[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022239167A1 - Method for manufacturing printed wiring board with metal reinforcement plate, member set, and printed wiring board with metal reinforcement plate - Google Patents

Method for manufacturing printed wiring board with metal reinforcement plate, member set, and printed wiring board with metal reinforcement plate Download PDF

Info

Publication number
WO2022239167A1
WO2022239167A1 PCT/JP2021/018129 JP2021018129W WO2022239167A1 WO 2022239167 A1 WO2022239167 A1 WO 2022239167A1 JP 2021018129 W JP2021018129 W JP 2021018129W WO 2022239167 A1 WO2022239167 A1 WO 2022239167A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive adhesive
reinforcing plate
metal reinforcing
wiring board
mpa
Prior art date
Application number
PCT/JP2021/018129
Other languages
French (fr)
Japanese (ja)
Inventor
聡 西之原
努 早坂
Original Assignee
東洋インキScホールディングス株式会社
トーヨーケム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋インキScホールディングス株式会社, トーヨーケム株式会社 filed Critical 東洋インキScホールディングス株式会社
Priority to PCT/JP2021/018129 priority Critical patent/WO2022239167A1/en
Priority to CN202180097940.5A priority patent/CN117280876A/en
Priority to KR1020237037117A priority patent/KR20230163499A/en
Publication of WO2022239167A1 publication Critical patent/WO2022239167A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0058Laminating printed circuit boards onto other substrates, e.g. metallic substrates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/0218Reduction of cross-talk, noise or electromagnetic interference by printed shielding conductors, ground planes or power plane
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0254High voltage adaptations; Electrical insulation details; Overvoltage or electrostatic discharge protection ; Arrangements for regulating voltages or for using plural voltages
    • H05K1/0256Electrical insulation details, e.g. around high voltage areas
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening

Definitions

  • the present invention relates to a method for manufacturing a printed wiring board with a metal reinforcing plate, a member set used in the manufacturing method, and a printed wiring board with a metal reinforcing plate.
  • FPC flexible printed wiring boards
  • Patent Document 1 discloses an FPC in which a conductive metal reinforcing plate and a ground circuit are connected with a conductive adhesive. Specifically, a conductive adhesive sheet is used to attach a metal reinforcing plate made of stainless steel or the like to the FPC, thereby electrically connecting the metal reinforcing plate to the ground circuit. With such a configuration, it is possible to obtain an FPC with good electromagnetic wave shielding properties, and to stably transmit circuit signals.
  • Patent Literature 2 discloses a technique related to a conductive adhesive containing a thermosetting resin and a conductive filler.
  • the conductive adhesive When attaching a metal reinforcing plate to an FPC, the conductive adhesive is required to have embedding properties in the opening formed in the insulating protective film of the FPC. Specifically, when a set of members arranged in the order metal reinforcing plate/conductive adhesive/FPC is hot-pressed at a predetermined press temperature (for example, 170° C.), the softening of the conductive adhesive is insufficient. , there is a problem that the fillability of the conductive adhesive into the opening deteriorates. In particular, when the opening is small, the filling property is remarkably deteriorated, resulting in poor conduction. Therefore, it is necessary to soften the conductive adhesive at the pressing temperature (eg 170°C). On the other hand, when the conductive adhesive oozes out from between the metal reinforcing plate and the FPC due to the press pressure in the pressing process, it causes problems such as poor appearance and short circuit.
  • a predetermined press temperature for example, 170° C.
  • the conductive adhesive will exude excessively from between the metal reinforcing plate and the FPC, causing poor appearance and short circuits.
  • an object of the present invention is to provide a method for manufacturing a printed wiring board with a metal reinforcing plate, which has good fillability of a conductive adhesive in openings and can prevent appearance defects and short circuits, and the printed wiring board. and a printed wiring board with a metal reinforcing plate for use in the manufacturing method of the above.
  • a method for manufacturing a printed wiring board with a metal reinforcing plate according to one aspect of the present invention is a printed wiring board in which a circuit pattern including a ground circuit and an insulating protective film that insulates and protects the circuit pattern and has an opening are formed.
  • the member set is hot-pressed to bond the ground circuit and the metal reinforcing plate with the conductive adhesive through the opening provided in the insulating protective film, and the ground circuit and the metal reinforcing plate are bonded together.
  • a member set according to an aspect of the present invention includes a printed wiring board having a circuit pattern including a ground circuit, and an insulating protective film that insulates and protects the circuit pattern and has an opening penetrating to the ground circuit.
  • a metal reinforcing plate joined to the printed wiring board by hot pressing a member set used for manufacturing a printed wiring board with a metal reinforcing plate, It contains a binder resin that is softened by heat and a conductive filler, is filled into the opening by the heat press, electrically connects the ground circuit and the metal reinforcing plate, and connects the metal reinforcing plate to the printed wiring.
  • a conductive adhesive to be bonded to the plate, the metal reinforcing plate, and a cushioning material that softens during the hot press and flows into the side surface of the conductive adhesive and the metal reinforcing plate are arranged in this order. .
  • INDUSTRIAL APPLICABILITY it is used in a method for manufacturing a printed wiring board with a metal reinforcing plate, which has a good filling property of a conductive adhesive in an opening and can prevent appearance defects and short circuits, and a method for manufacturing the printed wiring board.
  • a printed wiring board with a member set and a metal reinforcing plate can be provided.
  • FIG. 10 is a diagram for explaining a member set preparation step [1] according to the embodiment;
  • FIG. 10 is a diagram for explaining a member set preparation step [2] according to the embodiment;
  • FIG. 10 is a diagram for explaining a member set preparation step [3] according to the embodiment;
  • FIG. 2 is a diagram for explaining a method (step [1]) for manufacturing a printed wiring board with a metal reinforcing plate according to the embodiment;
  • FIG. 4 is a diagram for explaining the method of manufacturing a printed wiring board with a metal reinforcing plate according to the embodiment (step [2]);
  • FIG. 10 is a diagram for explaining a member set preparation step [1] according to the embodiment
  • FIG. 10 is a diagram for explaining a member set preparation step [2] according to the embodiment
  • FIG. 10 is a diagram for explaining a member set preparation step [3] according to the embodiment
  • FIG. 2 is a diagram for explaining a method (step [1]) for manufacturing a printed wiring board with
  • FIG. 4 is a diagram for explaining the method (step [3]) for manufacturing a printed wiring board with a metal reinforcing plate according to the embodiment; 1 is a cross-sectional view of a printed wiring board with a metal reinforcing plate according to an embodiment; FIG. It is a sectional view of a member set concerning an embodiment. FIG. 11 is a cross-sectional view of a member set according to another embodiment; FIG. 5 is a cross-sectional view of a printed wiring board with a metal reinforcing plate according to a comparative example, for explaining poor embedding properties of a conductive adhesive into an opening.
  • FIG. 5 is a cross-sectional view of a printed wiring board with a metal reinforcing plate according to a comparative example, for explaining a defect in seeping of a conductive adhesive
  • FIG. 10 is a plan view of a printed wiring board according to a comparative example for explaining a leaking defect of a conductive adhesive
  • FIG. 4 is a schematic plan view of a printed wiring board with a metal reinforcing plate according to a comparative example, for explaining the bleeding failure of the conductive adhesive;
  • a sheet in this specification includes not only a sheet defined in JIS but also a film. For clarity of explanation, the following description and drawings have been simplified where appropriate. Unless otherwise noted, the various components appearing in this specification may be used singly or in combination of two or more. In this specification, “printed wiring board” may be abbreviated as “wiring board”. Hereinafter, examples of embodiments of the present invention will be described.
  • FIGS. 1A to 2C show a manufacturing process for attaching a metal reinforcing plate to a printed wiring board using a conductive adhesive.
  • conductive adhesive refers to a conductive adhesive before heat curing
  • conductive adhesive layer refers to a layer obtained by heat curing a conductive adhesive (that is, , conductive adhesive after thermosetting), and both are given the same reference numerals.
  • a conductive adhesive sheet 13 having a conductive adhesive 12 formed on a peelable film 11 and a metal reinforcing plate 14 are prepared.
  • the conductive adhesive 12 side of the conductive adhesive sheet 13 is attached to the metal reinforcing plate 14, and the conductive adhesive sheet 13 is temporarily attached to the metal reinforcing plate 14. do.
  • the temperature at which the conductive adhesive sheet 13 is temporarily attached to the metal reinforcing plate 14 can be, for example, 110.degree. C. to 150.degree. C., preferably 130.degree.
  • the conductive adhesive 12 is in a semi-cured state.
  • the peelable film 11 is peeled off to expose the surface of the conductive adhesive 12 opposite to the metal reinforcing plate 14 .
  • the preliminary laminate 15 of the conductive adhesive 12 and the metal reinforcing plate 14 is cut to a predetermined size (the cutting line is indicated by reference numeral 18).
  • the cutting of the pre-laminate 15 can be performed, for example, using a stamping process.
  • the peelable film 11 may be peeled off after the cutting step.
  • a printed wiring board is prepared on which a circuit pattern including a ground circuit and an insulating protective film that insulates and protects the circuit pattern and has an opening is formed. Then, above the insulating protective film of the printed wiring board, a member set having, in this order, a conductive adhesive containing a binder resin and a conductive filler that are softened by heat, a metal reinforcing plate, and a cushioning material is mounted on the wiring. In this step, the plate and the conductive adhesive are arranged so as to face each other.
  • the member set of the present invention is used when (i) the layers of the conductive adhesive/metal reinforcing plate/cushion material are integrated and then used, and (ii) the respective layers are arranged in order above the printed wiring board. (iii) when a cushioning material is arranged in a preliminary laminate in which a conductive adhesive and a metal reinforcing plate are integrated; This includes the case where a preliminary laminate is arranged and used. That is, in this member set, the conductive adhesive, the metal reinforcing plate, and the cushioning material may be arranged in this order at the time of hot pressing. And the metal reinforcing plate and the cushion member may be independently non-integral or integral.
  • integrated means not only being stacked but also stuck (laminated), and "non-integrated” means not stuck but stacked.
  • at least the member set of this agent set is integrated.
  • Wiring board 20 has a structure in which base material 21 on the lower side and insulating film 22 on the upper side are adhered with insulating adhesive 23 .
  • a signal circuit 24 and a ground circuit 25 are formed on the substrate 21.
  • Above the ground circuit 25 are an insulating film 22 and an opening (through hole) 27 provided in an insulating adhesive 23. are placed. That is, part of the ground circuit 25 formed on the base material 21 is exposed through the opening 27 .
  • Member set 17 is arranged above opening 27 of wiring board 20 .
  • the insulating film 22 and the insulating adhesive 23 function as an insulating protective film.
  • Step [2]> the member set is hot-pressed, the ground circuit and the metal reinforcing plate are bonded with a conductive adhesive through the opening provided in the insulating protective film of the printed wiring board, and the ground This is the step of electrically connecting the circuit and the metal reinforcing plate.
  • the laminate of member set 17/wiring board 20 is hot-pressed (heated/heated) at a predetermined temperature (for example, 150 to 190° C., preferably 170° C.). pressure).
  • a predetermined temperature for example, 150 to 190° C., preferably 170° C.
  • the conductive adhesive 12 is softened and embedded in the openings 27 formed in the insulating film 22 and the insulating adhesive 23 .
  • the conductive adhesive 12 contacts the ground circuit 25 exposed through the opening 27 .
  • the conductive adhesive 12 is cured to bond the metal reinforcing plate 14 and the wiring board 20 together, and electrically connect the ground circuit 25 and the metal reinforcing plate 14 .
  • the cushioning material 16 is fluidized by heat and pressure, flows into the side surfaces of the metal reinforcing plate 14 and the conductive adhesive 12, and prevents the conductive adhesive 12 from seeping out. That is, the cushion material 16 flows to the side surface of the conductive adhesive 12 before the conductive adhesive 12 seeps out from the metal reinforcing plate during hot pressing, and prevents the seepage. In this state, the cushion material 16 requires hardness (viscoelasticity) to suppress the exudation of the conductive adhesive 12 .
  • the pressure during hot pressing is preferably about 3 to 30 kg/cm 2 .
  • a flat pressing machine or a roll pressing machine can be used for the hot press.
  • the time for hot pressing is not particularly limited as long as the member set of cushion material 16/metal reinforcing plate 14/conductive adhesive 12/wiring board 20 is sufficiently adhered, but usually from 1 minute to. It takes about 1 hour. If the hot press time is short, it is preferable to heat the conductive adhesive 12 in an oven at 150 to 190° C. for 30 minutes to 3 hours after the hot press to fully cure the conductive adhesive 12 .
  • Step [3] is a step of peeling off the cushion material of the member set. After the hot pressing, as shown in FIG. 2C, the cushioning material 16 whose fluidity has disappeared due to the decrease in temperature is peeled off by a suction peeling device or manually. As a result, as shown in FIG. 3, the metal reinforcing plate 14 and the ground circuit 25 of the wiring board 20 are electrically connected via the conductive adhesive layer 12, thereby forming a printed wiring with a metal reinforcing plate having electromagnetic wave shielding properties.
  • a plate 30 can be manufactured.
  • a member set according to the present embodiment is used in the above-described method for manufacturing a printed wiring board with a metal reinforcing plate, and is arranged in the order of a cushion material, a metal reinforcing plate, and a conductive adhesive. As shown in FIG. 4A, each member may have substantially the same size in plan view. In addition, as shown in FIG. 4B , a mode in which a protruding region of the cushion material on which the metal reinforcing plate and the conductive adhesive are not superimposed is provided outside the outer edge of the metal reinforcing plate and the conductive adhesive in a plan view. good too.
  • the size of the cushioning material in plan view may be larger than that of the conductive adhesive and the metal reinforcing plate, and the cushioning material may have a region that protrudes from the metal reinforcing plate or the like in plan view.
  • the storage elastic modulus of the cushion material is 10 MPa or more and 100 MPa or less at 170 ° C.
  • the storage elastic modulus of the conductive adhesive is 170 ° C. is 2 MPa or more and 50 MPa or less
  • the storage elastic modulus of the cushion material is preferably higher than that of the conductive adhesive.
  • the member set After forming the preliminary laminate 15 composed of the metal reinforcing plate 14 and the conductive adhesive 12 as described above, the member set includes the step of stacking the cushioning material, or the conductive adhesive/metal reinforcement in advance before placing on the wiring board.
  • a member set (laminate) in which the plate/cushion material is integrated may be formed.
  • a member set that satisfies any one of the following conditions (I) to (III) is preferable from the viewpoint of having excellent embedding properties in openings and more effectively exuding the conductive adhesive.
  • the storage modulus of the conductive adhesive at 170° C. is 5.5 MPa or more and 50 MPa or less, and the storage modulus of the cushioning material at 170° C. is 10 MPa or more and 100 MPa or less, and the storage modulus of the conductive adhesive is A component set with a higher cushioning material.
  • the storage modulus of the conductive adhesive at 170°C is 2 MPa or more and 50 MPa or less, and the storage modulus of the cushioning material at 170°C is 10 MPa or more and 100 MPa or less, and the storage modulus is higher than that of the conductive adhesive.
  • the storage modulus of the conductive adhesive at 170° C. is 2 MPa or more and 50 MPa or less, and the storage modulus of the cushioning material at 170° C. is 10 MPa or more and 100 MPa or less, and the storage modulus is higher than that of the conductive adhesive.
  • a member set in which the material is high and the thickness ratio between the metal reinforcing plate and the cushioning material is 1.5 to 2.
  • thickness ratio between the metal reinforcing plate and the cushioning material is 1.5 to 2.
  • the cushion material uniformly transmits the press pressure of the hot press to the metal reinforcing plate and the conductive adhesive, flows during the hot press, and has a role of suppressing the seepage of the conductive adhesive.
  • the storage elastic modulus of the cushioning material at 170°C is preferably 10 MPa or more and 100 MPa or less, more preferably 12 MPa or more and 90 MPa or less, and even more preferably 15 MPa or more and 70 MPa or less.
  • the storage elastic modulus of the cushioning material exceeds 100 MPa, as shown in FIG. 4B, the cushioning material cannot disperse the press pressure, and the conductive adhesive 12 is strongly applied to the pressure, so that it softens and tends to seep out.
  • the storage elastic modulus is less than 10 MPa, the hardness of the cushioning material is insufficient, and it becomes difficult to suppress exudation due to softening of the conductive adhesive.
  • the storage elastic modulus of the cushioning material according to this embodiment can be measured as follows. That is, using a dynamic viscoelasticity measuring device, the storage elastic modulus (E′), loss elastic modulus (E′′), and loss tangent (tan ⁇ ) changes in the temperature range of 25 to 200 ° C. of the cushion material are measured. It can be obtained by extracting the storage elastic modulus (E′) in .
  • the melt flow rate (MFR) of the cushioning material is preferably 0.002 g/10 min or more and 17 g/10 min or less, more preferably 0.01 g/10 min or more and 4.0 g/10 min or less.
  • MFR melt flow rate
  • the cushioning material reaches the side surface and effectively exhibits the effect of suppressing oozing out.
  • the embedding of the conductive adhesive 12 is improved by suppressing excessive flow and uniformly transmitting the press pressure.
  • the cushion material can be formed from a thermoplastic resin composition containing a thermoplastic resin.
  • the thermoplastic resin composition may contain a plasticizer, a thermosetting agent, an inorganic filler, etc. in addition to the thermoplastic resin.
  • thermoplastic resins include polyolefin resins, acid-modified polyolefin resins grafted with acid, copolymer resins of polyolefins and unsaturated esters, vinyl resins, styrene/acrylic resins, diene resins, cellulose resins, Polyamide resins, polyurethane resins, polyester resins, polycarbonate resins, polyimide resins, fluorine resins, and the like can be used. Among these, polyolefin resins, acid-modified polyolefin resins grafted with acid, copolymer resins of polyolefins and unsaturated esters, and vinyl resins are preferred.
  • the thermoplastic resins may be used singly or as a mixture of two or more at any ratio as required.
  • Polyolefin-based resins are preferably homopolymers or copolymers of ethylene, propylene, ⁇ -olefin compounds, and the like. Specific examples include low-density polyethylene, ultra-low-density polyethylene, linear low-density polyethylene, high-density polyethylene, polypropylene homopolymer, polypropylene copolymer, and the like. Among these, polyethylene resin and polypropylene resin are preferred, and polyethylene resin is more preferred.
  • the acid-modified polyolefin resin is preferably a polyolefin resin grafted with maleic acid, acrylic acid, methacrylic acid, itaconic acid, or the like. Among these, maleic acid-modified polyolefin resins are preferred.
  • Examples of unsaturated esters in copolymer resins of polyolefins and unsaturated esters include methyl acrylate, ethyl acrylate, isobutyl acrylate, n-butyl acrylate, isooctyl acrylate, methyl methacrylate, isobutyl methacrylate, dimethyl maleate, diethyl maleate and glycidyl methacrylate, and the like.
  • an ethylene-glycidyl methacrylate copolymer resin composed of ethylene as a polyolefin and glycidyl methacrylate as an unsaturated ester is preferred.
  • the vinyl-based resin is preferably a polymer obtained by polymerization of a vinyl ester such as vinyl acetate, or a copolymer of a vinyl ester and an olefin compound such as ethylene.
  • a vinyl ester such as vinyl acetate
  • a copolymer of a vinyl ester and an olefin compound such as ethylene.
  • Specific examples include ethylene-vinyl acetate copolymer, ethylene-vinyl propionate copolymer, partially saponified polyvinyl alcohol, and the like. Among these, ethylene-vinyl acetate copolymers are preferred.
  • the styrene-acrylic resin is preferably a homopolymer or copolymer composed of styrene, (meth)acrylonitrile, acrylamides, maleimides, and the like. Specific examples include syndiotactic polystyrene, polyacrylonitrile, and acrylic copolymers.
  • the diene-based resin is preferably a homopolymer or copolymer of a conjugated diene compound such as butadiene or isoprene, and a hydrogenated product of these homopolymers or copolymers.
  • a conjugated diene compound such as butadiene or isoprene
  • a hydrogenated product of these homopolymers or copolymers e.g., styrene-butadiene rubber, styrene-isoprene block copolymer, styrene-ethylene/butylene-styrene block copolymer, styrene-ethylene/propylene-styrene block copolymer, styrene-isoprene-styrene block copolymer, styrene-butylene/butadiene- Examples include styrene block copolymers, mixtures of styrene-ethylene/buty
  • Cellulose-based resin is preferably cellulose acetate butyrate resin.
  • Polycarbonate resin is preferably bisphenol A polycarbonate.
  • Polyimide-based resins are preferably thermoplastic polyimides, polyamide-imide resins, and polyamic acid-type polyimide resins.
  • the cushion material may include a release layer in addition to the cushioning member.
  • a release layer it is preferable to form a layer made of polypropylene, polymethylpentene, cyclic olefin polymer, silicone, or fluororesin. Among these, more preferable are polypropylene, polymethylpentene, silicone and fluororesin.
  • a form in which a release agent such as alkyd or silicone is coated is also preferable.
  • the thickness of the release layer is preferably 0.001-70 ⁇ m, more preferably 0.01-50 ⁇ m.
  • CR1012 "CR1012MT4", “CR1040”, “CR2031MT4", etc. manufactured by Mitsui Tocello can be used as commercially available cushioning materials.
  • These commercially available cushioning materials have a layered structure in which both sides of the cushioning material are sandwiched between polymethylpentene as release layers, and the integral structure of these is called a cushioning material in the present application.
  • the thickness of the cushion material is preferably 50-300 ⁇ m, more preferably 75-250 ⁇ m, and even more preferably 100-200 ⁇ m. By setting the thickness to 50 to 300 ⁇ m, the exudation property can be improved. In addition, the said thickness is a value including a mold release layer, when it has a mold release layer.
  • Metal reinforcing plates include conductive metals such as gold, silver, copper, iron and stainless steel. Among these, stainless steel is preferable in terms of strength, cost and chemical stability as a reinforcing plate.
  • the thickness of the metal reinforcing plate is preferably 50-500 ⁇ m, more preferably 60-400 ⁇ m, even more preferably 75-300 ⁇ m.
  • the thickness of the metal reinforcing plate is preferably 50-500 ⁇ m, more preferably 60-400 ⁇ m, even more preferably 75-300 ⁇ m.
  • the metal reinforcing plate preferably has a plated layer formed on its surface in order to suppress an increase in resistance value due to non-conductivity of the surface.
  • the plating layer is preferably gold, silver, nickel, or phosphorous-containing nickel plating.
  • the plating method is preferably electrolytic plating or electroless plating.
  • the thickness of the plated layer is approximately 0.1 to 5 ⁇ m, preferably 0.2 to 4 ⁇ m. Incidentally, the thickness of the metal reinforcing plate is a value including the plated layer when it has a plated layer. From the viewpoint of cost reduction, it is preferable to avoid plating.
  • the thickness ratio between the metal reinforcing plate and the cushioning material is preferably 2 or less. It is more preferably 1.7 or less, even more preferably 1.3 or less.
  • the lower limit is preferably 0.1 or more, more preferably 0.5 or more.
  • the conductive adhesive according to the present embodiment preferably contains at least a binder resin softened by heat and a conductive filler, and preferably has the following properties.
  • the storage elastic modulus of the conductive adhesive at 170° C. may be 2 MPa or more and 50 MPa or less, preferably 4 MPa or more and 25 MPa or less, more preferably 7 MPa or more and 15 MPa or less.
  • the conductive adhesive 12 is sufficiently softened during hot pressing (see step [1] in FIG. 2A to step [3] in FIG. 2C). It is possible to improve the fillability of the conductive adhesive 12 into the opening. Therefore, the formation of a gap 29b (see FIG.
  • Methods for increasing the storage elastic modulus at 170° C. to 2 MPa or more include, for example, increasing the weight-average molecular weight Mw of the binder resin, making the binder resin a skeleton having many aromatic rings to increase rigidity, and conducting fillers and inorganic fillers.
  • the binder resin is a thermosetting resin
  • methods such as increasing the cross-linking density with the curing agent in the B stage can be used.
  • Techniques for making the storage elastic modulus at 170° C. to 50 MPa or less include, for example, lowering the weight average molecular weight Mw of the binder resin, reducing the rigidity of the binder resin by reducing aromatic rings, adding conductive fillers, inorganic fillers, and the like. Techniques include reducing the amount of filler component added, and when the binder resin is a thermosetting resin, lowering the crosslink density with the curing agent in the B stage, which is in the semi-cured state.
  • the storage elastic modulus of the conductive adhesive at 170° C. to the range described above, a conductive adhesive having good filling properties in openings during manufacturing of a printed wiring board with a metal reinforcing plate can be obtained. and a printed wiring board with a metal reinforcing plate.
  • the storage elastic modulus of the conductive adhesive according to this embodiment can be obtained by the same method as for the cushion material.
  • the storage elastic modulus of the cushioning material is preferably higher than that of the conductive adhesive.
  • the difference in storage elastic modulus at 170° C. between the cushion material and the conductive adhesive is preferably 4 to 100 MPa, more preferably 10 to 87 MPa.
  • the loss tangent (tan ⁇ ) of the conductive adhesive at 170° C. is preferably 0.05 or more and 0.4 or less, more preferably 0.15 or more and 0.35 or less, and 0.20 or more and 0.20 or more. 3 or less is more preferable.
  • the loss tangent (tan ⁇ ) of the conductive adhesive at 170° C. is preferably 0.05 or more and 0.4 or less, more preferably 0.15 or more and 0.35 or less, and 0.20 or more and 0.20 or more. 3 or less is more preferable.
  • Techniques for making the loss tangent at 170° C. 0.05 or more include, for example, lowering the weight average molecular weight Mw of the binder resin, lowering the acid value of the binder resin, lowering the glass transition temperature (Tg) of the binder resin, and and adding a curing agent that is liquid at room temperature.
  • Methods for making the loss tangent at 170° C. 0.40 or less include, for example, increasing the weight-average molecular weight Mw of the binder resin, increasing the acid value of the binder resin, increasing the Tg of the binder resin, and adding a solid at room temperature. For example, a curing agent is added.
  • the loss tangent (tan ⁇ ) of the conductive adhesive according to the present embodiment is the storage elastic modulus (E' ), loss modulus (E′′), and loss tangent (tan ⁇ ), and extract the loss tangent (tan ⁇ ) at each temperature.
  • the conductive adhesive of the present embodiment can be determined using the peak temperature in the temperature-loss tangent (tan ⁇ ) curve obtained by viscoelasticity measurement.
  • the conductive adhesive of the present invention preferably has first and second glass transition temperatures, with the low temperature peak defined as the first glass transition temperature and the high temperature peak defined as the second glass transition temperature.
  • the first glass transition temperature is 10° C. or higher and 45° C. or lower
  • the second glass transition temperature is 70° C. or higher and 140° C. or lower. More preferably, the first glass transition temperature is 25° C. or higher and 40° C. or lower
  • the second glass transition temperature is 75° C. or higher and 110° C. or lower.
  • the first glass transition temperature is 27° C. or higher and 36° C. or lower
  • the second glass transition temperature is 78° C. or higher and 95° C. or lower.
  • Techniques for setting the first glass transition temperature to 10° C. or higher and 45° C. or lower include, for example, a method of controlling the Tg of the binder resin, and when the binder resin is a thermosetting resin, the cross-linking density with the curing agent is adjusted. There are methods of control. In order to set the second glass transition temperature to 70° C. or higher and 140° C. or lower, the same method as described above can be used for adjustment.
  • the thickness of the conductive adhesive is preferably 15-70 ⁇ m, more preferably 20-65 ⁇ m. By setting the thickness to 15 ⁇ m or more, it is possible to improve the embedding property in a small opening via. By setting the thickness to 70 ⁇ m or less, the bleeding property can be suppressed.
  • the thickness of the conductive adhesive can be measured by a contact-type film thickness meter, cross-sectional observation, or the like.
  • the conductive adhesive that constitutes the member set can be produced, for example, from a conductive adhesive sheet using a conductive resin composition and forming a conductive adhesive on a peelable film.
  • the conductive adhesive according to the present embodiment is preferably formed from a conductive resin composition containing a binder resin softened by heat and conductive fine particles.
  • the binder resin softened by heat is not particularly limited as long as it does not deviate from the gist of the present invention, but thermosetting resins are preferred.
  • Thermoplastic resins are preferred for applications in which there is no heating process such as a reflow process in the post-process.
  • a self-crosslinking type and a curing agent reaction type can be used for the thermosetting resin.
  • a thermosetting resin having a reactive functional group capable of reacting with a curing agent is suitable as the curing agent reaction type binder resin.
  • thermosetting resin is a resin having a plurality of functional groups that can be used for a cross-linking reaction by heating.
  • functional groups include hydroxyl groups, phenolic hydroxyl groups, carboxyl groups, amino groups, epoxy groups, oxetanyl groups, oxazoline groups, oxazine groups, aziridine groups, thiol groups, isocyanate groups, blocked isocyanate groups, silanol groups, and the like.
  • Thermosetting resins having the above functional groups include, for example, acrylic resins, maleic acid resins, polybutadiene resins, polyester resins, condensation type polyester resins, addition type polyester resins, melamine resins, polyurethane resins, polyurethane urea resins, and epoxy resins. , oxetane resins, phenoxy resins, polyimide resins, polyamide resins, polyamideimide resins, phenolic resins, alkyd resins, amino resins, polylactic acid resins, oxazoline resins, benzoxazine resins, silicone resins, and fluorine resins.
  • polyurethane resins, polyurethane urea resins, epoxy resins, addition type polyester resins, polyimide resins, polyamide resins, and polyamideimide resins are preferred.
  • the weight average molecular weight (Mw) of the thermosetting resin is preferably 50,000 to 200,000, more preferably 70,000 to 130,000.
  • Mw weight average molecular weight
  • the glass transition temperature (Tg) of the thermosetting resin is preferably -20°C to 20°C, more preferably -7°C to 150°C. By setting the glass transition temperature within the above range, the storage elastic modulus of the conductive adhesive at 25°C can be made suitable.
  • the acid value of the thermosetting resin is preferably 1-40 mgKOH/g, more preferably 4-15 mgKOH/g, and even more preferably 6-13 mgKOH/g.
  • the curing agent can be arbitrarily selected according to the type of thermosetting resin. As a curing agent, it functions to make a semi-cured state when forming a conductive adhesive by a cross-linking reaction, and does not completely cure when forming a conductive adhesive sheet, and is hot-pressed to a wiring board or a metal reinforcing plate. A curing agent that cures at the time can also be appropriately selected. Curing agents include epoxy compounds, isocyanate curing agents, amine curing agents, aziridine curing agents, and imidazole curing agents.
  • epoxy compound a glycidyl ether type epoxy compound, a glycidyl amine type epoxy compound, a glycidyl ester type epoxy compound, a cycloaliphatic (alicyclic type) epoxy compound, and the like are preferable.
  • Examples of the glycidyl ether type epoxy compounds include bisphenol A type epoxy compounds, bisphenol F type epoxy compounds, bisphenol S type epoxy compounds, bisphenol AD type epoxy compounds, cresol novolak type epoxy compounds, phenol novolak type epoxy compounds, ⁇ -naphthol novolak type.
  • Epoxy compounds, bisphenol A type novolak type epoxy compounds, dicyclopentadiene type epoxy compounds, tetrabromobisphenol A type epoxy compounds, brominated phenol novolac type epoxy compounds, tris(glycidyloxyphenyl)methane, tetrakis(glycidyloxyphenyl)ethane, etc. is mentioned.
  • glycidylamine-type epoxy compounds examples include tetraglycidyldiaminodiphenylmethane, triglycidyl para-aminophenol, triglycidylmethaminophenol, tetraglycidylmethaxylylenediamine, and the like.
  • Examples of the glycidyl ester type epoxy compound include diglycidyl phthalate, diglycidyl hexahydrophthalate, and diglycidyl tetrahydrophthalate.
  • cycloaliphatic (alicyclic) epoxy compounds examples include epoxycyclohexylmethyl-epoxycyclohexanecarboxylate and bis(epoxycyclohexyl)adipate.
  • Isocyanate-based curing agents include tolylene diisocyanate, diphenylmethane diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, xylylene diisocyanate, dicyclohexylmethane diisocyanate, 1,5-naphthalene diisocyanate, tetramethylxylylene diisocyanate, trimethylhexamethylene diisocyanate, and the like. be done.
  • Amine-based curing agents include diethylenetriamine, triethylenetetramine, methylenebis(2-chloroaniline), methylenebis(2-methyl-6-methylaniline), 1,5-naphthalenediisocyanate, n-butylbenzylphthalic acid, and the like.
  • Aziridine curing agents include trimethylolpropane-tri- ⁇ -aziridinylpropionate, tetramethylolmethane-tri- ⁇ -aziridinylpropionate, N,N'-diphenylmethane-4,4'-bis( 1-aziridinecarboxamide), N,N'-hexamethylene-1,6-bis(1-aziridinecarboxamide) and the like.
  • imidazole curing agents examples include 2-methylimidazole, 2-heptadecylimidazole, 2-phenyl-4-methylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate and the like.
  • the curing agent is preferably blended in an amount of 0.3 to 80 parts by weight, more preferably 1 to 50 parts by weight, per 100 parts by weight of the thermosetting resin.
  • the crosslink density of the conductive adhesive can be optimized, and the storage elastic modulus at 170° C. can be in the range of 2 MPa or more and 50 MPa or less.
  • the conductive adhesive sheet is less likely to flow after semi-curing, so that blocking is easily suppressed.
  • thermoplastic resin may be used together.
  • thermoplastic resins include polyolefin resins, vinyl resins, styrene/acrylic resins, diene resins, terpene resins, petroleum resins, cellulose resins, polyamide resins, polyurethane resins, and polyester resins that do not have the curable functional group. , polycarbonate resins, polyimide resins, fluorine resins, and the like.
  • Polyolefin-based resins are preferably homopolymers or copolymers of ethylene, propylene, ⁇ -olefin compounds, and the like. Specific examples include polyethylene propylene rubber, olefinic thermoplastic elastomer, ⁇ -olefin polymer, and the like.
  • the vinyl-based resin is preferably a polymer obtained by polymerization of a vinyl ester such as vinyl acetate, or a copolymer of a vinyl ester and an olefin compound such as ethylene.
  • a vinyl ester such as vinyl acetate
  • a copolymer of a vinyl ester and an olefin compound such as ethylene.
  • Specific examples include ethylene-vinyl acetate copolymer, partially saponified polyvinyl alcohol, and the like.
  • the styrene-acrylic resin is preferably a homopolymer or copolymer of styrene, (meth)acrylonitrile, acrylamides, (meth)acrylic acid esters, maleimides and the like. Specific examples include syndiotactic polystyrene, polyacrylonitrile, acrylic copolymers, ethylene-methyl methacrylate copolymers, and the like.
  • the diene resin is preferably a homopolymer or copolymer of a conjugated diene compound such as butadiene or isoprene, and hydrogenated products thereof. Specific examples include styrene-butadiene rubber and styrene-isoprene block copolymers.
  • the terpene resin is preferably a polymer composed of terpenes or a hydrogenated product thereof. Specific examples include aromatic modified terpene resins, terpene phenol resins, and hydrogenated terpene resins.
  • the petroleum-based resin is preferably a dicyclopentadiene-type petroleum resin or a hydrogenated petroleum resin.
  • Cellulose-based resin is preferably cellulose acetate butyrate resin.
  • Polycarbonate resin is preferably bisphenol A polycarbonate.
  • the polyimide resin is preferably thermoplastic polyimide, polyamideimide resin, or polyamic acid type polyimide resin.
  • the conductive fine particles are preferably fine particles of conductive metals such as gold, platinum, silver, copper and nickel, alloys thereof, and conductive polymers. From the viewpoint of cost reduction, it is preferable to use composite fine particles in which metal or resin is used instead of fine particles of a single composition, and the coating layer that coats the surface of the core is formed of a material having higher conductivity than the core. It is preferable to appropriately select the core material from inexpensive nickel, silica, copper and their alloys, and resin.
  • the coating layer may be made of any conductive material, preferably a conductive metal or a conductive polymer. Conductive metals include gold, platinum, silver, tin, manganese, indium, and the like, and alloys thereof. Examples of conductive polymers include polyaniline and polyacetylene. Among these, silver is preferable from the aspect of conductivity.
  • the conductive fine particles may be used alone or in combination of two or more.
  • the fine composite particles preferably have a coating layer in a proportion of 1 to 40 parts by weight, more preferably 5 to 30 parts by weight, per 100 parts by weight of the core. Coating with 1 to 40 parts by weight can further reduce costs while maintaining electrical conductivity. In addition, it is preferable that the coating layer of the fine composite particles completely covers the nucleus. However, in reality, part of the nuclear body may be exposed. Even in such a case, if 70% or more of the surface area of the core is covered with the conductive fine particles, the conductivity can be easily maintained.
  • the shape of the conductive fine particles is not limited as long as the desired conductivity is obtained.
  • spherical, flake-like, leaf-like, dendritic, plate-like, needle-like, rod-like and grape-like are preferred.
  • a spherical shape and a dendritic shape are more preferable in order to efficiently form a vertical conducting path between the metal reinforcing plate and the wiring board.
  • the D50 average particle size of the conductive fine particles is preferably 1 to 120 ⁇ m, more preferably 5 to 60 ⁇ m. When the D50 average particle size is within this range, blocking can be suppressed.
  • the D50 average particle size can be determined by a laser diffraction/scattering method particle size distribution analyzer. For example, a conductive adhesive sheet having a conductive adhesive on a peelable film is rolled up and transported. Blocking is a phenomenon in which the conductive adhesive sheet adheres to the back surface of the peelable film when the conductive adhesive sheet is unwound from the rolled conductive adhesive sheet.
  • the amount of conductive fine particles added is preferably 30 to 90% by weight, more preferably 40 to 80% by weight, based on 100% by weight of the conductive adhesive.
  • Each storage elastic modulus at 170° C. can be set within a suitable range by adjusting the amount to be added as described above.
  • the conductive resin composition in the present embodiment contains other optional components such as a solvent, a heat stabilizer, an inorganic filler, a pigment, a dye, a tackifying resin, a plasticizer, a silane coupling agent, an ultraviolet absorber, an antifoaming agent, A leveling adjuster or the like can be blended.
  • inorganic fillers examples include silica, alumina, aluminum hydroxide, magnesium hydroxide, barium sulfate, calcium carbonate, titanium oxide, zinc oxide, antimony trioxide, magnesium oxide, talc, montmorolinite, kaolin, and bentonite. be done.
  • silica silica
  • alumina aluminum hydroxide
  • magnesium hydroxide barium sulfate
  • calcium carbonate titanium oxide
  • zinc oxide zinc oxide
  • antimony trioxide magnesium oxide
  • talc montmorolinite
  • kaolin kaolin
  • bentonite be done.
  • the conductive resin composition can be obtained by mixing and stirring the above components.
  • a known stirring device can be used, and Dispermat is generally used, but a homogenizer is also preferable.
  • the conductive resin composition is applied to the release surface of the release film by methods such as knife coating, die coating, lip coating, roll coating, curtain coating, bar coating, gravure coating, flexo coating, dip coating, spray coating, and spin coating. and heated to a temperature of usually 40 to 20° C. to remove volatile components such as solvents, thereby forming a conductive adhesive sheet having a conductive adhesive layer.
  • peelable film As the peelable film, any film having one side or both sides subjected to release treatment can be used without limitation.
  • base materials for peelable films include polyethylene terephthalate, polyethylene naphthalate, polyvinyl fluoride, polyvinylidene fluoride, rigid polyvinyl chloride, polyvinylidene chloride, nylon, polyimide, polystyrene, polyvinyl alcohol, and ethylene/vinyl alcohol copolymer.
  • Coalescing polycarbonate, polyacrylonitrile, polybutene, soft polyvinyl chloride, polyvinylidene fluoride, polyethylene, polypropylene, polyurethane, ethylene vinyl acetate copolymer, plastic sheets such as polyvinyl acetate, glassine paper, fine paper, kraft paper, coated Examples include papers such as paper, various non-woven fabrics, synthetic papers, metal foils, and composite films in which these are combined.
  • the surface of the peelable film can be matte treated as needed.
  • matting include sand matting, etching matting, coating matting, chemical matting, and kneading matting.
  • the peelable film can be obtained by applying a release agent to the substrate.
  • Release agents include hydrocarbon resins such as polyethylene and polypropylene, higher fatty acids and their metal salts, higher fatty acid soaps, waxes, animal and vegetable oils, mica, talc, silicone surfactants, silicone oils, silicone resins, fluorine-based Surfactants, fluorine resins, fluorine-containing silicone resins, melamine resins, acrylic resins, and the like are used.
  • Examples of the method of applying the release agent include conventionally known methods, gravure coating, kiss coating, die coating, lip coating, comma coating, blade coating, roll coating, knife coating, spray coating, and bar coating. method, spin coating method, dip coating method, or the like.
  • a printed wiring board is provided with a circuit pattern including a ground circuit and an insulating protective film that insulates and protects the circuit pattern and has an opening on a substrate.
  • Circuit patterns including ground circuits are generally formed by etching copper.
  • the insulating protective film is preferably formed of a polyimide coverlay comprising a polyimide film and an insulating adhesive, a resist film, or a solder resist. Drilling, etching, and laser processing are preferred methods for forming an opening on the ground circuit. The area, shape, etc. of the opening will be described later.
  • a printed wiring board 30 with a metal reinforcing plate according to the present embodiment has a circuit pattern including a ground circuit 25 arranged on a base material 21, and an insulating protective film (insulating layer) for insulating and protecting the upper layer thereof. It has a wiring board 20 on which an insulating film 22 and an insulating adhesive 23) are formed. A ground circuit 25 exposed through an opening 27 provided in the insulating protective film, and a conductive adhesive layer 12 arranged on the wiring board 20 and formed using the conductive adhesive described above. and a metal reinforcing plate 14 disposed on the conductive adhesive layer 12 and bonded to the wiring board 20 via the conductive adhesive layer 12 .
  • opening 27 is partially filled with conductive adhesive layer 12, so that ground circuit 25 and metal reinforcing plate 14 are bonded with the conductive adhesive. They are electrically connected through layer 12 .
  • a signal circuit 24 may be further provided on the wiring board 20 .
  • the area of opening 27 (see FIG. 3) of printed wiring board 30 with a metal reinforcing plate is not particularly limited, but may be 0.16 mm 2 or more and 0.81 mm 2 or less. By setting the area of the opening 27 to 0.16 mm 2 or more, the filling property of the conductive adhesive 12 into the opening 27 can be improved. Further, by setting the area of opening 27 to 0.81 mm 2 or less, the area of opening 27 occupying printed wiring board 30 with a metal reinforcing plate can be reduced.
  • the area of the opening 27 may be preferably 0.25 mm 2 or more and 0.64 mm 2 or less, more preferably 0.36 mm 2 or more and 0.49 mm 2 or less.
  • the filling of the opening 27 with the conductive adhesive 12 can be improved, and the contact resistance between the conductive adhesive 12 and the ground circuit 25 can be reduced. can be done.
  • the conductive adhesive can be sufficiently filled, and the printed wiring board with the metal reinforcing plate has good embedding properties.
  • the shape of the opening 27 when viewed from above may be square (see opening 27b in FIG. 6A) or circular (see opening 27a in FIG. 6A).
  • opening 27b in FIG. 6A When the shape of the opening 27 is square, it is particularly difficult to fill the four corners of the square opening with the conductive adhesive, and gaps 29b as shown in FIG. 5A are likely to be formed at the four corners.
  • the conductive adhesive according to the present embodiment it is possible to satisfactorily fill the opening with the conductive adhesive even if the opening is square.
  • the opening 27c is formed in a part (side wall) of the outer circumference of the wiring board 20 (in the example shown in FIG. 6A, the opening is formed at the corner of the wiring board 20)
  • the portion 27c is formed) is in a state in which no wall is provided outside the opening 27c to block the flow of the conductive adhesive.
  • FIG. 6B when the metal reinforcing plate 14 is adhered to the wiring board 20 using the conductive adhesive 12, the conductive adhesive 12a exudes toward the outside of the opening 27c. There was a problem of hoarding.
  • wiring board 20 and metal reinforcing plate 14 are bonded by using a member set consisting of cushioning material/metal reinforcing plate/conductive adhesive having the above-described characteristics during hot pressing. In this case, it is possible to prevent the conductive adhesive from seeping out from the end opening 27c (or to reduce the amount of seepage).
  • Such a printed wiring board with a metal reinforcing plate can be mounted, for example, in electronic devices such as mobile phones, smartphones, notebook PCs, digital cameras, and liquid crystal displays. It can also be suitably mounted on transportation equipment such as automobiles, trains, ships, and aircraft.
  • the member set according to the present embodiment may be used to join a metal reinforcing plate collectively or separately to a large-sized mother board on which a plurality of printed wiring boards are formed in an array.
  • a large-sized mother board in which a printed wiring board is formed in each section of m rows x n columns (m and n are each independently an integer of 1 or more, at least one of which is 2 or more), conductive A pre-laminate consisting of an adhesive and a metal plate is arranged, and a large-sized cushioning material is arranged on the upper layer to obtain a member set consisting of the conductive adhesive/metal plate/cushioning material, which is then hot-pressed together.
  • a mother board having a plurality of printed wiring boards with metal reinforcing plates may be manufactured. Also, in place of the large-sized cushioning material, a cushioning material corresponding to each printed wiring board may be arranged, or a plurality of cushioning materials may be arranged over a plurality of printed wiring boards, and the same process may be performed.
  • a mother substrate having a plurality of printed wiring boards with metal reinforcing plates may be manufactured collectively or/and dividedly.
  • An arbitrary layer such as a metal foil may be provided between the conductive adhesive and the metal reinforcing plate.
  • a protective film may be formed at an arbitrary position on the metal reinforcing plate.
  • the weight average molecular weight (Mw) is a polystyrene-equivalent numerical value obtained by GPC (gel permeation chromatography) measurement. Measurement conditions are as follows. Apparatus: Shodex GPC System-21 (manufactured by Showa Denko) Column: A connection column in which one Shodex KF-802 (manufactured by Showa Denko), one Shodex KF-803L (manufactured by Showa Denko), and one Shodex KF-805L (manufactured by Showa Denko) are connected in series.
  • the cushioning material was obtained by the same method.
  • MFR Melt flow rate
  • a melt indexer model EB01, manufactured by Toyo Seiki Co., Ltd.
  • the measurement temperature was 230° C. and the load was 10 kg.
  • the cushioning material formed by superimposing layers of different materials was kneaded in advance with two rolls at 190° C., and the MFR was measured after kneading and homogenizing the layered state of the layers of different materials.
  • Binder resin (a-1 to 6): Polyurethane resin (manufactured by Toyochem)
  • c-1 bisphenol A type epoxy resin: epoxy equivalent 189 g/eq (jER1001, manufactured by Mitsubishi Chemical) [Curing accelerator]
  • d-1 aziridine compound (trimethylolpropane tris [ ⁇ -(N-aziridinyl) propionate], manufactured by Nippon Shokubai) [Other ingredients]
  • e-1 Silica (AEROSIL R974, manufactured by Nippon Aerosil) [solvent]
  • g-1 polyethylene terephthalate (thickness 25 ⁇ m, 170° C.
  • g-2 polybutylene terephthalate (thickness 50 ⁇ m, 170° C. storage modulus 89 MPa, MFR 17 g/10 min)
  • g-3 Polymethylpentene (thickness 50 ⁇ m, 170° C. storage modulus 62 MPa, MFR 0.002 g/10 min)
  • g-4 Cushion material consisting of three layers of polymethylpentene/styrene-ethylene-butylene-styrene block copolymer/polymethylpentene (thickness: 25 ⁇ m/70 ⁇ m/25 ⁇ m, 170° C.
  • g-5 Cushion material consisting of three layers of polymethylpentene/styrene-butadiene-styrene block copolymer/polymethylpentene (thickness: 25 ⁇ m/100 ⁇ m/25 ⁇ m, 170° C. storage modulus: 51 MPa, MFR: 0.2 g/10 min)
  • g-6 Cushion material consisting of three layers of polymethylpentene/ethylene-glycidyl methacrylate copolymer/polymethylpentene (thickness: 25 ⁇ m/100 ⁇ m/25 ⁇ m, 170° C.
  • h-1 SUS304 with a total thickness of 200 ⁇ m with nickel layers of 2 ⁇ m thickness formed on both surfaces
  • h-2 SUS304 with a total thickness of 150 ⁇ m with a nickel layer of 2 ⁇ m thickness formed on both surfaces
  • h-3 SUS304 with a total thickness of 100 ⁇ m with nickel layers of 2 ⁇ m thickness formed on both surfaces
  • h-4 SUS304 with a total thickness of 75 ⁇ m with a nickel layer of 2 ⁇ m thickness formed on both surfaces
  • Printed wiring board Printed Wiring Board 1: The printed wiring board 1 is formed of a 32 ⁇ m thick copper foil circuit on both sides of a 75 ⁇ m thick polyimide film.
  • Printed wiring board 2 A printed wiring board having the same configuration as printed wiring board 1 except that it is a square with a side of 0.4 mm and the opening area of the through hole (opening) is 0.16 mm 2 .
  • Printed wiring board 3 A printed wiring board having the same configuration as printed wiring board 1 except that it is a square with a side of 0.2 mm and the opening area of the through hole (opening) is 0.04 mm 2 .
  • Example 1 100 parts by weight of the binder resin (a-1) and 250 parts by weight of the conductive fine particles (b-1) were charged in a container, and the solvent (f-1) was added and mixed so that the concentration of the non-volatile matter was 40% by weight. .
  • the conductive resin composition prepared above is applied to a release film (substrate material: foamed polyethylene terephthalate, substrate thickness 50 ⁇ m, release film) so that the thickness after drying is 60 ⁇ m.
  • Molding agent: alkyd-based release agent) was coated on the release-treated side and dried in an electric oven at 100°C for 2 minutes to obtain a conductive adhesive sheet on which a conductive adhesive was formed. .
  • the conductive adhesive sheet is cut to a width of 20 mm and a length of 20 mm, and the conductive adhesive sheet is cut so that the exposed surface of the conductive adhesive is in contact with the metal reinforcing plate (h-1) having a width of 20 mm and a length of 20 mm.
  • a flexible adhesive sheet was placed on the metal reinforcing plate.
  • the conductive adhesive sheet and the metal reinforcing plate were roll-laminated under the conditions of 90° C., 3 kgf/cm 2 and 1 m/min to obtain a SUS plate with the conductive adhesive sheet.
  • metal reinforcing plate with conductive adhesive After peeling off and removing the peelable film of the conductive adhesive sheet in the metal reinforcing plate with conductive adhesive sheet, a square with a side of 10 mm is punched with a punching machine, and the metal reinforcing plate with conductive adhesive ( hereinafter referred to as "metal reinforcing plate with conductive adhesive").
  • metal reinforcing plate with conductive adhesive hereinafter referred to as "metal reinforcing plate with conductive adhesive”
  • the surface where the conductive adhesive of the metal reinforcing plate with conductive adhesive is exposed is attached to the printed wiring board.
  • the metal reinforcing plate with the conductive adhesive and the printed wiring board were laminated under the conditions of 130° C., 3 kgf/cm 2 and 1 m/min using a roll laminator. After that, a member set was obtained in which a cushion material (g-2) cut into a square with a side of 20 mm was superimposed on the metal reinforcing plate. Next, after hot pressing these under the conditions of 170 ° C., 2 MPa, 5 minutes, the cushioning material is removed, and the printed wiring boards 1 to 1 with metal reinforcing plates are heated using an electric oven at 160 ° C. for 60 minutes. got 3.
  • Examples 2 to 23 The same operation as in Example 1 was performed except that the types and amounts of each component to be blended were as described in Tables 2 to 4, and member sets and printed wiring boards with metal reinforcing plates of Examples 2 to 23 were obtained. rice field.
  • Example 1 A member set and a printed wiring board with a metal reinforcing plate were obtained using printed wiring boards 1 to 3 in the same manner as in Example 19, except that no cushion material was used during hot pressing.
  • Tables 2 to 4 show the 170° C. storage elastic modulus (MPa) of the cushion material of each example ⁇ 170° C. storage elastic modulus (MPa) of the conductive adhesive (characteristic values "(1)-(4)” in the table). ), and the value of thickness ( ⁇ m) of metal reinforcing plate/thickness ( ⁇ m) of cushion material (characteristic value “(3)/(2)” in the table).
  • the member set is hot-pressed at 150 to 190° C., the ground circuit and the metal reinforcing plate are electrically connected through the opening, and the ground circuit and the metal reinforcing plate are connected by the conductive adhesive.
  • the conductive adhesive has a storage modulus of 5.5 MPa or more and 50 MPa or less at 170°C
  • the cushion material has a storage modulus of 10 MPa or more and 100 MPa or less at 170°C.
  • a method for producing a printed wiring board with a metal reinforcing plate according to any one of 1 to 7. (Appendix 10) In any one of steps [1-1] to [1-3], A laminate obtained by laminating the conductive adhesive, the metal reinforcing plate, and the cushion material in this order is obtained in advance, and the printed wiring board and the conductive adhesive in the laminate face each other.
  • Appendix 11 A printed wiring board with a metal reinforcing plate obtained by the manufacturing method according to any one of Appendices 1 to 10. (Appendix 12) 12.
  • Appendix 13 13

