
- “fit together by insertion” means inserting and fitting the shaft 60 into each sleeve 54 so that the play is suppressed with the accuracy defined by the dimensional tolerance.
- the shaft 60 can be made of stainless steel such as SUS304 (JIS/AISI304).
- FIG. 5 is an enlarged view of a state in which the first housing is attached on top of the second housing from the state shown in FIG. Fig. 30 is a perspective view showing the support of the shaft at 30;
- FIG. 6 is a side cross-sectional view schematically showing a state in which the first housing section is also attached, taken along a cross section AA in FIG. 7 is a side sectional view schematically showing section BB of FIG. 6.
- FIG. 5 is an enlarged view of a state in which the first housing is attached on top of the second housing from the state shown in FIG. Fig. 30 is a perspective view showing the support of the shaft at 30;
- FIG. 6 is a side cross-sectional view schematically showing a state in which the first housing section is also attached, taken along a cross section AA in FIG. 7 is a side sectional view schematically showing section BB of FIG. 6.
- the first projections 22A and 22B that constitute the first support portion 20 overlap one shaft 60 in a plan view and are separated from each other by a predetermined distance along the extending direction of one shaft 60. are placed.
- the second protrusions 32A and 32B that constitute the second support portion 30 are also positioned to overlap one shaft 60 in plan view, and extend a predetermined distance along the extending direction of the one shaft 60. placed apart. Therefore, the first protrusions 22A and 22B are arranged at positions overlapping the second protrusions 32A and 32B in plan view.
- one shaft 60 is sandwiched and supported from both upper and lower sides by the first protrusion 22A and the second protrusion 32A near one end, and is supported near the other end by the first protrusion 22B and the second protrusion 32A. It is sandwiched and supported from both upper and lower sides by the second protrusions 32B.
- the first projections 22C and 22D forming the first support portion 20 overlap the other shaft 60 in a plan view, and along the extension direction of the other shaft 60 are placed at a predetermined distance apart.
- the second protrusions 32C and 32D that constitute the second support portion 30 are arranged at positions overlapping the other shaft 60 in a plan view and spaced apart from each other by a predetermined distance along the extending direction of the other shaft 60. It is Therefore, the first protrusions 22C and 22D are arranged at positions overlapping the second protrusions 32C and 32D in plan view.
- the other shaft 60 is sandwiched and supported from both upper and lower sides by the first protrusion 22C and the second protrusion 32C near one end, and is supported near the other end by the first protrusion 22D and the second protrusion 32C. It is sandwiched and supported from both upper and lower sides by the second protrusions 32D.
- the shaft 60 is fixed so as to be bridged by the first support portion 20 and the second support portion 30 with a predetermined distance therebetween.
- the two shafts 60 can be arranged along the two long sides L of the bottom portion 14A of the second housing portion 14.
- “along the long side L” means that the shaft 60 is arranged in the vicinity of the long side L, and the extending direction of the shaft 60 is substantially parallel to the long side L.
- the shaft 60 is sandwiched and supported from both sides by the first support portion 20 and the second support portion 30, the shaft 60 can be reliably fixed. Since the first housing portion 12 and the second housing portion are made of thin metal plates, the shaft 60 is strongly sandwiched and held between the first support portion 20 and the second support portion 30 by the elastic force of this metal. can be done.
- first support portion 20 is configured by first projections 22A to 22D arranged at positions overlapping the second projections 32A to 32D in plan view on each shaft 60. As shown in FIG. Then, as described above, the first convex portions 22A to 22D are formed by bending the metal plate forming the first housing portion 12. As shown in FIG.
- the first convex portions 22A to 22D are also formed by bending a metal plate, the first support portion 20 having sufficient strength can be formed at low cost while saving space. This makes it possible to provide a low-cost, low-profile linear vibration motor 2 .
- a concave portion 34 is provided at the tip of the second convex portion 32C, and the shaft 60 is inserted into this concave portion 34.
- the shaft 60 is sandwiched and supported by the first support portion 20 and the second support portion 30 from both upper and lower sides, the horizontal movement of the shaft 60 can be restrained by the frictional force.
- the linear vibration motor 2 is subjected to a strong impact, it is more preferable to support the shaft 60 on the inner surface of the recess 34 .
- FIGS. 5 to 7 recesses 34 are formed by notching the tips of the second protrusions 32A to 32D.
- the concave portion 34 is not limited to being formed by a notch.
- recesses 34 can be formed by bending a metal plate.
- FIG. 11A is a side cross-sectional view schematically showing another example of the shaft support structure.
- FIG. 11B is a side sectional view schematically showing section BB of FIG. 11A.
- FIG. 11C is a diagram for explaining a method of forming recesses by bending metal. In FIG.
- the part showing the lower second housing part 14 is simplified and shown as a rectangle, and the parts corresponding to ⁇ 1 to ⁇ 4 are placed in four places corresponding to the second convex parts 32A to 32D. It is formed.
- recesses 34 as shown in FIGS. 11A and 11B can be formed.
- the extension region 46 of the metal portion 42 of the magnet holder 40 has a hook shape composed of a rear portion 46A, a bottom portion 46B and a front portion 46C, which are formed by bending a metal plate.
- the rear portion 46A is connected to the central region 44 of the metal portion 42 and is in contact with the second short side wall portion 14B1 (14B2).
- the shaft 60 passes over the front portion 46C, and the end surface of the shaft 60 is arranged to closely face the rear portion 46A supported by the second short side wall portions 14B1 (14B2). ing. Thereby, the movement of the shaft 60 in the vibrating direction can be restrained by the rear portion 46A.
- the front portion 46C instead of forming the front portion 46C with a lower height, it is also possible to provide a recess through which the shaft 60 passes through the front portion 46C.
- the bottom surface portion 46B of the metal portion 42 of the magnet holder 40 can cover the openings 36C (36A, B, D) that are formed in the bottom surface portion 14A by notching or bending. Furthermore, the front surface portion 46C of the metal portion 42 of the magnet holder 40 is in contact with the second protrusions 32C (32A, 32B, 32D). Therefore, the hook shape of the extension region 46 can effectively support the second protrusions 32C (32A, 32B, 32D).
- FIG. 8 is a side sectional view schematically showing a modification of the embodiment shown in FIG. 6.
- FIG. 8 regarding the hook shape provided in the extension region 46' of the metal portion 42 of the magnet holder 40, the heights of the rear surface portion 46A' and the front surface portion 46C' are formed low.
- the shaft 60 passes over the rear surface portion 46A' and the front surface portion 46C', and the end surface of the shaft 60 faces the second short wall portion 14B1 (B2) of the second housing portion 14 in close proximity.
- the movement of the shaft 60 in the vibrating direction is restrained by the second short side wall portions 14B1 and 14B2 facing both end faces of the shaft 60.
- displacement of the shaft 60 in the vibrating direction can be suppressed without adding another restraining member.
- recesses for allowing the shaft 60 to pass through may be provided in the rear portion 46A' and the front portion 46C'.
- FIG. 9 is a side sectional view schematically showing a modification of the embodiment shown in FIG. 7.
- the first projections 22A to 22D are not formed on the first housing portion 12, and instead, a sheet-like elastic member 24 is arranged as the first support portion 20.
- the elastic member 24 and the second protrusions 32C (32A, 32B, 32D) formed on the second housing portion 14 sandwich and support the shaft 60 from both upper and lower sides. At this time, the elastic member is compressed to some extent, and the shaft 60 can be reliably held by the elastic force of the elastic member.
- the linear vibration motor 2 including modifications, A housing 10 formed by joining a first housing portion 12 having at least a top surface portion 12A and a second housing portion 14 having at least a bottom surface portion 14A, a vibrator 50 housed in the housing 10, and two shafts 60 arranged substantially parallel along the vibration direction of the vibrator 50 in the housing 10 and supporting the vibrator 50 in a vibrating state.
- the shafts 60 are provided in the first housing.
- a first support portion 20 provided in the portion 12 and a second support portion 30 provided in the second housing portion 14 are supported in a sandwiched state from both sides, and the second support portions 30 are supported by the respective shafts.
- two second protrusions 32A and 32B or 32C and 32D are arranged at a position overlapping the shaft 60 in plan view and separated by a predetermined distance along the extension direction of the shaft.
- the portions 32A to 32D are formed by bending a metal plate forming the second housing portion 14. As shown in FIG.
- the shaft 60 Since the shaft 60 is sandwiched and supported from both sides by the first support portion 20 and the second support portion 30, the shaft 60 can be securely fixed, and the second protrusions 32A to 32D are formed by bending a metal plate. Therefore, it is possible to form the second support portion 30 which is space-saving and has sufficient strength at low cost. This makes it possible to provide a low-cost, low-profile linear vibration motor 2 .
- the thinning of the linear vibrating motor 2 allows the device housing to be thinned. This makes it possible to reduce the thickness of the electronic device, and moreover, many electronic components can be mounted inside the thin device housing, so that the layout of the battery, which is becoming higher in capacity, is not hindered.
- Linear vibration motor 10 Housing 12 First housing portion 12A Top surface portion 12B First side wall portions 12B1, 12B2 First short side wall portions 12B3, 12B4 First long side wall portion 14 Second housing portion 14A Bottom portion 14B Second side wall Portions 14B1, 14B2 Second short side wall portions 14B3, 14B4 Second long side wall portion 14C Substrate support portion 14C1 Recess 14D Support portion 20 First support portions 22A to 22D First projection 24 Elastic member 30 Second support portions 32A to 32D 2 convex portions 34 recessed portions 36A to 36D openings 40, 40 (M4), 40 (M5) magnet holder 42 metal portion 44 central regions 46, 46' extension regions 46A, 46A' rear portions 46B, 46B' bottom portions 46C, 46C ' Front part 50 Vibrator 52 Weight part 54 Sleeve 60 Shaft 70 Coil 72 Flexible printed circuit board (FPC) 72A Electrode M1 Second magnet M2 Second magnet M3 Third magnet M4 Fourth magnet M5 Fifth magnet L Long side S Short side CA, CB, CC, CD Corner
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Reciprocating, Oscillating Or Vibrating Motors (AREA)
Abstract
In order to provide a short linear vibration motor at low cost, the present invention provides a linear vibration motor 2 comprising: a casing 10 that is formed by joining a first casing part 12 having at least a top plane part 12A and a second casing part 14 having at least a bottom plane part 14A; a vibrator 50 housed in the casing 10; and two shafts 60 that are arranged, within the casing 10, in approximately parallel with each other along the vibration direction of the vibrator 50 and that support the vibrator 50 in the state where the vibrator 50 can vibrate. The shafts 60 are supported in the state where the shafts 60 are sandwiched from both sides by a first supporting part 20 provided to the first casing part 12 and a second supporting part 30 provided to the second casing part 14. The second supporting part 30 is composed of two second protrusions 32A and 32B or 32C and 32D which are arranged at a predetermined distance along the extending direction of a shaft 60 at a position overlapping the shaft 60 in a plan view. The second protrusions 32A to 32D are formed by bending a metal plate that forms the second casing part 14.
Description
本発明は、コイルに通電して振動子を振動させるリニア振動モータに関する。
The present invention relates to a linear vibration motor that energizes a coil to vibrate a vibrator.
携帯型情報端末等の電子機器には、皮膚感覚フィードバックのため、またはキー操作や着信等を振動で確認するため等の振動発生装置として、リニア振動モータが用いられることがある。このリニア振動モータの一例として、特許文献1に記載されたリニア振動モータが挙げられる。図10Aは、特許文献1に記載されたリニア振動モータの実施例1を示す分解斜視図であり、図10Bは、特許文献1に記載されたリニア振動モータの実施例2を示す分解斜視図である。何れも、底壁部と、底壁部の周囲を囲む周壁部と、それらの上側を覆う天井壁部とで筐体が構成されている。この筐体の中に、2本のガイドシャフトにより摺動可能に保持された可動子が収納されている。
In electronic devices such as portable information terminals, linear vibration motors are sometimes used as vibration generating devices for tactile feedback or for confirming key operations, incoming calls, etc. by vibration. As an example of this linear vibrating motor, there is a linear vibrating motor described in Patent Document 1. FIG. 10A is an exploded perspective view showing Example 1 of the linear vibration motor described in Patent Document 1, and FIG. 10B is an exploded perspective view showing Example 2 of the linear vibration motor described in Patent Document 1. be. In any case, a housing is composed of a bottom wall portion, a peripheral wall portion surrounding the bottom wall portion, and a ceiling wall portion covering the upper side thereof. A mover slidably held by two guide shafts is housed in this housing.
