[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023042550A1 - Organic wastewater treatment method and treatment device - Google Patents

Organic wastewater treatment method and treatment device Download PDF

Info

Publication number
WO2023042550A1
WO2023042550A1 PCT/JP2022/028835 JP2022028835W WO2023042550A1 WO 2023042550 A1 WO2023042550 A1 WO 2023042550A1 JP 2022028835 W JP2022028835 W JP 2022028835W WO 2023042550 A1 WO2023042550 A1 WO 2023042550A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic wastewater
membrane carrier
biofilm
air
reaction tank
Prior art date
Application number
PCT/JP2022/028835
Other languages
French (fr)
Japanese (ja)
Inventor
柳瀬哲也
安井英斉
寺嶋光春
Original Assignee
メタウォーター株式会社
公立大学法人北九州市立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by メタウォーター株式会社, 公立大学法人北九州市立大学 filed Critical メタウォーター株式会社
Priority to JP2023548150A priority Critical patent/JPWO2023042550A1/ja
Publication of WO2023042550A1 publication Critical patent/WO2023042550A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/06Aerobic processes using submerged filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/20Activated sludge processes using diffusers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a method and apparatus for treating organic wastewater.
  • a treatment device that treats organic wastewater such as sewage uses a method of removing, for example, contaminants (hereinafter simply referred to as contaminants) contained in wastewater.
  • This method is, for example, an activated sludge method in which organic matter is decomposed by microorganisms propagated in a reaction tank (hereinafter also referred to as activated sludge).
  • Contaminants are, for example, organic substances, suspended substances, etc. (hereinafter simply referred to as organic substances or substrates) (see Patent Document 1).
  • an organic wastewater treatment method in an organic wastewater treatment apparatus wherein the organic wastewater treatment apparatus includes a reaction tank for biologically treating contaminants contained in the organic wastewater. , a solid-liquid separation device for separating sludge from wastewater discharged from the reaction tank, and a feeder for supplying at least oxygen to the reaction tank, wherein the reaction tank is supplied by the feeder. It has a tubular membrane carrier for molecularly diffusing the oxygen into the reaction vessel through the plurality of holes, and the membrane carrier causes the oxygen to molecularly diffuse into the reaction vessel through the plurality of holes.
  • a biofilm containing aerobic bacteria is formed on the outer periphery of the membrane carrier, the biofilm is a biofilm that performs biological treatment of the contaminants with the aerobic bacteria, and the solid-liquid separation device is and separating said sludge containing said biofilm from said waste water.
  • FIG. 1 is a diagram illustrating the configuration of an organic wastewater treatment apparatus 800 in a first comparative example.
  • FIG. 2 is a diagram illustrating the configuration of an organic wastewater treatment apparatus 900 in a second comparative example.
  • FIG. 3 is a diagram illustrating the configuration of the organic wastewater treatment apparatus 100 according to the first embodiment.
  • FIG. 4 is a vertical sectional view for explaining the configuration of the film carrier 72 in the first embodiment.
  • FIG. 5 is a vertical sectional view for explaining the configuration of the film carrier 72 in the first embodiment.
  • FIG. 6 is a diagram for explaining the effects of the first embodiment.
  • FIG. 7 is a diagram for explaining the effects of the first embodiment.
  • FIG. 8 is a diagram for explaining the effects of the first embodiment.
  • FIG. 1 is a diagram illustrating the configuration of an organic wastewater treatment apparatus 800 in a first comparative example.
  • FIG. 2 is a diagram illustrating the configuration of an organic wastewater treatment apparatus 900 in a second comparative example.
  • FIG. 3 is a diagram
  • FIG. 9 is a diagram illustrating the configuration of the reaction vessel 70 in the first modified example.
  • FIG. 10 is a diagram illustrating the configuration of the membrane carrier 72 in the first modified example.
  • FIG. 11 is a diagram illustrating the configuration of the membrane carrier 72 in the first modified example.
  • FIG. 1 is a diagram illustrating the configuration of an organic wastewater treatment apparatus 800 in a first comparative example.
  • the organic wastewater treatment apparatus 800 treats contaminants by a so-called activated sludge method.
  • the organic wastewater treatment apparatus 800 has, for example, a primary sedimentation tank 10, a reaction tank 20, a final sedimentation tank 30, and an air feeder 40, as shown in FIG.
  • the primary sedimentation tank 10 sediments and separates organic substances (eg, solid organic substances) contained in the wastewater 1 .
  • the primary sedimentation tank 10 discharges the separated organic matter as primary sedimentation sludge to a thickener (not shown), and discharges the waste water 1 from which the organic matter has been separated to the reaction tank 20 .
  • the reaction tank 20 includes, for example, a tank body 21 from which waste water 1 is discharged from the primary sedimentation tank 10, and air 2 (oxygen ) to treat the wastewater 1 by biological treatment.
  • reaction tank 20 for example, an aeration process is performed in which air 2 is supplied to the activated sludge existing in the tank main body 21.
  • organic matter eg, soluble organic matter contained in the wastewater 1 is decomposed (consumed) by activated sludge supplied with the air 2 .
  • the reaction tank 20 discharges the wastewater 1 after decomposition of organic matter by activated sludge, for example, to the final sedimentation tank 30 .
  • the final sedimentation tank 30, for example, sediments and separates the sludge contained in the wastewater 1 discharged from the reaction tank 20, and discharges the separated sludge as activated sludge.
  • the final sedimentation tank 30 supplies part of the activated sludge as excess sludge to a thickener (not shown), and returns activated sludge other than the excess sludge to the reaction tank 20 as return sludge.
  • the final sedimentation tank 30 discharges the waste water 1 (supernatant liquid) from which the activated sludge has been separated, for example, to a post-stage sterilization apparatus (not shown). After that, the sterilization apparatus sterilizes the wastewater 1 discharged from the final sedimentation tank 30, for example, and discharges the sterilized treated water.
  • the air supplier 40 is, for example, an air blower and supplies the air 2 to the reaction vessel 20. Specifically, the air supplier 40 supplies the air 2 into the reaction vessel 20 through the air supply pipe 22 provided at the bottom of the reaction vessel 20 .
  • the organic wastewater treatment apparatus 800 separation of activated sludge in the final sedimentation tank 30 is performed by natural sedimentation. Therefore, for example, if the activated sludge does not settle sufficiently due to bulking or the like, the organic wastewater treatment apparatus 800 may carry over the activated sludge to the subsequent apparatus.
  • the concentration of activated sludge in the reaction tank 20 changes depending on the amount of returned sludge from the final sedimentation tank 30 . Therefore, the concentration of activated sludge in the reaction tank 20 depends on the natural settling property in the final sedimentation tank 30 and the size of the final sedimentation tank 30, and may become unstable.
  • the power for supplying the air 2 by the air supplier 40 may be increased due to the need to maintain the concentration of activated sludge in the reaction tank 20.
  • a membrane separation activated sludge method has been proposed as a method for treating pollutants. The membrane separation activated sludge method will be explained with reference to FIG.
  • FIG. 2 is a diagram illustrating the configuration of an organic wastewater treatment apparatus 900 in a second comparative example.
  • the organic wastewater treatment apparatus 900 is, for example, an organic wastewater treatment apparatus using a membrane separation activated sludge method.
  • the organic wastewater treatment apparatus 900 includes, as shown in FIG. have That is, the organic wastewater treatment apparatus 900 has, for example, a solid-liquid separation tank 50 in place of the final sedimentation tank 30 compared to the organic wastewater treatment apparatus 800 .
  • the organic wastewater treatment device 900 further comprises an air feeder 60, for example.
  • the solid-liquid separation tank 50 includes, for example, a tank body 51 from which waste water 1 is discharged from the reaction tank 20, and air 2 ( oxygen) and a separation membrane 53 for separating activated sludge contained in the wastewater 1 .
  • the separation membrane 53 is, for example, a microfiltration membrane or an ultrafiltration membrane.
  • the solid-liquid separation tank 50 for example, by aerating the separation membrane 53 from below with the air 2 supplied from the air supply pipe 52, an upward flow of the air 2 and the waste water 1 is generated, and the separation membrane The activated sludge is separated while suppressing clogging caused by proliferation (coating) of the activated sludge in the membrane 53 and clogging of the separation membrane 53 .
  • the solid-liquid separation tank 50 supplies part of the activated sludge as excess sludge to the thickener, and returns the activated sludge other than the excess sludge to the reaction tank 20 as return sludge.
  • the solid-liquid separation tank 50 discharges the wastewater 1 (supernatant liquid) after the separation of the activated sludge to the subsequent sterilization apparatus by sucking it from above with a pump (not shown).
  • the air supply device 60 is, for example, an air blower, and supplies air 2 to the solid-liquid separation tank 50. Specifically, the air supply device 60 supplies the air 2 to the air supply pipe 52 provided at the bottom of the solid-liquid separation tank 50 .
  • the organic wastewater treatment apparatus 900 separates activated sludge using the separation membrane 53 instead of separating activated sludge by natural sedimentation. As a result, the organic wastewater treatment apparatus 900 can prevent the activated sludge from flowing out to the subsequent apparatus.
  • the concentration of activated sludge separated from the wastewater 1 in the solid-liquid separation tank 50 can be increased. Therefore, in the organic wastewater treatment apparatus 900, for example, the size of the reaction tank 20 can be reduced compared to the organic wastewater treatment apparatus 800 described with reference to FIG.
  • the organic wastewater treatment apparatus 900 uses, for example, a circulation pump (not shown) to circulate the activated sludge between the reaction tank 20 and the solid-liquid separation tank 50, and the activated sludge by the separation membrane 53. may be used to separate the Further, the organic wastewater treatment apparatus 900 may have a separation membrane 53 in the reaction tank 20 instead of having the solid-liquid separation tank 50, for example. Moreover, in the membrane separation activated sludge process of FIG. 2, in order to maintain the performance of the reaction tank 50, the excess sludge adhering to the separation membrane 53 can be removed by washing.
  • the separation membrane 53 is periodically washed with a chemical such as hypochlorous acid or alkali in order to prevent clogging of the separation membrane 53. There is a need. Further, in the organic wastewater treatment apparatus 900, for example, the separation membrane 53 needs to be replaced periodically.
  • the power of the air supply device 40, the circulation pump, etc. may be increased. .
  • the main component of the activated sludge separated by the separation membrane 53 is the fungus grown in the wastewater 1.
  • Such excess sludge is dispersed and has the property of being difficult to dewater. Therefore, in the organic wastewater treatment apparatus 900, for example, it is necessary to put a large amount of coagulant in a concentrator or the like.
  • running costs for example, air supply power, separation membrane replacement costs, cleaning costs, flocculant costs
  • FIG. 3 is a diagram illustrating the configuration of the organic wastewater treatment apparatus 100 according to the first embodiment.
  • 4 and 5 are vertical cross-sectional views illustrating the configuration of the film carrier 72 in the first embodiment.
  • the organic wastewater treatment device 100 performs biological treatment on contaminants contained in the organic wastewater 1 .
  • the organic wastewater treatment apparatus 100 has, for example, a primary sedimentation tank 10, a reaction tank 70, an air feeder 80, and a solid-liquid separation apparatus 90, as shown in FIG. That is, the organic wastewater treatment apparatus 100 has a reaction tank 70 instead of the reaction tank 20, for example, compared with the organic wastewater treatment apparatus 900.
  • the organic wastewater treatment apparatus 100 has, for example, an air supplier 80 (hereinafter also referred to as a supplier) in place of the air supplier 40 .
  • the organic wastewater treatment apparatus 100 has, for example, a solid-liquid separation device 90 instead of the solid-liquid separation tank 50 .
  • the air supplier 80 is, for example, a blower such as an air blower or a fan, and supplies at least oxygen to the reaction vessel 70 .
  • the gas supplied by the air supply device 80 may be any other gas as long as it contains oxygen, and hereinafter, air is exemplified as the gas containing oxygen.
  • the reaction tank 70 performs biological treatment on contaminants contained in organic wastewater.
  • the reaction tank 70 is, for example, a membrane aerated biofilm reactor (MABR: Membrane Aerated Biofilm Reactor).
  • MABR Membrane Aerated Biofilm Reactor
  • the reaction tank 70 includes, for example, a tank body 71 into which the wastewater 1 flows from the primary sedimentation tank 10, and one or more membrane carriers 72 into which the air 2 supplied by the air supply device 80 is supplied. have The amount of air supplied by the air supply device 80 is smaller than the amount of air supplied by the air supply device described in FIGS.
  • the membrane carrier 72 is a tubular membrane carrier that molecularly diffuses the air supplied by the air supplier 80 into the reaction vessel 70 through a plurality of holes.
  • the membrane carrier 72 is a hydrophobic hollow fiber membrane, for example, a Teflon (registered trademark) membrane.
  • the membrane carrier 72 is, for example, a tubular membrane whose axial direction extends in the vertical direction (the height direction of the reaction vessel 70).
  • a large number of fine pores for example, pores of about 0.1 micron
  • a case where four membrane carriers 72 are arranged in the horizontal direction in the reaction vessel 70 will be described below, but the number of membrane carriers 72 other than four may be arranged in the reaction vessel 70. There may be. Further, hereinafter, the case where the air 2 supplied from the air supplier 80 is supplied from the vertically downward direction to the vertically upward direction inside the membrane carrier 72 will be described. 2 may be supplied from the vertical upward direction to the vertical downward direction inside the membrane carrier 72 .
  • the membrane carrier 72 may be, for example, U-shaped with both ends facing vertically upward. Further, the membrane carrier 72 may be, for example, U-shaped with both ends facing vertically downward.
  • the membrane carrier 72 emits the air 2 supplied from the air supplier 80 toward the outside (inside the reaction vessel 70) from a plurality of holes on the surface (molecular diffusion). do.
  • a biofilm containing aerobic bacteria hereinafter referred to as biofilm R1
  • This biofilm is a biofilm that biologically treats contaminants with aerobic bacteria. For example, as shown in FIG.
  • activated sludge adheres to form a massive biofilm, which is a biofilm.
  • R1 is formed.
  • the biofilm R1 adhered to the surface of the membrane carrier 72 decomposes the organic matter contained in the wastewater 1 and proliferates.
  • the air supplier 80 preferably maintains the internal pressure of the membrane carrier 72 at a level that does not generate air bubbles from the pores on the surface (for example, a pressure equal to or lower than the water pressure).
  • the pressure of the air supplied by the air supplier 80 can be made lower than the water pressure, so that the pressure of the air supplied by the air supplier 40 described in FIGS. 1 and 2 can be lowered. can. Therefore, the operating power of the air supplier 80 can be reduced compared to the operating power of the air supplier 40 .
  • the reaction tank 70 discharges the waste water 1 (waste water) after the reaction with the biofilm R1 to the solid-liquid separation device 90.
  • the solid-liquid separator 90 separates lumpy sludge containing biofilm R1 from the waste water discharged from the reaction tank 70 .
  • the sludge to be separated contains various bacteria in addition to living or dead aerobic bacteria.
  • the solid-liquid separation device 90 only needs to have a sludge separation function, and may be, for example, a device including the separation membrane described in FIG. Further, the solid-liquid separator 90 may separate the sludge to be separated from the wastewater by gravity sedimentation, or may separate the sludge to be separated from the wastewater by sand filtration. In addition, the solid-liquid separation device 90 may separate the sludge to be separated from the wastewater using a carrier (so-called high-speed carrier filtration).
  • a carrier so-called high-speed carrier filtration
  • the organic wastewater treatment apparatus 100 further includes a stripping device 73 and a control device 74, for example.
  • the stripping device 73 is, for example, a device that strips the biofilm R1 adhering to the membrane carrier 72 from the membrane carrier 72 by vibrating the membrane carrier 72 .
  • the control device 74 is, for example, a computer having a CPU (Central Computing Unit), a memory, etc., and a program stored in a storage device (not shown) cooperates with the CPU to enable the peeling device 73 to remove biofilms.
  • the timing of peeling R1 (hereinafter also referred to as peeling timing) is controlled.
  • the biofilm R1 is peeled off by using the peeling device 73 in the reaction tank 70. Detachment may be performed (so-called membrane cleaning).
  • the control device 74 may control the timing of jetting, for example.
  • the reaction tank 70 in the present embodiment decomposes the organic substances contained in the wastewater 1 discharged from the primary sedimentation tank 10 to the reaction tank 70 by the biofilm R1 adhered to the membrane carrier 72, and takes in the organic substances.
  • the aggregated biofilm R1 is intermittently separated from the membrane carrier 72, and the sludge containing the biofilm R1 is discharged to the solid-liquid separation device 90.
  • the solid-liquid separator It is possible to suppress the amount of sludge discharged to 90. Therefore, in the reaction tank 70 , in this case, it is possible to discharge the wastewater 1 with low growth potential to the solid-liquid separation device 90 . Therefore, it becomes possible to prevent the proliferation of activated sludge in the solid-liquid separator 90 . Further, when the solid-liquid separation device 90 performs solid-liquid separation using a separation membrane, it is possible to prevent clogging of the separation membrane.
  • the sludge containing the biofilm R1 is discharged to the solid-liquid separation device 90, so that solid-liquid separation is performed.
  • the device 90 performs solid-liquid separation using a separation membrane, it is possible to prevent clogging of the separation membrane.
  • the solid-liquid separation device 90 since the solid-liquid separation device 90 according to the present embodiment solid-liquid separates solid-liquid lumps of sludge from waste water, it is possible to easily dewater the separated sludge. Therefore, in the organic wastewater treatment apparatus 100 according to the present embodiment, it is possible to reduce the amount of flocculant that needs to be put in a dewatering machine or the like for dehydrating sludge, thereby reducing the cost required for dehydrating sludge. it becomes possible to
  • the reaction vessel 70 of the present embodiment by using the tubular membrane carrier 72, it is possible to increase the surface area compared to the case of using a membrane carrier having a shape other than tubular. Therefore, in the organic wastewater treatment apparatus 100 of the present embodiment, it is possible to reduce the volume of reaction between the activated sludge (aerobic microorganisms) and the organic matter, and it is possible to reduce the size of the reaction tank 70. . Specifically, in the organic wastewater treatment apparatus 100, for example, the vertical height (water depth) of the reaction tank 70 can be reduced.
  • the air supplier 80 can keep the pressure inside the membrane carrier 72 at a level that does not generate air bubbles from the pores on the surface, for example, the air supplier 40 described in FIG. It is possible to suppress the power associated with the supply of the air 2 more than when is used.
  • each of the anaerobic layers R3 from the surface of the membrane carrier 72 toward the liquid phase side. That is, in this case, between the two membrane carriers 72, as shown in FIG. be. Therefore, in the reaction tank 70, for example, ammonia contained in the wastewater 1 can be nitrified by the nitrification action in the aerobic layer R1. Then, in the anoxic layer R2 and the anaerobic layer R3, nitrogen contained in the wastewater 1 (for example, nitrite nitrogen) can be removed (denitrified) by a denitrification reaction.
  • the biofilm R1 adhered to the membrane carrier 72 is treated with organic matter.
  • the concentration of activated sludge at a constant level there is no need to maintain the concentration of activated sludge at a constant level. Therefore, in the organic wastewater treatment apparatus 100 of the present embodiment, for example, like the organic wastewater treatment apparatus 900 described in FIG. no need to send it back to As a result, in the organic wastewater treatment apparatus 100, for example, it is possible to substantially omit equipment necessary for returning sludge. If the sludge is returned to the reaction tank 70 , the returned sludge grows as activated sludge in the reaction tank 70 .
  • the sludge is not substantially returned, as long as it does not deviate from the gist of the present invention. indicates that the sludge is allowed to be returned. Specifically, if the dewaterability of the sludge separated in the solid-liquid separation device 90 can be maintained in a state higher than the dewaterability of the sludge in the organic wastewater treatment device described in FIG. Sludge may be returned to the reaction tank 70 . When such return is performed, the amount of sludge returned (return time) in the organic wastewater treatment apparatus described in FIG. 2 is reduced (shortened).
  • the organic wastewater treatment apparatus 900 membrane separation activated sludge method described in FIG. Liquor Suspended Solids