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

This method for manufacturing a printed wiring board with a metal reinforcement plate comprises: a step [1] in which a member set (17) is disposed on a printed wiring board (20) so that the wiring board (20) and a conductive adhesive (12) oppose each other, the member set being provided with, in the given order, a metal reinforcement plate (14), a cushion material (16), and the conductive adhesive (12) which contains a conductive filler and a binder resin that is softened by heat; a step [2] for hot-pressing the member set (17) so that a ground circuit (25) and the metal reinforcement plate (14) are adhered by the conductive adhesive (12) via an opening (27) provided to an insulating protective film (22, 23), and the ground circuit (25) and the metal reinforcement plate (14) are electrically connected; and a step [3] for peeling off the cushion material (16) of the member set (17).

Description

金属補強板付きプリント配線板の製造方法、部材セット、及び金属補強板付きプリント配線板Method for manufacturing printed wiring board with metal reinforcing plate, member set, and printed wiring board with metal reinforcing plate
 本発明は金属補強板付きプリント配線板の製造方法、該製造方法に用いられる部材セット、及び金属補強板付きプリント配線板に関する。 The present invention relates to a method for manufacturing a printed wiring board with a metal reinforcing plate, a member set used in the manufacturing method, and a printed wiring board with a metal reinforcing plate.
 OA機器、通信機器など電子機器の更なる高性能化、小型化に伴い、フレキシブルプリント配線板(以下、「FPC」と表記する。)は、その曲げることが出来る特性を活用して電子機器の狭く複雑な内部基板等に電子回路を組み込むために使用されている。この電子回路には、発生する電磁波を遮蔽する電磁波シールド層を設けたFPCを使用することが一般的であるが、近年の電子回路の情報量増大による高周波化、および電子回路の小型化に起因して電磁波対策は、さらに重要度を増している。 As electronic devices such as OA equipment and communication devices are becoming more sophisticated and smaller, flexible printed wiring boards (hereinafter referred to as "FPC") are becoming more and more popular in electronic devices by making use of their bendability. It is used to incorporate electronic circuits into narrow and complicated internal substrates. It is common to use an FPC with an electromagnetic wave shield layer for shielding the generated electromagnetic waves for this electronic circuit, but due to the increase in the amount of information in electronic circuits in recent years, the increase in frequency and the miniaturization of electronic circuits As a result, electromagnetic wave countermeasures are becoming more and more important.
 電磁波シールド層を有したFPCとして、特許文献1には、導電性の金属補強板とグランド回路とを導電性接着剤で接続したFPCが開示されている。具体的には、導電性接着シートを用いて、ステンレス等の金属補強板をFPCに貼り付けることにより、金属補強板をグランド回路に電気的に接続している。このような構成とすることで、電磁波シールド性が良好なFPCを得ることができ、回路信号を安定的に伝送することができる。特許文献2には、熱硬化性樹脂と導電性フィラーを含む導電性接着剤に関する技術が開示されている。 As an FPC having an electromagnetic wave shield layer, Patent Document 1 discloses an FPC in which a conductive metal reinforcing plate and a ground circuit are connected with a conductive adhesive. Specifically, a conductive adhesive sheet is used to attach a metal reinforcing plate made of stainless steel or the like to the FPC, thereby electrically connecting the metal reinforcing plate to the ground circuit. With such a configuration, it is possible to obtain an FPC with good electromagnetic wave shielding properties, and to stably transmit circuit signals. Patent Literature 2 discloses a technique related to a conductive adhesive containing a thermosetting resin and a conductive filler.
国際公開第2014/010524号WO2014/010524 国際公開第2019/031394号WO2019/031394
 FPCに金属補強板を貼り付ける場合、導電性接着剤には、FPCの絶縁保護膜に形成された開口部への埋め込み性が求められる。具体的には、金属補強板/導電性接着剤/FPCの順に配置された部材セットを所定のプレス温度(例えば170℃)で熱プレスするときに導電性接着剤の軟化が不十分であると、開口部への導電性接着剤の充填性が悪化するという問題がある。特に開口部が小さい場合、充填性が著しく悪化し導通不良となる。従って、プレス温度(例えば170℃)では導電性接着剤を軟らかくする必要がある。
 一方、プレス工程のプレス圧によって金属補強板とFPCの間から導電性接着剤の染み出しが生じると、外観不良及び短絡の原因となり、問題となっていた。
When attaching a metal reinforcing plate to an FPC, the conductive adhesive is required to have embedding properties in the opening formed in the insulating protective film of the FPC. Specifically, when a set of members arranged in the order metal reinforcing plate/conductive adhesive/FPC is hot-pressed at a predetermined press temperature (for example, 170° C.), the softening of the conductive adhesive is insufficient. , there is a problem that the fillability of the conductive adhesive into the opening deteriorates. In particular, when the opening is small, the filling property is remarkably deteriorated, resulting in poor conduction. Therefore, it is necessary to soften the conductive adhesive at the pressing temperature (eg 170°C).
On the other hand, when the conductive adhesive oozes out from between the metal reinforcing plate and the FPC due to the press pressure in the pressing process, it causes problems such as poor appearance and short circuit.
 また、導電性接着剤を柔らかくすると金属補強板とFPCの間から導電性接着剤が過剰に染み出し、外観不良及び短絡の原因となる。 In addition, if the conductive adhesive is softened, the conductive adhesive will exude excessively from between the metal reinforcing plate and the FPC, causing poor appearance and short circuits.
 上記課題に鑑み本発明の目的は、開口部への導電性接着剤の充填性が良好であって、外観不良及び短絡を防止できる金属補強板付きプリント配線板の製造方法、並びに前記プリント配線板の製造方法に用いられる部材セット、及び金属補強板付きプリント配線板を提供することである。 In view of the above problems, an object of the present invention is to provide a method for manufacturing a printed wiring board with a metal reinforcing plate, which has good fillability of a conductive adhesive in openings and can prevent appearance defects and short circuits, and the printed wiring board. and a printed wiring board with a metal reinforcing plate for use in the manufacturing method of the above.
 本発明者らが鋭意検討を重ねたところ、以下の態様において、本発明の課題を解決し得ることを見出し、本発明を完成するに至った。
 本発明の一態様にかかる金属補強板付きプリント配線板の製造方法は、グランド回路を含む回路パターンと、前記回路パターンを絶縁保護し、開口部を有する絶縁保護膜とが形成されたプリント配線板の上方に、熱により軟化するバインダー樹脂および導電性フィラーを含有する導電性接着剤と、金属補強板と、クッション材とがこの順に配置された部材セットを、前記プリント配線板と前記導電性接着剤が対向するように配置する工程[1]、
 前記部材セットを熱プレスし、前記絶縁保護膜に設けられた開口部を介して、前記導電性接着剤により前記グランド回路と前記金属補強板とを接着すると共に、前記グランド回路と前記金属補強板とを電気的に接続する工程[2]、ならびに
 前記部材セットの前記クッション材を剥離する工程[3]、を備える。
 また、本発明の一態様にかかる部材セットは、グランド回路を含む回路パターン、および当該回路パターンを絶縁保護し、前記グランド回路まで貫通する開口部が形成された絶縁保護膜を有するプリント配線板と、前記プリント配線板に熱プレスにより接合された金属補強板とを備える、金属補強板付きプリント配線板の製造に用いる部材セットであって、
 熱により軟化するバインダー樹脂および導電性フィラーを含有し、前記熱プレスによって前記開口部に充填されて前記グランド回路と前記金属補強板とを電気的に導通させ、且つ当該金属補強板を前記プリント配線板に接合する導電性接着剤と、前記金属補強板と、前記熱プレス時に軟化して、前記導電性接着剤および前記金属補強板の側面側に流れ込むクッション材と、がこの順で配置される。
As a result of extensive studies, the present inventors have found that the following aspects can solve the problems of the present invention, and have completed the present invention.
A method for manufacturing a printed wiring board with a metal reinforcing plate according to one aspect of the present invention is a printed wiring board in which a circuit pattern including a ground circuit and an insulating protective film that insulates and protects the circuit pattern and has an opening are formed. A member set in which a conductive adhesive containing a binder resin and a conductive filler softened by heat, a metal reinforcing plate, and a cushion material are arranged in this order above the printed wiring board and the conductive adhesive the step of arranging the agents so as to face each other [1];
The member set is hot-pressed to bond the ground circuit and the metal reinforcing plate with the conductive adhesive through the opening provided in the insulating protective film, and the ground circuit and the metal reinforcing plate are bonded together. and a step [2] of electrically connecting to and a step [3] of peeling off the cushion material of the member set.
Further, a member set according to an aspect of the present invention includes a printed wiring board having a circuit pattern including a ground circuit, and an insulating protective film that insulates and protects the circuit pattern and has an opening penetrating to the ground circuit. , and a metal reinforcing plate joined to the printed wiring board by hot pressing, a member set used for manufacturing a printed wiring board with a metal reinforcing plate,
It contains a binder resin that is softened by heat and a conductive filler, is filled into the opening by the heat press, electrically connects the ground circuit and the metal reinforcing plate, and connects the metal reinforcing plate to the printed wiring. A conductive adhesive to be bonded to the plate, the metal reinforcing plate, and a cushioning material that softens during the hot press and flows into the side surface of the conductive adhesive and the metal reinforcing plate are arranged in this order. .
 本発明により、開口部への導電性接着剤の充填性が良好であって、外観不良及び短絡を防止できる金属補強板付きプリント配線板の製造方法、並びに前記プリント配線板の製造方法に用いられる部材セット、金属補強板付きプリント配線板を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is used in a method for manufacturing a printed wiring board with a metal reinforcing plate, which has a good filling property of a conductive adhesive in an opening and can prevent appearance defects and short circuits, and a method for manufacturing the printed wiring board. A printed wiring board with a member set and a metal reinforcing plate can be provided.
実施の形態にかかる部材セットの準備工程[1]を説明するための図である。FIG. 10 is a diagram for explaining a member set preparation step [1] according to the embodiment; 実施の形態にかかる部材セットの準備工程[2]を説明するための図である。FIG. 10 is a diagram for explaining a member set preparation step [2] according to the embodiment; 実施の形態にかかる部材セットの準備工程[3]を説明するための図である。FIG. 10 is a diagram for explaining a member set preparation step [3] according to the embodiment; 実施の形態にかかる金属補強板付きプリント配線板の製造方法(工程[1])を説明するための図である。FIG. 2 is a diagram for explaining a method (step [1]) for manufacturing a printed wiring board with a metal reinforcing plate according to the embodiment; 実施の形態にかかる金属補強板付きプリント配線板の製造方法(工程[2])を説明するための図である。FIG. 4 is a diagram for explaining the method of manufacturing a printed wiring board with a metal reinforcing plate according to the embodiment (step [2]); 実施の形態にかかる金属補強板付きプリント配線板の製造方法(工程[3])を説明するための図である。FIG. 4 is a diagram for explaining the method (step [3]) for manufacturing a printed wiring board with a metal reinforcing plate according to the embodiment; 実施の形態にかかる金属補強板付きプリント配線板の断面図である。1 is a cross-sectional view of a printed wiring board with a metal reinforcing plate according to an embodiment; FIG. 実施の形態にかかる部材セットの断面図である。It is a sectional view of a member set concerning an embodiment. 別の実施の形態にかかる部材セットの断面図である。FIG. 11 is a cross-sectional view of a member set according to another embodiment; 導電性接着剤の開口部への埋込み性不良を説明するための、比較例に係る金属補強板付きプリント配線板の断面図である。FIG. 5 is a cross-sectional view of a printed wiring board with a metal reinforcing plate according to a comparative example, for explaining poor embedding properties of a conductive adhesive into an opening. 導電性接着剤の染み出し不良を説明するための、比較例に係る金属補強板付きプリント配線板の断面図である。FIG. 5 is a cross-sectional view of a printed wiring board with a metal reinforcing plate according to a comparative example, for explaining a defect in seeping of a conductive adhesive; 導電性接着剤の染み出し不良を説明するための、比較例に係るプリント配線板の平面図である。FIG. 10 is a plan view of a printed wiring board according to a comparative example for explaining a leaking defect of a conductive adhesive; 導電性接着剤の染み出し不良を説明するための、比較例に係る金属補強板付きプリント配線板の模式的平面図である。FIG. 4 is a schematic plan view of a printed wiring board with a metal reinforcing plate according to a comparative example, for explaining the bleeding failure of the conductive adhesive;
 本明細書におけるシートとは、JISにおいて定義されるシートのみならず、フィルムも含むものとする。説明を明確にするため、以下の記載および図面は、適宜、簡略化されている。本明細書中に出てくる各種成分は特に注釈しない限り、それぞれ独立に一種単独でも二種以上を併用してもよい。尚、本明細書では、「プリント配線板」を、「配線板」と略記することがある。以下、本発明の実施の形態の例について説明する。 A sheet in this specification includes not only a sheet defined in JIS but also a film. For clarity of explanation, the following description and drawings have been simplified where appropriate. Unless otherwise noted, the various components appearing in this specification may be used singly or in combination of two or more. In this specification, "printed wiring board" may be abbreviated as "wiring board". Hereinafter, examples of embodiments of the present invention will be described.
《金属補強板付きプリント配線板の製造方法》
 図1A~図2Cを用いて金属補強板付きプリント配線板の製造方法について説明する。図2A~図2Cでは、プリント配線板に導電性接着剤を用いて金属補強板を貼り付ける際の製造工程を示している。尚、各々の部材を構成する材料の詳細については後述する。また、本明細書において、「導電性接着剤」は、熱硬化前の導電性接着剤を示し、「導電性接着剤層」は導電性接着剤を熱硬化することで得られた層(つまり、熱硬化後の導電性接着剤)を示すものとし、両者には同一の符号を付す。
<<Manufacturing method of printed wiring board with metal reinforcing plate>>
A method for manufacturing a printed wiring board with a metal reinforcing plate will be described with reference to FIGS. 1A to 2C. FIGS. 2A to 2C show a manufacturing process for attaching a metal reinforcing plate to a printed wiring board using a conductive adhesive. The details of the materials forming each member will be described later. Further, in this specification, "conductive adhesive" refers to a conductive adhesive before heat curing, and "conductive adhesive layer" refers to a layer obtained by heat curing a conductive adhesive (that is, , conductive adhesive after thermosetting), and both are given the same reference numerals.
<部材セット準備工程>
 まず、図1Aの準備工程[1]に示すように、剥離性フィルム11上に導電性接着剤12が形成された導電性接着シート13と、金属補強板14と、を準備する。そして、図1Bの準備工程[2]に示すように、金属補強板14に導電性接着シート13の導電性接着剤12側を貼り付けて、金属補強板14に導電性接着シート13を仮貼りする。金属補強板14に導電性接着シート13を仮貼りする際の温度(仮貼り温度)は、例えば110℃~150℃、好ましくは130℃とすることができる。仮貼り後、導電性接着剤12は半硬化状態である。
<Component set preparation process>
First, as shown in preparation step [1] in FIG. 1A, a conductive adhesive sheet 13 having a conductive adhesive 12 formed on a peelable film 11 and a metal reinforcing plate 14 are prepared. Then, as shown in the preparation step [2] in FIG. 1B, the conductive adhesive 12 side of the conductive adhesive sheet 13 is attached to the metal reinforcing plate 14, and the conductive adhesive sheet 13 is temporarily attached to the metal reinforcing plate 14. do. The temperature at which the conductive adhesive sheet 13 is temporarily attached to the metal reinforcing plate 14 (temporary attachment temperature) can be, for example, 110.degree. C. to 150.degree. C., preferably 130.degree. After temporary attachment, the conductive adhesive 12 is in a semi-cured state.
 次に、図1Cの準備工程[3]に示すように、剥離性フィルム11を剥がして、導電性接着剤12の金属補強板14と逆側の面を露出させる。その後、導電性接着剤12と金属補強板14との予備積層体15を所定のサイズに切断する(切断線を符号18で示している)。予備積層体15の切断は、例えば打ち抜き加工を用いて実施することができる。尚、剥離性フィルム11は切断工程後に剥がしてもよい。 Next, as shown in the preparation step [3] in FIG. 1C, the peelable film 11 is peeled off to expose the surface of the conductive adhesive 12 opposite to the metal reinforcing plate 14 . After that, the preliminary laminate 15 of the conductive adhesive 12 and the metal reinforcing plate 14 is cut to a predetermined size (the cutting line is indicated by reference numeral 18). The cutting of the pre-laminate 15 can be performed, for example, using a stamping process. Incidentally, the peelable film 11 may be peeled off after the cutting step.
<工程[1]>
 まず、グランド回路を含む回路パターンと、前記回路パターンを絶縁保護し、開口部を有する絶縁保護膜が形成されたプリント配線板を用意する。そして、プリント配線板の絶縁保護膜の上方に、熱により軟化するバインダー樹脂および導電性フィラーを含有する導電性接着剤と、金属補強板と、クッション材とをこの順に有する部材セットを、前記配線板と前記導電性接着剤が対向するように配置する工程である。
<Step [1]>
First, a printed wiring board is prepared on which a circuit pattern including a ground circuit and an insulating protective film that insulates and protects the circuit pattern and has an opening is formed. Then, above the insulating protective film of the printed wiring board, a member set having, in this order, a conductive adhesive containing a binder resin and a conductive filler that are softened by heat, a metal reinforcing plate, and a cushioning material is mounted on the wiring. In this step, the plate and the conductive adhesive are arranged so as to face each other.
 尚、本発明の部材セットは、(i)導電性接着剤/金属補強板/クッション材の各層を一体としてから用いる場合、(ii)前記それぞれの層を順にプリント配線板の上方に配置し用いる場合、(iii)導電性接着剤と金属補強板とを一体とした予備積層体に、さらにクッション材を配置して用いる場合、(iv)導電性接着剤に、金属補強板とクッション材との予備積層体を配置して用いる場合を含む。即ち、本部材セットは、熱プレス時に、導電性接着剤と、金属補強板と、クッション材とがこの順に配置されていればよく、熱プレスの直前に、導電性接着剤と金属補強板、および金属補強板とクッション部材が、それぞれ独立に非一体であっても、一体であってもよい。ここで「一体」とは積み重ねられているのみならず、貼付(ラミネート)されていることをいい、非一体とは、貼付されておらず、重ねられている状態をいう。本部剤セットは、熱プレス時には少なくとも部材セットが一体となる。 In addition, the member set of the present invention is used when (i) the layers of the conductive adhesive/metal reinforcing plate/cushion material are integrated and then used, and (ii) the respective layers are arranged in order above the printed wiring board. (iii) when a cushioning material is arranged in a preliminary laminate in which a conductive adhesive and a metal reinforcing plate are integrated; This includes the case where a preliminary laminate is arranged and used. That is, in this member set, the conductive adhesive, the metal reinforcing plate, and the cushioning material may be arranged in this order at the time of hot pressing. And the metal reinforcing plate and the cushion member may be independently non-integral or integral. Here, "integrated" means not only being stacked but also stuck (laminated), and "non-integrated" means not stuck but stacked. At the time of hot pressing, at least the member set of this agent set is integrated.
 例えば、図2Aに示すように、所定のサイズに切断された予備積層体15を配線板20の上に配置する。さらに金属補強板14の上面にクッション材16を配置することで部材セット17を得る。ここで配線板20は、下側の基材21と上側の絶縁性フィルム22とが絶縁性接着剤23で接着された構成を有する。基材21上には信号回路24およびグランド回路25が形成されており、このグランド回路25の上方には絶縁性フィルム22と、絶縁性接着剤23に設けられた開口部(スルーホール)27が配置されている。つまり、基材21上に形成されたグランド回路25の一部が開口部27を介して露出している。部材セット17は、配線板20の開口部27の上方に配置する。尚、絶縁性フィルム22と絶縁性接着剤23は、絶縁保護膜として機能する。 For example, as shown in FIG. 2A, a pre-laminate 15 cut into a predetermined size is placed on the wiring board 20 . Furthermore, a member set 17 is obtained by arranging a cushion material 16 on the upper surface of the metal reinforcing plate 14 . Wiring board 20 has a structure in which base material 21 on the lower side and insulating film 22 on the upper side are adhered with insulating adhesive 23 . A signal circuit 24 and a ground circuit 25 are formed on the substrate 21. Above the ground circuit 25 are an insulating film 22 and an opening (through hole) 27 provided in an insulating adhesive 23. are placed. That is, part of the ground circuit 25 formed on the base material 21 is exposed through the opening 27 . Member set 17 is arranged above opening 27 of wiring board 20 . The insulating film 22 and the insulating adhesive 23 function as an insulating protective film.
<工程[2]>
 工程[2]は、部材セットを熱プレスし、プリント配線板の絶縁保護膜に設けられた開口部を介して、導電性接着剤により前記グランド回路と金属補強板とを接着すると共に、前記グランド回路と金属補強板とを電気的に接続する工程である。
<Step [2]>
In the step [2], the member set is hot-pressed, the ground circuit and the metal reinforcing plate are bonded with a conductive adhesive through the opening provided in the insulating protective film of the printed wiring board, and the ground This is the step of electrically connecting the circuit and the metal reinforcing plate.
 例えば、図2Bに示すように、工程[1]に続いて、部材セット17/配線板20の積層物を所定の温度(例えば150~190℃、好ましくは170℃)で熱プレス(加熱・加圧)する。これにより導電性接着剤12が軟化して絶縁性フィルム22、絶縁性接着剤23に形成された開口部27内に埋め込まれる。軟化した導電性接着剤12が開口部27内に充填されることで、導電性接着剤12が開口部27により露出したグランド回路25と接触する。熱プレス後、導電性接着剤12が硬化して金属補強板14と配線板20とが接着されると共に、グランド回路25と金属補強板14とが電気的に接続される。一方、クッション材16は熱と圧力により流動し、金属補強板14及び導電性接着剤12の側面側に流れこみ導電性接着剤12の染み出しを抑制する。即ち、クッション材16は熱プレス中に導電性接着剤12が金属補強板よりも外部に染み出す前に導電性接着剤12の側面に流動し、且つ染み出しをせき止める。この状態でクッション材16は導電性接着剤12の染み出しを抑え込む硬さ(粘弾性)を必要とする。 For example, as shown in FIG. 2B, following step [1], the laminate of member set 17/wiring board 20 is hot-pressed (heated/heated) at a predetermined temperature (for example, 150 to 190° C., preferably 170° C.). pressure). As a result, the conductive adhesive 12 is softened and embedded in the openings 27 formed in the insulating film 22 and the insulating adhesive 23 . By filling the opening 27 with the softened conductive adhesive 12 , the conductive adhesive 12 contacts the ground circuit 25 exposed through the opening 27 . After the hot pressing, the conductive adhesive 12 is cured to bond the metal reinforcing plate 14 and the wiring board 20 together, and electrically connect the ground circuit 25 and the metal reinforcing plate 14 . On the other hand, the cushioning material 16 is fluidized by heat and pressure, flows into the side surfaces of the metal reinforcing plate 14 and the conductive adhesive 12, and prevents the conductive adhesive 12 from seeping out. That is, the cushion material 16 flows to the side surface of the conductive adhesive 12 before the conductive adhesive 12 seeps out from the metal reinforcing plate during hot pressing, and prevents the seepage. In this state, the cushion material 16 requires hardness (viscoelasticity) to suppress the exudation of the conductive adhesive 12 .
 尚、熱プレスの際の圧力は、3~30kg/cm程度が好ましい。熱プレスに用いる装置は、平板圧着機またはロール圧着機を使用できる。熱プレスの時間は、クッション材16/金属補強板14/導電性接着剤12/配線板20の部材セットが十分に密着する時間であれば特に限定されることはないが、通常は1分~1時間程度である。また、熱プレスの時間が短い場合は、熱プレス後に150~190℃のオーブンで30分~3時間加熱して導電性接着剤12を本硬化させることが好ましい。 The pressure during hot pressing is preferably about 3 to 30 kg/cm 2 . A flat pressing machine or a roll pressing machine can be used for the hot press. The time for hot pressing is not particularly limited as long as the member set of cushion material 16/metal reinforcing plate 14/conductive adhesive 12/wiring board 20 is sufficiently adhered, but usually from 1 minute to. It takes about 1 hour. If the hot press time is short, it is preferable to heat the conductive adhesive 12 in an oven at 150 to 190° C. for 30 minutes to 3 hours after the hot press to fully cure the conductive adhesive 12 .
<工程[3]>
 工程[3]は、部材セットのクッション材を剥離する工程である。
 熱プレスの後、図2Cに示すように、温度が低下し流動性が消滅したクッション材16を吸引剥離装置又は手作業で剥離する。
 これにより、図3に示すように導電性接着剤層12を介して金属補強板14と配線板20のグランド回路25とが電気的に接続された電磁波シールド性を備えた金属補強板付きプリント配線板30を製造することができる。
<Step [3]>
Step [3] is a step of peeling off the cushion material of the member set.
After the hot pressing, as shown in FIG. 2C, the cushioning material 16 whose fluidity has disappeared due to the decrease in temperature is peeled off by a suction peeling device or manually.
As a result, as shown in FIG. 3, the metal reinforcing plate 14 and the ground circuit 25 of the wiring board 20 are electrically connected via the conductive adhesive layer 12, thereby forming a printed wiring with a metal reinforcing plate having electromagnetic wave shielding properties. A plate 30 can be manufactured.
 続いて、各々の部材を構成する材料の詳細について説明する。
<部材セット>
 本実施の形態にかかる部材セットは、上述した金属補強板付きプリント配線板の製造方法に用いられるものであって、クッション材、金属補強板および導電性接着剤の順に配置される。図4Aに示すように各部材の平面視上のサイズを実質的に同一としてもよい。また、図4Bに示すように、金属補強板および導電性接着剤の平面視上の外縁の外側に、当該金属補強板および導電性接着剤が重畳されていないクッション材の突出領域を有する態様としてもよい。即ち、クッション材の平面視上のサイズを導電性接着剤および金属補強板より大きくし、且つクッション材が金属補強板等より平面視上突出する領域を有する態様としてもよい。かかる構成により、熱プレス時に、導電性接着剤層の側面側への染み出しをより効果的に防止することができる。
 また、本発明の部材セットは、染み出し性を防止する観点からは、クッション材の貯蔵弾性率が、170℃において10MPa以上100MPa以下であり、前記導電性接着剤の貯蔵弾性率が、170℃において2MPa以上50MPa以下であり、且つ前記クッション材の貯蔵弾性率が、前記導電性接着剤の貯蔵弾性率よりも高いことが好ましい。
Next, the details of the materials forming each member will be described.
<Member set>
A member set according to the present embodiment is used in the above-described method for manufacturing a printed wiring board with a metal reinforcing plate, and is arranged in the order of a cushion material, a metal reinforcing plate, and a conductive adhesive. As shown in FIG. 4A, each member may have substantially the same size in plan view. In addition, as shown in FIG. 4B , a mode in which a protruding region of the cushion material on which the metal reinforcing plate and the conductive adhesive are not superimposed is provided outside the outer edge of the metal reinforcing plate and the conductive adhesive in a plan view. good too. That is, the size of the cushioning material in plan view may be larger than that of the conductive adhesive and the metal reinforcing plate, and the cushioning material may have a region that protrudes from the metal reinforcing plate or the like in plan view. With such a configuration, it is possible to more effectively prevent the conductive adhesive layer from seeping out to the side surface during hot pressing.
Further, in the member set of the present invention, from the viewpoint of preventing exudation, the storage elastic modulus of the cushion material is 10 MPa or more and 100 MPa or less at 170 ° C., and the storage elastic modulus of the conductive adhesive is 170 ° C. is 2 MPa or more and 50 MPa or less, and the storage elastic modulus of the cushion material is preferably higher than that of the conductive adhesive.
 部材セットは上述した通り金属補強板14と導電性接着剤12からなる予備積層体15を形成後、クッション材を重ねる工程としたり、配線板に載置する前にあらかじめ導電性接着剤/金属補強板/クッション材が一体化された部材セット(積層体)を形成したりしてもよい。 After forming the preliminary laminate 15 composed of the metal reinforcing plate 14 and the conductive adhesive 12 as described above, the member set includes the step of stacking the cushioning material, or the conductive adhesive/metal reinforcement in advance before placing on the wiring board. A member set (laminate) in which the plate/cushion material is integrated may be formed.
 開口部への埋め込み性に優れ、且つ導電性接着剤の染み出し性をより効果的に発揮させる観点からは、以下の(I)~(III)の条件のいずれかを満たす部材セットが好適である。
(I)導電性接着剤の170℃における貯蔵弾性率が5.5MPa以上50MPa以下であり、クッション材の170℃における貯蔵弾性率が10MPa以上100MPa以下であって、貯蔵弾性率が導電性接着剤よりもクッション材が高い部材セット。
(II)導電性接着剤の170℃における貯蔵弾性率が2MPa以上50MPa以下であり、クッション材の170℃における貯蔵弾性率が10MPa以上100MPa以下であって、貯蔵弾性率が導電性接着剤よりもクッション材の方が21MPa以上50MPa以内の範囲で高い部材セット。
(III)導電性接着剤の170℃における貯蔵弾性率が2MPa以上50MPa以下であり、クッション材の170℃における貯蔵弾性率が10MPa以上100MPa以下であり、貯蔵弾性率が導電性接着剤よりもクッション材が高く、更に、金属補強板とクッション材の厚みの比率(金属補強板の厚み[μm]/クッション材の厚み[μm])が1.5~2である部材セット。
 以下、各層について詳細に説明する。
A member set that satisfies any one of the following conditions (I) to (III) is preferable from the viewpoint of having excellent embedding properties in openings and more effectively exuding the conductive adhesive. be.
(I) The storage modulus of the conductive adhesive at 170° C. is 5.5 MPa or more and 50 MPa or less, and the storage modulus of the cushioning material at 170° C. is 10 MPa or more and 100 MPa or less, and the storage modulus of the conductive adhesive is A component set with a higher cushioning material.
(II) The storage modulus of the conductive adhesive at 170°C is 2 MPa or more and 50 MPa or less, and the storage modulus of the cushioning material at 170°C is 10 MPa or more and 100 MPa or less, and the storage modulus is higher than that of the conductive adhesive. A member set in which the cushion material is higher in the range of 21 MPa or more and 50 MPa or less.