図10Aに示す実施例1では、中間部材で2本のガイドシャフトの両端が支持された構造を有する。この構造では、中間部材を筐体内に収容する必要があるので、筐体を低背化するのが困難となる。
一方、図10Bに示す実施例2では、中間部材がなく、周壁部の一部にU字溝を設けることで、ガイドシャフトを支持する構造となっている。しかし、周壁部と底壁部とを溶接で接合しており、製造に高いコストを要する。仮に、周壁部と底壁部とを同一の金属板で作ろうとすると、U字溝を設けるために周壁部の機械的強度が下がるので、板厚の厚い金属板を使わなければならず、やはり低背化には不利となる。 Example 1 shown in FIG. 10A has a structure in which both ends of two guide shafts are supported by an intermediate member. With this structure, it is difficult to reduce the height of the housing because it is necessary to accommodate the intermediate member in the housing.
On the other hand, in Example 2 shown in FIG. 10B, there is no intermediate member, and a U-shaped groove is provided in a part of the peripheral wall to support the guide shaft. However, the peripheral wall portion and the bottom wall portion are joined by welding, which requires high manufacturing costs. If the peripheral wall portion and the bottom wall portion were to be made of the same metal plate, the mechanical strength of the peripheral wall portion would be reduced due to the provision of the U-shaped groove, so a thick metal plate would have to be used. This is disadvantageous in reducing the height.
一方、図10Bに示す実施例2では、中間部材がなく、周壁部の一部にU字溝を設けることで、ガイドシャフトを支持する構造となっている。しかし、周壁部と底壁部とを溶接で接合しており、製造に高いコストを要する。仮に、周壁部と底壁部とを同一の金属板で作ろうとすると、U字溝を設けるために周壁部の機械的強度が下がるので、板厚の厚い金属板を使わなければならず、やはり低背化には不利となる。 Example 1 shown in FIG. 10A has a structure in which both ends of two guide shafts are supported by an intermediate member. With this structure, it is difficult to reduce the height of the housing because it is necessary to accommodate the intermediate member in the housing.
On the other hand, in Example 2 shown in FIG. 10B, there is no intermediate member, and a U-shaped groove is provided in a part of the peripheral wall to support the guide shaft. However, the peripheral wall portion and the bottom wall portion are joined by welding, which requires high manufacturing costs. If the peripheral wall portion and the bottom wall portion were to be made of the same metal plate, the mechanical strength of the peripheral wall portion would be reduced due to the provision of the U-shaped groove, so a thick metal plate would have to be used. This is disadvantageous in reducing the height.
この開示の目的は、低コストで低背のリニア振動モータを提供することである。
The purpose of this disclosure is to provide a low-cost, low-profile linear vibration motor.
本開示の1つの態様に係るリニア振動モータは、
少なくとも天面部を有する第1筐体部及び少なくとも底面部を有する第2筐体部が接合されて形成された筐体と、
前記筐体内に収容された振動子と、
前記筐体内において、前記振動子の振動方向に沿って略平行に配置され、前記振動子を振動可能な状態で支持する2本のシャフトと、
を備え、
前記シャフトは、前記第1筐体部に備えられた第1支持部と、前記第2筐体部に備えられた第2支持部とで両側から挟まれた状態で支持され、
前記第2支持部が、それぞれの前記シャフトにおいて、平面視で前記シャフトと重なる位置であって、前記シャフトの伸延方向に沿って所定の距離離れて配置された2つの第2凸部で構成され、
前記第2凸部が、前記第2筐体部を構成する金属板の曲げ加工により形成されている。 A linear vibration motor according to one aspect of the present disclosure includes:
a housing formed by joining a first housing portion having at least a top surface portion and a second housing portion having at least a bottom surface portion;
a vibrator housed in the housing;
two shafts arranged substantially in parallel along the vibration direction of the vibrator in the housing and supporting the vibrator in a vibrating state;
with
The shaft is supported in a state of being sandwiched from both sides by a first support portion provided in the first housing portion and a second support portion provided in the second housing portion,
The second supporting portion is composed of two second convex portions arranged on each of the shafts at a position overlapping the shaft in a plan view and separated from each other by a predetermined distance along the extension direction of the shaft. ,
The second convex portion is formed by bending a metal plate forming the second housing portion.
少なくとも天面部を有する第1筐体部及び少なくとも底面部を有する第2筐体部が接合されて形成された筐体と、
前記筐体内に収容された振動子と、
前記筐体内において、前記振動子の振動方向に沿って略平行に配置され、前記振動子を振動可能な状態で支持する2本のシャフトと、
を備え、
前記シャフトは、前記第1筐体部に備えられた第1支持部と、前記第2筐体部に備えられた第2支持部とで両側から挟まれた状態で支持され、
前記第2支持部が、それぞれの前記シャフトにおいて、平面視で前記シャフトと重なる位置であって、前記シャフトの伸延方向に沿って所定の距離離れて配置された2つの第2凸部で構成され、
前記第2凸部が、前記第2筐体部を構成する金属板の曲げ加工により形成されている。 A linear vibration motor according to one aspect of the present disclosure includes:
a housing formed by joining a first housing portion having at least a top surface portion and a second housing portion having at least a bottom surface portion;
a vibrator housed in the housing;
two shafts arranged substantially in parallel along the vibration direction of the vibrator in the housing and supporting the vibrator in a vibrating state;
with
The shaft is supported in a state of being sandwiched from both sides by a first support portion provided in the first housing portion and a second support portion provided in the second housing portion,
The second supporting portion is composed of two second convex portions arranged on each of the shafts at a position overlapping the shaft in a plan view and separated from each other by a predetermined distance along the extension direction of the shaft. ,
The second convex portion is formed by bending a metal plate forming the second housing portion.
本開示によれば、低コストで低背のリニア振動モータを提供することができる。
According to the present disclosure, a low-cost and low-profile linear vibration motor can be provided.
以降、図面を参照しながら、本発明を実施するための実施形態、変形例を説明する。各図面中、同一の機能を有する対応する部材には、同一符号を付している。後述の実施形態や変形例の説明では、前述と共通の事柄についての記述を省略し、異なる点についてのみ説明する。以下の記載や図面における上下方向は、リニア振動モータが略水平な面に置かれた場合における上下方向を示す。
Hereinafter, embodiments and modifications for carrying out the present invention will be described with reference to the drawings. Corresponding members having the same function are denoted by the same reference numerals in each drawing. In the description of the embodiments and modifications that will be described later, descriptions of matters common to those described above will be omitted, and only differences will be described. The vertical direction in the following description and drawings indicates the vertical direction when the linear vibration motor is placed on a substantially horizontal surface.
(1つの実施形態に係るリニア振動モータ)
はじめに、筐体に主要な部材が装着された状態を示す斜視図である図4及び図5を参照しながら、本発明の1つの実施形態に係るリニア振動モータの概要の説明を行う。リニア振動モータ2は、筐体10と、筐体10内に収容された振動子50とを備える。筐体10は、天面部を有する第1筐体部12と、底面部を有する第2筐体部14とが接合されて構成されている。振動子50は、2本のシャフト60により振動可能な状態で支持されている。2本のシャフト60は、それぞれ、第1筐体部12に設けられた第1支持部20と、第2筐体部14に設けられた第2支持部30とにより支持されている。 (Linear vibration motor according to one embodiment)
First, an outline of a linear vibration motor according to one embodiment of the present invention will be described with reference to FIGS. Thelinear vibration motor 2 includes a housing 10 and a vibrator 50 housed within the housing 10 . The housing 10 is configured by joining a first housing section 12 having a top surface and a second housing section 14 having a bottom surface. The vibrator 50 is supported by two shafts 60 so as to vibrate. The two shafts 60 are respectively supported by a first support portion 20 provided on the first housing portion 12 and a second support portion 30 provided on the second housing portion 14 .
はじめに、筐体に主要な部材が装着された状態を示す斜視図である図4及び図5を参照しながら、本発明の1つの実施形態に係るリニア振動モータの概要の説明を行う。リニア振動モータ2は、筐体10と、筐体10内に収容された振動子50とを備える。筐体10は、天面部を有する第1筐体部12と、底面部を有する第2筐体部14とが接合されて構成されている。振動子50は、2本のシャフト60により振動可能な状態で支持されている。2本のシャフト60は、それぞれ、第1筐体部12に設けられた第1支持部20と、第2筐体部14に設けられた第2支持部30とにより支持されている。 (Linear vibration motor according to one embodiment)
First, an outline of a linear vibration motor according to one embodiment of the present invention will be described with reference to FIGS. The
振動子50は、錘部52及び第1磁石M1を備え、更に、震動方向の両端に第2磁石M2及び第3磁石M3を備える。第2筐体部14には、コイル70(図3参照)と、第4磁石M4を有する磁石ホルダ40(M4)及び第5磁石M5を有する磁石ホルダ40(M5)とが取り付けられている。第2筐体部14の底面部14Aに配置されたフレキシブル基板(FPC)72を介してコイル70に給電すると、磁界が発生し、振動子50の第1磁石M1に駆動力が加えられ、振動子50が振動する。それぞれ対向して配置された同極の第2磁石M2(振動子側)及び第4磁石M4(筐体側)と、に第3磁石M3(振動子側)及び第5磁石M5(筐体側)とにより、磁気ばねを構成する。この磁気ばねにより、振動子50の振動を本体10に強く伝えることができる。
The vibrator 50 includes a weight portion 52 and a first magnet M1, and further includes a second magnet M2 and a third magnet M3 at both ends in the vibrating direction. A coil 70 (see FIG. 3), a magnet holder 40 (M4) having a fourth magnet M4 and a magnet holder 40 (M5) having a fifth magnet M5 are attached to the second housing portion 14 . When power is supplied to the coil 70 via the flexible printed circuit (FPC) 72 arranged on the bottom surface portion 14A of the second housing portion 14, a magnetic field is generated, and a driving force is applied to the first magnet M1 of the vibrator 50 to vibrate. Child 50 vibrates. A second magnet M2 (on the vibrator side) and a fourth magnet M4 (on the housing side), and a third magnet M3 (on the vibrator side) and a fifth magnet M5 (on the housing side), which are arranged to face each other. constitute a magnetic spring. This magnetic spring can strongly transmit the vibration of the vibrator 50 to the main body 10 .
<筐体>
次に、図1A、図1B及び図2を参照しながら、本実施形態に係る筐体の説明を行う。図1Aは、本発明の1つの実施形態に係るリニア振動モータの筐体を構成する第1筐体部を上面側から見た斜視図である。図1Bは、図1Aに示す第1筐体部を、下面側から見た斜視図である。図2は、本発明の1つの実施形態に係るリニア振動モータの筐体を構成する第2筐体部を上面側から見た斜視図である。 <Case>
Next, the housing according to this embodiment will be described with reference to FIGS. 1A, 1B, and 2. FIG. FIG. 1A is a top perspective view of a first housing part that constitutes a housing of a linear vibration motor according to one embodiment of the present invention. FIG. 1B is a perspective view of the first housing shown in FIG. 1A as viewed from below. FIG. 2 is a perspective view of the second housing part that constitutes the housing of the linear vibration motor according to one embodiment of the present invention, viewed from the upper surface side.
次に、図1A、図1B及び図2を参照しながら、本実施形態に係る筐体の説明を行う。図1Aは、本発明の1つの実施形態に係るリニア振動モータの筐体を構成する第1筐体部を上面側から見た斜視図である。図1Bは、図1Aに示す第1筐体部を、下面側から見た斜視図である。図2は、本発明の1つの実施形態に係るリニア振動モータの筐体を構成する第2筐体部を上面側から見た斜視図である。 <Case>
Next, the housing according to this embodiment will be described with reference to FIGS. 1A, 1B, and 2. FIG. FIG. 1A is a top perspective view of a first housing part that constitutes a housing of a linear vibration motor according to one embodiment of the present invention. FIG. 1B is a perspective view of the first housing shown in FIG. 1A as viewed from below. FIG. 2 is a perspective view of the second housing part that constitutes the housing of the linear vibration motor according to one embodiment of the present invention, viewed from the upper surface side.
