WO2022239457A1 - 情報処理装置、情報処理方法及びプログラム - Google Patents
情報処理装置、情報処理方法及びプログラム Download PDFInfo
- Publication number
- WO2022239457A1 WO2022239457A1 PCT/JP2022/011532 JP2022011532W WO2022239457A1 WO 2022239457 A1 WO2022239457 A1 WO 2022239457A1 JP 2022011532 W JP2022011532 W JP 2022011532W WO 2022239457 A1 WO2022239457 A1 WO 2022239457A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical filters
- optical
- light
- information processing
- setting state
- Prior art date
Links
- 230000010365 information processing Effects 0.000 title claims abstract description 101
- 238000003672 processing method Methods 0.000 title claims description 7
- 230000003287 optical effect Effects 0.000 claims abstract description 305
- 238000012360 testing method Methods 0.000 claims abstract description 44
- 238000012545 processing Methods 0.000 claims abstract description 43
- 230000001678 irradiating effect Effects 0.000 claims abstract description 4
- 239000011324 bead Substances 0.000 claims description 85
- 239000011859 microparticle Substances 0.000 claims description 8
- 238000010186 staining Methods 0.000 claims description 7
- 230000015556 catabolic process Effects 0.000 abstract 1
- 238000006731 degradation reaction Methods 0.000 abstract 1
- 238000001514 detection method Methods 0.000 description 42
- 239000012472 biological sample Substances 0.000 description 40
- 238000012795 verification Methods 0.000 description 38
- 238000000034 method Methods 0.000 description 31
- 239000000523 sample Substances 0.000 description 31
- 238000010586 diagram Methods 0.000 description 21
- 239000002245 particle Substances 0.000 description 13
- 210000004027 cell Anatomy 0.000 description 9
- 239000000975 dye Substances 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 8
- 230000006870 function Effects 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 230000006866 deterioration Effects 0.000 description 6
- 239000007850 fluorescent dye Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 238000003384 imaging method Methods 0.000 description 5
- 238000002189 fluorescence spectrum Methods 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 230000003595 spectral effect Effects 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000015654 memory Effects 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000000684 flow cytometry Methods 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000000877 morphologic effect Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000000098 azimuthal photoelectron diffraction Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000004397 blinking Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 235000013601 eggs Nutrition 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 210000001808 exosome Anatomy 0.000 description 1
- 238000002073 fluorescence micrograph Methods 0.000 description 1
- 238000001506 fluorescence spectroscopy Methods 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 210000004602 germ cell Anatomy 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1456—Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
- G01N15/1459—Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals the analysis being performed on a sample stream
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1429—Signal processing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1434—Optical arrangements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N2015/1006—Investigating individual particles for cytology
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N2015/1402—Data analysis by thresholding or gating operations performed on the acquired signals or stored data
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N2015/1477—Multiparameters
Definitions
- the present disclosure relates to an information processing device, an information processing method, and a program.
- flow cytometry exists as a method for analyzing (or analyzing, in the present disclosure, analysis includes analysis) proteins of biologically relevant microparticles such as cells, microorganisms, and liposomes.
- a device used for this flow cytometry is called a flow cytometer (FCM).
- FCM flow cytometer
- microparticles flowing in a line in a channel are irradiated with a laser beam of a specific wavelength, and fluorescence, forward scattered light, side scattered light, and other light emitted from each microparticle is emitted as light.
- the type, size, structure, etc. of each microparticle can be determined by converting it into an electric signal by a detector, digitizing it, and performing statistical analysis on the result.
- a flow cytometer with multiple detection systems is usually equipped with multiple optical filters.
- it is necessary to manually set the optical filter in a predetermined arrangement. If this occurs, or if the optical filter is damaged or deteriorated, there arises a problem that accurate analysis cannot be performed.
- the present disclosure proposes an information processing device, an information processing method, and a program capable of suppressing accuracy deterioration caused by an optical filter.
- an information processing apparatus includes an irradiation unit that irradiates a sample with light, and two or more optical filters that demultiplex the fluorescence from the sample.
- an optical system a plurality of photodetectors that detect the intensity of each fluorescence demultiplexed by the optical system, and a processing unit that analyzes the sample based on the intensity of the fluorescence detected by each of the photodetectors; wherein the processing unit detects the first light for each of the test samples detected by each of the photodetectors through the optical system when two or more types of test samples are irradiated with the light from the irradiation unit. Based on the intensity, it is determined whether the setting state of the two or more optical filters is appropriate.
- FIG. 1 is a schematic diagram showing a configuration example of a biological sample analyzer that is an example of an information processing system according to a first embodiment of the present disclosure
- FIG. 1 is a schematic diagram showing a schematic configuration example of an optical system according to a first embodiment of the present disclosure
- FIG. 3 is a graph showing a two-dimensional plot of forward and side scattered light scattered by AlignCheck and SortCal beads, respectively, detected with the optical system illustrated in FIG. 2
- 3 is a graph showing fluorescence spectra of AlignCheck beads detected by the optical system illustrated in FIG. 2
- FIG. 3 is a graph showing fluorescence spectra of SortCal beads detected with the optical system illustrated in FIG. 2;
- FIG. 3 is a diagram showing an example of level ratios obtained from a set-up bead when the optical filters are correctly set for the optical system illustrated in FIG. 2; 4 is a flow chart showing an example of a verification flow according to the first example of the first embodiment of the present disclosure;
- FIG. 2 is a schematic diagram showing an example of an optical system in a detection unit of a biological sample analyzer used for verification according to the first embodiment of the present disclosure;
- FIG. FIG. 9 is a diagram showing the level ratio and CV obtained when the filter setting state is normal under the measurement conditions shown in FIG. 8;
- FIG. 4 is a diagram showing an example of level ratios and CVs used as references in verification according to the first embodiment of the present disclosure;
- FIG. 7 is a diagram showing an example of level ratios and CVs obtained in verification case 1 according to the first embodiment of the present disclosure
- FIG. 7 is a diagram showing an example of level ratios and CVs obtained in verification case 2 according to the first embodiment of the present disclosure
- FIG. 7 is a diagram showing an example of level ratios and CVs obtained in verification case 3 according to the first embodiment of the present disclosure
- FIG. 10 is a diagram showing an example of a list of optical filter patterns provided to the user as selection candidates in the second embodiment of the present disclosure
- FIG. 10 is a diagram showing an example of an optical filter and a socket with a QR code (registered trademark) according to the second embodiment of the present disclosure
- FIG. 11 is a diagram showing an example of a notification screen notified to a user according to the third embodiment of the present disclosure
- FIG. 1 is a hardware configuration diagram showing an example of a computer that implements functions of an information processing apparatus according to the present disclosure
- FIG. 1 is a hardware configuration diagram showing an example of a computer
- First Embodiment 1.1 Example of System Configuration of Biological Sample Analyzer 1.2 Example of Schematic Configuration of Optical System 1.3 Example of Test Sample 1.4 Example of Outline of Verification Procedure 1.5 Example of Standard Level Ratio 1.6 Method for verifying the setting state of the attached optical filter 1.6.1 Verification flow example 1.6.1.1 First example 1.6.1.2 Second example 1.7 Specifics of verification results Example 1.7.1 Case 1 1.7.2 Case 2 1.7.3 Case 3 1.8 Summary 2. Second embodiment 2.1 Overall flow 3. Third Embodiment 4. Modification 5. Hardware configuration
- a flow cytometer has detection optics, and fluorescence emitted from a sample is usually demultiplexed or wavelength-limited by optical filters placed on the optical path through which it propagates. are detected by optical devices such as photomultiplier tubes (PMTs) and photodiodes (PDs).
- PMTs photomultiplier tubes
- PDs photodiodes
- optical filters are also required.
- the application of the optical filter may be erroneous, and there is also the possibility that the optical filter may be improperly attached.
- the setting state of the optical filter is detected, and based on the obtained setting state, whether the optical filter is set correctly or not, and whether the characteristics of the optical filter are damaged, contaminated, or deteriorated over time. It is determined whether or not there is a change due to, for example,
- the setting state of the optical filter here refers to whether the optical filter is set in the correct position, whether the optical filter is inserted to the correct position, whether the orientation of the optical filter is correct, and whether the characteristics of the optical filter are damaged, contaminated, or damaged. It may be whether or not it has changed due to aged deterioration or the like.
- FIG. 1 shows a configuration example of a biological sample analyzer, which is an example of an information processing system according to this embodiment.
- the biological sample analyzer 100 shown in FIG. It includes an information processing unit (simply referred to as a processing unit) 103 that processes information about the received light.
- Examples of the biological sample analyzer 100 include flow cytometers and imaging flow cytometers.
- the biological sample analyzer 100 may include a collection section 104 that collects specific biological particles P in the biological sample S.
- An example of the biological sample analyzer 100 including the sorting section 104 is a cell sorter.
- the biological sample S may be a liquid sample containing biological particles P.
- the bioparticles P are, for example, cells or non-cellular bioparticles.
- the cells may be living cells, and more specific examples include blood cells such as red blood cells and white blood cells, and germ cells such as sperm and fertilized eggs.
- the cells may be directly collected from a specimen such as whole blood, or may be cultured cells obtained after culturing.
- Examples of the noncellular bioparticles include extracellular vesicles, particularly exosomes and microvesicles.
- the bioparticle P may be labeled with one or a plurality of labeling substances (for example, a dye (especially a fluorescent dye) and a fluorescent dye-labeled antibody).
- the biological sample analyzer 100 of the present disclosure may analyze particles other than biological particles, and may analyze beads and the like for calibration and the like.
- the flow path C can be configured so that the biological sample S flows, particularly such that the biological particles P contained in the biological sample S are arranged substantially in a line to form a flow.
- the flow channel structure including the flow channel C may be designed to form a laminar flow, and in particular, to form a laminar flow in which the flow of the biological sample S (sample flow) is surrounded by the flow of the sheath liquid.
- the design of the flow channel structure may be appropriately selected by those skilled in the art, and known ones may be adopted.
- the channel C may be formed in a flow channel structure such as a microchip (a chip having a channel on the order of micrometers) or a flow cell.
- the width of the flow channel C may be 1 mm (millimeter) or less, particularly 10 ⁇ m (micrometer) or more and 1 mm or less.
- the channel C and the channel structure including it may be made of a material such as plastic or glass.
- the apparatus of the present disclosure may be configured such that the biological sample S flowing in the flow path C, particularly the biological particles P in the biological sample S, is irradiated with light from the light irradiation unit 101 .
- the apparatus of the present disclosure may be configured such that the light irradiation point (interrogation point) for the biological sample S is in the channel structure in which the channel C is formed, or the light irradiation point is , may be configured to be outside the channel structure.
- the former there is a configuration in which the light is applied to the channel C in the microchip or the flow cell. In the latter, the light may be applied to the biological particles P after exiting the flow path structure (especially the nozzle section thereof).