(III) The storage modulus of the conductive adhesive at 170° C. is 2 MPa or more and 50 MPa or less, and the storage modulus of the cushioning material at 170° C. is 10 MPa or more and 100 MPa or less, and the storage modulus is higher than that of the conductive adhesive. A member set in which the material is high and the thickness ratio between the metal reinforcing plate and the cushioning material (thickness of the metal reinforcing plate [μm]/thickness of the cushioning material [μm]) is 1.5 to 2.
Each layer will be described in detail below.
(クッション材)
 クッション材は、熱プレス機のプレス圧を均一に金属補強板及び導電性接着剤に伝え、熱プレス時に流動し、導電性接着剤の染み出しを抑制する役割を有する。
(cushion material)
The cushion material uniformly transmits the press pressure of the hot press to the metal reinforcing plate and the conductive adhesive, flows during the hot press, and has a role of suppressing the seepage of the conductive adhesive.
 クッション材の貯蔵弾性率は170℃において10MPa以上100MPa以下であることが好ましく、12MPa以上90MPa以下がより好ましく、15MPa以上70MPa以下がさらに好ましい。上記範囲とすることで熱プレスの導電性接着剤の染み出しを抑制する。クッション材の貯蔵弾性率が100MPaを越える場合、図4Bに示すように、クッション材がプレスの圧を分散できず導電性接着剤12が圧に強力に加えられるため軟化し、染み出しやすくなる。一方、貯蔵弾性率が10MPa未満ではクッション材の硬さが不足し、導電性接着剤の軟化による染み出しを抑制しにくくなる。 The storage elastic modulus of the cushioning material at 170°C is preferably 10 MPa or more and 100 MPa or less, more preferably 12 MPa or more and 90 MPa or less, and even more preferably 15 MPa or more and 70 MPa or less. By setting the content in the above range, exudation of the conductive adhesive during hot press is suppressed. When the storage elastic modulus of the cushioning material exceeds 100 MPa, as shown in FIG. 4B, the cushioning material cannot disperse the press pressure, and the conductive adhesive 12 is strongly applied to the pressure, so that it softens and tends to seep out. On the other hand, if the storage elastic modulus is less than 10 MPa, the hardness of the cushioning material is insufficient, and it becomes difficult to suppress exudation due to softening of the conductive adhesive.
 本実施の形態にかかるクッション材の貯蔵弾性率は、次のようにして測定することができる。すなわち、動的粘弾性測定装置を用いてクッション材の25~200℃の温度範囲における貯蔵弾性率(E’)、損失弾性率(E”)、および損失正接(tanδ)変化を測定し、温度における貯蔵弾性率(E’)を抽出することで求めることができる。 The storage elastic modulus of the cushioning material according to this embodiment can be measured as follows. That is, using a dynamic viscoelasticity measuring device, the storage elastic modulus (E′), loss elastic modulus (E″), and loss tangent (tan δ) changes in the temperature range of 25 to 200 ° C. of the cushion material are measured. It can be obtained by extracting the storage elastic modulus (E′) in .
 また、クッション材のメルトフローレート(MFR)は、0.002g/10min以上、17g/10min以下であることが好ましく、0.01g/10min以上、4.0g/10min以下がより好ましい。MFRを0.002g/10min以上とすることで熱プレス時に導電性接着剤12が軟化して染み出す前に、クッション材が側面に到達して染み出しを抑制する効果をより効果的に発揮できる。一方、17g/10min以下とすることで、過剰な流動を抑制し、プレス圧を均一に伝えることで導電性接着剤12の埋め込みを良化させる。 Also, the melt flow rate (MFR) of the cushioning material is preferably 0.002 g/10 min or more and 17 g/10 min or less, more preferably 0.01 g/10 min or more and 4.0 g/10 min or less. When the MFR is 0.002 g/10 min or more, before the conductive adhesive 12 softens and oozes out during hot pressing, the cushioning material reaches the side surface and effectively exhibits the effect of suppressing oozing out. . On the other hand, by setting it to 17 g/10 min or less, the embedding of the conductive adhesive 12 is improved by suppressing excessive flow and uniformly transmitting the press pressure.
 クッション材は、熱可塑性樹脂を含む熱可塑性樹脂組成物により形成することができる。また、熱可塑性樹脂組成物は、熱可塑性樹脂に加えて、可塑剤や熱硬化剤、無機フィラー等を含んでいてもよい。 The cushion material can be formed from a thermoplastic resin composition containing a thermoplastic resin. Moreover, the thermoplastic resin composition may contain a plasticizer, a thermosetting agent, an inorganic filler, etc. in addition to the thermoplastic resin.
 熱可塑性樹脂としては、ポリオレフィン系樹脂、酸をグラフトさせた酸変性ポリオレフィン系樹脂、ポリオレフィンと不飽和エステルとの共重合樹脂、ビニル系樹脂、スチレン・アクリル系樹脂、ジエン系樹脂、セルロース系樹脂、ポリアミド樹脂、ポリウレタン樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリイミド系樹脂、またはフッ素樹脂などが挙げられる。これらの中でも、ポリオレフィン系樹脂、酸をグラフトさせた酸変性ポリオレフィン系樹脂、ポリオレフィンと不飽和エステルとの共重合樹脂、ビニル系樹脂が好ましい。熱可塑性樹脂は、1種を単独で、または必要に応じて任意の比率で2種以上混合して用いることができる。 Examples of thermoplastic resins include polyolefin resins, acid-modified polyolefin resins grafted with acid, copolymer resins of polyolefins and unsaturated esters, vinyl resins, styrene/acrylic resins, diene resins, cellulose resins, Polyamide resins, polyurethane resins, polyester resins, polycarbonate resins, polyimide resins, fluorine resins, and the like can be used. Among these, polyolefin resins, acid-modified polyolefin resins grafted with acid, copolymer resins of polyolefins and unsaturated esters, and vinyl resins are preferred. The thermoplastic resins may be used singly or as a mixture of two or more at any ratio as required.
 ポリオレフィン系樹脂は、エチレン、プロピレン、α-オレフィン化合物などのホモポリマーまたはコポリマーが好ましい。具体的には、低密度ポリエチレン、超低密度ポリエチレン、直鎖状低密度ポリエチレン、高密度ポリエチレン、ポリプロピレンホモポリマー、ポリプロピレンコポリマー等が挙げられる。これらの中でもポリエチレン樹脂およびポリプロピレン樹脂が好ましく、より好ましくは、ポリエチレン樹脂である。 Polyolefin-based resins are preferably homopolymers or copolymers of ethylene, propylene, α-olefin compounds, and the like. Specific examples include low-density polyethylene, ultra-low-density polyethylene, linear low-density polyethylene, high-density polyethylene, polypropylene homopolymer, polypropylene copolymer, and the like. Among these, polyethylene resin and polypropylene resin are preferred, and polyethylene resin is more preferred.
 酸変性ポリオレフィン系樹脂は、マレイン酸、アクリル酸、メタクリル酸およびイタコン酸等がグラフトされたポリオレフィン樹脂が好ましい。これらの中でも、マレイン酸変性ポリオレフィン樹脂が好ましい。 The acid-modified polyolefin resin is preferably a polyolefin resin grafted with maleic acid, acrylic acid, methacrylic acid, itaconic acid, or the like. Among these, maleic acid-modified polyolefin resins are preferred.
 ポリオレフィンと不飽和エステルとの共重合樹脂における不飽和エステルとしてはアクリル酸メチル、アクリル酸エチル、アクリル酸イソブチル、アクリル酸n-ブチル、アクリル酸イソオクチル、メタクリル酸メチル、メタクリル酸イソブチル、マレイン酸ジメチル、マレイン酸ジエチルおよびメタクリル酸グリシジルなどが挙げられる。これらの中でもポリオレフィンとしてエチレン、不飽和エステルとしてメタクリル酸グリシジルからなる、エチレン-メタクリル酸グリシジル共重合樹脂が好ましい。 Examples of unsaturated esters in copolymer resins of polyolefins and unsaturated esters include methyl acrylate, ethyl acrylate, isobutyl acrylate, n-butyl acrylate, isooctyl acrylate, methyl methacrylate, isobutyl methacrylate, dimethyl maleate, diethyl maleate and glycidyl methacrylate, and the like. Among these, an ethylene-glycidyl methacrylate copolymer resin composed of ethylene as a polyolefin and glycidyl methacrylate as an unsaturated ester is preferred.
 ビニル系樹脂は、酢酸ビニルなどのビニルエステルの重合により得られるポリマー、及びビニルエステルとエチレンなどのオレフィン化合物とのコポリマーが好ましい。具体的には、エチレン-酢酸ビニル共重合体、エチレン-プロピオン酸ビニル共重合体、部分ケン化ポリビニルアルコール等が挙げられる。これらの中でもエチレン-酢酸ビニル共重合体が好ましい。 The vinyl-based resin is preferably a polymer obtained by polymerization of a vinyl ester such as vinyl acetate, or a copolymer of a vinyl ester and an olefin compound such as ethylene. Specific examples include ethylene-vinyl acetate copolymer, ethylene-vinyl propionate copolymer, partially saponified polyvinyl alcohol, and the like. Among these, ethylene-vinyl acetate copolymers are preferred.
 スチレン・アクリル系樹脂は、スチレン、(メタ)アクリロニトリル、アクリルアミド類、マレイミド類などからなるホモポリマーまたはコポリマーが好ましい。具体的には、シンジオタクチックポリスチレン、ポリアクリロニトリル、アクリルコポリマー等が挙げられる。 The styrene-acrylic resin is preferably a homopolymer or copolymer composed of styrene, (meth)acrylonitrile, acrylamides, maleimides, and the like. Specific examples include syndiotactic polystyrene, polyacrylonitrile, and acrylic copolymers.
 ジエン系樹脂は、ブタジエンやイソプレン等の共役ジエン化合物のホモポリマーまたはコポリマー、およびそれらホモポリマーまたはコポリマーの水素添加物が好ましい。具体的には、スチレン-ブタジエンゴム、スチレン-イソプレンブロックコポリマー、スチレン-エチレン・ブチレン-スチレンブロックコポリマー、スチレン-エチレン・プロピレン-スチレンブロックコポリマー、スチレン-イソプレン-スチレンブロックコポリマー、スチレン-ブチレン・ブタジエン-スチレンブロックコポリマー、スチレン-エチレン・ブチレン-スチレンブロックコポリマーとスチレン-エチレン・ブチレンブロックコポリマーとの混合物等が挙げられる。 The diene-based resin is preferably a homopolymer or copolymer of a conjugated diene compound such as butadiene or isoprene, and a hydrogenated product of these homopolymers or copolymers. Specifically, styrene-butadiene rubber, styrene-isoprene block copolymer, styrene-ethylene/butylene-styrene block copolymer, styrene-ethylene/propylene-styrene block copolymer, styrene-isoprene-styrene block copolymer, styrene-butylene/butadiene- Examples include styrene block copolymers, mixtures of styrene-ethylene/butylene-styrene block copolymers and styrene-ethylene/butylene block copolymers, and the like.
 セルロース系樹脂は、セルロースアセテートブチレート樹脂が好ましい。ポリカーボネート樹脂は、ビスフェノールAポリカーボネートが好ましい。 Cellulose-based resin is preferably cellulose acetate butyrate resin. Polycarbonate resin is preferably bisphenol A polycarbonate.
 ポリイミド系樹脂は、熱可塑性ポリイミド、ポリアミドイミド樹脂、ポリアミック酸型ポリイミド樹脂が好ましい。 Polyimide-based resins are preferably thermoplastic polyimides, polyamide-imide resins, and polyamic acid-type polyimide resins.
 熱プレス後のクッション材と金属補強板や配線板、並びに熱プレス機との剥離を容易にするため、クッション材は、クッション性の部材に加え、離形層を含む形態とすることができる。離形層としては、ポリプロピレン、ポリメチルペンテン、環状オレフィンポリマー、シリコーン、フッ素樹脂からなる層を形成することが好ましい。この中でもポリプロピレン、ポリメチルペンテン、シリコーン、フッ素樹脂がさらに好ましい。上記形態の他、アルキッド、シリコーン等の離型剤をコーティングする形態も好ましい。 In order to facilitate the separation of the cushion material after hot pressing from the metal reinforcing plate, wiring board, and hot press machine, the cushion material may include a release layer in addition to the cushioning member. As the release layer, it is preferable to form a layer made of polypropylene, polymethylpentene, cyclic olefin polymer, silicone, or fluororesin. Among these, more preferable are polypropylene, polymethylpentene, silicone and fluororesin. In addition to the above forms, a form in which a release agent such as alkyd or silicone is coated is also preferable.
 離形層の厚みは0.001~70μmが好ましく、0.01~50μmがより好ましい。 The thickness of the release layer is preferably 0.001-70 μm, more preferably 0.01-50 μm.
 市販のクッション材としては、三井東セロ社製「CR1012」、「CR1012MT4」、「CR1040」、「CR2031MT4」等を用いることができる。これら市販のクッション材はクッション材の両面を離形層としてポリメチルペンテンで挟み込んだ層構成となっており本願ではこれらの一体構成をクッション材と呼ぶ。 "CR1012", "CR1012MT4", "CR1040", "CR2031MT4", etc. manufactured by Mitsui Tocello can be used as commercially available cushioning materials. These commercially available cushioning materials have a layered structure in which both sides of the cushioning material are sandwiched between polymethylpentene as release layers, and the integral structure of these is called a cushioning material in the present application.
 クッション材の厚みは、50~300μmが好ましく、75~250μmがより好ましく、100~200μmがさらに好ましい。50~300μmとすることで染み出し性を向上できる。尚、上記厚みは、離形層を有する場合、離形層を含んだ値である。 The thickness of the cushion material is preferably 50-300 μm, more preferably 75-250 μm, and even more preferably 100-200 μm. By setting the thickness to 50 to 300 μm, the exudation property can be improved. In addition, the said thickness is a value including a mold release layer, when it has a mold release layer.
(金属補強板)
 金属補強板は、例えば金、銀、銅、鉄およびステンレスの導電性金属が挙げられる。これらの中で補強板としての強度、コストおよび化学的安定性の面でステンレスが好ましい。
(Metal reinforcing plate)
Metal reinforcing plates include conductive metals such as gold, silver, copper, iron and stainless steel. Among these, stainless steel is preferable in terms of strength, cost and chemical stability as a reinforcing plate.
 金属補強板の厚みは、50~500μmが好ましく、60~400μmがより好ましく、75~300μmがさらに好ましい。金属補強板の厚みを500μm以下とすることでクッション材の流動によって染み出しを抑制する他、プリント配線板の軽量化及び小型化を促進できる。50μm以上とすることで金属補強板の強度が向上し配線板の信頼性が向上する。 The thickness of the metal reinforcing plate is preferably 50-500 μm, more preferably 60-400 μm, even more preferably 75-300 μm. By setting the thickness of the metal reinforcing plate to 500 μm or less, it is possible to suppress seepage due to the flow of the cushioning material and promote weight reduction and miniaturization of the printed wiring board. By setting the thickness to 50 μm or more, the strength of the metal reinforcing plate is improved and the reliability of the wiring board is improved.
 金属補強板は、表面の不導体化による抵抗値上昇を抑制するため、メッキ層が表面に形成されていることが好ましい。メッキ層は、金、銀、ニッケル、リン含有ニッケルメッキが好ましい。メッキの方法は電解めっき法または無電解めっき法で形成することが好ましい。メッキ層の厚みは、0.1~5μm程度であり、0.2~4μmがより好ましい。尚、上記金属補強板の厚みは、メッキ層を有する場合、メッキ層を含んだ値である。尚、コストを低減する観点においてはメッキをしない態様が好ましい。 The metal reinforcing plate preferably has a plated layer formed on its surface in order to suppress an increase in resistance value due to non-conductivity of the surface. The plating layer is preferably gold, silver, nickel, or phosphorous-containing nickel plating. The plating method is preferably electrolytic plating or electroless plating. The thickness of the plated layer is approximately 0.1 to 5 μm, preferably 0.2 to 4 μm. Incidentally, the thickness of the metal reinforcing plate is a value including the plated layer when it has a plated layer. From the viewpoint of cost reduction, it is preferable to avoid plating.
 染み出しをより効果的に抑制する観点から、金属補強板とクッション材の厚みの比率(金属補強板の厚み[μm]/クッション材の厚み[μm])が、2以下であることが好ましく、1.7以下であることがより好ましく、1.3以下がさらに好ましい。下限は0.1以上が好ましく、0.5以上がより好ましい。 From the viewpoint of more effectively suppressing seepage, the thickness ratio between the metal reinforcing plate and the cushioning material (thickness of the metal reinforcing plate [μm]/thickness of the cushioning material [μm]) is preferably 2 or less. It is more preferably 1.7 or less, even more preferably 1.3 or less. The lower limit is preferably 0.1 or more, more preferably 0.5 or more.
(導電性接着剤)
 本実施の形態にかかる導電性接着剤は、熱により軟化するバインダー樹脂と導電性フィラーとを少なくとも含み、下記の特性を備えることが好ましい。
(Conductive adhesive)
The conductive adhesive according to the present embodiment preferably contains at least a binder resin softened by heat and a conductive filler, and preferably has the following properties.
[貯蔵弾性率]
 本実施の形態では、導電性接着剤の170℃における貯蔵弾性率を2MPa以上50MPa以下、好ましくは4MPa以上25MPa以下、更に好ましくは7MPa以上15MPa以下としてもよい。導電性接着剤の170℃における貯蔵弾性率をこの範囲とすることで、熱プレス時(図2Aの工程[1]~図2Cの工程[3]参照)に導電性接着剤12を十分に軟化させることができ、導電性接着剤12の開口部への充填性を向上させることができる。したがって、導電性接着剤12とグランド回路25との間に隙間29b(図5A参照)が形成されることを抑制することができ、金属補強板14とグランド回路25との間の抵抗値が高くなることを抑制することができる。また、導電性接着剤が過剰に軟化することで染み出しが悪化することを抑制することができる(図5B参照)。
[Storage modulus]
In this embodiment, the storage elastic modulus of the conductive adhesive at 170° C. may be 2 MPa or more and 50 MPa or less, preferably 4 MPa or more and 25 MPa or less, more preferably 7 MPa or more and 15 MPa or less. By setting the storage elastic modulus of the conductive adhesive at 170 ° C. in this range, the conductive adhesive 12 is sufficiently softened during hot pressing (see step [1] in FIG. 2A to step [3] in FIG. 2C). It is possible to improve the fillability of the conductive adhesive 12 into the opening. Therefore, the formation of a gap 29b (see FIG. 5A) between the conductive adhesive 12 and the ground circuit 25 can be suppressed, and the resistance between the metal reinforcing plate 14 and the ground circuit 25 is increased. can be prevented from becoming In addition, it is possible to suppress exacerbation of exudation due to excessive softening of the conductive adhesive (see FIG. 5B).
 170℃における貯蔵弾性率を2MPa以上とするための手法としては、例えばバインダー樹脂の重量平均分子量Mwを上げる、バインダー樹脂を、芳香環を多く有する骨格とし剛直性を高める、導電性フィラーや無機フィラー等のフィラー成分の添加量を増やす、また、バインダー樹脂が熱硬化性樹脂である場合は、Bステージにおける硬化剤との架橋密度を高める等の手法が挙げられる。 Methods for increasing the storage elastic modulus at 170° C. to 2 MPa or more include, for example, increasing the weight-average molecular weight Mw of the binder resin, making the binder resin a skeleton having many aromatic rings to increase rigidity, and conducting fillers and inorganic fillers. In addition, when the binder resin is a thermosetting resin, methods such as increasing the cross-linking density with the curing agent in the B stage can be used.
 170℃における貯蔵弾性率を50MPa以下とするための手法としては、例えばバインダー樹脂の重量平均分子量Mwを下げる、バインダー樹脂の骨格から芳香環を減らし剛直性を下げる、導電性フィラーや無機フィラー等のフィラー成分の添加量を減らす、またバインダー樹脂が熱硬化性樹脂である場合は、半硬化状態であるBステージにおける硬化剤との架橋密度を下げる等の手法が挙げられる。 Techniques for making the storage elastic modulus at 170° C. to 50 MPa or less include, for example, lowering the weight average molecular weight Mw of the binder resin, reducing the rigidity of the binder resin by reducing aromatic rings, adding conductive fillers, inorganic fillers, and the like. Techniques include reducing the amount of filler component added, and when the binder resin is a thermosetting resin, lowering the crosslink density with the curing agent in the B stage, which is in the semi-cured state.
 本実施の形態では、170℃における導電性接着剤の貯蔵弾性率を上述の範囲とすることで、金属補強板付きプリント配線板の製造時に開口部への充填性が良好な導電性接着剤を有する部材セット、及び金属補強板付きプリント配線板を提供することができる。 In the present embodiment, by setting the storage elastic modulus of the conductive adhesive at 170° C. to the range described above, a conductive adhesive having good filling properties in openings during manufacturing of a printed wiring board with a metal reinforcing plate can be obtained. and a printed wiring board with a metal reinforcing plate.
 本実施の形態にかかる導電性接着剤の貯蔵弾性率は、クッション材と同様の方法で求めることができる。 The storage elastic modulus of the conductive adhesive according to this embodiment can be obtained by the same method as for the cushion material.
 また、クッション材の貯蔵弾性率は、前記導電性接着剤の貯蔵弾性率よりも高いことが好ましい。クッション材と導電性接着剤の170℃における貯蔵弾性率差は、4~100MPaであることが好ましく、10~87MPaがより好ましい。上記範囲とすることで染み出す導電性接着剤をクッション材によってせき止める効果がより向上する。 Further, the storage elastic modulus of the cushioning material is preferably higher than that of the conductive adhesive. The difference in storage elastic modulus at 170° C. between the cushion material and the conductive adhesive is preferably 4 to 100 MPa, more preferably 10 to 87 MPa. By setting the content in the above range, the effect of blocking the oozing conductive adhesive by the cushion material is further improved.
[損失正接]
 本実施の形態では、導電性接着剤の170℃における損失正接(tanδ)は、0.05以上0.4以下が好ましく、0.15以上0.35以下がより好ましく、0.20以上0.3以下がさらに好ましい。導電性接着剤の170℃における損失正接(tanδ)をこの範囲とすることで、導電性接着剤12の開口部への充填性を更に向上させることができる。
[Loss tangent]
In the present embodiment, the loss tangent (tan δ) of the conductive adhesive at 170° C. is preferably 0.05 or more and 0.4 or less, more preferably 0.15 or more and 0.35 or less, and 0.20 or more and 0.20 or more. 3 or less is more preferable. By setting the loss tangent (tan δ) of the conductive adhesive at 170° C. to this range, the fillability of the conductive adhesive 12 into the opening can be further improved.
 170℃における損失正接を0.05以上とするための手法としては、例えばバインダー樹脂の重量平均分子量Mwを下げる、バインダー樹脂の酸価を下げる、バインダー樹脂のガラス転移温度(Tg)を下げる、加えて常温で液状の硬化剤を添加する等が挙げられる。 Techniques for making the loss tangent at 170° C. 0.05 or more include, for example, lowering the weight average molecular weight Mw of the binder resin, lowering the acid value of the binder resin, lowering the glass transition temperature (Tg) of the binder resin, and and adding a curing agent that is liquid at room temperature.
 170℃における損失正接を0.40以下とするための手法としては、例えばバインダー樹脂の重量平均分子量Mwを上げる、バインダー樹脂の酸価を上げる、バインダー樹脂のTgを上げる、加えて常温で固形の硬化剤を添加する等が挙げられる。 Methods for making the loss tangent at 170° C. 0.40 or less include, for example, increasing the weight-average molecular weight Mw of the binder resin, increasing the acid value of the binder resin, increasing the Tg of the binder resin, and adding a solid at room temperature. For example, a curing agent is added.
 本実施の形態にかかる導電性接着剤の損失正接(tanδ)は、上述のように動的粘弾性測定装置を用いて導電性接着剤の25~200℃の温度範囲における貯蔵弾性率(E’)、損失弾性率(E”)、および損失正接(tanδ)変化を測定し、各々の温度における損失正接(tanδ)を抽出することで求めることができる。 The loss tangent (tan δ) of the conductive adhesive according to the present embodiment is the storage elastic modulus (E' ), loss modulus (E″), and loss tangent (tan δ), and extract the loss tangent (tan δ) at each temperature.
[ガラス転移温度]
 また、本実施の形態の導電性接着剤は、粘弾性測定により得られる温度-損失正接(tanδ)曲線におけるピークの温度を用いて求めることができる。本発明の導電接着剤は第1と第2のガラス転移温度を有することが好ましく、低温側のピークを第1のガラス転移温度、高温側のピークを第2のガラス転移温度と定義する。第1のガラス転移温度は10℃以上45℃以下、第2のガラス転移温度は70℃以上140℃以下であることが好ましい。第1のガラス転移温度が25℃以上40℃以下、第2のガラス転移温度が75℃以上110℃以下であることがより好ましい。第1のガラス転移温度が27℃以上36℃以下、第2のガラス転移温度が78℃以上95℃以下であることがさらに好ましい。導電性接着剤のガラス転移温度をこのような範囲とすることで、導電性接着剤の密着性、開口部への充填性を更に向上させることができる。
[Glass-transition temperature]
Further, the conductive adhesive of the present embodiment can be determined using the peak temperature in the temperature-loss tangent (tan δ) curve obtained by viscoelasticity measurement. The conductive adhesive of the present invention preferably has first and second glass transition temperatures, with the low temperature peak defined as the first glass transition temperature and the high temperature peak defined as the second glass transition temperature. Preferably, the first glass transition temperature is 10° C. or higher and 45° C. or lower, and the second glass transition temperature is 70° C. or higher and 140° C. or lower. More preferably, the first glass transition temperature is 25° C. or higher and 40° C. or lower, and the second glass transition temperature is 75° C. or higher and 110° C. or lower. More preferably, the first glass transition temperature is 27° C. or higher and 36° C. or lower, and the second glass transition temperature is 78° C. or higher and 95° C. or lower. By setting the glass transition temperature of the conductive adhesive within such a range, the adhesiveness of the conductive adhesive and the ability to fill the opening can be further improved.
 第1のガラス転移温度を10℃以上45℃以下とするための手法としては、例えば、バインダー樹脂のTgをコントロールする手法、バインダー樹脂が熱硬化性樹脂である場合は硬化剤との架橋密度をコントロールする手法が挙げられる。
 第2のガラス転移温度を70℃以上140℃以下とするためには、上記と同様の手法により調整することができる。
Techniques for setting the first glass transition temperature to 10° C. or higher and 45° C. or lower include, for example, a method of controlling the Tg of the binder resin, and when the binder resin is a thermosetting resin, the cross-linking density with the curing agent is adjusted. There are methods of control.
In order to set the second glass transition temperature to 70° C. or higher and 140° C. or lower, the same method as described above can be used for adjustment.
[膜厚]
 導電性接着剤の厚さは、15~70μmが好ましく、20~65μmがより好ましい。厚さを15μm以上とすることで小開口ビアへの埋め込み性を向上できる。厚さを70μm以下とすることで染み出し性を抑制できる。導電性接着剤の厚さの測定方法は、接触式の膜厚計、断面観察による計測などで測定することができる。
[Thickness]
The thickness of the conductive adhesive is preferably 15-70 μm, more preferably 20-65 μm. By setting the thickness to 15 μm or more, it is possible to improve the embedding property in a small opening via. By setting the thickness to 70 μm or less, the bleeding property can be suppressed. The thickness of the conductive adhesive can be measured by a contact-type film thickness meter, cross-sectional observation, or the like.
[導電性接着剤の製造方法]
 部材セットを構成する導電性接着剤は、例えば、導電性樹脂組成物を用い、剥離性フィルム上に導電性接着剤を形成した導電性接着シートにより製造することができる。
[Method for producing conductive adhesive]
The conductive adhesive that constitutes the member set can be produced, for example, from a conductive adhesive sheet using a conductive resin composition and forming a conductive adhesive on a peelable film.
「導電性樹脂組成物」
 本実施の形態にかかる導電性接着剤は、熱により軟化するバインダー樹脂、および導電性微粒子を含む導電性樹脂組成物により形成されることが好ましい。
"Conductive resin composition"
The conductive adhesive according to the present embodiment is preferably formed from a conductive resin composition containing a binder resin softened by heat and conductive fine particles.
 熱により軟化するバインダー樹脂としては、本発明の趣旨を逸脱しない範囲で特に限定されないが、熱硬化性樹脂が好ましい。また、後工程においてリフロー工程等の加熱工程が無い用途においては、熱可塑性樹脂が好ましい。熱硬化性樹脂は、自己架橋性タイプおよび硬化剤反応タイプが使用できる。硬化剤反応タイプのバインダー樹脂としては、硬化剤と反応可能な反応性官能基を有する熱硬化性樹脂が好適である。 The binder resin softened by heat is not particularly limited as long as it does not deviate from the gist of the present invention, but thermosetting resins are preferred. Thermoplastic resins are preferred for applications in which there is no heating process such as a reflow process in the post-process. A self-crosslinking type and a curing agent reaction type can be used for the thermosetting resin. A thermosetting resin having a reactive functional group capable of reacting with a curing agent is suitable as the curing agent reaction type binder resin.
<熱硬化性樹脂>
 熱硬化性樹脂は、加熱による架橋反応に利用できる官能基を複数有する樹脂である。
 官能基は、例えば、水酸基、フェノール性水酸基、カルボキシル基、アミノ基、エポキシ基、オキセタニル基、オキサゾリン基、オキサジン基、アジリジン基、チオール基、イソシアネート基、ブロック化イソシアネート基、シラノール基等が挙げられる。
 上記の官能基を有する熱硬化性樹脂は、例えば、アクリル樹脂、マレイン酸樹脂、ポリブタジエン系樹脂、ポリエステル樹脂、縮合型ポリエステル樹脂、付加型ポリエステル樹脂、メラミン樹脂、ポリウレタン樹脂、ポリウレタンウレア樹脂、エポキシ樹脂、オキセタン樹脂、フェノキシ樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、フェノール系樹脂、アルキド樹脂、アミノ樹脂、ポリ乳酸樹脂、オキサゾリン樹脂、ベンゾオキサジン樹脂、シリコーン樹脂、フッ素樹脂が挙げられる。これらの中でも、ポリウレタン樹脂、ポリウレタンウレア樹脂、エポキシ樹脂、付加型ポリエステル樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂が好ましい。
<Thermosetting resin>
A thermosetting resin is a resin having a plurality of functional groups that can be used for a cross-linking reaction by heating.
Examples of functional groups include hydroxyl groups, phenolic hydroxyl groups, carboxyl groups, amino groups, epoxy groups, oxetanyl groups, oxazoline groups, oxazine groups, aziridine groups, thiol groups, isocyanate groups, blocked isocyanate groups, silanol groups, and the like. .
Thermosetting resins having the above functional groups include, for example, acrylic resins, maleic acid resins, polybutadiene resins, polyester resins, condensation type polyester resins, addition type polyester resins, melamine resins, polyurethane resins, polyurethane urea resins, and epoxy resins. , oxetane resins, phenoxy resins, polyimide resins, polyamide resins, polyamideimide resins, phenolic resins, alkyd resins, amino resins, polylactic acid resins, oxazoline resins, benzoxazine resins, silicone resins, and fluorine resins. Among these, polyurethane resins, polyurethane urea resins, epoxy resins, addition type polyester resins, polyimide resins, polyamide resins, and polyamideimide resins are preferred.
 熱硬化性樹脂の重量平均分子量(Mw)は5万~20万が好ましく、7万~13万がより好ましい。重量平均分子量(Mw)を上記範囲とすることで導電性接着剤の170℃における貯蔵弾性率、損失正接を好適なものにできる。 The weight average molecular weight (Mw) of the thermosetting resin is preferably 50,000 to 200,000, more preferably 70,000 to 130,000. By setting the weight average molecular weight (Mw) within the above range, the storage elastic modulus and loss tangent at 170° C. of the conductive adhesive can be made suitable.
 熱硬化性樹脂のガラス転移温度(Tg)は-20℃~20℃が好ましく、-7℃~150℃がより好ましい。ガラス転移温度を上記範囲とすることで導電性接着剤の25℃における貯蔵弾性率を好適なものにできる。 The glass transition temperature (Tg) of the thermosetting resin is preferably -20°C to 20°C, more preferably -7°C to 150°C. By setting the glass transition temperature within the above range, the storage elastic modulus of the conductive adhesive at 25°C can be made suitable.