筐体10は、第1筐体部12と第2筐体部14とが接合されて形成されている。第1筐体部12は、1枚の金属板を曲げ加工することにより形成されている。第1筐体部12は、略矩形の平面形状を有する天面部12Aと、天面部12Aの周囲を囲む第1側壁部12Bとで構成されている。第1側壁部12Bは、天面部12Aとその短辺Sで繋がった第1短側壁部12B1及び12B2と、天面部12Aとその長辺Lで繋がった第1長側壁部12B3及び12B4とで構成されている。天面部12Aと第1側壁部12Bとが、略直交するように曲げ加工されている。
The housing 10 is formed by joining a first housing portion 12 and a second housing portion 14 . The first housing portion 12 is formed by bending one metal plate. The first housing portion 12 includes a top surface portion 12A having a substantially rectangular planar shape and first side wall portions 12B surrounding the top surface portion 12A. The first side wall portion 12B is composed of first short side wall portions 12B1 and 12B2 connected to the top surface portion 12A at its short side S, and first long side wall portions 12B3 and 12B4 connected to the top surface portion 12A at its long side L. It is The top surface portion 12A and the first side wall portion 12B are bent so as to be substantially perpendicular to each other.
第2筐体部14も、1枚の金属板を曲げ加工することにより形成されている。第2筐体部14は、略矩形の平面形状を有する底面部14Aと、底面部14Aの周囲を囲む第2側壁部14Bとで構成されている。第2側壁部14Bは、底面部14Aとその短辺Sで繋がった第2短側壁部14B1及び14B2と、底面部14Aとその長辺Lで繋がった第2長側壁部14B3及び14B4とで構成されている。底面部14Aと第2側壁部14Bとが、略直交するように曲げ加工されている。
The second housing part 14 is also formed by bending one metal plate. The second housing portion 14 is composed of a bottom portion 14A having a substantially rectangular planar shape and a second side wall portion 14B surrounding the bottom portion 14A. The second side wall portion 14B is composed of second short side wall portions 14B1 and 14B2 connected to the bottom surface portion 14A at its short side S, and second long side wall portions 14B3 and 14B4 connected to the bottom surface portion 14A at its long side L. It is The bottom portion 14A and the second side wall portion 14B are bent so as to be substantially perpendicular to each other.
本実施形態では、第1筐体部12の第1側壁部12B及び第2筐体部14の第2側壁部14Bの少なくとも一部が重なり合うように、第1筐体部12及び第2筐体部14が嵌合して筐体10を形成している。このとき、第1筐体部12の第1側壁部12Bが、第2筐体部14の第2側壁部14Bの外側を囲むように嵌合する。更に詳細に述べれば、第2短側壁部14B1の外側に第1短側壁部12B1が重なるように配置され、第2長側壁部14B3の外側に第1長側壁部12B3が重なるように配置され、第2短側壁部14B2の外側に第1短側壁部12B2が重なるように配置され、第2長側壁部14B4の外側に第1長側壁部12B4が重なるように配置される。
In the present embodiment, the first housing portion 12 and the second housing are arranged such that at least a portion of the first side wall portion 12B of the first housing portion 12 and the second side wall portion 14B of the second housing portion 14 overlap each other. The portion 14 is fitted to form the housing 10 . At this time, the first side wall portion 12B of the first housing portion 12 is fitted so as to surround the second side wall portion 14B of the second housing portion 14 . More specifically, the first short side wall portion 12B1 is arranged to overlap on the outside of the second short side wall portion 14B1, the first long side wall portion 12B3 is arranged to overlap on the outside of the second long side wall portion 14B3, The first short side wall portion 12B2 is arranged to overlap on the outside of the second short side wall portion 14B2, and the first long side wall portion 12B4 is arranged to overlap on the outside of the second long side wall portion 14B4.
更に、第1筐体部12及び第2筐体部14には、それぞれ、振動子50を振動可能に保持する2本のシャフト60を支持する第1支持部20及び第2支持部30が形成されている。
Further, the first housing portion 12 and the second housing portion 14 are formed with a first support portion 20 and a second support portion 30, respectively, which support two shafts 60 that hold the vibrator 50 so as to vibrate. It is
第1筐体部12の天面部12Aの四隅の各々に、切り込みが入れられ、折り曲げられて形成された4つの第1凸部22A~22Dを有する。第1短側壁部12B1及び第1長側壁部12B3の間のコーナー領域CAに、第1凸部22Aが形成され、第1長側壁部12B3及び第1短側壁部12B2の間のコーナー領域CBに、第1凸部22Bが形成され、第1短側壁部12B2及び第1長側壁部12B4の間のコーナー領域CDに、第1凸部22Dが形成され、第1長側壁部12B4及び第1短側壁部12B1の間のコーナー領域CCに、第1凸部22Cが形成されている。本実施形態では、4つの第1凸部22A~22Dにより、第1支持部20が構成されている。
Each of the four corners of the top surface portion 12A of the first housing portion 12 has four first protrusions 22A to 22D that are formed by being cut and bent. A first convex portion 22A is formed in a corner region CA between the first short side wall portion 12B1 and the first long side wall portion 12B3, and a corner region CB between the first long side wall portion 12B3 and the first short side wall portion 12B2. , a first convex portion 22B is formed, a first convex portion 22D is formed in a corner region CD between the first short side wall portion 12B2 and the first long side wall portion 12B4, and the first long side wall portion 12B4 and the first short side wall portion 12B4 are formed in the corner region CD. A first convex portion 22C is formed in the corner region CC between the side wall portions 12B1. In this embodiment, the first supporting portion 20 is configured by the four first protrusions 22A to 22D.
一方、第2筐体部14の底面部14Aの四隅の各々に、一部が切り欠かれ一部が折り曲げられて形成された4つの第2凸部32A~32Dと、切り欠き及び折り曲げにより生じた4つの開口部36A~36Dとを有する。第2短側壁部14B1及び第2長側壁部14B3の間のコーナー領域CAに、第2凸部32Aと開口部36Aとが形成され、第2長側壁部14B3及び第2短側壁部14B2の間のコーナー領域CBに、第2凸部32Bと開口部36Bとが形成され、第2短側壁部14B2及び第2長側壁部14B4の間のコーナー領域CDに、第2凸部32Dと開口部36Dとが形成され、第2長側壁部14B4及び第2短側壁部14B1の間のコーナー領域CCに、第2凸部32Cと開口部36Cとが形成されている。本実施形態では、4つの第2凸部32A~32Dにより、第2支持部30が構成されている。
On the other hand, at each of the four corners of the bottom surface portion 14A of the second housing portion 14, there are four second convex portions 32A to 32D formed by partially notching and partially bending, and formed by notching and bending. It has four openings 36A-36D. A corner region CA between the second short side wall portion 14B1 and the second long side wall portion 14B3 is formed with a second convex portion 32A and an opening portion 36A. A second convex portion 32B and an opening 36B are formed in the corner region CB of the second convex portion 32B and an opening portion 36B, and a second convex portion 32D and an opening portion 36D are formed in the corner region CD between the second short side wall portion 14B2 and the second long side wall portion 14B4. are formed, and a second convex portion 32C and an opening 36C are formed in a corner region CC between the second long side wall portion 14B4 and the second short side wall portion 14B1. In this embodiment, the second support portion 30 is configured by the four second convex portions 32A to 32D.
第2長側壁部14B4は、中央の領域が切り欠かかれており、その領域に、底面部14Aが外側に延びた基板支持部14Cが形成されている。基板支持部14Cは、第2長側壁部14B4の外側にまで延びている。基板支持部14Cの外縁部を除く内側領域には、凹部14C1が形成されている。後述するように、この基板支持部14Cの凹部14C1内に、フレキシブル基板(FPC)72が配置される。また、底面部14Aと第2側壁部14Bとの境界である長辺L及び短辺Sの一部に切り込みが入れられており、金属板が折り曲げられていないサポート部14Dが形成されている。サポート部14Dの先端部は、僅かであるが第2側壁部14Bの外側にまで延びている。
A central region of the second long side wall portion 14B4 is cut away, and a substrate support portion 14C is formed in the region with the bottom surface portion 14A extending outward. The substrate support portion 14C extends to the outside of the second long side wall portion 14B4. A concave portion 14C1 is formed in an inner region of the substrate supporting portion 14C excluding the outer edge portion. As will be described later, a flexible printed circuit board (FPC) 72 is placed in the concave portion 14C1 of the printed circuit board support portion 14C. A part of the long side L and the short side S, which are the boundaries between the bottom surface portion 14A and the second side wall portion 14B, are notched to form a support portion 14D in which the metal plate is not bent. The tip of the support portion 14D extends slightly outside the second side wall portion 14B.
本実施形態では、第1筐体部12及び第2筐体部14を嵌合させた状態で、溶接等により両者を接して、筐体10を形成する。このとき、第2筐体部14の第2側壁部14Bから僅かに外側に飛び出た複数のサポート部14Dにより、嵌合された第1筐体部12の下部を支持することができる。また、第1筐体部12及び第2筐体部14を溶接で接合するとき、サポート部14Dを隅肉溶接のベースとすることもできる。このような嵌合構造により、外部と隔たれた内部空間を有する筐体10が得られる。ただし、サポート部14Dを設けない場合もあり得る。
In the present embodiment, the housing 10 is formed by joining the first housing portion 12 and the second housing portion 14 together by welding or the like. At this time, a plurality of support portions 14D protruding slightly outward from the second side wall portion 14B of the second housing portion 14 can support the lower portion of the fitted first housing portion 12 . Further, when joining the first housing portion 12 and the second housing portion 14 by welding, the support portion 14D can be used as a base for fillet welding. With such a fitting structure, the housing 10 having an internal space separated from the outside can be obtained. However, there may be a case where the support portion 14D is not provided.
このように、曲げ加工で形成された第1側壁部12B及び第2側壁部14Bにより、第1筐体部12及び第2筐体部14は高い剛性を有し、嵌合構造により堅固に接合される。これにより、高い強度を有する筐体10が得られる。
Thus, the first housing portion 12 and the second housing portion 14 have high rigidity due to the first side wall portion 12B and the second side wall portion 14B formed by bending, and are firmly joined by the fitting structure. be done. Thereby, the housing 10 having high strength is obtained.
このように第1筐体部12及び第2筐体部14が嵌合されて接合されたとき、平面視において、4隅に形成された第1凸部22A~22Dと第2凸部32A~32Dとが、それぞれ重なり合う位置に配置されている。これにより、第1凸部22A~22Dと第2凸部32A~32Dとで、振動子50を支えるシャフト60を上下両側から挟み込んで支持することができる。なお、詳細は後述する。
When the first casing portion 12 and the second casing portion 14 are fitted and joined in this way, in a plan view, the first projections 22A to 22D and the second projections 32A to 32D formed at the four corners 32D are arranged at overlapping positions. As a result, the shaft 60 supporting the vibrator 50 can be sandwiched and supported from both upper and lower sides by the first protrusions 22A to 22D and the second protrusions 32A to 32D. Details will be described later.
本実施形態では、第1筐体部12及び第2筐体部14が、ステンレス鋼板のような非磁性の金属板から形成されている。特に、曲げ加工の多い第2筐体部14では、加工後も非磁性の特性を確実に維持できるようにするため、例えばSUS316(JIS/AISI316)を用いることが好ましい。ただし、加工量によっては、一般的なステンレス鋼であるSUS304(JIS/AISI304)を用いることもできる。第1筐体部12は、第2筐体部14に比べて曲げ加工が少ないので、SUS304(JIS/AISI304)を用いることができる。なお、本実施形態では、振動子側に駆動磁石を備えているが、振動子側にコイルを備え、筐体側に駆動磁石を備える場合には、筐体を、磁性を有する金属で形成して、駆動磁石の磁力を増強させることもできる。
In this embodiment, the first housing part 12 and the second housing part 14 are formed from non-magnetic metal plates such as stainless steel plates. In particular, for the second housing portion 14, which is often bent, it is preferable to use, for example, SUS316 (JIS/AISI316) in order to ensure that the non-magnetic properties are maintained even after processing. However, depending on the amount of processing, SUS304 (JIS/AISI304), which is a general stainless steel, can also be used. SUS304 (JIS/AISI304) can be used for the first housing part 12 because it requires less bending than the second housing part 14 . In this embodiment, the drive magnet is provided on the vibrator side. , the magnetic force of the drive magnet can also be increased.
