[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022239104A1 - Orthogonal acceleration time-of-flight mass spectrometer - Google Patents

Orthogonal acceleration time-of-flight mass spectrometer Download PDF

Info

Publication number
WO2022239104A1
WO2022239104A1 PCT/JP2021/017863 JP2021017863W WO2022239104A1 WO 2022239104 A1 WO2022239104 A1 WO 2022239104A1 JP 2021017863 W JP2021017863 W JP 2021017863W WO 2022239104 A1 WO2022239104 A1 WO 2022239104A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum chamber
mass spectrometer
orthogonal acceleration
electrode
electrode plate
Prior art date
Application number
PCT/JP2021/017863
Other languages
French (fr)
Japanese (ja)
Inventor
朋也 工藤
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to PCT/JP2021/017863 priority Critical patent/WO2022239104A1/en
Priority to JP2023520622A priority patent/JP7509317B2/en
Publication of WO2022239104A1 publication Critical patent/WO2022239104A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/40Time-of-flight spectrometers

Definitions

  • the present invention relates to an orthogonal acceleration time-of-flight mass spectrometer.
  • Orthogonal Acceleration Time-of-Flight Mass Spectrometer is known as one type of time-of-flight mass spectrometer.
  • Patent Documents 1 and 2 disclose a quadrupole-time-of-flight (Q-TOF) mass spectrometer using an orthogonal acceleration time-of-flight mass spectrometer as a second-stage mass spectrometer.
  • Q-TOF quadrupole-time-of-flight
  • a quadrupole mass filter as a first-stage mass spectrometer and a collision cell are arranged in a first analysis chamber with a relatively high degree of vacuum.
  • An orthogonal acceleration time-of-flight mass spectrometer including an orthogonal accelerator, a flight tube and a detector is located in a second analysis chamber with a high .
  • a transfer electrode is arranged across both analysis chambers.
  • the transfer electrode (the rear-stage ion lens in Patent Document 1) has a structure in which four electrode plates are connected in the central axis direction via insulating spacers, and is attached to the collision cell.
  • One electrode plate at the closest position (in the following explanation, the collision cell side is the front and the orthogonal acceleration unit side is the rear) is in the first analysis chamber, and the three electrode plates behind it are in the first analysis chamber. 2 are placed in the analysis chamber.
  • a predetermined voltage is applied to each electrode plate, and a predetermined electric field is formed in the space surrounded by the electrode plates. Ions are guided through this electric field to the orthogonal accelerator.
  • a pulsed electric field is formed in the orthogonal acceleration section to accelerate ions incident through the transfer electrode in a direction substantially orthogonal to the incident direction.
  • the ions accelerated by the orthogonal acceleration section are guided to the flight space in the flight tube, and after flying in the flight space reach the detector and are detected.
  • the transfer electrode has a function of shaping the ion flow incident on the orthogonal acceleration section so that it becomes thin and parallel.
  • the electrode plate located at the rearmost position of the transfer electrode (the position closest to the orthogonal acceleration section) is fixed to the base plate via an insulating member, and the orthogonal acceleration section is also fixed to the same base plate.
  • the second electrode plate from the front of the transfer electrode is fixed to a partition member separating the first analysis chamber and the second analysis chamber via a seal member.
  • the inside of the second analysis chamber is heated to an appropriate temperature (eg, 42°C) higher than the room temperature of a general room. It is designed to be heated and temperature controlled.
  • an appropriate temperature eg, 42°C
  • the insulating member fixing the rear electrode plate of the transfer electrode thermally expands, displacing the electrode plate in a direction substantially perpendicular to its central axis.
  • the second electrode plate from the front of the transfer electrode is fixed to the partition member via a sealing member such as an O-ring. It fluctuates considerably.
  • the present invention has been made to solve the above problems, and its object is to suppress the inclination of the optical axis of the ion flow incident on the orthogonal acceleration unit due to temperature control and temperature change during analysis. It is an object of the present invention to provide an orthogonal acceleration time-of-flight mass spectrometer capable of securing high analytical performance.
  • a vacuum chamber having an internal space partitioned into a first vacuum chamber and a second vacuum chamber; a plurality of electrode plates each having an ion passage opening disposed across the first and second vacuum chambers and connected via insulating spacers for transporting ions from the first vacuum chamber to the second vacuum chamber; a transfer electrode consisting of an orthogonal acceleration unit disposed in the second vacuum chamber for accelerating ions transported by the transfer electrode in a direction perpendicular to the incident direction; a rear electrode plate for fixing the rear electrode plate positioned in the second vacuum chamber among the plurality of electrode plates to the vacuum chamber at a position spaced apart in a predetermined direction orthogonal to the central axis of the ion passage aperture; a side fixing member; A member for positioning a front electrode plate positioned in the first vacuum chamber among the plurality of electrode plates in the first vacuum chamber, the member extending inward from an inner
  • an annular partition member; and an anterior fixation member comprising: Prepare.
  • the rear side fixing member thermally expands, and as a result, the rear side electrode plate expands. It may move in a direction opposite to the predetermined direction. Since the partition member holding the front electrode plate via the spacer is slidable within a predetermined range in the opposite direction with respect to the extending portion, it is possible to move the rear electrode plate as described above. Following this, the front electrode plate also moves in the same direction. Therefore, the central axis of the transfer electrode is only moved in parallel due to the thermal expansion, and the inclination with respect to the axis of ideal ion incidence to the orthogonal acceleration section is reduced.
  • the orthogonal acceleration time-of-flight mass spectrometer according to the present invention, it is possible to reduce the tilt of the ion optical axis of the ion flow incident on the orthogonal acceleration part due to temperature control and temperature change during analysis. can be done. As a result, the ion current incident on the orthogonal acceleration section is kept parallel to the electrodes included in the orthogonal acceleration section, so high analytical performance can be achieved.
  • FIG. 1 is an overall configuration diagram of a Q-TOF mass spectrometer that is an embodiment of the present invention
  • FIG. FIG. 2 is an enlarged view of the vicinity of the transfer electrode in the Q-TOF mass spectrometer of the present embodiment
  • FIG. 3 is an enlarged view of the vicinity of part A in FIG. 2
  • FIG. 4 is an explanatory diagram of the configuration of the rear-side fixing member in the Q-TOF mass spectrometer of the present embodiment
  • FIG. 4 is an explanatory diagram of the configuration of the front-side fixing member in the Q-TOF mass spectrometer of the present embodiment
  • FIG. 2 is a plan view of an electrode plate that constitutes a post-stage transfer electrode in the Q-TOF mass spectrometer of the present embodiment
  • FIG. 4 is a diagram showing an example (ideal state) of the relationship between the ion optical axis of the rear-stage transfer electrode and the ion optical axis of the orthogonal acceleration section in the Q-TOF mass spectrometer of the present embodiment;
  • FIG. 4 is a diagram showing an example of the relationship between the ion optical axis of the rear-stage transfer electrode and the ion optical axis of the orthogonal acceleration section in the Q-TOF mass spectrometer of the present embodiment (the axis is tilted).
  • FIG. 4 is a diagram showing an example of the relationship between the ion optical axis of the rear-stage transfer electrode and the ion optical axis of the orthogonal acceleration section in the Q-TOF mass spectrometer of the present embodiment (state with parallel axis deviation).
  • FIG. 1 is an overall configuration diagram of a Q-TOF mass spectrometer according to this embodiment. First, the overall configuration and typical analysis operation of this Q-TOF mass spectrometer will be described.
  • an ionization device 10 having an ionization chamber 100 therein is connected to the front of a vacuum chamber 1 .
  • the interior of the vacuum chamber 1 is roughly divided into four chambers, a first intermediate vacuum chamber 11 , a second intermediate vacuum chamber 12 , a first analysis chamber 13 and a second analysis chamber 14 .
  • the ionization chamber 100 is at substantially atmospheric pressure, and from the ionization chamber 100, the first intermediate vacuum chamber 11, the second intermediate vacuum chamber 12, the first analysis chamber 13, and the second analysis chamber 14 is a configuration of a multi-stage differential pumping system in which the degree of vacuum increases stepwise.
  • vacuum pumps for evacuating each chamber are omitted, but generally, the inside of the first intermediate vacuum chamber 11 is evacuated by a rotary pump, and each chamber after that is evacuated. is evacuated by a turbomolecular pump using a rotary pump as a roughing pump.
  • An electrospray ion (ESI) source 101 is arranged in the ionization chamber 100 to ionize compounds in the sample liquid by atomizing the sample liquid while imparting an electric charge.
  • ESI electrospray ion
  • the ionization technique is not limited to this, and other ion sources such as an atmospheric pressure chemical ion source can also be used.
  • an ion source that ionizes a gas sample or a solid sample instead of a liquid sample may be used.
  • the ionization chamber 100 and the first intermediate vacuum chamber 11 are communicated through a thin desolvation pipe 102 .
  • Ions derived from sample components and minute charged droplets generated in the ionization chamber 100 are mainly desolvated by the difference between the pressure in the ionization chamber 100 (approximately atmospheric pressure) and the pressure in the first intermediate vacuum chamber 11. It is drawn into tube 102 and sent to first intermediate vacuum chamber 11 .
  • the desolvation tube 102 is heated to an appropriate temperature, and the passage of charged droplets through the interior of the desolvation tube 102 accelerates the vaporization of the solvent in the droplets and promotes the generation of ions.
  • a multipole ion guide 111 is arranged in the first intermediate vacuum chamber 11 to focus the ions near the ion optical axis C1 and pass through the top opening of the skimmer 112 to the second intermediate vacuum chamber. It enters the vacuum chamber 12 .
  • a multipole ion guide 121 is also arranged in the second intermediate vacuum chamber 12 , and ions are sent from the second intermediate vacuum chamber 12 to the first analysis chamber 13 by this multipole ion guide 121 .
  • a quadrupole mass filter 131 that separates ions according to their mass-to-charge ratio (m/z)
  • a collision cell 133 equipped with a multipole ion guide 132 inside
  • a part of the front-stage transfer electrode 134 and the rear-stage transfer electrode 141 for transporting the ions is arranged.
  • the front-stage transfer electrode 134 and the rear-stage transfer electrode 141 are collectively referred to as a transfer electrode 140 .
  • Ions incident on the first analysis chamber 13 are introduced into the quadrupole mass filter 131, and only ions having a specific mass-to-charge ratio according to the voltage applied to the quadrupole mass filter 131 pass through the quadrupole mass filter. Go through 131.
  • a collision gas such as argon or nitrogen is supplied to the interior of the collision cell 133 continuously or intermittently. Ions that have a predetermined energy and enter the collision cell 133 come into contact with the collision gas and are dissociated by collision-induced dissociation to generate various product ions.
  • Various product ions emitted from the collision cell 133 are converged by the transfer electrode 140 and sent to the second analysis chamber 14 .
  • the rest of the rear transfer electrode 141, an orthogonal acceleration section 142, an acceleration electrode section 143, a flight tube 144, a reflectron 145, a back plate 146, an ion detector 147, and the like are arranged.
  • the ions introduced into the second analysis chamber 14 as a thin, highly parallel ion stream by the rear-stage transfer electrode 141 are transferred in the orthogonal acceleration section 142 in a direction (Z-axis direction) substantially orthogonal to the incident direction (X-axis direction) of the ion stream. ).
  • the ions emitted from the orthogonal acceleration section 142 in a pulsed manner, that is, as a group of ion packets, are further accelerated by the acceleration electrode section 143 and introduced into the flight space within the flight tube 144 .
  • the flight tube 144, the reflectron 145, and the back plate 146 form an electric field in the flight space that causes the ions to return and fly along the path indicated by C2 in FIG. As a result, the ions fly back through the flight tube 144 again and reach the ion detector 147 .
  • the ions ejected from the orthogonal acceleration section 142 fly at a speed corresponding to the mass-to-charge ratio of the ions. Therefore, various ions that are simultaneously accelerated by the orthogonal acceleration section 142 are separated according to their mass-to-charge ratios during flight, and reach the ion detector 147 with a time lag.
  • the ion detector 147 generates a detection signal according to the amount of ions that have arrived.
  • a data processing unit (not shown) creates a mass spectrum (product ion spectrum) in which the flight time is converted to a mass-to-charge ratio based on the detection signal.
  • FIG. 2 is an enlarged view of the vicinity of the transfer electrode 140 in the Q-TOF mass spectrometer of this embodiment.
  • FIG. 3 is an enlarged view of the vicinity of part A in FIG.
  • FIG. 4(A) is a diagram showing only the fixing member for explaining the configuration of the rear side fixing member, and
  • FIG. 4(B) is a cross-sectional view along the arrow line BB' in FIG. 4(A).
  • FIG. 5 is a cross-sectional view taken along line DD' in FIG. 2 for explaining the configuration of the front fixing member.
  • FIG. 6 is a plan view of each electrode plate that constitutes the post-stage transfer electrode 141.
  • the front-stage transfer electrode 134 includes three electrode plates 1341, 1342, and 1343. These three electrode plates 1341, 1342 and 1343 are fixed to each other with an insulating spacer 1344 interposed therebetween.
  • An electrode plate 1341 positioned on the frontmost side of the front transfer electrode 134 (the side closest to the collision cell 133) is fixed to the collision cell 133 via a spacer 1344, thereby positioning the front transfer electrode 134.
  • the collision cell 133 is fixed to the vacuum chamber 1 via a fixing member (not shown).
  • Each of the three electrode plates 1341, 1342, and 1343 has a circular ion passage opening formed in its center.
  • the diameter of the ion passage aperture of the electrode plate 1342 located in the center along the ion optical axis C1 is larger than the diameter of the ion passage apertures of the electrode plates 1341 and 1343 on both sides thereof.
  • the rear transfer electrode 141 includes four electrode plates 1411, 1412, 1413, and 1414. These four electrode plates 1411, 1412, 1413, and 1414 are also connected with insulating spacers 1415 and 1416 sandwiched between adjacent electrode plates along the ion optical axis C1. A spacer 1415 positioned between the electrode plates 1411, 1412 is annular, and a spacer 1416 positioned between the electrode plates 1412, 1413, 1414 is rod-shaped.
  • the frontmost electrode plate 1411 is placed in the first analysis chamber 13, and the remaining three electrode plates 1412, 1413, and 1414 are placed in the second analysis chamber 14.
  • An annular spacer 1415 that connects the two front electrode plates 1411 and 1412 is positioned inside a flat cylindrical opening provided in a partition ring 165 that separates the first analysis chamber 13 and the second analysis chamber 14 from each other. It has a contour that fits perfectly around the circumference, and a spacer 1415 is inserted into the opening. Therefore, the spacer 1415 is slidable relative to the partition ring 165 in the direction of the ion optical axis C1 (both positive and negative directions of the X axis).
  • the electrode plate 1411 arranged in the first analysis chamber 13 is formed with a circular ion passage aperture having a larger diameter than the ion passage aperture of the electrode plate 1343 positioned in front thereof.
  • each of the three electrode plates 1412, 1413, 1414 arranged in the second analysis chamber 14 is formed with a rectangular ion passage opening (slit).
  • the size of the rectangular ion passage aperture is the smallest in the electrode plate 1412 and increases in order of the electrode plates 1414 and 1413 .
  • the shape of the ion passage aperture corresponds to the shape of the aperture of the ion incident surface of the orthogonal acceleration section 142 located at the subsequent stage.
  • a conductive plate-like base 150 having a rectangular opening in the center is fixed so as to be substantially horizontal.
  • the base 150 is depicted as a separate member from the vacuum chamber 1 in FIG. 2 and the like, the base 150 may be formed integrally with the vacuum chamber 1 .
  • a total of six cylindrical insulating insulators 151 are fixed, three on each side of the opening of the base 150 in the Y-axis direction. ing.
  • a conductive base plate 152 having two ion passage apertures is fixed on top of these six insulators 151 .
  • a conductive positioning plate 153 in the form of a rectangular plate having an ion passing aperture is fixed to the upper surface of the base plate 152 .
  • the rearmost electrode plate 1414 of the rear transfer electrodes 141 is held by a conductive lens holder 161 .
  • This lens holder 161 is fixed to the positioning plate 153 and the base plate 152 via an insulating lens insulator 160 .
  • This fixation is performed by holder fixing screws 155 made of resin, which is an insulating material.
  • the orthogonal acceleration section 142 including the push-out electrode 1421 and the pull-in electrode 1422, and the acceleration electrode section 143 are fixed.
  • An ion detector 147 is fixed above the other opening of the base plate 152 .
  • the acceleration electrode section 143 is configured by alternately stacking acceleration electrodes 1431 and insulating spacers 1432 , and is fixed to the positioning plate 153 together with the orthogonal acceleration section 142 by a plurality of rod-shaped members 154 .
  • a partition wall 164 is provided between the first analysis chamber 13 and the second analysis chamber 14 .
  • the partition wall 164 extends inward from the inner wall surface of the vacuum chamber 1 and includes a conductive extension 163 having a substantially circular planar opening, and is attached to the extension 163 from the second analysis chamber 14 side. and the previously described septum ring 165, which is formed by
  • the vacuum chamber 1 and the extension part 163 are described as separate members, but the extension part 163 may be integrated with the vacuum chamber 1 .
  • a spacer 1415 sandwiched between two electrode plates 1411 and 1412 slides in the direction of the ion optical axis C1 (X-axis direction) on the inner peripheral side of the opening of the partition ring 165. possibly embedded.
  • the outer peripheral portion of the partition ring 165 overlaps with the extending portion 163, and in the annular overlapping portion located on the YZ plane, at four positions at approximately equal angular intervals around the ion optical axis C1, Septum rings 165 are attached to extensions 163 by spacer screws 166 respectively.
  • the spacer screw 166 is screwed into the extension 163 with an O-ring 167 as an elastic member interposed between the flange 1661 and the partition ring 165 .
  • a predetermined gap is formed between the flange 1661 and the partition ring 165 when the threaded portion of the spacer screw 166 is maximally screwed into the threaded hole of the extension 163 .
  • the O-ring 167 is crushed in the gap, and the elastic force of the crushed O-ring 167 presses the partition ring 165 against the extending portion 163 .
  • the diameter of the screw through hole 1651 formed in the partition ring 165 is larger than the outer diameter of the spacer portion 1662 of the spacer screw 166 by a predetermined size. Therefore, between the screw through hole 1651 and the spacer portion 1662, there is play (gap) within a predetermined range in a direction substantially orthogonal to the ion optical axis C1.
  • the partition ring 165 is made of resin (for example, polyacetal (POM) or polytetrafluoroethylene (PTFE)) and the extension 163 is made of metal (for example, aluminum), the coefficient of static friction at the contact surface between them is small. Therefore, when an appropriate amount of force is applied to move (displace) the partition ring 165 in a direction substantially orthogonal to the ion optical axis C1, the partition ring 165 can move in that direction (arrow in FIG. 3). .
  • the electrode plates 1411 and 1412 are slidable within a predetermined range in directions substantially orthogonal to the ion optical axis C1 (both positive and negative directions of the Z axis).
  • the lens holder 161 is fixed to the surface of the partition ring 165 on the second analysis chamber 14 side by a lens holder fixing member 162 fixed to the rear upper part.
  • the mounting position of the lens holder fixing member 162 is indicated by reference numeral 162A.
  • This lens holder fixing member 162 may be an integral member, or may be a combination of a plurality of members. That is, the lens holder 161 is indirectly fixed downward to the vacuum chamber 1 by the holder fixing screw 155 and indirectly fixed to the vacuum chamber 1 via the lens holder fixing member 162 at its upper portion.
  • the Q-TOF mass spectrometer of this embodiment is usually assembled in a factory under a room temperature environment (eg, 25° C.).
  • the temperature of the second analysis chamber 14 is controlled to a predetermined temperature (for example, 42° C.) higher than normal room temperature by a heater (not shown). This is to prevent the distance of the flight paths of ions formed by the flight tube 144 or the like from being affected by fluctuations in the ambient temperature. Therefore, each member arranged in the second analysis chamber 14 expands according to the coefficient of thermal expansion of the material forming each member. Also, when the target temperature for temperature control is changed, or when the temperature changes during transportation of the device, each member expands or contracts according to the coefficient of thermal expansion of the material forming each member.
  • the central axis of the transfer electrode 140 (the front-stage transfer electrode 134 and the rear-stage transfer electrode 141) is aligned between the facing surfaces of the push-out electrode 1421 and the pull-in electrode 1422 of the orthogonal acceleration section 142 with respect to the facing surface. Transfer electrodes 140 are positioned with high accuracy so that they pass in parallel.
  • the central axis of the spacer 1415 arranged to straddle the first analysis chamber 13 and the second analysis chamber 14 with the partition wall 164 interposed therebetween is aligned with the partition ring 165, the extension 163, and a portion of the vacuum chamber 1 (the portion indicated by 1A in FIG. 2; hereinafter, this portion will be referred to as a partial vacuum chamber 1A).
  • the septum ring 165 is fixed by spacer screws 166 to the extension 163 at four positions that are substantially symmetrical about the ion optical axis C1 (except, as noted above,
  • the partition ring 165 is movable within a predetermined range in the YZ plane with respect to the extension 163). Therefore, when the partition ring 165 expands or contracts, the size of the central opening changes, but in principle the central axis does not displace. That is, in the mass spectrometer of the present embodiment, the partition ring 165, the extension 163, and the partial vacuum chamber 1A are included in the front fixing member.
  • the displacement of the ion optical axis C1 means the change in the position of the ion optical axis C1 with respect to the predetermined position 1B as a reference position.
  • the electrode plate 1414 positioned at the rearmost end of the rear transfer electrode 141 is attached to the base 150 fixed to the predetermined position 1B of the vacuum chamber 1 by the lens holder 161, the lens insulator 160, the positioning plate 153, the base plate 152, and fixed via an insulator 151 . That is, in the mass spectrometer of this embodiment, the lens holder 161, the lens insulator 160, the positioning plate 153, the base plate 152, the insulator 151, and the base 150 are included in the rear-side fixing member. is positioned. All of these members included in the rear fixing member are elements (that is, second displacement members) that displace the ion optical axis C1 (C1a) on the electrode plate 1414 by expansion or contraction according to the coefficient of thermal expansion.
  • FIG. 7 is a schematic diagram showing a state in which the ion optical axis C1a of the rear-stage transfer electrode 141 and the ion optical axis C1b of the orthogonal acceleration section 142 are positioned on a straight line.
  • the ion optical axis C1b of the orthogonal acceleration section 142 may be parallel to the facing surfaces of both the push-out electrode and the pull-in electrode included in the orthogonal acceleration section 142, and should be positioned equidistant from both facing surfaces. is not required.
  • the positions of the members are basically adjusted so that the state shown in FIG. 7 is achieved.
  • both the front side fixing member and the rear side fixing member fixing the rear transfer electrode 141 thermally expand in the same direction. is larger than the amount of thermal expansion of the front fixing member.
  • the rear-side electrode plate 1414 of the rear-stage transfer electrode 141 moves more in the negative direction of the Z-axis than the front-side electrode plate 1411 . Therefore, the relationship between the ion optical axis C1a of the rear-stage transfer electrode 141 and the ion optical axis C1b of the orthogonal acceleration section 142 is as shown in FIG.
  • the ion optical axis C1a of the rear-stage transfer electrode 141 is tilted with respect to the ion optical axis C1b of the orthogonal acceleration section 142.
  • the starting position of the ions in the Z-axis direction varies depending on the position in the X-axis direction, and the applied kinetic energy also varies. This reduces mass accuracy and mass resolution.
  • FIG. 8 is an extremely drawn diagram for easy understanding, and actually the inclination of the ion optical axis C1a is so slight that it cannot be visually recognized. Of course, even so, it degrades analytical performance significantly.
  • two measures are taken to reduce the inclination of the ion optical axis C1a as described above.
  • One of the countermeasures is to reduce the difference in the amount of thermal expansion between the front-side fixing member and the rear-side fixing member and reduce the inclination of the ion optical axis C1a itself by appropriately selecting the material of each member. is.
  • Another countermeasure is to make the partition ring 165 slidable within a predetermined range in a direction substantially orthogonal to the ion optical axis C1 (that is, the positive and negative directions of the Z axis), as described above. This is to make the front electrode plates 1411 and 1412 follow the displacement of the rear electrode plate 1414 in the Z-axis direction due to the expansion or contraction of the fixing member, thereby reducing the inclination of the ion optical axis C1a.
  • the vacuum chamber 1 (partial vacuum chamber 1A), lens holder 161, positioning plate 153, base plate 152, and base 150 are made of the same conductive material.
  • aluminum is used as the conductive material.
  • some or all of the conductive members may be made of stainless steel (SUS).
  • the lens insulator 160 is made of a first insulating material having a smaller coefficient of thermal expansion than the conductive material
  • the insulator 151 is made of a second insulating material having a larger coefficient of thermal expansion than the conductive material.
  • the conductive material is aluminum
  • polyether ether ketone (PEEK) resin is used as the second insulating material, and it is one of machinable ceramics with good workability as the first insulating material.
  • Nitride machinable ceramics can be used.
  • Boron nitride for example, can be used as the first insulating material, but machinable ceramics such as nitride-based machinable ceramics and mica-based machinable ceramics are preferably used.
  • machinable ceramics such as nitride-based machinable ceramics and mica-based machinable ceramics are preferably used.
  • Photoveil II registered trademark of Ferrotec Material Technologies Corporation
  • Non-Patent Document 1 can be used as the nitride-based machinable ceramics.
  • both the lens insulator 160 and the insulator 151 are made of a material having a larger coefficient of thermal expansion than the above conductive material. It will happen. Therefore, the amount of thermal expansion in the positive and negative directions of the Z axis (the direction orthogonal to the ion optical axis C1) in the front side fixing member composed only of the aluminum member is larger than that of the aluminum member and the PEEK resin member. The amount of thermal expansion in the same direction of the rear side fixing member composed of is considerably larger. As a result, as shown in FIG. 8, the inclination of the ion optical axis C1a may increase.
  • the lens insulator 160 is not made of PEEK resin, but made of, for example, nitride-based machinable ceramics, which has a smaller coefficient of thermal expansion than the above conductive materials.
  • the length of each member according to the coefficient of thermal expansion with the nitride machinable ceramics are adjusted accordingly.
  • the amount of thermal expansion per unit temperature of the displacement element in the front side fixed member (the sum of the product of the length in the Z-axis direction and the coefficient of thermal expansion of each member included in the displacement element) P1
  • the difference ⁇ P in the thermal expansion amount P1 per unit temperature of the displacement element in the rear fixing member is suppressed to 30% or less of the thermal expansion amount P1.
  • the displacement amount of the front electrode plate 1411 in the Z-axis direction due to the thermal expansion of the front side fixing member and the displacement amount of the rear electrode plate 1414 in the Z-axis direction due to the thermal expansion of the rear side fixing member are the same. For example, even if the temperature differs between when the apparatus is manufactured and when the mass spectrometry is performed, the inclination of the ion optical axis C1a can be reduced.
  • the ion optical axis C1a is unlikely to be irreversibly tilted.
  • the measure In some cases, the inclination of the ion optical axis C1a caused by the expansion/contraction of each member cannot be sufficiently reduced only by the adjustment. Even in such a case, the mass spectrometer of this embodiment can sufficiently reduce the inclination of the ion optical axis C1a by the second countermeasure.
  • Electrode plates 1413 and 1412 which are indirectly fixed to electrode plate 1414 via spacers 1416, are also subjected to force to move in the negative direction of the Z axis. Further, a force is applied to the partition ring 165 through the spacer 1415 fixed to the electrode plate 1412 to move it in the negative direction of the Z axis.
  • the coefficient of static friction at the contact surface between the partition ring 165 and the extending portion 163, which is pressed against the extending portion 163 by the elastic force of the O-ring 167, is small.
  • septum ring 165 moves in the negative Z-axis direction while maintaining contact with extension 163 .
  • the maximum movable amount corresponds to the gap between the screw through-hole 1651 and the spacer portion 1662 .
  • the electrode plates 1411 and 1412 fixed to the spacer 1415 positioned inside the opening of the partition ring 165 also move in the negative direction of the Z axis.
  • the central axis of the rear-stage transfer electrode 141 that is, the ion optical axis C1a
  • the central axis of the rear-stage transfer electrode 141 becomes substantially parallel to the ion optical axis C1b of the orthogonal acceleration section 142, as shown in FIG.
  • the ion optical axis C1a of the rear transfer electrode 141 deviates from the ion optical axis C1b of the orthogonal acceleration section 142
  • the amount of deviation is such that the ion flow sent out from the rear transfer electrode 141 can enter the orthogonal acceleration section 142. Therefore, there is no problem in terms of analytical performance.
  • the partition ring 165 moves only slightly in the above-mentioned second measure.
  • parallelism between the ion optical axis C1a and the ion optical axis C1b can be improved.
  • the range in which the partition ring 165 can move is widened to some extent in the second measure.
  • the mass spectrometer of this embodiment can also solve the following problems.
  • the vacuum chamber 1 starts to be evacuated and when the vacuum is released and the atmosphere is released, the difference between the pressure in the first analysis chamber 13 and the pressure in the second analysis chamber 14 temporarily becomes large. Sometimes. Then, a force corresponding to the pressure difference is applied in the direction along the ion optical axis C1 to the electrode plate 1412 having the smallest ion passage aperture in the rear-stage transfer electrode 141 .
  • the direction of the force at that time differs depending on which of the first analysis chamber 13 and the second analysis chamber 14 has higher pressure.
  • the lens holder fixing member 162 When the pressure inside the first analysis chamber 13 is higher, a rightward force is applied to the electrode plate 1412 in FIG. If the lens holder fixing member 162 were not present, the rear transfer electrode 141 would be rotated clockwise around the rearmost position (right side in FIG. 2) of the contact portion between the lens insulator 160 and the lens holder 161 due to the above force. A rotating moment acts.
  • the lens holder 161 is fixed by a holder fixing screw 155 that penetrates the positioning plate 153 and reaches the base plate 152.
  • the screw 155 is made of resin and generally has an axial force greater than that of a metal screw. small.
  • the lens holder 161 tries to rotate due to a large pressure difference, an excessive force may be applied to the holder fixing screw 155 and the holder fixing screw 155 may be stretched. As a result, the screw 155 may be irreversibly loosened, or the post-stage transfer electrode 141 may be irreversibly displaced.
  • the upper part of the lens holder 161 is fixed to the vacuum chamber 1 by the lens holder fixing member 162 via the partition ring 165 .
  • the direction of this fixation is generally opposite to the direction of action of the force due to the pressure differential as described above, and is the desired direction to resist the force due to the pressure differential. Therefore, even if force due to the pressure difference is applied to the rear-stage transfer electrode 141, the lens holder 161 is unlikely to apply excessive force to the holder fixing screw 155, and the screw 155 can be prevented from stretching.
  • the elastic force of the O-ring 167 presses the partition ring 165 against the extending portion 163 fixed to or part of the vacuum chamber 1 with a predetermined force.
  • other elastic members may be used in place of the O-ring 167 .
  • a member using mechanical expansion/contraction force such as a compression spring, a disc spring, or a spring washer may be used.
  • the spacer screw 166 instead of the spacer screw 166 as a member for crushing the O-ring 167, a combination of a screw and a spacer may be used.
  • the number of members included in the front-side fixing member and the rear-side fixing member for positioning the rear-stage transfer electrode 141 and the type of material of each member are not limited to those described in the above embodiment, and the present invention is not limited to those described in the above embodiment. can be changed as appropriate as long as it satisfies the requirements of
  • the post-stage transfer electrode 141 is configured to include four electrode plates, but the number can be appropriately selected as long as it is two or more.
  • the electrode plate may be thick enough to be said to be a rod electrode, or may be a multipole rod electrode having a structure divided into a plurality of segments along the ion optical axis C1. .
  • a linear ion trap may be used as the orthogonal acceleration section 142 .
  • This linear ion trap may use either rod-shaped electrodes or plate-shaped electrodes.
  • a linear time-of-flight mass separator such as a linear type, a multi-turn type, or a multi-reflection type may be used.
  • the present invention can be applied to general mass spectrometers including orthogonal acceleration time-of-flight mass separators. Therefore, in addition to the Q-TOF mass spectrometer of the above embodiment, for example, a single orthogonal acceleration time-of-flight mass spectrometer, and an ion trap time-of-flight mass spectrometer combining an ion trap and an orthogonal acceleration time-of-flight mass spectrometer.
  • the present invention can also be applied to mass spectrometers and the like.
  • One aspect of the mass spectrometer according to the present invention is a vacuum chamber having an internal space partitioned into a first vacuum chamber and a second vacuum chamber; a plurality of electrode plates each having an ion passage opening disposed across the first and second vacuum chambers and connected via insulating spacers for transporting ions from the first vacuum chamber to the second vacuum chamber; a transfer electrode consisting of an orthogonal acceleration unit disposed in the second vacuum chamber for accelerating ions transported by the transfer electrode in a direction perpendicular to the incident direction; a rear electrode plate for fixing the rear electrode plate positioned in the second vacuum chamber among the plurality of electrode plates to the vacuum chamber at a position spaced apart in a predetermined direction orthogonal to the central axis of the ion passage aperture; a side fixing member; A member for positioning a front electrode plate positioned in the first vacuum chamber among the plurality of electrode plates in the first vacuum chamber, the member extending inward from an inner wall surface of the vacuum chamber.
  • an annular partition member; and an anterior fixation member comprising: Prepare.
  • the orthogonal acceleration time-of-flight mass spectrometer described in item 1 it is possible to reduce the inclination of the ion optical axis of the ion flow incident on the orthogonal acceleration part due to temperature control and temperature change during analysis. .
  • the ion flow incident on the orthogonal acceleration section is kept parallel to the electrodes included in the orthogonal acceleration section, so high analytical performance (mass accuracy, mass resolution, analytical sensitivity) can be achieved.
  • the elastic member may be an O-ring.
  • the elastic member may be a member such as an O-ring, which utilizes the elastic force of the material itself, or a member such as a compression spring, disc spring, or spring washer, which utilizes mechanical expansion and contraction force.
  • a member such as a compression spring, disc spring, or spring washer, which utilizes mechanical expansion and contraction force.
  • one of the partition member and the extension may be made of resin, and the other may be made of metal.
  • the resin a material having a small coefficient of static friction (that is, having good slidability) such as polyacetal resin or polytetrafluoroethylene resin is preferable.
  • the partition member moves smoothly, and the inclination of the ion optical axis can be reduced more reliably.
  • the rear fixing member includes a holder that holds at least the rearmost electrode plate among the plurality of electrodes, A holder fixing member for fixing the holder to the partition member may be further provided.
  • a large difference occurs between the pressure in the first vacuum chamber and the pressure in the second vacuum chamber, and the pressure difference causes the transfer electrode to move.
  • a large force may be applied from the first vacuum chamber side to the second vacuum chamber side. If the holder holding the electrode plate is indirectly fixed to the vacuum chamber by, for example, a screw extending in the predetermined direction, a large force acts on the screw. If screws made of resin are used for electrical insulation, the screws may stretch and become loose, or the holder may rattle.
  • the front-side fixing member displaces the inlet-side central axis of the transfer electrode in a direction opposite to the predetermined direction due to thermal expansion.
  • the rear fixing member includes a second displacement member that displaces the center axis of the transfer electrode on the outlet side in a direction opposite to the predetermined direction due to thermal expansion;
  • the difference between the amount of thermal expansion per unit temperature of the first displacement member and the amount of thermal expansion per unit temperature of the second displacement member is 30% or less of the amount of thermal expansion of the first displacement member. be able to.
  • the partition member slides with respect to the extension. Even if the movable range is small, the inclination of the ion optical axis in the transfer electrode can be suppressed more reliably.
  • the second displacement member includes a first insulation member made of a first insulating material and a second insulation member made of a second insulating material. and a conductive member made of a conductive material, wherein the coefficient of thermal expansion of the first insulating material is smaller than the coefficient of thermal expansion of the conductive member, and the coefficient of thermal expansion of the second insulating material is the above. It can be greater than the coefficient of thermal expansion of the conductive member.
  • the rear side fixing member comprises one or more conductive members and a plurality of insulating members each made of an insulating material having a different coefficient of thermal expansion. Since it is included as a displacement member, by appropriately selecting the coefficient of thermal expansion and dimensions of each member, it becomes easy to satisfy the requirements for the amount of thermal expansion in the device described in item 6.
  • the first insulating material may be machinable ceramics.
  • the rear side fixing member can be manufactured more easily and with high accuracy. be able to.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