 熱硬化性樹脂の酸価は1~40mgKOH/gが好ましく、4~15mgKOH/gがより好ましく、6~13mgKOH/gがさらに好ましい。熱硬化性樹脂の酸価を上記範囲とすることで後述する硬化剤との架橋密度を最適化でき、170℃における貯蔵弾性率、損失正接を好適なものにできる。 The acid value of the thermosetting resin is preferably 1-40 mgKOH/g, more preferably 4-15 mgKOH/g, and even more preferably 6-13 mgKOH/g. By setting the acid value of the thermosetting resin within the above range, the cross-linking density with the curing agent described below can be optimized, and the storage elastic modulus and loss tangent at 170° C. can be made suitable.
<硬化剤>
 硬化剤は、熱硬化性樹脂の種類に応じて任意に選択できる。硬化剤として、架橋反応により導電性接着剤を形成する際に半硬化状態にするために機能し、導電性接着シート形成の際には完全硬化せず、配線板または金属補強板に熱プレスする際に硬化するような硬化剤も適宜選択できる。硬化剤は、エポキシ系化合物、イソシアネート系硬化剤、アミン系硬化剤、アジリジン系硬化剤、イミダゾール系硬化剤が挙げられる。
<Hardener>
The curing agent can be arbitrarily selected according to the type of thermosetting resin. As a curing agent, it functions to make a semi-cured state when forming a conductive adhesive by a cross-linking reaction, and does not completely cure when forming a conductive adhesive sheet, and is hot-pressed to a wiring board or a metal reinforcing plate. A curing agent that cures at the time can also be appropriately selected. Curing agents include epoxy compounds, isocyanate curing agents, amine curing agents, aziridine curing agents, and imidazole curing agents.
 エポキシ化合物としては、グリジシルエーテル型エポキシ化合物、グリジシルアミン型エポキシ化合物、グリシジルエステル型エポキシ化合物、環状脂肪族(脂環型)エポキシ化合物等が好ましい。 As the epoxy compound, a glycidyl ether type epoxy compound, a glycidyl amine type epoxy compound, a glycidyl ester type epoxy compound, a cycloaliphatic (alicyclic type) epoxy compound, and the like are preferable.
 前記グリシジルエーテル型エポキシ化合物としては、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、ビスフェノールS型エポキシ化合物、ビスフェノールAD型エポキシ化合物、クレゾールノボラック型エポキシ化合物、フェノールノボラック型エポキシ化合物、α-ナフトールノボラック型エポキシ化合物、ビスフェノールA型ノボラック型エポキシ化合物、ジシクロペンタジエン型エポキシ化合物、テトラブロムビスフェノールA型エポキシ化合物、臭素化フェノールノボラック型エポキシ化合物、トリス(グリシジルオキシフェニル)メタン、テトラキス(グリシジルオキシフェニル)エタン等が挙げられる。 Examples of the glycidyl ether type epoxy compounds include bisphenol A type epoxy compounds, bisphenol F type epoxy compounds, bisphenol S type epoxy compounds, bisphenol AD type epoxy compounds, cresol novolak type epoxy compounds, phenol novolak type epoxy compounds, α-naphthol novolak type. Epoxy compounds, bisphenol A type novolak type epoxy compounds, dicyclopentadiene type epoxy compounds, tetrabromobisphenol A type epoxy compounds, brominated phenol novolac type epoxy compounds, tris(glycidyloxyphenyl)methane, tetrakis(glycidyloxyphenyl)ethane, etc. is mentioned.
 前記グリシジルアミン型エポキシ化合物としては、テトラグリシジルジアミノジフェニルメタン、トリグリシジルパラアミノフェノール、トリグリシジルメタアミノフェノール、テトラグリシジルメタキシリレンジアミン等が挙げられる。 Examples of the glycidylamine-type epoxy compounds include tetraglycidyldiaminodiphenylmethane, triglycidyl para-aminophenol, triglycidylmethaminophenol, tetraglycidylmethaxylylenediamine, and the like.
 前記グリシジルエステル型エポキシ化合物としては、ジグリシジルフタレート、ジグリシジルヘキサヒドロフタレート、ジグリシジルテトラヒドロフタレート等が挙げられる。 Examples of the glycidyl ester type epoxy compound include diglycidyl phthalate, diglycidyl hexahydrophthalate, and diglycidyl tetrahydrophthalate.
 前記環状脂肪族(脂環型)エポキシ化合物としては、エポキシシクロヘキシルメチル-エポキシシクロヘキサンカルボキシレート、ビス(エポキシシクロヘキシル)アジペート等が挙げられる。 Examples of the cycloaliphatic (alicyclic) epoxy compounds include epoxycyclohexylmethyl-epoxycyclohexanecarboxylate and bis(epoxycyclohexyl)adipate.
 イソシアネート系硬化剤は、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、キシリレンジイソシアネート、ジシクロへキシルメタンジイソシアネート、1,5-ナフタレンジイソシアネート、テトラメチルキシリレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート等が挙げられる。 Isocyanate-based curing agents include tolylene diisocyanate, diphenylmethane diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, xylylene diisocyanate, dicyclohexylmethane diisocyanate, 1,5-naphthalene diisocyanate, tetramethylxylylene diisocyanate, trimethylhexamethylene diisocyanate, and the like. be done.
 アミン系硬化剤は、ジエチレントリアミン、トリエチレンテトラミン、メチレンビス(2-クロロアニリン)、メチレンビス(2-メチル-6-メチルアニリン)、1,5-ナフタレンジイソシアネート、n-ブチルベンジルフタル酸等が挙げられる。 Amine-based curing agents include diethylenetriamine, triethylenetetramine, methylenebis(2-chloroaniline), methylenebis(2-methyl-6-methylaniline), 1,5-naphthalenediisocyanate, n-butylbenzylphthalic acid, and the like.
 アジリジン系硬化剤は、トリメチロールプロパン-トリ-β-アジリジニルプロピオネート、テトラメチロールメタン-トリ-β-アジリジニルプロピオネート、N,N’-ジフェニルメタン-4,4’-ビス(1-アジリジンカルボキシアミド)、N,N’-ヘキサメチレン-1,6-ビス(1-アジリジンカルボキシアミド)等が挙げられる。 Aziridine curing agents include trimethylolpropane-tri-β-aziridinylpropionate, tetramethylolmethane-tri-β-aziridinylpropionate, N,N'-diphenylmethane-4,4'-bis( 1-aziridinecarboxamide), N,N'-hexamethylene-1,6-bis(1-aziridinecarboxamide) and the like.
 イミダゾール系硬化剤は、2-メチルイミダゾール、2-ヘプタデシルイミダゾール、2-フェニル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテイトなどが挙げられる。 Examples of imidazole curing agents include 2-methylimidazole, 2-heptadecylimidazole, 2-phenyl-4-methylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate and the like.
 硬化剤は、熱硬化性樹脂100重量部に対し、0.3~80重量部を配合することが好ましく、1~50重量部がより好ましい。硬化剤の添加量を0.3~80重量部とすることで、導電性接着剤の架橋密度を最適なものにし、170℃における貯蔵弾性率を2MPa以上50MPa以下の範囲とすることができる。また、硬化剤の添加量を0.3~80重量部とすることで、半硬化後に導電性接着シートを流動しにくくできるためブロッキングが抑制しやすくなる。 The curing agent is preferably blended in an amount of 0.3 to 80 parts by weight, more preferably 1 to 50 parts by weight, per 100 parts by weight of the thermosetting resin. By adding the curing agent in an amount of 0.3 to 80 parts by weight, the crosslink density of the conductive adhesive can be optimized, and the storage elastic modulus at 170° C. can be in the range of 2 MPa or more and 50 MPa or less. Also, by adding the curing agent in an amount of 0.3 to 80 parts by weight, the conductive adhesive sheet is less likely to flow after semi-curing, so that blocking is easily suppressed.
<熱可塑性樹脂>
 本実施の形態では熱可塑性樹脂を併用してもよい。熱可塑性樹脂としては、前記硬化性官能基を有しないポリオレフィン系樹脂、ビニル系樹脂、スチレン・アクリル系樹脂、ジエン系樹脂、テルペン樹脂、石油樹脂、セルロース系樹脂、ポリアミド樹脂、ポリウレタン樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリイミド系樹脂、フッ素樹脂などが挙げられる。
<Thermoplastic resin>
In this embodiment, a thermoplastic resin may be used together. Examples of thermoplastic resins include polyolefin resins, vinyl resins, styrene/acrylic resins, diene resins, terpene resins, petroleum resins, cellulose resins, polyamide resins, polyurethane resins, and polyester resins that do not have the curable functional group. , polycarbonate resins, polyimide resins, fluorine resins, and the like.
 ポリオレフィン系樹脂は、エチレン、プロピレン、α-オレフィン化合物などのホモポリマーまたはコポリマーが好ましい。具体的には、例えば、ポリエチレンプロピレンゴム、オレフィン系熱可塑性エラストマー、α-オレフィンポリマー等が挙げられる。 Polyolefin-based resins are preferably homopolymers or copolymers of ethylene, propylene, α-olefin compounds, and the like. Specific examples include polyethylene propylene rubber, olefinic thermoplastic elastomer, α-olefin polymer, and the like.
 ビニル系樹脂は、酢酸ビニルなどのビニルエステルの重合により得られるポリマーおよびビニルエステルとエチレンなどのオレフィン化合物とのコポリマーが好ましい。具体的には、例えば、エチレン-酢酸ビニル共重合体、部分ケン化ポリビニルアルコール等が挙げられる。 The vinyl-based resin is preferably a polymer obtained by polymerization of a vinyl ester such as vinyl acetate, or a copolymer of a vinyl ester and an olefin compound such as ethylene. Specific examples include ethylene-vinyl acetate copolymer, partially saponified polyvinyl alcohol, and the like.
 スチレン・アクリル系樹脂は、スチレンや(メタ)アクリロニトリル、アクリルアミド類、(メタ)アクリル酸エステル、マレイミド類などからなるホモポリマーまたはコポリマーが好ましい。具体的には、例えば、シンジオタクチックポリスチレン、ポリアクリロニトリル、アクリルコポリマー、エチレン-メタクリル酸メチル共重合体等が挙げられる。
 ジエン系樹脂は、ブタジエンやイソプレン等の共役ジエン化合物のホモポリマーまたはコポリマーおよびそれらの水素添加物が好ましい。具体的には、例えば、スチレン-ブタジエンゴム、スチレン-イソプレンブロックコポリマー等が挙げられる。テルペン樹脂は、テルペン類からなるポリマーまたはその水素添加物が好ましい。具体的には、例えば、芳香族変性テルペン樹脂、テルペンフェノール樹脂、水添テルペン樹脂が挙げられる。
The styrene-acrylic resin is preferably a homopolymer or copolymer of styrene, (meth)acrylonitrile, acrylamides, (meth)acrylic acid esters, maleimides and the like. Specific examples include syndiotactic polystyrene, polyacrylonitrile, acrylic copolymers, ethylene-methyl methacrylate copolymers, and the like.
The diene resin is preferably a homopolymer or copolymer of a conjugated diene compound such as butadiene or isoprene, and hydrogenated products thereof. Specific examples include styrene-butadiene rubber and styrene-isoprene block copolymers. The terpene resin is preferably a polymer composed of terpenes or a hydrogenated product thereof. Specific examples include aromatic modified terpene resins, terpene phenol resins, and hydrogenated terpene resins.
 石油系樹脂は、ジシクロペンタジエン型石油樹脂、水添石油樹脂が好ましい。セルロース系樹脂は、セルロースアセテートブチレート樹脂が好ましい。ポリカーボネート樹脂は、ビスフェノールAポリカーボネートが好ましい。ポリイミド系樹脂は、熱可塑性ポリイミド、ポリアミドイミド樹脂、ポリアミック酸型ポリイミド樹脂が好ましい。 The petroleum-based resin is preferably a dicyclopentadiene-type petroleum resin or a hydrogenated petroleum resin. Cellulose-based resin is preferably cellulose acetate butyrate resin. Polycarbonate resin is preferably bisphenol A polycarbonate. The polyimide resin is preferably thermoplastic polyimide, polyamideimide resin, or polyamic acid type polyimide resin.
<導電性微粒子>
 導電性微粒子は、金、白金、銀、銅およびニッケル等の導電性金属、およびその合金、ならびに導電性ポリマーの微粒子が好ましい。また単一組成の微粒子ではなく金属や樹脂を核体とし、前記核体の表面を被覆する被覆層を核体よりも導電性が高い素材で形成した複合微粒子がコストダウンの観点から好ましい。
 核体は、価格が安いニッケル、シリカ、銅およびその合金、ならびに樹脂から適宜選択することが好ましい。
 被覆層は、導電性を有する素材であればよく、導電性金属または導電性ポリマーが好ましい。導電性金属は、金、白金、銀、錫、マンガン、およびインジウム等、ならびにその合金が挙げられる。また導電性ポリマーは、ポリアニリン、ポリアセチレン等が挙げられる。これらの中でも導電性の面から銀が好ましい。
 導電性微粒子は、単独で用いてもよく、2種類以上を併用してもよい。
<Conductive fine particles>
The conductive fine particles are preferably fine particles of conductive metals such as gold, platinum, silver, copper and nickel, alloys thereof, and conductive polymers. From the viewpoint of cost reduction, it is preferable to use composite fine particles in which metal or resin is used instead of fine particles of a single composition, and the coating layer that coats the surface of the core is formed of a material having higher conductivity than the core.
It is preferable to appropriately select the core material from inexpensive nickel, silica, copper and their alloys, and resin.
The coating layer may be made of any conductive material, preferably a conductive metal or a conductive polymer. Conductive metals include gold, platinum, silver, tin, manganese, indium, and the like, and alloys thereof. Examples of conductive polymers include polyaniline and polyacetylene. Among these, silver is preferable from the aspect of conductivity.
The conductive fine particles may be used alone or in combination of two or more.
 複合微粒子は、核体100重量部に対して1~40重量部の割合で被覆層を有することが好ましく、5~30重量部がより好ましい。1~40重量部で被覆すると、導電性を維持しながら、よりコストダウンができる。尚、複合微粒子は、被覆層が核体を完全に覆うことが好ましい。しかし、実際には、核体の一部が露出する場合がある。このような場合でも核体表面面積の70%以上を導電性微粒子が覆っていれば、導電性を維持しやすい。 The fine composite particles preferably have a coating layer in a proportion of 1 to 40 parts by weight, more preferably 5 to 30 parts by weight, per 100 parts by weight of the core. Coating with 1 to 40 parts by weight can further reduce costs while maintaining electrical conductivity. In addition, it is preferable that the coating layer of the fine composite particles completely covers the nucleus. However, in reality, part of the nuclear body may be exposed. Even in such a case, if 70% or more of the surface area of the core is covered with the conductive fine particles, the conductivity can be easily maintained.
 導電性微粒子の形状は、所望の導電性が得られればよく形状は限定されない。例えば、球状、フレーク状、葉状、樹枝状、プレート状、針状、棒状、ブドウ状が好ましい。尚、金属補強板と配線板との間の縦方向の導通パスを効率的に形成するために、球状および樹枝状がより好ましい。 The shape of the conductive fine particles is not limited as long as the desired conductivity is obtained. For example, spherical, flake-like, leaf-like, dendritic, plate-like, needle-like, rod-like and grape-like are preferred. A spherical shape and a dendritic shape are more preferable in order to efficiently form a vertical conducting path between the metal reinforcing plate and the wiring board.
 導電性微粒子の平均粒子径は、D50平均粒子径が、1~120μmであることが好ましく、5~60μmがより好ましい。D50平均粒子径がこの範囲にあることでブロッキングが起こることを抑制することができる。尚、D50平均粒子径は、レーザー回折・散乱法粒度分布測定装置によって求めることができる。例えば、剥離性フィルム上に導電性接着剤を有する導電性接着シートは、ロール状に巻き取られた状態で運搬等される。ブロッキングとは、このロール状の導電性接着シートから、導電性接着シートを巻き出す際に、導電性接着シートが剥離性フィルムの裏面に付着する現象のことである。 As for the average particle size of the conductive fine particles, the D50 average particle size is preferably 1 to 120 μm, more preferably 5 to 60 μm. When the D50 average particle size is within this range, blocking can be suppressed. The D50 average particle size can be determined by a laser diffraction/scattering method particle size distribution analyzer. For example, a conductive adhesive sheet having a conductive adhesive on a peelable film is rolled up and transported. Blocking is a phenomenon in which the conductive adhesive sheet adheres to the back surface of the peelable film when the conductive adhesive sheet is unwound from the rolled conductive adhesive sheet.
 導電性接着剤100重量%中、導電性微粒子の添加量は30~90重量%が好ましく、40~80重量%がより好ましい。上記添加量とすることで170℃における各貯蔵弾性率を好適な範囲とすることができる。 The amount of conductive fine particles added is preferably 30 to 90% by weight, more preferably 40 to 80% by weight, based on 100% by weight of the conductive adhesive. Each storage elastic modulus at 170° C. can be set within a suitable range by adjusting the amount to be added as described above.
 本実施の形態における導電性樹脂組成物は、他の任意成分として溶剤、耐熱安定剤、無機フィラー、顔料、染料、粘着付与樹脂、可塑剤、シランカップリング剤、紫外線吸収剤、消泡剤、レベリング調整剤等を配合することができる。 The conductive resin composition in the present embodiment contains other optional components such as a solvent, a heat stabilizer, an inorganic filler, a pigment, a dye, a tackifying resin, a plasticizer, a silane coupling agent, an ultraviolet absorber, an antifoaming agent, A leveling adjuster or the like can be blended.
 無機フィラーとしては、例えば、シリカ、アルミナ、水酸化アルミニウム、水酸化マグネシウム、硫酸バリウム、炭酸カルシウム、酸化チタン、酸化亜鉛、三酸化アンチモン、酸化マグネシウム、タルク、モンモロリナイト、カオリン、ベントナイト等が挙げられる。当該導電性接着層が無機フィラーを含有することで、硬化前の貯蔵弾性率を制御し最適なフロー量にコントロールすることができる。 Examples of inorganic fillers include silica, alumina, aluminum hydroxide, magnesium hydroxide, barium sulfate, calcium carbonate, titanium oxide, zinc oxide, antimony trioxide, magnesium oxide, talc, montmorolinite, kaolin, and bentonite. be done. By containing an inorganic filler in the conductive adhesive layer, it is possible to control the storage elastic modulus before curing and control the amount of flow to be optimal.
 導電性樹脂組成物は、前記の各成分を混合し攪拌して得ることができる。攪拌は、公知の攪拌装置を使用できる、ディスパーマットが一般的であるが、ホモジナイザーも好ましい。 The conductive resin composition can be obtained by mixing and stirring the above components. For stirring, a known stirring device can be used, and Dispermat is generally used, but a homogenizer is also preferable.
 前記導電性樹脂組成物を剥離性フィルムの剥離面に、ナイフコート、ダイコート、リップコート、ロールコート、カーテンコート、バーコート、グラビアコート、フレキソコート、ディップコート、スプレーコート、およびスピンコート等の方法で塗工し、通常40~20℃の温度に加熱することで溶剤などの揮発成分を取り除き、導電性接着剤層を有する導電性接着シートを形成できる。 The conductive resin composition is applied to the release surface of the release film by methods such as knife coating, die coating, lip coating, roll coating, curtain coating, bar coating, gravure coating, flexo coating, dip coating, spray coating, and spin coating. and heated to a temperature of usually 40 to 20° C. to remove volatile components such as solvents, thereby forming a conductive adhesive sheet having a conductive adhesive layer.
「剥離性フィルム」
 剥離性フィルムは、片面あるいは両面に離型処理をしたフィルムであれば制限なく使用することができる。
 剥離性フィルムの基材の一例としては、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリフッ化ビニル、ポリフッ化ビニリデン、硬質ポリ塩化ビニル、ポリ塩化ビニリデン、ナイロン、ポリイミド、ポリスチレン、ポリビニルアルコール、エチレン・ビニルアルコール共重合体、ポリカーボネート、ポリアクリロニトリル、ポリブテン、軟質ポリ塩化ビニル、ポリフッ化ビニリデン、ポリエチレン、ポリプロピレン、ポリウレタン、エチレン酢酸ビニル共重合体、ポリ酢酸ビニル等のプラスチックシート等、グラシン紙、上質紙、クラフト紙、コート紙等の紙類、各種の不織布、合成紙、金属箔や、これらを組み合わせた複合フィルムなどが挙げられる。
"Peelable film"
As the peelable film, any film having one side or both sides subjected to release treatment can be used without limitation.
Examples of base materials for peelable films include polyethylene terephthalate, polyethylene naphthalate, polyvinyl fluoride, polyvinylidene fluoride, rigid polyvinyl chloride, polyvinylidene chloride, nylon, polyimide, polystyrene, polyvinyl alcohol, and ethylene/vinyl alcohol copolymer. Coalescing, polycarbonate, polyacrylonitrile, polybutene, soft polyvinyl chloride, polyvinylidene fluoride, polyethylene, polypropylene, polyurethane, ethylene vinyl acetate copolymer, plastic sheets such as polyvinyl acetate, glassine paper, fine paper, kraft paper, coated Examples include papers such as paper, various non-woven fabrics, synthetic papers, metal foils, and composite films in which these are combined.
 剥離性フィルムの表面は必要に応じてマット処理することができる。マット処理はサンドマット、エッチングマット、コーティングマット、ケミカルマット、練り込みマットなどが挙げられる。 The surface of the peelable film can be matte treated as needed. Examples of matting include sand matting, etching matting, coating matting, chemical matting, and kneading matting.
 剥離性フィルムは、基材に離型剤を塗布して得る事ができる。離型剤としては、ポリエチレン、ポリプロピレン等の炭化水素系樹脂、高級脂肪酸及びその金属塩、高級脂肪酸石鹸、ワックス、動植物油脂、マイカ、タルク、シリコーン系界面活性剤、シリコーンオイル、シリコーン樹脂、フッ素系界面活性剤、フッ素樹脂、フッ素含有シリコーン樹脂、メラミン系樹脂、アクリル系樹脂などが用いられる。離型剤の塗布方法としては、従来公知の方式、グラビアコート方式、キスコート方式、ダイコート方式、リップコート方式、コンマコート方式、ブレードコート方式、ロールコート方式、ナイフコート方式、スプレーコート方式、バーコート方式、スピンコート方式、ディップコート方式等により行うことができる。 The peelable film can be obtained by applying a release agent to the substrate. Release agents include hydrocarbon resins such as polyethylene and polypropylene, higher fatty acids and their metal salts, higher fatty acid soaps, waxes, animal and vegetable oils, mica, talc, silicone surfactants, silicone oils, silicone resins, fluorine-based Surfactants, fluorine resins, fluorine-containing silicone resins, melamine resins, acrylic resins, and the like are used. Examples of the method of applying the release agent include conventionally known methods, gravure coating, kiss coating, die coating, lip coating, comma coating, blade coating, roll coating, knife coating, spray coating, and bar coating. method, spin coating method, dip coating method, or the like.
<プリント配線板>
 プリント配線板は、基材上に、グランド回路を含む回路パターンと前記回路パターンを絶縁保護し、開口部を有する絶縁保護膜を備える。グランド回路を含む回路パターンは銅をエッチングして形成されることが一般的である。絶縁保護膜はポリイミドフィルムと絶縁性接着剤からなるポリイミドカバーレイまたは、レジストフィルム、ソルダーレジストによって形成することが好ましい。グランド回路上の開口部を形成する方法としてドリル加工、エッチング加工、レーザー加工が好ましい。開口部の面積および形状等については後述する。
<Printed wiring board>
A printed wiring board is provided with a circuit pattern including a ground circuit and an insulating protective film that insulates and protects the circuit pattern and has an opening on a substrate. Circuit patterns including ground circuits are generally formed by etching copper. The insulating protective film is preferably formed of a polyimide coverlay comprising a polyimide film and an insulating adhesive, a resist film, or a solder resist. Drilling, etching, and laser processing are preferred methods for forming an opening on the ground circuit. The area, shape, etc. of the opening will be described later.
《金属補強板付きプリント配線板》
 本実施の形態にかかる金属補強板付きプリント配線板30(図3参照)は、基材21上にグランド回路25を含む回路パターンが配置されており、その上層に絶縁保護する絶縁保護膜(絶縁性フィルム22および絶縁性接着剤23)が形成された配線板20を有する。そして、絶縁保護膜に設けられた開口部27を介して露出しているグランド回路25と、配線板20上に配置され、上述の導電性接着剤を用いて構成された導電性接着剤層12と、導電性接着剤層12上に配置され、導電性接着剤層12を介して配線板20と接着されている金属補強板14と、を備える。本実施の形態にかかる金属補強板付きプリント配線板30は、導電性接着剤層12の一部が開口部27に充填されることで、グランド回路25と金属補強板14とが導電性接着剤層12を介して電気的に接続されている。配線板20には更に信号回路24が設けられていてもよい。
《Printed wiring board with metal reinforcing plate》
A printed wiring board 30 with a metal reinforcing plate according to the present embodiment (see FIG. 3) has a circuit pattern including a ground circuit 25 arranged on a base material 21, and an insulating protective film (insulating layer) for insulating and protecting the upper layer thereof. It has a wiring board 20 on which an insulating film 22 and an insulating adhesive 23) are formed. A ground circuit 25 exposed through an opening 27 provided in the insulating protective film, and a conductive adhesive layer 12 arranged on the wiring board 20 and formed using the conductive adhesive described above. and a metal reinforcing plate 14 disposed on the conductive adhesive layer 12 and bonded to the wiring board 20 via the conductive adhesive layer 12 . In printed wiring board 30 with a metal reinforcing plate according to the present embodiment, opening 27 is partially filled with conductive adhesive layer 12, so that ground circuit 25 and metal reinforcing plate 14 are bonded with the conductive adhesive. They are electrically connected through layer 12 . A signal circuit 24 may be further provided on the wiring board 20 .
 金属補強板付きプリント配線板30の開口部27(図3参照)の面積は、特に制限されないが、0.16mm以上0.81mm以下としてもよい。開口部27の面積を0.16mm以上とすることで、開口部27への導電性接着剤12の充填性を良好にすることができる。また、開口部27の面積を0.81mm以下とすることで、金属補強板付きプリント配線板30に占める開口部27の面積を小さくすることができる。開口部27の面積は、好ましくは0.25mm以上0.64mm以下、更に好ましくは0.36mm以上0.49mm以下としてもよい。開口部27の面積がこの範囲である場合、開口部27への導電性接着剤12の充填性を良好にすることができ、導電性接着剤12とグランド回路25との接触抵抗を低くすることができる。
 本発明の金属補強板付きプリント配線板の製造方法により、開口部の面積が小さい場合にも、充分に導電性接着剤の充填が可能であり、埋め込み性が良好な金属補強板付きプリント配線板とすることができる。
The area of opening 27 (see FIG. 3) of printed wiring board 30 with a metal reinforcing plate is not particularly limited, but may be 0.16 mm 2 or more and 0.81 mm 2 or less. By setting the area of the opening 27 to 0.16 mm 2 or more, the filling property of the conductive adhesive 12 into the opening 27 can be improved. Further, by setting the area of opening 27 to 0.81 mm 2 or less, the area of opening 27 occupying printed wiring board 30 with a metal reinforcing plate can be reduced. The area of the opening 27 may be preferably 0.25 mm 2 or more and 0.64 mm 2 or less, more preferably 0.36 mm 2 or more and 0.49 mm 2 or less. When the area of the opening 27 is within this range, the filling of the opening 27 with the conductive adhesive 12 can be improved, and the contact resistance between the conductive adhesive 12 and the ground circuit 25 can be reduced. can be done.
According to the method for manufacturing a printed wiring board with a metal reinforcing plate of the present invention, even when the area of the opening is small, the conductive adhesive can be sufficiently filled, and the printed wiring board with the metal reinforcing plate has good embedding properties. can be
 平面視した際の開口部27の形状は、四角状(図6Aの開口部27b参照)であってもよく、円形状(図6Aの開口部27a参照)であってもよい。開口部27の形状が四角状である場合は、四角状の開口部の四隅に導電性接着剤を充填することが特に困難になり、四隅に図5Aに示すような隙間29bが形成されやすい。しかしながら、本実施の形態にかかる導電性接着剤を用いることで、四角状の開口部であっても導電性接着剤を開口部内に良好に充填することができる。 The shape of the opening 27 when viewed from above may be square (see opening 27b in FIG. 6A) or circular (see opening 27a in FIG. 6A). When the shape of the opening 27 is square, it is particularly difficult to fill the four corners of the square opening with the conductive adhesive, and gaps 29b as shown in FIG. 5A are likely to be formed at the four corners. However, by using the conductive adhesive according to the present embodiment, it is possible to satisfactorily fill the opening with the conductive adhesive even if the opening is square.
 また、図6Aに示す開口部27cのように、配線板20の外周の一部(側壁)に開口部27cが形成されている場合(図6Aに示す例では、配線板20の角部に開口部27cが形成されている)は、開口部27cの外側に導電性接着剤の流動を堰き止める壁が設けられていない状態となっている。この場合は、図6Bに示すように、導電性接着剤12を用いて配線板20に金属補強板14を接着した際に、開口部27cの外側に向かって導電性接着剤12aが染み出してしまうという問題があった。 6A, the opening 27c is formed in a part (side wall) of the outer circumference of the wiring board 20 (in the example shown in FIG. 6A, the opening is formed at the corner of the wiring board 20) The portion 27c is formed) is in a state in which no wall is provided outside the opening 27c to block the flow of the conductive adhesive. In this case, as shown in FIG. 6B, when the metal reinforcing plate 14 is adhered to the wiring board 20 using the conductive adhesive 12, the conductive adhesive 12a exudes toward the outside of the opening 27c. There was a problem of hoarding.
 これに対して本実施の形態では、熱プレス時に、上述した特性を備えるクッション材/金属補強板/導電性接着剤からなる部材セットを用いることにより、配線板20と金属補強板14とを接着した際に、端部の開口部27cから導電性接着剤が染み出すことを抑制することができる(もしくは染み出し量を少なくすることができる)。 On the other hand, in the present embodiment, wiring board 20 and metal reinforcing plate 14 are bonded by using a member set consisting of cushioning material/metal reinforcing plate/conductive adhesive having the above-described characteristics during hot pressing. In this case, it is possible to prevent the conductive adhesive from seeping out from the end opening 27c (or to reduce the amount of seepage).
 このような金属補強板付きプリント配線板は、例えば、携帯電話、スマートフォン、ノートPC、デジタルカメラ、液晶ディスプレイ等の電子機器に搭載することができる。また、自動車、電車、船舶、航空機等の輸送機器にも好適に搭載できる。 Such a printed wiring board with a metal reinforcing plate can be mounted, for example, in electronic devices such as mobile phones, smartphones, notebook PCs, digital cameras, and liquid crystal displays. It can also be suitably mounted on transportation equipment such as automobiles, trains, ships, and aircraft.
<変形例>
 本実施形態にかかる部材セットは、複数のプリント配線板がアレイ状に形成された大判サイズのマザー基板に対して、一括もしくは分割して金属補強板を接合するために用いてもよい。例えば、m行×n列(m、nはそれぞれ独立に1以上の整数であり、少なくとも一方は2以上である)の区画それぞれにプリント配線板が形成された大判のマザー基板に対し、導電性接着剤および金属板からなる予備積層体を配置し、その上層に大判のクッション材を配置することにより、導電性接着剤/金属板/クッション材からなる部材セットを得、熱プレスにより一括して金属補強板付きプリント配線板を複数有するマザー基板を製造してもよい。また、大判のクッション材に代えて、それぞれのプリント配線板に対応するクッション材を配置したり、複数枚のクッション材を、複数のプリント配線板に亘って配置したりして、同様の工程により一括または/及び分割して金属補強板付きプリント配線板を複数有するマザー基板を製造してもよい。
<Modification>
The member set according to the present embodiment may be used to join a metal reinforcing plate collectively or separately to a large-sized mother board on which a plurality of printed wiring boards are formed in an array. For example, for a large-sized mother board in which a printed wiring board is formed in each section of m rows x n columns (m and n are each independently an integer of 1 or more, at least one of which is 2 or more), conductive A pre-laminate consisting of an adhesive and a metal plate is arranged, and a large-sized cushioning material is arranged on the upper layer to obtain a member set consisting of the conductive adhesive/metal plate/cushioning material, which is then hot-pressed together. A mother board having a plurality of printed wiring boards with metal reinforcing plates may be manufactured. Also, in place of the large-sized cushioning material, a cushioning material corresponding to each printed wiring board may be arranged, or a plurality of cushioning materials may be arranged over a plurality of printed wiring boards, and the same process may be performed. A mother substrate having a plurality of printed wiring boards with metal reinforcing plates may be manufactured collectively or/and dividedly.
 また、導電性接着剤と金属補強板の間に、金属箔等の任意の層を設けてもよい。また、金属補強板の任意の位置に保護膜を形成してもよい。更に、上記実施形態においては、本部材セットをプリント配線板に適用する例について述べたが、任意の被着体に対しても好適に利用できる。 An arbitrary layer such as a metal foil may be provided between the conductive adhesive and the metal reinforcing plate. Also, a protective film may be formed at an arbitrary position on the metal reinforcing plate. Furthermore, in the above embodiment, an example of applying this member set to a printed wiring board has been described, but it can be suitably used for any adherend.