本実施形態では、第1筐体部12及び第2筐体部14を構成する金属板の厚みとしては、0.1~0.5mm程度を例示できる。本実施形態に係る筐体10の縦(短辺)、横(長辺)、高さ寸法は、それぞれ約12mm、約19mm、約1.6mmであるが、あくまで一例に過ぎず、その他の任意の寸法の筐体を採用することができる。何れの場合であっても、低背な(高さの低い)筐体10が好ましい。
In the present embodiment, the thickness of the metal plates that constitute the first casing portion 12 and the second casing portion 14 can be exemplified to be approximately 0.1 to 0.5 mm. The vertical (short side), horizontal (long side), and height dimensions of the housing 10 according to the present embodiment are approximately 12 mm, approximately 19 mm, and approximately 1.6 mm, respectively. can be adopted. In any case, a low profile (low height) housing 10 is preferred.
以上のように、第1筐体部12は、1枚の金属板を曲げ加工することにより形成されているので、十分な強度を有する筐体を低コストで得ることができる。同様に、第2筐体部14も、1枚の金属板を曲げ加工することにより形成されているので、十分な強度を有する筐体を低コストで得ることができる。特に、金属は厚みが薄くても十分な強度を有するので、筐体10の材料として、薄い金属板を用いることができる。これにより、高さの低い第1側壁部12Bや第2側壁部14Bを、確実に曲げ加工で形成することができ、よって、低コストで低背の筐体10を実現できる。
As described above, since the first housing portion 12 is formed by bending one metal plate, a housing having sufficient strength can be obtained at low cost. Similarly, since the second housing portion 14 is also formed by bending one metal plate, a housing having sufficient strength can be obtained at low cost. In particular, a thin metal plate can be used as the material of the housing 10 because metal has sufficient strength even if it is thin. As a result, the low first side wall portion 12B and the low second side wall portion 14B can be reliably formed by bending, so that the low-profile housing 10 can be realized at low cost.
(筐体内に収容される部材)
次に、図3、図4及び図5を参照しながら、筐体10内に収容される各部材の説明を行う。図3は、図2に示す第2筐体部にコイル、磁石、配線基板が装着され、更にシャフトに支持された振動子が装着されるところを模式的に示す分解斜視図である。図4は、図3に示す状態から、振動子が装着された後の第2筐体部を示す斜視図である。図5は、図4に示す状態から、第2筐体部の上に第1筐体部が取り付けられ状態の拡大図であって、第1支持部20及び第2支持部30でシャフトを支持するところを示す斜視図である。 (Members housed in the housing)
Next, each member accommodated in the housing 10 will be described with reference to FIGS. 3, 4 and 5. FIG. FIG. 3 is an exploded perspective view schematically showing that a coil, a magnet, and a wiring board are attached to the second housing portion shown in FIG. 2, and further a vibrator supported by a shaft is attached. FIG. 4 is a perspective view showing the second housing section after the vibrator is mounted in the state shown in FIG. 3. FIG. FIG. 5 is an enlarged view of a state in which the first housing is attached on the second housing from the state shown in FIG. It is a perspective view showing a place to do.
次に、図3、図4及び図5を参照しながら、筐体10内に収容される各部材の説明を行う。図3は、図2に示す第2筐体部にコイル、磁石、配線基板が装着され、更にシャフトに支持された振動子が装着されるところを模式的に示す分解斜視図である。図4は、図3に示す状態から、振動子が装着された後の第2筐体部を示す斜視図である。図5は、図4に示す状態から、第2筐体部の上に第1筐体部が取り付けられ状態の拡大図であって、第1支持部20及び第2支持部30でシャフトを支持するところを示す斜視図である。 (Members housed in the housing)
Next, each member accommodated in the housing 10 will be described with reference to FIGS. 3, 4 and 5. FIG. FIG. 3 is an exploded perspective view schematically showing that a coil, a magnet, and a wiring board are attached to the second housing portion shown in FIG. 2, and further a vibrator supported by a shaft is attached. FIG. 4 is a perspective view showing the second housing section after the vibrator is mounted in the state shown in FIG. 3. FIG. FIG. 5 is an enlarged view of a state in which the first housing is attached on the second housing from the state shown in FIG. It is a perspective view showing a place to do.
<コイル>
第2筐体部14の底面部14Aに配置されたコイル70は、仮想的な巻回軸線の周りに導体線が巻回されることにより形成されている。コイル70は、巻回軸線が底面部14Aの上面と略直交し、振動子50の第1磁石M1に対向するように、筐体10に固定されている。巻回軸線方向からコイル70を見たときの形状は、角部が丸められた矩形状である。平角線を単層巻きにすることでコイル70を形成することにより、コイル70の導体線の占積率を向上させるとともに、コイル70の軸方向における高さ寸法を小さく(コイル厚みを薄く)することができる。 <Coil>
Thecoil 70 arranged on the bottom surface portion 14A of the second housing portion 14 is formed by winding a conductor wire around an imaginary winding axis. The coil 70 is fixed to the housing 10 so that its winding axis is substantially perpendicular to the upper surface of the bottom surface portion 14A and faces the first magnet M1 of the vibrator 50 . The shape of the coil 70 when viewed from the winding axis direction is a rectangular shape with rounded corners. By forming the coil 70 by winding a flat wire in a single layer, the lamination factor of the conductor wire of the coil 70 is improved and the height dimension in the axial direction of the coil 70 is reduced (thickness of the coil is reduced). be able to.
第2筐体部14の底面部14Aに配置されたコイル70は、仮想的な巻回軸線の周りに導体線が巻回されることにより形成されている。コイル70は、巻回軸線が底面部14Aの上面と略直交し、振動子50の第1磁石M1に対向するように、筐体10に固定されている。巻回軸線方向からコイル70を見たときの形状は、角部が丸められた矩形状である。平角線を単層巻きにすることでコイル70を形成することにより、コイル70の導体線の占積率を向上させるとともに、コイル70の軸方向における高さ寸法を小さく(コイル厚みを薄く)することができる。 <Coil>
The
コイル70に電流が流れると、コイル70には、第1磁石M1の磁界により、磁界の向き及び電流の流れる向きのそれぞれと直交する向きのローレンツ力が加わる。一方、コイル70は、筐体10に固定されているので、第1磁石M1にローレンツ力の反力が加わる。従って、コイル70は、通電により第1磁石M1に、延いては振動子50に振動方向(長辺方向)に沿った駆動力を与えることができる。つまり、第1磁石M1は、リニア振動モータ2において、駆動磁石として機能している。
When a current flows through the coil 70, a Lorentz force is applied to the coil 70 by the magnetic field of the first magnet M1 in a direction orthogonal to the direction of the magnetic field and the direction of current flow. On the other hand, since the coil 70 is fixed to the housing 10, the reaction force of the Lorentz force is applied to the first magnet M1. Therefore, the coil 70 can apply a driving force along the vibration direction (long side direction) to the first magnet M1 and, by extension, to the vibrator 50 by energization. That is, the first magnet M1 functions as a driving magnet in the linear vibration motor 2. As shown in FIG.
上記のように、コイル70の軸線方向から見たときの形状が矩形状である場合、コイル70が円環状である場合よりも、上述のローレンツ力の方向が振動方向に揃いやすい。そのため、振動子50に与えられる振動方向に沿った駆動力が大きくなり好ましい。
As described above, when the coil 70 has a rectangular shape when viewed from the axial direction, the direction of the Lorentz force described above is more likely to align with the vibration direction than when the coil 70 is annular. Therefore, the driving force along the vibration direction applied to the vibrator 50 is increased, which is preferable.
本実施形態では、厚み0.02~0.05mm、幅0.14~0.15mmの芯線に厚み4μmのポリアミドイミドの絶縁膜が被覆された導体線が、36~60ターンの単層巻きで巻回されることによりコイル70が形成されている。ポリアミドイミドを含む絶縁膜を用いることにより、ポリウレタン等を含む絶縁膜を用いる場合に比べて、薄い厚みで十分な絶縁性能を得ることができる。よって、コイル70の小型化、延いてはリニア振動モータ2の小型化に貢献できる。
In this embodiment, a conductor wire in which a core wire having a thickness of 0.02 to 0.05 mm and a width of 0.14 to 0.15 mm is coated with a polyamideimide insulating film having a thickness of 4 μm is wound in a single layer with 36 to 60 turns. A coil 70 is formed by winding. By using an insulating film containing polyamide-imide, it is possible to obtain sufficient insulating performance with a small thickness compared to the case of using an insulating film containing polyurethane or the like. Therefore, it is possible to contribute to miniaturization of the coil 70 and thus miniaturization of the linear vibration motor 2 .
<フレキシブル基板>
フレキシブル基板(FPC)72が、第2筐体部14の基板支持部14Cの凹部14C1内に配置されている。フレキシブル基板(FPC)72は、コイル70の内周側から第2長側壁部14B4の外側まで延びている。フレキシブル基板(FPC)72の第2長側壁部14B4の外側の領域には、2つの電極72A、72Bが設けられている。フレキシブル基板(FPC)72にプリントされた配線により、コイル70の内外周から引き出された導体線が、それぞれ電極72A、72Bと電気的に繋がっている。 <Flexible substrate>
A flexible printed circuit (FPC) 72 is arranged in the concave portion 14C1 of thesubstrate supporting portion 14C of the second housing portion 14. As shown in FIG. A flexible printed circuit board (FPC) 72 extends from the inner peripheral side of the coil 70 to the outside of the second long side wall portion 14B4. Two electrodes 72A and 72B are provided in a region outside the second long side wall portion 14B4 of the flexible printed circuit board (FPC) 72 . Conductor wires drawn from the inner and outer peripheries of the coil 70 are electrically connected to electrodes 72A and 72B by wiring printed on a flexible printed circuit board (FPC) 72, respectively.
フレキシブル基板(FPC)72が、第2筐体部14の基板支持部14Cの凹部14C1内に配置されている。フレキシブル基板(FPC)72は、コイル70の内周側から第2長側壁部14B4の外側まで延びている。フレキシブル基板(FPC)72の第2長側壁部14B4の外側の領域には、2つの電極72A、72Bが設けられている。フレキシブル基板(FPC)72にプリントされた配線により、コイル70の内外周から引き出された導体線が、それぞれ電極72A、72Bと電気的に繋がっている。 <Flexible substrate>
A flexible printed circuit (FPC) 72 is arranged in the concave portion 14C1 of the
これにより、電極72A、72Bを介して、コイル70を、後述する携帯型情報端末等の電子機器の電子回路に接続することができる。電子機器側からの電力供給により、コイル70を通電することができる。フレキシブル基板(FPC)72は、凹部14C1内に配置されるので、高さ方向の寸法を抑えながら、確実にコイル70への給電を行うことができる。これにより、リニア振動モータ2の薄型化(低背化)に貢献できる。
Thereby, the coil 70 can be connected to an electronic circuit of an electronic device such as a portable information terminal, which will be described later, via the electrodes 72A and 72B. The coil 70 can be energized by power supply from the electronic device side. Since the flexible printed circuit (FPC) 72 is arranged in the recess 14C1, it is possible to reliably supply power to the coil 70 while suppressing the dimension in the height direction. This can contribute to thinning (reducing the height) of the linear vibration motor 2 .