An embodiment of the mass spectrometer according to the present invention comprises: a vacuum chamber(1) which has an internal space divided into a first vacuum chamber (13) and a second vacuum chamber (14); a transfer electrode (141) which is made from multiple electrode plates arranged across both of the vacuum chambers so as to transfer ions from the first vacuum chamber to the second vacuum chamber, linked together via insulating spacers, and each having an ion-passing hole; an orthogonal acceleration part (142) which is disposed inside the second vacuum chamber and accelerates the ions transferred by the transfer electrode in a direction orthogonal to the incident direction of the ions; a rear-side fixing member (150 to 153, 160, 161) which is for fixing a rear-side electrode plate, that is, an electrode plate positioned inside the second vacuum chamber among the multiple electrode plates, to the vacuum chamber at a position distant in a predetermined direction orthogonal to a central axis of the ion-passing hole of the rear-side electrode plate; and a front-side fixing member which is for positioning a front-side electrode plate, that is, an electrode plate positioned inside the first vacuum chamber among the multiple electrode plates, inside the first vacuum chamber, and which includes a projection part (163) disposed so as to project inward from an inner wall surface of the vacuum chamber and an annular partition wall member (165) which holds the spacer (1415) fixed to the front-side electrode plate and is attached in a slidable manner with respect to the projection part in a direction opposite to the predetermined direction within a predetermined range.