  • the reaction tank 70 of the present embodiment since various biological treatments proceed with the biofilm attached to the surface of the membrane carrier 72, the MLSS concentration can be lowered compared to the membrane separation activated sludge method, and the solid The amount of sludge that flows into the liquid separator 90 and clogs the solid-liquid separation 80 can be minimized.
  • a gas having a higher oxygen concentration than air may be supplied to the membrane carrier 72 from the air supply device 80 in the present embodiment.
  • a gas having a higher oxygen concentration than air may be supplied to the membrane carrier 72 from the air supply device 80 in the present embodiment.
  • the oxygen supplied to the membrane carrier 72 may be, for example, oxygen obtained by water electrolysis using renewable energy.
  • oxygen obtained by electrolyzing water using electric energy generated by using waste heat in sludge incineration may be used.
  • various power generation technologies such as organic Rankine cycle (ORC) can be used.
  • FIG. 6 is a graph showing the relationship between the detachment interval of biofilm R1 and the removal rate of organic matter.
  • the horizontal axis in the graph shown in FIG. 6 indicates the separation interval of the biofilm R1 (hereinafter simply referred to as the separation interval), and the vertical axis in the graph shown in FIG. (also called removal rate).
  • the graph shown in FIG. 6 indicates that the removal rate increases until the separation interval reaches around 24 (h), and further, the removal rate decreases as the separation interval increases from around 24 (h). Further, the graph shown in FIG. 6 indicates that the removal rate is about 88 (%) when the peeling interval is around 24 (h), and the peeling interval is around 12 (h) or 48 ( h) indicates that the removal rate is about 80 (%).
  • the graph shown in FIG. 6 shows that, for example, when the separation interval is 12 (h) or more and 48 (h) or less, the removal rate can be maintained at 80 (%) or more, and the solid-liquid separation This indicates that it is possible to suppress the organic matter discharged to the device 90 to 20(%) or less.
  • the graph shown in FIG. 6 indicates that, for example, when the separation interval is 48 (h) or more, the removal rate decreases.
  • the thickness of the biofilm R1 which is a lump of sludge, reaches a predetermined thickness or more, the membrane carrier 72 side of the biofilm R1 (the portion that can directly receive the supply of oxygen from the membrane carrier 72) This is because the wastewater 1 is not sufficiently supplied, and the removal of organic matter is not efficiently performed.
  • the control device 74 controls the biofilm R1 such that the separation interval is 12 (h) or more and 48 (h) or less, that is, the biofilm R1 is maintained at a removal rate of 80 (%) or more. may control the peeling timing of the . Specifically, the control device 74 may control the peeling timing of the biofilm R1 so that the peeling interval is 24 (h) or 48 (h), for example.
  • the solid-liquid separator 90 performs solid-liquid separation using a separation membrane will be described as an example.
  • FIG. 7 is a graph showing the relationship between the biofilm R1 detachment interval and the flux in the solid-liquid separator 90. As shown in FIG. The horizontal axis in the graph shown in FIG. 7 indicates the peeling interval of the biofilm R1, and the vertical axis in the graph shown in FIG. (%) shows the flux of the solid-liquid separator 90.
  • the graph shown in FIG. 7 indicates that the flux increases until the separation interval reaches around 24 (h). Moreover, the graph shown in FIG. 7 indicates that the flux becomes almost 100(%) when the separation interval is 24(h) or more.
  • the graph shown in FIG. 7 shows that, for example, when the separation interval is 24 (h) or more, it is possible to form a sufficiently large biofilm R1 on the membrane carrier 72, and the solid-liquid separation device 90 Since it becomes possible to suppress the occurrence of clogging, it is possible to keep the flux at a high level.
  • the graph shown in FIG. 7 shows that, for example, when the peeling time is 24 (h) or less, the biofilm R1 that is not large enough is discharged to the solid-liquid separator 90, so the solid-liquid separator Clogging occurs at 90, indicating a drop in flux.
  • control device 74 controls the peeling timing of the biofilm R1, for example, so that the peeling interval is 24 (h) or more, that is, so that the flux close to 100 (%) is maintained. you can
  • control device 74 controls the peeling timing of the biofilm R1, for example, so that the amount of substrates such as organic substances discharged from the reaction tank 70 to the solid-liquid separation device 90 satisfies a predetermined condition. good.
  • control device 74 controls, for example, the amount of substrate discharged from the reaction tank 70 to the solid-liquid separation device 90 (that is, the amount of substrate in the waste water) is the amount of waste water flowing into the reaction tank 70 from the primary sedimentation tank 10 .
  • the peeling timing of the biofilm R1 may be controlled so that the amount of the substrate is less than a predetermined ratio, preferably about 1/5.
  • control device 74 is arranged so that, for example, the return sludge from the solid-liquid separation device 90 to the reaction tank 70 does not need to be returned, that is, the control device 74 controls, for example, the necessary amount of activated sludge by increasing the activated sludge.
  • the separation timing of the biofilm R1 may be controlled so that the sludge is maintained in the reaction tank 70.
  • FIG. 8 is a graph showing the relationship between the detachment interval of biofilm R1 and the moisture content of the dehydrated cake.
  • the horizontal axis in the graph shown in FIG. 8 indicates the peeling interval of the biofilm R1, and the vertical axis in the graph shown in FIG. there is
  • the graph shown in FIG. 8 shows that the moisture content decreases as the separation interval increases. Moreover, the graph shown in FIG. 8 shows that when the peeling interval is longer than 24 (h), the moisture content is much lower than when the peeling time is shorter than 24 (h).
  • the graph shown in FIG. 8 indicates that, for example, when the separation interval is 24 (h) or more, the moisture content of the dehydrated cake can be effectively reduced.
  • the sludge containing exfoliated biofilm R1 obtained when the exfoliation interval is 24 (h) or more is dense. Dehydration of dense sludge in this manner yields sludge with a low moisture content.
  • control device 74 controls the peeling timing of the biofilm R1, for example, so that the peeling interval is 24 (h) or more, that is, the water content of the dehydrated cake is 75 (%) or less.
  • the control device 74 controls the peeling timing of the biofilm R1 according to all the graphs shown in FIGS. 6 to 8, for example, so that the peeling interval is 24 (h) or more and 48 (h) or less. It may be something to do.
  • the biofilm R1 adhering to the membrane carrier 72 takes in organic matter and becomes agglomerate on the membrane carrier 72 . Therefore, in the organic wastewater treatment apparatus 100 , it is possible to discharge wastewater containing sludge (lump sludge) containing the biofilm R ⁇ b>1 in the form of blocks to the solid-liquid separator 90 . In addition, in the organic wastewater treatment apparatus 100, by forming the massive biofilm R1 on the membrane carrier 72, it is possible to reduce the amount of organic matter and activated sludge discharged from the reaction tank 70 to the solid-liquid separation apparatus 90. become.
  • the organic wastewater treatment apparatus 100 it is possible to prevent the growth of activated sludge in the solid-liquid separation device 90 and the occurrence of clogging in the solid-liquid separation device 90, and the occurrence of clogging of the solid-liquid separation device 90. can be prevented.
  • the massive biofilm R1 has a large particle size and tends to settle. Therefore, in the organic wastewater treatment apparatus 100, the sludge separated from the wastewater in the solid-liquid separator 90 can be easily dewatered, and the amount of flocculant that needs to be put in a dehydrator or the like can be reduced. . Therefore, in the organic wastewater treatment apparatus 100, for example, it is possible to reduce costs required for dehydration of sludge.
  • the sludge (separated sludge) contained in the wastewater discharged to the solid-liquid separator 90 is lumpy sludge.
  • This blocky sludge is mainly composed of blocky biofilm R1, and this blocky sludge (hereinafter referred to as sludge of the present embodiment) is dense as described above and is easily dewatered. Then, this clumped sludge is separated by the solid-liquid separator 90 .
  • the sludge separated from the separation membrane 53 of the reaction tank 50 of FIG. The body is the subject. Such sludge is dispersed and difficult to dewater.
  • the main sludge of the present embodiment and the main sludge of FIG. 2 are different.
  • the amount of flocculant added can be reduced in this embodiment compared to the amount of flocculant added when dewatering the sludge in FIG.
  • the amount of coagulant added can be reduced, and running costs can be suppressed.
  • the stripping interval is several weeks or more, so activated sludge with low strength (soft activated sludge) is stripped. Therefore, the moisture content of the dewatered cake produced from the separated activated sludge is approximately the same as that of the dehydrated cake produced from ordinary activated sludge.
  • a biofilm capable of producing a dehydrated cake with a low moisture content (biofilm peeled from the membrane carrier 72 R1) can be obtained.
  • the organic wastewater treatment apparatus 100 in the first embodiment for example, instead of the primary sedimentation tank 10, a solid-liquid separation apparatus (not shown) that performs high-speed filtration may be used.
  • a solid-liquid separation apparatus (not shown) that performs high-speed filtration may be used.
  • the amount of organic substances (for example, solid organic substances) supplied to the reaction tank 70 can be further suppressed, and the decomposition of the organic substances in the membrane carrier 72 can be made more efficient. It becomes possible to go to
  • FIG. 9 is a diagram illustrating the configuration of the reaction vessel 70 in the first modified example.
  • 10 and 11 are diagrams for explaining the configuration of the membrane carrier 72 in the first modified example.
  • the peeling device 73 in the first modified example peels the biofilm R1 by supplying gas such as air (hereinafter also simply referred to as air). Then, the control device 74 in the first modification controls, for example, the timing at which the peeling device 73 supplies air.
  • gas such as air
  • the peeling device 73 as shown in FIG. 9, has an air supply device 73a such as a compressor that compresses air taken in from the outside to generate compressed air (not shown), and an air supply device 73a. and an air tank 73b for storing compressed air.
  • an air supply device 73a such as a compressor that compresses air taken in from the outside to generate compressed air (not shown)
  • an air supply device 73a such as a compressor that compresses air taken in from the outside to generate compressed air (not shown)
  • an air supply device 73a such as a compressor that compresses air taken in from the outside to generate compressed air (not shown)
  • an air supply device 73a such as a compressor that compresses air taken in from the outside to generate compressed air (not shown)
  • an air supply device 73a such as a compressor that compresses air taken in from the outside to generate compressed air (not shown)
  • an air supply device 73a such as a compressor that compresses air taken in from the outside to generate compressed air (
  • control device 74 controls the supply (jetting) of the compressed air stored in the air tank 73b to the reaction tank 70, for example.
  • the control device 74 supplies the compressed air stored in the air tank 73b to a plurality of locations in the reaction tank 70 via the line L3.
  • Biofilm R1 is stripped from membrane carrier 72 .
  • the line L3 is, for example, a pipe that connects the air tank 73b and multiple locations in the reaction tank 70 .
  • the control device 74 controls the separation interval of the biofilm R1 to be 24 (h) or longer, for example, as described with reference to FIG. 6 and the like.
  • control device 74 controls, for example, the generation timing of the compressed air by the air supplier 73a (compressed air for the air tank 73b) so that the pressure in the air tank 73b is maintained within a certain range. supply timing) may be controlled.
  • control device 74 controls the amount of air 2 supplied by the air supplier 80 so that the amount of air 2 supplied to the membrane carrier 72 is constant. may be
  • control device 74 controls, for example, a measuring instrument (Fig. (not shown).
  • the controller 74 may control the amount of air 2 supplied from the air supplier 80 to the membrane carrier 72, for example, according to the acquired measurement value. In the following description, it is assumed that the controller 74 controls the amount of air 2 supplied by the air supplier 80 .
  • the compressed air may be supplied, for example, to the lower ends or below the membrane carriers 72. good.
  • a unit UN1 is formed by bundling a plurality of membrane carriers 72.
  • the number of pipes constituting the line L1 for supplying the air 2 to each membrane carrier 72 and the line L2 for discharging the air 2 from each membrane carrier 72 It is possible to reduce the number of pipes that make up the
  • FIG. 9 shows a case where four units UN1 formed by bundling four membrane carriers 72 are arranged in the reaction vessel 70 .
  • a case where four membrane carriers 72 constitute a single unit UN1 will be described below, but the number of membrane carriers 72 other than four may constitute a single unit UN1. .
  • the plurality of membrane carriers 72 forming a single unit UN1 (hereinafter also simply referred to as the plurality of membrane carriers 72) are, as shown in FIG. For example, it has a first mold portion 72a formed by molding with a resin or the like, and a second mold portion 72b formed by molding the upper end portions 72d of each of the plurality of film carriers 72 with resin or the like. . That is, the plurality of film carriers 72 form a single unit UN1, for example, by molding the lower end portion 72c and the upper end portion 72d of each film carrier 72 .
  • the first mold portion 72a has, for example, a first air hole 72a1 for introducing the air 2 supplied from the air supplier 80 through the line L1 into the first mold portion 72a.
  • the line L1 is, for example, a pipe that connects the air supplier 80 and the first air holes 72a1 in each of the plurality of units UN1, as shown in FIGS. Then, the air 2 introduced into the inside of the first mold portion 72a through the air holes 72a1 is supplied to the inside of each of the plurality of membrane carriers 72 from the respective lower end portions 72c of the plurality of membrane carriers 72, for example.
  • the second mold portion 72b has, for example, a second air hole 72b1 for discharging the air 2 inside the second mold portion 72b to the outside via the line L2.
  • the line L2 is, for example, a pipe that connects the second air hole 72b1 in each of the plurality of units UN1 to the outside, as shown in FIGS. That is, the second air holes 72b1, for example, discharge the air 2 discharged into the second mold portion 72b from the upper end portions 72d of the plurality of film carriers 72 to the outside.
  • the air 2 supplied (pressurized) into the first mold portion 72a via the line L1 and the first air holes 72a1 is applied to each of the plurality of membrane carriers 72 as indicated by solid line arrows in FIG. supplied internally. At least a portion of the air 2 supplied to each membrane carrier 72 moves inside each membrane carrier 72 from the lower end 72c to the upper end 72d, as described with reference to FIG.
  • the molecules diffuse into the reaction vessel 70 through a plurality of holes h1 (for example, holes of about 0.1 microns) provided in the membrane carrier 72 .
  • the air 2 that has moved inside each film carrier 72 from the lower end portion 72c to the upper end portion 72d (the air 2 that has not been molecularly diffused into the reaction chamber 70) is discharged from the upper end portion 72d to the second mold portion, for example. 72b. After that, the air 2 supplied into the second mold portion 72b is discharged to the outside through, for example, the second air hole 72b1 and the line L2.
  • the air supplier 80 supplies air to the inside of the membrane carrier 72 from the lower end 72c (hereinafter simply referred to as the lower end) of the membrane carrier 72, for example. 2 (air 2 containing at least oxygen). Then, the membrane carrier 72 causes, for example, at least a part of the air 2 supplied from the lower end portion 72c to molecularly diffuse into the reaction vessel 70 through the plurality of holes h1, thereby dispersing the air 2 supplied from the lower end portion 72c.
  • the air 2 that has not been molecularly diffused in the reaction tank 70 is discharged outside from the upper end portion 72d (hereinafter simply referred to as the upper end) of the membrane carrier 72 .
  • the membrane carrier 72 shown in FIG. 10 has a linear shape (I shape), it is not limited to this. Specifically, the membrane carrier 72 may have any shape, for example, in which the air 2 supplied from the lower end portion 72c is discharged from the upper end portion 72d. may have
  • the air 2 is supplied (pressurized) into the membrane carrier 72 from the lower end 72c, and the air 2 in the membrane carrier 72 is discharged from the upper end 72d.
  • the membrane carrier 72 may, for example, supply the air 2 into the inside of the membrane carrier 72 from the upper end 72d and discharge the air 2 inside the membrane carrier 72 from the lower end 72c.
  • the amount of air 2 supplied to each of the plurality of membrane carriers 72 is, for example, the amount of air 2 molecularly diffused into the reaction vessel 70 through the plurality of holes h1 on the lower end portion 72c side and the amount of air 2 on the upper end portion 72d side. may be determined so that the amount of the air 2 molecularly diffused into the reaction vessel 70 from the hole h1 of is the same. That is, the amount of air 2 supplied to each of the plurality of membrane carriers 72 is determined, for example, so that the oxygen partial pressure at each position in each membrane carrier 72 is maximized (the same pressure as the atmospheric pressure). you can
  • the line L1 may be provided with a filter (not shown) for removing fine particles (for example, dust, etc.) contained in the air 2 supplied from the air supplier 80, for example.
  • a filter not shown for removing fine particles (for example, dust, etc.) contained in the air 2 supplied from the air supplier 80, for example.
  • both ends face downward (for example, vertically downward direction) in a U shape (hereinafter referred to as an inverted U).
  • the membrane carrier 72 may be arranged to form a letter shape. That is, in the reaction vessel 70, as shown in FIG. 11, for example, the membrane carrier 72 may be arranged in a state in which at least one portion (hereinafter also referred to as a curved portion 72e) is curved.
  • the unit UN2 may be formed by bundling a plurality of membrane carriers 72 arranged to form an inverted U shape. A case where two membrane carriers 72 arranged to form an inverted U shape form a single unit UN2 will be described below. may constitute the unit UN2.
  • the air 2 supplied (pressurized) into the inside of the first mold portion 72a from the air holes 72a1 is, for example, discharged from both ends 72f of the plurality of membrane carriers 72 to each of the plurality of membrane carriers 72. supplied inside the That is, each of the end portions 72f shown in FIG. 11 has the same function as the lower end portion 72c described in FIG. 10, for example.
  • the air 2 supplied from the air supplier 80 into the first mold portion 72a via the line L1 and the first air holes 72a1 is, for example, applied to a plurality of membranes as indicated by solid line arrows in FIG. supplied to each of the carriers 72 .
  • the air 2 supplied to each membrane carrier 72 moves inside each membrane carrier 72 from both end portions 72f to curved portions 72e, for example, in each membrane carrier 72 as described with reference to FIG.
  • Molecules diffuse into the reaction chamber 70 through a plurality of holes h2 (for example, holes of about 0.1 micron) provided in portions positioned outside the first mold portion 72a and the second mold portion 72b.
  • the air 2 that has moved inside each membrane carrier 72 from both end portions 72f to the curved portion 72e (the air 2 that has not been molecularly diffused into the reaction vessel 70) is, for example, the curved portion 72e of each membrane carrier 72.
  • the air 2 supplied into the second mold portion 72b is discharged to the outside through, for example, the second air hole 72b1 and the line L2. That is, the plurality of holes h3 provided in the curved portion 72e shown in FIG. 11 have the same function as the upper end portion 72d described in FIG. 10, for example.
  • the membrane carrier 72 has, for example, curved portions 72e that curve the membrane carrier 72 so that both ends 72f of the membrane carrier 72 face downward.
  • the air supplier 80 supplies air 2 (air 2 containing at least oxygen) into the inside of the membrane carrier 72 from, for example, both ends 72f of the membrane carrier 72 (in other words, each of the lower ends of the membrane carrier 72). do.
  • the membrane carrier 72 allows, for example, at least part of the air 2 supplied from at least one of both ends of the membrane carrier 72 to flow through the plurality of holes h2 (hereinafter also referred to as the plurality of first holes) into the reaction tank.
  • the air 2 that has molecularly diffused into the membrane carrier 70 and has not been molecularly diffused into the reaction vessel 70 out of the air 2 that has been supplied from at least one of both ends of the membrane carrier 72 is removed from the curved surface positioned above the plurality of holes h2. It is discharged to the outside through a plurality of holes h3 (hereinafter also referred to as a plurality of second holes) provided in the portion 72e (in other words, the upper end of the membrane carrier 72).
  • a plurality of holes h3 hereinafter also referred to as a plurality of second holes
  • the membrane carrier 72 shown in FIG. 11 is discharged into the second mold portion 72b through a plurality of holes h3 provided in the curved portion 72e, unlike the case of the film carrier 72 shown in FIG. be. Therefore, in the membrane carrier 72 shown in FIG. 11, the pressure loss associated with the discharge of the air 2 is greater than in the case of the membrane carrier 72 shown in FIG. Therefore, the membrane carrier 72 shown in FIG. 11 can increase the amount of air 2 supplied into the reaction chamber 70 by molecular diffusion, compared to the membrane carrier 72 shown in FIG.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