<磁石ホルダ>
磁気ばねを構成する第4磁石M4及び第5磁石M5には、磁力を増強する軟鉄製の金属部42が取り付けられ、磁石ホルダ40(M4)、40(M5)が形成されている。磁石ホルダ40(M4)、40(M5)の金属部42は、それぞれ磁石M4、M5と接する中央領域44と、短辺Sに沿って中央領域44から両側に伸びた2つの伸延領域46とを有する。これにより、磁石ホルダ40(M4)、40(M5)は、平面視で底面部14Aの2つの短辺Sに沿って配置されていると言える。ここで「短辺Sに沿う」とは、磁石ホルダ40(M4)、40(M5)が短辺Sの近傍、または短辺Sに接するように配置され、磁石ホルダ40(M4)、40(M5)の延在方向が短辺Sと略平行となることを意味する。 <Magnet holder>
The fourth magnet M4 and the fifth magnet M5, which constitute the magnetic spring, are attached with metal parts 42 made of soft iron for enhancing the magnetic force, and magnet holders 40 (M4) and 40 (M5) are formed. The metal portions 42 of the magnet holders 40 (M4) and 40 (M5) have a central region 44 in contact with the magnets M4 and M5, respectively, and twoextended regions 46 extending from the central region 44 along the short side S to both sides. have. Accordingly, it can be said that the magnet holders 40 (M4) and 40 (M5) are arranged along the two short sides S of the bottom surface portion 14A in plan view. Here, "along the short side S" means that the magnet holders 40 (M4) and 40 (M5) are arranged near the short side S or in contact with the short side S, and the magnet holders 40 (M4) and 40 ( M5) extends substantially parallel to the short side S.
磁気ばねを構成する第4磁石M4及び第5磁石M5には、磁力を増強する軟鉄製の金属部42が取り付けられ、磁石ホルダ40(M4)、40(M5)が形成されている。磁石ホルダ40(M4)、40(M5)の金属部42は、それぞれ磁石M4、M5と接する中央領域44と、短辺Sに沿って中央領域44から両側に伸びた2つの伸延領域46とを有する。これにより、磁石ホルダ40(M4)、40(M5)は、平面視で底面部14Aの2つの短辺Sに沿って配置されていると言える。ここで「短辺Sに沿う」とは、磁石ホルダ40(M4)、40(M5)が短辺Sの近傍、または短辺Sに接するように配置され、磁石ホルダ40(M4)、40(M5)の延在方向が短辺Sと略平行となることを意味する。 <Magnet holder>
The fourth magnet M4 and the fifth magnet M5, which constitute the magnetic spring, are attached with metal parts 42 made of soft iron for enhancing the magnetic force, and magnet holders 40 (M4) and 40 (M5) are formed. The metal portions 42 of the magnet holders 40 (M4) and 40 (M5) have a central region 44 in contact with the magnets M4 and M5, respectively, and two
四隅に設けられた開口部36A~36Dのうち、短辺Sに沿って配置された開口部36A、36Cが、磁石ホルダ40(M4)により塞がれ、短辺Sに沿って配置された開口部36B、36Dが、磁石ホルダ40(M5)により塞がれている。磁石M4、M5の磁力を強めるための金属部42を磁石M4、M5の短辺S方向の両側に伸ばすことにより、切り欠き及び曲げ加工で生じた開口部36A~36Dを確実に塞ぐことができる。これにより、密閉性の高い筐体10を備えた信頼性の高いリニア振動モータを提供することができる。更に、図5、図6を用いて後述するように、磁石ホルダ40(M4)、40(M5)に、シャフト60の振動方向の移動を拘束する機能を持たせることもできる。
Of the openings 36A to 36D provided at the four corners, the openings 36A and 36C arranged along the short side S are closed by the magnet holder 40 (M4), and the openings arranged along the short side S are closed. The parts 36B and 36D are closed by the magnet holder 40 (M5). By extending the metal parts 42 for strengthening the magnetic force of the magnets M4 and M5 to both sides of the short sides S of the magnets M4 and M5, the openings 36A to 36D generated by notching and bending can be reliably closed. . As a result, it is possible to provide a highly reliable linear vibration motor that includes the housing 10 that is highly sealed. Furthermore, as will be described later with reference to FIGS. 5 and 6, the magnet holders 40 (M4) and 40 (M5) can have a function of restraining movement of the shaft 60 in the vibrating direction.
第4磁石M4及び第5磁石M5の材質としては、例えばネオジム-鉄-ホウ素系またはサマリウム-コバルト系などの希土類磁石が用いられる。ただし、後述する第2磁石M2及び第3磁石M3と同様に、磁力の温度変化率が小さく、安定して後述する磁気ばね効果を発揮できるサマリウム-コバルト系の希土類磁石が用いられることが好ましい。第4磁石M4及び第5磁石を金属部42に固定するのに、例えばエポキシ系の接着剤を用いることができる。
Rare earth magnets such as neodymium-iron-boron or samarium-cobalt are used as materials for the fourth magnet M4 and the fifth magnet M5. However, like the second magnet M2 and the third magnet M3, which will be described later, it is preferable to use a samarium-cobalt-based rare earth magnet that has a small temperature change rate of magnetic force and can stably exert the magnetic spring effect described later. For fixing the fourth magnet M4 and the fifth magnet to the metal portion 42, for example, an epoxy-based adhesive can be used.
<振動子>
振動子50は、錘部52と、第1磁石M1、第2磁石M2及び第3磁石M3とを含む。また、錘部52の両側には、振動子50をシャフト60に係合するためのスリーブ54が取り付けられている。む。錘部52は、積層体で形成されているが、積層体に換えて、一体成形された焼結体またはモールド成形体を採用することもできる。 <Vibrator>
Thevibrator 50 includes a weight portion 52, a first magnet M1, a second magnet M2 and a third magnet M3. Sleeves 54 for engaging the vibrator 50 with the shaft 60 are attached to both sides of the weight portion 52 . nothing. The weight portion 52 is formed of a laminated body, but instead of the laminated body, an integrally molded sintered body or molded body can be adopted.
振動子50は、錘部52と、第1磁石M1、第2磁石M2及び第3磁石M3とを含む。また、錘部52の両側には、振動子50をシャフト60に係合するためのスリーブ54が取り付けられている。む。錘部52は、積層体で形成されているが、積層体に換えて、一体成形された焼結体またはモールド成形体を採用することもできる。 <Vibrator>
The
積層体を構成する各薄板には、金属薄板と、金属粉末と樹脂材料との複合材料である金属複合材料薄板、セラミック粉末と樹脂材料との複合材料であるセラミック複合材料薄板、金属粉末及びセラミック粉末を含有していない樹脂薄板等の樹脂含有薄板が含まれる。金属薄板及び金属粉末の材質としては、タングステン及びそれを含んだ合金、SUS304(JIS/AISI304)等のステンレス鋼、並びにアルミニウム及びそれを含んだ合金等を用いることができる。樹脂材料の材質としては、例えばオレフィン系熱可塑性エラストマーなどを用いることができる。セラミック粉末の材質としては、例えば炭化タングステンなどを用いることができる。
Each thin plate constituting the laminate includes a metal thin plate, a metal composite thin plate that is a composite material of metal powder and a resin material, a ceramic composite thin plate that is a composite material of ceramic powder and a resin material, metal powder and ceramic Included are resin-containing sheets, such as powder-free resin sheets. Materials for the thin metal plate and metal powder include tungsten and alloys containing it, stainless steel such as SUS304 (JIS/AISI304), aluminum and alloys containing it, and the like. As the material of the resin material, for example, an olefinic thermoplastic elastomer or the like can be used. As a material of the ceramic powder, for example, tungsten carbide can be used.
振動子50の質量を大きくし、磁気ばね機構を介して筐体10に大きな振動を伝えるためには、薄板の材質が、タングステン及びそれを含んだ合金のような比重の大きな材質であることが好ましい。複数の薄板は、例えばエポキシ系の接着剤を用いた接着により積層状態が維持される。ただし、積層状態の維持は、上記に限られない。例えば、スポット溶接などの方法が用いられてもよい。
In order to increase the mass of the vibrator 50 and transmit a large vibration to the housing 10 via the magnetic spring mechanism, the material of the thin plate should be a material with a large specific gravity such as tungsten or an alloy containing it. preferable. The plurality of thin plates are maintained in a laminated state by adhesion using, for example, an epoxy adhesive. However, the maintenance of the laminated state is not limited to the above. For example, methods such as spot welding may be used.
駆動磁石となる第1磁石M1は、震動方向に沿って、5個の磁石がハルバッハ配列となるように配置されている。第1磁石M1がハルバッハ配列を構成する磁石の数は5に限られるものではなく、振動方向に沿って配列された3個以上の奇数個の磁石を含んでいればよい。この開示では、駆動磁石による磁界を、駆動磁石と振動子を駆動させるコイルとの間に集中させることができる駆動磁石の各磁石の配列を、広義にハルバッハ配列と呼称する。従って、ハルバッハ配列を構成する磁石の数は3個以上の奇数であればよい。
The first magnet M1, which serves as the driving magnet, is arranged so that five magnets form a Halbach array along the vibration direction. The number of magnets forming the Halbach array of the first magnets M1 is not limited to five, and may include an odd number of three or more magnets arrayed along the vibration direction. In this disclosure, a Halbach array is broadly referred to as an array of drive magnets that allows the magnetic field of the drive magnets to be concentrated between the drive magnets and the coil that drives the oscillator. Therefore, the number of magnets forming the Halbach array should be an odd number of 3 or more.
第1磁石M1の材質としては、例えばネオジム-鉄-ホウ素系またはサマリウム-コバルト系などの希土類磁石を用いることができる。ただし、第1磁石M1には、強力な磁力を有し、振動子50の駆動力を大きくすることができるネオジム-鉄-ホウ素系の希土類磁石が用いられることが好ましい。第1磁石M1の錘部52への固定には、例えばエポキシ系の接着剤を用いることができる。
As the material of the first magnet M1, for example, a rare earth magnet such as a neodymium-iron-boron system or a samarium-cobalt system can be used. However, for the first magnet M1, it is preferable to use a neodymium-iron-boron-based rare earth magnet that has a strong magnetic force and can increase the driving force of the vibrator 50. FIG. An epoxy-based adhesive, for example, can be used to fix the first magnet M1 to the weight portion 52 .
振動子50の振動方向の両端部には、第2磁石M2及び第3磁石M3が取り付けられている。第2磁石M2及び筐体10に取り付けられた第4磁石M4、並びに第3磁石M3及び筐体10に取り付けられた第5磁石M5は、互いに磁気的に反発するように互いに対向して配置されている。それぞれ振動子50の振動に対する磁気ばね機構を構成している。この磁気ばね機構により、振動子50の振動が筐体10に伝えられる。
A second magnet M2 and a third magnet M3 are attached to both ends of the vibrator 50 in the vibration direction. The second magnet M2 and the fourth magnet M4 attached to the housing 10, and the third magnet M3 and the fifth magnet M5 attached to the housing 10 are arranged to face each other so as to magnetically repel each other. ing. Each constitutes a magnetic spring mechanism for vibration of the vibrator 50 . The vibration of the vibrator 50 is transmitted to the housing 10 by this magnetic spring mechanism.
第2磁石M2及び第3磁石M3の材質としては、例えばネオジム-鉄-ホウ素系またはサマリウム-コバルト系などの希土類磁石が用いられる。ただし、上記の各磁石には、磁力の温度変化率が小さく、安定して後述する磁気ばね効果を発揮できるサマリウム-コバルト系の希土類磁石が用いられることが好ましい。第2磁石M2及び第3磁石M3の錘部52への固定には、例えばエポキシ系の接着剤を用いることができる。
Rare earth magnets such as neodymium-iron-boron or samarium-cobalt are used as materials for the second magnet M2 and the third magnet M3. However, it is preferable to use a samarium-cobalt rare earth magnet that has a small rate of change in magnetic force with temperature and that can stably exhibit a magnetic spring effect to be described later. An epoxy-based adhesive, for example, can be used to fix the second magnet M2 and the third magnet M3 to the weight portion 52 .