Description

直交加速飛行時間型質量分析装置Orthogonal acceleration time-of-flight mass spectrometer
 本発明は、直交加速飛行時間型質量分析装置に関する。 The present invention relates to an orthogonal acceleration time-of-flight mass spectrometer.
 飛行時間型質量分析装置の一つの方式として、直交加速飛行時間型質量分析装置(Orthogonal Acceleration Time-of-Flight Mass Spectrometer)が知られている。特許文献1、2には、直交加速飛行時間型質量分析装置を2段目の質量分析器として用いた、四重極-飛行時間(Q-TOF)型質量分析装置が開示されている。この種の質量分析装置では、比較的高い真空度の第1分析室内に1段目の質量分析器である四重極マスフィルターとコリジョンセルとが配置され、第1分析室よりもさらに真空度が高い第2分析室内に、直交加速部、フライトチューブ及び検出器を含む直交加速飛行時間型質量分析部が配置されている。第1分析室から第2分析室へとイオンを効率的に輸送するために、その両分析室に跨るようにトランスファー電極が配置されている。 Orthogonal Acceleration Time-of-Flight Mass Spectrometer is known as one type of time-of-flight mass spectrometer. Patent Documents 1 and 2 disclose a quadrupole-time-of-flight (Q-TOF) mass spectrometer using an orthogonal acceleration time-of-flight mass spectrometer as a second-stage mass spectrometer. In this type of mass spectrometer, a quadrupole mass filter as a first-stage mass spectrometer and a collision cell are arranged in a first analysis chamber with a relatively high degree of vacuum. An orthogonal acceleration time-of-flight mass spectrometer including an orthogonal accelerator, a flight tube and a detector is located in a second analysis chamber with a high . In order to efficiently transport ions from the first analysis chamber to the second analysis chamber, a transfer electrode is arranged across both analysis chambers.
 特許文献1に記載の装置では、トランスファー電極(該文献1では後段側イオンレンズ)は、絶縁性のスペーサーを介して4枚の電極板を中心軸方向に連結した構造を有し、コリジョンセルに最も近い位置にある1枚の電極板(以下の説明では、コリジョンセル側を前方、直交加速部側を後方とする)は第1分析室内に、その後方に位置する3枚の電極板は第2分析室内に配置される。各電極板にはそれぞれ所定の電圧が印加され、それら電極板で囲まれる空間には所定の電場が形成される。イオンはこの電場を通過して直交加速部へと案内される。直交加速部には、トランスファー電極を経て入射して来るイオンをその入射方向に略直交する方向に加速するパルス状の電場が形成される。直交加速部で加速されたイオンはフライトチューブ内の飛行空間へと導かれ、該飛行空間内を飛行したあと検出器に到達して検出される。 In the device described in Patent Document 1, the transfer electrode (the rear-stage ion lens in Patent Document 1) has a structure in which four electrode plates are connected in the central axis direction via insulating spacers, and is attached to the collision cell. One electrode plate at the closest position (in the following explanation, the collision cell side is the front and the orthogonal acceleration unit side is the rear) is in the first analysis chamber, and the three electrode plates behind it are in the first analysis chamber. 2 are placed in the analysis chamber. A predetermined voltage is applied to each electrode plate, and a predetermined electric field is formed in the space surrounded by the electrode plates. Ions are guided through this electric field to the orthogonal accelerator. A pulsed electric field is formed in the orthogonal acceleration section to accelerate ions incident through the transfer electrode in a direction substantially orthogonal to the incident direction. The ions accelerated by the orthogonal acceleration section are guided to the flight space in the flight tube, and after flying in the flight space reach the detector and are detected.
 この種の質量分析装置において質量精度、質量分解能等の分析性能を向上させるには、直交加速部に入射するイオン流の直交加速方向の位置広がり(ばらつき)と速度広がりをできるだけ小さくすることが重要である。即ち、直交加速部に入射するイオン流をできるだけ細く且つ直交加速部の加速電極(押出し電極及び引込み電極)に対して平行に保つことが重要である。トランスファー電極は、直交加速部に入射するイオン流が細く平行になるように整形する機能を有する。 In order to improve the analysis performance such as mass accuracy and mass resolution in this type of mass spectrometer, it is important to minimize the position spread (dispersion) and velocity spread in the orthogonal acceleration direction of the ion flow incident on the orthogonal acceleration unit. is. That is, it is important to keep the ion flow incident on the orthogonal acceleration section as thin as possible and parallel to the acceleration electrodes (extrusion electrode and pull-in electrode) of the orthogonal acceleration section. The transfer electrode has a function of shaping the ion flow incident on the orthogonal acceleration section so that it becomes thin and parallel.
国際公開第2019/220554号WO2019/220554 国際公開第2019/229864号WO2019/229864
 特許文献1に記載の質量分析装置では、トランスファー電極の最も後方(直交加速部に最も近い位置)にある電極板は絶縁部材を介してベースプレートに固定され、直交加速部も同じベースプレートに固定されている。また、トランスファー電極の前方から2番目の電極板は、シール部材を介して、第1分析室と第2分析室とを隔てる隔壁部材に固定されている。 In the mass spectrometer described in Patent Document 1, the electrode plate located at the rearmost position of the transfer electrode (the position closest to the orthogonal acceleration section) is fixed to the base plate via an insulating member, and the orthogonal acceleration section is also fixed to the same base plate. there is Also, the second electrode plate from the front of the transfer electrode is fixed to a partition member separating the first analysis chamber and the second analysis chamber via a seal member.
 この種の質量分析装置では、フライトチューブが熱膨張することによる飛行距離の変化を防止するために、第2分析室内が一般的な部屋の室温よりも高い適宜の温度(一例としては42℃)に加熱され温調されるようになっている。このように第2分析室内の温度が通常の室温から上昇すると、トランスファー電極の後方側電極板を固定している絶縁部材が熱膨張し、該電極板がその中心軸とほぼ直交する方向に変位するおそれがある。トランスファー電極の前方から2番目の電極板はOリング等のシール部材を介して隔壁部材に固定されているが、そのシール部材の圧縮の程度によって該シール部材と電極板との間の摩擦力はかなりばらつく。この摩擦力が大きいと、後方側電極板が変位したとしても前方側電極板が追従しにくい。そうなると、トランスファー電極の中心軸が、直交加速部において互いに平行である押出し電極と引込み電極との間の中心軸に対して傾いてしまい、分析性能の低下に繋がるおそれがある。 In this type of mass spectrometer, in order to prevent changes in the flight distance due to thermal expansion of the flight tube, the inside of the second analysis chamber is heated to an appropriate temperature (eg, 42°C) higher than the room temperature of a general room. It is designed to be heated and temperature controlled. When the temperature in the second analysis chamber rises from normal room temperature in this way, the insulating member fixing the rear electrode plate of the transfer electrode thermally expands, displacing the electrode plate in a direction substantially perpendicular to its central axis. There is a risk of The second electrode plate from the front of the transfer electrode is fixed to the partition member via a sealing member such as an O-ring. It fluctuates considerably. If this frictional force is large, even if the rear electrode plate is displaced, it is difficult for the front electrode plate to follow the displacement. As a result, the central axis of the transfer electrode is tilted with respect to the central axis between the push-out electrode and the pull-in electrode that are parallel to each other in the orthogonal acceleration section, which may lead to deterioration in analytical performance.
 また、分析時ではなく、装置の輸送時に同様の不具合が発生する場合もある。即ち、この種の質量分析装置を工場から海外の納品先に輸送する際には船便又は航空便が用いられるが、それらに搭載されるコンテナの内部の温度は5℃~50℃程度の広い範囲で変化し得る。輸送行程で生じるこうした温度変化によって各部材が膨張又は収縮して部材間の固定位置が不可逆に変化した場合にも、上記と同様に、トランスファー電極の中心軸の傾きが生じ、分析性能の低下をもたらす可能性がある。 In addition, similar problems may occur during transportation of the equipment, not during analysis. That is, when transporting this type of mass spectrometer from a factory to an overseas delivery destination, sea freight or air freight is used, and the temperature inside the container mounted thereon is in a wide range of about 5°C to 50°C. can change with Even if each member expands or contracts due to such temperature changes that occur during the transportation process, and the fixed positions between the members change irreversibly, the central axis of the transfer electrode will tilt in the same manner as described above, resulting in a decrease in analytical performance. may bring about.
 本発明は上記課題を解決するためになされたものであり、その目的とするところは、分析時の温調や温度変化に起因する、直交加速部に入射するイオン流の光軸の傾きを抑制し、高い分析性能を確保することができる直交加速飛行時間型質量分析装置を提供することである。 The present invention has been made to solve the above problems, and its object is to suppress the inclination of the optical axis of the ion flow incident on the orthogonal acceleration unit due to temperature control and temperature change during analysis. It is an object of the present invention to provide an orthogonal acceleration time-of-flight mass spectrometer capable of securing high analytical performance.
 上記課題を解決するために成された本発明に係る直交加速飛行時間型質量分析装置の一態様は、
 内部空間が第1真空室と第2真空室とに区画された真空チャンバーと、
 前記第1真空室から前記第2真空室へとイオンを輸送するべく該両真空室に跨るように配置され、絶縁性のスペーサーを介して連結された、それぞれイオン通過開口を有する複数の電極板から成るトランスファー電極と、
 前記第2真空室内に配置され、前記トランスファー電極により輸送されて来たイオンをその入射方向に直交する方向に加速する直交加速部と、
 前記複数の電極板のうちの前記第2真空室内に位置する後方側電極板を、そのイオン通過開口の中心軸と直交する所定の方向に離れた位置において前記真空チャンバーに対し固定するための後方側固定部材と、
 前記複数の電極板のうちの前記第1真空室内に位置する前方側電極板を該第1真空室内で位置決めするための部材であって、前記真空チャンバーの内壁面に内側に延出するように設けられた延出部と、前記前方側電極板に固定された前記スペーサーを保持し、前記延出部に対し前記所定の方向と逆の方向に所定の範囲でスライド移動可能に取り付けられている環状の隔壁部材と、を含む前方側固定部材と、
 を備える。
One aspect of the orthogonal acceleration time-of-flight mass spectrometer according to the present invention, which has been made to solve the above problems,
a vacuum chamber having an internal space partitioned into a first vacuum chamber and a second vacuum chamber;
a plurality of electrode plates each having an ion passage opening disposed across the first and second vacuum chambers and connected via insulating spacers for transporting ions from the first vacuum chamber to the second vacuum chamber; a transfer electrode consisting of
an orthogonal acceleration unit disposed in the second vacuum chamber for accelerating ions transported by the transfer electrode in a direction perpendicular to the incident direction;
a rear electrode plate for fixing the rear electrode plate positioned in the second vacuum chamber among the plurality of electrode plates to the vacuum chamber at a position spaced apart in a predetermined direction orthogonal to the central axis of the ion passage aperture; a side fixing member;
A member for positioning a front electrode plate positioned in the first vacuum chamber among the plurality of electrode plates in the first vacuum chamber, the member extending inward from an inner wall surface of the vacuum chamber. It holds the provided extending portion and the spacer fixed to the front electrode plate, and is attached to the extending portion so as to be slidable within a predetermined range in a direction opposite to the predetermined direction. an annular partition member; and an anterior fixation member comprising:
Prepare.
 本発明に係る直交加速飛行時間型質量分析装置では、例えば分析時に真空チャンバーの内部が室温よりも高い所定温度に加熱されると、後方側固定部材が熱膨張し、そのために後方側電極板が前記所定の方向と逆の方向に移動する場合がある。スペーサーを介して前方側電極板を保持している隔壁部材は、延出部に対して前記逆の方向に所定の範囲でスライド移動可能であるため、上述のような後方側電極板の移動に追従して前方側電極板も同方向に移動する。そのため、トランスファー電極の中心軸は上記熱膨張によって平行に移動するだけであって、直交加速部への理想的なイオン入射の軸に対する傾きは軽減される。 In the orthogonal acceleration time-of-flight mass spectrometer according to the present invention, for example, when the inside of the vacuum chamber is heated to a predetermined temperature higher than room temperature during analysis, the rear side fixing member thermally expands, and as a result, the rear side electrode plate expands. It may move in a direction opposite to the predetermined direction. Since the partition member holding the front electrode plate via the spacer is slidable within a predetermined range in the opposite direction with respect to the extending portion, it is possible to move the rear electrode plate as described above. Following this, the front electrode plate also moves in the same direction. Therefore, the central axis of the transfer electrode is only moved in parallel due to the thermal expansion, and the inclination with respect to the axis of ideal ion incidence to the orthogonal acceleration section is reduced.
 このように、本発明に係る直交加速飛行時間型質量分析装置によれば、分析時の温調や温度変化に起因する、直交加速部に入射するイオン流のイオン光軸の傾きを軽減することができる。それにより、直交加速部に入射するイオン流が該直交加速部に含まれる電極と平行に保たれるので、高い分析性能を達成することができる。 Thus, according to the orthogonal acceleration time-of-flight mass spectrometer according to the present invention, it is possible to reduce the tilt of the ion optical axis of the ion flow incident on the orthogonal acceleration part due to temperature control and temperature change during analysis. can be done. As a result, the ion current incident on the orthogonal acceleration section is kept parallel to the electrodes included in the orthogonal acceleration section, so high analytical performance can be achieved.
本発明の一実施形態であるQ-TOF型質量分析装置の全体構成図。1 is an overall configuration diagram of a Q-TOF mass spectrometer that is an embodiment of the present invention; FIG. 本実施形態のQ-TOF型質量分析装置におけるトランスファー電極の近傍の拡大図。FIG. 2 is an enlarged view of the vicinity of the transfer electrode in the Q-TOF mass spectrometer of the present embodiment; 図2中のA部付近の拡大図。FIG. 3 is an enlarged view of the vicinity of part A in FIG. 2; 本実施形態のQ-TOF型質量分析装置における後方側固定部材の構成の説明図。FIG. 4 is an explanatory diagram of the configuration of the rear-side fixing member in the Q-TOF mass spectrometer of the present embodiment; 本実施形態のQ-TOF型質量分析装置における前方側固定部材の構成の説明図。FIG. 4 is an explanatory diagram of the configuration of the front-side fixing member in the Q-TOF mass spectrometer of the present embodiment; 本実施形態のQ-TOF型質量分析装置における後段トランスファー電極を構成する電極板の平面図。FIG. 2 is a plan view of an electrode plate that constitutes a post-stage transfer electrode in the Q-TOF mass spectrometer of the present embodiment; 本実施形態のQ-TOF型質量分析装置における後段トランスファー電極のイオン光軸と直交加速部のイオン光軸との関係の一例(理想的な状態)を示す図。FIG. 4 is a diagram showing an example (ideal state) of the relationship between the ion optical axis of the rear-stage transfer electrode and the ion optical axis of the orthogonal acceleration section in the Q-TOF mass spectrometer of the present embodiment; 本実施形態のQ-TOF型質量分析装置における後段トランスファー電極のイオン光軸と直交加速部のイオン光軸との関係の一例(軸の傾きがある状態)を示す図。FIG. 4 is a diagram showing an example of the relationship between the ion optical axis of the rear-stage transfer electrode and the ion optical axis of the orthogonal acceleration section in the Q-TOF mass spectrometer of the present embodiment (the axis is tilted). 本実施形態のQ-TOF型質量分析装置における後段トランスファー電極のイオン光軸と直交加速部のイオン光軸との関係の一例(平行な軸ずれがある状態)を示す図。FIG. 4 is a diagram showing an example of the relationship between the ion optical axis of the rear-stage transfer electrode and the ion optical axis of the orthogonal acceleration section in the Q-TOF mass spectrometer of the present embodiment (state with parallel axis deviation).
 以下、本発明の一実施形態であるQ-TOF型質量分析装置について、添付図面を参照して詳述する。
 図1は、本実施形態のQ-TOF型質量分析装置の全体構成図である。まず、このQ-TOF型質量分析装置の全体構成と典型的な分析動作について説明する。
A Q-TOF mass spectrometer according to one embodiment of the present invention will be described in detail below with reference to the accompanying drawings.
FIG. 1 is an overall configuration diagram of a Q-TOF mass spectrometer according to this embodiment. First, the overall configuration and typical analysis operation of this Q-TOF mass spectrometer will be described.
  [Q-TOF型質量分析装置の構成及び動作]
 このQ-TOF型質量分析装置では、その内部にイオン化室100が設けられたイオン化装置10が真空チャンバー1の前方に接続されている。この真空チャンバー1内は、第1中間真空室11、第2中間真空室12、第1分析室13、及び第2分析室14、の4室に概ね区画されている。このQ-TOF型質量分析装置において、イオン化室100は略大気圧であり、イオン化室100から、第1中間真空室11、第2中間真空室12、第1分析室13、及び第2分析室14と順に、段階的に真空度が高くなる多段差動排気系の構成である。なお、図1では、各室内の真空排気を行う真空ポンプについては記載を省略しているが、一般的には、第1中間真空室11内はロータリーポンプにより真空排気され、それ以降の各室内は粗引きポンプとしてロータリーポンプを用いたターボ分子ポンプにより真空排気される。
[Configuration and operation of Q-TOF mass spectrometer]
In this Q-TOF mass spectrometer, an ionization device 10 having an ionization chamber 100 therein is connected to the front of a vacuum chamber 1 . The interior of the vacuum chamber 1 is roughly divided into four chambers, a first intermediate vacuum chamber 11 , a second intermediate vacuum chamber 12 , a first analysis chamber 13 and a second analysis chamber 14 . In this Q-TOF mass spectrometer, the ionization chamber 100 is at substantially atmospheric pressure, and from the ionization chamber 100, the first intermediate vacuum chamber 11, the second intermediate vacuum chamber 12, the first analysis chamber 13, and the second analysis chamber 14 is a configuration of a multi-stage differential pumping system in which the degree of vacuum increases stepwise. In FIG. 1, vacuum pumps for evacuating each chamber are omitted, but generally, the inside of the first intermediate vacuum chamber 11 is evacuated by a rotary pump, and each chamber after that is evacuated. is evacuated by a turbomolecular pump using a rotary pump as a roughing pump.
 イオン化室100には、試料液に電荷を付与しつつ噴霧することにより該試料液中の化合物をイオン化するエレクトロスプレーイオン(ESI)源101が配置されている。但し、イオン化の手法はこれに限らず、大気圧化学イオン源などの他のイオン源を用いることもできる。また、液体試料ではなく、気体試料や固体試料をイオン化するイオン源を用いてもよい。 An electrospray ion (ESI) source 101 is arranged in the ionization chamber 100 to ionize compounds in the sample liquid by atomizing the sample liquid while imparting an electric charge. However, the ionization technique is not limited to this, and other ion sources such as an atmospheric pressure chemical ion source can also be used. Also, an ion source that ionizes a gas sample or a solid sample instead of a liquid sample may be used.
 イオン化室100と第1中間真空室11とは細径の脱溶媒管102を通して連通している。イオン化室100で生成された試料成分由来のイオン及び微細な帯電液滴は、主として、イオン化室100内の圧力(略大気圧)と第1中間真空室11内の圧力との差によって、脱溶媒管102中に引き込まれ第1中間真空室11に送られる。脱溶媒管102は適度な温度に加熱されており、脱溶媒管102の内部を帯電液滴が通ることによって該液滴中の溶媒の気化が促進され、イオンの生成が促される。 The ionization chamber 100 and the first intermediate vacuum chamber 11 are communicated through a thin desolvation pipe 102 . Ions derived from sample components and minute charged droplets generated in the ionization chamber 100 are mainly desolvated by the difference between the pressure in the ionization chamber 100 (approximately atmospheric pressure) and the pressure in the first intermediate vacuum chamber 11. It is drawn into tube 102 and sent to first intermediate vacuum chamber 11 . The desolvation tube 102 is heated to an appropriate temperature, and the passage of charged droplets through the interior of the desolvation tube 102 accelerates the vaporization of the solvent in the droplets and promotes the generation of ions.
 第1中間真空室11には多重極イオンガイド111が配置されており、該多重極イオンガイド111によってイオンはイオン光軸C1の近傍に収束され、スキマー112の頂部の開口を通って第2中間真空室12に入射する。第2中間真空室12にも多重極イオンガイド121が配置されており、この多重極イオンガイド121によってイオンは第2中間真空室12から第1分析室13へと送られる。 A multipole ion guide 111 is arranged in the first intermediate vacuum chamber 11 to focus the ions near the ion optical axis C1 and pass through the top opening of the skimmer 112 to the second intermediate vacuum chamber. It enters the vacuum chamber 12 . A multipole ion guide 121 is also arranged in the second intermediate vacuum chamber 12 , and ions are sent from the second intermediate vacuum chamber 12 to the first analysis chamber 13 by this multipole ion guide 121 .
 第1分析室13には、イオンを質量電荷比(m/z)に応じて分離する四重極マスフィルター131、多重極イオンガイド132を内部に備えたコリジョンセル133、コリジョンセル133から出射されたイオンを輸送する前段トランスファー電極134と後段トランスファー電極141の一部が配置されている。前段トランスファー電極134と後段トランスファー電極141とを合わせてトランスファー電極140という。 In the first analysis chamber 13, a quadrupole mass filter 131 that separates ions according to their mass-to-charge ratio (m/z), a collision cell 133 equipped with a multipole ion guide 132 inside, and A part of the front-stage transfer electrode 134 and the rear-stage transfer electrode 141 for transporting the ions is arranged. The front-stage transfer electrode 134 and the rear-stage transfer electrode 141 are collectively referred to as a transfer electrode 140 .