Provided is an organic wastewater treatment method in an organic wastewater treatment device. The organic wastewater treatment device comprises: a reaction tank in which a biological treatment is performed on a pollutant that is contained in organic wastewater; a solid-liquid separation device which separates sludge from wastewater that has been discharged from the reaction tank; and a feeder which feeds at least oxygen to the reaction tank. The reaction tank has a tubular membrane carrier that causes molecular diffusion, in the reaction tank via a plurality of holes, of oxygen which has been fed by the feeder. The membrane carrier causes the molecular diffusion of the oxygen in the reaction tank via the plurality of holes so as to form a biological membrane that contains aerobic bacteria on the outer circumference of the membrane carrier. The biological membrane subjects the pollutant to a biological treatment via the aerobic bacteria. The solid-liquid separation device separates sludge containing the biological membrane from the wastewater.

Description

有機性廃水の処理方法及び処理装置Method and apparatus for treating organic wastewater
 本発明は、有機性廃水の処理方法及び処理装置に関する。 The present invention relates to a method and apparatus for treating organic wastewater.
 下水等の有機性廃水(以下、単に廃水とも呼ぶ)を処理する処理装置では、廃水に含まれる例えば汚濁物(以下、単に汚濁物とも呼ぶ)を除去する方法が用いられる。この方法は、例えば、反応槽において繁殖させた微生物(以下、活性汚泥とも呼ぶ)によって有機物の分解を行う活性汚泥方法である。汚濁物は、例えば、有機物や浮遊物質等(以下、単に有機物または基質とも呼ぶ)である(特許文献1を参照)。 A treatment device that treats organic wastewater such as sewage (hereinafter simply referred to as wastewater) uses a method of removing, for example, contaminants (hereinafter simply referred to as contaminants) contained in wastewater. This method is, for example, an activated sludge method in which organic matter is decomposed by microorganisms propagated in a reaction tank (hereinafter also referred to as activated sludge). Contaminants are, for example, organic substances, suspended substances, etc. (hereinafter simply referred to as organic substances or substrates) (see Patent Document 1).
特開2021-079335号公報JP 2021-079335 A
 上記のような有機性廃水の処理装置において、ランニングコストを抑制することが望まれている。 It is desired to suppress running costs in the above organic wastewater treatment equipment.
 実施の形態の一態様における有機性廃水の処理装置における有機性廃水の処理方法は、前記有機性廃水の処理装置は、有機性の廃水に含まれる汚濁物に対して生物処理を行う反応槽と、前記反応槽から排出される排水から汚泥を分離する固液分離装置と、前記反応槽に対して少なくとも酸素を供給する供給器と、を備え、前記反応槽は、前記供給器によって供給された前記酸素を複数の孔を介して前記反応槽内に分子拡散する管状の膜担体を有し、前記膜担体は、前記複数の孔を介して前記酸素を前記反応槽内に分子拡散することにより、前記膜担体の外周上において好気性細菌を含む生物膜を形成し、前記生物膜は、前記汚濁物に対して前記好気性細菌による生物処理を行う生物膜であり、前記固液分離装置は、前記生物膜を含む前記汚泥を前記排水から分離する。 According to one aspect of the embodiment, there is provided an organic wastewater treatment method in an organic wastewater treatment apparatus, wherein the organic wastewater treatment apparatus includes a reaction tank for biologically treating contaminants contained in the organic wastewater. , a solid-liquid separation device for separating sludge from wastewater discharged from the reaction tank, and a feeder for supplying at least oxygen to the reaction tank, wherein the reaction tank is supplied by the feeder. It has a tubular membrane carrier for molecularly diffusing the oxygen into the reaction vessel through the plurality of holes, and the membrane carrier causes the oxygen to molecularly diffuse into the reaction vessel through the plurality of holes. , a biofilm containing aerobic bacteria is formed on the outer periphery of the membrane carrier, the biofilm is a biofilm that performs biological treatment of the contaminants with the aerobic bacteria, and the solid-liquid separation device is and separating said sludge containing said biofilm from said waste water.
 一つの側面によれば、ランニングコストを抑制することが可能になる。 According to one aspect, it is possible to reduce running costs.
図1は、第1の比較例における有機性廃水の処理装置800の構成について説明する図である。FIG. 1 is a diagram illustrating the configuration of an organic wastewater treatment apparatus 800 in a first comparative example. 図2は、第2の比較例における有機性廃水の処理装置900の構成について説明する図である。FIG. 2 is a diagram illustrating the configuration of an organic wastewater treatment apparatus 900 in a second comparative example. 図3は、第1の実施の形態における有機性廃水の処理装置100の構成について説明する図である。FIG. 3 is a diagram illustrating the configuration of the organic wastewater treatment apparatus 100 according to the first embodiment. 図4は、第1の実施の形態における膜担体72の構成について説明する垂直断面図である。FIG. 4 is a vertical sectional view for explaining the configuration of the film carrier 72 in the first embodiment. 図5は、第1の実施の形態における膜担体72の構成について説明する垂直断面図である。FIG. 5 is a vertical sectional view for explaining the configuration of the film carrier 72 in the first embodiment. 図6は、第1の実施の形態における効果について説明する図である。FIG. 6 is a diagram for explaining the effects of the first embodiment. 図7は、第1の実施の形態における効果について説明する図である。FIG. 7 is a diagram for explaining the effects of the first embodiment. 図8は、第1の実施の形態における効果について説明する図である。FIG. 8 is a diagram for explaining the effects of the first embodiment. 図9は、第1の変形例における反応槽70の構成について説明する図である。FIG. 9 is a diagram illustrating the configuration of the reaction vessel 70 in the first modified example. 図10は、第1の変形例における膜担体72の構成について説明する図である。FIG. 10 is a diagram illustrating the configuration of the membrane carrier 72 in the first modified example. 図11は、第1の変形例における膜担体72の構成について説明する図である。FIG. 11 is a diagram illustrating the configuration of the membrane carrier 72 in the first modified example.
 以下、図面を参照して本発明の実施の形態について説明する。しかしながら、かかる実施の形態例が、本発明の技術的範囲を限定するものではない。 Embodiments of the present invention will be described below with reference to the drawings. However, such an embodiment does not limit the technical scope of the present invention.
 [第1の比較例における有機性廃水の処理装置800]
 初めに、第1の比較例における有機性廃水の処理装置800(以下、有機性廃水の処理システム800とも呼ぶ)の構成について説明を行う。図1は、第1の比較例における有機性廃水の処理装置800の構成について説明する図である。有機性廃水の処理装置800では、いわゆる活性汚泥法により汚濁物を処理する。具体的に、有機性廃水の処理装置800は、図1に示すように、例えば、最初沈殿池10と、反応槽20と、最終沈殿池30と、空気供給器40とを有する。
[Organic wastewater treatment apparatus 800 in the first comparative example]
First, the configuration of an organic wastewater treatment apparatus 800 (hereinafter also referred to as an organic wastewater treatment system 800) in a first comparative example will be described. FIG. 1 is a diagram illustrating the configuration of an organic wastewater treatment apparatus 800 in a first comparative example. The organic wastewater treatment apparatus 800 treats contaminants by a so-called activated sludge method. Specifically, the organic wastewater treatment apparatus 800 has, for example, a primary sedimentation tank 10, a reaction tank 20, a final sedimentation tank 30, and an air feeder 40, as shown in FIG.
 最初沈殿池10は、例えば、廃水1に含まれる有機物(例えば、固形性の有機物)を沈殿分離する。そして、最初沈殿池10は、例えば、分離した有機物を初沈汚泥として濃縮機(図示せず)に排出するとともに、有機物の分離が行われた後の廃水1を反応槽20に排出する。 For example, the primary sedimentation tank 10 sediments and separates organic substances (eg, solid organic substances) contained in the wastewater 1 . The primary sedimentation tank 10 discharges the separated organic matter as primary sedimentation sludge to a thickener (not shown), and discharges the waste water 1 from which the organic matter has been separated to the reaction tank 20 .
 反応槽20は、例えば、最初沈殿池10から廃水1が排出される槽本体21と、槽本体21内に存在する活性汚泥(好気性微生物)に対して槽本体21の底部から空気2(酸素)を供給する空気供給管22とを有し、生物学的処理によって廃水1を処理する。 The reaction tank 20 includes, for example, a tank body 21 from which waste water 1 is discharged from the primary sedimentation tank 10, and air 2 (oxygen ) to treat the wastewater 1 by biological treatment.
 具体的に、反応槽20では、例えば、槽本体21内に存在する活性汚泥に対して空気2を供給する曝気処理が行われる。そして、反応槽20では、例えば、廃水1に含まれる有機物(例えば、溶解性の有機物)を、空気2の供給を受けた活性汚泥によって分解(消費)させる。その後、反応槽20は、例えば、活性汚泥によって有機物の分解が行われた後の廃水1を最終沈殿池30に排出する。 Specifically, in the reaction tank 20, for example, an aeration process is performed in which air 2 is supplied to the activated sludge existing in the tank main body 21. In the reaction tank 20 , for example, organic matter (eg, soluble organic matter) contained in the wastewater 1 is decomposed (consumed) by activated sludge supplied with the air 2 . After that, the reaction tank 20 discharges the wastewater 1 after decomposition of organic matter by activated sludge, for example, to the final sedimentation tank 30 .
 最終沈殿池30は、例えば、反応槽20から排出された廃水1に含まれる汚泥を沈殿分離し、分離した汚泥を活性汚泥として排出する。そして、最終沈殿池30は、例えば、活性汚泥の一部を余剰汚泥として濃縮機(図示せず)に供給するとともに、余剰汚泥以外の活性汚泥を返送汚泥として反応槽20に返送する。さらに、最終沈殿池30は、例えば、活性汚泥の分離を行った後の廃水1(上澄み液)を後段の滅菌処理装置(図示せず)に排出する。その後、滅菌処理装置は、例えば、最終沈殿池30から排出された廃水1を滅菌し、減菌した処理水を放流する。 The final sedimentation tank 30, for example, sediments and separates the sludge contained in the wastewater 1 discharged from the reaction tank 20, and discharges the separated sludge as activated sludge. For example, the final sedimentation tank 30 supplies part of the activated sludge as excess sludge to a thickener (not shown), and returns activated sludge other than the excess sludge to the reaction tank 20 as return sludge. Furthermore, the final sedimentation tank 30 discharges the waste water 1 (supernatant liquid) from which the activated sludge has been separated, for example, to a post-stage sterilization apparatus (not shown). After that, the sterilization apparatus sterilizes the wastewater 1 discharged from the final sedimentation tank 30, for example, and discharges the sterilized treated water.
 空気供給器40は、例えば、送風ブロワであり、反応槽20に対して空気2を供給する。具体的に、空気供給器40は、反応槽20の底部に設けられた空気供給管22を介して反応槽20内に空気2を供給する。 The air supplier 40 is, for example, an air blower and supplies the air 2 to the reaction vessel 20. Specifically, the air supplier 40 supplies the air 2 into the reaction vessel 20 through the air supply pipe 22 provided at the bottom of the reaction vessel 20 .
 ここで、有機性廃水の処理装置800では、最終沈殿池30における活性汚泥の分離が自然沈降によって行われる。そのため、例えば、活性汚泥がバルキング等に起因して十分に沈降しない場合、有機性廃水の処理装置800では、活性汚泥が後段の装置に流出(キャリーオーバー)する可能性がある。 Here, in the organic wastewater treatment apparatus 800, separation of activated sludge in the final sedimentation tank 30 is performed by natural sedimentation. Therefore, for example, if the activated sludge does not settle sufficiently due to bulking or the like, the organic wastewater treatment apparatus 800 may carry over the activated sludge to the subsequent apparatus.
 また、有機性廃水の処理装置800において、反応槽20における活性汚泥の濃度は、最終沈殿池30からの返送汚泥の量によって変化する。そのため、反応槽20における活性汚泥の濃度は、最終沈殿池30における自然沈降性や最終沈殿池30の大きさに依存することになり、不安定になる場合がある。 Also, in the organic wastewater treatment apparatus 800 , the concentration of activated sludge in the reaction tank 20 changes depending on the amount of returned sludge from the final sedimentation tank 30 . Therefore, the concentration of activated sludge in the reaction tank 20 depends on the natural settling property in the final sedimentation tank 30 and the size of the final sedimentation tank 30, and may become unstable.
 さらに、有機性廃水の処理装置800では、反応槽20における活性汚泥の濃度を維持する必要性から、空気供給器40による空気2の供給動力が大きくなる場合がある。活性汚泥法以外にも汚濁物を処理する方法として、膜分離活性汚泥法が提案されている。膜分離活性汚泥法について図2で説明する。 Furthermore, in the organic wastewater treatment apparatus 800, the power for supplying the air 2 by the air supplier 40 may be increased due to the need to maintain the concentration of activated sludge in the reaction tank 20. In addition to the activated sludge method, a membrane separation activated sludge method has been proposed as a method for treating pollutants. The membrane separation activated sludge method will be explained with reference to FIG.
 [第2の比較例における有機性廃水の処理装置900]
 次に、第2の比較例における有機性廃水の処理装置900(以下、有機性廃水の処理システム900とも呼ぶ)の構成について説明を行う。図2は、第2の比較例における有機性廃水の処理装置900の構成について説明する図である。
[Organic wastewater treatment apparatus 900 in the second comparative example]
Next, the configuration of an organic wastewater treatment apparatus 900 (hereinafter also referred to as an organic wastewater treatment system 900) in a second comparative example will be described. FIG. 2 is a diagram illustrating the configuration of an organic wastewater treatment apparatus 900 in a second comparative example.
 有機性廃水の処理装置900は、例えば、膜分離活性汚泥法を用いた有機性廃水の処理装置である。具体的に、有機性廃水の処理装置900は、図2に示すように、例えば、最初沈殿池10と、反応槽20と、空気供給器40と、固液分離槽50と、空気供給器60を有する。すなわち、有機性廃水の処理装置900は、有機性廃水の処理装置800と比較して、例えば、最終沈殿池30に代えて固液分離槽50を有する。また、有機性廃水の処理装置900は、例えば、空気供給器60をさらに有する。 The organic wastewater treatment apparatus 900 is, for example, an organic wastewater treatment apparatus using a membrane separation activated sludge method. Specifically, the organic wastewater treatment apparatus 900 includes, as shown in FIG. have That is, the organic wastewater treatment apparatus 900 has, for example, a solid-liquid separation tank 50 in place of the final sedimentation tank 30 compared to the organic wastewater treatment apparatus 800 . The organic wastewater treatment device 900 further comprises an air feeder 60, for example.
 固液分離槽50は、例えば、反応槽20から廃水1が排出される槽本体51と、槽本体51内に存在する活性汚泥(好気性微生物)に対して槽本体51の底部から空気2(酸素)を供給する空気供給管52と、廃水1に含まれる活性汚泥を分離する分離膜53とを有する。分離膜53は、例えば、精密濾過膜や限外濾過膜である。 The solid-liquid separation tank 50 includes, for example, a tank body 51 from which waste water 1 is discharged from the reaction tank 20, and air 2 ( oxygen) and a separation membrane 53 for separating activated sludge contained in the wastewater 1 . The separation membrane 53 is, for example, a microfiltration membrane or an ultrafiltration membrane.
 具体的に、固液分離槽50では、例えば、空気供給管52から供給された空気2によって分離膜53を下方から曝気することにより、空気2と廃水1との上昇流を発生させ、分離膜53における活性汚泥の増殖(被覆)や分離膜53における目詰まりの発生に起因する閉塞の発生を抑制しながら活性汚泥の分離を行う。そして、固液分離槽50は、例えば、活性汚泥の一部を余剰汚泥として濃縮機に供給するとともに、余剰汚泥以外の活性汚泥を返送汚泥として反応槽20に返送する。また、固液分離槽50は、例えば、活性汚泥の分離を行った後の廃水1(上澄み液)をポンプ(図示せず)によって上方から吸引することにより、後段の滅菌処理装置に排出する。 Specifically, in the solid-liquid separation tank 50, for example, by aerating the separation membrane 53 from below with the air 2 supplied from the air supply pipe 52, an upward flow of the air 2 and the waste water 1 is generated, and the separation membrane The activated sludge is separated while suppressing clogging caused by proliferation (coating) of the activated sludge in the membrane 53 and clogging of the separation membrane 53 . The solid-liquid separation tank 50 supplies part of the activated sludge as excess sludge to the thickener, and returns the activated sludge other than the excess sludge to the reaction tank 20 as return sludge. The solid-liquid separation tank 50 discharges the wastewater 1 (supernatant liquid) after the separation of the activated sludge to the subsequent sterilization apparatus by sucking it from above with a pump (not shown).
 空気供給器60は、例えば、送風ブロワであり、固液分離槽50に対して空気2を供給する。具体的に、空気供給器60は、固液分離槽50の底部に設けられた空気供給管52に対して空気2を供給する。 The air supply device 60 is, for example, an air blower, and supplies air 2 to the solid-liquid separation tank 50. Specifically, the air supply device 60 supplies the air 2 to the air supply pipe 52 provided at the bottom of the solid-liquid separation tank 50 .
 すなわち、有機性廃水の処理装置900では、自然沈降による活性汚泥の分離に代えて、分離膜53を用いた活性汚泥の分離を行う。これにより、有機性廃水の処理装置900では、活性汚泥が後段の装置に流出することの防止が可能になる。 That is, the organic wastewater treatment apparatus 900 separates activated sludge using the separation membrane 53 instead of separating activated sludge by natural sedimentation. As a result, the organic wastewater treatment apparatus 900 can prevent the activated sludge from flowing out to the subsequent apparatus.
 また、有機性廃水の処理装置900では、固液分離槽50において廃水1から分離される活性汚泥の濃度を高めることが可能になる。そのため、有機性廃水の処理装置900では、例えば、図1で説明した有機性廃水の処理装置800と比較して反応槽20の小型化を図ることが可能になる。 In addition, in the organic wastewater treatment apparatus 900, the concentration of activated sludge separated from the wastewater 1 in the solid-liquid separation tank 50 can be increased. Therefore, in the organic wastewater treatment apparatus 900, for example, the size of the reaction tank 20 can be reduced compared to the organic wastewater treatment apparatus 800 described with reference to FIG.
 なお、有機性廃水の処理装置900は、例えば、循環ポンプ(図示せず)を用いることにより、反応槽20と固液分離槽50との間において活性汚泥を循環させながら分離膜53による活性汚泥の分離を行うものであってもよい。また、有機性廃水の処理装置900は、例えば、固液分離槽50を有する代わりに、分離膜53を反応槽20内に設けるものであってもよい。また、図2の膜分離活性汚泥法において、反応槽50の性能維持を図るために、分離膜53に付着した余剰汚泥を洗浄によって剥離させることもできる。 In addition, the organic wastewater treatment apparatus 900 uses, for example, a circulation pump (not shown) to circulate the activated sludge between the reaction tank 20 and the solid-liquid separation tank 50, and the activated sludge by the separation membrane 53. may be used to separate the Further, the organic wastewater treatment apparatus 900 may have a separation membrane 53 in the reaction tank 20 instead of having the solid-liquid separation tank 50, for example. Moreover, in the membrane separation activated sludge process of FIG. 2, in order to maintain the performance of the reaction tank 50, the excess sludge adhering to the separation membrane 53 can be removed by washing.
 ここで、有機性廃水の処理装置900では、例えば、分離膜53における閉塞の発生を防止する必要性から、次亜塩素酸やアルカリ等の薬品を用いた分離膜53の洗浄を定期的に行う必要がある。また、有機性廃水の処理装置900では、例えば、分離膜53の定期的な交換を行う必要がある。 Here, in the organic wastewater treatment apparatus 900, for example, the separation membrane 53 is periodically washed with a chemical such as hypochlorous acid or alkali in order to prevent clogging of the separation membrane 53. There is a need. Further, in the organic wastewater treatment apparatus 900, for example, the separation membrane 53 needs to be replaced periodically.
 また、有機性廃水の処理装置900では、例えば、分離膜53における閉塞の発生を防止しながら活性汚泥の分離を行う必要性から、空気供給器40や循環ポンプ等の動力が大きくなる場合がある。 In addition, in the organic wastewater treatment apparatus 900, for example, due to the need to separate activated sludge while preventing clogging of the separation membrane 53, the power of the air supply device 40, the circulation pump, etc. may be increased. .
 さらに、分離膜53において分離される活性汚泥の主成分は、廃水1において増殖した菌体である。そして、かかる余剰汚泥は、分散状であり、脱水されにくい性質を有している。そのため、有機性廃水の処理装置900では、例えば、濃縮機等において多量の凝集剤を投入する必要がある。このように、図1、図2で説明した有機性廃水の処理装置において、ランニングコスト(例えば、空気の供給電力、分離膜の交換費用、洗浄費用、凝集剤の費用)が増大する。そこで、かかるランニングコストを抑制できる有機性廃水の処理装置について図3から図8を参照して説明する。 Furthermore, the main component of the activated sludge separated by the separation membrane 53 is the fungus grown in the wastewater 1. Such excess sludge is dispersed and has the property of being difficult to dewater. Therefore, in the organic wastewater treatment apparatus 900, for example, it is necessary to put a large amount of coagulant in a concentrator or the like. Thus, in the organic wastewater treatment apparatus described in FIGS. 1 and 2, running costs (for example, air supply power, separation membrane replacement costs, cleaning costs, flocculant costs) increase. Therefore, an organic wastewater treatment apparatus capable of suppressing such running costs will be described with reference to FIGS. 3 to 8. FIG.
 [第1の実施の形態における有機性廃水の処理装置100]
 まず、第1の実施の形態における有機性廃水の処理装置100(以下、有機性廃水の処理システム100とも呼ぶ)の構成について説明を行う。図3は、第1の実施の形態における有機性廃水の処理装置100の構成について説明する図である。また、図4及び図5は、第1の実施の形態における膜担体72の構成について説明する垂直断面図である。
[Organic wastewater treatment apparatus 100 in the first embodiment]