<シャフト>
2本のシャフト60は、錘部52の両側に固定されたスリーブ54に摺動可能に嵌挿されている。ここで嵌挿する(fit together by insertion)とは、寸法公差で規定された精度で遊びが抑えられた状態となるようにシャフト60を各スリーブ54に差し込んで嵌めることを意味している。シャフト60は、例えばSUS304(JIS/AISI304)等のステンレス鋼で形成することができる。 <Shaft>
The twoshafts 60 are slidably inserted into sleeves 54 fixed to both sides of the weight portion 52 . Here, "fit together by insertion" means inserting and fitting the shaft 60 into each sleeve 54 so that the play is suppressed with the accuracy defined by the dimensional tolerance. The shaft 60 can be made of stainless steel such as SUS304 (JIS/AISI304).
2本のシャフト60は、錘部52の両側に固定されたスリーブ54に摺動可能に嵌挿されている。ここで嵌挿する(fit together by insertion)とは、寸法公差で規定された精度で遊びが抑えられた状態となるようにシャフト60を各スリーブ54に差し込んで嵌めることを意味している。シャフト60は、例えばSUS304(JIS/AISI304)等のステンレス鋼で形成することができる。 <Shaft>
The two
(シャフトの支持構造)
次に、図5から図7を参照しながら、振動子50を振動可能な状態で支持する2本のシャフト60の支持構造について説明を行う。図5は、上記のように、図4に示す状態から、第2筐体部の上に第1筐体部が取り付けられ状態の拡大図であって、第1支持部20及び第2支持部30でシャフトを支持するところを示す斜視図である。図6は、図4の断面A-Aであって、第1筐体部も取り付けられ状態を模式的に示す側面断面図である。図7は、図6の断面B-Bを模式的に示す側面断面図である。 (Shaft support structure)
Next, a support structure for twoshafts 60 that support the vibrator 50 in a vibrating state will be described with reference to FIGS. 5 to 7. FIG. FIG. 5 is an enlarged view of a state in which the first housing is attached on top of the second housing from the state shown in FIG. Fig. 30 is a perspective view showing the support of the shaft at 30; FIG. 6 is a side cross-sectional view schematically showing a state in which the first housing section is also attached, taken along a cross section AA in FIG. 7 is a side sectional view schematically showing section BB of FIG. 6. FIG.
次に、図5から図7を参照しながら、振動子50を振動可能な状態で支持する2本のシャフト60の支持構造について説明を行う。図5は、上記のように、図4に示す状態から、第2筐体部の上に第1筐体部が取り付けられ状態の拡大図であって、第1支持部20及び第2支持部30でシャフトを支持するところを示す斜視図である。図6は、図4の断面A-Aであって、第1筐体部も取り付けられ状態を模式的に示す側面断面図である。図7は、図6の断面B-Bを模式的に示す側面断面図である。 (Shaft support structure)
Next, a support structure for two
本実施形態では、第1支持部20を構成する第1凸部22A及び22Bが、平面視で一方のシャフト60と重なる位置であって、一方のシャフト60の伸延方向に沿って所定の距離離れて配置されている。同様に、第2支持部30を構成する第2凸部32A及び32Bも、同様に、平面視で一方のシャフト60と重なる位置であって、一方のシャフト60の伸延方向に沿って所定の距離離れて配置されている。よって、第1凸部22A、22Bが、それぞれ平面視で第2凸部32A、32Bと重なる位置に配置されている。これにより、一方のシャフト60は、一方の端部近傍で、第1凸部22A及び第2凸部32Aにより上下両側から挟まれて支持され、他方の端部近傍で、第1凸部22B及び第2凸部32Bにより上下両側から挟まれて支持されている。
In the present embodiment, the first projections 22A and 22B that constitute the first support portion 20 overlap one shaft 60 in a plan view and are separated from each other by a predetermined distance along the extending direction of one shaft 60. are placed. Similarly, the second protrusions 32A and 32B that constitute the second support portion 30 are also positioned to overlap one shaft 60 in plan view, and extend a predetermined distance along the extending direction of the one shaft 60. placed apart. Therefore, the first protrusions 22A and 22B are arranged at positions overlapping the second protrusions 32A and 32B in plan view. As a result, one shaft 60 is sandwiched and supported from both upper and lower sides by the first protrusion 22A and the second protrusion 32A near one end, and is supported near the other end by the first protrusion 22B and the second protrusion 32A. It is sandwiched and supported from both upper and lower sides by the second protrusions 32B.
他方のシャフト60についても同様であり、第1支持部20を構成する第1凸部22C及び22Dが、平面視で他方のシャフト60と重なる位置であって、他方のシャフト60の伸延方向に沿って所定の距離離れて配置されている。同様に、第2支持部30を構成する第2凸部32C及び32Dが、平面視で他方のシャフト60と重なる位置であって、他方のシャフト60の伸延方向に沿って所定の距離離れて配置されている。よって、第1凸部22C、22Dが、それぞれ平面視で第2凸部32C、32Dと重なる位置に配置されている。これにより、他方のシャフト60は、一方の端部近傍で、第1凸部22C及び第2凸部32Cにより上下両側から挟まれて支持され、他方の端部近傍で、第1凸部22D及び第2凸部32Dにより上下両側から挟まれて支持されている。つまり、シャフト60は、第1支持部20及び第2支持部30により、所定の距離をあけて架橋されるように固定されていると言うこともできる。
The same is true for the other shaft 60, and the first projections 22C and 22D forming the first support portion 20 overlap the other shaft 60 in a plan view, and along the extension direction of the other shaft 60 are placed at a predetermined distance apart. Similarly, the second protrusions 32C and 32D that constitute the second support portion 30 are arranged at positions overlapping the other shaft 60 in a plan view and spaced apart from each other by a predetermined distance along the extending direction of the other shaft 60. It is Therefore, the first protrusions 22C and 22D are arranged at positions overlapping the second protrusions 32C and 32D in plan view. As a result, the other shaft 60 is sandwiched and supported from both upper and lower sides by the first protrusion 22C and the second protrusion 32C near one end, and is supported near the other end by the first protrusion 22D and the second protrusion 32C. It is sandwiched and supported from both upper and lower sides by the second protrusions 32D. In other words, it can be said that the shaft 60 is fixed so as to be bridged by the first support portion 20 and the second support portion 30 with a predetermined distance therebetween.
このような第1支持部20及び第2支持部30の配置により、2本のシャフト60を第2筐体部14の底面部14Aの2つの長辺Lに沿って配置することができる。ここで、「長辺Lに沿って」とは、シャフト60が長辺Lの近傍に配置され、シャフト60の延在方向が長辺Lと略平行となることを意味する。
By arranging the first support portion 20 and the second support portion 30 in this way, the two shafts 60 can be arranged along the two long sides L of the bottom portion 14A of the second housing portion 14. Here, “along the long side L” means that the shaft 60 is arranged in the vicinity of the long side L, and the extending direction of the shaft 60 is substantially parallel to the long side L.
以上のように、シャフト60が第1支持部20と第2支持部30とで両側から挟まれて支持されているので、確実にシャフト60を固定できる。第1筐体部12及び第2筐体部は金属薄板から構成されているので、この金属の弾性力により、第1支持部20及び第2支持部30でシャフト60を強く挟み込んで保持することができる。
As described above, since the shaft 60 is sandwiched and supported from both sides by the first support portion 20 and the second support portion 30, the shaft 60 can be reliably fixed. Since the first housing portion 12 and the second housing portion are made of thin metal plates, the shaft 60 is strongly sandwiched and held between the first support portion 20 and the second support portion 30 by the elastic force of this metal. can be done.
更に、第1支持部20が、それぞれのシャフト60において、平面視で第2凸部32A~32Dと重なる位置に配置された第1凸部22A~22Dで構成されている。そして、上記のように、第1凸部22A~22Dが、第1筐体部12を構成する金属板の曲げ加工により形成されている。
Further, the first support portion 20 is configured by first projections 22A to 22D arranged at positions overlapping the second projections 32A to 32D in plan view on each shaft 60. As shown in FIG. Then, as described above, the first convex portions 22A to 22D are formed by bending the metal plate forming the first housing portion 12. As shown in FIG.
このように、第1凸部22A~22Dも金属板の曲げ加工により形成されているので、省スペースで十分な強度を有する第1支持部20を低コストで形成することができる。これにより、低コストで低背のリニア振動モータ2を提供することができる。
In this way, since the first convex portions 22A to 22D are also formed by bending a metal plate, the first support portion 20 having sufficient strength can be formed at low cost while saving space. This makes it possible to provide a low-cost, low-profile linear vibration motor 2 .
更に、本実施形態では、図7に示すように、第2凸部32Cの先端部に凹部34が設けられており、この凹部34にシャフト60が挿入されている。他の第2凸部32A、B、Dも同様である。このような構造により、シャフト60の振動方向と交わる方向の移動を拘束することができる。上記のように、シャフト60が第1支持部20と第2支持部30とで上下両側から挟まれて支持されているので、摩擦力によりシャフト60の水平方向に移動を拘束することができる。しかし、リニア振動モータ2に強い衝撃が加わる場合を考慮すると、シャフト60を凹部34の内面でサポートするのがより好ましい。なお、容易にシャフト60を凹部34内に挿入するため、シャフト60の外面と凹部34の内面の間に若干の隙間を有するのが好ましい。
Furthermore, in this embodiment, as shown in FIG. 7, a concave portion 34 is provided at the tip of the second convex portion 32C, and the shaft 60 is inserted into this concave portion 34. As shown in FIG. The same applies to the other second protrusions 32A, B, and D. With such a structure, it is possible to restrain the movement of the shaft 60 in the direction intersecting with the vibration direction. As described above, since the shaft 60 is sandwiched and supported by the first support portion 20 and the second support portion 30 from both upper and lower sides, the horizontal movement of the shaft 60 can be restrained by the frictional force. However, considering the case where the linear vibration motor 2 is subjected to a strong impact, it is more preferable to support the shaft 60 on the inner surface of the recess 34 . In addition, in order to easily insert the shaft 60 into the recess 34 , it is preferable to have a slight gap between the outer surface of the shaft 60 and the inner surface of the recess 34 .
このように、第2凸部32Cの先端部に形成された凹部34にシャフト60が嵌まることで、シンプルな構造でシャフト60の振動方向と交わる方向の位置ずれを抑制できる。
By fitting the shaft 60 into the concave portion 34 formed at the tip of the second convex portion 32C in this way, it is possible to suppress the displacement of the shaft 60 in the direction intersecting the vibration direction with a simple structure.
図5から図7に示すシャフトの支持構造では、第2凸部32A~32Dの先端部を切り欠くことにより、凹部34が形成されている。ただし、凹部34は、切り欠きにより形成される場合に限られない。例えば、図11A~図11Cに示すように、金属板の折り曲げにより凹部34を形成することもできる。図11Aは、シャフトの支持構造のその他の例を模式的に示す側面断面図である。図11Bは、図11Aの断面B-Bを模式的に示す側面断面図である。図11Cは、金属の折り曲げで凹部を形成する方法を説明するための図である。なお、図11Cにおいて、下側の第2筐体部14を示す部分は簡略化して矩形で示され、α1~α4に対応する部分は、第2凸部32A~32Dに対応して4カ所に形成される。図11Cに示された点線に沿って山折り及び谷折りを行うことにより、図11A、11Bに示すような凹部34を形成することができる。
In the shaft support structure shown in FIGS. 5 to 7, recesses 34 are formed by notching the tips of the second protrusions 32A to 32D. However, the concave portion 34 is not limited to being formed by a notch. For example, as shown in FIGS. 11A to 11C, recesses 34 can be formed by bending a metal plate. FIG. 11A is a side cross-sectional view schematically showing another example of the shaft support structure. FIG. 11B is a side sectional view schematically showing section BB of FIG. 11A. FIG. 11C is a diagram for explaining a method of forming recesses by bending metal. In FIG. 11C, the part showing the lower second housing part 14 is simplified and shown as a rectangle, and the parts corresponding to α1 to α4 are placed in four places corresponding to the second convex parts 32A to 32D. It is formed. By performing mountain folds and valley folds along the dotted lines shown in FIG. 11C, recesses 34 as shown in FIGS. 11A and 11B can be formed.