 第1分析室13に入射したイオンは四重極マスフィルター131に導入され、四重極マスフィルター131に印加されている電圧に応じた特定の質量電荷比を有するイオンのみが四重極マスフィルター131を通り抜ける。コリジョンセル133の内部には、アルゴン、窒素などのコリジョンガスが連続的又は間欠的に供給される。所定のエネルギーを有してコリジョンセル133に入射したイオンは、コリジョンガスに接触して衝突誘起解離により解離され、各種のプロダクトイオンが生成される。 Ions incident on the first analysis chamber 13 are introduced into the quadrupole mass filter 131, and only ions having a specific mass-to-charge ratio according to the voltage applied to the quadrupole mass filter 131 pass through the quadrupole mass filter. Go through 131. A collision gas such as argon or nitrogen is supplied to the interior of the collision cell 133 continuously or intermittently. Ions that have a predetermined energy and enter the collision cell 133 come into contact with the collision gas and are dissociated by collision-induced dissociation to generate various product ions.
 コリジョンセル133から出射した各種のプロダクトイオンは、トランスファー電極140により収束されつつ第2分析室14に送られる。第2分析室14には、後段トランスファー電極141の残りの部分、直交加速部142、加速電極部143、フライトチューブ144、リフレクトロン145、バックプレート146、イオン検出器147などが配置されている。後段トランスファー電極141によって細く平行性の高いイオン流として第2分析室14に導入されたイオンは、直交加速部142においてそのイオン流の入射方向(X軸方向)と略直交する方向(Z軸方向)に射出される。 Various product ions emitted from the collision cell 133 are converged by the transfer electrode 140 and sent to the second analysis chamber 14 . In the second analysis chamber 14, the rest of the rear transfer electrode 141, an orthogonal acceleration section 142, an acceleration electrode section 143, a flight tube 144, a reflectron 145, a back plate 146, an ion detector 147, and the like are arranged. The ions introduced into the second analysis chamber 14 as a thin, highly parallel ion stream by the rear-stage transfer electrode 141 are transferred in the orthogonal acceleration section 142 in a direction (Z-axis direction) substantially orthogonal to the incident direction (X-axis direction) of the ion stream. ).
 直交加速部142からパルス的に、つまりひとかたまりのイオンパケットとして射出されたイオンは、加速電極部143でさらに加速されてフライトチューブ144内の飛行空間に導入される。フライトチューブ144、リフレクトロン145、及びバックプレート146によって、飛行空間内には、図1中にC2で示すような経路でイオンを折り返し飛行させる電場が形成さる。これによって、イオンは折り返されたあと再びフライトチューブ144内を飛行し、イオン検出器147に到達する。 The ions emitted from the orthogonal acceleration section 142 in a pulsed manner, that is, as a group of ion packets, are further accelerated by the acceleration electrode section 143 and introduced into the flight space within the flight tube 144 . The flight tube 144, the reflectron 145, and the back plate 146 form an electric field in the flight space that causes the ions to return and fly along the path indicated by C2 in FIG. As a result, the ions fly back through the flight tube 144 again and reach the ion detector 147 .
 直交加速部142から射出されたイオンは、そのイオンの質量電荷比に応じた速度で飛行する。そのため、直交加速部142において同時に加速された各種のイオンは、飛行途中で質量電荷比に応じて分離され、時間差を有してイオン検出器147に到達する。イオン検出器147は、到達したイオンの量に応じた検出信号を生成する。図示しないデータ処理部は、その検出信号に基いて、飛行時間を質量電荷比に換算したマススペクトル(プロダクトイオンスペクトル)を作成する。 The ions ejected from the orthogonal acceleration section 142 fly at a speed corresponding to the mass-to-charge ratio of the ions. Therefore, various ions that are simultaneously accelerated by the orthogonal acceleration section 142 are separated according to their mass-to-charge ratios during flight, and reach the ion detector 147 with a time lag. The ion detector 147 generates a detection signal according to the amount of ions that have arrived. A data processing unit (not shown) creates a mass spectrum (product ion spectrum) in which the flight time is converted to a mass-to-charge ratio based on the detection signal.
  [トランスファー電極及び直交加速部の詳細な構成]
 次に、本実施形態のQ-TOF型質量分析装置における、トランスファー電極140、直交加速部142、及び加速電極部143の構成について、図1に加え、図2~図6を参照して説明する。図2は、本実施形態のQ-TOF型質量分析装置におけるトランスファー電極140の近傍の拡大図である。図3は、図2中のA部付近の拡大図である。図4(A)は、後方側固定部材の構成を説明するために該固定部材のみを描いた図であり、図4(B)は図4(A)中の矢視線B-B’断面図である。図5は、前方側固定部材の構成を説明するための図2中の矢視線D-D’断面図である。図6は、後段トランスファー電極141を構成する各電極板の平面図である。
[Detailed Configuration of Transfer Electrode and Orthogonal Acceleration Section]
Next, the configurations of the transfer electrode 140, the orthogonal acceleration section 142, and the acceleration electrode section 143 in the Q-TOF mass spectrometer of this embodiment will be described with reference to FIGS. 2 to 6 in addition to FIG. . FIG. 2 is an enlarged view of the vicinity of the transfer electrode 140 in the Q-TOF mass spectrometer of this embodiment. FIG. 3 is an enlarged view of the vicinity of part A in FIG. FIG. 4(A) is a diagram showing only the fixing member for explaining the configuration of the rear side fixing member, and FIG. 4(B) is a cross-sectional view along the arrow line BB' in FIG. 4(A). is. FIG. 5 is a cross-sectional view taken along line DD' in FIG. 2 for explaining the configuration of the front fixing member. FIG. 6 is a plan view of each electrode plate that constitutes the post-stage transfer electrode 141. FIG.
 図2に示すように、前段トランスファー電極134は、3枚の電極板1341、1342、1343を含む。これら3枚の電極板1341、1342、1343は、間に絶縁性のスペーサー1344を挟んで相互に固定されている。前段トランスファー電極134の最前方側(コリジョンセル133に最も近い側)に位置する電極板1341はスペーサー1344を介してコリジョンセル133に固定されており、これによって前段トランスファー電極134は位置決めされている。コリジョンセル133は、図示しない固定部材を介して真空チャンバー1に固定されている。 As shown in FIG. 2, the front-stage transfer electrode 134 includes three electrode plates 1341, 1342, and 1343. These three electrode plates 1341, 1342 and 1343 are fixed to each other with an insulating spacer 1344 interposed therebetween. An electrode plate 1341 positioned on the frontmost side of the front transfer electrode 134 (the side closest to the collision cell 133) is fixed to the collision cell 133 via a spacer 1344, thereby positioning the front transfer electrode 134. FIG. The collision cell 133 is fixed to the vacuum chamber 1 via a fixing member (not shown).
 3枚の電極板1341、1342、1343にはそれぞれ中央に、円形状のイオン通過開口が形成されている。イオン光軸C1に沿って中央に位置する電極板1342のイオン通過開口の径は、その両側の電極板1341、1343のイオン通過開口の径よりも大きくなっている。 Each of the three electrode plates 1341, 1342, and 1343 has a circular ion passage opening formed in its center. The diameter of the ion passage aperture of the electrode plate 1342 located in the center along the ion optical axis C1 is larger than the diameter of the ion passage apertures of the electrode plates 1341 and 1343 on both sides thereof.
 一方、図2に示すように、後段トランスファー電極141は、4枚の電極板1411、1412、1413、1414を含む。これら4枚の電極板1411、1412、1413、1414もそれぞれ、イオン光軸C1に沿って隣接する電極板の間に絶縁性のスペーサー1415、1416を挟んで連結されている。電極板1411、1412の間に位置するスペーサー1415は円環状であり、電極板1412、1413、1414の間に位置するスペーサー1416はロッド状である。 On the other hand, as shown in FIG. 2, the rear transfer electrode 141 includes four electrode plates 1411, 1412, 1413, and 1414. These four electrode plates 1411, 1412, 1413, and 1414 are also connected with insulating spacers 1415 and 1416 sandwiched between adjacent electrode plates along the ion optical axis C1. A spacer 1415 positioned between the electrode plates 1411, 1412 is annular, and a spacer 1416 positioned between the electrode plates 1412, 1413, 1414 is rod-shaped.
 最前方に位置する電極板1411は第1分析室13内に配置され、残りの3枚の電極板1412、1413、1414は第2分析室14内に配置されている。前方側の2枚の電極板1411、1412を連結する円環状のスペーサー1415は、第1分析室13と第2分析室14とを区画する隔壁リング165に設けられた偏平円筒状の開口の内周にちょうど嵌る外形を有しており、スペーサー1415は該開口に挿入されている。したがって、スペーサー1415は隔壁リング165に対してイオン光軸C1の方向(X軸の正負両方向)に摺動可能である。 The frontmost electrode plate 1411 is placed in the first analysis chamber 13, and the remaining three electrode plates 1412, 1413, and 1414 are placed in the second analysis chamber 14. An annular spacer 1415 that connects the two front electrode plates 1411 and 1412 is positioned inside a flat cylindrical opening provided in a partition ring 165 that separates the first analysis chamber 13 and the second analysis chamber 14 from each other. It has a contour that fits perfectly around the circumference, and a spacer 1415 is inserted into the opening. Therefore, the spacer 1415 is slidable relative to the partition ring 165 in the direction of the ion optical axis C1 (both positive and negative directions of the X axis).
 第1分析室13内に配置される電極板1411には、さらにその前方に位置する電極板1343のイオン通過開口よりも大きな径である円形のイオン通過開口が形成されている。他方、第2分析室14内に配置される3枚の電極板1412、1413、1414にはそれぞれ、矩形状のイオン通過開口(スリット)が形成されている。図6に示すように、矩形状のイオン通過開口の大きさは、電極板1412が最も小さく、電極板1414、1413の順に大きくなっている。そのイオン通過開口の形状は、その後段に位置する直交加速部142のイオン入射面の開口の形状に対応している。 The electrode plate 1411 arranged in the first analysis chamber 13 is formed with a circular ion passage aperture having a larger diameter than the ion passage aperture of the electrode plate 1343 positioned in front thereof. On the other hand, each of the three electrode plates 1412, 1413, 1414 arranged in the second analysis chamber 14 is formed with a rectangular ion passage opening (slit). As shown in FIG. 6, the size of the rectangular ion passage aperture is the smallest in the electrode plate 1412 and increases in order of the electrode plates 1414 and 1413 . The shape of the ion passage aperture corresponds to the shape of the aperture of the ion incident surface of the orthogonal acceleration section 142 located at the subsequent stage.
 第2分析室14内の真空チャンバー1の側壁の所定位置1Bには、中央に長方形の開口が形成された、導電性である板状の基台150が略水平になるように固定されている。図2等では、この基台150を真空チャンバー1とは別の部材として描いているが、基台150は真空チャンバー1と一体に形成されていてもよい。 At a predetermined position 1B on the side wall of the vacuum chamber 1 in the second analysis chamber 14, a conductive plate-like base 150 having a rectangular opening in the center is fixed so as to be substantially horizontal. . Although the base 150 is depicted as a separate member from the vacuum chamber 1 in FIG. 2 and the like, the base 150 may be formed integrally with the vacuum chamber 1 .
 図4に示すように、基台150の上面には、該基台150の開口をY軸方向に挟んで両側に3個ずつ、合計6個の円柱状である絶縁性のインシュレーター151が固定されている。これら6個のインシュレーター151の上部には、二つのイオン通過開口が形成された、導電性のベースプレート152が固定されている。さらに、ベースプレート152の上面には、イオン通過開口が形成された矩形板状である導電性の位置決めプレート153が固定されている。後段トランスファー電極141のうち最後方に位置する電極板1414は、導電性のレンズホルダー161によって保持されている。このレンズホルダー161は、絶縁性のレンズインシュレーター160を介して位置決めプレート153及びベースプレート152に固定されている。この固定は、絶縁材料である樹脂製のホルダー固定ねじ155によってなされる。 As shown in FIG. 4, on the upper surface of the base 150, a total of six cylindrical insulating insulators 151 are fixed, three on each side of the opening of the base 150 in the Y-axis direction. ing. A conductive base plate 152 having two ion passage apertures is fixed on top of these six insulators 151 . Furthermore, a conductive positioning plate 153 in the form of a rectangular plate having an ion passing aperture is fixed to the upper surface of the base plate 152 . The rearmost electrode plate 1414 of the rear transfer electrodes 141 is held by a conductive lens holder 161 . This lens holder 161 is fixed to the positioning plate 153 and the base plate 152 via an insulating lens insulator 160 . This fixation is performed by holder fixing screws 155 made of resin, which is an insulating material.
 位置決めプレート153上には、上記レンズホルダー161のほか、押出し電極1421及び引込み電極1422を含む直交加速部142と、加速電極部143と、が固定されている。またベースプレート152の他方の開口の上には、イオン検出器147が固定されている。 On the positioning plate 153, in addition to the lens holder 161, the orthogonal acceleration section 142 including the push-out electrode 1421 and the pull-in electrode 1422, and the acceleration electrode section 143 are fixed. An ion detector 147 is fixed above the other opening of the base plate 152 .
 加速電極部143は、加速電極1431と絶縁性のスペーサー1432とを交互に積み重ねた構成であり、複数本の棒状部材154によって、直交加速部142と共に位置決めプレート153に固定されている。 The acceleration electrode section 143 is configured by alternately stacking acceleration electrodes 1431 and insulating spacers 1432 , and is fixed to the positioning plate 153 together with the orthogonal acceleration section 142 by a plurality of rod-shaped members 154 .
 第1分析室13と第2分析室14との間には、隔壁部164が設けられている。この隔壁部164は、真空チャンバー1の内壁面から内方に張り出し、平面略円形状の開口を有する導電性の延出部163と、該延出部163に対し第2分析室14側から取り付けられる既出の隔壁リング165と、を含む。ここでは、真空チャンバー1と延出部163とを別の部材として記載しているが、延出部163は真空チャンバー1と一体であってもよい。 A partition wall 164 is provided between the first analysis chamber 13 and the second analysis chamber 14 . The partition wall 164 extends inward from the inner wall surface of the vacuum chamber 1 and includes a conductive extension 163 having a substantially circular planar opening, and is attached to the extension 163 from the second analysis chamber 14 side. and the previously described septum ring 165, which is formed by Here, the vacuum chamber 1 and the extension part 163 are described as separate members, but the extension part 163 may be integrated with the vacuum chamber 1 .
 図3及び図5に示すように、隔壁リング165の開口の内周側には、2枚の電極板1411、1412で挟まれたスペーサー1415がイオン光軸C1方向(X軸方向)に摺動可能に嵌め込まれている。隔壁リング165の外周部は延出部163と重なり合っており、Y-Z平面上に位置するその環状の重ね合わせ部分において、イオン光軸C1の周りに略等角度間隔の4箇所の位置で、それぞれスペーサーねじ166によって隔壁リング165は延出部163に取り付けられている。 As shown in FIGS. 3 and 5, a spacer 1415 sandwiched between two electrode plates 1411 and 1412 slides in the direction of the ion optical axis C1 (X-axis direction) on the inner peripheral side of the opening of the partition ring 165. possibly embedded. The outer peripheral portion of the partition ring 165 overlaps with the extending portion 163, and in the annular overlapping portion located on the YZ plane, at four positions at approximately equal angular intervals around the ion optical axis C1, Septum rings 165 are attached to extensions 163 by spacer screws 166 respectively.
 図3に示すように、スペーサーねじ166は、その鍔部1661と隔壁リング165との間に弾性部材としてのОリング167を挟んで、延出部163に螺入される。スペーサーねじ166のねじ部が最大限、延出部163のねじ孔に螺入された状態で、鍔部1661と隔壁リング165との間には所定の隙間が形成される。その隙間でOリング167は圧潰され、その圧潰されたOリング167の弾性力で以て隔壁リング165は延出部163に押し付けられる。また、隔壁リング165に形成されているねじ貫通孔1651の径は、スペーサーねじ166のスペーサー部1662の外径よりも所定サイズだけ大きい。そのため、ねじ貫通孔1651とスペーサー部1662との間には、イオン光軸C1に略直交する方向に所定範囲で遊び(隙間)がある。 As shown in FIG. 3, the spacer screw 166 is screwed into the extension 163 with an O-ring 167 as an elastic member interposed between the flange 1661 and the partition ring 165 . A predetermined gap is formed between the flange 1661 and the partition ring 165 when the threaded portion of the spacer screw 166 is maximally screwed into the threaded hole of the extension 163 . The O-ring 167 is crushed in the gap, and the elastic force of the crushed O-ring 167 presses the partition ring 165 against the extending portion 163 . Further, the diameter of the screw through hole 1651 formed in the partition ring 165 is larger than the outer diameter of the spacer portion 1662 of the spacer screw 166 by a predetermined size. Therefore, between the screw through hole 1651 and the spacer portion 1662, there is play (gap) within a predetermined range in a direction substantially orthogonal to the ion optical axis C1.
 Oリング167の潰れ量は装置間で殆ど差がないので、隔壁リング165が延出部163に押し付けられる際の力の大きさに関し、装置間の差は殆どない。また、隔壁リング165は樹脂(例えばポリアセタール(POM)又はポリテトラフルオロエチレン(PTFE))製であり、延出部163は金属(例えばアルミニウム)製であるので、両者の接触面における静止摩擦係数は小さい。そのため、隔壁リング165をイオン光軸C1に略直交する方向に移動(変位)させるような適度な大きさの力が加わると、隔壁リング165はその方向(図3中の矢印)に移動し得る。つまりは、電極板1411、1412は、イオン光軸C1に略直交する方向(Z軸の正負両方向)に所定の範囲でスライド移動可能である。 Since there is almost no difference in the amount of crushing of the O-ring 167 between devices, there is almost no difference between devices regarding the magnitude of force when the partition ring 165 is pressed against the extension 163 . Since the partition ring 165 is made of resin (for example, polyacetal (POM) or polytetrafluoroethylene (PTFE)) and the extension 163 is made of metal (for example, aluminum), the coefficient of static friction at the contact surface between them is small. Therefore, when an appropriate amount of force is applied to move (displace) the partition ring 165 in a direction substantially orthogonal to the ion optical axis C1, the partition ring 165 can move in that direction (arrow in FIG. 3). . In other words, the electrode plates 1411 and 1412 are slidable within a predetermined range in directions substantially orthogonal to the ion optical axis C1 (both positive and negative directions of the Z axis).
 レンズホルダー161はその後方側上部に固定されたレンズホルダー固定部材162によって、隔壁リング165の第2分析室14側の面に固定されている。図5では、レンズホルダー固定部材162の取付位置を符号162Aで示している。このレンズホルダー固定部材162は一体の部材でもよいし、複数の部材が組み合わされたものでもよい。即ち、レンズホルダー161は、ホルダー固定ねじ155によって下方向に間接的に真空チャンバー1に対し固定されるとともに、レンズホルダー固定部材162を介してその上部が間接的に真空チャンバー1に対し固定されている。 The lens holder 161 is fixed to the surface of the partition ring 165 on the second analysis chamber 14 side by a lens holder fixing member 162 fixed to the rear upper part. In FIG. 5, the mounting position of the lens holder fixing member 162 is indicated by reference numeral 162A. This lens holder fixing member 162 may be an integral member, or may be a combination of a plurality of members. That is, the lens holder 161 is indirectly fixed downward to the vacuum chamber 1 by the holder fixing screw 155 and indirectly fixed to the vacuum chamber 1 via the lens holder fixing member 162 at its upper portion. there is
  [構成上の特徴及びその利点]
 本実施形態のQ-TOF型質量分析装置は、通常、工場において室温環境(例えば25℃)下で組み立てられる。一方、分析実行時に、第2分析室14は図示しないヒーターによって、通常の室温よりも高い所定の温度(例えば42℃)に温調される。これは、フライトチューブ144等により形成されるイオンの飛行経路の距離が、周囲温度の変動の影響を受けないようにするためである。そのため、第2分析室14内に配置されている各部材は、それぞれの部材を構成する材料の熱膨張率に応じて膨張する。また、温調の目標温度を変更した場合や装置の輸送中に温度変化が生じた場合にも、各部材はそれぞれの部材を構成する材料の熱膨張率に応じて膨張又は収縮する。
[Structural Features and Advantages]
The Q-TOF mass spectrometer of this embodiment is usually assembled in a factory under a room temperature environment (eg, 25° C.). On the other hand, during analysis, the temperature of the second analysis chamber 14 is controlled to a predetermined temperature (for example, 42° C.) higher than normal room temperature by a heater (not shown). This is to prevent the distance of the flight paths of ions formed by the flight tube 144 or the like from being affected by fluctuations in the ambient temperature. Therefore, each member arranged in the second analysis chamber 14 expands according to the coefficient of thermal expansion of the material forming each member. Also, when the target temperature for temperature control is changed, or when the temperature changes during transportation of the device, each member expands or contracts according to the coefficient of thermal expansion of the material forming each member.
 工場での装置の組立て時には、トランスファー電極140(前段トランスファー電極134及び後段トランスファー電極141)の中心軸が、直交加速部142の押出し電極1421と引込み電極1422の対向面の間を該対向面に対し平行に通過するように、トランスファー電極140は高い精度で位置決めされる。このとき、後段トランスファー電極141では、隔壁部164を挟んで第1分析室13と第2分析室14とに跨るように配置されたスペーサー1415の中心軸が、隔壁リング165、延出部163、及び真空チャンバー1の一部(図2中に1Aで示す部分。以下、この部分を部分真空チャンバー1Aという)を介して真空チャンバー1の所定位置1Bに対して位置決めされている。 When the device is assembled in the factory, the central axis of the transfer electrode 140 (the front-stage transfer electrode 134 and the rear-stage transfer electrode 141) is aligned between the facing surfaces of the push-out electrode 1421 and the pull-in electrode 1422 of the orthogonal acceleration section 142 with respect to the facing surface. Transfer electrodes 140 are positioned with high accuracy so that they pass in parallel. At this time, in the rear-stage transfer electrode 141, the central axis of the spacer 1415 arranged to straddle the first analysis chamber 13 and the second analysis chamber 14 with the partition wall 164 interposed therebetween is aligned with the partition ring 165, the extension 163, and a portion of the vacuum chamber 1 (the portion indicated by 1A in FIG. 2; hereinafter, this portion will be referred to as a partial vacuum chamber 1A).