 以下、実施例、比較例を挙げて本発明をより具体的に説明するが、本発明は以下の実施例のみに限定されるものではない。また、実施例中の「部」は重量部を意味し、「%」は重量%を意味ものとする。
 また、表中の配合量は、重量部であり、溶剤以外は、不揮発分換算値である。尚、表中の空欄は配合していないことを表す。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited only to the following examples. In addition, "parts" in the examples means parts by weight, and "%" means % by weight.
In addition, the compounding amount in the table is in parts by weight, and values other than the solvent are in terms of non-volatile matter. A blank column in the table indicates that it was not blended.
[重量平均分子量(Mw)]
 重量平均分子量(Mw)は、GPC(ゲルパーミエーションクロマトグラフィー)測定で求めたポリスチレン換算の数値である。測定条件は、以下のとおりである。
 装置:Shodex GPC System-21(昭和電工製)
 カラム:1本のShodex KF-802(昭和電工製)と、1本のShodex KF-803L(昭和電工製)と、1本のShodex KF-805L(昭和電工製)とを直列に連結した連結カラム
 溶媒:テトラヒドロフラン
 流速:1.0mL/min
 温度:40℃
 試料濃度:0.2%
 試料注入量:100μL
[酸価]
 JIS K 0070の電位差滴定法に準拠し、測定した酸価(mgKOH/g)を固形分換算することで求めた。
[ガラス転移温度(Tg)]
 熱硬化性樹脂のガラス転移温度の測定は、示差走査熱量計(型番:DSC-1、メトラー・トレド製)を用いて測定した。
[貯蔵弾性率]、[第1、第2のガラス転移温度]および[損失正接tanδ]
 動的弾性率測定装置(型番:DVA-200、アイティー計測制御製)を用い、後述の方法により作製した導電性接着シートの剥離性フィルムから剥離した導電性接着剤に対して、変形様式「引張り」、周波数10Hz、昇温速度10℃/分、測定温度範囲-50~300℃の条件下において170℃における貯蔵弾性率E’、損失正接tanδの第1ピーク温度(第1のガラス転移温度)および第2ピーク温度(第2のガラス転移温度)、並びに170℃における損失正接tanδを測定した。クッション材についても同様の方法により求めた。
[メルトフローレート(MFR)]
 メルトインデクサ (型式EB01、東洋精機製)を用い、JIS K7210に準拠して各クッション材のMFRを測定した。測定温度は230℃、荷重は10kgとした。尚、異なる材質の層を重ね合わせて形成したクッション材についてはあらかじめ190℃の2本ロールで練り、異なる材質の層の積層状態を混練して均一化した後にMFRを測定した。
[Weight average molecular weight (Mw)]
The weight average molecular weight (Mw) is a polystyrene-equivalent numerical value obtained by GPC (gel permeation chromatography) measurement. Measurement conditions are as follows.
Apparatus: Shodex GPC System-21 (manufactured by Showa Denko)
Column: A connection column in which one Shodex KF-802 (manufactured by Showa Denko), one Shodex KF-803L (manufactured by Showa Denko), and one Shodex KF-805L (manufactured by Showa Denko) are connected in series. Solvent: Tetrahydrofuran Flow rate: 1.0 mL/min
Temperature: 40°C
Sample concentration: 0.2%
Sample injection volume: 100 μL
[Acid value]
Based on the potentiometric titration method of JIS K 0070, it calculated|required by converting the measured acid value (mgKOH/g) into solid content.
[Glass transition temperature (Tg)]
The glass transition temperature of the thermosetting resin was measured using a differential scanning calorimeter (model number: DSC-1, manufactured by Mettler Toledo).
[Storage elastic modulus], [first and second glass transition temperatures] and [loss tangent tan δ]
Using a dynamic elastic modulus measuring device (model number: DVA-200, manufactured by IT Keisoku & Co., Ltd.), the conductive adhesive peeled from the peelable film of the conductive adhesive sheet prepared by the method described later was subjected to deformation mode "Tensile", frequency 10 Hz, heating rate 10 ° C./min, measurement temperature range -50 to 300 ° C. Storage elastic modulus E' at 170 ° C. The first peak temperature of loss tangent tan δ (first glass transition temperature ), the second peak temperature (second glass transition temperature), and the loss tangent tan δ at 170°C were measured. The cushioning material was obtained by the same method.
[Melt flow rate (MFR)]
Using a melt indexer (model EB01, manufactured by Toyo Seiki Co., Ltd.), the MFR of each cushion material was measured according to JIS K7210. The measurement temperature was 230° C. and the load was 10 kg. The cushioning material formed by superimposing layers of different materials was kneaded in advance with two rolls at 190° C., and the MFR was measured after kneading and homogenizing the layered state of the layers of different materials.
<導電性樹脂組成物、クッション材、および金属補強板>
 実施例および比較例において使用した各部材セットおよび金属補強板付きプリント配線板の作製に用いる導電性樹脂組成物の各材料、クッション材、金属補強板を以下に示す。尚、表1にバインダー樹脂のMw、酸価およびTgを示す。
<Conductive resin composition, cushion material, and metal reinforcing plate>
Each member set used in Examples and Comparative Examples, each material of the conductive resin composition, the cushion material, and the metal reinforcing plate used in the production of the printed wiring board with the metal reinforcing plate are shown below. Table 1 shows the Mw, acid value and Tg of the binder resin.
[バインダー樹脂]
 バインダー樹脂(a-1~6):ポリウレタン系樹脂(トーヨーケム製)
[Binder resin]
Binder resin (a-1 to 6): Polyurethane resin (manufactured by Toyochem)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[導電性微粒子(導電性フィラー)]
 b-1:銀コート銅粒子、D50平均粒子径=12μm、核体:樹枝状(福田金属製)
[硬化剤]
 c-1:ビスフェノールA型エポキシ樹脂:エポキシ当量189g/eq(jER1001、三菱ケミカル製)
[硬化促進剤]
 d-1:アジリジン化合物(トリメチロールプロパントリス〔β-(N-アジリジニル)プロピオネート〕、日本触媒製)
[その他の成分]
 e-1:シリカ(AEROSIL R974、日本アエロジル製)
[溶媒]
 f-1:トルエン:イソプロピルアルコール(質量比=2:1)の混合溶媒
[クッション材]
 g-1:ポリエチレンテレフタレート(厚み25μm、170℃貯蔵弾性率470MPa、MFR測定不可)
 g-2:ポリブチレンテレフタレート(厚み50μm、170℃貯蔵弾性率89MPa、MFR17g/10min)
 g-3:ポリメチルペンテン(厚み50μm、170℃貯蔵弾性率62MPa、MFR0.002g/10min)
 g-4:ポリメチルペンテン/スチレン-エチレン-ブチレン-スチレンブロックコポリマー/ポリメチルペンテンの3層からなるクッション材(厚み25μm/70μm/25μm、170℃貯蔵弾性率32MPa、MFR0.06g/10min)
 g-5:ポリメチルペンテン/スチレン-ブタジエン-スチレンブロックコポリマー/ポリメチルペンテンの3層からなるクッション材(厚み25μm/100μm/25μm、170℃貯蔵弾性率51MPa、MFR0.2g/10min)
 g-6:ポリメチルペンテン/エチレン-メタクリル酸グリシジル共重合体/ポリメチルペンテンの3層からなるクッション材(厚み25μm/100μm/25μm、170℃貯蔵弾性率23MPa、MFR0.2g/10min)
 g-7:軟質塩化ビニル(厚み75μm、170℃貯蔵弾性率1MPa、MFR66g/10min)
[金属補強板]
 h-1:両表面に厚さ2μmのニッケル層を形成した総厚200μmのSUS304
 h-2:両表面に厚さ2μmのニッケル層を形成した総厚150μmのSUS304
 h-3:両表面に厚さ2μmのニッケル層を形成した総厚100μmのSUS304
 h-4:両表面に厚さ2μmのニッケル層を形成した総厚75μmのSUS304
[プリント配線板]
 プリント配線板1:プリント配線板1は、厚み75μmのポリイミドフィルムの両面それぞれに厚み32μmの銅箔回路が形成されている。この銅箔回路上には、一辺が0.7mmの正方形であって開口面積が0.49mmのスルーホール(開口部)を有する厚み37.5μmの接着剤付き絶縁性カバーフィルムが形成されている。また、もう一方の銅箔回路上にはスルーホールを有さない接着剤付きの厚み37.5μmの絶縁性のカバーフィルムが形成されたものである(プリント配線板が反らないように、ポリイミドフィルムに対して銅箔回路およびカバーフィルムを対称に配置した)。
 プリント配線板2:一辺が0.4mmの正方形であってスルーホール(開口部)の開口面積が0.16mmである以外は、プリント配線板1と同様の構成を有するプリント配線板である。
 プリント配線板3:一辺が0.2mmの正方形であってスルーホール(開口部)の開口面積を0.04mmである以外は、プリント配線板1と同様の構成を有するプリント配線板である。
[Conductive fine particles (conductive filler)]
b-1: silver-coated copper particles, D50 average particle size = 12 μm, nucleus: dendritic (manufactured by Fukuda Metal)
[Curing agent]
c-1: bisphenol A type epoxy resin: epoxy equivalent 189 g/eq (jER1001, manufactured by Mitsubishi Chemical)
[Curing accelerator]
d-1: aziridine compound (trimethylolpropane tris [β-(N-aziridinyl) propionate], manufactured by Nippon Shokubai)
[Other ingredients]
e-1: Silica (AEROSIL R974, manufactured by Nippon Aerosil)
[solvent]
f-1: mixed solvent of toluene: isopropyl alcohol (mass ratio = 2: 1) [cushion material]
g-1: polyethylene terephthalate (thickness 25 μm, 170° C. storage modulus 470 MPa, MFR measurement not possible)
g-2: polybutylene terephthalate (thickness 50 μm, 170° C. storage modulus 89 MPa, MFR 17 g/10 min)
g-3: Polymethylpentene (thickness 50 μm, 170° C. storage modulus 62 MPa, MFR 0.002 g/10 min)
g-4: Cushion material consisting of three layers of polymethylpentene/styrene-ethylene-butylene-styrene block copolymer/polymethylpentene (thickness: 25 μm/70 μm/25 μm, 170° C. storage modulus: 32 MPa, MFR: 0.06 g/10 min)
g-5: Cushion material consisting of three layers of polymethylpentene/styrene-butadiene-styrene block copolymer/polymethylpentene (thickness: 25 μm/100 μm/25 μm, 170° C. storage modulus: 51 MPa, MFR: 0.2 g/10 min)
g-6: Cushion material consisting of three layers of polymethylpentene/ethylene-glycidyl methacrylate copolymer/polymethylpentene (thickness: 25 μm/100 μm/25 μm, 170° C. storage modulus: 23 MPa, MFR: 0.2 g/10 min)
g-7: soft vinyl chloride (thickness 75 μm, 170° C. storage elastic modulus 1 MPa, MFR 66 g/10 min)
[Metal reinforcing plate]
h-1: SUS304 with a total thickness of 200 μm with nickel layers of 2 μm thickness formed on both surfaces
h-2: SUS304 with a total thickness of 150 μm with a nickel layer of 2 μm thickness formed on both surfaces
h-3: SUS304 with a total thickness of 100 μm with nickel layers of 2 μm thickness formed on both surfaces
h-4: SUS304 with a total thickness of 75 μm with a nickel layer of 2 μm thickness formed on both surfaces
[Printed wiring board]
Printed Wiring Board 1: The printed wiring board 1 is formed of a 32 μm thick copper foil circuit on both sides of a 75 μm thick polyimide film. On the copper foil circuit, a 37.5 μm-thick insulating cover film with an adhesive and having a square through hole (opening) with a side of 0.7 mm and an opening area of 0.49 mm 2 was formed. there is On the other copper foil circuit, an insulating cover film with a thickness of 37.5 μm with adhesive and without through holes was formed (so as not to warp the printed wiring board, polyimide The copper foil circuit and cover film were placed symmetrically with respect to the film).
Printed wiring board 2: A printed wiring board having the same configuration as printed wiring board 1 except that it is a square with a side of 0.4 mm and the opening area of the through hole (opening) is 0.16 mm 2 .
Printed wiring board 3: A printed wiring board having the same configuration as printed wiring board 1 except that it is a square with a side of 0.2 mm and the opening area of the through hole (opening) is 0.04 mm 2 .
[実施例1]
 バインダー樹脂(a-1)100重量部、および導電性微粒子(b-1)250重量部を容器に仕込み、不揮発分濃度が40重量%となるように溶媒(f-1)を加えて混合した。次いで、硬化剤(c-1)40重量部、および硬化促進剤(d-1)0.05重量部を加え、攪拌機により10分間攪拌して導電性樹脂組成物を調製した。
 次に、上記調製した導電性樹脂組成物を、ドクターブレードを使用して、乾燥後の厚みが60μmになるように剥離性フィルム(基材の材質:発泡ポリエチレンテレフタレート、基材の厚み50μm、離型剤:アルキッド系離型剤)の剥離処理された一方の面上に塗工し、100℃の電気オーブンで2分間乾燥することで導電性接着剤が形成された導電性接着シートを得た。
[Example 1]
100 parts by weight of the binder resin (a-1) and 250 parts by weight of the conductive fine particles (b-1) were charged in a container, and the solvent (f-1) was added and mixed so that the concentration of the non-volatile matter was 40% by weight. . Next, 40 parts by weight of the curing agent (c-1) and 0.05 parts by weight of the curing accelerator (d-1) were added and stirred for 10 minutes with a stirrer to prepare a conductive resin composition.
Next, using a doctor blade, the conductive resin composition prepared above is applied to a release film (substrate material: foamed polyethylene terephthalate, substrate thickness 50 μm, release film) so that the thickness after drying is 60 μm. Molding agent: alkyd-based release agent) was coated on the release-treated side and dried in an electric oven at 100°C for 2 minutes to obtain a conductive adhesive sheet on which a conductive adhesive was formed. .
 次に導電性接着シートを幅20mm、長さ20mmにカットし、その導電性接着剤が露出した面が幅20mm、長さ20mmの金属補強板(h-1)に接触するように、上記導電性接着シートを上記金属補強板に重ねた。次いで、ロールラミネーターを用い、90℃、3kgf/cm、1m/minの条件下で、上記導電性接着シートと上記金属補強板とをロールラミネートして導電性接着シート付SUS板を得た。 Next, the conductive adhesive sheet is cut to a width of 20 mm and a length of 20 mm, and the conductive adhesive sheet is cut so that the exposed surface of the conductive adhesive is in contact with the metal reinforcing plate (h-1) having a width of 20 mm and a length of 20 mm. A flexible adhesive sheet was placed on the metal reinforcing plate. Then, using a roll laminator, the conductive adhesive sheet and the metal reinforcing plate were roll-laminated under the conditions of 90° C., 3 kgf/cm 2 and 1 m/min to obtain a SUS plate with the conductive adhesive sheet.
 次に、上記導電性接着シート付金属補強板における導電性接着シートの剥離性フィルムを剥がして除去した後、打ち抜き加工機で1辺が10mmの正方形に打ち抜き、導電性接着剤付金属補強板(以下、「導電性接着剤付き金属補強板」と称する)を得た。次いで、別に作製したプリント配線板1~3を用い、導電性接着剤付金属補強板の導電性接着剤が露出した面(導電性接着剤の金属補強板と反対の面)をプリント配線板に重ね、ロールラミネーターを用いて130℃、3kgf/cm、1m/分の条件下で、上記導電性接着剤付金属補強板と上記プリント配線板とを貼り付けた。その後、金属補強板の上に1辺が20mmの正方形にカットしたクッション材(g-2)を重ねた部材セットを得た。次いで、これらを170℃、2MPa、5分の条件下で熱プレスした後、クッション材を除去し、電気オーブンを用いて160℃、60分間加熱することで各金属補強板付きプリント配線板1~3を得た。 Next, after peeling off and removing the peelable film of the conductive adhesive sheet in the metal reinforcing plate with conductive adhesive sheet, a square with a side of 10 mm is punched with a punching machine, and the metal reinforcing plate with conductive adhesive ( hereinafter referred to as "metal reinforcing plate with conductive adhesive"). Next, using printed wiring boards 1 to 3 separately prepared, the surface where the conductive adhesive of the metal reinforcing plate with conductive adhesive is exposed (the surface opposite to the metal reinforcing plate of the conductive adhesive) is attached to the printed wiring board. The metal reinforcing plate with the conductive adhesive and the printed wiring board were laminated under the conditions of 130° C., 3 kgf/cm 2 and 1 m/min using a roll laminator. After that, a member set was obtained in which a cushion material (g-2) cut into a square with a side of 20 mm was superimposed on the metal reinforcing plate. Next, after hot pressing these under the conditions of 170 ° C., 2 MPa, 5 minutes, the cushioning material is removed, and the printed wiring boards 1 to 1 with metal reinforcing plates are heated using an electric oven at 160 ° C. for 60 minutes. got 3.
[実施例2~23]
 配合する各成分の種類および配合量を表2~4に記載した通りとした以外は実施例1と同様に操作し、各実施例2~23の部材セット並びに金属補強板付きプリント配線板を得た。
[Examples 2 to 23]
The same operation as in Example 1 was performed except that the types and amounts of each component to be blended were as described in Tables 2 to 4, and member sets and printed wiring boards with metal reinforcing plates of Examples 2 to 23 were obtained. rice field.
[比較例1]
 熱プレス時にクッション材を用いなかった以外は、実施例19と同様にして、プリント配線板1~3を用い、部材セットおよび金属補強板付きプリント配線板を得た。
[Comparative Example 1]
A member set and a printed wiring board with a metal reinforcing plate were obtained using printed wiring boards 1 to 3 in the same manner as in Example 19, except that no cushion material was used during hot pressing.
 表2~4に、各実施例のクッション材の170℃貯蔵弾性率(MPa)-導電性接着剤の170℃貯蔵弾性率(MPa)(表中の特性値「(1)-(4)」)、並びに金属補強板の厚み(μm)/クッション材の厚み(μm)(表中の特性値「(3)/(2)」)の値を示す。 Tables 2 to 4 show the 170° C. storage elastic modulus (MPa) of the cushion material of each example−170° C. storage elastic modulus (MPa) of the conductive adhesive (characteristic values "(1)-(4)" in the table). ), and the value of thickness (μm) of metal reinforcing plate/thickness (μm) of cushion material (characteristic value “(3)/(2)” in the table).
<評価>
 得られた各金属補強板付きプリント配線板について、埋め込み性、および染み出し外観を下記方法に従って評価した。その評価結果を表2~4に示す。
<Evaluation>
Embedability and seepage appearance of each of the obtained printed wiring boards with metal reinforcing plates were evaluated according to the following methods. The evaluation results are shown in Tables 2-4.
[埋め込み性]
 異なる開口面積を有する金属補強板付きプリント配線板1~3について、抵抗値測定器およびBSPプローブ(型番:MCP-TP05P、三菱ケミカルアナリテック製)を用い、金属補強板付きプリント配線板のSUS板と銅箔回路との間の電気抵抗(接続抵抗値)を測定し、この測定値を指標として下記評価基準に従い埋め込み性を評価した。
+++:接続抵抗値が20mΩ/□未満、非常に良好。
++:接続抵抗値が20mΩ/□以上100mΩ/□未満、良好。
+:接続抵抗値が100mΩ/□以上300mΩ/□未満、実用可能。
NG:接続抵抗値が300mΩ/□以上、実用不可能。
[Embedability]
For printed wiring boards 1 to 3 with metal reinforcing plates having different opening areas, a resistance value measuring instrument and a BSP probe (model number: MCP-TP05P, manufactured by Mitsubishi Chemical Analytic Tech) were used to measure the SUS plate of the printed wiring boards with metal reinforcing plates. The electrical resistance (connection resistance value) between and the copper foil circuit was measured, and using this measured value as an index, the embeddability was evaluated according to the following evaluation criteria.
+++: Connection resistance value is less than 20 mΩ/□, very good.
++: The connection resistance value is 20 mΩ/□ or more and less than 100 mΩ/□, good.
+: Connection resistance value of 100 mΩ/square or more and less than 300 mΩ/square, practicable.
NG: Connection resistance value of 300 mΩ/□ or more, impractical.
[染み出し]
 金属補強板付きプリント配線板1について、倍率200倍~1000倍の拡大鏡を用いて金属補強板の端部からはみ出した導電性接着剤のフロー量(導電性接着剤層の縁部の最大移動距離、SUS板の端部とはみ出した導電性接着剤層の端部との最大長さ)を測定し、この測定値を指標として下記評価基準に従い外観を評価した。
+++:フロー量が100μm以下、非常に良好。
++:フロー量が100μm超130μm以下、良好。
+:フロー量が130μm超150μm以下、実用可能。
NG:フロー量が150μm超、実用不可能。
[Exudation]
Regarding the printed wiring board 1 with a metal reinforcing plate, the flow amount of the conductive adhesive protruding from the edge of the metal reinforcing plate using a magnifying glass with a magnification of 200 times to 1000 times (maximum movement of the edge of the conductive adhesive layer The distance, the maximum length between the end of the SUS plate and the end of the protruding conductive adhesive layer) was measured, and the measured value was used as an index to evaluate the appearance according to the following evaluation criteria.
+++: Very good flow amount of 100 μm or less.
++: The flow amount is more than 100 μm and 130 μm or less, good.
+: The flow amount is more than 130 μm and 150 μm or less, practically possible.
NG: The amount of flow exceeds 150 µm, which is not practical.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 以上、本発明を上記実施形態に即して説明したが、本発明は上記実施の形態の構成にのみ限定されるものではなく、本願特許請求の範囲の請求項の発明の範囲内で当業者であればなし得る各種変形、修正、組み合わせを含むことは勿論である。 Although the present invention has been described with reference to the above embodiments, the present invention is not limited to the configurations of the above embodiments. It goes without saying that various modifications, modifications, and combinations that can be made are included.
 本明細書は、上記実施形態から把握される以下に示す技術思想の発明も開示する。
(付記1)
 グランド回路を含む回路パターンと、前記回路パターンを絶縁保護し、開口部を有する絶縁保護膜とが形成されたプリント配線板の上方に、
 熱により軟化するバインダー樹脂および導電性フィラーを含有する導電性接着剤と、厚みが50~500μmの金属補強板と、170℃における貯蔵弾性率が前記導電性接着剤よりも高いクッション材とをこの順で配置された部材セットを、
 前記プリント配線板と前記導電性接着剤が対向するように配置する工程[1]、
 前記部材セットを150~190℃で熱プレスし、前記開口部を介して前記グランド回路と前記金属補強板とを電気的に接続し、前記導電性接着剤により前記グランド回路と前記金属補強板とを接着すると共に、前記クッション材が、前記導電性接着剤および前記金属補強板の側面側に流れ込み、前記金属補強板よりも外部への前記導電性接着剤の染み出しをせき止める工程[2]、ならびに
 前記クッション材を剥離する工程[3]、
を備え、
 前記工程[1]において、工程[1-1]~工程[1-3]のいずれかを満たす金属補強板付きプリント配線板の製造方法。
工程[1-1]:前記導電性接着剤の170℃における貯蔵弾性率が5.5MPa以上50MPa以下であり、前記クッション材の170℃における貯蔵弾性率が10MPa以上100MPa以下である。
工程[1-2]:前記導電性接着剤の170℃における貯蔵弾性率が2MPa以上50MPa以下であり、前記クッション材の170℃における貯蔵弾性率が10MPa以上100MPa以下であって、前記170℃における貯蔵弾性率が、前記導電性接着剤よりも前記クッション材の方が21MPa以上50MPa以内の範囲で高い。
工程[1-3]:前記導電性接着剤の170℃における貯蔵弾性率が2MPa以上50MPa以下であり、前記クッション部材の170℃における弾性率が10MPa以上100MPa以下であって、前記金属補強板の厚み[μm]/前記クッション材の厚み[μm]が1.5~2である。
(付記2)
 工程[1-1]または工程[1-3]において、前記クッション材と前記導電性接着剤の170℃における貯蔵弾性率差は、10~87MPaである、付記1記載の金属補強板付きプリント配線板の製造方法。
(付記3)
 工程[1-1]または工程[1-2]において、前記金属補強板と前記クッション材の厚みの比率(金属補強板の厚み[μm]/クッション材の厚み[μm])が、2以下である、付記1または2記載の金属補強板付きプリント配線板の製造方法。
(付記4)
 工程[1-1]~[1-3]いずれか1つの工程において、
 170℃における損失正接(tanδ)が0.05以上、0.4以下である、前記導電性接着剤を用いることを特徴とする、
 付記1~3いずれかに記載の金属補強板付きプリント配線板の製造方法。
(付記5)
 工程[1-1]~[1-3]いずれか1つの工程において、
 粘弾性測定により得られる温度-損失正接(tanδ)曲線における、
 第1のガラス転移温度が10℃以上45℃以下であり、
 第2のガラス転移温度が70℃以上140℃以下である、
 前記導電性接着剤を用いることを特徴とする、
 付記1~4いずれかに記載の金属補強板付きプリント配線板の製造方法。
(付記6)
 工程[1-1]~[1-3]いずれか1つの工程において、
 平面視した際に、前記金属補強板および前記導電性接着剤よりも大きい前記クッション材を用いることを特徴とする、
 付記1~5いずれかに記載の金属補強板付きプリント配線板の製造方法。
(付記7)
 工程[1-1]~[1-3]いずれか1つの工程において、
 厚みが15~70μmである前記導電性接着剤を用いることを特徴とする、
 付記1~6いずれかに記載の金属補強板付きプリント配線板の製造方法。
(付記8)
 工程[1-1]~[1-3]いずれか1つの工程において、
 前記プリント配線板上に、前記導電性接着剤を配置し、
 前記導電性接着剤上に、前記金属補強板を配置し、
 前記金属補強板上に、前記クッション材を配置することを特徴とする、付記1~7いずれかに記載の金属補強板付きプリント配線板の製造方法。
(付記9)
 工程[1-1]~[1-3]いずれか1つの工程において、
 前記導電性接着剤と、前記金属補強板との予備積層体を予め得ておき、
 前記プリント配線板と前記予備積層体中の前記導電性接着剤とが対向し、前記予備積層体中の前記金属補強板と前記クッション材とが対向するように配置することを特徴とする、付記1~7いずれかに記載の金属補強板付きプリント配線板の製造方法。
(付記10)
 工程[1-1]~[1-3]いずれか1つの工程において、
 前記導電性接着剤と、前記金属補強板と、前記クッション材とをこの順で積層してなる積層体を予め得ておき、前記プリント配線板と前記積層体中の前記導電性接着剤が対向するように配置することを特徴とする、付記1~7いずれかに記載の金属補強板付きプリント配線板の製造方法。
(付記11)
 付記1~10いずれかに記載の製造方法により得られる金属補強板付きプリント配線板。
(付記12)
 平面視した際の前記開口部の面積が0.16mm2以上、0.81mm2以下である、付記11記載の金属補強板付きプリント配線板。
(付記13)
 前記開口部が、前記プリント配線板の外周の一部に形成されている、付記11または12記載の金属補強板付きプリント配線板。
This specification also discloses the invention of the following technical ideas understood from the above embodiments.
(Appendix 1)
Above a printed wiring board on which a circuit pattern including a ground circuit and an insulating protective film having an opening for insulating and protecting the circuit pattern are formed,
A conductive adhesive containing a binder resin that softens by heat and a conductive filler, a metal reinforcing plate having a thickness of 50 to 500 μm, and a cushioning material having a storage elastic modulus at 170° C. higher than that of the conductive adhesive. A set of members arranged in order,
the step of arranging the printed wiring board and the conductive adhesive so as to face each other [1];
The member set is hot-pressed at 150 to 190° C., the ground circuit and the metal reinforcing plate are electrically connected through the opening, and the ground circuit and the metal reinforcing plate are connected by the conductive adhesive. and the cushion material flows into the side surface of the conductive adhesive and the metal reinforcing plate to block the leakage of the conductive adhesive to the outside from the metal reinforcing plate [2]; and a step of peeling off the cushioning material [3];
with
A method for producing a printed wiring board with a metal reinforcing plate, wherein, in the step [1], any one of the steps [1-1] to [1-3] is satisfied.
Step [1-1]: The conductive adhesive has a storage modulus of 5.5 MPa or more and 50 MPa or less at 170°C, and the cushion material has a storage modulus of 10 MPa or more and 100 MPa or less at 170°C.
Step [1-2]: The conductive adhesive has a storage modulus of 2 MPa or more and 50 MPa or less at 170°C, the cushion material has a storage modulus of 10 MPa or more and 100 MPa or less at 170°C, and The storage elastic modulus of the cushioning material is higher than that of the conductive adhesive within a range of 21 MPa or more and 50 MPa or less.
Step [1-3]: The storage elastic modulus of the conductive adhesive at 170° C. is 2 MPa or more and 50 MPa or less, the elastic modulus of the cushion member at 170° C. is 10 MPa or more and 100 MPa or less, and The thickness [μm]/thickness [μm] of the cushion material is 1.5-2.
(Appendix 2)
The printed wiring with a metal reinforcing plate according to Appendix 1, wherein in step [1-1] or step [1-3], a difference in storage elastic modulus at 170° C. between the cushion material and the conductive adhesive is 10 to 87 MPa. Board manufacturing method.
(Appendix 3)
In step [1-1] or step [1-2], the thickness ratio between the metal reinforcing plate and the cushioning material (thickness of metal reinforcing plate [μm]/thickness of cushioning material [μm]) is 2 or less. A method for manufacturing a printed wiring board with a metal reinforcing plate according to Appendix 1 or 2.
(Appendix 4)
In any one of steps [1-1] to [1-3],
The conductive adhesive having a loss tangent (tan δ) at 170 ° C. of 0.05 or more and 0.4 or less,
A method for producing a printed wiring board with a metal reinforcing plate according to any one of Appendices 1 to 3.
(Appendix 5)
In any one of steps [1-1] to [1-3],
In the temperature-loss tangent (tan δ) curve obtained by viscoelasticity measurement,
The first glass transition temperature is 10° C. or higher and 45° C. or lower,
the second glass transition temperature is 70° C. or higher and 140° C. or lower;
Characterized by using the conductive adhesive,
A method for producing a printed wiring board with a metal reinforcing plate according to any one of Appendices 1 to 4.
(Appendix 6)
In any one of steps [1-1] to [1-3],
characterized by using the cushioning material that is larger than the metal reinforcing plate and the conductive adhesive when viewed in plan,
A method for manufacturing a printed wiring board with a metal reinforcing plate according to any one of Appendices 1 to 5.
(Appendix 7)
In any one of steps [1-1] to [1-3],
Characterized by using the conductive adhesive having a thickness of 15 to 70 μm,
A method for manufacturing a printed wiring board with a metal reinforcing plate according to any one of Appendices 1 to 6.
(Appendix 8)
In any one of steps [1-1] to [1-3],
placing the conductive adhesive on the printed wiring board;
placing the metal reinforcing plate on the conductive adhesive;
8. The method for manufacturing a printed wiring board with a metal reinforcing plate according to any one of Appendices 1 to 7, wherein the cushioning material is arranged on the metal reinforcing plate.
(Appendix 9)
In any one of steps [1-1] to [1-3],
obtaining in advance a preliminary laminate of the conductive adhesive and the metal reinforcing plate;
The printed wiring board and the conductive adhesive in the preliminary laminate are arranged to face each other, and the metal reinforcing plate and the cushioning material in the preliminary laminate are arranged to face each other. 8. A method for producing a printed wiring board with a metal reinforcing plate according to any one of 1 to 7.
(Appendix 10)
In any one of steps [1-1] to [1-3],
A laminate obtained by laminating the conductive adhesive, the metal reinforcing plate, and the cushion material in this order is obtained in advance, and the printed wiring board and the conductive adhesive in the laminate face each other. A method for producing a printed wiring board with a metal reinforcing plate according to any one of Appendices 1 to 7, wherein the printed wiring board is arranged so as to be.
(Appendix 11)
A printed wiring board with a metal reinforcing plate obtained by the manufacturing method according to any one of Appendices 1 to 10.
(Appendix 12)
12. The printed wiring board with a metal reinforcing plate according to Appendix 11, wherein the opening has an area of 0.16 mm 2 or more and 0.81 mm 2 or less when viewed from above.
(Appendix 13)
13. The printed wiring board with a metal reinforcing plate according to Appendix 11 or 12, wherein the opening is formed in a part of the outer periphery of the printed wiring board.
11 剥離性フィルム
12 導電性接着剤(導電性接着剤層)
13 導電性接着シート
14 金属補強板
15 予備積層体
16 クッション材
17 部材セット
18 切断線
20 配線板
21 基材
22 絶縁性フィルム
23 絶縁性接着剤
24 信号回路
25 グランド回路
27 開口部
29b 隙間
30 金属補強板付きプリント配線板
11 peelable film 12 conductive adhesive (conductive adhesive layer)
13 Conductive adhesive sheet 14 Metal reinforcing plate 15 Preliminary laminate 16 Cushion material 17 Member set 18 Cutting line 20 Wiring board 21 Base material 22 Insulating film 23 Insulating adhesive 24 Signal circuit 25 Ground circuit 27 Opening 29b Gap 30 Metal Printed wiring board with stiffener