本実施形態では、図6に示すように、磁石ホルダ40の金属部42の伸延領域46が、金属板の曲げ加工による背面部46A、底面部46B及び前面部46Cからなる鉤形状を有している。背面部46Aが金属部42の中央領域44と繋がっており、第2短側壁部14B1(14B2)と接している。
本実施形態では、シャフト60が前面部46Cの上側を通過して、シャフト60の端面が、第2短側壁部14B1(14B2)でサポートされた背面部46Aと近接して対向するように配置されている。これにより、背面部46Aでシャフト60の振動方向の移動を拘束することができる。なお、前面部46Cの高さを低く形成する代わりに、前面部46Cにシャフト60を通過させる凹部を設けることもできる。 In the present embodiment, as shown in FIG. 6, theextension region 46 of the metal portion 42 of the magnet holder 40 has a hook shape composed of a rear portion 46A, a bottom portion 46B and a front portion 46C, which are formed by bending a metal plate. there is The rear portion 46A is connected to the central region 44 of the metal portion 42 and is in contact with the second short side wall portion 14B1 (14B2).
In this embodiment, theshaft 60 passes over the front portion 46C, and the end surface of the shaft 60 is arranged to closely face the rear portion 46A supported by the second short side wall portions 14B1 (14B2). ing. Thereby, the movement of the shaft 60 in the vibrating direction can be restrained by the rear portion 46A. Instead of forming the front portion 46C with a lower height, it is also possible to provide a recess through which the shaft 60 passes through the front portion 46C.
本実施形態では、シャフト60が前面部46Cの上側を通過して、シャフト60の端面が、第2短側壁部14B1(14B2)でサポートされた背面部46Aと近接して対向するように配置されている。これにより、背面部46Aでシャフト60の振動方向の移動を拘束することができる。なお、前面部46Cの高さを低く形成する代わりに、前面部46Cにシャフト60を通過させる凹部を設けることもできる。 In the present embodiment, as shown in FIG. 6, the
In this embodiment, the
また、磁石ホルダ40の金属部42の底面部46Bにより、切り欠きや曲げ加工で底面部14Aに生じた開口部36C(36A、B、D)を覆うことができる。更に、磁石ホルダ40の金属部42の前面部46Cは、第2凸部32C(32A、32B、32D)と接するようになっている。よって、伸延領域46の鉤形状により、第2凸部32C(32A、32B、32D)を有効に支持することができる。
In addition, the bottom surface portion 46B of the metal portion 42 of the magnet holder 40 can cover the openings 36C (36A, B, D) that are formed in the bottom surface portion 14A by notching or bending. Furthermore, the front surface portion 46C of the metal portion 42 of the magnet holder 40 is in contact with the second protrusions 32C (32A, 32B, 32D). Therefore, the hook shape of the extension region 46 can effectively support the second protrusions 32C (32A, 32B, 32D).
<シャフトの移動抑制構造の変形例>
次に、図8を参照しながら、シャフト60の移動抑制構造の変形例を説明する。図8は、図6に示す実施形態の変形例を模式的に示す側面断面図である。この変形例では、磁石ホルダ40の金属部42の伸延領域46’に設けられた鉤形状に関し、背面部46A’及び前面部46C’の高さが低く形成されている。これにより、シャフト60は、背面部46A’及び前面部46C’の上側を通過して、シャフト60の端面が第2筐体部14の第2短壁部14B1(B2)と近接して対向するように配置されている。 <Modified Example of Shaft Movement Suppression Structure>
Next, a modification of the structure for suppressing movement of theshaft 60 will be described with reference to FIG. 8 is a side sectional view schematically showing a modification of the embodiment shown in FIG. 6. FIG. In this modification, regarding the hook shape provided in the extension region 46' of the metal portion 42 of the magnet holder 40, the heights of the rear surface portion 46A' and the front surface portion 46C' are formed low. As a result, the shaft 60 passes over the rear surface portion 46A' and the front surface portion 46C', and the end surface of the shaft 60 faces the second short wall portion 14B1 (B2) of the second housing portion 14 in close proximity. are arranged as
次に、図8を参照しながら、シャフト60の移動抑制構造の変形例を説明する。図8は、図6に示す実施形態の変形例を模式的に示す側面断面図である。この変形例では、磁石ホルダ40の金属部42の伸延領域46’に設けられた鉤形状に関し、背面部46A’及び前面部46C’の高さが低く形成されている。これにより、シャフト60は、背面部46A’及び前面部46C’の上側を通過して、シャフト60の端面が第2筐体部14の第2短壁部14B1(B2)と近接して対向するように配置されている。 <Modified Example of Shaft Movement Suppression Structure>
Next, a modification of the structure for suppressing movement of the
このように、シャフト60の両端面と対向する第2短側壁部14B1、14B2により、シャフト60の振動方向の移動が拘束される。これにより、他の拘束部材を付加することなく、シャフト60の振動方向の位置ずれを抑制できる。ここで、容易にシャフト60を第2筐体部14内に収めるため、シャフト60の両端面と第2短側壁部14B1、14B2との間に若干の隙間を有するのが好ましい。なお、背面部46A’及び前面部46C’の高さを低く形成する代わりに、背面部46A’及び前面部46C’にシャフト60を通過させる凹部を設けることもできる。
Thus, the movement of the shaft 60 in the vibrating direction is restrained by the second short side wall portions 14B1 and 14B2 facing both end faces of the shaft 60. As shown in FIG. As a result, displacement of the shaft 60 in the vibrating direction can be suppressed without adding another restraining member. Here, in order to easily accommodate the shaft 60 in the second housing portion 14, it is preferable to have a slight gap between both end surfaces of the shaft 60 and the second short side wall portions 14B1 and 14B2. It should be noted that instead of forming the rear portion 46A' and the front portion 46C' to be low, recesses for allowing the shaft 60 to pass through may be provided in the rear portion 46A' and the front portion 46C'.
<シャフトの支持構造の変形例>
次に、図9を参照しながら、シャフト60の支持構造の変形例を説明する。図9は、図7に示す実施形態の変形例を模式的に示す側面断面図である。この変形例では、第1筐体部12に第1凸部22A~22Dが形成されておらず、代わりに、第1支持部20として、シート状の弾性部材24が配置されている。この変形例では、弾性部材24と、第2筐体部14に形成された第2凸部32C(32A、32B、32D)とで上下両側からシャフト60挟み込んで支持するようになっている。このとき、弾性部材がある程度圧縮されるようになっており、弾性部材の弾性力で確実にシャフト60を保持することができる。 <Modification of shaft support structure>
Next, a modified example of the support structure for theshaft 60 will be described with reference to FIG. 9 is a side sectional view schematically showing a modification of the embodiment shown in FIG. 7. FIG. In this modified example, the first projections 22A to 22D are not formed on the first housing portion 12, and instead, a sheet-like elastic member 24 is arranged as the first support portion 20. FIG. In this modified example, the elastic member 24 and the second protrusions 32C (32A, 32B, 32D) formed on the second housing portion 14 sandwich and support the shaft 60 from both upper and lower sides. At this time, the elastic member is compressed to some extent, and the shaft 60 can be reliably held by the elastic force of the elastic member.
次に、図9を参照しながら、シャフト60の支持構造の変形例を説明する。図9は、図7に示す実施形態の変形例を模式的に示す側面断面図である。この変形例では、第1筐体部12に第1凸部22A~22Dが形成されておらず、代わりに、第1支持部20として、シート状の弾性部材24が配置されている。この変形例では、弾性部材24と、第2筐体部14に形成された第2凸部32C(32A、32B、32D)とで上下両側からシャフト60挟み込んで支持するようになっている。このとき、弾性部材がある程度圧縮されるようになっており、弾性部材の弾性力で確実にシャフト60を保持することができる。 <Modification of shaft support structure>
Next, a modified example of the support structure for the
以上のように、変形例を含めた本実施形態に係るリニア振動モータ2は、
少なくとも天面部12Aを有する第1筐体部12及び少なくとも底面部14Aを有する第2筐体部14が接合されて形成された筐体10と、筐体10内に収容された振動子50と、筐体10内において、振動子50の振動方向に沿って略平行に配置され、振動子50を振動可能な状態で支持する2本のシャフト60と、を備え、シャフト60は、第1筐体部12に備えられた第1支持部20と、第2筐体部14に備えられた第2支持部30とで両側から挟まれた状態で支持され、第2支持部30が、それぞれのシャフト60において、平面視でシャフト60と重なる位置であって、シャフトの伸延方向に沿って所定の距離離れて配置された2つの第2凸部32A及び32Bまたは32C及び32Dで構成され、第2凸部32A~32Dが、第2筐体部14を構成する金属板の曲げ加工により形成されている。 As described above, thelinear vibration motor 2 according to the present embodiment, including modifications,
A housing 10 formed by joining afirst housing portion 12 having at least a top surface portion 12A and a second housing portion 14 having at least a bottom surface portion 14A, a vibrator 50 housed in the housing 10, and two shafts 60 arranged substantially parallel along the vibration direction of the vibrator 50 in the housing 10 and supporting the vibrator 50 in a vibrating state. The shafts 60 are provided in the first housing. A first support portion 20 provided in the portion 12 and a second support portion 30 provided in the second housing portion 14 are supported in a sandwiched state from both sides, and the second support portions 30 are supported by the respective shafts. In 60, two second protrusions 32A and 32B or 32C and 32D are arranged at a position overlapping the shaft 60 in plan view and separated by a predetermined distance along the extension direction of the shaft. The portions 32A to 32D are formed by bending a metal plate forming the second housing portion 14. As shown in FIG.
少なくとも天面部12Aを有する第1筐体部12及び少なくとも底面部14Aを有する第2筐体部14が接合されて形成された筐体10と、筐体10内に収容された振動子50と、筐体10内において、振動子50の振動方向に沿って略平行に配置され、振動子50を振動可能な状態で支持する2本のシャフト60と、を備え、シャフト60は、第1筐体部12に備えられた第1支持部20と、第2筐体部14に備えられた第2支持部30とで両側から挟まれた状態で支持され、第2支持部30が、それぞれのシャフト60において、平面視でシャフト60と重なる位置であって、シャフトの伸延方向に沿って所定の距離離れて配置された2つの第2凸部32A及び32Bまたは32C及び32Dで構成され、第2凸部32A~32Dが、第2筐体部14を構成する金属板の曲げ加工により形成されている。 As described above, the
A housing 10 formed by joining a
シャフト60が第1支持部20と第2支持部30とで両側から挟まれて支持されているので、確実にシャフト60を固定でき、第2凸部32A~32Dが金属板の曲げ加工により形成されているので、省スペースで十分な強度を有する第2支持部30を低コストで形成することができる。これにより、低コストで低背のリニア振動モータ2を提供することができる。
Since the shaft 60 is sandwiched and supported from both sides by the first support portion 20 and the second support portion 30, the shaft 60 can be securely fixed, and the second protrusions 32A to 32D are formed by bending a metal plate. Therefore, it is possible to form the second support portion 30 which is space-saving and has sufficient strength at low cost. This makes it possible to provide a low-cost, low-profile linear vibration motor 2 .
(リニア振動モータを備えた電子機器)
上記の実施形態に係るリニア振動モータ2と、リニア振動モータ2を収容する機器筐体とを備える電子機器では、リニア振動モータ2の薄型化により、機器筐体を薄型化できる。
これにより、電子機器の薄型化が実現でき、更に、薄い機器筐体の内部に多くの電子部品を実装することができ、高容量化が進むバッテリの配置も阻害することがない。 (Electronic device with linear vibration motor)
In an electronic device including the linear vibratingmotor 2 according to the above-described embodiment and a device housing that accommodates the linear vibrating motor 2, the thinning of the linear vibrating motor 2 allows the device housing to be thinned.
This makes it possible to reduce the thickness of the electronic device, and moreover, many electronic components can be mounted inside the thin device housing, so that the layout of the battery, which is becoming higher in capacity, is not hindered.
上記の実施形態に係るリニア振動モータ2と、リニア振動モータ2を収容する機器筐体とを備える電子機器では、リニア振動モータ2の薄型化により、機器筐体を薄型化できる。
これにより、電子機器の薄型化が実現でき、更に、薄い機器筐体の内部に多くの電子部品を実装することができ、高容量化が進むバッテリの配置も阻害することがない。 (Electronic device with linear vibration motor)
In an electronic device including the linear vibrating
This makes it possible to reduce the thickness of the electronic device, and moreover, many electronic components can be mounted inside the thin device housing, so that the layout of the battery, which is becoming higher in capacity, is not hindered.
上述の実施形態の説明は、すべての点で例示であって、制限的なものではない。当業者にとって変形及び変更が適宜可能である。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。更に、本発明の範囲には、特許請求の範囲内と均等の範囲内での実施形態からの変更が含まれる。
The description of the above embodiment is illustrative in all respects and is not restrictive. Modifications and modifications are possible for those skilled in the art. The scope of the invention is indicated by the claims rather than the above-described embodiments. Further, the scope of the present invention includes modifications from the embodiments within the scope of claims and equivalents.
2 リニア振動モータ
10 筐体
12 第1筐体部
12A 天面部
12B 第1側壁部
12B1、12B2 第1短側壁部
12B3、12B4 第1長側壁部
14 第2筐体部
14A 底面部
14B 第2側壁部
14B1、14B2 第2短側壁部
14B3、14B4 第2長側壁部
14C 基板支持部
14C1 凹部
14D サポート部
20 第1支持部
22A~22D 第1凸部
24 弾性部材
30 第2支持部
32A~32D 第2凸部
34 凹部
36A~36D 開口部
40、40(M4)、40(M5) 磁石ホルダ
42 金属部
44 中央領域
46、46’ 伸延領域
46A、46A’ 背面部
46B、46B’ 底面部
46C、46C’ 前面部
50 振動子
52 錘部
54 スリーブ
60 シャフト
70 コイル
72 フレキシブル基板(FPC)
72A 電極
M1 第2磁石
M2 第2磁石
M3 第3磁石
M4 第4磁石
M5 第5磁石
L 長辺
S 短辺
CA、CB、CC、CD コーナー領域 2 Linear vibration motor 10Housing 12 First housing portion 12A Top surface portion 12B First side wall portions 12B1, 12B2 First short side wall portions 12B3, 12B4 First long side wall portion 14 Second housing portion 14A Bottom portion 14B Second side wall Portions 14B1, 14B2 Second short side wall portions 14B3, 14B4 Second long side wall portion 14C Substrate support portion 14C1 Recess 14D Support portion 20 First support portions 22A to 22D First projection 24 Elastic member 30 Second support portions 32A to 32D 2 convex portions 34 recessed portions 36A to 36D openings 40, 40 (M4), 40 (M5) magnet holder 42 metal portion 44 central regions 46, 46' extension regions 46A, 46A' rear portions 46B, 46B' bottom portions 46C, 46C ' Front part 50 Vibrator 52 Weight part 54 Sleeve 60 Shaft 70 Coil 72 Flexible printed circuit board (FPC)
72A Electrode M1 Second magnet M2 Second magnet M3 Third magnet M4 Fourth magnet M5 Fifth magnet L Long side S Short side CA, CB, CC, CD Corner area
10 筐体
12 第1筐体部
12A 天面部
12B 第1側壁部
12B1、12B2 第1短側壁部
12B3、12B4 第1長側壁部
14 第2筐体部
14A 底面部
14B 第2側壁部
14B1、14B2 第2短側壁部
14B3、14B4 第2長側壁部
14C 基板支持部
14C1 凹部
14D サポート部
20 第1支持部
22A~22D 第1凸部
24 弾性部材
30 第2支持部
32A~32D 第2凸部
34 凹部
36A~36D 開口部
40、40(M4)、40(M5) 磁石ホルダ
42 金属部
44 中央領域
46、46’ 伸延領域
46A、46A’ 背面部
46B、46B’ 底面部
46C、46C’ 前面部
50 振動子
52 錘部
54 スリーブ
60 シャフト
70 コイル
72 フレキシブル基板(FPC)
72A 電極
M1 第2磁石
M2 第2磁石
M3 第3磁石
M4 第4磁石
M5 第5磁石
L 長辺
S 短辺
CA、CB、CC、CD コーナー領域 2 Linear vibration motor 10
72A Electrode M1 Second magnet M2 Second magnet M3 Third magnet M4 Fourth magnet M5 Fifth magnet L Long side S Short side CA, CB, CC, CD Corner area
Claims (7)
- 少なくとも天面部を有する第1筐体部及び少なくとも底面部を有する第2筐体部が接合されて形成された筐体と、
前記筐体内に収容された振動子と、
前記筐体内において、前記振動子の振動方向に沿って略平行に配置され、前記振動子を振動可能な状態で支持する2本のシャフトと、
を備え、
前記シャフトは、前記第1筐体部に備えられた第1支持部と、前記第2筐体部に備えられた第2支持部とで両側から挟まれた状態で支持され、
前記第2支持部が、それぞれの前記シャフトにおいて、平面視で前記シャフトと重なる位置であって、前記シャフトの伸延方向に沿って所定の距離離れて配置された2つの第2凸部で構成され、
前記第2凸部が、前記第2筐体部を構成する金属板の曲げ加工により形成されていることを特徴とする、リニア振動モータ。 a housing formed by joining a first housing portion having at least a top surface portion and a second housing portion having at least a bottom surface portion;
a vibrator housed in the housing;
two shafts arranged substantially in parallel along the vibration direction of the vibrator in the housing and supporting the vibrator in a vibrating state;
with
The shaft is supported in a state of being sandwiched from both sides by a first support portion provided in the first housing portion and a second support portion provided in the second housing portion,
The second supporting portion is composed of two second convex portions arranged on each of the shafts at a position overlapping the shaft in a plan view and separated from each other by a predetermined distance along the extension direction of the shaft. ,
A linear vibration motor, wherein the second protrusion is formed by bending a metal plate forming the second housing. - 前記第1支持部が、それぞれの前記シャフトにおいて、平面視で前記第2凸部と重なる位置に配置された第1凸部で構成され、
前記第1凸部が、前記第1筐体部を構成する金属板の曲げ加工により形成されていることを特徴とする、請求項1に記載のリニア振動モータ。 wherein the first support portion is composed of a first projection arranged at a position overlapping with the second projection in plan view on each of the shafts,
2. The linear vibration motor according to claim 1, wherein the first projection is formed by bending a metal plate forming the first casing. - 前記第2凸部の先端部に凹部が設けられ、
前記凹部に前記シャフトが挿入されて、前記シャフトの前記振動方向と交わる方向の移動が拘束されることを特徴とする、請求項1または2に記載のリニア振動モータ。 A concave portion is provided at the tip of the second convex portion,
3. The linear vibrating motor according to claim 1, wherein said shaft is inserted into said recess, and movement of said shaft in a direction intersecting said vibrating direction is restrained. - 前記第1筐体部及び前記第2筐体部はそれぞれ側壁部を備え、前記第1筐体部の前記側壁部及び前記第2筐体部の前記側壁部の少なくとも一部が重なり合う状態で、前記第1筐体部及び前記第2筐体部が接合されて、前記筐体が形成されていることを特徴とする、請求項1から3の何れか1項に記載のリニア振動モータ。 The first housing portion and the second housing portion each include a side wall portion, and in a state in which at least a portion of the side wall portion of the first housing portion and the side wall portion of the second housing portion overlap, The linear vibration motor according to any one of claims 1 to 3, wherein the first housing part and the second housing part are joined together to form the housing.
- 前記シャフトの両端面と対向する前記側壁部により、前記シャフトの前記振動方向の移動が拘束されることを特徴とする、請求項4に記載のリニア振動モータ。 The linear vibration motor according to claim 4, characterized in that the side wall portions facing both end surfaces of the shaft restrain movement of the shaft in the vibration direction.
- 前記第1筐体部は、1枚の金属板を曲げ加工することにより形成されていることを特徴とする、請求項1から5の何れか1項に記載のリニア振動モータ。 The linear vibration motor according to any one of claims 1 to 5, characterized in that the first housing part is formed by bending one metal plate.
- 前記第2筐体部は、1枚の金属板を曲げ加工することにより形成されていることを特徴とする、請求項1から6の何れか1項に記載のリニア振動モータ。 The linear vibration motor according to any one of claims 1 to 6, characterized in that the second housing part is formed by bending one metal plate.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-157141 | 2021-09-27 | ||
JP2021157141 | 2021-09-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023047696A1 true WO2023047696A1 (en) | 2023-03-30 |
Family
ID=85720381
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/020372 WO2023047696A1 (en) | 2021-09-27 | 2022-05-16 | Linear vibration motor |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023047696A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011097747A (en) * | 2009-10-29 | 2011-05-12 | Nidec Copal Corp | Vibration actuator |
WO2017082326A1 (en) * | 2015-11-13 | 2017-05-18 | ミツミ電機株式会社 | Oscillatory actuator, wearable terminal, and incoming-call notification function device |
WO2019026905A1 (en) * | 2017-08-03 | 2019-02-07 | アルプス電気株式会社 | Vibration generation device |
WO2021006083A1 (en) * | 2019-07-05 | 2021-01-14 | アダマンド並木精密宝石株式会社 | Linear vibration actuator |
WO2021106741A1 (en) * | 2019-11-29 | 2021-06-03 | 株式会社村田製作所 | Linear vibration motor, and electronic instrument employing same |
WO2021152897A1 (en) * | 2020-01-30 | 2021-08-05 | 株式会社村田製作所 | Linear vibration motor, electronic device using same, vibrator, and method for manufacturing vibrator |
-
2022
- 2022-05-16 WO PCT/JP2022/020372 patent/WO2023047696A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011097747A (en) * | 2009-10-29 | 2011-05-12 | Nidec Copal Corp | Vibration actuator |
WO2017082326A1 (en) * | 2015-11-13 | 2017-05-18 | ミツミ電機株式会社 | Oscillatory actuator, wearable terminal, and incoming-call notification function device |
WO2019026905A1 (en) * | 2017-08-03 | 2019-02-07 | アルプス電気株式会社 | Vibration generation device |
WO2021006083A1 (en) * | 2019-07-05 | 2021-01-14 | アダマンド並木精密宝石株式会社 | Linear vibration actuator |
WO2021106741A1 (en) * | 2019-11-29 | 2021-06-03 | 株式会社村田製作所 | Linear vibration motor, and electronic instrument employing same |
WO2021152897A1 (en) * | 2020-01-30 | 2021-08-05 | 株式会社村田製作所 | Linear vibration motor, electronic device using same, vibrator, and method for manufacturing vibrator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10610893B2 (en) | Vibration actuator and portable device | |
KR101055508B1 (en) | Linear vibration motor | |
US10610894B2 (en) | Vibration actuator and portable device | |
US10610892B2 (en) | Vibration actuator and portable device | |
US20190314860A1 (en) | Linear vibration motor | |
WO2016056507A1 (en) | Linear vibration motor | |
CN107107112B (en) | Linear vibration motor | |
US20220311320A1 (en) | Linear vibration motor, electronic device using linear vibration motor, vibrator, and method of manufacturing vibrator | |
JP2017070017A (en) | Linear vibration motor | |
WO2017057315A1 (en) | Linear vibration motor | |
US20220231588A1 (en) | Linear vibration motor and electronic apparatus using the same | |
JP2010068586A (en) | Vibration wave motor | |
JP6663762B2 (en) | Linear vibration motor | |
CN107847976B (en) | Linear vibration motor and mobile electronic device including the same | |
JP6824337B2 (en) | Vibration motor | |
WO2023047696A1 (en) | Linear vibration motor | |
JP6813423B2 (en) | Electromechanical transducer | |
JP2019134510A (en) | Vibration motor | |
JP2018207553A (en) | Vibration motor | |
WO2023047697A1 (en) | Linear vibration motor | |
JP2010017622A (en) | Oscillation generator | |
CN115549426A (en) | Vibration actuator and electric device | |
CN115549429A (en) | Vibration actuator and electric device | |
JP2019134509A (en) | Vibration motor | |
US20240128846A1 (en) | Vibration motor and tactile device including the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22872454 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22872454 Country of ref document: EP Kind code of ref document: A1 |