 図5に示したように、隔壁リング165は、イオン光軸C1の周りに略対称である四つの位置で延出部163に対しスペーサーねじ166で固定されている(但し、上述したように、隔壁リング165は延出部163に対してY-Z面内の所定範囲で移動可能である)。そのため、隔壁リング165が膨張又は収縮した場合、その中央開口の大きさは変化するものの、原則として中心軸は変位しない。即ち、本実施形態の質量分析装置では、隔壁リング165、延出部163、及び部分真空チャンバー1Aが前方側固定部材に含まれるが、このうち、延出部163及び部分真空チャンバー1Aが、熱膨張率に応じた膨張又は収縮に起因して、電極板1411におけるイオン光軸C1(C1a)の位置を変位させる要素(つまりは第1変位部材)である。なお、イオン光軸C1の変位とは、所定位置1Bを基準位置としたときの、該基準位置に対するイオン光軸C1の位置の変化をいう。 As shown in FIG. 5, the septum ring 165 is fixed by spacer screws 166 to the extension 163 at four positions that are substantially symmetrical about the ion optical axis C1 (except, as noted above, The partition ring 165 is movable within a predetermined range in the YZ plane with respect to the extension 163). Therefore, when the partition ring 165 expands or contracts, the size of the central opening changes, but in principle the central axis does not displace. That is, in the mass spectrometer of the present embodiment, the partition ring 165, the extension 163, and the partial vacuum chamber 1A are included in the front fixing member. It is an element (that is, a first displacement member) that displaces the position of the ion optical axis C1 (C1a) on the electrode plate 1411 due to expansion or contraction according to the expansion coefficient. The displacement of the ion optical axis C1 means the change in the position of the ion optical axis C1 with respect to the predetermined position 1B as a reference position.
 一方、後段トランスファー電極141の最後方に位置する電極板1414は、真空チャンバー1の所定位置1Bに固定された基台150に対して、レンズホルダー161、レンズインシュレーター160、位置決めプレート153、ベースプレート152、及びインシュレーター151を介して固定されている。即ち、本実施形態の質量分析装置では、レンズホルダー161、レンズインシュレーター160、位置決めプレート153、ベースプレート152、インシュレーター151、及び基台150が後方側固定部材に含まれ、これらによって電極板1414の中心軸が位置決めされる。後方側固定部材に含まれるこれらの部材はいずれも、熱膨張率に応じた膨張や収縮によって電極板1414におけるイオン光軸C1(C1a)を変位させる要素(つまり第2変位部材)である。 On the other hand, the electrode plate 1414 positioned at the rearmost end of the rear transfer electrode 141 is attached to the base 150 fixed to the predetermined position 1B of the vacuum chamber 1 by the lens holder 161, the lens insulator 160, the positioning plate 153, the base plate 152, and fixed via an insulator 151 . That is, in the mass spectrometer of this embodiment, the lens holder 161, the lens insulator 160, the positioning plate 153, the base plate 152, the insulator 151, and the base 150 are included in the rear-side fixing member. is positioned. All of these members included in the rear fixing member are elements (that is, second displacement members) that displace the ion optical axis C1 (C1a) on the electrode plate 1414 by expansion or contraction according to the coefficient of thermal expansion.
 図7は、後段トランスファー電極141のイオン光軸C1aと直交加速部142のイオン光軸C1bとが一直線上に位置している状態を示す概略図である。なお、直交加速部142のイオン光軸C1bは直交加速部142に含まれる押出し電極と引込み電極との両方の対向面に平行であればよく、それら両対向面からそれぞれ等距離の位置であることは必須ではない。装置の組立て時には、基本的に、図7に示す状態になるように各部材の位置が調整される。 FIG. 7 is a schematic diagram showing a state in which the ion optical axis C1a of the rear-stage transfer electrode 141 and the ion optical axis C1b of the orthogonal acceleration section 142 are positioned on a straight line. The ion optical axis C1b of the orthogonal acceleration section 142 may be parallel to the facing surfaces of both the push-out electrode and the pull-in electrode included in the orthogonal acceleration section 142, and should be positioned equidistant from both facing surfaces. is not required. When assembling the device, the positions of the members are basically adjusted so that the state shown in FIG. 7 is achieved.
 分析時に加熱及び温調がなされると、後段トランスファー電極141を固定している前方側固定部材と後方側固定部材とは共に同方向に熱膨張するものの、通常、後方側固定部材の熱膨張量の方が前方側固定部材の熱膨張量よりも大きい。この場合、後段トランスファー電極141の後方側の電極板1414は前方側の電極板1411よりもZ軸の負方向に大きく移動する。そのため、後段トランスファー電極141のイオン光軸C1aと直交加速部142のイオン光軸C1bとの関係は、図8に示すようになる。 When heating and temperature control are performed during analysis, both the front side fixing member and the rear side fixing member fixing the rear transfer electrode 141 thermally expand in the same direction. is larger than the amount of thermal expansion of the front fixing member. In this case, the rear-side electrode plate 1414 of the rear-stage transfer electrode 141 moves more in the negative direction of the Z-axis than the front-side electrode plate 1411 . Therefore, the relationship between the ion optical axis C1a of the rear-stage transfer electrode 141 and the ion optical axis C1b of the orthogonal acceleration section 142 is as shown in FIG.
 即ち、後段トランスファー電極141のイオン光軸C1aは、直交加速部142のイオン光軸C1bに対し傾いてしまう。このように、傾いたイオン光軸C1aに沿ってイオン流が直交加速部142に入射すると、X軸方向の位置によってZ軸方向におけるイオンの出発位置がばらつき、また付与される運動エネルギーもばらつく。それにより、質量精度や質量分解能が低下する。なお、図8は、理解を容易にするために極端に描いた図であり、実際には、イオン光軸C1aの傾きは目視では分からない程度にごく僅かである。もちろん、そうであっても、分析性能を十分に低下させるものである。 That is, the ion optical axis C1a of the rear-stage transfer electrode 141 is tilted with respect to the ion optical axis C1b of the orthogonal acceleration section 142. Thus, when the ion flow enters the orthogonal acceleration unit 142 along the tilted ion optical axis C1a, the starting position of the ions in the Z-axis direction varies depending on the position in the X-axis direction, and the applied kinetic energy also varies. This reduces mass accuracy and mass resolution. It should be noted that FIG. 8 is an extremely drawn diagram for easy understanding, and actually the inclination of the ion optical axis C1a is so slight that it cannot be visually recognized. Of course, even so, it degrades analytical performance significantly.
 本実施形態の質量分析装置では、上述したようなイオン光軸C1aの傾きを軽減するために二つの対策を施している。その対策の一つは、各部材の材料を適切に選択することによって、前方側固定部材と後方側固定部材との熱膨張量の差異を小さくし、イオン光軸C1aの傾き自体を小さくすることである。他の対策の一つは、上述したように、隔壁リング165をイオン光軸C1に略直交する方向(つまりはZ軸の正負の方向)に所定範囲でスライド移動可能とすることで、後方側固定部材の膨張又は収縮による後方側電極板1414のZ軸方向の変位に前方側の電極板1411、1412を追従させ、それによってイオン光軸C1aの傾きを小さくすることである。 In the mass spectrometer of this embodiment, two measures are taken to reduce the inclination of the ion optical axis C1a as described above. One of the countermeasures is to reduce the difference in the amount of thermal expansion between the front-side fixing member and the rear-side fixing member and reduce the inclination of the ion optical axis C1a itself by appropriately selecting the material of each member. is. Another countermeasure is to make the partition ring 165 slidable within a predetermined range in a direction substantially orthogonal to the ion optical axis C1 (that is, the positive and negative directions of the Z axis), as described above. This is to make the front electrode plates 1411 and 1412 follow the displacement of the rear electrode plate 1414 in the Z-axis direction due to the expansion or contraction of the fixing member, thereby reducing the inclination of the ion optical axis C1a.
 本実施形態の質量分析装置では、真空チャンバー1(部分真空チャンバー1A)、レンズホルダー161、位置決めプレート153、ベースプレート152、及び基台150の材料として、同一種類の導電性材料を用いている。ここでは一例として、導電性材料としてアルミニウムを用いている。但し、全ての導電性の部材を同一の導電性材料で構成することは必須の要件ではなく、異なる種類の導電性材料を用いてもよい。例えば、一部又は全ての導電性部材の材料をステンレス鋼(SUS)などとしてもよい。 In the mass spectrometer of this embodiment, the vacuum chamber 1 (partial vacuum chamber 1A), lens holder 161, positioning plate 153, base plate 152, and base 150 are made of the same conductive material. Here, as an example, aluminum is used as the conductive material. However, it is not an essential requirement that all conductive members be made of the same conductive material, and different types of conductive materials may be used. For example, some or all of the conductive members may be made of stainless steel (SUS).
 一方、レンズインシュレーター160には上記の導電性材料に比べて熱膨張率が小さい第1絶縁性材料を、インシュレーター151には上記の導電性材料に比べて熱膨張率が大きい第2絶縁性材料を、それぞれ用いる。例えば、導電性材料がアルミニウムである場合には、第2絶縁性材料としてポリエーテルエーテルケトン(PEEK)樹脂を用い、第1絶縁性材料として加工性が良好であるマシナブルセラミックスの一つである窒化物系マシナブルセラミックスを用いることができる。第1絶縁性材料としては、例えば窒化ホウ素を用いることもできるが、窒化物系マシナブルセラミックス、マイカ系マシナブルセラミックス等のマシナブルセラミックスを用いることが好ましい。窒化物系マシナブルセラミックスとして、具体的には例えば、非特許文献1に記載のホトベールII(株式会社フェローテックマテリアルテクノロジーズ社の登録商標)などを用いることができる。 On the other hand, the lens insulator 160 is made of a first insulating material having a smaller coefficient of thermal expansion than the conductive material, and the insulator 151 is made of a second insulating material having a larger coefficient of thermal expansion than the conductive material. , respectively. For example, when the conductive material is aluminum, polyether ether ketone (PEEK) resin is used as the second insulating material, and it is one of machinable ceramics with good workability as the first insulating material. Nitride machinable ceramics can be used. Boron nitride, for example, can be used as the first insulating material, but machinable ceramics such as nitride-based machinable ceramics and mica-based machinable ceramics are preferably used. Specifically, for example, Photoveil II (registered trademark of Ferrotec Material Technologies Corporation) described in Non-Patent Document 1 can be used as the nitride-based machinable ceramics.
 仮に、第1絶縁性材料として第2絶縁性材料と同じ、例えばPEEK樹脂を用いたとした場合、レンズインシュレーター160及びインシュレーター151が共に、上記の導電性材料に比べて熱膨張率が大きい材料からなることとなる。そのため、アルミニウム製の部材のみで構成される前方側固定部材における、Z軸の正負方向(イオン光軸C1と直交する方向)の熱膨張量よりも、アルミニウム製の部材とPEEK樹脂製の部材とで構成される後方側固定部材の同方向の熱膨張量の方がかなり大きくなってしまう。その結果、図8に示すように、イオン光軸C1aの傾きが大きくなる可能性がある。 If the same material as the second insulating material, such as PEEK resin, is used as the first insulating material, both the lens insulator 160 and the insulator 151 are made of a material having a larger coefficient of thermal expansion than the above conductive material. It will happen. Therefore, the amount of thermal expansion in the positive and negative directions of the Z axis (the direction orthogonal to the ion optical axis C1) in the front side fixing member composed only of the aluminum member is larger than that of the aluminum member and the PEEK resin member. The amount of thermal expansion in the same direction of the rear side fixing member composed of is considerably larger. As a result, as shown in FIG. 8, the inclination of the ion optical axis C1a may increase.
 これに対し、本実施形態の質量分析装置では、レンズインシュレーター160にPEEK樹脂ではなく、上記の導電性材料に比べて熱膨張率が小さい、例えば窒化物系マシナブルセラミックスを用いるため、PEEK樹脂と窒化物系マシナブルセラミックスとの熱膨張率に応じて各部材の長さ(図2において所定位置1Bからイオン光軸C1までの範囲Eに位置する部材の、Z軸方向の設計上の長さ)を適宜に調整する。 On the other hand, in the mass spectrometer of the present embodiment, the lens insulator 160 is not made of PEEK resin, but made of, for example, nitride-based machinable ceramics, which has a smaller coefficient of thermal expansion than the above conductive materials. The length of each member according to the coefficient of thermal expansion with the nitride machinable ceramics (the design length in the Z-axis direction of the member located in the range E from the predetermined position 1B to the ion optical axis C1 in FIG. 2 ) are adjusted accordingly.
 具体的には、ここでは、前方側固定部材における変位要素の単位温度当たりの熱膨張量(その変位要素に含まれる各部材の、Z軸方向の長さと熱膨張率との積の和)P1と、後方側固定部材における変位要素の単位温度当たりの熱膨張量P1の差ΔPを、熱膨張量P1の30%以下に抑えるようにしている。これによって、前方側固定部材の熱膨張による前方側の電極板1411のZ軸方向の変位量と、後方側固定部材の熱膨張による後方側の電極板1414のZ軸方向の変位量とを同程度にし、例えば、本装置の製造時と質量分析時とで温度が相違した場合であってもイオン光軸C1aの傾きを軽減することができる。 Specifically, here, the amount of thermal expansion per unit temperature of the displacement element in the front side fixed member (the sum of the product of the length in the Z-axis direction and the coefficient of thermal expansion of each member included in the displacement element) P1 Then, the difference ΔP in the thermal expansion amount P1 per unit temperature of the displacement element in the rear fixing member is suppressed to 30% or less of the thermal expansion amount P1. As a result, the displacement amount of the front electrode plate 1411 in the Z-axis direction due to the thermal expansion of the front side fixing member and the displacement amount of the rear electrode plate 1414 in the Z-axis direction due to the thermal expansion of the rear side fixing member are the same. For example, even if the temperature differs between when the apparatus is manufactured and when the mass spectrometry is performed, the inclination of the ion optical axis C1a can be reduced.
 また、フライトチューブ144の温調の目標温度を変更した場合であっても、イオン光軸C1aの傾きが生じるのを抑制することができる。さらに、質量分析装置の輸送行程の温度変化によって各部材に膨張・収縮が生じた場合であっても、イオン光軸C1aに不可逆的な大きな傾きが生じにくい。 In addition, even when the target temperature of the temperature control of the flight tube 144 is changed, it is possible to suppress the inclination of the ion optical axis C1a. Furthermore, even if each member expands or contracts due to temperature changes during the transport process of the mass spectrometer, the ion optical axis C1a is unlikely to be irreversibly tilted.
 上記の第1の対策によって、イオン光軸C1aの傾きをかなりの程度軽減できるものの、例えばコスト的な制約や電気絶縁距離を確保する必要性などの様々な設計上の制約のために、該対策だけでは、各部材の膨張・収縮によって生じるイオン光軸C1aの傾きを十分に小さくできない場合がある。その場合でも、本実施形態の質量分析装置では、上記第2の対策によって、イオン光軸C1aの傾きを十分に小さくすることができる。 Although the tilt of the ion optical axis C1a can be reduced to a considerable extent by the above first measure, due to various design constraints such as cost constraints and the need to secure an electrical insulation distance, the measure In some cases, the inclination of the ion optical axis C1a caused by the expansion/contraction of each member cannot be sufficiently reduced only by the adjustment. Even in such a case, the mass spectrometer of this embodiment can sufficiently reduce the inclination of the ion optical axis C1a by the second countermeasure.
 即ち、前方側固定部材の熱膨張量に比べて後方側固定部材の熱膨張量が大きい場合、レンズホルダー161に保持されている電極板1414はZ軸の負方向に移動する。スペーサー1416を介して電極板1414に間接的に固定されている電極板1413、1412にも、Z軸の負方向に移動する力が加わる。さらに、電極板1412に固定されているスペーサー1415を介して隔壁リング165に対しても、Z軸の負方向に移動する力が加わる。また、レンズホルダー161と隔壁リング165とはレンズホルダー固定部材162を介して接続されているため、熱膨張によってレンズホルダー161がZ軸の負方向に移動したときに、レンズホルダー固定部材162を介して隔壁リング165を同方向に移動させる力も加わる。 That is, when the amount of thermal expansion of the rear side fixing member is larger than that of the front side fixing member, the electrode plate 1414 held by the lens holder 161 moves in the negative direction of the Z axis. Electrode plates 1413 and 1412, which are indirectly fixed to electrode plate 1414 via spacers 1416, are also subjected to force to move in the negative direction of the Z axis. Further, a force is applied to the partition ring 165 through the spacer 1415 fixed to the electrode plate 1412 to move it in the negative direction of the Z axis. In addition, since the lens holder 161 and the partition ring 165 are connected via the lens holder fixing member 162, when the lens holder 161 moves in the negative direction of the Z axis due to thermal expansion, A force is also applied to move the partition ring 165 in the same direction.
 上述したように、Oリング167の弾性力によって延出部163に押し付けられている隔壁リング165と該延出部163との間の接触面における静止摩擦係数は小さいので、上述したような力が隔壁リング165に加わると、隔壁リング165は延出部163との接触を維持したままZ軸の負方向に移動する。最大の移動可能量は、ねじ貫通孔1651とスペーサー部1662との隙間に相当する。これによって、隔壁リング165の開口内側に位置するスペーサー1415に固定されている電極板1411、1412も、Z軸の負方向に移動する。そして、後段トランスファー電極141の中心軸つまりイオン光軸C1aは、図9に示すように、直交加速部142のイオン光軸C1bとほぼ平行な状態になる。このとき、後段トランスファー電極141のイオン光軸C1aは直交加速部142のイオン光軸C1bからずれるものの、そのずれ量は後段トランスファー電極141から送り出されたイオン流が直交加速部142に入射し得る程度であるので、分析性能上、問題はない。 As described above, the coefficient of static friction at the contact surface between the partition ring 165 and the extending portion 163, which is pressed against the extending portion 163 by the elastic force of the O-ring 167, is small. Upon joining septum ring 165 , septum ring 165 moves in the negative Z-axis direction while maintaining contact with extension 163 . The maximum movable amount corresponds to the gap between the screw through-hole 1651 and the spacer portion 1662 . As a result, the electrode plates 1411 and 1412 fixed to the spacer 1415 positioned inside the opening of the partition ring 165 also move in the negative direction of the Z axis. Then, the central axis of the rear-stage transfer electrode 141, that is, the ion optical axis C1a, becomes substantially parallel to the ion optical axis C1b of the orthogonal acceleration section 142, as shown in FIG. At this time, although the ion optical axis C1a of the rear transfer electrode 141 deviates from the ion optical axis C1b of the orthogonal acceleration section 142, the amount of deviation is such that the ion flow sent out from the rear transfer electrode 141 can enter the orthogonal acceleration section 142. Therefore, there is no problem in terms of analytical performance.
 上述した第1の対策によって、各部材の膨張又は収縮に起因するイオン光軸C1aの傾きが或る程度軽減されていれば、上記第2の対策において隔壁リング165が移動する量はごく僅かで済み、イオン光軸C1aとイオン光軸C1bとの平行性を高めることができる。一方、第1の対策が採られていない場合、又は採られていてもその効果が十分でない場合であっても、上記第2の対策において隔壁リング165が移動可能である範囲を或る程度広げておくことで、イオン光軸C1aとイオン光軸C1bとの平行性を実用上十分に確保することができる。これによって、直交加速飛行時間型質量分離部において高い質量精度、質量分解能、分析感度を達成することができる。 If the inclination of the ion optical axis C1a caused by the expansion or contraction of each member is reduced to some extent by the above-described first measure, the partition ring 165 moves only slightly in the above-mentioned second measure. Already, parallelism between the ion optical axis C1a and the ion optical axis C1b can be improved. On the other hand, even if the first measure is not taken, or even if it is taken, the effect is not sufficient, the range in which the partition ring 165 can move is widened to some extent in the second measure. By doing so, parallelism between the ion optical axis C1a and the ion optical axis C1b can be sufficiently ensured in practice. Thereby, high mass accuracy, mass resolution, and analytical sensitivity can be achieved in the orthogonal acceleration time-of-flight mass separator.
 また、本実施形態の質量分析装置は次のような問題も解決し得る。
 真空チャンバー1内の真空排気を開始するとき及び真空を解除して大気開放するときに、第1分析室13内の圧力と第2分析室14の圧力との差が一時的に大きい状態となることがある。すると、その圧力差に対応した力が、後段トランスファー電極141においてイオン通過開口が最も小さい電極板1412に対し、イオン光軸C1に沿った方向に加わる。但し、そのときの力の向きは、第1分析室13と第2分析室14とのいずれの圧力が高いのかによって異なる。
Moreover, the mass spectrometer of this embodiment can also solve the following problems.
When the vacuum chamber 1 starts to be evacuated and when the vacuum is released and the atmosphere is released, the difference between the pressure in the first analysis chamber 13 and the pressure in the second analysis chamber 14 temporarily becomes large. Sometimes. Then, a force corresponding to the pressure difference is applied in the direction along the ion optical axis C1 to the electrode plate 1412 having the smallest ion passage aperture in the rear-stage transfer electrode 141 . However, the direction of the force at that time differs depending on which of the first analysis chamber 13 and the second analysis chamber 14 has higher pressure.
 第1分析室13内の圧力の方が高い場合、図2において右方向の力が電極板1412に加わる。仮にレンズホルダー固定部材162がないとすると、上記力によって後段トランスファー電極141には、レンズインシュレーター160とレンズホルダー161との接触部の最も後方側(図2で右側)の位置を中心として時計回りに回転するようなモーメントが作用する。レンズホルダー161は、位置決めプレート153を貫通してベースプレート152に達しているホルダー固定ねじ155で固定されているものの、該ねじ155は樹脂製であって、金属製のねじに比べると一般に軸力が小さい。そのため、大きな圧力差によってレンズホルダー161が回転しようとすると、ホルダー固定ねじ155に過剰な力が加わって伸びてしまう場合がある。その結果、ねじ155の不可逆的な緩みを引き起こしたり、後段トランスファー電極141が不可逆的に位置ずれを生じたりする可能性がある。 When the pressure inside the first analysis chamber 13 is higher, a rightward force is applied to the electrode plate 1412 in FIG. If the lens holder fixing member 162 were not present, the rear transfer electrode 141 would be rotated clockwise around the rearmost position (right side in FIG. 2) of the contact portion between the lens insulator 160 and the lens holder 161 due to the above force. A rotating moment acts. The lens holder 161 is fixed by a holder fixing screw 155 that penetrates the positioning plate 153 and reaches the base plate 152. The screw 155 is made of resin and generally has an axial force greater than that of a metal screw. small. Therefore, when the lens holder 161 tries to rotate due to a large pressure difference, an excessive force may be applied to the holder fixing screw 155 and the holder fixing screw 155 may be stretched. As a result, the screw 155 may be irreversibly loosened, or the post-stage transfer electrode 141 may be irreversibly displaced.