- the light irradiation unit 101 includes a light source unit that emits light and a light guide optical system that guides the light to the flow path C. As shown in FIG.
- the light source section includes one or more light sources.
- the type of light source may be, for example, a laser light source or an LED (Light Emitting Diode).
- the wavelength of light emitted from each light source may be any wavelength of ultraviolet light, visible light, or infrared light.
- the light guiding optics include optical components such as beam splitter groups, mirror groups or optical fibers.
- the light guiding optics may also include a lens group for condensing the light, for example an objective lens.
- the number of light irradiation points on the biological sample S may be one or more.
- the light irradiation unit 101 may be configured to condense light irradiated from one or different light sources to one irradiation point.
- the detection unit 102 includes at least one photodetector that detects light generated by light irradiation of the particles by the light irradiation unit 101 .
- the light to be detected is, for example, fluorescent light, scattered light (for example, one or more of forward scattered light, backscattered light, and side scattered light), transmitted light, and reflected light.
- Each photodetector includes one or more photodetectors, such as a photodetector array.
- Each photodetector may include photodiodes such as one or more PMTs (photomultiplier tubes) and/or APDs (Avalanche Photodiodes) and MPPCs (Multi-Pixel Photon Counters) as light receiving elements.
- the photodetector includes, for example, a PMT array in which a plurality of PMTs are arranged in a one-dimensional direction.
- the detection unit 102 may also include an imaging device such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal-Oxide-Semiconductor).
- the detection unit 102 can acquire bioparticle information about the bioparticle P using the imaging device.
- the bioparticle information can include at least one of bioparticle images of bioparticles, bioparticle feature amounts, bioparticle attribute information, and the like.
- the bioparticle image of the bioparticle may include, for example, a brightfield image, a darkfield image, a fluorescence image, and the like.
- the detection unit 102 includes a detection optical system that causes light of a predetermined detection wavelength to reach a corresponding photodetector.
- the detection optical system includes a spectroscopic section such as a prism or a diffraction grating, or a wavelength separating section such as a dichroic mirror or an optical filter.
- the detection optical system may be configured, for example, to disperse the light from the bioparticle P and detect light in different wavelength ranges with a plurality of photodetectors, the number of which is greater than the number of fluorescent dyes.
- a flow cytometer including such a detection optical system is called a spectral flow cytometer.
- the detection optical system may be configured, for example, to separate the light corresponding to the fluorescence wavelength range of the fluorescent dye from the light from the bioparticle P and cause the separated light to be detected by the corresponding photodetector. .
- the detection unit 102 may include a signal processing unit that converts the electrical signal obtained by the photodetector into a digital signal.
- the signal processing unit may include an A/D converter as a device that performs the conversion.
- a digital signal obtained by conversion by the signal processing unit can be transmitted to the information processing unit 103 .
- the digital signal can be handled by the information processing section 103 as data related to light (hereinafter also referred to as “optical data”).
- the optical data may be optical data including fluorescence data, for example. More specifically, the light data may be light intensity data, and the light intensity may be light intensity data of light containing fluorescence (which may include feature amounts such as Area, Height, Width, etc.) good.
- the information processing unit 103 includes, for example, a processing unit that processes various data (for example, optical data) and a storage unit that stores various data.
- the processing unit can perform fluorescence leakage correction (compensation processing) on the light intensity data.
- the processing unit performs fluorescence separation processing on the optical data and acquires light intensity data corresponding to the fluorescent dye.
- the fluorescence separation process may be performed, for example, according to the unmixing method described in JP-A-2011-232259.
- the processing unit may acquire morphological information of the biological particles P based on the image acquired by the imaging device.
- the storage unit may be configured to store the acquired optical data.
- the storage unit may further be configured to store spectral reference data used in the unmixing process.
- the information processing unit 103 can determine whether to sort the biological particles P based on the optical data and/or the morphological information. Then, the information processing section 103 can control the sorting section 104 based on the result of the determination, and sorting of the bioparticles P by the sorting section 104 can be performed.
- the information processing unit 103 may be configured to output various data (for example, optical data and images). For example, the information processing section 103 can output various data (for example, two-dimensional plots, spectral plots, etc.) generated based on the optical data. Further, the information processing unit 103 may be configured to be able to receive input of various data, and for example, receives gating processing on the plot by the user.
- the information processing unit 103 may include an output unit (such as a display) or an input unit (such as a keyboard) for executing the output or the input.
- the information processing unit 103 may be configured as a general-purpose computer, and may be configured as an information processing device including, for example, a CPU (Central Processing Unit), RAM (Random Access Memory), and ROM (Read only memory).
- the information processing unit 103 may be included in the housing in which the light irradiation unit 101 and the detection unit 102 are provided, or may be outside the housing.
- Various processing or functions by the information processing unit 103 may be implemented by a server computer or cloud connected via a network.
- the sorting unit 104 can sort the bioparticles P according to the determination result by the information processing unit 103, for example.
- the sorting method may be a method of generating a droplet containing the biological particles P by vibration, applying an electric charge to the droplet to be sorted, and controlling the traveling direction of the droplet with an electrode.
- the sorting method may be a method of sorting by controlling the traveling direction of the bioparticles P in the channel structure.
- the channel structure is provided with a control mechanism, for example, by pressure (jetting or suction) or electric charge.
- the channel C has a channel structure in which the channel C is branched into a recovery channel and a waste liquid channel downstream thereof, and the specific biological particles P are recovered in the recovery channel.
- a chip for example, a chip described in Japanese Patent Application Laid-Open No. 2020-76736, can be used.
- FIG. 2 is a schematic diagram showing a schematic configuration example of the optical system according to this embodiment.
- the optical system shown in FIG. 2 is the most simplified one, and the optical system mounted on the biological sample analyzer 100 may be more complicated.
- the detection unit 102 of the biological sample analyzer 100 has an optical system as an optical filter (hereinafter simply referred to as filter 11c, a filter 11a that transmits light in a specific wavelength band out of the light transmitted through the filter 11c, a photodetector 12a that detects the light transmitted through the filter 11a, and light reflected by the filter 11c. It includes a filter 11b that transmits light in a specific wavelength band, and a photodetector 12b that detects the light transmitted through the filter 11b.
- filter 11c an optical filter
- filter 11a that transmits light in a specific wavelength band out of the light transmitted through the filter 11c
- a photodetector 12a that detects the light transmitted through the filter 11a
- the filter 11c may be an optical filter such as a dichroic mirror that transmits light in a specific wavelength band and reflects light in other wavelength bands.
- the filters 11a and 11b may be optical filters that transmit light in specific wavelength bands and reflect light in other wavelength bands.
- the photodetector 12a is, for example, a gain-adjustable photodetector such as a photomultiplier tube, and detects the intensity of light transmitted through the filters 11c and 11a.
- the photodetector 12b is a photodetector such as a photomultiplier tube, for example, and detects the intensity of light reflected by the filter 11c and transmitted through the filter 11b.
- test samples two or more types of test samples having different characteristics may be used for detecting the setting state of the optical filter.
- a flow cytometer is used as an example of an information processing device (biological sample analyzer), so the test sample should have a size and shape similar to those of microparticles such as cells to be examined by the flow cytometer.
- FIG. 3 is a graph showing two-dimensional plots of forward and side scattered light scattered by AlignCheck and SortCal beads, respectively, detected with the optical system illustrated in FIG. 4 is a graph showing the fluorescence spectrum of AlignCheck beads detected by the optical system illustrated in FIG. 2, and FIG. 5 is a graph showing the fluorescence spectrum of SortCal beads similarly detected by the optical system illustrated in FIG. is.
- the horizontal axis indicates the light intensity of the forward scattered light
- the vertical axis indicates the light intensity of the side scattered light.
- the horizontal axis indicates the channels when the wavelength band of 400 nm (nanometers) to 800 nm is divided into 32 channels, and the vertical axis indicates the light intensity of the fluorescence detected for each channel. showing.
- AlignCheck beads and SortCal beads differ in bead size. Therefore, by using a scattering plot as shown in FIG. 3, each fluorescence signal can be separated. That is, as shown in FIG. 3, the AlignCheck bead scattering plot and the SortCal bead scattering plot are distributed at different positions in the two-dimensional graph. Therefore, by applying a gate to each distribution, it becomes possible to separate the events obtained with the AlignCheck beads and the events obtained with the SortCal beads. This makes it possible to separately extract the fluorescence signal obtained by detecting the fluorescence emitted from the AlignCheck beads and the fluorescence signal obtained by detecting the fluorescence emitted from the SortCal beads.
- the "event” in this description may be a data set including light intensity signals (also referred to as fluorescence signals or detection signals) of fluorescence, forward scattered light, and side scattered light detected by each bead. Also, time stamps, identification IDs, or the like may be used for associating these signals.
- light intensity signals also referred to as fluorescence signals or detection signals
- time stamps, identification IDs, or the like may be used for associating these signals.
- AlignCheck beads and SortCal beads exhibit high fluorescence properties in the region of 400 nm to 800 nm. Furthermore, these two have a wide fluorescence wavelength band, different wavelength spectra, and also different fluorescence light intensities (hereinafter simply referred to as levels). From these facts, it can be said that AlignCheck beads and SortCal beads are suitable as test samples. Therefore, in this embodiment, by using these, the level ratio of the fluorescence signal in each wavelength band (corresponding to one or more channels) is verified to determine whether the setting state of the optical filter is appropriate. verify whether or not However, without being limited to AlignCheck beads and SortCal beads, it is possible to use various samples as test samples that can separate the observed fluorescence with sufficient accuracy.
- the level ratio to be verified may be a ratio of relative levels of fluorescence signals in each wavelength band, or may be a ratio of absolute levels.
- the ratio of absolute levels it is also possible to use the absolute level of each fluorescence signal to judge whether the setting state of the optical filter is appropriate.
- the level in this description is a value indicating the light intensity of fluorescence, for example, the amplitude of a fluorescence signal obtained by detecting fluorescence in a certain channel (hereinafter also referred to as Height). , or the average of the heights of fluorescence signals detected for two or more consecutive channels.
- the level ratio of these two types of beads is calculated from the respective events of the AlignCheck beads and SortCal beads detected by the photodetector 12a, and the calculated level ratio is evaluated to obtain a filter.
- Setting states of the filters 11a and 11c that is, whether the filters 11a and 11c are set correctly, and whether the characteristics of the filters 11a and 11c have changed are determined.
- the setting states of the filters 11b and 11c are determined by evaluating the level ratio from the gain adjustment.
- reference level ratios Evaluation of level ratios is performed based on a comparison between the prepared reference level ratios (hereafter referred to as reference level ratios) and the level ratios obtained from actual measurements. may be At that time, the reference level ratio used as a reference when verifying whether or not the setting state of the optical filter is appropriate includes, for example, Level ratios obtained using test samples may be used. For example, this reference level ratio may be obtained in advance by the provider or maintenance side of the biological sample analyzer 100 and set in the actual device, or may be obtained and set by the user.
- FIG. 6 shows an example of the level ratio obtained when AlignCheck beads and SortCal beads are used as test samples and the filters 11a to 11c are correctly set for the optical system illustrated in FIG.
- the wavelength band of 500 nm to 800 nm is divided into two channels, the short wavelength side is detected by channel Ch1, and the long wavelength side is detected by channel Ch2.
- the Height (level) of SortCal beads in the wavelength band of channel Ch1 is 7667
- the Height (level) of AlignCheck beads in the same channel band is 820. Therefore, the reference level ratio for channel Ch1 is found to be 9.35. Similarly, the reference level ratio for channel Ch2 is found to be 12.48.
- Verification of the setting state of the optical filter is performed based on the output obtained by actually flowing the beads.
- setup beads that include AlignCheck beads and SortCal beads.
- CV coefficient of variation
- rCV robust CV
- the level ratio obtained from each bead changes. If the setting state of the optical filter becomes inappropriate due to erroneous insertion or the like, the amount of light incident on the photodetector decreases. As a result, CV and rCV are considered to be degraded by shot noise, so more accurate verification becomes possible by using CV or rCV as a verification target in addition to the bead level ratio.
- a photomultiplier tube for example, can be exemplified as a photodetector capable of gain adjustment.
- FIG. 7 is a flowchart showing an example of a verification flow according to the first example of this embodiment.
- the optical system in the detection unit 102 of the biological sample analyzer 100 is set with an optical filter corresponding to the sample to be analyzed, which is different from the setup beads. do.
- a first predetermined number (eg, 1000) of events are acquired (step S101). Specifically, the set-up beads are passed through the channel C (see FIG. 1), and the fluorescence emitted by irradiating the beads flowing through the channel C with light from the light irradiation unit 101 is detected. A set of a detection signal for detecting light and a set of detection signals for detecting side scattered light are detected as one event. Note that one event may correspond to one bead. Also, the first predetermined number may be, for example, a number that can reduce statistical errors to some extent and that does not impose an excessive burden as a preparatory procedure before the actual measurement.
- the information processing unit 103 of the biological sample analyzer 100 calculates the level of the fluorescence signal whose height is the predetermined number from the top in the event acquired in step S101 (step S102).
- the predetermined number may be, for example, 10% from the top, that is, when 1000 events are acquired, the 100th from the highest Height.
- step S102 may be variously modified as long as it is possible to identify a level that serves as a guideline for setting an appropriate gain in detection of setup beads.
- the information processing section 103 determines whether gain adjustment of the photodetector is necessary (step S103). Specifically, for example, the information processing unit 103 determines whether or not the level calculated in step S102 falls within a predetermined range set in advance, and if not, determines that gain adjustment is necessary. (YES in step S103). On the other hand, if the level is within the predetermined range, it is determined that gain adjustment is unnecessary (NO in step S103).
- the predetermined range may be, for example, a range of 7 ⁇ 10 5 ⁇ 10%. However, it is not limited to this, and various changes may be made as long as the detection of setup beads can be performed appropriately.
- step S104 If gain adjustment is required (YES in step S103), the gain of the photodetector is adjusted so that the level calculated in step S102 is within the predetermined range in step S103 (step S104), and the process returns to step S101. Go back and do the following actions.
- step S104 may adjust the HV applied to the photomultiplier tube.
- a second predetermined number (eg, 10000) of events are acquired (step S105).
- the event acquisition method may be the same as in step S101, for example.
- the second predetermined number may be, for example, a number capable of sufficiently reducing statistical errors.
- a two-dimensional plot (for example, see FIG. 3) of the event is drawn from the detection signal of the forward scattered light and the detection signal of the side scattered light in the event acquired in step S105.
- SortCal bead also referred to as first bead
- AlignCheck bead also referred to as second bead
- the gate for the two-dimensional plot may be set manually by the user, or may be set automatically by the information processing unit 103 .
- the information processing unit 103 calculates the median value or average value of the height of the fluorescence signal for each channel (step S107), and then calculates the height level ratio for each channel. (ratio) is calculated (step S108).
- the denominator for calculating the level ratio is the median or average of the heights of the fluorescence signals of the AlignCheck beads (second beads). It may be the median value or mean value of the height of the fluorescence signal of the (first bead).
- the information processing section 103 determines whether the calculated level ratio for each channel falls within the preset first standard (step S109).
- the first standard may be, for example, a range set based on a level ratio for each channel obtained in advance (for example, see FIG. 6). At that time, for example, by setting the range of ⁇ 15% of each level ratio as the range of the first standard set for each level ratio, it is possible to more appropriately verify the propriety of the setting state of the optical filter. is.
- the value is not limited to this value, and various changes may be made as long as the verification can be performed appropriately.
- step S109 If the level ratio for each channel is within the first standard (YES in step S109), the operation proceeds to step S110. On the other hand, if the level ratio for each channel does not fall within the first standard (NO in step S109), the operation proceeds to step S112.
- step S110 the information processing section 103 calculates CV or rCV for each channel for each bead extracted in step S106.
- the information processing section 103 determines whether or not the calculated CV or rCV for each bead and for each channel falls within the preset second standard (step S111).
- the second standard may be, for example, a range set based on the CV or rCV of each bead and each channel obtained in advance. At that time, for example, if the value of CV or rCV is 4% or less, the range of the second standard may be within ⁇ 2% of that value. On the other hand, if the value of CV or rCV is greater than 4%, the range of the second standard may be within ⁇ 3% of that value.
- the values are not limited to these values, and various changes may be made as long as the verification can be performed appropriately.
- the range of the second standard may be set in consideration of the wavelength region of each channel.
- step S111 If the CV or rCV for each bead and for each channel is within the second standard (YES in step S111), this operation ends. On the other hand, if the CV or rCV for each bead and for each channel does not fall within the second standard (NO in step S111), the operation proceeds to step S112.
- step S112 the user is notified of confirmation of the setting state of the optical filter and redoing the setting of the optical filter.
- This notification may be provided to the user via, for example, a display or speaker (not shown) included in the information processing unit 103, or may be provided to the user's portable terminal in the form of e-mail, message, or the like.
- this operation may be terminated, or the process may return to step S101 and perform subsequent operations.
- the user may re-execute this operation from the beginning after confirming the setting state of the optical filter and redoing the setting of the optical filter.
- the verification flow when the gain of the photodetector cannot be adjusted is, for example, the gain adjustment operation of steps S101 to S104 in the verification flow according to the first example described using FIG. It may be configured by the following steps. However, even when a photodiode, APD, MPPC, or the like is used, the verification flow according to the first example described above may be executed as long as the gain can be adjusted. Further, since the operations after step S105 may be the same as the operations described with reference to FIG. 7, detailed description thereof is omitted here.
- FIG. 8 is a schematic diagram showing an example of an optical system in the detection unit 102 of the biological sample analyzer 100 used in this verification. However, in FIG. 8, photodetectors corresponding to each channel are omitted.
- the filter 11-1 is a long-pass filter (LP) that transmits light L2 with a wavelength component of 639 nm or more and reflects light L2 with a wavelength component of less than 639 nm. Split the wave.
- LP long-pass filter
- the filter 11-2 is a long-pass filter that transmits light L3 with a wavelength component of 572 nm or more and reflects light L9 with a wavelength component of less than 572 nm. Split the wave.
- the filter 11-3 is a bandpass filter with a bandwidth of 50 nm centered at 785 nm and placed on the incident surface of the photodetector, channel Ch6.
- Filter 11-4 is a long-pass filter that transmits light L5 with a wavelength component of 561 nm or more and reflects light L6 with a wavelength component of less than 561 nm. Split the wave.
- the filter 11-5 is a bandpass filter with a bandwidth of 30 nm centered at 585 nm, and is placed on the incident surface of the photodetector of channel Ch3 to limit the wavelength components of the light L5 incident on the photodetector. do.
- Filter 11-6 is a long-pass filter that transmits light L7 with wavelength components of 487.5 nm or more and reflects light L8 with wavelength components of less than 487.5 nm. and light L8.
- the filter 11-7 is a bandpass filter with a bandwidth of 50 nm centered at 525 nm, and is arranged on the incident surface of the photodetector of channel Ch2 to limit the wavelength component of the light L7 incident on the photodetector. do.
- the filter 11-8 is a bandpass filter with a bandwidth of 50 nm centered at 450 nm.
- Filter 11-9 is a long-pass filter that transmits light L11 with a wavelength component of 685 nm or more and reflects light L10 with a wavelength component of less than 685 nm. Split the wave.
- the filter 11-10 is a bandpass filter with a bandwidth of 30 nm centered at 665 nm, which is placed on the incident surface of the photodetector of channel Ch4 to limit the wavelength components of the light L10 incident on the photodetector. do.
- the filter 11-11 is a bandpass filter with a bandwidth of 60 nm centered at 720 nm, and is placed on the incident surface of the photodetector of channel Ch5 to limit the wavelength components of the light L11 incident on the photodetector. do.
- the filter 11-12 is a bandpass filter with a bandwidth of 178 nm centered at 488 nm, and is arranged on the incident surface of the photodetector for detecting the backscattered light L12 to filter the light incident on the photodetector. Restrict to backscattered light L12.
- the filters 11-13 are long-pass filters that transmit light with wavelength components of 600 nm or more and reflect light with wavelength components of less than 600 nm.
- Filters 11-14 are bandpass filters with a bandwidth of 60 nm centered at 600 nm.
- Filters 11-15 are bandpass filters with a bandwidth of 30 nm centered at 617 nm. It is assumed that filters 11-13 to 11-15 are mounted in detection unit 102 of biological sample analyzer 100 as spare optical filters.
- AlignCheck beads are abbreviated as ACB
- SortCal beads are abbreviated as SCB.
- the level ratio (ratio) of each channel was set to (SCB level)/(ACB level).
- FIG. 9 is a diagram showing Height, level ratio (ratio), and CV of each channel obtained when the filters 11-1 to 11-12 are correctly set under the above measurement conditions.
- Height_ACB indicates the height of the fluorescence signal obtained with the AlignCheck beads
- Height_SCB indicates the height of the fluorescence signal obtained with the SortCal beads
- Area_ACB_CV indicates the height of the fluorescence signal obtained with the AlignCheck beads.
- Area_SCB_CV indicates the CV calculated from the fluorescence signal obtained from the SortCal beads.
- the level ratio (ratio) and CV of each channel were used as references (first and second regulations) when verifying the setting state of the optical filter.
- FIG. 10 is a diagram showing Height, level ratio (ratio), and CV of each channel acquired in case 1.
- the value of the level ratio of channel Ch2 is out of the first specified range (8.17 ⁇ 15%) obtained from the values shown in FIG.
- the value of Area_ACB_CV of channel Ch2 is out of the second prescribed range (3.6% ⁇ 2%) obtained from the values shown in FIG. 8, and the other values are within the prescribed range. From this, in Case 1, it can be determined that there is an error in the filter 11-7 arranged immediately before the photodetector of channel Ch2.
- FIG. 11 is a diagram showing Height, level ratio (ratio), and CV of each channel acquired in case 2.
- ratio level ratio
- FIG. 11 and FIG. 9 in case 2, the values of the level ratios of channels Ch2 and Ch3 are in the first specified range (Ch2: 8.17 ⁇ 15% , Ch3: 7.87 ⁇ 15%). Therefore, from the level ratio, it cannot be determined that there is an error in the optical filters arranged on the paths of the light incident on the respective channels.
- FIG. 12 is a diagram showing Height, level ratio (ratio), and CV of each channel acquired in case 3.
- the value of the level ratio of channel Ch3 is out of the first specified range (8.17 ⁇ 15%) obtained from the values shown in FIG.
- the value of Area_ACB_CV of channel Ch3 is out of the second specified range (3.6% ⁇ 2%) obtained from the values shown in FIG. 8, and the value of Area_SCB_CV of channel Ch3 is similarly obtained from the values shown in FIG. It is out of the second specified range (3.9% ⁇ 2%). From this, in Case 3, it can be determined that at least one of the filters 11-1, 11-4, and 11-5 arranged on the optical path to the photodetector of channel Ch3 has an error. .
- the present embodiment it is possible to verify the setting state of the optical filter from the level ratio and CV (or rCV) obtained using the test sample. It is possible to determine that the setting state of the optical filter is not appropriate not only when there is a human error or improper mounting in the setting of the optical filter, but also when the optical filter is damaged or deteriorated. As a result, it becomes possible to suppress a decrease in accuracy caused by the optical filter.
- FIG. 13 is a flowchart showing an example of an overall flow according to this embodiment.
- Step S201 As shown in FIG. 13 , in step S201 of the overall flow, the user instructs, for example, the information processing unit 103 of the biological sample analyzer 100 to set the optical filter used for sample measurement to the optical filter in the detection unit 102 of the biological sample analyzer 100. set in the filter.
- the following procedure can be exemplified as the procedure for setting the optical filter.
- any one of the procedures exemplified below may be performed.
- the optical filter used in actual measurement and its arrangement information (hereinafter referred to as optical filter pattern) ) is prepared in advance in the information processing unit 103, and the user selects a list of optical filter patterns given as options from the information processing unit 103 after determining the dye to be used for staining the sample or after staining the sample. Choose which one to use. Then, according to the selected optical filter pattern, the user sets the corresponding optical filter in each socket (socket in which the optical filter is set) of the optical system in the detection unit 102 of the biological sample analyzer 100 .
- FIG. 14 shows an example of a list of optical filter patterns provided to the user as selection candidates.
- the list indicates which optical filter is set in which slot for each optical filter pattern.
- Each row (record) in the list is, for example, a user interface for selection by the user, and the user selects the row of the optical filter pattern to be used, thereby specifying the optical filter pattern to be used for the information processing unit 103. Can be set.
- an optical filter pattern for each dye set is prepared in advance in the information processing unit 103, as in the first example.
- the information processing unit 103 automatically selects an optical filter pattern from the retained optical filter patterns. , presenting the information of the selected optical filter pattern to the user.
- a list of optical filter patterns may be given to the user as options so that the user can change the automatically selected optical filter pattern. Then, the user sets the corresponding optical filter in each socket of the optical system in the detection unit 102 of the biological sample analyzer 100 according to the automatically selected or changed optical filter pattern.
- the user himself/herself selects an optical filter to be arranged in each socket of the optical system in the detection unit 102 of the biological sample analyzer 100 and inputs it to the information processing unit 103, and the optical filter in the detection unit 102 Set an optical filter in each socket of the system.
- the information processing unit 103 provides the user with a user interface that simulates the layout of the optical system of the detection unit 102, for example.
- the user uses the user interface provided by the information processing unit 103 to set optical filters to be arranged in each socket of the optical system. Then, the user sets the corresponding optical filter in each socket of the optical system in the detection unit 102 of the biological sample analyzer 100 according to the arrangement of the optical filters determined by the user.
- each optical filter is provided with an identification code (an example of an identification information holding unit) for uniquely identifying each.
- the identification code may be, for example, an optically readable code such as a bar code or QR code (registered trademark).
- QR code registered trademark
- the read identification code is input to the information processing section 103 .
- the information processing unit 103 identifies which optical filter is set in which socket from the identification codes that are sequentially input.
- each socket in the optical system may also have an identification code.
- FIG. 15 shows an example in which a QR code (registered trademark) is attached to both the optical filter and the socket.
- QR codes (registered trademark) 14A-14C and 15A-15C are attached to both the optical filters 11A-11C and the sockets 13A-13C, respectively.
- the information processing unit 103 can determine which optical filter is in which socket. It is possible to specify whether it has been set.
- a reader for reading the identification code of the optical filter set in each socket may be provided near each socket.
- the identification code of the optical filter set in each socket is automatically read and sent to the information processing unit 103.
- each optical filter is provided with an identification code.
- the user takes an image of the entire optical system using a mobile terminal such as a mobile phone or a smart phone, and inputs the image data taken into the information processing unit 103 .
- a mobile terminal such as a mobile phone or a smart phone
- input method such as a method of attaching to an e-mail and sending it, a method of uploading from a dedicated application or website, and the like.
- the information processing unit 103 identifies the optical filter set in each socket of the optical system by analyzing the image data input by the user.
- each optical filter is attached with a tag (an example of an identification information holding section) storing identification information for uniquely identifying each filter.
- the tags may be contactless, such as RFID, or contact.
- each socket of the optical system is provided with a reader for reading the information stored in the tag attached to the optical filter set therein. When the user sets an optical filter in each socket, information about which optical filter is set in which socket is automatically or manually input to the information processing unit 103 .
- step S201 in addition to the setting information of the optical filter, the lot information of the setup beads used for verification may also be input to the information processing section 103.
- This lot information may be directly input to the information processing section 103 by the user, or may be input to the information processing section 103 using a portable terminal such as a mobile phone or a smart phone.
- Step S202 the setting state of the optical filter is verified by executing the verification flow described using FIG. 7 in the first embodiment.
- Step S203 As a result of the verification in step S202, it is determined whether or not the setting state of the optical filter is appropriate. If not appropriate (NO in step S203), the flow returns to step S201, and the optical filter setting is executed again. On the other hand, if it is appropriate (YES in step S203), this flow is terminated, and the sample to be analyzed/analyzed is measured.
- step S112 of FIG. 7 in addition to or instead of the information instructing the user to "check the setting state of the optical filter or redo the setting of the optical filter", it is estimated that the setting state is not appropriate.
- the user may be notified of information for identifying the optical filter to be used.
- Information for identifying an optical filter whose setting state is estimated to be inappropriate for example, information pointing to a specific optical filter, an optical path to a photodetector corresponding to a channel determined to be inappropriate in verification, and/or Various information such as information indicating an optical filter arranged on the optical path can be used.
- FIG. 16 is a schematic diagram showing an example of a screen (hereinafter referred to as a notification screen) presented to the user as "information for identifying an optical filter whose setting state is estimated to be inappropriate". Note that this example illustrates case 2 (FIG. 11) in the first embodiment, that is, the case where the filters 11-5 and 11-7 are interchanged.
- the optical paths to the photodetectors corresponding to channels Ch2 and Ch3 determined as inappropriate in the verification are, for example, bold lines, highlighted colors, or It is represented by visual effects such as blinking.
- the optical path from filter 11-1 to channel CH2 and the optical path from filter 11-1 to channel Ch3 are represented by thick lines. Therefore, the user to whom the notification screen is provided can select any one of the filters 11-1, 11-4, 11-5, 11-6 and 11-7 located on the optical path from the filter 11-1 to the channels Ch2 and Ch3. or one or more setting states are not appropriate.
- the notification screen may be displayed on a display that can be confirmed by the user, such as a display included in or connected to the information processing unit 103, a form terminal carried by the user, or the like.
- a flow cytometer was exemplified as the biological sample analyzer 100, but the technology according to the present disclosure is not limited to flow cytometers. can be applied to various analyzers that use two or more optical filters to demultiplex light into two or more wavelength bands.
- the sample is not limited to microparticles, but can be various objects such as tissue sections, for example.
- two or more types of objects with different fluorescence and scattered light intensities can be used.
- FIG. 17 is a hardware configuration diagram showing an example of a computer 1000 that implements the functions of the information processing section 103.
- the computer 1000 has a CPU 1100 , a RAM 1200 , a ROM (Read Only Memory) 1300 , a HDD (Hard Disk Drive) 1400 , a communication interface 1500 and an input/output interface 1600 .
- Each part of computer 1000 is connected by bus 1050 .
- the CPU 1100 operates based on programs stored in the ROM 1300 or HDD 1400 and controls each section. For example, the CPU 1100 loads programs stored in the ROM 1300 or HDD 1400 into the RAM 1200 and executes processes corresponding to various programs.
- the ROM 1300 stores a boot program such as BIOS (Basic Input Output System) executed by the CPU 1100 when the computer 1000 is started, and programs dependent on the hardware of the computer 1000.
- BIOS Basic Input Output System
- the HDD 1400 is a computer-readable recording medium that non-temporarily records programs executed by the CPU 1100 and data used by such programs.
- HDD 1400 is a recording medium that records a program for realizing each operation according to the present disclosure, which is an example of program data 1450 .
- a communication interface 1500 is an interface for connecting the computer 1000 to an external network 1550 (for example, the Internet).
- the CPU 1100 receives data from another device via the communication interface 1500, and transmits data generated by the CPU 1100 to another device.
- the input/output interface 1600 includes the I/F section 18 described above, and is an interface for connecting the input/output device 1650 and the computer 1000 .
- the CPU 1100 receives data from input devices such as a keyboard and mouse via the input/output interface 1600 .
- the CPU 1100 transmits data to an output device such as a display, a speaker, or a printer via the input/output interface 1600 .
- the input/output interface 1600 may function as a media interface for reading a program or the like recorded on a predetermined recording medium (media).
- Media include, for example, optical recording media such as DVD (Digital Versatile Disc) and PD (Phase change rewritable disk), magneto-optical recording media such as MO (Magneto-Optical disk), tape media, magnetic recording media, semiconductor memories, etc. is.
- optical recording media such as DVD (Digital Versatile Disc) and PD (Phase change rewritable disk)
- magneto-optical recording media such as MO (Magneto-Optical disk)
- tape media magnetic recording media
- magnetic recording media semiconductor memories, etc. is.
- the CPU 1100 of the computer 1000 implements the functions of the information processing unit 103 by executing the program loaded on the RAM 1200.
- the HDD 1400 also stores programs and the like according to the present disclosure.
- CPU 1100 reads and executes program data 1450 from HDD 1400 , as another example, these programs may be obtained from another device via external network 1550 .
- the present technology can also take the following configuration.
- an irradiation unit that irradiates the sample with light; an optical system for demultiplexing light from the sample using two or more optical filters; a plurality of photodetectors that detect the intensity of each light split by the optical system; a processing unit that analyzes the sample based on the intensity of light detected by each of the photodetectors; with Based on the first light intensity for each of the test samples detected by each of the photodetectors through the optical system when two or more test samples are irradiated with the light from the irradiation unit, the processing unit , an information processing apparatus that determines whether or not the setting state of the two or more optical filters is appropriate.
- the processing unit determines whether or not a setting state of the two or more optical filters is appropriate based on the ratio of the first light intensity for each of the test samples. .
- the processing section In a state in which the two or more optical filters are appropriately set, the processing section irradiates the two or more types of test samples with the light from the irradiation section, and passes the light to each of the photodetectors through the optical system. of the two or more optical filters based on whether the ratio of the first light intensities is within a first predetermined range based on the ratio of the second light intensities for each of the test samples detected in The information processing apparatus according to (2), wherein it is determined whether or not the setting state is appropriate.
- the processing unit appropriately sets the setting state of the two or more optical filters based on an average value or a median value of the first light intensity detected by two or more photodetectors among the plurality of photodetectors.
- the information processing apparatus according to any one of (1) to (3) above.
- the processing unit determines whether or not the setting state of the two or more optical filters is appropriate, further based on the variation coefficient or robust variation coefficient of the first light intensity detected by each of the photodetectors.
- the information processing apparatus according to any one of (2) to (4) above.
- the processing section irradiates the two or more types of test samples with the light from the irradiation section, and passes the light to each of the photodetectors through the optical system.
- the coefficient of variation or the robust variation coefficient of the first light intensity is included in a second predetermined range based on the coefficient of variation or the robust variation coefficient of the second light intensity for each of the test samples detected in The information processing apparatus according to (5), wherein whether or not the setting states of the two or more optical filters are appropriate is determined based on the above.
- the processing unit determines that the setting state of the two or more optical filters is not appropriate, the processing unit notifies the user that the setting state of at least one of the two or more optical filters is not appropriate.
- the information processing apparatus according to any one of (6).
- the processing unit includes one or more optical filters that are estimated to be improperly set based on the first light intensity for each of the test samples detected by each of the photodetectors, or one or more optical filters that are improperly set.
- the information processing apparatus according to (7) wherein the user is notified of the optical path in which the one or more optical filters estimated to be are arranged.
- the processing unit determines the one or more optical filters whose setting state is estimated to be inappropriate based on the type and arrangement of the two or more optical filters in the optical system set by a user, or the setting state.
- the information processing apparatus according to (8), wherein the user is notified of the optical path in which the one or more optical filters estimated to be inappropriate are arranged.
- the processing unit presents to the user candidates for the type and arrangement of the two or more optical filters to be set in the optical system according to the dye used for staining the sample, and the user selects from among the candidates.
- the information processing apparatus according to (9), wherein the user is notified of the optical path on which the filter is arranged.
- the processing unit automatically sets the type and arrangement of the two or more optical filters to be set in the optical system according to the dye used to stain the sample input by the user, and automatically sets the type and arrangement of the two or more optical filters. the one or more optical filters whose setting state is presumed to be inappropriate, or the one or more optical filters whose setting state is presumed to be inappropriate, based on the types and arrangements of the two or more optical filters.
- Each of the optical filters has an identification information holding unit that holds identification information for uniquely identifying its own type, The one or more optical filters whose setting states are estimated to be inappropriate based on the types of the optical filters and the arrangement of the optical filters acquired from the identification information holding unit of the optical filters.
- the information processing apparatus according to (9), wherein the optical path in which the filter or the one or more optical filters whose setting state is estimated to be inappropriate is arranged is notified to the user.
- the sample is a microparticle;
- the information processing apparatus according to any one of (1) to (12), wherein the two or more types of test samples are set-up beads including two or more types of beads having different sizes.
- the information processing apparatus according to any one of (1) to (13), wherein the irradiation unit irradiates the light onto the sample or the test sample flowing through a predetermined flow path.
- the irradiation unit irradiates the light onto the sample or the test sample flowing through a predetermined flow path.
- irradiating light on two types of test samples detecting the intensity of each light separated by an optical system that separates the light from each of the two types of test samples using two or more optical filters;
- An information processing method comprising determining whether or not the setting state of the two or more optical filters is appropriate based on the detected intensity of the light for each of the test samples.
- an irradiation unit that irradiates a sample with light; an optical system that splits the light from the sample using two or more optical filters;
- a program for causing a processor of an information processing device to function comprising: Based on the first light intensity for each of the test samples detected by each of the photodetectors through the optical system when the processor irradiates two or more test samples with light from the irradiation unit, A program for determining whether or not the setting states of the two or more optical filters are appropriate.
Landscapes
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
Description
0.はじめに
1.第1の実施形態
1.1 生体試料分析装置のシステム構成例
1.2 光学システムの概略構成例
1.3 テスト試料の例
1.4 検証手順の概略例
1.5 基準とするレベル比の例
1.6 装着された光学フィルタのセッティング状態を検証する方法
1.6.1 検証フロー例
1.6.1.1 第1例
1.6.1.2 第2例
1.7 検証結果の具体例
1.7.1 ケース1
1.7.2 ケース2
1.7.3 ケース3
1.8 まとめ
2.第2の実施形態
2.1 全体フロー
3.第3の実施形態
4.変形例
5.ハードウエア構成
フローサイトメータは、検出光学を持っており、通常、サンプルから放射された蛍光は、それが伝搬する光路上に配置された光学フィルタにより波長ごとの分波若しくは波長の制限がなされ、最終的に光電子増倍管(PMT)やフォトダイオード(PD)等の光デバイスで検出される。
以下、本開示の第1の実施形態に係る情報処理システム、情報処理方法及びプログラムについて、図面を参照して詳細に説明する。
本実施形態に係る情報処理システムの一例である生体試料分析装置の構成例を図1に示す。図1に示される生体試料分析装置100は、流路Cを流れる生体試料Sに光を照射する光照射部101、前記照射によって生じた光を検出する検出部102、及び前記検出部102により検出された光に関する情報を処理する情報処理部(単に、処理部ともいう)103を含む。生体試料分析装置100の例としては、例えばフローサイトメータ及びイメージングフローサイトメータを挙げることができる。生体試料分析装置100は、生体試料S内の特定の生体粒子Pの分取を行う分取部104を含んでもよい。分取部104を含む生体試料分析装置100の例としては、例えばセルソータを挙げることができる。
生体試料Sは、生体粒子Pを含む液状試料であってよい。当該生体粒子Pは、例えば細胞又は非細胞性生体粒子である。前記細胞は、生細胞であってよく、より具体的な例として、赤血球や白血球などの血液細胞、及び精子や受精卵等生殖細胞を挙げることができる。また前記細胞は全血等検体から直接採取されたものでもよいし、培養後に取得された培養細胞であってもよい。前記非細胞性生体粒子として、細胞外小胞、特にはエクソソーム及びマイクロベシクルなどを挙げることができる。前記生体粒子Pは、1つ又は複数の標識物質(例えば色素(特には蛍光色素)及び蛍光色素標識抗体など)によって標識されていてもよい。なお、本開示の生体試料分析装置100により、生体粒子以外の粒子が分析されてもよく、キャリブレーションなどのために、ビーズなどが分析されてもよい。
流路Cは、生体試料Sが流れるように、特に前記生体試料Sに含まれる生体粒子Pが略一列に並んだ流れが形成されるように構成され得る。流路Cを含む流路構造は、層流が形成されるように設計されてよく、特には生体試料Sの流れ(サンプル流)がシース液の流れによって包まれた層流が形成されるように設計される。当該流路構造の設計は、当業者により適宜選択されてよく、既知のものが採用されてもよい。流路Cは、マイクロチップ(マイクロメートルオーダーの流路を有するチップ)又はフローセルなどの流路構造体(Flow Channel Structure)中に形成されてよい。流路Cの幅は、1mm(ミリメートル)以下であり、特には10μm(マイクロメートル)以上1mm以下であってよい。流路C及びそれを含む流路構造体は、プラスチックやガラスなどの材料から形成されてよい。
光照射部101は、光を出射する光源部と、当該光を流路Cへと導く導光光学系とを含む。前記光源部は、1又は複数の光源を含む。光源の種類は、例えばレーザ光源又はLED(Light Emitting Diode)であり得る。各光源から出射される光の波長は、紫外光、可視光、又は赤外光のいずれかの波長であってよい。導光光学系は、例えばビームスプリッター群、ミラー群又は光ファイバなどの光学部品を含む。また、導光光学系は、光を集光するためのレンズ群を含んでよく、例えば対物レンズを含み得る。生体試料Sに対する光の照射点は、1つ又は複数であってよい。光照射部101は、一の照射点に対して、一つ又は異なる複数の光源から照射された光を集光するよう構成されていてもよい。
検出部102は、光照射部101による粒子への光照射により生じた光を検出する少なくとも一つの光検出器を備えている。検出する光は、例えば蛍光又は散乱光(例えば前方散乱光、後方散乱光、及び側方散乱光のいずれか1つ以上)、透過光、反射光である。各光検出器は、1以上の受光素子を含み、例えば受光素子アレイを有する。各光検出器は、受光素子として、1又は複数のPMT(光電子増倍管)及び/又はAPD(Avalanche Photodiode)及びMPPC(Multi-Pixel Photon Counter)等のフォトダイオードを含んでよい。当該光検出器は、例えば複数のPMTを一次元方向に配列したPMTアレイを含む。また、検出部102は、CCD(Charge Coupled Device)又はCMOS(Complementary Metal-Oxide-Semiconductor)などの撮像素子を含んでもよい。検出部102は、当該撮像素子により、生体粒子Pに関する生体粒子情報を取得し得る。
情報処理部103は、例えば各種データ(例えば光データ)の処理を実行する処理部及び各種データを記憶する記憶部を含む。処理部は、蛍光色素に対応する光データを検出部102より取得した場合、光強度データに対し蛍光漏れ込み補正(コンペンセーション処理)を行い得る。また、処理部は、スペクトル型フローサイトメータの場合、光データに対して蛍光分離処理を実行し、蛍光色素に対応する光強度データを取得する。
分取部104は、例えば情報処理部103による判定結果に応じて、生体粒子Pの分取を実行し得る。分取の方式は、振動により生体粒子Pを含む液滴を生成し、分取対象の液滴に対して電荷をかけ、当該液滴の進行方向を電極により制御する方式であってよい。分取の方式は、流路構造体内にて生体粒子Pの進行方向を制御し分取を行う方式であってもよい。当該流路構造体には、例えば、圧力(噴射若しくは吸引)又は電荷による制御機構が設けられる。当該流路構造体の例として、流路Cがその下流で回収流路及び廃液流路へと分岐している流路構造を有し、特定の生体粒子Pが当該回収流路へ回収されるチップ(例えば特開2020-76736号公報に記載されたチップ)を挙げることができる。
次に、本実施形態に係る生体試料分析装置100における光学システムの概略構成例について説明する。図2は、本実施形態に係る光学システムの概略構成例を示す模式図である。ただし、図2似示される光学システムは最も簡素化されたものであり、生体試料分析装置100に搭載される光学システムは、より複雑化されたものであってよい。
本実施形態において、光学フィルタのセッティング状態の検出には、特性の異なる2種類以上のテスト試料が用いられてよい。本実施形態では、情報処理装置(生体試料分析装置)の例としてフローサイトメータを挙げるため、テスト試料には、フローサイトメータが検査対象とする細胞などの微小粒子と同程度のサイズや形状を持つチェックビーズを用いることができる。そこで、本実施形態では、チェックビーズとして、AlignCheckビーズとSortCalビーズとをセットアップビーズとして用いた場合を例示する。
本実施形態における検証手順としては、例えば、図2に例示した光学システムでは、まず、光検出器12aにおいてSortCalビーズより得られる蛍光信号のレベルが規定値に達するように、光検出器12aのゲインを調整する。例えば、光検出器12aとして光電子増倍管を用いた場合には、光電子増倍管に印加するHV(High Voltage)を調整することで、SortCalビーズより得られる蛍光信号のレベルが規定値に達するように調整する。
レベル比の評価は、予め用意しておいた基準とするレベル比(以下、基準レベル比という)と、実測から得られたレベル比の比較に基づいて実行されてもよい。その際、光学フィルタのセッティング状態が適切であるか否かを検証する際の基準とする基準レベル比には、例えば、生体試料分析装置100の光学システムに対して光学フィルタを正しくセッティングした状態でテスト試料を用いて取得されたレベル比が用いられてもよい。この基準レベル比は、例えば、生体試料分析装置100の提供又は保守管理側において予め取得しておき、実機に設定しておいてもよいし、ユーザ側において取得して設定してもよい。
次に、生体試料分析装置100を実際に使用する段階において、装着された光学フィルタのセッティング状態が適切であるか否かを検証する方法について、詳細に説明する。
つづいて、光学フィルタのセッティング状態を検証する検証フローについて説明する。本実施形態では、光検出器のゲインが調整可能であるか否かに基づいて2パターンの検証フローを例示する。
まず、第1例として、光検出器のゲイン調整が可能な場合の検証フロー例を説明する。なお、ゲイン調整が可能な光検出器としては、例えば、光電子増倍管などを例示することができる。
また、第2例では、光検出器のゲインが調整できない場合について説明する。なお、ゲイン調整ができない光検出器としては、例えば、フォトダイオードやAPD(Avalanche Photodiode)やMPPC(Multi-Pixel Photon Counter)などを例示することができる。
次に、本実施形態に係る検証フローを用いて実際に検証した場合の検証結果について、いくつか具体例を挙げて説明する。
ケース1では、図8に示すように、フィルタ11-7と予備のフィルタ11-14とを入れ替えた場合を説明する。図10は、ケース1の場合に取得された各チャンネルのHeightとレベル比(ratio)とCVとを示す図である。図10と図9とを比較すると分かるように、ケース1では、チャンネルCh2のレベル比の値が、図8に示す値から求まる第1規定の範囲(8.17±15%)から外れ、同じくチャンネルCh2のArea_ACB_CVの値が、図8に示す値から求まる第2規定の範囲(3.6%±2%)から外れ、その他の値は規定値の範囲内に含まれている。このことから、ケース1では、チャンネルCh2の光検出器の直前に配置されたフィルタ11-7に誤りがあると判定することができる。
ケース2では、図8に示すように、フィルタ11-5とフィルタ11-7とを入れ替えた場合を説明する。図11は、ケース2の場合に取得された各チャンネルのHeightとレベル比(ratio)とCVとを示す図である。図11と図9とを比較すると分かるように、ケース2では、チャンネルCh2及びCh3それぞれのレベル比の値は、図8に示す値から求まる第1規定の範囲(Ch2:8.17±15%、Ch3:7.87±15%)に含まれている。そのため、レベル比からは、それぞれのチャンネルに入射する光の経路上に配置された光学フィルタに誤りがあると判定することはできない。しかしながら、チャンネルCh2及びCh3それぞれのArea_ACB_CVの値は、図8に示す値から求まる第2規定の範囲(Ch2:3.6%±2%、Ch3:3.9%±2%)から外れている。このことから、ケース2では、チャンネルCh2及びCh3の光検出器までの光路上に配置されたフィルタ11-1、11-4、11-5、11-6、11-7のうちの少なくとも1つに誤りがあると判定することができる。
ケース3では、図8に示すように、フィルタ11-1とフィルタ11-4とを入れ替えた場合を説明する。図12は、ケース3の場合に取得された各チャンネルのHeightとレベル比(ratio)とCVとを示す図である。図12と図9とを比較すると分かるように、ケース3では、チャンネルCh3のレベル比の値が、図8に示す値から求まる第1規定の範囲(8.17±15%)から外れ、同じくチャンネルCh3のArea_ACB_CVの値が、図8に示す値から求まる第2規定の範囲(3.6%±2%)から外れ、さらに、同じくチャンネルCh3のArea_SCB_CVの値が、図8に示す値から求まる第2規定の範囲(3.9%±2%)から外れている。このことから、ケース3では、チャンネルCh3の光検出器までの光路上に配置されたフィルタ11-1、11-4、11-5のうちの少なくとも1つに誤りがあると判定することができる。
以上のように、本実施形態によれば、テスト試料を用いて得られたレベル比及びCV(又はrCV)から光学フィルタのセッティング状態を検証することが可能となるため、光学フィルタのセッティングに人為的な間違いや装着不良等がある場合のみならず、光学フィルタが破損や劣化等している場合にも、光学フィルタのセッティング状態が適切でないと判定することが可能となる。その結果、光学フィルタを要因とした精度低下を抑制することが可能となる。
次に、第2の実施形態について、図面を参照して詳細に説明する。本実施形態では、第1の実施形態で例示した検証の前段階である、分析・解析を目的としたサンプルの測定に使用する光学フィルタの選定までを含む全体の動作について、例を挙げて説明する。
図13は、本実施形態に係る全体フローの一例を示すフローチャートである。
図13に示すように、全体フローのステップS201では、ユーザが、生体試料分析装置100の例えば情報処理部103に、サンプルの測定に使用する光学フィルタを生体試料分析装置100の検出部102における光学フィルタにセッティングする。光学フィルタのセッティング手順としては、以下の手順を例示することができる。ステップS201では、以下で例示する手順のいずれか1つが実行されてよい。
第1例では、サンプルの染色に使用する1以上の色素(以下、色素セットという)に応じて、実際の測定において使用する光学フィルタ及びその配置の情報(以下、光学フィルタパターンという)を情報処理部103内に予め用意しておき、ユーザは、サンプルの染色に使用する色素を決定後、又は、サンプルを染色後、情報処理部103から選択肢として与えられた光学フィルタパターンのリストから、使用するものを選択する。そして、ユーザは、選択された光学フィルタパターンに従って、生体試料分析装置100の検出部102における光学システムの各ソケット(光学フィルタがセットされるソケット)に、該当する光学フィルタをセッティングする。
第2例では、第1例と同様に、色素セットごとの光学フィルタパターンを情報処理部103内に予め用意しておく。ただし、第2例では、ユーザがサンプルの染色に使用する色素を情報処理部103に入力すると、情報処理部103は、保持している光学フィルタパターンの中から自動的に光学フィルタパターンを選定し、選定された光学フィルタパターンの情報をユーザに提示する。なお、第2例では、自動選択された光学フィルタパターンをユーザが変更できるように、ユーザに対して光学フィルタパターンのリストが選択肢として与えられてもよい。そして、ユーザは、自動選択又は変更された光学フィルタパターンに従って、生体試料分析装置100の検出部102における光学システムの各ソケットに、該当する光学フィルタをセッティングする。
第3例では、生体試料分析装置100の検出部102における光学システムの各ソケットに配置する光学フィルタをユーザ自身が選択して情報処理部103に入力するとともに、検出部102における光学システムの各ソケットに光学フィルタをセッティングする。例えば、ユーザは、サンプルの染色に使用する色素セットを決定すると、使用する光学フィルタの種類及びその配置を決定する。情報処理部103は、例えば、検出部102の光学システムの配置を模したユーザインタフェースをユーザに提供する。ユーザは、情報処理部103から提供されたユーザインタフェースを用いることで、光学システムの各ソケットに配置する光学フィルタを設定していく。そして、ユーザは、自身が決定した光学フィルタの配置に従って、生体試料分析装置100の検出部102における光学システムの各ソケットに、該当する光学フィルタをセッティングする。
第4例では、各光学フィルタに、それぞれを一意に識別するための識別コード(識別情報保持部の一例)が付されている。識別コードは、例えば、バーコードやQRコード(登録商標)など、光学的に読み取り可能なコードであってよい。ユーザは、各ソケットに光学フィルタをセットすると、バーコードリーダやQRコード(登録商標)リーダなどの光学式読み取り機を用い、所定の順番で各ソケットにセットされた光学フィルタの識別コードを読み込む。読み込まれた識別コードは、情報処理部103へ入力される。情報処理部103は、順番に入力された識別コードから、どのソケットにどの光学フィルタがセットされたかを特定する。
第5例では、第4例と同様に、各光学フィルタに識別コードが付されている。ユーザは、各ソケットに光学フィルタをセットすると、携帯電話やスマートフォンなどの携帯端末を用いて光学システム全体を撮影し、撮影された画像データを情報処理部103へ入力する。入力する方法は、例えば、メールに添付して送信する方式や、専用のアプリケーションやウェブサイトからアップロードする方式など、種々の方法が採用されてよい。情報処理部103は、ユーザから入力された画像データを解析することで、光学システムの各ソケットにセッティングされた光学フィルタを特定する。
第6例では、各光学フィルタに、それぞれを一意に識別するための識別情報を格納したタグ(識別情報保持部の一例)が取り付けられている。タグは、RFIDなどの非接触型であってもよいし、接触型であってもよい。また、光学システムの各ソケットには、自身にセットされた光学フィルタに取り付けられたタグに格納されている情報を読み込むためのリーダが設けられている。ユーザは、各ソケットに光学フィルタをセットすると、どのソケットにどの光学フィルタがセットされたかの情報が情報処理部103へ自動又は手動で入力される。
ステップS202では、例えば、第1の実施形態において図7を用いて説明した検証フローを実行することで、光学フィルタのセッティング状態を検証する。
ステップS203では、ステップS202の検証の結果、光学フィルタのセッティング状態が適切であるか否かを判定する。適切でない場合(ステップS203のNO)、本フローがステップS201へ戻り、光学フィルタのセッティングが再度実行される。一方、適切である場合(ステップS203のYES)、本フローが終了され、分析・解析対象のサンプルに対する測定が実行される。
次に、第3の実施形態について、図面を参照して詳細に説明する。本実施形態では、第1の実施形態において図7のステップS112を用いて説明した、ユーザへ光学フィルタのセッティング状態の確認や光学フィルタのセッティングのやり直しを通知する際に、ユーザに提示される情報について、例を挙げて説明する。なお、検出部102の光学システムにおける光学フィルタの種類及び配置は、例えば、第2の実施形態において例示した手順により情報処理部103に設定されてよい。
上述した実施形態では、生体試料分析装置100としてフローサイトメータを例示したが、本開示に係る技術は、フローサイトメータに限定されず、例えば、顕微鏡やイメージサイトメータなど、サンプルからの光を2以上の波長帯域の光に分波するために2以上の光学フィルタを使用する種々の分析装置に適用することが可能である。その場合、サンプルは、微小粒子に限定されず、例えば組織切片など、種々の物体とすることが可能である。同様に、テスト試料としては、セットアップビーズの代わりに、その蛍光強度と散乱光強度とが互いに異なる2種類以上の物体を使用することが可能である。
上述した実施形態に係る情報処理部103は、例えば図17に示すような構成のコンピュータ1000によって実現され得る。図17は、情報処理部103の機能を実現するコンピュータ1000の一例を示すハードウエア構成図である。コンピュータ1000は、CPU1100、RAM1200、ROM(Read Only Memory)1300、HDD(Hard Disk Drive)1400、通信インタフェース1500、及び入出力インタフェース1600を有する。コンピュータ1000の各部は、バス1050によって接続される。
(1)
サンプルに対して光を照射する照射部と、
前記サンプルからの光を2以上の光学フィルタを用いて分波する光学システムと、
前記光学システムにて分波された光それぞれの強度を検出する複数の光検出器と、
前記光検出器それぞれで検出された光の強度に基づいて前記サンプルを分析する処理部と、
を備え、
前記処理部は、前記照射部からの光を2種類以上のテスト試料に照射した際に前記光学システムを介して前記光検出器それぞれで検出された前記テスト試料ごとの第1光強度に基づいて、前記2以上の光学フィルタのセッティング状態が適切であるか否かを判定する
情報処理装置。
(2)
前記処理部は、前記テスト試料ごとの前記第1光強度の比に基づいて、前記2以上の光学フィルタのセッティング状態が適切であるか否かを判定する
前記(1)に記載の情報処理装置。
(3)
前記処理部は、前記2以上の光学フィルタのセッティングが適切である状態で、前記照射部からの光を前記2種類以上のテスト試料に照射した際に前記光学システムを介して前記光検出器それぞれで検出された前記テスト試料ごとの第2光強度の比を基準とする第1所定範囲内に、前記第1光強度の比が含まれるか否かに基づいて、前記2以上の光学フィルタのセッティング状態が適切であるか否かを判定する
前記(2)に記載の情報処理装置。
(4)
前記処理部は、前記複数の光検出器のうちの2以上の光検出器で検出された前記第1光強度の平均値又は中央値に基づいて、前記2以上の光学フィルタのセッティング状態が適切であるか否かを判定する
前記(1)~(3)の何れか1つに記載の情報処理装置。
(5)
前記処理部は、前記光検出器それぞれで検出された前記第1光強度の変動係数又はロバスト変動係数にさらに基づいて、前記2以上の光学フィルタのセッティング状態が適切であるか否かを判定する
前記(2)~(4)の何れか1つに記載の情報処理装置。
(6)
前記処理部は、前記2以上の光学フィルタのセッティングが適切である状態で、前記照射部からの光を前記2種類以上のテスト試料に照射した際に前記光学システムを介して前記光検出器それぞれで検出された前記テスト試料ごとの第2光強度の変動係数又はロバスト変動係数を基準とする第2所定範囲内に、前記第1光強度の変動係数又はロバスト変動係数が含まれるか否かに基づいて、前記2以上の光学フィルタのセッティング状態が適切であるか否かを判定する
前記(5)に記載の情報処理装置。
(7)
前記処理部は、前記2以上の光学フィルタのセッティング状態が適切でないと判定した場合、前記2以上の光学フィルタのうちの少なくとも1つの光学フィルタのセッティング状態が適切でないことをユーザに通知する
前記(1)~(6)の何れか1つに記載の情報処理装置。
(8)
前記処理部は、前記光検出器それぞれで検出された前記テスト試料ごとの前記第1光強度に基づいて、セッティング状態が適切でないと推定される1以上の光学フィルタ、又は、セッティング状態が適切でないと推定される1以上の光学フィルタが配置された光路をユーザに通知する
前記(7)に記載の情報処理装置。
(9)
前記処理部は、ユーザにより設定された前記光学システムにおける前記2以上の光学フィルタの種類及び配置に基づいて、前記セッティング状態が適切でないと推定される前記1以上の光学フィルタ、又は、前記セッティング状態が適切でないと推定される前記1以上の光学フィルタが配置された前記光路をユーザに通知する
前記(8)に記載の情報処理装置。
(10)
前記処理部は、前記サンプルの染色に使用された色素に応じて前記光学システムに設定する前記2以上の光学フィルタの種類及び配置の候補をユーザに提示し、前記候補の中から前記ユーザにより選択された前記2以上の光学フィルタの種類及び配置に基づいて、前記セッティング状態が適切でないと推定される前記1以上の光学フィルタ、又は、前記セッティング状態が適切でないと推定される前記1以上の光学フィルタが配置された前記光路をユーザに通知する
前記(9)に記載の情報処理装置。
(11)
前記処理部は、ユーザから入力された前記サンプルの染色に使用された色素に応じて前記光学システムに設定する前記2以上の光学フィルタの種類及び配置を自動的に設定し、自動的に設定された前記2以上の光学フィルタの種類及び配置に基づいて、前記セッティング状態が適切でないと推定される前記1以上の光学フィルタ、又は、前記セッティング状態が適切でないと推定される前記1以上の光学フィルタが配置された前記光路をユーザに通知する
前記(9)に記載の情報処理装置。
(12)
前記光学フィルタそれぞれは、自身の種類を一意に識別するための識別情報を保持する識別情報保持部を有し、
前記処理部は、前記光学フィルタそれぞれの前記識別情報保持部から取得した前記光学フィルタそれぞれの種類及び前記光学フィルタそれぞれの配置に基づいて、前記セッティング状態が適切でないと推定される前記1以上の光学フィルタ、又は、前記セッティング状態が適切でないと推定される前記1以上の光学フィルタが配置された前記光路をユーザに通知する
前記(9)に記載の情報処理装置。
(13)
前記サンプルは、微小粒子であり、
前記2種類以上のテスト試料は、大きさが異なる2種類以上のビーズを含むセットアップビーズである
前記(1)~(12)の何れか1つに記載の情報処理装置。
(14)
前記照射部は、所定の流路を流れる前記サンプル又は前記テスト試料に対して前記光を照射する
前記(1)~(13)の何れか1つに記載の情報処理装置。
(15)
2種類のテスト試料に対して光を照射し、
前記2種類のテスト試料それぞれからの光を2以上の光学フィルタを用いて分波する光学システムにて分波された光それぞれの強度を検出し、
検出された前記テスト試料ごとの前記光の強度に基づいて、前記2以上の光学フィルタのセッティング状態が適切であるか否かを判定する
ことを含む情報処理方法。
(16)
サンプルに対して光を照射する照射部と、前記サンプルからの光を2以上の光学フィルタを用いて分波する光学システムと、前記光学システムにて分波された光それぞれの強度を検出する複数の光検出器と、を備える情報処理装置のプロセッサを機能させるためのプログラムであって、
前記プロセッサに、前記照射部からの光を2種類以上のテスト試料に照射した際に前記光学システムを介して前記光検出器それぞれで検出された前記テスト試料ごとの第1光強度に基づいて、前記2以上の光学フィルタのセッティング状態が適切であるか否かを判定させるためのプログラム。
12a~12c、 光検出器
13A~13C ソケット
14A~14C、15A~15C QRコード(登録商標)
100 生体試料分析装置
101 光照射部
102 検出部
103 情報処理部
104 分取部
C 流路
L1~L15 光
P 生体粒子
S 生体試料
Claims (16)
- サンプルに対して光を照射する照射部と、
前記サンプルからの蛍光を2以上の光学フィルタを用いて分波する光学システムと、
前記光学システムにて分波された蛍光それぞれの強度を検出する複数の光検出器と、
前記光検出器それぞれで検出された蛍光の強度に基づいて前記サンプルを分析する処理部と、
を備え、
前記処理部は、前記照射部からの光を2種類以上のテスト試料に照射した際に前記光学システムを介して前記光検出器それぞれで検出された前記テスト試料ごとの第1光強度に基づいて、前記2以上の光学フィルタのセッティング状態が適切であるか否かを判定する
情報処理装置。 - 前記処理部は、前記テスト試料ごとの前記第1光強度の比に基づいて、前記2以上の光学フィルタのセッティング状態が適切であるか否かを判定する
請求項1に記載の情報処理装置。 - 前記処理部は、前記2以上の光学フィルタのセッティングが適切である状態で、前記照射部からの光を前記2種類以上のテスト試料に照射した際に前記光学システムを介して前記光検出器それぞれで検出された前記テスト試料ごとの第2光強度の比を基準とする第1所定範囲内に、前記第1光強度の比が含まれるか否かに基づいて、前記2以上の光学フィルタのセッティング状態が適切であるか否かを判定する
請求項2に記載の情報処理装置。 - 前記処理部は、前記複数の光検出器のうちの2以上の光検出器で検出された前記第1光強度の平均値又は中央値に基づいて、前記2以上の光学フィルタのセッティング状態が適切であるか否かを判定する
請求項1に記載の情報処理装置。 - 前記処理部は、前記光検出器それぞれで検出された前記第1光強度の変動係数又はロバスト変動係数にさらに基づいて、前記2以上の光学フィルタのセッティング状態が適切であるか否かを判定する
請求項2に記載の情報処理装置。 - 前記処理部は、前記2以上の光学フィルタのセッティングが適切である状態で、前記照射部からの光を前記2種類以上のテスト試料に照射した際に前記光学システムを介して前記光検出器それぞれで検出された前記テスト試料ごとの第2光強度の変動係数又はロバスト変動係数を基準とする第2所定範囲内に、前記第1光強度の変動係数又はロバスト変動係数が含まれるか否かに基づいて、前記2以上の光学フィルタのセッティング状態が適切であるか否かを判定する
請求項5に記載の情報処理装置。 - 前記処理部は、前記2以上の光学フィルタのセッティング状態が適切でないと判定した場合、前記2以上の光学フィルタのうちの少なくとも1つの光学フィルタのセッティング状態が適切でないことをユーザに通知する
請求項1に記載の情報処理装置。 - 前記処理部は、前記光検出器それぞれで検出された前記テスト試料ごとの前記第1光強度に基づいて、セッティング状態が適切でないと推定される1以上の光学フィルタ、又は、セッティング状態が適切でないと推定される1以上の光学フィルタが配置された光路をユーザに通知する
請求項7に記載の情報処理装置。 - 前記処理部は、ユーザにより設定された前記光学システムにおける前記2以上の光学フィルタの種類及び配置に基づいて、前記セッティング状態が適切でないと推定される前記1以上の光学フィルタ、又は、前記セッティング状態が適切でないと推定される前記1以上の光学フィルタが配置された前記光路をユーザに通知する
請求項8に記載の情報処理装置。 - 前記処理部は、前記サンプルの染色に使用された色素に応じて前記光学システムに設定する前記2以上の光学フィルタの種類及び配置の候補をユーザに提示し、前記候補の中から前記ユーザにより選択された前記2以上の光学フィルタの種類及び配置に基づいて、前記セッティング状態が適切でないと推定される前記1以上の光学フィルタ、又は、前記セッティング状態が適切でないと推定される前記1以上の光学フィルタが配置された前記光路をユーザに通知する
請求項9に記載の情報処理装置。 - 前記処理部は、ユーザから入力された前記サンプルの染色に使用された色素に応じて前記光学システムに設定する前記2以上の光学フィルタの種類及び配置を自動的に設定し、自動的に設定された前記2以上の光学フィルタの種類及び配置に基づいて、前記セッティング状態が適切でないと推定される前記1以上の光学フィルタ、又は、前記セッティング状態が適切でないと推定される前記1以上の光学フィルタが配置された前記光路をユーザに通知する
請求項9に記載の情報処理装置。 - 前記光学フィルタそれぞれは、自身の種類を一意に識別するための識別情報を保持する識別情報保持部を有し、
前記処理部は、前記光学フィルタそれぞれの前記識別情報保持部から取得した前記光学フィルタそれぞれの種類及び前記光学フィルタそれぞれの配置に基づいて、前記セッティング状態が適切でないと推定される前記1以上の光学フィルタ、又は、前記セッティング状態が適切でないと推定される前記1以上の光学フィルタが配置された前記光路をユーザに通知する
請求項9に記載の情報処理装置。 - 前記サンプルは、微小粒子であり、
前記2種類以上のテスト試料は、大きさが異なる2種類以上のビーズを含むセットアップビーズである
請求項1に記載の情報処理装置。 - 前記照射部は、所定の流路を流れる前記サンプル又は前記テスト試料に対して前記光を照射する
請求項1に記載の情報処理装置。 - 2種類のテスト試料に対して光を照射し、
前記2種類のテスト試料それぞれからの蛍光を2以上の光学フィルタを用いて分波する光学システムにて分波された蛍光それぞれの強度を検出し、
検出された前記テスト試料ごとの前記蛍光の強度に基づいて、前記2以上の光学フィルタのセッティング状態が適切であるか否かを判定する
ことを含む情報処理方法。 - サンプルに対して光を照射する照射部と、前記サンプルからの蛍光を2以上の光学フィルタを用いて分波する光学システムと、前記光学システムにて分波された蛍光それぞれの強度を検出する複数の光検出器と、を備える情報処理装置のプロセッサを機能させるためのプログラムであって、
前記プロセッサに、前記照射部からの光を2種類以上のテスト試料に照射した際に前記光学システムを介して前記光検出器それぞれで検出された前記テスト試料ごとの第1光強度に基づいて、前記2以上の光学フィルタのセッティング状態が適切であるか否かを判定させるためのプログラム。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/289,155 US20240230506A1 (en) | 2021-05-10 | 2022-03-15 | Information processing device, information processing method, and program |
EP22807163.5A EP4339597A4 (en) | 2021-05-10 | 2022-03-15 | INFORMATION PROCESSING DEVICE, INFORMATION PROCESSING METHOD, AND PROGRAM |
JP2023520863A JPWO2022239457A1 (ja) | 2021-05-10 | 2022-03-15 | |
CN202280033134.6A CN117242335A (zh) | 2021-05-10 | 2022-03-15 | 信息处理装置、信息处理方法和程序 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021079759 | 2021-05-10 | ||
JP2021-079759 | 2021-05-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022239457A1 true WO2022239457A1 (ja) | 2022-11-17 |
Family
ID=84028172
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/011532 WO2022239457A1 (ja) | 2021-05-10 | 2022-03-15 | 情報処理装置、情報処理方法及びプログラム |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240230506A1 (ja) |
EP (1) | EP4339597A4 (ja) |
JP (1) | JPWO2022239457A1 (ja) |
CN (1) | CN117242335A (ja) |
WO (1) | WO2022239457A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024150634A1 (ja) * | 2023-01-10 | 2024-07-18 | ソニーグループ株式会社 | 生体試料分析装置、生体試料分析システム、及び生体試料分析装置の状態の検証方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021143988A (ja) * | 2020-03-13 | 2021-09-24 | ソニーグループ株式会社 | 粒子解析システムおよび粒子解析方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0232259A (ja) | 1988-06-13 | 1990-02-02 | Eastman Kodak Co | 低 pI蛋白質または炭水化物を含んでなる特異的バインディング組成物ならびに診断試験キットおよび使用方法 |
US6809804B1 (en) | 2000-05-11 | 2004-10-26 | Becton, Dickinson And Company | System and method for providing improved event reading and data processing capabilities in a flow cytometer |
JP2005519309A (ja) * | 2002-03-06 | 2005-06-30 | アドバンスト フォトメトリクス, インク. | 放射エンコーディング及び分析のための方法及び装置 |
JP2005181145A (ja) * | 2003-12-19 | 2005-07-07 | Hitachi High-Technologies Corp | 核酸分析装置 |
JP2020076736A (ja) | 2018-09-10 | 2020-05-21 | ソニー株式会社 | 微小粒子分取装置、細胞治療薬製造装置、微小粒子分取方法、及びプログラム |
WO2020230779A1 (ja) * | 2019-05-13 | 2020-11-19 | 国立研究開発法人海洋研究開発機構 | 粒子分取装置、粒子分取方法及びコンピュータプログラム |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6905881B2 (en) * | 2000-11-30 | 2005-06-14 | Paul Sammak | Microbead-based test plates and test methods for fluorescence imaging systems |
-
2022
- 2022-03-15 JP JP2023520863A patent/JPWO2022239457A1/ja active Pending
- 2022-03-15 US US18/289,155 patent/US20240230506A1/en active Pending
- 2022-03-15 CN CN202280033134.6A patent/CN117242335A/zh active Pending
- 2022-03-15 EP EP22807163.5A patent/EP4339597A4/en active Pending
- 2022-03-15 WO PCT/JP2022/011532 patent/WO2022239457A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0232259A (ja) | 1988-06-13 | 1990-02-02 | Eastman Kodak Co | 低 pI蛋白質または炭水化物を含んでなる特異的バインディング組成物ならびに診断試験キットおよび使用方法 |
US6809804B1 (en) | 2000-05-11 | 2004-10-26 | Becton, Dickinson And Company | System and method for providing improved event reading and data processing capabilities in a flow cytometer |
JP2005519309A (ja) * | 2002-03-06 | 2005-06-30 | アドバンスト フォトメトリクス, インク. | 放射エンコーディング及び分析のための方法及び装置 |
JP2005181145A (ja) * | 2003-12-19 | 2005-07-07 | Hitachi High-Technologies Corp | 核酸分析装置 |
JP2020076736A (ja) | 2018-09-10 | 2020-05-21 | ソニー株式会社 | 微小粒子分取装置、細胞治療薬製造装置、微小粒子分取方法、及びプログラム |
WO2020230779A1 (ja) * | 2019-05-13 | 2020-11-19 | 国立研究開発法人海洋研究開発機構 | 粒子分取装置、粒子分取方法及びコンピュータプログラム |
Non-Patent Citations (1)
Title |
---|
See also references of EP4339597A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024150634A1 (ja) * | 2023-01-10 | 2024-07-18 | ソニーグループ株式会社 | 生体試料分析装置、生体試料分析システム、及び生体試料分析装置の状態の検証方法 |
Also Published As
Publication number | Publication date |
---|---|
CN117242335A (zh) | 2023-12-15 |
EP4339597A1 (en) | 2024-03-20 |
JPWO2022239457A1 (ja) | 2022-11-17 |
EP4339597A4 (en) | 2024-10-16 |
US20240230506A1 (en) | 2024-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10429291B2 (en) | Multi-spectral filter profiling and quality control for flow cytometry | |
CN106018771B (zh) | 血液分析装置及血液分析方法 | |
WO2022239457A1 (ja) | 情報処理装置、情報処理方法及びプログラム | |
US11506593B2 (en) | Methods and systems for classifying fluorescent flow cytometer data | |
KR101885417B1 (ko) | 뇨 검체 분석 장치 및 뇨 검체 분석 방법 | |
CN100526883C (zh) | 金标免疫试纸条的反射式光度计 | |
JP2018527559A (ja) | サイトメータ測定を調整するためのシステム及び方法 | |
JP6821591B2 (ja) | 自己トリガフローサイトメーター | |
CN105806816A (zh) | 一种多通道上转换发光检测装置及检测方法 | |
CN101201313B (zh) | 改变测量系统的一个或多个参数的方法 | |
US20240280468A1 (en) | Biological sample analyzer | |
US20230288427A1 (en) | Information processing apparatus, biological specimen analysis method, biological specimen detection apparatus, and biological specimen detection system | |
CN107995950B (zh) | 用于流式细胞术的多光谱滤波器剖析及质量控制 | |
WO2022270009A1 (ja) | 生体試料分析装置 | |
WO2024024319A1 (ja) | 生体試料分析システム、生体試料分析方法、及びプログラム | |
WO2024111263A1 (ja) | 生体試料分析装置、生体試料分析システム、及び生体試料分析装置の状態の検証方法 | |
WO2024150634A1 (ja) | 生体試料分析装置、生体試料分析システム、及び生体試料分析装置の状態の検証方法 | |
US11609176B2 (en) | Methods and devices for evaluating performance of a diode laser | |
US20250067653A1 (en) | Information processing device and information processing system | |
EP4492043A1 (en) | Information processing device and information processing system | |
US20240337587A1 (en) | Concentration measurement device | |
CN119183526A (zh) | 生物样本分析系统、信息处理装置、信息处理方法及生物样本分析方法 | |
WO2025028026A1 (ja) | 生体試料分析システム、分析方法、及び情報処理装置 | |
Curry et al. | High-speed detection of occult tumor cells in peripheral blood | |
EP4493911A1 (en) | Methods and systems for determining an ideal detector gain |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22807163 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023520863 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18289155 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280033134.6 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022807163 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022807163 Country of ref document: EP Effective date: 20231211 |