Claims (11)

  1.  グランド回路を含む回路パターンと、前記回路パターンを絶縁保護し、開口部を有する絶縁保護膜とが形成されたプリント配線板の上方に、
     熱により軟化するバインダー樹脂および導電性フィラーを含有する導電性接着剤と、金属補強板と、クッション材とがこの順に配置された部材セットを、
     前記プリント配線板と前記導電性接着剤が対向するように配置する工程[1]、
     前記部材セットを熱プレスし、前記絶縁保護膜に設けられた開口部を介して、前記導電性接着剤により前記グランド回路と前記金属補強板とを接着すると共に、前記グランド回路と前記金属補強板とを電気的に接続する工程[2]、ならびに
     前記部材セットの前記クッション材を剥離する工程[3]、
    を備えた金属補強板付きプリント配線板の製造方法。
    Above a printed wiring board on which a circuit pattern including a ground circuit and an insulating protective film having an opening for insulating and protecting the circuit pattern are formed,
    A member set in which a conductive adhesive containing a binder resin that softens with heat and a conductive filler, a metal reinforcing plate, and a cushioning material are arranged in this order,
    a step of arranging the printed wiring board and the conductive adhesive so as to face each other [1];
    The member set is hot-pressed to bond the ground circuit and the metal reinforcing plate with the conductive adhesive through the opening provided in the insulating protective film, and the ground circuit and the metal reinforcing plate are bonded together. a step [2] of electrically connecting to and a step [3] of peeling off the cushion material of the member set;
    A method for manufacturing a printed wiring board with a metal reinforcing plate.
  2.  グランド回路を含む回路パターン、および当該回路パターンを絶縁保護し、前記グランド回路まで貫通する開口部が形成された絶縁保護膜を有するプリント配線板と、前記プリント配線板に熱プレスにより接合された金属補強板とを備える、金属補強板付きプリント配線板の製造に用いる部材セットであって、
     熱により軟化するバインダー樹脂および導電性フィラーを含有し、前記熱プレスによって前記開口部に充填されて前記グランド回路と前記金属補強板とを電気的に導通させ、且つ当該金属補強板を前記プリント配線板に接合する導電性接着剤と、
     前記金属補強板と、
     前記熱プレス時に軟化して、前記導電性接着剤および前記金属補強板の側面側に流れ込むクッション材と、がこの順で配置された部材セット。
    A printed wiring board having a circuit pattern including a ground circuit, an insulating protective film that insulates and protects the circuit pattern and has an opening penetrating to the ground circuit, and a metal bonded to the printed wiring board by hot pressing. A member set used for manufacturing a printed wiring board with a metal reinforcing plate, comprising a reinforcing plate,
    It contains a binder resin that is softened by heat and a conductive filler, is filled into the opening by the heat press, electrically connects the ground circuit and the metal reinforcing plate, and connects the metal reinforcing plate to the printed wiring. a conductive adhesive that bonds to the plate;
    the metal reinforcing plate;
    A member set in which the conductive adhesive and a cushion material that softens during the hot press and flows into the side surface of the metal reinforcing plate are arranged in this order.
  3.  前記熱プレス時に、前記導電性接着剤の側面側への染み出しを防止するために、前記金属補強板および前記導電性接着剤の平面視上の外縁の外側に、当該金属補強板および導電性接着剤が重畳されていない前記クッション材の突出領域がある請求項2記載の部材セット。 In order to prevent the conductive adhesive from seeping out to the side surface side during the hot press, the metal reinforcing plate and the conductive adhesive are placed outside the outer edges of the metal reinforcing plate and the conductive adhesive in a plan view. 3. The member set according to claim 2, wherein there is a projecting region of said cushioning material on which adhesive is not superimposed.
  4.  前記クッション材の貯蔵弾性率は、
     170℃において10MPa以上100MPa以下であり、
     前記導電性接着剤の貯蔵弾性率は、
     170℃において2MPa以上50MPa以下であり、
     前記クッション材の貯蔵弾性率は、前記導電性接着剤の貯蔵弾性率よりも高いことを特徴とする請求項2または3記載の部材セット。
    The storage elastic modulus of the cushion material is
    10 MPa or more and 100 MPa or less at 170 ° C.,
    The storage modulus of the conductive adhesive is
    2 MPa or more and 50 MPa or less at 170 ° C.,
    4. The member set according to claim 2, wherein the storage elastic modulus of the cushion material is higher than the storage elastic modulus of the conductive adhesive.
  5.  前記クッション材の230℃荷重10kgにおけるメルトフローレート(MFR)は、0.001g/10min以上、17g/10min以下であることを特徴とする請求項2~4のいずれか1項記載の部材セット。 The member set according to any one of claims 2 to 4, wherein the melt flow rate (MFR) of the cushion material under a load of 10 kg at 230°C is 0.001 g/10 min or more and 17 g/10 min or less.
  6.  前記導電性接着剤の損失正接(tanδ)は、
     170℃において0.05以上0.4以下である、
     請求項2~5のいずれか1項記載の部材セット。
    The loss tangent (tan δ) of the conductive adhesive is
    0.05 or more and 0.4 or less at 170 ° C.
    The member set according to any one of claims 2-5.
  7.  前記導電性接着剤は、
     粘弾性測定により得られる温度-損失正接(tanδ)曲線において、
     第1のガラス転移温度が10℃以上45℃以下であり、
     第2のガラス転移温度が70℃以上140℃以下である、
     請求項2~6いずれか1項記載の部材セット。
    The conductive adhesive is
    In the temperature-loss tangent (tan δ) curve obtained by viscoelasticity measurement,
    The first glass transition temperature is 10° C. or higher and 45° C. or lower,
    the second glass transition temperature is 70° C. or higher and 140° C. or lower;
    The member set according to any one of claims 2-6.
  8.  以下の(I)~(III)の条件のいずれかを満たす請求項2~7のいずれか1項記載の部材セット。
    (I)前記導電性接着剤の170℃における貯蔵弾性率が5.5MPa以上50MPa以下であり、前記クッション材の170℃における貯蔵弾性率が10MPa以上100MPa以下であって、前記貯蔵弾性率が前記導電性接着剤よりも前記クッション材が高い。
    (II)前記導電性接着剤の170℃における貯蔵弾性率が2MPa以上50MPa以下であり、前記クッション材の170℃における貯蔵弾性率が10MPa以上100MPa以下であって、前記貯蔵弾性率が前記導電性接着剤よりも前記クッション材の方が21MPa以上50MPa以内の範囲で高い。
    (III)前記導電性接着剤の170℃における貯蔵弾性率が2MPa以上50MPa以下であり、前記クッション材の170℃における貯蔵弾性率が10MPa以上100MPa以下であり、前記貯蔵弾性率が前記導電性接着剤よりも前記クッション材が高く、更に、前記金属補強板と前記クッション材の厚みの比率(金属補強板の厚み[μm]/クッション材の厚み[μm])が1.5~2である。
    The member set according to any one of claims 2 to 7, which satisfies any one of the following conditions (I) to (III).
    (I) The storage modulus of the conductive adhesive at 170° C. is 5.5 MPa or more and 50 MPa or less, and the storage modulus of the cushion material at 170° C. is 10 MPa or more and 100 MPa or less, and the storage modulus is the above The cushioning material is higher than the conductive adhesive.
    (II) The storage modulus of the conductive adhesive at 170° C. is 2 MPa or more and 50 MPa or less, and the storage modulus of the cushion material at 170° C. is 10 MPa or more and 100 MPa or less, and the storage modulus is the conductive The cushioning material is higher than the adhesive in the range of 21 MPa to 50 MPa.
    (III) The storage modulus of the conductive adhesive at 170° C. is 2 MPa or more and 50 MPa or less, and the storage modulus of the cushion material at 170° C. is 10 MPa or more and 100 MPa or less, and the storage modulus is the conductive adhesive. The thickness of the cushioning material is higher than that of the agent, and the thickness ratio of the metal reinforcing plate to the cushioning material (thickness of metal reinforcing plate [μm]/thickness of cushioning material [μm]) is 1.5 to 2.
  9.  前記金属補強板の厚みが50~500μmである請求項2~8のいずれか1項記載の部材セット。 The member set according to any one of claims 2 to 8, wherein the metal reinforcing plate has a thickness of 50 to 500 µm.
  10.  請求項1記載の製造方法により得られ、
     平面視した際の前記開口部の面積が0.16mm以上0.81mm以下である金属補強板付きプリント配線板。
    Obtained by the production method according to claim 1,
    A printed wiring board with a metal reinforcing plate, wherein the opening has an area of 0.16 mm 2 or more and 0.81 mm 2 or less when viewed from above.
  11.  前記開口部の少なくとも一部が、前記プリント配線板の前記絶縁保護膜の外周の側壁により形成されている、請求項10記載の金属補強板付きプリント配線板。 11. The printed wiring board with a metal reinforcing plate according to claim 10, wherein at least a part of said opening is formed by a side wall on the periphery of said insulating protective film of said printed wiring board.
PCT/JP2021/018129 2021-05-12 2021-05-12 Method for manufacturing printed wiring board with metal reinforcement plate, member set, and printed wiring board with metal reinforcement plate WO2022239167A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2021/018129 WO2022239167A1 (en) 2021-05-12 2021-05-12 Method for manufacturing printed wiring board with metal reinforcement plate, member set, and printed wiring board with metal reinforcement plate
CN202180097940.5A CN117280876A (en) 2021-05-12 2021-05-12 Method for manufacturing printed wiring board with metal reinforcing plate, component group and printed wiring board with metal reinforcing plate
KR1020237037117A KR20230163499A (en) 2021-05-12 2021-05-12 Manufacturing method of printed wiring board with metal reinforcement plate, member set, and printed wiring board with metal reinforcement plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/018129 WO2022239167A1 (en) 2021-05-12 2021-05-12 Method for manufacturing printed wiring board with metal reinforcement plate, member set, and printed wiring board with metal reinforcement plate