 これに対し、本実施形態の質量分析装置では、レンズホルダー161の上部はレンズホルダー固定部材162によって隔壁リング165を介し真空チャンバー1に固定されている。この固定の方向は概ね、上記のような圧力差による力の作用方向と逆の方向であり、その圧力差による力に対し抗するのに望ましい方向である。そのため、上記圧力差に起因する力が後段トランスファー電極141に加わった場合でも、レンズホルダー161はホルダー固定ねじ155に過剰な力が加わりにくく、そのねじ155の伸びを防止することができる。それによって、本実施形態の質量分析装置では、真空排気の開始時や大気開放時の圧力差によって生じるレンズホルダー161の傾きやホルダー固定ねじ155の緩みを回避することができ、それに起因する後段トランスファー電極141のイオン光軸C1aのずれ及び傾きも低減することができる。 On the other hand, in the mass spectrometer of this embodiment, the upper part of the lens holder 161 is fixed to the vacuum chamber 1 by the lens holder fixing member 162 via the partition ring 165 . The direction of this fixation is generally opposite to the direction of action of the force due to the pressure differential as described above, and is the desired direction to resist the force due to the pressure differential. Therefore, even if force due to the pressure difference is applied to the rear-stage transfer electrode 141, the lens holder 161 is unlikely to apply excessive force to the holder fixing screw 155, and the screw 155 can be prevented from stretching. As a result, in the mass spectrometer of the present embodiment, tilting of the lens holder 161 and loosening of the holder fixing screw 155 caused by pressure differences at the start of evacuation and release to the atmosphere can be avoided. The shift and tilt of the ion optical axis C1a of the electrode 141 can also be reduced.
  [変形例]
 上記実施形態の質量分析装置では、真空チャンバー1に固定された又はその一部である延出部163に対して隔壁リング165を、Oリング167の弾性力によって所定の力で押さえ付けていたが、Oリング167に代えて他の弾性部材を用いることができる。例えば、Oリング167に代えて、圧縮ばね、皿ばね、ばね座金などの機械的な伸縮力を利用した部材を用いてもよい。また、Oリング167を圧潰する部材としてスペーサーねじ166に代えて、ねじとスペーサーとの組合せを用いてもよい。
[Modification]
In the mass spectrometer of the above-described embodiment, the elastic force of the O-ring 167 presses the partition ring 165 against the extending portion 163 fixed to or part of the vacuum chamber 1 with a predetermined force. , other elastic members may be used in place of the O-ring 167 . For example, instead of the O-ring 167, a member using mechanical expansion/contraction force such as a compression spring, a disc spring, or a spring washer may be used. Also, instead of the spacer screw 166 as a member for crushing the O-ring 167, a combination of a screw and a spacer may be used.
 また、後段トランスファー電極141を位置決めするための前方側固定部材及び後方側固定部材に含まれる各部材の数や各部材の材料の種類は、上記実施形態に記載のものに限定されず、本発明の要件を満たす限りにおいて適宜に変更可能である。 Further, the number of members included in the front-side fixing member and the rear-side fixing member for positioning the rear-stage transfer electrode 141 and the type of material of each member are not limited to those described in the above embodiment, and the present invention is not limited to those described in the above embodiment. can be changed as appropriate as long as it satisfies the requirements of
 また、上記実施形態の質量分析装置では、後段トランスファー電極141は4枚の電極板を含む構成であるが、その枚数は2以上であれば適宜に選択可能である。また、その電極板は、実質的にロッド電極と言える程度に厚いものであってもよいし、イオン光軸C1に沿って複数のセグメントに分割された構造の多重極ロッド電極であってもよい。 Further, in the mass spectrometer of the above-described embodiment, the post-stage transfer electrode 141 is configured to include four electrode plates, but the number can be appropriately selected as long as it is two or more. Further, the electrode plate may be thick enough to be said to be a rod electrode, or may be a multipole rod electrode having a structure divided into a plurality of segments along the ion optical axis C1. .
 また、上記実施形態の質量分析装置において、直交加速部142としてリニアイオントラップを用いてもよい。このリニアイオントラップはロッド状電極又はプレート状電極のいずれを用いたものでもよい。また、リフレクトロン型の飛行時間型質量分離器に代えて、リニア型、多重周回型、多重反射型などの飛行時間型質量分離器を用いてもよい。 Also, in the mass spectrometer of the above embodiment, a linear ion trap may be used as the orthogonal acceleration section 142 . This linear ion trap may use either rod-shaped electrodes or plate-shaped electrodes. Also, instead of the reflectron time-of-flight mass separator, a linear time-of-flight mass separator such as a linear type, a multi-turn type, or a multi-reflection type may be used.
 また、本発明は、直交加速飛行時間型質量分離器を含む質量分析装置全般に適用し得る。したがって、上記実施形態であるQ-TOF型質量分析装置以外に、例えば、単体の直交加速飛行時間型質量分析装置、イオントラップと直交加速飛行時間型質量分析装置とを組み合わせたイオントラップ飛行時間型質量分析装置などにも本発明を適用可能である。 In addition, the present invention can be applied to general mass spectrometers including orthogonal acceleration time-of-flight mass separators. Therefore, in addition to the Q-TOF mass spectrometer of the above embodiment, for example, a single orthogonal acceleration time-of-flight mass spectrometer, and an ion trap time-of-flight mass spectrometer combining an ion trap and an orthogonal acceleration time-of-flight mass spectrometer. The present invention can also be applied to mass spectrometers and the like.
 さらにまた、上記実施形態及び各種の変形例は本発明の一例にすぎず、本発明の趣旨の範囲で適宜に修正、変更、追加などを行っても本願特許請求の範囲に包含されることは当然である。 Furthermore, the above-described embodiment and various modifications are only examples of the present invention, and any modifications, changes, additions, etc., made appropriately within the scope of the present invention are not included in the scope of the claims of the present application. Naturally.
  [種々の態様]
 上述した例示的な実施形態及び変形例は、以下の態様の具体例であることが当業者により理解される。
[Various aspects]
It will be appreciated by those skilled in the art that the exemplary embodiments and variations described above are specific examples of the following aspects.
 (第1項)本発明に係る質量分析装置の一態様は、
 内部空間が第1真空室と第2真空室とに区画された真空チャンバーと、
 前記第1真空室から前記第2真空室へとイオンを輸送するべく該両真空室に跨るように配置され、絶縁性のスペーサーを介して連結された、それぞれイオン通過開口を有する複数の電極板から成るトランスファー電極と、
 前記第2真空室内に配置され、前記トランスファー電極により輸送されて来たイオンをその入射方向に直交する方向に加速する直交加速部と、
 前記複数の電極板のうちの前記第2真空室内に位置する後方側電極板を、そのイオン通過開口の中心軸と直交する所定の方向に離れた位置において前記真空チャンバーに対し固定するための後方側固定部材と、
 前記複数の電極板のうちの前記第1真空室内に位置する前方側電極板を該第1真空室内で位置決めするための部材であって、前記真空チャンバーの内壁面に内側に延出するように設けられた延出部と、前記前方側電極板に固定された前記スペーサーを保持し、前記延出部に対し前記所定の方向と逆の方向に所定の範囲でスライド移動可能に取り付けられている環状の隔壁部材と、を含む前方側固定部材と、
 を備える。
(Section 1) One aspect of the mass spectrometer according to the present invention is
a vacuum chamber having an internal space partitioned into a first vacuum chamber and a second vacuum chamber;
a plurality of electrode plates each having an ion passage opening disposed across the first and second vacuum chambers and connected via insulating spacers for transporting ions from the first vacuum chamber to the second vacuum chamber; a transfer electrode consisting of
an orthogonal acceleration unit disposed in the second vacuum chamber for accelerating ions transported by the transfer electrode in a direction perpendicular to the incident direction;
a rear electrode plate for fixing the rear electrode plate positioned in the second vacuum chamber among the plurality of electrode plates to the vacuum chamber at a position spaced apart in a predetermined direction orthogonal to the central axis of the ion passage aperture; a side fixing member;
A member for positioning a front electrode plate positioned in the first vacuum chamber among the plurality of electrode plates in the first vacuum chamber, the member extending inward from an inner wall surface of the vacuum chamber. It holds the provided extending portion and the spacer fixed to the front electrode plate, and is attached to the extending portion so as to be slidable within a predetermined range in a direction opposite to the predetermined direction. an annular partition member; and an anterior fixation member comprising:
Prepare.
 第1項に記載の直交加速飛行時間型質量分析装置によれば、分析時の温調や温度変化に起因する、直交加速部に入射するイオン流のイオン光軸の傾きを軽減することができる。それにより、直交加速部に入射するイオン流が該直交加速部に含まれる電極と平行に保たれるので、高い分析性能(質量精度、質量分解能、分析感度)を達成することができる。 According to the orthogonal acceleration time-of-flight mass spectrometer described in item 1, it is possible to reduce the inclination of the ion optical axis of the ion flow incident on the orthogonal acceleration part due to temperature control and temperature change during analysis. . As a result, the ion flow incident on the orthogonal acceleration section is kept parallel to the electrodes included in the orthogonal acceleration section, so high analytical performance (mass accuracy, mass resolution, analytical sensitivity) can be achieved.
 (第2項)第1項に記載の直交加速飛行時間型質量分析装置において、前記隔壁部材は、弾性部材によって前記延出部に押し付けられ、該延出部に対し摺動自在であるものとすることができる。 (Section 2) In the orthogonal acceleration time-of-flight mass spectrometer described in Section 1, the partition member is pressed against the extension by an elastic member and is slidable relative to the extension. can do.
 (第3項)第2項に記載の直交加速飛行時間型質量分析装置において、前記弾性部材はOリングであるものとすることができる。 (Section 3) In the orthogonal acceleration time-of-flight mass spectrometer described in Section 2, the elastic member may be an O-ring.
 弾性部材としてはOリングなどの素材自体の弾性力を利用した部材、圧縮ばね、皿ばね、ばね座金などの機械的な伸縮力を利用した部材などのいずれでもよい。
 第2項及び第3項に記載の直交加速飛行時間型質量分析装置によれば、延出部と隔壁部材との密着性を高めながら、両者の接触面における隔壁部材の摺動性も確保することができる。それによって、第1真空室及び第2真空室それぞれの密閉性を高めることができる。一方で、後方側固定部材が膨張・収縮したことによって後方側の電極板が上記所定の方向の逆方向に移動したときに、隔壁部材が円滑に移動してイオン光軸の傾きを軽減することができる。
The elastic member may be a member such as an O-ring, which utilizes the elastic force of the material itself, or a member such as a compression spring, disc spring, or spring washer, which utilizes mechanical expansion and contraction force.
According to the orthogonal acceleration time-of-flight mass spectrometers described in paragraphs 2 and 3, the slidability of the partition member on the contact surface between the extending portion and the partition member is ensured while increasing the adhesion between the extension portion and the partition member. be able to. Thereby, the airtightness of each of the first vacuum chamber and the second vacuum chamber can be improved. On the other hand, when the rear electrode plate moves in the direction opposite to the predetermined direction due to expansion/contraction of the rear fixing member, the partition member moves smoothly to reduce the inclination of the ion optical axis. can be done.
 (第4項)第1項に記載の直交加速飛行時間型質量分析装置では、前記隔壁部材と前記延出部の一方は樹脂製であり、他方は金属製であるものとすることができる。 (Section 4) In the orthogonal acceleration time-of-flight mass spectrometer described in Section 1, one of the partition member and the extension may be made of resin, and the other may be made of metal.
 上記樹脂としては、例えばポリアセタール樹脂、ポリテトラフルオロエチレン樹脂などの静止摩擦係数の小さい(つまりは摺動性の良好である)材料が好ましい。
 第4項に記載の直交加速飛行時間型質量分析装置によれば、後方側固定部材が膨張・収縮したことによって後方側の電極板が上記所定の方向の逆方向に移動したときに、隔壁部材が円滑に移動し易く、イオン光軸の傾きを一層確実に軽減することができる。
As the resin, a material having a small coefficient of static friction (that is, having good slidability) such as polyacetal resin or polytetrafluoroethylene resin is preferable.
According to the orthogonal acceleration time-of-flight mass spectrometer according to item 4, when the rear-side electrode plate moves in the direction opposite to the predetermined direction due to expansion/contraction of the rear-side fixing member, the partition member moves smoothly, and the inclination of the ion optical axis can be reduced more reliably.
 (第5項)第1項に記載の直交加速飛行時間型質量分析装置において、前記後方側固定部材は、前記複数の電極のうちの少なくとも最後方に位置する電極板を保持するホルダーを含み、該ホルダーを前記隔壁部材に対して固定するホルダー固定部材をさらに備えるものとすることができる。 (Section 5) In the orthogonal acceleration time-of-flight mass spectrometer according to Section 1, the rear fixing member includes a holder that holds at least the rearmost electrode plate among the plurality of electrodes, A holder fixing member for fixing the holder to the partition member may be further provided.
 真空チャンバー内の真空排気を開始するときや真空状態を解除するときに、第1真空室内の圧力と第2真空室内の圧力とに大きな差が生じ、その圧力差に起因して、トランスファー電極を第1真空室側から第2真空室側へと押す大きな力が掛かることがある。電極板を保持するホルダーが例えば上記所定の方向に延伸するねじで間接的に真空チャンバーに対し固定されているとすると、そのねじに大きな力が作用する。電気的絶縁性のために樹脂製であるねじを使用すると、該ねじが伸びてしまって緩む、或いは、ホルダーがガタつく原因となる。 When starting to evacuate the vacuum chamber or releasing the vacuum state, a large difference occurs between the pressure in the first vacuum chamber and the pressure in the second vacuum chamber, and the pressure difference causes the transfer electrode to move. A large force may be applied from the first vacuum chamber side to the second vacuum chamber side. If the holder holding the electrode plate is indirectly fixed to the vacuum chamber by, for example, a screw extending in the predetermined direction, a large force acts on the screw. If screws made of resin are used for electrical insulation, the screws may stretch and become loose, or the holder may rattle.
 これに対し、第5項に記載の直交加速飛行時間型質量分析装置によれば、ホルダーが隔壁部材に対しホルダー固定部材によって固定されているので、上記のような圧力差による力がトランスファー電極に作用した場合であっても、樹脂製のねじに過剰な力が掛かることを回避することができる。それによって、ねじの緩みやホルダーのガタつきを軽減し、トランスファー電極を適切に位置決めした状態を保つことができる。 On the other hand, according to the orthogonal acceleration time-of-flight mass spectrometer described in item 5, since the holder is fixed to the partition member by the holder fixing member, the force due to the pressure difference as described above is applied to the transfer electrode. Even if it works, it is possible to avoid applying excessive force to the resin screws. As a result, loosening of the screws and rattling of the holder can be reduced, and the transfer electrode can be maintained in a properly positioned state.
 (第6項)第1項に記載の直交加速飛行時間型質量分析装置において、前記前方側固定部材は、熱膨張によって前記トランスファー電極の入口側の中心軸を前記所定の方向と逆方向に変位させる第1変位部材を含み、前記後方側固定部材は、熱膨張によって前記トランスファー電極の出口側の中心軸を前記所定の方向と逆方向に変位させる第2変位部材を含み、
 前記第1変位部材の単位温度あたりの熱膨張量と前記第2変位部材の単位温度あたりの熱膨張量との差が、該第1変位部材の熱膨張量の30%以下であるものとすることができる。
(Section 6) In the orthogonal acceleration time-of-flight mass spectrometer described in Section 1, the front-side fixing member displaces the inlet-side central axis of the transfer electrode in a direction opposite to the predetermined direction due to thermal expansion. the rear fixing member includes a second displacement member that displaces the center axis of the transfer electrode on the outlet side in a direction opposite to the predetermined direction due to thermal expansion;
The difference between the amount of thermal expansion per unit temperature of the first displacement member and the amount of thermal expansion per unit temperature of the second displacement member is 30% or less of the amount of thermal expansion of the first displacement member. be able to.
 第6項に記載の直交加速飛行時間型質量分析装置によれば、前方側固定部材と後方側固定部材との熱による膨張量又は収縮量の差が小さいため、延出部に対する隔壁部材のスライド移動可能な範囲が小さくても、トランスファー電極におけるイオン光軸の傾きをより確実に抑えることができる。 According to the orthogonal acceleration time-of-flight mass spectrometer according to item 6, since the difference in thermal expansion or contraction between the front side fixing member and the rear side fixing member is small, the partition member slides with respect to the extension. Even if the movable range is small, the inclination of the ion optical axis in the transfer electrode can be suppressed more reliably.
 (第7項)第6項に記載の直交加速飛行時間型質量分析装置において、前記第2変位部材は、第1絶縁性材料からなる第1絶縁部材及び第2絶縁性材料からなる第2絶縁部材と、導電性材料で構成された導電部材とを含み、前記第1絶縁性材料の熱膨張率が前記導電部材の熱膨張率よりも小さく、前記第2絶縁性材料の熱膨張率が前記導電部材の熱膨張率よりも大きいものとすることができる。 (Section 7) In the orthogonal acceleration time-of-flight mass spectrometer according to Section 6, the second displacement member includes a first insulation member made of a first insulating material and a second insulation member made of a second insulating material. and a conductive member made of a conductive material, wherein the coefficient of thermal expansion of the first insulating material is smaller than the coefficient of thermal expansion of the conductive member, and the coefficient of thermal expansion of the second insulating material is the above. It can be greater than the coefficient of thermal expansion of the conductive member.
 第7項に記載の直交加速飛行時間型質量分析装置によれば、後方側固定部材が、1又は複数の導電部材と、それぞれ熱膨張率が相違する絶縁材料から成る複数の絶縁部材を第2変位部材として含むので、各部材の熱膨張率及び寸法を適宜選択することで、第6項に記載の装置における熱膨張量の要件を満たすことが容易になる。 According to the orthogonal acceleration time-of-flight mass spectrometer according to item 7, the rear side fixing member comprises one or more conductive members and a plurality of insulating members each made of an insulating material having a different coefficient of thermal expansion. Since it is included as a displacement member, by appropriately selecting the coefficient of thermal expansion and dimensions of each member, it becomes easy to satisfy the requirements for the amount of thermal expansion in the device described in item 6.
 (第8項)第7項に記載の直交加速飛行時間型質量分析装置において、前記第1絶縁性材料はマシナブルセラミックスであるものとすることができる。 (Section 8) In the orthogonal acceleration time-of-flight mass spectrometer described in Section 7, the first insulating material may be machinable ceramics.
 第8項に記載の直交加速飛行時間型質量分析装置によれば、第1絶縁材料として加工性が良好であるマシナブルセラミックを用いるので、後方側固定部材をより簡易に且つ高精度で製造することができる。 According to the orthogonal acceleration time-of-flight mass spectrometer described in item 8, since machinable ceramic with good workability is used as the first insulating material, the rear side fixing member can be manufactured more easily and with high accuracy. be able to.
1…真空チャンバー
1A…部分真空チャンバー
1B…所定位置
10…イオン化装置
 100…イオン化室
 101…エレクトロスプレーイオン源
 102…脱溶媒管
11…第1中間真空室
 111…該多重極イオンガイド
 112…スキマー
12…第2中間真空室
 121…多重極イオンガイド
13…第1分析室
 131…四重極マスフィルター
 132…多重極イオンガイド
 133…コリジョンセル
 134…前段トランスファー電極
  1341、1342、1343…電極板
  1344…スペーサー
14…第2分析室
 140…トランスファー電極
 141…後段トランスファー電極
  1411、1412、1413、1414…電極板
  1415、1416…スペーサー
 142…直交加速部
  1421…押出し電極
  1422…引込み電極
 143…加速電極部
  1431…加速電極
  1432…スペーサー
 144…フライトチューブ
 145…リフレクトロン
 146…バックプレート
 147…イオン検出器
 150…基台
 151…インシュレーター
 152…ベースプレート
 153…位置決めプレート
 154…棒状部材
 155…ホルダー固定ねじ
 160…レンズインシュレーター
 161…レンズホルダー
 162…レンズホルダー固定部材
 163…延出部
 164…隔壁部
 165…隔壁リング
  1651…ねじ貫通孔
 166…スペーサーねじ
  1661…鍔部
  1662…スペーサー部
 167…Oリング
Reference Signs List 1 Vacuum chamber 1A Partial vacuum chamber 1B Predetermined position 10 Ionization device 100 Ionization chamber 101 Electrospray ion source 102 Desolvation tube 11 First intermediate vacuum chamber 111 Multipolar ion guide 112 Skimmer 12 Second intermediate vacuum chamber 121 Multipole ion guide 13 First analysis chamber 131 Quadrupole mass filter 132 Multipole ion guide 133 Collision cell 134 Front stage transfer electrode 1341, 1342, 1343 Electrode plate 1344 Spacer 14 Second analysis chamber 140 Transfer electrode 141 Post-stage transfer electrode 1411, 1412, 1413, 1414 Electrode plate 1415, 1416 Spacer 142 Orthogonal acceleration section 1421 Extrusion electrode 1422 Pull-in electrode 143 Acceleration electrode section 1431 Acceleration electrode 1432 Spacer 144 Flight tube 145 Reflectron 146 Back plate 147 Ion detector 150 Base 151 Insulator 152 Base plate 153 Positioning plate 154 Bar member 155 Holder fixing screw 160 Lens insulator DESCRIPTION OF SYMBOLS 161... Lens holder 162... Lens holder fixing member 163... Extension part 164... Partition part 165... Partition ring 1651... Screw penetration hole 166... Spacer screw 1661... Collar part 1662... Spacer part 167... O-ring

Claims (8)

  1.  内部空間が第1真空室と第2真空室とに区画された真空チャンバーと、
     前記第1真空室から前記第2真空室へとイオンを輸送するべく該両真空室に跨るように配置され、絶縁性のスペーサーを介して連結された、それぞれイオン通過開口を有する複数の電極板から成るトランスファー電極と、
     前記第2真空室内に配置され、前記トランスファー電極により輸送されて来たイオンをその入射方向に直交する方向に加速する直交加速部と、
     前記複数の電極板のうちの前記第2真空室内に位置する後方側電極板を、そのイオン通過開口の中心軸と直交する所定の方向に離れた位置において前記真空チャンバーに対し固定するための後方側固定部材と、
     前記複数の電極板のうちの前記第1真空室内に位置する前方側電極板を該第1真空室内で位置決めするための部材であって、前記真空チャンバーの内壁面に内側に延出するように設けられた延出部と、前記前方側電極板に固定された前記スペーサーを保持し、前記延出部に対し前記所定の方向と逆の方向に所定の範囲でスライド移動可能に取り付けられている環状の隔壁部材と、を含む前方側固定部材と、
     を備える直交加速飛行時間型質量分析装置。
    a vacuum chamber having an internal space partitioned into a first vacuum chamber and a second vacuum chamber;
    a plurality of electrode plates each having an ion passage opening disposed across the first and second vacuum chambers and connected via insulating spacers for transporting ions from the first vacuum chamber to the second vacuum chamber; a transfer electrode consisting of
    an orthogonal acceleration unit disposed in the second vacuum chamber for accelerating ions transported by the transfer electrode in a direction perpendicular to the incident direction;
    a rear electrode plate for fixing the rear electrode plate positioned in the second vacuum chamber among the plurality of electrode plates to the vacuum chamber at a position spaced apart in a predetermined direction orthogonal to the central axis of the ion passage aperture; a side fixing member;
    A member for positioning a front electrode plate positioned in the first vacuum chamber among the plurality of electrode plates in the first vacuum chamber, the member extending inward from an inner wall surface of the vacuum chamber. It holds the provided extending portion and the spacer fixed to the front electrode plate, and is attached to the extending portion so as to be slidable within a predetermined range in a direction opposite to the predetermined direction. an annular partition member; and an anterior fixation member comprising:
    An orthogonal acceleration time-of-flight mass spectrometer.
  2.  前記隔壁部材は、弾性部材によって前記延出部に押し付けられ、該延出部に対し摺動自在である、請求項1に記載の直交加速飛行時間型質量分析装置。 The orthogonal acceleration time-of-flight mass spectrometer according to claim 1, wherein the partition member is pressed against the extension by an elastic member and is slidable relative to the extension.
  3.  前記弾性部材はOリングである、請求項2に記載の直交加速飛行時間型質量分析装置。 The orthogonal acceleration time-of-flight mass spectrometer according to claim 2, wherein the elastic member is an O-ring.
  4.  前記隔壁部材と前記延出部の一方は樹脂製であり、他方は金属製である、請求項1に記載の直交加速飛行時間型質量分析装置。 The orthogonal acceleration time-of-flight mass spectrometer according to claim 1, wherein one of said partition member and said extension is made of resin and the other is made of metal.
  5.  前記後方側固定部材は、前記複数の電極のうちの少なくとも最後方に位置する電極板を保持するホルダーを含み、該ホルダーを前記隔壁部材に対して固定するホルダー固定部材をさらに備える、請求項1に記載の直交加速飛行時間型質量分析装置。 2. The rear-side fixing member includes a holder that holds at least the rearmost electrode plate among the plurality of electrodes, and further includes a holder fixing member that fixes the holder to the partition member. The orthogonal acceleration time-of-flight mass spectrometer according to .
  6.  前記前方側固定部材は、熱膨張によって前記トランスファー電極の入口側の中心軸を前記所定の方向と逆方向に変位させる第1変位部材を含み、前記後方側固定部材は、熱膨張によって前記トランスファー電極の出口側の中心軸を前記所定の方向と逆方向に変位させる第2変位部材を含み、
     前記第1変位部材の単位温度あたりの熱膨張量と前記第2変位部材の単位温度あたりの熱膨張量との差が、該第1変位部材の熱膨張量の30%以下である、請求項1に記載の直交加速飛行時間型質量分析装置。
    The front side fixed member includes a first displacement member that displaces the center axis of the transfer electrode on the inlet side in a direction opposite to the predetermined direction by thermal expansion, and the rear side fixed member displaces the transfer electrode by thermal expansion. including a second displacement member that displaces the central axis on the outlet side of the in a direction opposite to the predetermined direction,
    The difference between the amount of thermal expansion per unit temperature of said first displacement member and the amount of thermal expansion per unit temperature of said second displacement member is 30% or less of the amount of thermal expansion of said first displacement member. 2. The orthogonal acceleration time-of-flight mass spectrometer according to 1.
  7.  前記第2変位部材は、第1絶縁性材料からなる第1絶縁部材及び第2絶縁性材料からなる第2絶縁部材と、導電性材料で構成された導電部材とを含み、前記第1絶縁性材料の熱膨張率が前記導電部材の熱膨張率よりも小さく、前記第2絶縁性材料の熱膨張率が前記導電部材の熱膨張率よりも大きい、請求項6に記載の直交加速飛行時間型質量分析装置。 The second displacement member includes a first insulating member made of a first insulating material, a second insulating member made of a second insulating material, and a conductive member made of a conductive material. 7. The orthogonal acceleration time-of-flight type of claim 6, wherein the coefficient of thermal expansion of a material is less than the coefficient of thermal expansion of said conducting member, and the coefficient of thermal expansion of said second insulating material is greater than the coefficient of thermal expansion of said conducting member. Mass spectrometer.
  8.  前記第1絶縁性材料はマシナブルセラミックスである、請求項7に記載の直交加速飛行時間型質量分析装置。 The orthogonal acceleration time-of-flight mass spectrometer according to claim 7, wherein said first insulating material is machinable ceramics.
PCT/JP2021/017863 2021-05-11 2021-05-11 Orthogonal acceleration time-of-flight mass spectrometer WO2022239104A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/017863 WO2022239104A1 (en) 2021-05-11 2021-05-11 Orthogonal acceleration time-of-flight mass spectrometer
JP2023520622A JP7509317B2 (en) 2021-05-11 2021-05-11 Orthogonal acceleration time-of-flight mass spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/017863 WO2022239104A1 (en) 2021-05-11 2021-05-11 Orthogonal acceleration time-of-flight mass spectrometer

Publications (1)

Publication Number Publication Date
WO2022239104A1 true WO2022239104A1 (en) 2022-11-17

Family

ID=84029500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/017863 WO2022239104A1 (en) 2021-05-11 2021-05-11 Orthogonal acceleration time-of-flight mass spectrometer

Country Status (2)

Country Link
JP (1) JP7509317B2 (en)
WO (1) WO2022239104A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002517070A (en) * 1998-05-29 2002-06-11 アナリティカ オブ ブランフォード インコーポレーテッド Mass spectrometry with multipole ion guidance.
JP2003242926A (en) * 2002-02-20 2003-08-29 Hitachi High-Technologies Corp Mass spectrometer device
US20140264011A1 (en) * 2013-03-14 2014-09-18 Perkinelmer Health Sciences, Inc. Orthogonal acceleration system for time-of-flight mass spectrometer
US20170110311A1 (en) * 2014-06-12 2017-04-20 Washington State University Digital Waveform Manipulations to Produce MSn Collision Induced Dissociation
WO2019229864A1 (en) * 2018-05-30 2019-12-05 株式会社島津製作所 Orthogonal acceleration time-of-flight mass spectrometer and lead-in electrode therefor
CN111223751A (en) * 2018-11-27 2020-06-02 中国科学院大连化学物理研究所 Ion mobility spectrometry-time of flight mass spectrometer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002517070A (en) * 1998-05-29 2002-06-11 アナリティカ オブ ブランフォード インコーポレーテッド Mass spectrometry with multipole ion guidance.
JP2003242926A (en) * 2002-02-20 2003-08-29 Hitachi High-Technologies Corp Mass spectrometer device
US20140264011A1 (en) * 2013-03-14 2014-09-18 Perkinelmer Health Sciences, Inc. Orthogonal acceleration system for time-of-flight mass spectrometer
US20170110311A1 (en) * 2014-06-12 2017-04-20 Washington State University Digital Waveform Manipulations to Produce MSn Collision Induced Dissociation
WO2019229864A1 (en) * 2018-05-30 2019-12-05 株式会社島津製作所 Orthogonal acceleration time-of-flight mass spectrometer and lead-in electrode therefor
CN111223751A (en) * 2018-11-27 2020-06-02 中国科学院大连化学物理研究所 Ion mobility spectrometry-time of flight mass spectrometer

Also Published As

Publication number Publication date
JP7509317B2 (en) 2024-07-02
JPWO2022239104A1 (en) 2022-11-17

Similar Documents

Publication Publication Date Title
EP2463891B1 (en) Miniature mass spectrometer system
US10090140B2 (en) IRMS sample introduction system and method
US11434913B2 (en) Multiple port vacuum pump system
US20110147575A1 (en) Ion funnel for mass spectrometry
US20070114392A1 (en) Mass spectrometer
US8669518B2 (en) Mass spectrometer
JP7204019B2 (en) Ion source and mass spectrometer
US11699582B2 (en) Coupling for connecting analytical systems with vibrational isolation
US11201046B2 (en) Orthogonal acceleration time-of-flight mass spectrometer and lead-in electrode for the same
CA2408235A1 (en) Microscale mass spectrometric chemical-gas sensor
WO2011133817A1 (en) Two-segment ion transfer tube for mass spectrometer
US10103014B2 (en) Ion transfer device for mass spectrometry
US7230234B2 (en) Orthogonal acceleration time-of-flight mass spectrometer
WO2022239104A1 (en) Orthogonal acceleration time-of-flight mass spectrometer
US11437227B2 (en) Quadrupole mass spectrometer
CN114256054B (en) Time-of-flight mass spectrometer and detection system
JP7409523B2 (en) Orthogonal acceleration time-of-flight mass spectrometer
RU158343U1 (en) DEVICE FOR TIME-SPAN MASS SPECTROMETER WITH SOURCE OF IONS WITH IONIZATION AT ATMOSPHERIC PRESSURE FOR SEPARATION AND REGISTRATION OF IONS OF ANALYZED SUBSTANCES
WO2021193574A1 (en) Time-of-flight mass spectrometer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21941838

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023520622

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21941838

Country of ref document: EP

Kind code of ref document: A1