First, the configuration of an organic wastewater treatment apparatus 100 (hereinafter also referred to as an organic wastewater treatment system 100) in the first embodiment will be described. FIG. 3 is a diagram illustrating the configuration of the organic wastewater treatment apparatus 100 according to the first embodiment. 4 and 5 are vertical cross-sectional views illustrating the configuration of the film carrier 72 in the first embodiment.
 有機性廃水の処理装置100は、有機性の廃水1に含まれる汚濁物に対して生物処理を行う。具体的に、有機性廃水の処理装置100は、図3に示すように、例えば、最初沈殿池10と、反応槽70と、空気供給器80と、固液分離装置90とを有する。すなわち、有機性廃水の処理装置100は、有機性廃水の処理装置900と比較して、例えば、反応槽20に代えて反応槽70を有する。また、有機性廃水の処理装置100は、例えば、空気供給器40に代えて空気供給器80(以下、供給器とも呼ぶ)を有する。さらに、有機性廃水の処理装置100は、例えば、固液分離槽50に代えて固液分離装置90を有する。空気供給器80は、例えば、送風機等の送風ブロワあるいは送風ファンであり、反応槽70に対して少なくとも酸素を供給する。なお、空気供給器80によって供給される気体は、酸素を含む気体であれば他の気体でもよく、以下、酸素を含む気体として空気を例示する。 The organic wastewater treatment device 100 performs biological treatment on contaminants contained in the organic wastewater 1 . Specifically, the organic wastewater treatment apparatus 100 has, for example, a primary sedimentation tank 10, a reaction tank 70, an air feeder 80, and a solid-liquid separation apparatus 90, as shown in FIG. That is, the organic wastewater treatment apparatus 100 has a reaction tank 70 instead of the reaction tank 20, for example, compared with the organic wastewater treatment apparatus 900. FIG. Further, the organic wastewater treatment apparatus 100 has, for example, an air supplier 80 (hereinafter also referred to as a supplier) in place of the air supplier 40 . Further, the organic wastewater treatment apparatus 100 has, for example, a solid-liquid separation device 90 instead of the solid-liquid separation tank 50 . The air supplier 80 is, for example, a blower such as an air blower or a fan, and supplies at least oxygen to the reaction vessel 70 . The gas supplied by the air supply device 80 may be any other gas as long as it contains oxygen, and hereinafter, air is exemplified as the gas containing oxygen.
 反応槽70は、有機性の廃水に含まれる汚濁物に対して生物処理を行う。反応槽70は、例えば、メンブレンエアレーション型バイオフィルムリアクター(MABR:Membrane Aerated Biofilm Reactor)である。具体的に、反応槽70は、例えば、最初沈殿池10から廃水1が流入する槽本体71と、空気供給器80によって供給された空気2が内部に供給される1本以上の膜担体72とを有する。空気供給器80により供給される空気量は、図1、図2で説明した空気供給器で供給される空気量よりも少なく空気供給に必要な電力を削減することができる。 The reaction tank 70 performs biological treatment on contaminants contained in organic wastewater. The reaction tank 70 is, for example, a membrane aerated biofilm reactor (MABR: Membrane Aerated Biofilm Reactor). Specifically, the reaction tank 70 includes, for example, a tank body 71 into which the wastewater 1 flows from the primary sedimentation tank 10, and one or more membrane carriers 72 into which the air 2 supplied by the air supply device 80 is supplied. have The amount of air supplied by the air supply device 80 is smaller than the amount of air supplied by the air supply device described in FIGS.
 膜担体72は、空気供給器80によって供給された空気を複数の孔を介して反応槽70内に分子拡散する管状の膜担体である。具体的に、膜担体72は、疎水性の中空糸膜であり、例えば、テフロン(登録商標)製の膜である。また、膜担体72は、例えば、軸方向が垂直方向(反応槽70の高さ方向)に向かって延びる管状の膜である。膜担体72の表面には、微細な孔(例えば、0.1ミクロン程度の孔)が多数存在する。この微細の孔から空気が反応槽70内に分子拡散する。 The membrane carrier 72 is a tubular membrane carrier that molecularly diffuses the air supplied by the air supplier 80 into the reaction vessel 70 through a plurality of holes. Specifically, the membrane carrier 72 is a hydrophobic hollow fiber membrane, for example, a Teflon (registered trademark) membrane. The membrane carrier 72 is, for example, a tubular membrane whose axial direction extends in the vertical direction (the height direction of the reaction vessel 70). A large number of fine pores (for example, pores of about 0.1 micron) are present on the surface of the membrane carrier 72 . Air molecularly diffuses into the reaction chamber 70 through these fine holes.
 なお、以下、反応槽70において4本の膜担体72が水平方向に並ぶように設けられる場合について説明を行うが、反応槽70には、4本以外の本数の膜担体72が設けられるものであってもよい。また、以下、空気供給器80から供給された空気2が膜担体72の内部を垂直下方向から垂直上方向に向けて供給される場合について説明を行うが、空気供給器80から供給された空気2は、膜担体72の内部を垂直上方向から垂直下方向に向けて供給されるものであってもよい。また、膜担体72は、例えば、両端部が垂直上方向に向いたU字形状からなるものであってもよい。さらに、膜担体72は、例えば、両端部が垂直下方向に向いたU字形状からなるものであってもよい。 A case where four membrane carriers 72 are arranged in the horizontal direction in the reaction vessel 70 will be described below, but the number of membrane carriers 72 other than four may be arranged in the reaction vessel 70. There may be. Further, hereinafter, the case where the air 2 supplied from the air supplier 80 is supplied from the vertically downward direction to the vertically upward direction inside the membrane carrier 72 will be described. 2 may be supplied from the vertical upward direction to the vertical downward direction inside the membrane carrier 72 . Further, the membrane carrier 72 may be, for example, U-shaped with both ends facing vertically upward. Further, the membrane carrier 72 may be, for example, U-shaped with both ends facing vertically downward.
 そして、膜担体72は、図4(A)に示すように、表面の複数の孔から外部(反応槽70内)に向けて、空気供給器80から供給された空気2を放出(分子拡散)する。その結果、複数の孔を介して空気を反応槽70内に分子拡散することにより、膜担体72の外周上において好気性細菌を含む生物膜(以下、バイオフィルムR1)が形成される。この生物膜は、汚濁物に対して好気性細菌による生物処理を行う生物膜である。例えば、図4(B)に示すように、膜担体72の表面(外周上)には、槽本体71内に存在する活性汚泥(好気性微生物)が付着して生物膜である塊状のバイオフィルムR1が形成される。 Then, as shown in FIG. 4A, the membrane carrier 72 emits the air 2 supplied from the air supplier 80 toward the outside (inside the reaction vessel 70) from a plurality of holes on the surface (molecular diffusion). do. As a result, a biofilm containing aerobic bacteria (hereinafter referred to as biofilm R1) is formed on the outer circumference of the membrane carrier 72 by molecularly diffusing air into the reaction vessel 70 through the plurality of holes. This biofilm is a biofilm that biologically treats contaminants with aerobic bacteria. For example, as shown in FIG. 4(B), on the surface (on the outer periphery) of the membrane carrier 72, activated sludge (aerobic microorganisms) present in the tank body 71 adheres to form a massive biofilm, which is a biofilm. R1 is formed.
 すなわち、本実施の形態における反応槽70では、膜担体72の表面に付着したバイオフィルムR1は、廃水1に含まれる有機物を分解し増殖する。 That is, in the reaction tank 70 of the present embodiment, the biofilm R1 adhered to the surface of the membrane carrier 72 decomposes the organic matter contained in the wastewater 1 and proliferates.
 なお、膜担体72は、表面の孔からの気泡の発生によってバイオフィルムR1が剥離することを防止するために、膜担体72の内部から外部に対する空気2の放出を、表面の孔を気液界面として気相側(膜担体72の内側)から液相側(膜担体72の外側)に対して行う分子拡散によって行う。そのため、空気供給器80は、膜担体72の内部の圧力を、表面の孔から気泡が発生しない程度の圧力(例えば、水圧以下の圧力)に保つことが好ましい。このように、空気供給器80が供給する空気の圧力を水圧以下の圧力にすることができるので、図1、図2で説明した空気供給器40が供給する空気の圧力よりも低くすることができる。そのため、空気供給器80の動作電力を空気供給器40の動作電力に比べて削減することができる。図3に戻る。 In addition, in order to prevent the biofilm R1 from peeling off due to the generation of air bubbles from the pores on the surface of the membrane carrier 72, the air 2 is released from the inside of the membrane carrier 72 to the outside, and the pores on the surface are used as the air-liquid interface. is performed by molecular diffusion from the gas phase side (inside the membrane carrier 72) to the liquid phase side (outside the membrane carrier 72). Therefore, the air supplier 80 preferably maintains the internal pressure of the membrane carrier 72 at a level that does not generate air bubbles from the pores on the surface (for example, a pressure equal to or lower than the water pressure). In this way, the pressure of the air supplied by the air supplier 80 can be made lower than the water pressure, so that the pressure of the air supplied by the air supplier 40 described in FIGS. 1 and 2 can be lowered. can. Therefore, the operating power of the air supplier 80 can be reduced compared to the operating power of the air supplier 40 . Return to FIG.
 反応槽70は、バイオフィルムR1との反応が行われた後の廃水1(排水)を固液分離装置90に排出する。固液分離装置90は、反応槽70から排出される排水から、バイオフィルムR1を含む、塊状の汚泥を分離する。この分離対象の汚泥には、生存又は死滅している好気性細菌の他にも各種細菌が含まれる。 The reaction tank 70 discharges the waste water 1 (waste water) after the reaction with the biofilm R1 to the solid-liquid separation device 90. The solid-liquid separator 90 separates lumpy sludge containing biofilm R1 from the waste water discharged from the reaction tank 70 . The sludge to be separated contains various bacteria in addition to living or dead aerobic bacteria.
 固液分離装置90は、汚泥の分離機能を有していれば良く、例えば、図2で説明した分離膜を含む装置であっても良い。また、固液分離装置90は、重力沈殿により、分離対象の汚泥を排水から分離しても良く、また、砂ろ過により、分離対象の汚泥を排水から分離しても良い。また、固液分離装置90は、担体を利用して、分離対象の汚泥を排水から分離しても良い(いわゆる担体高速ろ過)。 The solid-liquid separation device 90 only needs to have a sludge separation function, and may be, for example, a device including the separation membrane described in FIG. Further, the solid-liquid separator 90 may separate the sludge to be separated from the wastewater by gravity sedimentation, or may separate the sludge to be separated from the wastewater by sand filtration. In addition, the solid-liquid separation device 90 may separate the sludge to be separated from the wastewater using a carrier (so-called high-speed carrier filtration).
 そして、有機性廃水の処理装置100は、例えば、剥離装置73と、制御装置74とをさらに有する。 The organic wastewater treatment apparatus 100 further includes a stripping device 73 and a control device 74, for example.
 剥離装置73は、例えば、膜担体72を振動させることによって、膜担体72に付着したバイオフィルムR1を膜担体72から剥離させる装置である。 The stripping device 73 is, for example, a device that strips the biofilm R1 adhering to the membrane carrier 72 from the membrane carrier 72 by vibrating the membrane carrier 72 .
 制御装置74は、例えば、CPU(Central Computing Unit)及びメモリ等を有するコンピュータであり、記憶装置(図示せず)に記憶されたプログラムとCPUとが協働することによって、剥離装置73がバイオフィルムR1の剥離を行うタイミング(以下、剥離タイミングとも呼ぶ)を制御する。 The control device 74 is, for example, a computer having a CPU (Central Computing Unit), a memory, etc., and a program stored in a storage device (not shown) cooperates with the CPU to enable the peeling device 73 to remove biofilms. The timing of peeling R1 (hereinafter also referred to as peeling timing) is controlled.
 なお、以下、反応槽70において剥離装置73を用いることによるバイオフィルムR1の剥離が行われるものとして説明を行うが、反応槽70では、例えば、空気等の気体を噴出することによってバイオフィルムR1の剥離を行うものであってもよい(いわゆる膜洗浄)。そして、制御装置74は、この場合、例えば、噴出を行うタイミングを制御するものであってもよい。 In the following description, the biofilm R1 is peeled off by using the peeling device 73 in the reaction tank 70. Detachment may be performed (so-called membrane cleaning). In this case, the control device 74 may control the timing of jetting, for example.
 すなわち、本実施の形態における反応槽70は、最初沈殿池10から反応槽70に排出される廃水1に含まれる有機物を、膜担体72に付着したバイオフィルムR1によって分解させるとともに、有機物を取り込んで塊状となったバイオフィルムR1を、膜担体72から間欠的に剥離させて、バイオフィルムR1を含む汚泥を固液分離装置90に排出する。 That is, the reaction tank 70 in the present embodiment decomposes the organic substances contained in the wastewater 1 discharged from the primary sedimentation tank 10 to the reaction tank 70 by the biofilm R1 adhered to the membrane carrier 72, and takes in the organic substances. The aggregated biofilm R1 is intermittently separated from the membrane carrier 72, and the sludge containing the biofilm R1 is discharged to the solid-liquid separation device 90.
 これにより、本実施の形態における反応槽70では、例えば、バイオフィルムR1による有機物の分解が行われている時間帯(バイオフィルムR1の剥離が行われていない時間帯)においては、固液分離装置90に排出される汚泥の量を抑えることが可能になる。そのため、反応槽70では、この場合、増殖ポテンシャルが低い状態の廃水1を固液分離装置90に排出することが可能になる。そのため、固液分離装置90における活性汚泥の増殖を防止することが可能になる。また、固液分離装置90が分離膜により固液分離をする場合、この分離膜における目詰まりの発生を防止することが可能になる。 As a result, in the reaction tank 70 in the present embodiment, for example, during the time period when the biofilm R1 is decomposing organic matter (the time period when the biofilm R1 is not peeled off), the solid-liquid separator It is possible to suppress the amount of sludge discharged to 90. Therefore, in the reaction tank 70 , in this case, it is possible to discharge the wastewater 1 with low growth potential to the solid-liquid separation device 90 . Therefore, it becomes possible to prevent the proliferation of activated sludge in the solid-liquid separator 90 . Further, when the solid-liquid separation device 90 performs solid-liquid separation using a separation membrane, it is possible to prevent clogging of the separation membrane.
 また、本実施の形態における反応槽70では、例えば、バイオフィルムR1の剥離が行われている時間帯においても、バイオフィルムR1を含む汚泥を固液分離装置90に排出することで、固液分離装置90が分離膜により固液分離をする場合、この分離膜における目詰まりの発生を防止することが可能になる。 In addition, in the reaction tank 70 in the present embodiment, for example, even during the time period when the biofilm R1 is being peeled off, the sludge containing the biofilm R1 is discharged to the solid-liquid separation device 90, so that solid-liquid separation is performed. When the device 90 performs solid-liquid separation using a separation membrane, it is possible to prevent clogging of the separation membrane.
 また、本実施の形態における固液分離装置90は、塊状の汚泥を排水から固液分離するので、分離された汚泥の脱水を容易に行うことが可能になる。そのため、本実施の形態における有機性廃水の処理装置100では、汚泥の脱水を行う脱水機等において投入する必要がある凝集剤の量を抑えることが可能になり、汚泥の脱水に要するコストを抑制することが可能になる。 In addition, since the solid-liquid separation device 90 according to the present embodiment solid-liquid separates solid-liquid lumps of sludge from waste water, it is possible to easily dewater the separated sludge. Therefore, in the organic wastewater treatment apparatus 100 according to the present embodiment, it is possible to reduce the amount of flocculant that needs to be put in a dewatering machine or the like for dehydrating sludge, thereby reducing the cost required for dehydrating sludge. it becomes possible to
 また、本実施の形態における反応槽70では、管状の膜担体72を用いることで、管状以外の形状を有する膜担体を用いる場合よりも表面積を大きくすることが可能になる。そのため、本実施の形態における有機性廃水の処理装置100では、活性汚泥(好気性微生物)と有機物との反応容積を小さくすることが可能になり、反応槽70を小型化させることが可能になる。具体的に、有機性廃水の処理装置100では、例えば、反応槽70における垂直方向における高さ(水深)を低くすることが可能になる。 In addition, in the reaction vessel 70 of the present embodiment, by using the tubular membrane carrier 72, it is possible to increase the surface area compared to the case of using a membrane carrier having a shape other than tubular. Therefore, in the organic wastewater treatment apparatus 100 of the present embodiment, it is possible to reduce the volume of reaction between the activated sludge (aerobic microorganisms) and the organic matter, and it is possible to reduce the size of the reaction tank 70. . Specifically, in the organic wastewater treatment apparatus 100, for example, the vertical height (water depth) of the reaction tank 70 can be reduced.
 また、本実施の形態における空気供給器80は、膜担体72の内部の圧力を表面の孔から気泡が発生しない程度の圧力に保つことができるので、例えば、図2で説明した空気供給器40が用いられる場合よりも空気2の供給に伴う動力を抑制することが可能になる。 Further, since the air supplier 80 according to the present embodiment can keep the pressure inside the membrane carrier 72 at a level that does not generate air bubbles from the pores on the surface, for example, the air supplier 40 described in FIG. It is possible to suppress the power associated with the supply of the air 2 more than when is used.
 また、本実施の形態における反応槽70では、膜担体72の表面の孔から酸素が分子拡散することによって、図5に示すように、好気層R1(バイオフィルムR1)、無酸素層R2及び嫌気層R3のそれぞれを膜担体72の表面から液相側に向けて形成することが可能になる。すなわち、この場合、2本の膜担体72の間には、図5に示すように、好気層R1、無酸素層R2、嫌気層R3、無酸素層R2及び好気層R1が順に形成される。そのため、反応槽70では、好気層R1において、例えば、廃水1に含まれるアンモニアを硝化作用により硝化することが可能になる。そして、無酸素層R2及び嫌気層R3において、廃水1に含まれる窒素(例えば、亜硝酸性窒素)を脱窒反応により除去(脱窒)することが可能になる。 In addition, in the reaction tank 70 of the present embodiment, as shown in FIG. It becomes possible to form each of the anaerobic layers R3 from the surface of the membrane carrier 72 toward the liquid phase side. That is, in this case, between the two membrane carriers 72, as shown in FIG. be. Therefore, in the reaction tank 70, for example, ammonia contained in the wastewater 1 can be nitrified by the nitrification action in the aerobic layer R1. Then, in the anoxic layer R2 and the anaerobic layer R3, nitrogen contained in the wastewater 1 (for example, nitrite nitrogen) can be removed (denitrified) by a denitrification reaction.
 なお、本実施の形態における反応槽70では、膜担体72に付着したバイオフィルムR1において有機物の処理が行われることから、例えば、図2で説明した反応槽20を用いる場合のように、液相における活性汚泥の濃度を一定のレベルに維持する必要がなくなる。そのため、本実施の形態における有機性廃水の処理装置100では、例えば、図2で説明した有機性廃水の処理装置900のように、固液分離装置90から反応槽70に対して汚泥を実質的に返送する必要がなくなる。これにより、有機性廃水の処理装置100では、例えば、汚泥返送に必要な設備を実質的に省略することが可能になる。仮に、反応槽70に汚泥が返送されると、返送された汚泥が反応槽70で活性汚泥として増殖する。この増殖した活性汚泥が固液分離装置90に排出されると、この活性汚泥は塊状ではないので、汚泥の脱水性は、図2で説明した有機性廃水の処理装置における汚泥の脱水性と同程度になってしまう。しかし、本実施の形態では、汚泥を実質的に返送する必要がないので、バイオフィルムR1の剥離汚泥(塊状)だけが固液分離装置90に排出されるようにして、固液分離装置90において分離される余剰汚泥の脱水性を向上することができる。 In addition, in the reaction tank 70 of the present embodiment, the biofilm R1 adhered to the membrane carrier 72 is treated with organic matter. There is no need to maintain the concentration of activated sludge at a constant level. Therefore, in the organic wastewater treatment apparatus 100 of the present embodiment, for example, like the organic wastewater treatment apparatus 900 described in FIG. no need to send it back to As a result, in the organic wastewater treatment apparatus 100, for example, it is possible to substantially omit equipment necessary for returning sludge. If the sludge is returned to the reaction tank 70 , the returned sludge grows as activated sludge in the reaction tank 70 . When this multiplied activated sludge is discharged to the solid-liquid separation device 90, since this activated sludge is not lumpy, the dewaterability of the sludge is the same as that in the organic wastewater treatment device described with reference to FIG. It's going to be about. However, in the present embodiment, since it is not necessary to substantially return the sludge, only the stripped sludge (lump) of the biofilm R1 is discharged to the solid-liquid separation device 90, and the solid-liquid separation device 90 The dewaterability of the separated excess sludge can be improved.
 前記した、固液分離装置90から反応槽70に対して汚泥を実質的に返送する必要がない(換言すれば、前記汚泥を実質的に返送しない)とは、本発明の趣旨を逸脱しない範囲で、前記汚泥の返送を許容することを示す。具体的には、固液分離装置90において分離された汚泥の脱水性を、図2で説明した有機性廃水の処理装置における汚泥の脱水性よりも高い状態で維持できれば、固液分離装置90から反応槽70に対して汚泥を返送しても良い。かかる返送をする場合、汚泥の返送量(返送時間)は、図2で説明した有機性廃水の処理装置における汚泥の返送量(返送時間)は、少なく(短く)なる。 It is not necessary to substantially return the sludge from the solid-liquid separation device 90 to the reaction tank 70 (in other words, the sludge is not substantially returned), as long as it does not deviate from the gist of the present invention. indicates that the sludge is allowed to be returned. Specifically, if the dewaterability of the sludge separated in the solid-liquid separation device 90 can be maintained in a state higher than the dewaterability of the sludge in the organic wastewater treatment device described in FIG. Sludge may be returned to the reaction tank 70 . When such return is performed, the amount of sludge returned (return time) in the organic wastewater treatment apparatus described in FIG. 2 is reduced (shortened).
 また、図2で説明した有機性廃水の処理装置900(膜分離活性汚泥法)では、反応槽20における液相の浮遊汚泥で各種生物反応が進行するため一定の活性汚泥浮遊物質(MLSS:Mixed Liquor Suspended Solids)が必要である。しかしながら、本実施の形態における反応槽70では、膜担体72の表面に付着したバイオフィルムにて各種生物処理が進行するため、膜分離活性汚泥法に比べてMLSS濃度を低くすることができ、固液分離装置90に流れて固液分離80を閉塞させる汚泥の量を最小限にできる。 In addition, in the organic wastewater treatment apparatus 900 (membrane separation activated sludge method) described in FIG. Liquor Suspended Solids) is required. However, in the reaction tank 70 of the present embodiment, since various biological treatments proceed with the biofilm attached to the surface of the membrane carrier 72, the MLSS concentration can be lowered compared to the membrane separation activated sludge method, and the solid The amount of sludge that flows into the liquid separator 90 and clogs the solid-liquid separation 80 can be minimized.
 また、本実施の形態における空気供給器80から空気ではなく、空気よりも酸素濃度が高い気体を膜担体72に対して供給しても良い。これにより、反応槽70では、反応槽70内に設ける必要がある膜担体72の本数を、空気供給器80から膜担体72に対して空気2の供給が行われる場合よりも減少させることが可能になる。 Further, instead of air, a gas having a higher oxygen concentration than air may be supplied to the membrane carrier 72 from the air supply device 80 in the present embodiment. As a result, in the reaction tank 70, the number of membrane carriers 72 that need to be provided in the reaction tank 70 can be reduced compared to the case where the air 2 is supplied to the membrane carriers 72 from the air supplier 80. become.
 また、本実施の形態における反応槽70では、膜担体72に対して供給される酸素として、例えば、再生可能エネルギーを用いた水電解によって得られた酸素を用いるものであってもよい。例えば、汚泥焼却における廃熱を利用して発電した電気エネルギーを利用して水を電気分解して得られた酸素を用いるものであっても良い。この発電では、例えば、オーガニックランキンサイクル(ORC)等の各種発電技術を利用することができる。 Further, in the reaction tank 70 of the present embodiment, the oxygen supplied to the membrane carrier 72 may be, for example, oxygen obtained by water electrolysis using renewable energy. For example, oxygen obtained by electrolyzing water using electric energy generated by using waste heat in sludge incineration may be used. In this power generation, for example, various power generation technologies such as organic Rankine cycle (ORC) can be used.
 [第1の実施の形態における効果]
 次に、第1の実施の形態における効果について説明を行う。図6から図8は、第1の実施の形態における効果について説明する図である。
[Effects of the first embodiment]
Next, effects of the first embodiment will be described. 6 to 8 are diagrams for explaining the effects of the first embodiment.
 初めに、膜担体72からのバイオフィルムR1の剥離間隔と反応槽70における有機物の除去率との関係について説明を行う。図6は、バイオフィルムR1の剥離間隔と有機物の除去率との関係を示すグラフである。なお、図6に示すグラフにおける横軸は、バイオフィルムR1の剥離間隔(以下、単に剥離間隔とも呼ぶ)を示しており、図6に示すグラフにおける縦軸は、有機物の除去率(以下、単に除去率とも呼ぶ)を示している。 First, the relationship between the separation interval of the biofilm R1 from the membrane carrier 72 and the organic matter removal rate in the reaction tank 70 will be described. FIG. 6 is a graph showing the relationship between the detachment interval of biofilm R1 and the removal rate of organic matter. The horizontal axis in the graph shown in FIG. 6 indicates the separation interval of the biofilm R1 (hereinafter simply referred to as the separation interval), and the vertical axis in the graph shown in FIG. (also called removal rate).
 図6に示すグラフは、剥離間隔が24(h)付近になるまで除去率が上昇し、さらに、剥離間隔が24(h)付近から大きくなるに従って除去率が下降することを示している。また、図6に示すグラフは、剥離間隔が24(h)付近である場合、除去率が88(%)程度であることを示しており、また、剥離間隔が12(h)付近または48(h)付近である場合、除去率が80(%)程度であることを示している。 The graph shown in FIG. 6 indicates that the removal rate increases until the separation interval reaches around 24 (h), and further, the removal rate decreases as the separation interval increases from around 24 (h). Further, the graph shown in FIG. 6 indicates that the removal rate is about 88 (%) when the peeling interval is around 24 (h), and the peeling interval is around 12 (h) or 48 ( h) indicates that the removal rate is about 80 (%).
 すなわち、図6に示すグラフは、例えば、剥離間隔が12(h)以上であって48(h)以下である場合、除去率を80(%)以上に保つことが可能であり、固液分離装置90に排出される有機物を20(%)以下に抑えることが可能であることを示している。 That is, the graph shown in FIG. 6 shows that, for example, when the separation interval is 12 (h) or more and 48 (h) or less, the removal rate can be maintained at 80 (%) or more, and the solid-liquid separation This indicates that it is possible to suppress the organic matter discharged to the device 90 to 20(%) or less.
 一方、図6に示すグラフは、例えば、剥離間隔が48(h)以上である場合、除去率が低下することを示している。これは、塊状の汚泥であるバイオフィルムR1の厚さが所定以上になった場合、バイオフィルムR1における膜担体72側(膜担体72からの酸素の供給を直接受けることができる部分)に対して廃水1が十分に供給されなくなり、有機物の除去が効率的に行われなくなることに起因するものである。 On the other hand, the graph shown in FIG. 6 indicates that, for example, when the separation interval is 48 (h) or more, the removal rate decreases. When the thickness of the biofilm R1, which is a lump of sludge, reaches a predetermined thickness or more, the membrane carrier 72 side of the biofilm R1 (the portion that can directly receive the supply of oxygen from the membrane carrier 72) This is because the wastewater 1 is not sufficiently supplied, and the removal of organic matter is not efficiently performed.
 そのため、制御装置74は、例えば、剥離間隔が12(h)以上であって48(h)以下になるように、すなわち、80(%)以上の除去率が維持されるように、バイオフィルムR1の剥離タイミングを制御するものであってよい。具体的に、制御装置74は、例えば、剥離間隔が24(h)や48(h)になるように、バイオフィルムR1の剥離タイミングを制御するものであってよい。以下、固液分離装置90が分離膜により固液分離をする場合を例示して説明する。 Therefore, the control device 74 controls the biofilm R1 such that the separation interval is 12 (h) or more and 48 (h) or less, that is, the biofilm R1 is maintained at a removal rate of 80 (%) or more. may control the peeling timing of the . Specifically, the control device 74 may control the peeling timing of the biofilm R1 so that the peeling interval is 24 (h) or 48 (h), for example. Hereinafter, a case where the solid-liquid separator 90 performs solid-liquid separation using a separation membrane will be described as an example.
 次に、バイオフィルムR1の剥離間隔と固液分離装置90における流束(以下、フラックスとも呼ぶ)との関係について説明を行う。図7は、バイオフィルムR1の剥離間隔と固液分離装置90におけるフラックスとの関係を示すグラフである。なお、図7に示すグラフにおける横軸は、バイオフィルムR1の剥離間隔を示しており、図7に示すグラフにおける縦軸は、閉塞が発生していない場合の固液分離装置90のフラックスを100(%)とした場合における固液分離装置90のフラックスを示している。 Next, the relationship between the detachment interval of the biofilm R1 and the flux in the solid-liquid separator 90 (hereinafter also referred to as flux) will be described. FIG. 7 is a graph showing the relationship between the biofilm R1 detachment interval and the flux in the solid-liquid separator 90. As shown in FIG. The horizontal axis in the graph shown in FIG. 7 indicates the peeling interval of the biofilm R1, and the vertical axis in the graph shown in FIG. (%) shows the flux of the solid-liquid separator 90.
 図7に示すグラフは、剥離間隔が24(h)付近になるまでフラックスが上昇することを示している。また、図7に示すグラフは、剥離間隔が24(h)以上である場合、フラックスがほぼ100(%)になることを示している。 The graph shown in FIG. 7 indicates that the flux increases until the separation interval reaches around 24 (h). Moreover, the graph shown in FIG. 7 indicates that the flux becomes almost 100(%) when the separation interval is 24(h) or more.
 すなわち、図7に示すグラフは、例えば、剥離間隔が24(h)以上である場合、膜担体72において十分な大きさのバイオフィルムR1を形成することが可能になり、固液分離装置90における目詰まりの発生を抑制することが可能になるため、フラックスを高い水準に保つことが可能であることを示している。 That is, the graph shown in FIG. 7 shows that, for example, when the separation interval is 24 (h) or more, it is possible to form a sufficiently large biofilm R1 on the membrane carrier 72, and the solid-liquid separation device 90 Since it becomes possible to suppress the occurrence of clogging, it is possible to keep the flux at a high level.
 一方、図7に示すグラフは、例えば、剥離時間が24(h)以下である場合、十分な大きさになっていないバイオフィルムR1が固液分離装置90に排出されるため、固液分離装置90において目詰まりが発生し、フラックスが低下することを示している。 On the other hand, the graph shown in FIG. 7 shows that, for example, when the peeling time is 24 (h) or less, the biofilm R1 that is not large enough is discharged to the solid-liquid separator 90, so the solid-liquid separator Clogging occurs at 90, indicating a drop in flux.
 そのため、制御装置74は、例えば、剥離間隔が24(h)以上になるように、すなわち、100(%)に近いフラックスが維持されるように、バイオフィルムR1の剥離タイミングを制御するものであってよい。 Therefore, the control device 74 controls the peeling timing of the biofilm R1, for example, so that the peeling interval is 24 (h) or more, that is, so that the flux close to 100 (%) is maintained. you can
 また、制御装置74は、例えば、反応槽70から固液分離装置90に排出される有機物等の基質の量が所定の条件を満たすように、バイオフィルムR1の剥離タイミングを制御するものであってよい。具体的に、制御装置74は、例えば、反応槽70から固液分離装置90に排出される基質の量(すなわち、排水の基質の量)が最初沈殿池10から反応槽70に流入する廃水の基質の量の所定の割合以下、好ましくは、1/5程度になるように、バイオフィルムR1の剥離タイミングを制御するものであってよい。 Further, the control device 74 controls the peeling timing of the biofilm R1, for example, so that the amount of substrates such as organic substances discharged from the reaction tank 70 to the solid-liquid separation device 90 satisfies a predetermined condition. good. Specifically, the control device 74 controls, for example, the amount of substrate discharged from the reaction tank 70 to the solid-liquid separation device 90 (that is, the amount of substrate in the waste water) is the amount of waste water flowing into the reaction tank 70 from the primary sedimentation tank 10 . The peeling timing of the biofilm R1 may be controlled so that the amount of the substrate is less than a predetermined ratio, preferably about 1/5.
 さらに、制御装置74は、例えば、固液分離装置90から反応槽70に対する返送汚泥の返送を行う必要がなくなるように、すなわち、制御装置74は、例えば、活性汚泥の増殖によって必要な量の活性汚泥が反応槽70内において維持されるように、バイオフィルムR1の剥離タイミングを制御するものであってよい。 Furthermore, the control device 74 is arranged so that, for example, the return sludge from the solid-liquid separation device 90 to the reaction tank 70 does not need to be returned, that is, the control device 74 controls, for example, the necessary amount of activated sludge by increasing the activated sludge. The separation timing of the biofilm R1 may be controlled so that the sludge is maintained in the reaction tank 70.
 次に、バイオフィルムR1の剥離間隔と、剥離されたバイオフィルムR1を含む汚泥を脱水機にて脱水した後の汚泥(以下、脱水ケーキとも呼ぶ)の含水率との関係について説明を行う。図8は、バイオフィルムR1の剥離間隔と脱水ケーキの含水率との関係を示すグラフである。なお、図8に示すグラフにおける横軸は、バイオフィルムR1の剥離間隔を示しており、図8に示すグラフにおける縦軸は、脱水ケーキの含水率(以下、単に含水率とも呼ぶ)を示している。 Next, the relationship between the biofilm R1 separation interval and the water content of the sludge (hereinafter also referred to as dewatered cake) after the sludge containing the separated biofilm R1 is dehydrated with a dehydrator will be described. FIG. 8 is a graph showing the relationship between the detachment interval of biofilm R1 and the moisture content of the dehydrated cake. The horizontal axis in the graph shown in FIG. 8 indicates the peeling interval of the biofilm R1, and the vertical axis in the graph shown in FIG. there is
 図8に示すグラフは、剥離間隔が大きくなるに従って含水率が低下することを示している。また、図8に示すグラフは、剥離間隔が24(h)よりも大きい場合、剥離時間が24(h)よりも小さい場合と比較して含水率が大きく低下することを示している。 The graph shown in FIG. 8 shows that the moisture content decreases as the separation interval increases. Moreover, the graph shown in FIG. 8 shows that when the peeling interval is longer than 24 (h), the moisture content is much lower than when the peeling time is shorter than 24 (h).
 すなわち、図8に示すグラフは、例えば、剥離間隔が24(h)以上である場合、脱水ケーキの含水率を効果的に低下させることが可能であることを示している。剥離間隔が24(h)以上で場合に得られる、剥離されたバイオフィルムR1を含む汚泥は緻密である。このように緻密な汚泥を脱水すると、低含水率の汚泥が得られる。 That is, the graph shown in FIG. 8 indicates that, for example, when the separation interval is 24 (h) or more, the moisture content of the dehydrated cake can be effectively reduced. The sludge containing exfoliated biofilm R1 obtained when the exfoliation interval is 24 (h) or more is dense. Dehydration of dense sludge in this manner yields sludge with a low moisture content.
 そのため、制御装置74は、例えば、剥離間隔が24(h)以上になるように、すなわち、脱水ケーキの含水率が75(%)以下になるように、バイオフィルムR1の剥離タイミングを制御するものであってよい。 Therefore, the control device 74 controls the peeling timing of the biofilm R1, for example, so that the peeling interval is 24 (h) or more, that is, the water content of the dehydrated cake is 75 (%) or less. can be
 なお、制御装置74は、図6から図8に示す全てのグラフに従って、例えば、剥離間隔が24(h)以上であって48(h)以下になるように、バイオフィルムR1の剥離タイミングを制御するものであってよい。 The control device 74 controls the peeling timing of the biofilm R1 according to all the graphs shown in FIGS. 6 to 8, for example, so that the peeling interval is 24 (h) or more and 48 (h) or less. It may be something to do.
 以上説明したように、本実施の形態における有機性廃水の処理装置100では、膜担体72に付着したバイオフィルムR1が有機物を取り込むことで、膜担体72において塊状になる。そのため、有機性廃水の処理装置100では、塊状のバイオフィルムR1を含む汚泥(塊状の汚泥)を含む排水を、固液分離装置90に排出することが可能になる。また、有機性廃水の処理装置100では、膜担体72において塊状のバイオフィルムR1を形成することで、反応槽70から固液分離装置90に排出される有機物及び活性汚泥の量を抑えることが可能になる。したがって、有機性廃水の処理装置100では、固液分離装置90における活性汚泥の増殖や固液分離装置90における目詰まりの発生を防止することが可能になり、固液分離装置90の閉塞の発生を防止することが可能になる。 As described above, in the organic wastewater treatment apparatus 100 according to the present embodiment, the biofilm R1 adhering to the membrane carrier 72 takes in organic matter and becomes agglomerate on the membrane carrier 72 . Therefore, in the organic wastewater treatment apparatus 100 , it is possible to discharge wastewater containing sludge (lump sludge) containing the biofilm R<b>1 in the form of blocks to the solid-liquid separator 90 . In addition, in the organic wastewater treatment apparatus 100, by forming the massive biofilm R1 on the membrane carrier 72, it is possible to reduce the amount of organic matter and activated sludge discharged from the reaction tank 70 to the solid-liquid separation apparatus 90. become. Therefore, in the organic wastewater treatment apparatus 100, it is possible to prevent the growth of activated sludge in the solid-liquid separation device 90 and the occurrence of clogging in the solid-liquid separation device 90, and the occurrence of clogging of the solid-liquid separation device 90. can be prevented.
 また、本実施の形態における有機性廃水の処理装置100において、塊状のバイオフィルムR1は、粒子径が大きく沈降し易い性質を有している。そのため、有機性廃水の処理装置100では、固液分離装置90において排水から分離された汚泥の脱水が容易であり、脱水機等において投入する必要がある凝集剤の量を抑えることが可能になる。したがって、有機性廃水の処理装置100では、例えば、汚泥の脱水に要するコストを抑制することが可能になる。 In addition, in the organic wastewater treatment apparatus 100 according to the present embodiment, the massive biofilm R1 has a large particle size and tends to settle. Therefore, in the organic wastewater treatment apparatus 100, the sludge separated from the wastewater in the solid-liquid separator 90 can be easily dewatered, and the amount of flocculant that needs to be put in a dehydrator or the like can be reduced. . Therefore, in the organic wastewater treatment apparatus 100, for example, it is possible to reduce costs required for dehydration of sludge.
 本実施の形態では、固液分離装置90に排出される排水に含まれる汚泥(剥離された汚泥)は塊状の汚泥である。この塊状の汚泥は、塊状のバイオフィルムR1が主体であり、この塊状の汚泥(以下、本実施の形態の汚泥と記す)は前記したように緻密であり、脱水しやすい。そして、この塊状の汚泥が、固液分離装置90にて分離される。 In the present embodiment, the sludge (separated sludge) contained in the wastewater discharged to the solid-liquid separator 90 is lumpy sludge. This blocky sludge is mainly composed of blocky biofilm R1, and this blocky sludge (hereinafter referred to as sludge of the present embodiment) is dense as described above and is easily dewatered. Then, this clumped sludge is separated by the solid-liquid separator 90 .
 これに対して、図2の反応槽50の性能維持を図るため、図2の反応槽50の分離膜53から剥離される汚泥(以下、図2の汚泥と記す)は廃水1において増殖した菌体が主体である。そして、かかる汚泥は、分散状であり、脱水しにくい。 On the other hand, in order to maintain the performance of the reaction tank 50 of FIG. 2, the sludge separated from the separation membrane 53 of the reaction tank 50 of FIG. The body is the subject. Such sludge is dispersed and difficult to dewater.
 このように、本実施の形態の汚泥の主体と図2の汚泥の主体(換言すれば、脱水(剥離)の対象となる汚泥)とは相違し、この相違の結果、脱水後の汚泥の含水率を所望の含水率にする場合、本実施の形態では、凝集剤の添加量を、図2の汚泥を脱水する際に添加される凝集剤の量と比べて少なくすることができる。 Thus, the main sludge of the present embodiment and the main sludge of FIG. 2 (in other words, the sludge to be dewatered (separated)) are different. In order to achieve the desired moisture content, the amount of flocculant added can be reduced in this embodiment compared to the amount of flocculant added when dewatering the sludge in FIG.
 本実施の形態のように、脱水しやすい汚泥を固液分離の対象とすることで、凝集剤の添加量を少なくすることができランニングコストを抑制できる。 By subjecting sludge, which is easily dewatered, to solid-liquid separation as in this embodiment, the amount of coagulant added can be reduced, and running costs can be suppressed.
 また、例えば、散水濾床等を行う装置において行われる生物膜の剥離では、剥離間隔が数週間以上あるため、強度の低い活性汚泥(柔らかい活性汚泥)が剥離される。そのため、剥離された活性汚泥から生成された脱水ケーキの含水率は、通常の活性汚泥から生成された脱水ケーキの含水率と同程度になる。 In addition, for example, in the biofilm stripping performed in equipment that performs trickling filters, etc., the stripping interval is several weeks or more, so activated sludge with low strength (soft activated sludge) is stripped. Therefore, the moisture content of the dewatered cake produced from the separated activated sludge is approximately the same as that of the dehydrated cake produced from ordinary activated sludge.
 これに対し、本発明では、例えば、剥離間隔を24(h)から48(h)程度とすることで、含水率の低い脱水ケーキを生成可能な生物膜(膜担体72から剥離されたバイオフィルムR1)を得ることが可能になる。 In contrast, in the present invention, for example, by setting the peeling interval to about 24 (h) to 48 (h), a biofilm capable of producing a dehydrated cake with a low moisture content (biofilm peeled from the membrane carrier 72 R1) can be obtained.
 なお、第1の実施の形態における有機性廃水の処理装置100では、例えば、最初沈殿池10に代えて、高速濾過を行う固液分離装置(図示せず)を用いるものであってもよい。これにより、有機性廃水の処理装置100では、反応槽70に供給される有機物(例えば、固形性の有機物)の量をより抑えることが可能になり、膜担体72における有機物の分解をより効率的に行うことが可能になる。 In addition, in the organic wastewater treatment apparatus 100 in the first embodiment, for example, instead of the primary sedimentation tank 10, a solid-liquid separation apparatus (not shown) that performs high-speed filtration may be used. As a result, in the organic wastewater treatment apparatus 100, the amount of organic substances (for example, solid organic substances) supplied to the reaction tank 70 can be further suppressed, and the decomposition of the organic substances in the membrane carrier 72 can be made more efficient. It becomes possible to go to
 [第1の変形例における有機性廃水の処理装置100]
 次に、第1の変形例における有機性廃水の処理装置100の構成について説明を行う。図9は、第1の変形例における反応槽70の構成について説明する図である。また、図10及び図11は、第1の変形例における膜担体72の構成について説明する図である。
[Organic wastewater treatment apparatus 100 in the first modification]
Next, the configuration of the organic wastewater treatment apparatus 100 in the first modification will be described. FIG. 9 is a diagram illustrating the configuration of the reaction vessel 70 in the first modified example. 10 and 11 are diagrams for explaining the configuration of the membrane carrier 72 in the first modified example.
 [第1の変形例における剥離装置73及び制御装置74]
 初めに、第1の変形例における剥離装置73及び制御装置74について説明を行う。第1の変形例における剥離装置73は、例えば、空気等の気体(以下、単に空気とも呼ぶ)を供給することによってバイオフィルムR1の剥離を行う。そして、第1の変形例における制御装置74は、例えば、剥離装置73が空気の供給を行うタイミングを制御する。
[Peeling Device 73 and Control Device 74 in First Modification]
First, the peeling device 73 and the control device 74 in the first modified example will be described. The peeling device 73 in the first modified example peels the biofilm R1 by supplying gas such as air (hereinafter also simply referred to as air). Then, the control device 74 in the first modification controls, for example, the timing at which the peeling device 73 supplies air.
 剥離装置73は、図9に示すように、例えば、外部から取り込んだ空気を圧縮して圧縮空気(図示せず)を生成するコンプレッサ等の空気供給器73aと、空気供給器73aから供給された圧縮空気を貯留する空気槽73bとを有する。 The peeling device 73, as shown in FIG. 9, has an air supply device 73a such as a compressor that compresses air taken in from the outside to generate compressed air (not shown), and an air supply device 73a. and an air tank 73b for storing compressed air.
 そして、制御装置74は、例えば、空気槽73bに貯留された圧縮空気の反応槽70に対する供給(噴出)を制御する。 Then, the control device 74 controls the supply (jetting) of the compressed air stored in the air tank 73b to the reaction tank 70, for example.
 具体的に、制御装置74は、例えば、バイオフィルムR1の剥離タイミングになった場合、ラインL3を介して空気槽73bに貯留された圧縮空気を反応槽70内における複数箇所に供給することによって、膜担体72からバイオフィルムR1を剥離する。ラインL3は、例えば、空気槽73bと反応槽70内における複数箇所とを連結するパイプである。また、制御装置74は、図6等において説明したように、例えば、バイオフィルムR1の剥離間隔が24(h)以上になるように制御する。 Specifically, for example, when it is time to peel off the biofilm R1, the control device 74 supplies the compressed air stored in the air tank 73b to a plurality of locations in the reaction tank 70 via the line L3. Biofilm R1 is stripped from membrane carrier 72 . The line L3 is, for example, a pipe that connects the air tank 73b and multiple locations in the reaction tank 70 . In addition, the control device 74 controls the separation interval of the biofilm R1 to be 24 (h) or longer, for example, as described with reference to FIG. 6 and the like.
 なお、制御装置74は、図9に示すように、例えば、空気槽73b内の圧力が一定範囲内に維持されるように、空気供給器73aによる圧縮空気の生成タイミング(空気槽73bに対する圧縮空気の供給タイミング)を制御するものであってもよい。 Note that, as shown in FIG. 9, the control device 74 controls, for example, the generation timing of the compressed air by the air supplier 73a (compressed air for the air tank 73b) so that the pressure in the air tank 73b is maintained within a certain range. supply timing) may be controlled.
 また、制御装置74は、例えば、剥離装置73の制御に加えて、膜担体72に供給される空気2の量が一定になるように、空気供給器80による空気2の供給量を制御するものであってもよい。 In addition to controlling the stripping device 73, for example, the control device 74 controls the amount of air 2 supplied by the air supplier 80 so that the amount of air 2 supplied to the membrane carrier 72 is constant. may be
 具体的に、制御装置74は、例えば、膜担体72の入口圧力、出口圧力及び膜担体72から排出される空気量(すなわち、余剰空気量)のうちの少なくとも1つを計測する計測器(図示せず)から計測値を取得するものであってよい。そして、制御装置74は、例えば、取得した計測値に応じて、空気供給器80から膜担体72に対する空気2の供給量を制御するものであってよい。以下、制御装置74が空気供給器80による空気2の供給量を制御するものとして説明を行う。 Specifically, the control device 74 controls, for example, a measuring instrument (Fig. (not shown). The controller 74 may control the amount of air 2 supplied from the air supplier 80 to the membrane carrier 72, for example, according to the acquired measurement value. In the following description, it is assumed that the controller 74 controls the amount of air 2 supplied by the air supplier 80 .
 また、図9に示す例では、圧縮空気が膜担体72の間に供給される場合を示しているが、圧縮空気は、例えば、膜担体72の下端または下方に供給されるものであってもよい。 In addition, although the example shown in FIG. 9 shows the case where compressed air is supplied between the membrane carriers 72, the compressed air may be supplied, for example, to the lower ends or below the membrane carriers 72. good.
 [第1の変形例における膜担体72の具体例]
 次に、第1の変形例における膜担体72の構成について説明を行う。
[Specific Example of Membrane Carrier 72 in First Modification]
Next, the configuration of the membrane carrier 72 in the first modified example will be described.
 第1の変形例における反応槽70では、図9及び図10に示すように、例えば、複数の膜担体72を束ねることによってユニットUN1を形成する。これにより、第1の変形例における反応槽70では、例えば、各膜担体72に対して空気2を供給するラインL1を構成するパイプの数や、各膜担体72から空気2を排出するラインL2を構成するパイプの数を抑えることが可能になる。 In the reaction vessel 70 in the first modified example, as shown in FIGS. 9 and 10, for example, a unit UN1 is formed by bundling a plurality of membrane carriers 72. As a result, in the reaction tank 70 in the first modified example, for example, the number of pipes constituting the line L1 for supplying the air 2 to each membrane carrier 72 and the line L2 for discharging the air 2 from each membrane carrier 72 It is possible to reduce the number of pipes that make up the
 具体的に、図9に示す例では、4本の膜担体72を束ねることによって形成されたユニットUN1が反応槽70内に4つ配置されている場合を示している。なお、以下、4本の膜担体72が単一のユニットUN1を構成する場合について説明を行うが、4本以外の本数の膜担体72が単一のユニットUN1を構成するものであってもよい。 Specifically, the example shown in FIG. 9 shows a case where four units UN1 formed by bundling four membrane carriers 72 are arranged in the reaction vessel 70 . A case where four membrane carriers 72 constitute a single unit UN1 will be described below, but the number of membrane carriers 72 other than four may constitute a single unit UN1. .
 単一のユニットUN1を形成する複数の膜担体72(以下、単に複数の膜担体72とも呼ぶ)は、図10に示すように、例えば、複数の膜担体72のそれぞれの下端部72cを樹脂(例えば、プラスチック)等によってモールドすることによって形成された第1モールド部72aと、複数の膜担体72のそれぞれの上端部72dを樹脂等によってモールドすることによって形成された第2モールド部72bとを有する。すなわち、複数の膜担体72は、例えば、各膜担体72の下端部72c及び上端部72dがモールドされることによって単一のユニットUN1を形成する。 The plurality of membrane carriers 72 forming a single unit UN1 (hereinafter also simply referred to as the plurality of membrane carriers 72) are, as shown in FIG. For example, it has a first mold portion 72a formed by molding with a resin or the like, and a second mold portion 72b formed by molding the upper end portions 72d of each of the plurality of film carriers 72 with resin or the like. . That is, the plurality of film carriers 72 form a single unit UN1, for example, by molding the lower end portion 72c and the upper end portion 72d of each film carrier 72 .
 第1モールド部72aは、例えば、ラインL1を介して空気供給器80から供給された空気2を第1モールド部72a内に導入する第1空気孔72a1を有する。ラインL1は、図9及び図10に示すように、例えば、空気供給器80と複数のユニットUN1のそれぞれにおける第1空気孔72a1とを連結するパイプである。そして、空気孔72a1から第1モールド部72aの内部に導入された空気2は、例えば、複数の膜担体72のそれぞれの下端部72cから複数の膜担体72のそれぞれの内部に供給される。 The first mold portion 72a has, for example, a first air hole 72a1 for introducing the air 2 supplied from the air supplier 80 through the line L1 into the first mold portion 72a. The line L1 is, for example, a pipe that connects the air supplier 80 and the first air holes 72a1 in each of the plurality of units UN1, as shown in FIGS. Then, the air 2 introduced into the inside of the first mold portion 72a through the air holes 72a1 is supplied to the inside of each of the plurality of membrane carriers 72 from the respective lower end portions 72c of the plurality of membrane carriers 72, for example.
 また、第2モールド部72bは、例えば、ラインL2を介して第2モールド部72b内の空気2を外部に排出する第2空気孔72b1を有する。ラインL2は、図9及び図10に示すように、例えば、複数のユニットUN1のそれぞれにおける第2空気孔72b1と外部とを連結するパイプである。すなわち、第2空気孔72b1は、例えば、複数の膜担体72のそれぞれの上端部72dから第2モールド部72b内に排出された空気2を外部に排出する。 In addition, the second mold portion 72b has, for example, a second air hole 72b1 for discharging the air 2 inside the second mold portion 72b to the outside via the line L2. The line L2 is, for example, a pipe that connects the second air hole 72b1 in each of the plurality of units UN1 to the outside, as shown in FIGS. That is, the second air holes 72b1, for example, discharge the air 2 discharged into the second mold portion 72b from the upper end portions 72d of the plurality of film carriers 72 to the outside.
 具体的に、ラインL1及び第1空気孔72a1を介して第1モールド部72a内に供給(圧入)された空気2は、図10の実線矢印に示すように、複数の膜担体72のそれぞれの内部に供給される。そして、各膜担体72に供給された空気2の少なくとも一部は、各膜担体72の内部を下端部72cから上端部72dに移動する過程において、図4等で説明したように、例えば、各膜担体72に設けられた複数の孔h1(例えば、0.1ミクロン程度の孔)を介して反応槽70内に分子拡散する。続いて、各膜担体72の内部を下端部72cから上端部72dに移動した空気2(反応槽70内に向けて分子拡散されなかった空気2)は、例えば、上端部72dから第2モールド部72b内に供給される。その後、第2モールド部72b内に供給された空気2は、例えば、第2空気孔72b1及びラインL2を介して外部に排出される。 Specifically, the air 2 supplied (pressurized) into the first mold portion 72a via the line L1 and the first air holes 72a1 is applied to each of the plurality of membrane carriers 72 as indicated by solid line arrows in FIG. supplied internally. At least a portion of the air 2 supplied to each membrane carrier 72 moves inside each membrane carrier 72 from the lower end 72c to the upper end 72d, as described with reference to FIG. The molecules diffuse into the reaction vessel 70 through a plurality of holes h1 (for example, holes of about 0.1 microns) provided in the membrane carrier 72 . Subsequently, the air 2 that has moved inside each film carrier 72 from the lower end portion 72c to the upper end portion 72d (the air 2 that has not been molecularly diffused into the reaction chamber 70) is discharged from the upper end portion 72d to the second mold portion, for example. 72b. After that, the air 2 supplied into the second mold portion 72b is discharged to the outside through, for example, the second air hole 72b1 and the line L2.
 このように、第1の変形例における有機性廃水の処理装置100において、空気供給器80は、例えば、膜担体72の下端部72c(以下、単に下端とも呼ぶ)から膜担体72の内部に空気2(少なくとも酸素を含む空気2)を供給する。そして、膜担体72は、例えば、下端部72cから供給された空気2の少なくとも一部を、複数の孔h1を介して反応槽70内に分子拡散し、下端部72cから供給された空気2のうちの反応槽70内に分子拡散されなかった空気2を、膜担体72の上端部72d(以下、単に上端とも呼ぶ)から外部に排出する。 As described above, in the organic wastewater treatment apparatus 100 in the first modification, the air supplier 80 supplies air to the inside of the membrane carrier 72 from the lower end 72c (hereinafter simply referred to as the lower end) of the membrane carrier 72, for example. 2 (air 2 containing at least oxygen). Then, the membrane carrier 72 causes, for example, at least a part of the air 2 supplied from the lower end portion 72c to molecularly diffuse into the reaction vessel 70 through the plurality of holes h1, thereby dispersing the air 2 supplied from the lower end portion 72c. The air 2 that has not been molecularly diffused in the reaction tank 70 is discharged outside from the upper end portion 72d (hereinafter simply referred to as the upper end) of the membrane carrier 72 .
 なお、図10に示す膜担体72は、直線形状(I字形状)を有しているがこれに限られない。具体的に、膜担体72は、例えば、下端部72cから供給された空気2が上端部72dから排出する形状であればよく、例えば、少なくとも一部が湾曲した形状(例えば、くの字形状)を有するものであってもよい。 Although the membrane carrier 72 shown in FIG. 10 has a linear shape (I shape), it is not limited to this. Specifically, the membrane carrier 72 may have any shape, for example, in which the air 2 supplied from the lower end portion 72c is discharged from the upper end portion 72d. may have
 また、図10に示す膜担体72では、膜担体72内に対して下端部72cから空気2を供給(圧入)するとともに、膜担体72内の空気2を上端部72dから排出しているが、これに限られない。具体的に、膜担体72は、例えば、膜担体72内に対して上端部72dから空気2を供給するとともに、膜担体72内の空気2を下端部72cから排出するものであってもよい。 In the membrane carrier 72 shown in FIG. 10, the air 2 is supplied (pressurized) into the membrane carrier 72 from the lower end 72c, and the air 2 in the membrane carrier 72 is discharged from the upper end 72d. It is not limited to this. Specifically, the membrane carrier 72 may, for example, supply the air 2 into the inside of the membrane carrier 72 from the upper end 72d and discharge the air 2 inside the membrane carrier 72 from the lower end 72c.
 また、複数の膜担体72のそれぞれに対する空気2の供給量は、例えば、下端部72c側の複数の孔h1から反応槽70内に分子拡散される空気2の量と、上端部72d側の複数の孔h1から反応槽70内に分子拡散される空気2の量とが同一になるように決定されるものであってよい。すなわち、複数の膜担体72のそれぞれに対する空気2の供給量は、例えば、各膜担体72内の各位置における酸素分圧が最大(大気圧と同じ圧力)になるように決定されるものであってよい。 The amount of air 2 supplied to each of the plurality of membrane carriers 72 is, for example, the amount of air 2 molecularly diffused into the reaction vessel 70 through the plurality of holes h1 on the lower end portion 72c side and the amount of air 2 on the upper end portion 72d side. may be determined so that the amount of the air 2 molecularly diffused into the reaction vessel 70 from the hole h1 of is the same. That is, the amount of air 2 supplied to each of the plurality of membrane carriers 72 is determined, for example, so that the oxygen partial pressure at each position in each membrane carrier 72 is maximized (the same pressure as the atmospheric pressure). you can
 また、ラインL1には、例えば、空気供給器80から供給された空気2に含まれる微粒子(例えば、ほこり等)を除去するためのフィルタ(図示せず)が設置されるものであってよい。 Also, the line L1 may be provided with a filter (not shown) for removing fine particles (for example, dust, etc.) contained in the air 2 supplied from the air supplier 80, for example.
 [第1の変形例における膜担体72の他の具体例]
 次に、第1の変形例における膜担体72の他の構成について説明を行う。
[Another specific example of the membrane carrier 72 in the first modification]
Next, another configuration of the membrane carrier 72 in the first modified example will be described.
 第1の変形例における反応槽70では、図11に示すように、例えば、両端(以下、両端部72fとも呼ぶ)が下方(例えば、垂直下方向)に向いたU字形状(以下、逆U字形状とも呼ぶ)を形成するように膜担体72を配置するものであってもよい。すなわち、反応槽70では、図11に示すように、例えば、少なくとも1か所(以下、湾曲部72eとも呼ぶ)を湾曲させた状態で膜担体72を配置するものであってもよい。そして、反応槽70では、例えば、逆U字形状を形成するように配置された複数の膜担体72を束ねることによってユニットUN2を形成するものであってもよい。なお、以下、逆U字形状を形成するように配置された2本の膜担体72が単一のユニットUN2を構成する場合について説明を行うが、2本以外の本数の膜担体72が単一のユニットUN2を構成するものであってもよい。 In the reaction vessel 70 in the first modified example, as shown in FIG. 11, for example, both ends (hereinafter also referred to as both ends 72f) face downward (for example, vertically downward direction) in a U shape (hereinafter referred to as an inverted U). The membrane carrier 72 may be arranged to form a letter shape. That is, in the reaction vessel 70, as shown in FIG. 11, for example, the membrane carrier 72 may be arranged in a state in which at least one portion (hereinafter also referred to as a curved portion 72e) is curved. In the reaction tank 70, for example, the unit UN2 may be formed by bundling a plurality of membrane carriers 72 arranged to form an inverted U shape. A case where two membrane carriers 72 arranged to form an inverted U shape form a single unit UN2 will be described below. may constitute the unit UN2.
 具体的に、空気孔72a1から第1モールド部72aの内部に供給(圧入)された空気2は、この場合、例えば、複数の膜担体72のそれぞれの両端部72fから複数の膜担体72のそれぞれの内部に供給される。すなわち、図11に示す両端部72fのそれぞれは、例えば、図10で説明した下端部72cと同様の機能を有する。 Specifically, the air 2 supplied (pressurized) into the inside of the first mold portion 72a from the air holes 72a1 is, for example, discharged from both ends 72f of the plurality of membrane carriers 72 to each of the plurality of membrane carriers 72. supplied inside the That is, each of the end portions 72f shown in FIG. 11 has the same function as the lower end portion 72c described in FIG. 10, for example.
 さらに具体的に、ラインL1及び第1空気孔72a1を介して空気供給器80から第1モールド部72a内に供給された空気2は、図11の実線矢印に示すように、例えば、複数の膜担体72のそれぞれに供給される。そして、各膜担体72に供給された空気2は、各膜担体72の内部を両端部72fから湾曲部72eに移動する過程において、図4等で説明したように、例えば、各膜担体72における第1モールド部72a及び第2モールド部72bの外部に位置する部分に設けられた複数の孔h2(例えば、0.1ミクロン程度の孔)を介して反応槽70内に分子拡散する。続いて、各膜担体72の内部を両端部72fから湾曲部72eに移動した空気2(反応槽70内に向けて分子拡散されなかった空気2)は、例えば、各膜担体72における湾曲部72eに設けられた複数の孔h3から第2モールド部72b内に供給される。その後、第2モールド部72b内に供給された空気2は、例えば、第2空気孔72b1及びラインL2を介して外部に排出される。すなわち、図11に示す湾曲部72eに設けられた複数の孔h3は、例えば、図10で説明した上端部72dと同様の機能を有する。 More specifically, the air 2 supplied from the air supplier 80 into the first mold portion 72a via the line L1 and the first air holes 72a1 is, for example, applied to a plurality of membranes as indicated by solid line arrows in FIG. supplied to each of the carriers 72 . The air 2 supplied to each membrane carrier 72 moves inside each membrane carrier 72 from both end portions 72f to curved portions 72e, for example, in each membrane carrier 72 as described with reference to FIG. Molecules diffuse into the reaction chamber 70 through a plurality of holes h2 (for example, holes of about 0.1 micron) provided in portions positioned outside the first mold portion 72a and the second mold portion 72b. Subsequently, the air 2 that has moved inside each membrane carrier 72 from both end portions 72f to the curved portion 72e (the air 2 that has not been molecularly diffused into the reaction vessel 70) is, for example, the curved portion 72e of each membrane carrier 72. is supplied into the second mold portion 72b from a plurality of holes h3 provided in the second mold portion 72b. After that, the air 2 supplied into the second mold portion 72b is discharged to the outside through, for example, the second air hole 72b1 and the line L2. That is, the plurality of holes h3 provided in the curved portion 72e shown in FIG. 11 have the same function as the upper end portion 72d described in FIG. 10, for example.
 このように、第1の変形例における有機性廃水の処理装置100において、膜担体72は、例えば、膜担体72の両端部72fのそれぞれが下方に向くように膜担体72を湾曲する湾曲部72eを有する。そして、空気供給器80は、例えば、膜担体72の両端部72fのそれぞれ(言い換えれば、膜担体72における下端のそれぞれ)から膜担体72の内部に空気2(少なくとも酸素を含む空気2)を供給する。さらに、膜担体72は、例えば、膜担体72の両端の少なくともいずれかから供給された空気2の少なくとも一部を、複数の孔h2(以下、複数の第1孔とも呼ぶ)を介して反応槽70内に分子拡散し、膜担体72の両端の少なくともいずれかから供給された空気2のうちの反応槽70内に分子拡散されなかった空気2を、複数の孔h2よりも上方に位置する湾曲部72e(言い換えれば、膜担体72における上端)に設けられた複数の孔h3(以下、複数の第2孔とも呼ぶ)を介して外部に排出する。 Thus, in the organic wastewater treatment apparatus 100 according to the first modification, the membrane carrier 72 has, for example, curved portions 72e that curve the membrane carrier 72 so that both ends 72f of the membrane carrier 72 face downward. have Then, the air supplier 80 supplies air 2 (air 2 containing at least oxygen) into the inside of the membrane carrier 72 from, for example, both ends 72f of the membrane carrier 72 (in other words, each of the lower ends of the membrane carrier 72). do. Furthermore, the membrane carrier 72 allows, for example, at least part of the air 2 supplied from at least one of both ends of the membrane carrier 72 to flow through the plurality of holes h2 (hereinafter also referred to as the plurality of first holes) into the reaction tank. The air 2 that has molecularly diffused into the membrane carrier 70 and has not been molecularly diffused into the reaction vessel 70 out of the air 2 that has been supplied from at least one of both ends of the membrane carrier 72 is removed from the curved surface positioned above the plurality of holes h2. It is discharged to the outside through a plurality of holes h3 (hereinafter also referred to as a plurality of second holes) provided in the portion 72e (in other words, the upper end of the membrane carrier 72).
 なお、図11に示す膜担体72内の空気2は、図10に示す膜担体72の場合と異なり、湾曲部72eに設けられた複数の孔h3を介して第2モールド部72b内に排出される。そのため、図11に示す膜担体72では、図10に示す膜担体72の場合よりも空気2の排出に伴う圧力損失が大きくなる。したがって、図11に示す膜担体72は、図10に示す膜担体72と比較して、分子拡散によって反応槽70内に供給される空気2の量を増加させることが可能になる。 11 is discharged into the second mold portion 72b through a plurality of holes h3 provided in the curved portion 72e, unlike the case of the film carrier 72 shown in FIG. be. Therefore, in the membrane carrier 72 shown in FIG. 11, the pressure loss associated with the discharge of the air 2 is greater than in the case of the membrane carrier 72 shown in FIG. Therefore, the membrane carrier 72 shown in FIG. 11 can increase the amount of air 2 supplied into the reaction chamber 70 by molecular diffusion, compared to the membrane carrier 72 shown in FIG.
1:廃水            2:空気
10:最初沈殿池        20:反応槽
21:槽本体          22:空気供給管
30:最終沈殿池        40:空気供給器
50:固液分離槽        51:槽本体
52:空気供給管        53:分離膜
60:空気供給器        70:反応槽
71:槽本体          72:膜担体
72a:第1モールド部     72a1:第1空気孔
72b:第2モールド部     72b1:第2空気孔
72c:下端部         72d:上端部
72e:湾曲部         72f:両端部
73:剥離装置         73a:空気供給器
73b:空気槽         74:制御装置
80:空気供給器        90:固液分離装置
100:有機性廃水の処理装置  800:有機性廃水の処理装置
900:有機性廃水の処理装置  h1:孔
h2:孔            h3:孔
L1:ライン          L2:ライン
L3:ライン          R1:バイオフィルム(好気層)
R2:無酸素層         R3:嫌気層
UN1:ユニット        UN2:ユニット
1: waste water 2: air 10: primary sedimentation tank 20: reaction tank 21: tank body 22: air supply pipe 30: final sedimentation tank 40: air supply device 50: solid-liquid separation tank 51: tank body 52: air supply pipe 53 : Separation membrane 60: Air supplier 70: Reaction tank 71: Tank body 72: Membrane carrier 72a: First mold part 72a1: First air hole 72b: Second mold part 72b1: Second air hole 72c: Lower end part 72d: Upper end portion 72e: Curved portion 72f: Both ends 73: Peeling device 73a: Air supplier 73b: Air tank 74: Control device 80: Air supplier 90: Solid-liquid separator 100: Organic wastewater treatment device 800: Organic Wastewater treatment device 900: organic wastewater treatment device h1: hole h2: hole h3: hole L1: line L2: line L3: line R1: biofilm (aerobic layer)
R2: Anoxic layer R3: Anaerobic layer UN1: Unit UN2: Unit

Claims (9)

  1.  有機性廃水の処理装置における有機性廃水の処理方法であって、
     前記有機性廃水の処理装置は、有機性の廃水に含まれる汚濁物に対して生物処理を行う反応槽と、前記反応槽から排出される排水から汚泥を分離する固液分離装置と、前記反応槽に対して少なくとも酸素を供給する供給器と、を備え、
     前記反応槽は、前記供給器によって供給された前記酸素を複数の孔を介して前記反応槽内に分子拡散する管状の膜担体を有し、
     前記膜担体は、前記複数の孔を介して前記酸素を前記反応槽内に分子拡散することにより、前記膜担体の外周上において好気性細菌を含む生物膜を形成し、
     前記生物膜は、前記汚濁物に対して前記好気性細菌による生物処理を行う生物膜であり、
     前記固液分離装置は、前記生物膜を含む前記汚泥を前記排水から分離する、有機性廃水の処理方法。
    A method for treating organic wastewater in an organic wastewater treatment apparatus, comprising:
    The organic wastewater treatment apparatus includes a reaction tank for biologically treating contaminants contained in the organic wastewater, a solid-liquid separation device for separating sludge from the wastewater discharged from the reaction tank, and the reaction a supplier for supplying at least oxygen to the tank;
    The reaction vessel has a tubular membrane carrier that molecularly diffuses the oxygen supplied by the supply device into the reaction vessel through a plurality of holes,
    the membrane carrier forms a biofilm containing aerobic bacteria on the outer circumference of the membrane carrier by molecularly diffusing the oxygen into the reaction vessel through the plurality of pores;
    The biofilm is a biofilm that performs biological treatment of the contaminants with the aerobic bacteria,
    The solid-liquid separator separates the sludge containing the biofilm from the waste water.
  2.  前記有機性廃水の処理装置は、更に、前記膜担体に形成された前記生物膜を前記膜担体から剥離する剥離装置と、前記剥離装置による前記生物膜の剥離を制御する制御装置と、を備え、
     前記制御装置は、前記生物膜の剥離を所定の時間間隔で行う、請求項1に記載の有機性廃水の処理方法。
    The organic wastewater treatment apparatus further comprises a stripping device for stripping the biofilm formed on the membrane carrier from the membrane carrier, and a control device for controlling stripping of the biofilm by the stripping device. ,
    2. The method of treating organic wastewater according to claim 1, wherein said control device exfoliates said biofilm at predetermined time intervals.
  3.  前記所定の時間間隔は、24時間以上の時間間隔である、請求項2に記載の有機性廃水の処理方法。 The method for treating organic wastewater according to claim 2, wherein the predetermined time interval is a time interval of 24 hours or more.
  4.  前記有機性廃水の処理装置は、更に、前記生物膜を前記膜担体から剥離する剥離装置と、前記剥離装置による前記生物膜の剥離を制御する制御装置と、を備え、
     前記制御装置は、前記排水の基質の量が前記反応槽に流入する前記廃水の基質の量の所定の割合以下になるように、前記生物膜の剥離が行われるタイミングの制御を行う、請求項1に記載の有機性廃水の処理方法。
    The organic wastewater treatment apparatus further comprises a stripping device for stripping the biofilm from the membrane carrier, and a control device for controlling stripping of the biofilm by the stripping device,
    The control device controls the timing at which the biofilm is stripped so that the amount of substrate in the waste water is equal to or less than a predetermined ratio of the amount of substrate in the waste water flowing into the reaction tank. 2. The method for treating organic wastewater according to 1.
  5.  前記所定の割合は、1/5である、請求項4に記載の有機性廃水の処理方法。 The method for treating organic wastewater according to claim 4, wherein the predetermined ratio is 1/5.
  6.  前記有機性廃水の処理装置は、更に、前記生物膜を前記膜担体から剥離する剥離装置と、前記剥離装置による前記生物膜の剥離を制御する制御装置と、を備え、
     前記制御装置は、前記固液分離装置における前記排水の流束が所定の閾値以上になるように、前記生物膜の剥離が行われるタイミングの制御を行う、請求項1に記載の有機性廃水の処理方法。
    The organic wastewater treatment apparatus further comprises a stripping device for stripping the biofilm from the membrane carrier, and a control device for controlling stripping of the biofilm by the stripping device,
    2. The organic wastewater according to claim 1, wherein the control device controls the timing at which the biofilm is removed so that the flux of the wastewater in the solid-liquid separation device is equal to or higher than a predetermined threshold value. Processing method.
  7.  前記供給器は、前記膜担体の下端から前記膜担体の内部に前記酸素を圧入し、
     前記膜担体は、
     前記下端から圧入された前記酸素の少なくとも一部を、前記複数の孔を介して前記反応槽内に分子拡散し、
     前記下端から圧入された前記酸素のうちの前記反応槽内に分子拡散されなかった酸素を、前記膜担体の上端から外部に排出する、請求項1に記載の有機性廃水の処理方法。
    The feeder presses the oxygen into the inside of the membrane carrier from the lower end of the membrane carrier,
    The membrane carrier is
    at least part of the oxygen injected from the lower end is molecularly diffused into the reaction vessel through the plurality of holes;
    2. The method for treating organic wastewater according to claim 1, wherein oxygen that has not been molecularly diffused into said reaction tank among said oxygen injected from said lower end is discharged to the outside from said upper end of said membrane carrier.
  8.  前記膜担体は、両端のそれぞれが下方に向くように配置され、
     前記供給器は、前記両端のそれぞれから前記膜担体の内部に前記酸素を圧入し、
     前記膜担体は、
     前記両端の少なくともいずれかから圧入された前記酸素の少なくとも一部を、前記複数の孔のうちの複数の第1孔を介して前記反応槽内に分子拡散し、 前記両端の少なくともいずれかから圧入された前記酸素のうちの前記反応槽内に分子拡散されなかった酸素を、前記複数の孔のうちの前記複数の第1孔よりも上方に設けられた複数の第2孔を介して外部に排出する、請求項1に記載の有機性廃水の処理方法。
    The membrane carrier is arranged so that each of both ends faces downward,
    the feeder presses the oxygen into the interior of the membrane carrier from each of the ends;
    The membrane carrier is
    At least part of the oxygen injected from at least one of the ends is molecularly diffused into the reaction vessel through a plurality of first holes among the plurality of holes, and injected from at least one of the ends. oxygen that has not been molecularly diffused into the reaction vessel out of the oxygen that has been added to the atmosphere through a plurality of second holes among the plurality of holes provided above the plurality of first holes. 2. The method of treating organic wastewater according to claim 1, wherein the organic wastewater is discharged.
  9.  有機性の廃水に含まれる汚濁物に対して生物処理を行う反応槽と、
     前記反応槽から排出される排水から汚泥を分離する固液分離装置と、
     前記反応槽に対して少なくとも酸素を供給する供給器と、を備え、
     前記反応槽は、前記供給器によって供給された前記酸素を複数の孔を介して前記反応槽内に分子拡散する管状の膜担体を有する、有機性廃水の処理装置。
    a reaction tank for biologically treating contaminants contained in organic wastewater;
    a solid-liquid separator for separating sludge from wastewater discharged from the reaction tank;
    a feeder that supplies at least oxygen to the reaction vessel,
    An apparatus for treating organic wastewater, wherein the reaction tank has a tubular membrane carrier for molecularly diffusing the oxygen supplied by the feeder into the reaction tank through a plurality of pores.
PCT/JP2022/028835 2021-09-15 2022-07-26 Organic wastewater treatment method and treatment device WO2023042550A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023548150A JPWO2023042550A1 (en) 2021-09-15 2022-07-26

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-150378 2021-09-15
JP2021150378 2021-09-15
JP2022-068320 2022-04-18
JP2022068320 2022-04-18

Publications (1)

Publication Number Publication Date
WO2023042550A1 true WO2023042550A1 (en) 2023-03-23

Family

ID=85602703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028835 WO2023042550A1 (en) 2021-09-15 2022-07-26 Organic wastewater treatment method and treatment device

Country Status (2)

Country Link
JP (1) JPWO2023042550A1 (en)
WO (1) WO2023042550A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04371298A (en) * 1991-06-20 1992-12-24 Ebara Infilco Co Ltd Treatment of organic sewage and equipment
JPH07256284A (en) * 1994-03-18 1995-10-09 Nippon Kentetsu Co Ltd Method and apparatus for backwashing biological contact filter material in waste water treatment apparatus
JPH11333496A (en) * 1998-05-22 1999-12-07 Nissin Electric Co Ltd Microorganism carrier for denitrification
JP2000218290A (en) * 1999-02-01 2000-08-08 Kitakyushu City Sewage treatment and sewage treating device
JP2003033764A (en) * 2001-07-26 2003-02-04 Ebara Corp Method and apparatus for washing filtration body by using ozone
JP2003251381A (en) * 2002-02-28 2003-09-09 Asahi Kasei Corp Nitrogen removing method by membrane bioreactor
JP2009011965A (en) * 2007-07-06 2009-01-22 Mitsubishi Rayon Eng Co Ltd Hollow fiber membrane module and hollow fiber membrane unit using the same
JP2010284617A (en) * 2009-06-15 2010-12-24 Eidensha:Kk Bioreactor element, method for producing the same and method for using the same
KR20180005556A (en) * 2016-07-06 2018-01-16 롯데케미칼 주식회사 Apparatus for purifying water

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04371298A (en) * 1991-06-20 1992-12-24 Ebara Infilco Co Ltd Treatment of organic sewage and equipment
JPH07256284A (en) * 1994-03-18 1995-10-09 Nippon Kentetsu Co Ltd Method and apparatus for backwashing biological contact filter material in waste water treatment apparatus
JPH11333496A (en) * 1998-05-22 1999-12-07 Nissin Electric Co Ltd Microorganism carrier for denitrification
JP2000218290A (en) * 1999-02-01 2000-08-08 Kitakyushu City Sewage treatment and sewage treating device
JP2003033764A (en) * 2001-07-26 2003-02-04 Ebara Corp Method and apparatus for washing filtration body by using ozone
JP2003251381A (en) * 2002-02-28 2003-09-09 Asahi Kasei Corp Nitrogen removing method by membrane bioreactor
JP2009011965A (en) * 2007-07-06 2009-01-22 Mitsubishi Rayon Eng Co Ltd Hollow fiber membrane module and hollow fiber membrane unit using the same
JP2010284617A (en) * 2009-06-15 2010-12-24 Eidensha:Kk Bioreactor element, method for producing the same and method for using the same
KR20180005556A (en) * 2016-07-06 2018-01-16 롯데케미칼 주식회사 Apparatus for purifying water

Also Published As

Publication number Publication date
JPWO2023042550A1 (en) 2023-03-23

Similar Documents

Publication Publication Date Title
JP5566147B2 (en) Rice processing wastewater treatment method and equipment
US11053150B2 (en) Wastewater treatment system and method
JP2008284427A (en) Apparatus and method for treating waste water
KR20100115412A (en) Appliance for processing sewage having biological process, sludge separator and membrane separator
WO2005068380A1 (en) A-sbr apparatus for removing nitrogen and phosphorous in sewage/waste water
KR100785044B1 (en) Method for remodeling of the existing wastewater treatment facilities into advanced treatment facilities and operating method using the advanced treatment facilities
CN107311308A (en) A kind of biomembrance process synchronously removes the technique with enriched phosphorus
JPH11309480A (en) Operating method of immersion type membrane separation device
KR102108870B1 (en) Membrane Treatment Device for Eliminating Nitrogen and/or Phosphorus
JP2010046602A (en) Method of treating oil-containing waste water
KR101421800B1 (en) Compact Energy-saving wastewater treatment system hybridizing sieving-membrane bioreactor and highly thickened sludge anaerobic digester by biosorption
KR100313315B1 (en) Method and apparatus for treating sewage and organic waste-water by circulation and filter of 3 divided biofilm
WO2023042550A1 (en) Organic wastewater treatment method and treatment device
JP2002177979A (en) Waste water treatment equipment
KR100991758B1 (en) Biodegradation method of 1,4-dioxane and biodegradation apparatus thereof
WO2023199664A1 (en) Method for cleaning organic waste water treatment apparatus
JP2001047089A (en) Method and apparatus for treating sewage
KR20050097098A (en) Wastewater treatment by influent controlled membrane bioreactor
KR20030097075A (en) Hybrid Submerged Plate Type Membrane Bioreactor Using microfilter Combined With Biofilm-Activated Carbon for Advanced Treatment of Sewage and Wastewater
KR200168714Y1 (en) Bacteria group of bacillus spp in treating equipment for sewage and waste water
JP2001070983A (en) Method and apparatus for treating wastewater
KR19990051761A (en) Wastewater Treatment System
JP2011020050A (en) Method and apparatus for treating wastewater
KR100504150B1 (en) Method for sewage and wastewater treatment using anaerobic batch reactor and hybrid sequencing batch reactor
JP2002011496A (en) Method and device for treating waste water

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22869698

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023548150

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22869698

Country of ref document: EP

Kind code of ref document: A1