Publications (1)

Publication Number Publication Date
WO2022239167A1 true WO2022239167A1 (en) 2022-11-17

Family

ID=84028063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018129 WO2022239167A1 (en) 2021-05-12 2021-05-12 Method for manufacturing printed wiring board with metal reinforcement plate, member set, and printed wiring board with metal reinforcement plate

Country Status (3)

Country Link
KR (1) KR20230163499A (en)
CN (1) CN117280876A (en)
WO (1) WO2022239167A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000013031A (en) * 1998-06-19 2000-01-14 Hitachi Chem Co Ltd Manufacture of multilayered printed wiring board
JP2005154977A (en) * 2003-11-28 2005-06-16 Daio Paper Corp Cushion paper
WO2016032006A1 (en) * 2014-08-29 2016-03-03 タツタ電線株式会社 Reinforcing member for flexible printed wiring board, and flexible printed wiring board provided with same
JP2018168323A (en) * 2017-03-30 2018-11-01 信越ポリマー株式会社 Thermosetting composition, cured product, electromagnetic wave shield film and method for producing the same, and printed wiring board with electromagnetic wave shield film and method for producing the same
JP2021097152A (en) * 2019-12-18 2021-06-24 東洋インキScホールディングス株式会社 Printed wiring board with metal reinforcing plate, laminate, and manufacturing method of printed wiring board with metal reinforcing plate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5976112B2 (en) 2012-07-11 2016-08-23 タツタ電線株式会社 Curable conductive adhesive composition, electromagnetic wave shielding film, conductive adhesive film, adhesion method and circuit board
TWI727167B (en) 2017-08-07 2021-05-11 日商拓自達電線股份有限公司 Conductive adhesive

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000013031A (en) * 1998-06-19 2000-01-14 Hitachi Chem Co Ltd Manufacture of multilayered printed wiring board
JP2005154977A (en) * 2003-11-28 2005-06-16 Daio Paper Corp Cushion paper
WO2016032006A1 (en) * 2014-08-29 2016-03-03 タツタ電線株式会社 Reinforcing member for flexible printed wiring board, and flexible printed wiring board provided with same
JP2018168323A (en) * 2017-03-30 2018-11-01 信越ポリマー株式会社 Thermosetting composition, cured product, electromagnetic wave shield film and method for producing the same, and printed wiring board with electromagnetic wave shield film and method for producing the same
JP2021097152A (en) * 2019-12-18 2021-06-24 東洋インキScホールディングス株式会社 Printed wiring board with metal reinforcing plate, laminate, and manufacturing method of printed wiring board with metal reinforcing plate

Also Published As

Publication number Publication date
CN117280876A (en) 2023-12-22
KR20230163499A (en) 2023-11-30

Similar Documents

Publication Publication Date Title
KR101794147B1 (en) Conductive adhesive layer, conductive adhesive sheet, printed wiring board and electronic device
TWI745273B (en) Laminated body with adhesive layer, flexible copper clad laminated board and flexible flat cable using it
JP5854248B1 (en) Conductive adhesive, and conductive adhesive sheet and electromagnetic wave shielding sheet using the same
JP6904464B2 (en) Printed wiring board
JP6578142B2 (en) Adhesive composition, printed wiring board coverlay, printed wiring board bonding film, and printed wiring board
WO2019239710A1 (en) Electromagnetic wave shielding sheet
TW201609942A (en) Resin composition
TWI784366B (en) Adhesive composition
JP6468389B1 (en) Laminated body, component mounting board, and method for manufacturing component mounting board
TW201736457A (en) Prepreg
JP7232996B2 (en) Electronic component mounting board and electronic equipment
JP5771988B2 (en) Thermosetting resin composition
JP7056723B2 (en) Parts set
WO2022239167A1 (en) Method for manufacturing printed wiring board with metal reinforcement plate, member set, and printed wiring board with metal reinforcement plate
KR102611197B1 (en) Conductive compositions, conductive sheets, metal reinforcing plates, circuit boards with metal reinforcing plates, and electronic devices
TW202214808A (en) adhesive composition
JP2004256678A (en) Resin composition, coverlay and copper-clad laminate for flexible printed wiring board
TW202106503A (en) Magnetic film
JP2010018676A (en) Flame-retardant adhesive composition and adhesion sheet using the same, coverlay film, and flexible copper-clad laminate
JP4433693B2 (en) Resin composition, coverlay, metal-clad laminate for flexible printed wiring board and flexible printed wiring board
JP2010126642A (en) Adhesive composition preservable at ordinary temperaturer and adhesive sheet and coverlay film using the same
KR102760180B1 (en) Rolled conductive bonding sheet, wiring board with metal reinforcement board, and electronic devices
KR102516292B1 (en) Insulation film for electronic device manufacturing
JP2008063361A (en) Epoxy-based adhesive, coverlay, prepreg, metal-clad laminate, and printed wiring board
TWI784365B (en) Adhesive composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21941901

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237037117

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180097940.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21941901

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP