[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022237682A1 - 吡咯并三嗪类化合物的盐型、其晶型及其制备方法 - Google Patents

吡咯并三嗪类化合物的盐型、其晶型及其制备方法 Download PDF

Info

Publication number
WO2022237682A1
WO2022237682A1 PCT/CN2022/091452 CN2022091452W WO2022237682A1 WO 2022237682 A1 WO2022237682 A1 WO 2022237682A1 CN 2022091452 W CN2022091452 W CN 2022091452W WO 2022237682 A1 WO2022237682 A1 WO 2022237682A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal form
compound
formula
ray powder
angles
Prior art date
Application number
PCT/CN2022/091452
Other languages
English (en)
French (fr)
Inventor
吴凌云
魏霞蔚
尤旭
徐雄彬
姜宁
陈曙辉
Original Assignee
成都嘉葆药银医药科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都嘉葆药银医药科技有限公司 filed Critical 成都嘉葆药银医药科技有限公司
Priority to CN202280032805.7A priority Critical patent/CN117355528B/zh
Priority to EP22806648.6A priority patent/EP4335850A4/en
Priority to KR1020237041463A priority patent/KR20240004828A/ko
Priority to BR112023023189A priority patent/BR112023023189A2/pt
Priority to AU2022271540A priority patent/AU2022271540A1/en
Priority to US18/558,731 priority patent/US20240254144A1/en
Priority to JP2023568714A priority patent/JP2024516885A/ja
Publication of WO2022237682A1 publication Critical patent/WO2022237682A1/zh
Priority to ZA2023/10368A priority patent/ZA202310368B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/53Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with three nitrogens as the only ring hetero atoms, e.g. chlorazanil, melamine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/01Sulfonic acids
    • C07C309/28Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C309/29Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton of non-condensed six-membered aromatic rings
    • C07C309/30Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton of non-condensed six-membered aromatic rings of six-membered aromatic rings substituted by alkyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Definitions

  • the present invention relates to the salt form of pyrrolotriazine compound, its crystal form, its preparation method and application. It specifically relates to the compound of formula (II) and its crystal form.
  • MNK Mitogen-activated protein kinase interacting kinase
  • MNK1a Mitogen-activated protein kinase interacting kinase
  • MNK2b Mitogen-activated protein kinase interacting kinase
  • the four subtypes all contain a nuclear localization signal (NLS) sequence at the N-terminus and a sequence that binds to eIF4G, so that it can enter the nucleus to play a role, and recognize and bind to the downstream eIF4E.
  • NLS nuclear localization signal
  • MNK1a and MNK2a subtypes have binding sites for MAPK and can be activated by upstream ERK and p38 phosphorylation.
  • the nuclear export signal (NES) at the C-terminal of MNK1a allows it to be widely present in the cytoplasm, while most of the other three subtypes are present in the nucleus.
  • Eukaryotic initiation factor 4E is a cap-binding protein that can specifically recognize the cap structure at the 5' end of mRNA and is an important initiation factor for protein translation.
  • S209 phosphorylated eIF4E can promote the translation process of downstream proteins, mainly including c-MYC, cyclin D1, VEGF, FGF and anti-apoptotic proteins such as mcl-1 and Bcl-2.
  • the expression of eIF4E is up-regulated in various malignant tumors such as lung cancer, colorectal cancer, gastric cancer, and pancreatic ductal carcinoma.
  • MNK is the only kinase known to phosphorylate eIF4E.
  • MNK is at the intersection of multiple pathways involved in tumor and immune signaling, such as RAS and T cell receptor (TCR), which can selectively control the transcription of regulators of antitumor immune response.
  • MNK activity and activation of eIF4E are critical for tumorigenesis and progression, but not necessary for normal cells. Therefore, selective MNK inhibitors are expected to become antitumor drugs with low toxicity.
  • EFT508 (WO2015/200481; WO2016/172010; WO2017/075394; WO2017/075412; WO2017/087808; WO2017/117052; WO2018/152117; WO2018/218038) is a selective oral inhibitor developed by EFFECTOR THERAPEUTICS, INC. .
  • eFT508 can selectively inhibit the expression of PD-1, LAG3, and IL-10, and improve the function of cytotoxic T cells, while the proliferation of normal T cells is not affected.
  • Preclinical studies have found that the combination of eFT508 and PD-1 monoclonal antibody can enhance drug efficacy and improve response rate. Phase I clinical trials have been completed, and the safety is good.
  • the monotherapy for hematological tumors and trending prostate cancer is in clinical phase II research, and it is used in combination with Avelumab monoclonal antibody for microsatellite stable colorectal cancer (MSS CRC) ) is in phase II clinical research, and it is used in combination with PD-1/PD-L1 therapy (for patients with disease progression or no complete or partial response to single PD-1/PD-L1 therapy) for solid tumors
  • MSS CRC microsatellite stable colorectal cancer
  • the present invention provides a compound of formula (II),
  • the present invention also provides crystal form A of the compound of formula (II), which is characterized in that its X-ray powder diffraction pattern has characteristic diffraction peaks at the following 2 ⁇ angles: 7.78 ⁇ 0.20°, 11.38 ⁇ 0.20° and 20.58 ⁇ 0.20°;
  • the X-ray powder diffraction pattern of the above crystal form A has characteristic diffraction peaks at the following 2 ⁇ angles: 7.78 ⁇ 0.20°, 9.44 ⁇ 0.20°, 11.38 ⁇ 0.20°, 19.84 ⁇ 0.20°, 20.58 ⁇ 0.20° 0.20°, 21.56 ⁇ 0.20°, 22.86 ⁇ 0.20°, and 24.82 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above crystal form A has characteristic diffraction peaks at the following 2 ⁇ angles: 6.58 ⁇ 0.20°, 7.78 ⁇ 0.20°, 9.44 ⁇ 0.20°, 11.38 ⁇ 0.20°, 14.38 ⁇ 0.20° 0.20°, 18.66 ⁇ 0.20°, 19.84 ⁇ 0.20°, 20.58 ⁇ 0.20°, 21.56 ⁇ 0.20°, 22.86 ⁇ 0.20°, 23.54 ⁇ 0.20°, and 24.82 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above crystal form A has characteristic diffraction peaks at the following 2 ⁇ angles: 4.78° ⁇ 0.20°, 6.58° ⁇ 0.20°, 7.78° ⁇ 0.20°, 9.44° ⁇ 0.20 °, 11.38° ⁇ 0.20°, 13.48° ⁇ 0.20°, 14.38° ⁇ 0.20°, 14.80° ⁇ 0.20°, 16.42° ⁇ 0.20°, 17.00° ⁇ 0.20°, 17.32° ⁇ 0.20°, 18.34° ⁇ 0.20°, 18.66° ⁇ 0.20°, 19.08° ⁇ 0.20°, 19.60° ⁇ 0.20°, 19.84° ⁇ 0.20°, 20.28° ⁇ 0.20°, 20.58° ⁇ 0.20°, 21.56° ⁇ 0.20°, 21.84° ⁇ 0.20°, 22.52° ⁇ 0.20°, 22.86° ⁇ 0.20°, 23.26° ⁇ 0.20°, 23.54° ⁇ 0.20°, 24.46° ⁇ 0.20°, 24.82°
  • the X-ray powder diffraction pattern of the above crystal form A has characteristic diffraction peaks at the following 2 ⁇ angles: 4.78° ⁇ 0.10°, 6.58° ⁇ 0.10°, 7.78° ⁇ 0.10°, 9.44° ⁇ 0.10 °, 11.38° ⁇ 0.10°, 13.48° ⁇ 0.10°, 14.38° ⁇ 0.10°, 14.80° ⁇ 0.10°, 16.42° ⁇ 0.10°, 17.00° ⁇ 0.10°, 17.32° ⁇ 0.10°, 18.34° ⁇ 0.10°, 18.66° ⁇ 0.10°, 19.08° ⁇ 0.10°, 19.60° ⁇ 0.10°, 19.84° ⁇ 0.10°, 20.28° ⁇ 0.10°, 20.58° ⁇ 0.10°, 21.56° ⁇ 0.10°, 21.84° ⁇ 0.10°, 22.52° ⁇ 0.10°, 22.86° ⁇ 0.10°, 23.26° ⁇ 0.10°, 23.54° ⁇ 0.10°, 24.46° ⁇ 0.10°, 24.82°
  • the X-ray powder diffraction pattern of the above crystal form A has characteristic diffraction peaks at the following 2 ⁇ angles: 4.78°, 6.58°, 7.78°, 9.44°, 11.38°, 13.48°, 14.38°, 14.80 °, 16.42°, 17.00°, 17.32°, 18.34°, 18.66°, 19.08°, 19.60°, 19.84°, 20.28°, 20.58°, 21.56°, 21.84°, 22.52°, 22.86°, 23.26°, 23.54°, 24.46°, 24.82°, 25.50°, 26.04°, 26.58°, 27.42°, 27.82°, 28.07°, 28.42°, 29.08°, 29.66°, 30.08°, 31.20°, 31.42°, 38.22°, and 39.04°.
  • the X-ray powder diffraction pattern of the above crystal form A has characteristic diffraction peaks at the following 2 ⁇ angles: 4.78° ⁇ 0.20°, and/or 6.58° ⁇ 0.20°, and/or 7.78° ⁇ 0.20 °, and/or 9.44° ⁇ 0.20°, and/or 11.38° ⁇ 0.20°, and/or 13.48° ⁇ 0.20°, and/or 14.38° ⁇ 0.20°, and/or 14.80° ⁇ 0.20°, and/or 16.42° ⁇ 0.20°, and/or 17.00° ⁇ 0.20°, and/or 17.32° ⁇ 0.20°, and/or 18.34° ⁇ 0.20°, and/or 18.66° ⁇ 0.20°, and/or 19.08° ⁇ 0.20° , and/or 19.60° ⁇ 0.20°, and/or 19.84° ⁇ 0.20°, and/or 20.28° ⁇ 0.20°, and/or 20.58° ⁇ 0.20°, and/or 21.56° ⁇ 0.20°, and/or 21
  • the X-ray powder diffraction pattern of the above crystal form A has characteristic diffraction peaks at the following 2 ⁇ angles: 4.78° ⁇ 0.10°, and/or 6.58° ⁇ 0.10°, and/or 7.78° ⁇ 0.10 °, and/or 9.44° ⁇ 0.10°, and/or 11.38° ⁇ 0.10°, and/or 13.48° ⁇ 0.10°, and/or 14.38° ⁇ 0.10°, and/or 14.80° ⁇ 0.10°, and/or 16.42° ⁇ 0.10°, and/or 17.00° ⁇ 0.10°, and/or 17.32° ⁇ 0.10°, and/or 18.34° ⁇ 0.10°, and/or 18.66° ⁇ 0.10°, and/or 19.08° ⁇ 0.10° , and/or 19.60° ⁇ 0.10°, and/or 19.84° ⁇ 0.10°, and/or 20.28° ⁇ 0.10°, and/or 20.58° ⁇ 0.10°, and/or 21.56° ⁇ 0.10°, and/or 21
  • the XRPD pattern of the above crystal form A is basically as shown in FIG. 1 .
  • the XRPD of the above crystal form A is determined using Cu-K ⁇ radiation.
  • the differential scanning calorimetry curve of the above crystal form A has an endothermic peak at 287.17 ⁇ 3°C.
  • the DSC spectrum of the above crystal form A is shown in FIG. 2 .
  • thermogravimetric analysis curve (TGA) of the above crystal form A reaches a weight loss of 0.075% at 200.0 ⁇ 3°C.
  • the TGA spectrum of the above crystal form A is shown in FIG. 3 .
  • the present invention also provides a method for preparing the crystal form of compound A of formula (II), the steps comprising the following steps:
  • the solvent is selected from methanol, acetonitrile and tert-butyl methyl ether.
  • the present invention provides the crystal form B of the compound of formula (II), which is characterized in that its X-ray powder diffraction (XRPD) pattern has characteristic diffraction peaks at the following 2 ⁇ angles: 7.55 ⁇ 0.20°, 15.13 ⁇ 0.20° and 19.82 ⁇ 0.20° ;
  • the X-ray powder diffraction pattern of the above crystal form B has characteristic diffraction peaks at the following 2 ⁇ angles: 6.89 ⁇ 0.20°, 7.55 ⁇ 0.20°, 9.50 ⁇ 0.20°, 11.35 ⁇ 0.20°, 12.72 ⁇ 0.20°, 15.13 ⁇ 0.20°, 19.82 ⁇ 0.20°, and 26.63 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above crystal form B has characteristic diffraction peaks at the following 2 ⁇ angles: 6.89 ⁇ 0.20°, 7.55 ⁇ 0.20°, 9.50 ⁇ 0.20°, 11.35 ⁇ 0.20°, 12.24 ⁇ 0.20°, 12.72 ⁇ 0.20°, 15.13 ⁇ 0.20°, 18.94 ⁇ 0.20°, 19.82 ⁇ 0.20°, 23.25 ⁇ 0.20°, 26.63 ⁇ 0.20°, and 27.27 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above crystal form B has characteristic diffraction peaks at the following 2 ⁇ angles: 4.98° ⁇ 0.20°, 6.89° ⁇ 0.20°, 7.55° ⁇ 0.20°, 8.46° ⁇ 0.20 °, 9.50° ⁇ 0.20°, 10.12° ⁇ 0.20°, 11.35° ⁇ 0.20°, 12.24° ⁇ 0.20°, 12.72° ⁇ 0.20°, 14.05° ⁇ 0.20°, 15.13° ⁇ 0.20°, 15.65° ⁇ 0.20°, 16.20° ⁇ 0.20°, 17.79° ⁇ 0.20°, 18.94° ⁇ 0.20°, 19.82° ⁇ 0.20°, 20.76° ⁇ 0.20°, 21.61° ⁇ 0.20°, 23.25° ⁇ 0.20°, 23.87° ⁇ 0.20°, 26.09° ⁇ 0.20°, 26.63° ⁇ 0.20°, 27.27° ⁇ 0.20°, 28.45° ⁇ 0.20°, 29.12° ⁇ 0.20°, 30.95°
  • the X-ray powder diffraction pattern of the above crystal form B has characteristic diffraction peaks at the following 2 ⁇ angles: 4.98° ⁇ 0.10°, 6.89° ⁇ 0.10°, 7.55° ⁇ 0.10°, 8.46° ⁇ 0.10 °, 9.50° ⁇ 0.10°, 10.12° ⁇ 0.10°, 11.35° ⁇ 0.10°, 12.24° ⁇ 0.10°, 12.72° ⁇ 0.10°, 14.05° ⁇ 0.10°, 15.13° ⁇ 0.10°, 15.65° ⁇ 0.10°, 16.20° ⁇ 0.10°, 17.79° ⁇ 0.10°, 18.94° ⁇ 0.10°, 19.82° ⁇ 0.10°, 20.76° ⁇ 0.10°, 21.61° ⁇ 0.10°, 23.25° ⁇ 0.10°, 23.87° ⁇ 0.10°, 26.09° ⁇ 0.10°, 26.63° ⁇ 0.10°, 27.27° ⁇ 0.10°, 28.45° ⁇ 0.10°, 29.12° ⁇ 0.10°, 30.95°
  • the X-ray powder diffraction pattern of the above crystal form B has characteristic diffraction peaks at the following 2 ⁇ angles: 4.98°, 6.89°, 7.55°, 8.46°, 9.50°, 10.12°, 11.35°, 12.24 °, 12.72°, 14.05°, 15.13°, 15.65°, 16.20°, 17.79°, 18.94°, 19.82°, 20.76°, 21.61°, 23.25°, 23.87°, 26.09°, 26.63°, 27.27°, 28.45°, 29.12°, 30.95°, 32.32°, 34.62°, and 38.41°.
  • the X-ray powder diffraction pattern of the above crystal form B has characteristic diffraction peaks at the following 2 ⁇ angles: 4.98° ⁇ 0.20°, and/or 6.89° ⁇ 0.20°, and/or 7.55° ⁇ 0.20 °, and/or 8.46° ⁇ 0.20°, and/or 9.50° ⁇ 0.20°, and/or 10.12° ⁇ 0.20°, and/or 11.35° ⁇ 0.20°, and/or 12.24° ⁇ 0.20°, and/or 12.72° ⁇ 0.20°, and/or 14.05° ⁇ 0.20°, and/or 15.13° ⁇ 0.20°, and/or 15.65° ⁇ 0.20°, and/or 16.20° ⁇ 0.20°, and/or 17.79° ⁇ 0.20° , and/or 18.94° ⁇ 0.20°, and/or 19.82° ⁇ 0.20°, and/or 20.76° ⁇ 0.20°, and/or 21.61° ⁇ 0.20°, and/or 23.25° ⁇ 0.20°, and/or 23
  • the X-ray powder diffraction pattern of the above crystal form B has characteristic diffraction peaks at the following 2 ⁇ angles: 4.98° ⁇ 0.10°, and/or 6.89° ⁇ 0.10°, and/or 7.55° ⁇ 0.10 °, and/or 8.46° ⁇ 0.10°, and/or 9.50° ⁇ 0.10°, and/or 10.12° ⁇ 0.10°, and/or 11.35° ⁇ 0.10°, and/or 12.24° ⁇ 0.10°, and/or 12.72° ⁇ 0.10°, and/or 14.05° ⁇ 0.10°, and/or 15.13° ⁇ 0.10°, and/or 15.65° ⁇ 0.10°, and/or 16.20° ⁇ 0.10°, and/or 17.79° ⁇ 0.10° , and/or 18.94° ⁇ 0.10°, and/or 19.82° ⁇ 0.10°, and/or 20.76° ⁇ 0.10°, and/or 21.61° ⁇ 0.10°, and/or 23.25° ⁇ 0.10°, and/or 23
  • the XRPD pattern of the above-mentioned crystal form B is basically as shown in Fig. 4 .
  • the XRPD of the above-mentioned crystal form B is determined using Cu-K ⁇ radiation.
  • the differential scanning calorimetry curve of the above crystal form B has an endothermic peak at 300.0 ⁇ 3°C.
  • the DSC spectrum of the above crystal form B is shown in Fig. 5 .
  • the present invention also provides a method for preparing the crystal form of compound B of formula (II), the steps comprising the following steps:
  • the solvent is selected from ethanol and n-heptane.
  • the present invention also provides the application of the above-mentioned compound of formula (II), the above-mentioned crystal form A and the above-mentioned crystal form B or the crystal form prepared according to the above-mentioned method in the preparation of MNK1/2 inhibitor drugs.
  • the present invention also provides the application of the above-mentioned compound of formula (II), the above-mentioned crystal form A and the above-mentioned crystal form B or the crystal form prepared according to the above-mentioned method in the preparation of a drug for treating colorectal cancer.
  • the compound of the formula (I) of the present invention has high selectivity to MNK1/2, and has significant inhibitory activity on the kinase, has good membrane permeability, and has excellent pharmacokinetic and pharmacodynamic properties . And each crystal form of the compound of the formula (II) is stable, less affected by light, heat and humidity, and has good drug efficacy in vivo, and has broad prospects for making medicines.
  • the intermediate compound of the present invention can be prepared by a variety of synthetic methods well known to those skilled in the art, including the specific embodiments listed below, the embodiments formed by its combination with other chemical synthesis methods, and the methods described by those skilled in the art. Known equivalents, preferred embodiments include, but are not limited to, the examples of the present invention.
  • the structure of the compounds of the present invention can be confirmed by conventional methods known to those skilled in the art. If the present invention involves the absolute configuration of the compound, the absolute configuration can be confirmed by conventional technical means in the art. For example, in single crystal X-ray diffraction (SXRD), the cultured single crystal is collected with a Bruker D8 venture diffractometer to collect diffraction intensity data, the light source is CuK ⁇ radiation, and the scanning method is: After scanning and collecting relevant data, the absolute configuration can be confirmed by further analyzing the crystal structure by direct method (Shelxs97).
  • SXRD single crystal X-ray diffraction
  • DCM dichloromethane
  • DMF N,N-dimethylformamide
  • DMSO dimethyl sulfoxide
  • EtOH stands for ethanol
  • MeOH stands for methanol
  • 2-MeTHF 2-methyl Tetrahydrofuran
  • Dioxane represents dioxane
  • ACN represents acetonitrile
  • Toluene represents toluene
  • Acetone represents acetone
  • EtOAc represents ethyl acetate
  • THF represents tetrahydrofuran
  • H 2 O represents water
  • TosOH represents p-toluenesulfonic acid.
  • test parameters of the Differential Scanning Calorimeter (DSC) method of Form A of the present invention are shown in Table 4.
  • the thermal gravimetric analysis (Thermal Gravimetric Analyzer, TGA) method of crystal form A of the present invention, its test parameters are shown in Table 5.
  • ⁇ W% represents the moisture absorption weight gain of the test product at 25 ⁇ 1°C and 80 ⁇ 2%RH.
  • test parameters of the Differential Scanning Calorimeter (DSC) method of Form B of the present invention are shown in Table 9.
  • Embodiment 1 the preparation of formula (I) compound
  • MS-ESI calculated [M+H] + 514, found 514.
  • Embodiment 2 Preparation of compound of formula (II) and its single crystal cultivation
  • Embodiment 3 Preparation of formula (II) compound A crystal form
  • Embodiment 4 Crystal form screening test of formula (II) compound in different solvents
  • the compound of formula (II) forms A crystal form in methanol, acetonitrile and tert-butyl methyl ether, and forms B crystal form in ethanol and n-heptane.
  • the moisture absorption weight gain of compound A crystal form of formula (II) at 25°C and 80% RH is 1.179%.
  • the hygroscopicity is relatively weak, and the crystal form does not change before and after moisture absorption, so it is a stable crystal form.
  • the A crystal form of the compound of the present invention has good stability under the long-term accelerated setting-out stability test conditions, and the A crystal form belongs to the stable crystal form.
  • Test Example 1 In vitro evaluation of the inhibitory activity of the compounds of the present invention on MNK2 protein kinase
  • Assay buffer solution 8mM 3-(N-morpholine)propanesulfonic acid, 0.2mM disodium edetate, 0.01% lauryl polyoxyethylene ether, 5% glycerol, 0.1% ⁇ -mercaptoethanol , 1mg bovine serum albumin
  • the protein kinase inhibitory activity of the compounds was expressed as a percentage of the remaining protein kinase activity relative to the blank substrate (DMSO alone). IC50 values and curves were calculated using the Prism4 software package (GraphPad), and the specific information is shown in Table 12 below.
  • Test Example 2 In vitro evaluation of the inhibitory activity of the compounds of the present invention on eIF4E phosphorylation
  • the purpose of the experiment To detect the IC 50 value of the compounds for inhibiting eIF4E phosphorylation of HCT116 cell line.
  • HCT116 cells ATCC
  • RPM11640 medium Life technology
  • fetal bovine serum Hyclone
  • double antibodies penicillin, streptomycin
  • phosphate buffer Corning
  • 384-well cell plate PerkinElmer
  • p-eIF4E(Ser209) Assay Kit PerkinElmer
  • HCT116 cells were digested to make a cell suspension, and plated in a 96-well plate. Cell plates were then placed in an incubator overnight. The compound was diluted to the corresponding concentration and added to the cell culture plate, and cultured for 3 hours. Cells were then lysed with lysis buffer, and the lysate was transferred to a 384-well plate.
  • Test Example 3 In vivo drug efficacy experiment of the compound of the present invention in CT-26 mouse xenograft tumor
  • CT-26 cells were cultured in RMPI-1640 medium containing 10% fetal bovine serum in a 37°C incubator with 5% CO 2 . After passage, the tumor cells were grown to an appropriate concentration and the tumor cells were collected in the logarithmic growth phase, counted and resuspended in DPBS (phosphate buffered saline solution), and the concentration of the cell suspension was adjusted to 3 ⁇ 10 6 /mL for inoculation.
  • DPBS phosphate buffered saline solution
  • CT-26 tumor cell inoculation On the day of inoculation, the animals were divided into groups according to their body weight, with 8 animals in each group, and the day of inoculation was regarded as D0. When the tumor size grows to about 60 mm 3 , the antibody groups are divided into groups according to the tumor size and body weight. During the experiment, the body weight and tumor size of the animals were measured three times a week, and the clinical symptoms of the animals were observed and recorded every day, and each administration was referred to the last weighed animal body weight.
  • the evaluation index of anti-tumor activity is the relative tumor proliferation rate T/C (%), T/C (%) > 40% is invalid, T/C (%) ⁇ 40%, and after statistical processing P ⁇ 0.05 is effective
  • T/C(%) (T RTV /C RTV ) ⁇ 100%.
  • T RTV is the relative tumor volume of the treatment group
  • C RTV is the relative tumor volume of the negative control group
  • TGI (%) a (1-average tumor volume at the end of administration of the treatment group/average tumor volume at the end of treatment of the solvent control group) ⁇ 100%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)

Abstract

涉及吡咯并三嗪类化合物的盐型、其晶型及其制备方法和应用,尤其是在制备MNK1/2抑制剂药物和/或制备治疗结直肠癌药物中的应用。

Description

吡咯并三嗪类化合物的盐型、其晶型及其制备方法
优先权及相关申请
本发明要求享有于2021年5月8日向中国国家知识产权局提交的,专利申请号为202110501179.9,名称为“吡咯并三嗪类化合物的盐型、其晶型及其制备方法”的在先申请的优先权。该在先申请的全文通过引用的方式结合于本发明中。
技术领域
本发明涉及吡咯并三嗪类化合物的盐型、其晶型及其制备方法和应用。具体涉及式(Ⅱ)化合物及其晶型。
背景技术
有丝分裂原激活的蛋白激酶作用激酶(MAP kinase interacting kinase,简称MNK),属于丝氨酸/苏氨酸蛋白激酶。人类的MNK有四种亚型,MNK1a,MNK1b和MNK2a,MNK2b,分别由MNK1和MNK2基因表达。4中亚型在N端都含有细胞核定位信号序列(nuclear localization signal,NLS)和与eIF4G结合的序列,是其可以进入细胞核发挥作用,识别并结合下游eIF4E。MNK1a和MNK2a亚型C端具有与MAPK结合位点,可以被上游ERK和p38磷酸化激活。MNK1a的C端的细胞核转出信号序列(nuclear export signal,NES)使其可以广泛存在于细胞质中,而其他3个亚型多数存在于细胞核中。
真核细胞翻译起始因子4E(eukaryotic initiation factor 4E,简称eIF4E)是一种帽结合蛋白,可以特异性地识别mRNA的5’端的帽子结构,是蛋白质翻译过程重要的起始因子。S209磷酸化的eIF4E可以促进下游蛋白质的翻译过程,主要包括c-MYC,cyclin D1,VEGF,FGF以及mcl-1和Bcl-2等抗凋亡蛋白。eIF4E在肺癌、结直肠癌、胃癌、胰腺导管癌等多种恶性肿瘤中表达上调。MNK是已知的唯一的可磷酸化eIF4E的激酶。此外,MNK处于多个涉及肿瘤和免疫信号通路的交汇处,如RAS和T细胞受体(TCR),可以选择性的控制抗肿瘤免疫响应的调节器的转录。MNK活性以及eIF4E的活化对肿瘤的发生和发展至关重要,但对正常的细胞并不是必须的。因此选择性的MNK抑制剂有望成为低毒性的抗肿瘤药物。EFT508(WO2015/200481;WO2016/172010;WO2017/075394;WO2017/075412;WO2017/087808;WO2017/117052;WO2018/152117;WO2018/218038)是EFFECTOR THERAPEUTICS,INC.公司开发的选择性的口服MNK抑制剂。研究表明,eFT508可以选择性的抑制PD-1,LAG3,IL-10的表达,提高细胞毒性T细胞的功能,同时正常T细胞的增殖不受影响。临床前的研究发现,eFT508与PD-1单抗联用可以增强药效并提高响应 率。目前已完成I期临床试验,安全性良好,目前单药用于血液瘤和趋势性前列腺癌均处于临床II期研究中,与Avelumab单抗联用用于微卫星稳定型结直肠癌(MSS CRC)的治疗处于临床II期研究中,与PD-1/PD-L1疗法联用(对单一PD-1/PD-L1疗法已产生疾病进展或无完全缓解或部分缓解的病人)用于实体瘤的治疗处于临床II期研究中。
发明内容
本发明提供式(II)化合物,
Figure PCTCN2022091452-appb-000001
本发明还提供式(II)化合物的A晶型,其特征在于其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.78±0.20°、11.38±0.20°和20.58±0.20°;
Figure PCTCN2022091452-appb-000002
在本发明的一些方案中,上述A晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.78±0.20°、9.44±0.20°、11.38±0.20°、19.84±0.20°、20.58±0.20°、21.56±0.20°、22.86±0.20°和24.82±0.20°。
在本发明的一些方案中,上述A晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.58±0.20°、7.78±0.20°、9.44±0.20°、11.38±0.20°、14.38±0.20°、18.66±0.20°、19.84±0.20°、20.58±0.20°、21.56±0.20°、22.86±0.20°、23.54±0.20°和24.82±0.20°。
在本发明的一些方案中,上述A晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.78°±0.20°、6.58°±0.20°、7.78°±0.20°、9.44°±0.20°、11.38°±0.20°、13.48°±0.20°、14.38°±0.20°、14.80°±0.20°、16.42°±0.20°、17.00°±0.20°、17.32°±0.20°、18.34°±0.20°、18.66°±0.20°、19.08°±0.20°、19.60°±0.20°、19.84°±0.20°、20.28°±0.20°、20.58°±0.20°、21.56°±0.20°、21.84°±0.20°、22.52°±0.20°、22.86°±0.20°、23.26°±0.20°、23.54°±0.20°、24.46°±0.20°、24.82°±0.20°、25.50°±0.20°、26.04°±0.20°、26.58°±0.20°、27.42°±0.20°、27.82°±0.20°、28.07°±0.20°、28.42°±0.20°、29.08°±0.20°、29.66°±0.20°、30.08°±0.20°、31.20°±0.20°、31.42°±0.20°、38.22°±0.20°和39.04°±0.20°。
在本发明的一些方案中,上述A晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.78°±0.10°、6.58°±0.10°、7.78°±0.10°、9.44°±0.10°、11.38°±0.10°、13.48°±0.10°、14.38°±0.10°、14.80°±0.10°、 16.42°±0.10°、17.00°±0.10°、17.32°±0.10°、18.34°±0.10°、18.66°±0.10°、19.08°±0.10°、19.60°±0.10°、19.84°±0.10°、20.28°±0.10°、20.58°±0.10°、21.56°±0.10°、21.84°±0.10°、22.52°±0.10°、22.86°±0.10°、23.26°±0.10°、23.54°±0.10°、24.46°±0.10°、24.82°±0.10°、25.50°±0.10°、26.04°±0.10°、26.58°±0.10°、27.42°±0.10°、27.82°±0.10°、28.07°±0.10°、28.42°±0.10°、29.08°±0.10°、29.66°±0.10°、30.08°±0.10°、31.20°±0.10°、31.42°±0.10°、38.22°±0.10°和39.04°±0.10°。
在本发明的一些方案中,上述A晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.78°、6.58°、7.78°、9.44°、11.38°、13.48°、14.38°、14.80°、16.42°、17.00°、17.32°、18.34°、18.66°、19.08°、19.60°、19.84°、20.28°、20.58°、21.56°、21.84°、22.52°、22.86°、23.26°、23.54°、24.46°、24.82°、25.50°、26.04°、26.58°、27.42°、27.82°、28.07°、28.42°、29.08°、29.66°、30.08°、31.20°、31.42°、38.22°和39.04°。
在本发明的一些方案中,上述A晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.78°±0.20°、和/或6.58°±0.20°、和/或7.78°±0.20°、和/或9.44°±0.20°、和/或11.38°±0.20°、和/或13.48°±0.20°、和/或14.38°±0.20°、和/或14.80°±0.20°、和/或16.42°±0.20°、和/或17.00°±0.20°、和/或17.32°±0.20°、和/或18.34°±0.20°、和/或18.66°±0.20°、和/或19.08°±0.20°、和/或19.60°±0.20°、和/或19.84°±0.20°、和/或20.28°±0.20°、和/或20.58°±0.20°、和/或21.56°±0.20°、和/或21.84°±0.20°、和/或22.52°±0.20°、和/或22.86°±0.20°、和/或23.26°±0.20°、和/或23.54°±0.20°、和/或24.46°±0.20°、和/或24.82°±0.20°、和/或25.50°±0.20°、和/或26.04°±0.20°、和/或26.58°±0.20°、和/或27.42°±0.20°、和/或27.82°±0.20°、和/或28.07°±0.20°、和/或28.42°±0.20°、和/或29.08°±0.20°、和/或29.66°±0.20°、和/或30.08°±0.20°、和/或31.20°±0.20°、和/或31.42°±0.20°、和/或38.22°±0.20°、和/或39.04°±0.20°。
在本发明的一些方案中,上述A晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.78°±0.10°、和/或6.58°±0.10°、和/或7.78°±0.10°、和/或9.44°±0.10°、和/或11.38°±0.10°、和/或13.48°±0.10°、和/或14.38°±0.10°、和/或14.80°±0.10°、和/或16.42°±0.10°、和/或17.00°±0.10°、和/或17.32°±0.10°、和/或18.34°±0.10°、和/或18.66°±0.10°、和/或19.08°±0.10°、和/或19.60°±0.10°、和/或19.84°±0.10°、和/或20.28°±0.10°、和/或20.58°±0.10°、和/或21.56°±0.10°、和/或21.84°±0.10°、和/或22.52°±0.10°、和/或22.86°±0.10°、和/或23.26°±0.10°、和/或23.54°±0.10°、和/或24.46°±0.10°、和/或24.82°±0.10°、和/或25.50°±0.10°、和/或26.04°±0.10°、和/或26.58°±0.10°、和/或27.42°±0.10°、和/或27.82°±0.10°、和/或28.07°±0.10°、和/或28.42°±0.10°、和/或29.08°±0.10°、和/或29.66°±0.10°、和/或30.08°±0.10°、和/或31.20°±0.10°、和/或31.42°±0.10°、和/或38.22°±0.10°、和/或39.04°±0.10°。
在本发明的一些方案中,上述A晶型的XRPD图谱基本如图1所示。
在本发明的一些方案中,上述A晶型的XRPD使用Cu-Kα辐射来测定。
在本发明的一些方案中,上述A晶型的XRPD图谱解析数据如表1所示。
表1 式(Ⅱ)化合物A晶型的XRPD解析数据
Figure PCTCN2022091452-appb-000003
在本发明的一些方案中,上述A晶型的差示扫描量热曲线在287.17±3℃具有吸热峰。
在本发明的一些方案中,上述A晶型的DSC图谱如图2所示。
在本发明的一些方案中,上述A晶型的热重分析曲线(TGA)在200.0±3℃时失重达0.075%。
在本发明的一些方案中,上述A晶型的TGA图谱如图3所示。
本发明还提供式(II)化合物A晶型的制备方法,步骤包含如下:
(a)将式(Ⅱ)化合物加入溶剂中使其成悬浊液;
(b)悬浊液在40~55℃下搅拌2~25小时;
(c)过滤后在30~45℃下真空干燥10~24小时;
其中,所述溶剂选自甲醇、乙腈和叔丁基甲基醚。
本发明提供了式(Ⅱ)化合物的B晶型,其特征在于其X射线粉末衍射(XRPD)图谱在下列2θ角处具有特征衍射峰:7.55±0.20°、15.13±0.20°和19.82±0.20°;
Figure PCTCN2022091452-appb-000004
在本发明的一些方案中,上述B晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.89±0.20°、7.55±0.20°、9.50±0.20°、11.35±0.20°、12.72±0.20°、15.13±0.20°、19.82±0.20°和26.63±0.20°。
在本发明的一些方案中,上述B晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.89±0.20°、7.55±0.20°、9.50±0.20°、11.35±0.20°、12.24±0.20°、12.72±0.20°、15.13±0.20°、18.94±0.20°、19.82±0.20°、23.25±0.20°、26.63±0.20°和27.27±0.20°。
在本发明的一些方案中,上述B晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.98°±0.20°、6.89°±0.20°、7.55°±0.20°、8.46°±0.20°、9.50°±0.20°、10.12°±0.20°、11.35°±0.20°、12.24°±0.20°、12.72°±0.20°、14.05°±0.20°、15.13°±0.20°、15.65°±0.20°、16.20°±0.20°、17.79°±0.20°、18.94°±0.20°、19.82°±0.20°、20.76°±0.20°、21.61°±0.20°、23.25°±0.20°、23.87°±0.20°、26.09°±0.20°、26.63°±0.20°、27.27°±0.20°、28.45°±0.20°、29.12°±0.20°、30.95°±0.20°、32.32°±0.20°、34.62°±0.20°和38.41°±0.20°。
在本发明的一些方案中,上述B晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.98°±0.10°、6.89°±0.10°、7.55°±0.10°、8.46°±0.10°、9.50°±0.10°、10.12°±0.10°、11.35°±0.10°、12.24°±0.10°、12.72°±0.10°、14.05°±0.10°、15.13°±0.10°、15.65°±0.10°、16.20°±0.10°、17.79°±0.10°、18.94°±0.10°、19.82°±0.10°、20.76°±0.10°、21.61°±0.10°、23.25°±0.10°、23.87°±0.10°、26.09°±0.10°、26.63°±0.10°、27.27°±0.10°、28.45°±0.10°、29.12°±0.10°、30.95°±0.10°、32.32°±0.10°、34.62°±0.10°和38.41°±0.10°。
在本发明的一些方案中,上述B晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.98°、6.89°、7.55°、8.46°、9.50°、10.12°、11.35°、12.24°、12.72°、14.05°、15.13°、15.65°、16.20°、17.79°、18.94°、19.82°、20.76°、21.61°、23.25°、23.87°、26.09°、26.63°、27.27°、28.45°、29.12°、30.95°、32.32°、34.62°和38.41°。
在本发明的一些方案中,上述B晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.98°±0.20°、和/或6.89°±0.20°、和/或7.55°±0.20°、和/或8.46°±0.20°、和/或9.50°±0.20°、和/或10.12°±0.20°、和/或11.35°±0.20°、和/或12.24°±0.20°、和/或12.72°±0.20°、和/或14.05°±0.20°、和/或15.13°±0.20°、和/或15.65°±0.20°、和/或16.20°±0.20°、和/或17.79°±0.20°、和/或18.94°±0.20°、和/或19.82°±0.20°、和/或20.76°±0.20°、和/或21.61°±0.20°、和/或23.25°±0.20°、和/或23.87°±0.20°、和/或26.09°±0.20°、和/或26.63°±0.20°、和/或27.27°±0.20°、和/或28.45°±0.20°、和/或29.12°±0.20°、和/或30.95°±0.20°、和/或32.32°±0.20°、和/或34.62°±0.20°、和/或38.41°±0.20°。
在本发明的一些方案中,上述B晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.98°±0.10°、和/或6.89°±0.10°、和/或7.55°±0.10°、和/或8.46°±0.10°、和/或9.50°±0.10°、和/或10.12°±0.10°、和/或11.35°±0.10°、和/或12.24°±0.10°、和/或12.72°±0.10°、和/或14.05°±0.10°、和/或15.13°±0.10°、和/或15.65°±0.10°、和/或16.20°±0.10°、和/或17.79°±0.10°、和/或18.94°±0.10°、和/或19.82°±0.10°、和/或20.76°±0.10°、和/或21.61°±0.10°、和/或23.25°±0.10°、和/或23.87°±0.10°、和/或26.09°±0.10°、和/或 26.63°±0.10°、和/或27.27°±0.10°、和/或28.45°±0.10°、和/或29.12°±0.10°、和/或30.95°±0.10°、和/或32.32°±0.10°、和/或34.62°±0.10°、和/或38.41°±0.10°。
在本发明的一些方案中,上述B晶型的XRPD图谱基本如附图4所示。
在本发明的一些方案中,上述B晶型的XRPD使用Cu-Kα辐射来测定。
在本发明的一些方案中,上述B晶型的XRPD图谱解析数据如表2所示。
表2 式(Ⅱ)化合物B晶型的XRPD解析数据
Figure PCTCN2022091452-appb-000005
在本发明的一些方案中,上述B晶型的差示扫描量热曲线在300.0±3℃处具有吸热峰。
在本发明的一些方案中,上述B晶型的DSC图谱如附图5所示。
本发明还提供式(II)化合物B晶型的制备方法,步骤包含如下:
(a)将式(Ⅱ)化合物加入溶剂中使其成悬浊液;
(b)悬浊液在40~55℃下搅拌2~25小时;
(c)过滤后在30~45℃下真空干燥10~24小时;
其中,所述溶剂选自乙醇和正庚烷。
本发明还提供上述式(Ⅱ)化合物、上述A晶型和上述B晶型或根据上述方法制备得到的晶型在制备MNK1/2抑制剂药物中的应用。
本发明还提供上述式(Ⅱ)化合物、上述A晶型和上述B晶型或根据上述方法制备得到的晶型在制备治疗结直肠癌药物中的应用。
技术效果
本发明式(I)化合物对MNK1/2具有很高的选择性,且对该激酶具有显著的抑制活性,同时具有较好的透膜性,且具有优良的药代动力学和药效学性质。以及式(Ⅱ)化合物的各晶型稳定、受光、热、湿度影响小且具有良好的体内药效,成药前景广阔。
定义和说明
除非另有说明,本文所用的下列术语和短语旨在含有下列含义。一个特定的短语或术语在没有特别定义的情况下不应该被认为是不确定的或不清楚的,而应该按照普通的含义去理解。当本文出现商品名时,旨在指代其对应的商品或其活性成分。
本发明的中间体化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。
本发明具体实施方式的化学反应是在合适的溶剂中完成的,所述的溶剂须适合于本发明的化学变化及其所需的试剂和物料。为了获得本发明的化合物,有时需要本领域技术人员在已有实施方式的基础上对合成步骤或者反应流程进行修改或选择。
本发明的化合物可以通过本领域技术人员所熟知的常规方法来确认结构,如果本发明涉及化合物的绝对构型,则该绝对构型可以通过本领域常规技术手段予以确证。例如单晶X射线衍射法(SXRD),把培养出的单晶用Bruker D8 venture衍射仪收集衍射强度数据,光源为CuKα辐射,扫描方式:
Figure PCTCN2022091452-appb-000006
扫描,收集相关数据后,进一步采用直接法(Shelxs97)解析晶体结构,便可以确证绝对构型。
下面会通过实施例具体描述本发明,这些实施例并不意味着对本发明的任何限制。
本发明所使用的所有溶剂是市售的,无需进一步纯化即可使用。
本发明采用下述缩略词:DCM代表二氯甲烷;DMF代表N,N-二甲基甲酰胺;DMSO代表二甲亚砜;EtOH代表乙醇;MeOH代表甲醇;2-MeTHF代表2-甲基四氢呋喃;Dioxane代表二氧六环;ACN代表乙腈;Toluene代表甲苯;Acetone代表丙酮;EtOAc代表乙酸乙酯;THF代表四氢呋喃;H 2O代表水;TosOH代表对甲苯磺酸。
化合物依据本领域常规命名原则或者使用
Figure PCTCN2022091452-appb-000007
软件命名,市售化合物采用供应商目录名称。
附图说明
图1:式(Ⅱ)化合物的A晶型的XRPD图谱;
图2:式(Ⅱ)化合物的A晶型的DSC图谱;
图3:式(Ⅱ)化合物的A晶型的TGA图谱;
图4:式(Ⅱ)化合物的B晶型的XRPD图谱;
图5:式(Ⅱ)化合物的B晶型的DSC图谱;
图6:式(Ⅱ)化合物的A晶型的DVS图谱;
图7:式(Ⅱ)化合物的单晶椭球图。
仪器参数
本发明A晶型的X-射线粉末衍射(X-ray powder diffractometer,XRPD)方法,其测试参数见表3。
表3 A晶型的XRPD测试参数
Figure PCTCN2022091452-appb-000008
本发明A晶型的差热分析(Differential Scanning Calorimeter,DSC)方法,其测试参数见表4。
表4 A晶型的DSC测试参数
Figure PCTCN2022091452-appb-000009
Figure PCTCN2022091452-appb-000010
本发明A晶型的热重分析(Thermal Gravimetric Analyzer,TGA)方法,其测试参数见表5。
表5 A晶型的TGA测试参数
Figure PCTCN2022091452-appb-000011
本发明A晶型的动态蒸汽吸附分析(Dynamic Vapor Sorption,DVS)方法,其测试参数见表6。
表6 A晶型的DVS测试参数
仪器厂家型号 SMS/DVS intrinsic
测试条件 称取约10mg样品,进行测试
温度 25℃
平衡 dm/dt:0.01%/min
干燥 25℃,0%RH干燥2h
RH(%)测试梯级 5%RH
RH(%)测试梯级范围 0%~95%~0%RH
引湿性评价分类如下表7所示:
表7 引湿性评价分类表
吸湿性分类 ΔW%
潮解 吸收足量水分形成液体
极具吸湿性 ΔW%≥15%
有吸湿性 15%>ΔW%≥2%
略有吸湿性 2%>ΔW%≥0.2%
无或几乎无吸湿性 ΔW%<0.2%
注:ΔW%表示受试品在25±1℃和80±2%RH下的吸湿增重。
本发明B晶型的X-射线粉末衍射(X-ray powder diffractometer,XRPD)方法,其测试参数见表8。
表8 B晶型的XRPD测试参数
Figure PCTCN2022091452-appb-000012
本发明B晶型的差热分析(Differential Scanning Calorimeter,DSC)方法,其测试参数见表9。
表9 B晶型的DSC测试参数
Figure PCTCN2022091452-appb-000013
实施例1:式(I)化合物的制备
合成路线:
Figure PCTCN2022091452-appb-000014
第一步
将化合物1a(100g,462mmol)溶于乙醇(500mL)中,在0℃下滴加浓硫酸(49.94g,509mmol,纯 度:98%),反应液在95℃下搅拌16小时。反应完成后,反应液减压浓缩除掉大部分乙醇,浓缩液加入水(300mL),用乙酸乙酯(250mL×3)萃取,合并的有机相用饱和碳酸氢钠(300mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,得到化合物1b。 1H NMR(400MHz,CDCl 3)δ8.60(s,1H),7.78(s,1H),4.48-4.42(m,2H),2.58(s,3H),1.43(t,J=7.2Hz,3H)。
第二步
将化合物1b(10.0g,41.0mmol)溶于二氯甲烷(200mL)中,在0℃下搅拌加入三氟乙酸酐(17.2g,81.9mmol)和过氧化氢尿素(8.09g,86.0mmol),反应液升至25℃下搅拌16小时。向反应液中加入水(200mL),用二氯甲烷(100mL×3)萃取,合并有机相,依次用饱和碳酸氢钠(200mL×2)和饱和食盐水(500mL)洗涤,用无水硫酸钠干燥,过滤,减压浓缩,得到化合物1c。 1H NMR(400MHz,CDCl 3)δ8.23(s,1H),7.29(s,1H),4.52-4.45(m,2H),2.29(s,3H),1.41(t,J=7.2Hz,3H)。
第三步
将化合物1c(22.0g,84.6mmol)溶于N,N-二甲基甲酰胺(130mL)中,在0℃下搅拌加入三氟乙酸酐(35.5g,169mmol),反应液在50℃下搅拌1小时。向反应液中加入水(200mL),用乙酸乙酯(100mL×4)萃取,合并有机相,依次用饱和碳酸氢钠(200mL×3)和饱和食盐水(150mL×3)洗涤,用无水硫酸钠干燥,过滤,减压浓缩。粗品在石油醚/乙酸乙酯混合液(8/1,90mL)中室温下搅拌2h,过滤得到化合物1d。 1H NMR(400MHz,CDCl 3)δ9.89(br s,1H),7.75(s,1H),4.46-4.41(m,2H),2.44(s,3H),1.43(t,J=7.2Hz,3H)。
第四步
将化合物1d(2.00g,7.69mmol)溶于乙醇(20mL)中,加入氨水(16.2g,115mmol,纯度:25%),反应液在40℃下搅拌16小时。反应液减压浓缩,粗品在甲醇/二氯甲烷混合液(1/5,48mL)中室温下搅拌过夜。然后过滤,用二氯甲烷(5mL×2)洗涤,滤饼减压浓缩得到化合物1e。MS-ESI计算值[M+H] +231和233,实测值231和233。
第五步
将化合物1e(500mg,1.97mmol)和环戊酮(664mg,7.89mmol)溶于无水二氧六环(6mL)中,向反应液中逐滴加入浓硫酸(98.7mg,0.986mmol,纯度:98%),反应液在95℃下搅拌3小时。反应液减压浓缩除去部分二氧六环(约3mL),过滤。向收集的滤饼中加入正己烷(10mL),室温下搅拌2小时,过滤,滤饼真空干燥2小时,得到化合物1f。MS-ESI计算值[M+H] +297和299,实测值297和299。 1H NMR(400MHz,DMSO-d 6)δ10.16(s,1H),8.02(s,1H),2.71-2.78(m,2H),2.37(s,3H),1.91-1.93(m,2H),1.79-1.84(m,2H),1.63-1.67(m,2H)。
第六步
将化合物1g(50g,0.442mol),1,8-二氮杂双环[5.4.0]十一碳-7-烯(67.3g,0.442mol)溶于四氢呋喃(500 mL)中。将反应液加热至55℃,在此温度下,向反应液中加入乙醛(9.74g,0.221mol)。反应液在55℃下搅拌18小时。将反应液降至22℃,用乙酸(25mL)淬灭。反应液减压浓缩,剩余物溶于乙酸乙酯(1000mL)和稀盐酸(1000mL,1M),分液后保留有机相,水相用乙酸乙酯萃取(300mL×3),合并有机相,有机相依次用饱和碳酸氢钠溶液(100mL)和食盐水(200mL)洗涤,无水硫酸钠干燥,过滤,浓缩,粗产物经过柱层析法分离(4/1,石油醚/乙酸乙酯,Rf=0.56)得到化合物1h。MS-ESI计算值[M+H] +226,实测值226。 1H NMR(400MHz,CDCl 3)δ9.29(br s,1H),7.48(d,J=3.2Hz,1H),4.35(q,J=7.2Hz,2H),4.29(q,J=7.2Hz,2H),2.61(s,3H),1.38(t,J=7.2Hz,3H),1.35(m,J=7.2Hz,3H)。
第七步
将化合物1h(11.0g,48.8mmol)溶于N-甲基吡咯烷酮(60mL)中,向反应液中加入叔丁醇钾(6.03g,53.7mmol)。反应液在25℃下搅拌0.5小时后,加入化合物1i(9.78g,53.7mmol)的N-甲基吡咯烷酮(30mL)溶液。反应液继续搅拌20小时。将反应液用水(200mL)洗涤,乙酸乙酯萃取(200mL×3),合并有机相,有机相用饱和食盐水(20mL×3)洗涤,无水硫酸钠干燥,过滤,浓缩,粗产物经过柱层析法分离(4/1,石油醚/乙酸乙酯,Rf=0.55)得到化合物1j。MS-ESI计算值[M+H] +241,实测值241。 1H NMR(400MHz,CDCl 3)δ7.49(s,1H),4.35(q,J=7.2Hz,2H),4.27(q,J=7.2Hz,2H),2.57(s,3H),1.40(t,J=7.2Hz,3H),1.34(t,J=7.2Hz,3H)。
第八步
将化合物1j(10.2g,42.5mmol)溶于甲酰胺(120mL),向反应液中加入磷酸(832mg,8.49mmol)。反应液在125℃下搅拌16小时。将反应液降至22℃,此时有大量白色固体析出。将混合物过滤,收集的滤饼加入到石油醚/乙酸乙酯混合溶液(1/1,100mL)中,混合物在30℃下搅拌0.5小时,过滤得化合物1k。MS-ESI计算值[M+H] +222,实测值222。 1H NMR(400MHz,DMSO-d 6)δ7.90(s,1H),7.84(s,1H),4.23(q,J=7.2Hz,2H),2.61(s,3H),1.28(t,J=7.2Hz,3H)。
第九步
将化合物1k(4.00g,18.0mmol)溶于无水四氢呋喃(50mL)中。在25℃下,向反应液滴加甲基溴化镁(30.1ml,90.3mmol),滴加完毕,反应升温至25℃,搅拌15小时。反应液用饱和氯化铵溶液(100mL)淬灭,乙酸乙酯(50mL×5)萃取,合并有机相,有机相用饱和食盐水(10mL×1)洗涤,无水硫酸钠干燥,过滤,减压浓缩,粗产物经过薄层色谱层析法分离(2/1,石油醚/乙酸乙酯,Rf=0.39)得到化合物1l。MS-ESI计算值[M+H] +208,实测值208。 1H NMR(400MHz,CDCl 3)δ7.30(br s,1H),7.24(br s,1H),2.59(s,3H),1.54(s,6H)。
第十步
将化合物1l(1.00g,4.83mmol),双氧水(4.64ml,48.26mmol,含量:30%)溶于无水四氢呋喃(30mL)中。在0℃下,向反应液滴加冷的甲磺酸(3.44mL,48.26mmol)的水(10mL)溶液。反应液在0℃,搅拌1 小时。反应液用10%亚硫酸钠水溶液(15mL)淬灭,直至淀粉碘化钾试纸显示阴性。溶液用乙酸乙酯(50mL×3)萃取,合并有机相,有机相用饱和食盐水(10mL×1)洗涤,无水硫酸钠干燥,过滤,减压浓缩,粗产物经过柱层析色谱法分离(2/1,石油醚/乙酸乙酯,Rf=0.38)得到化合物1m。MS-ESI计算值[M+H] +166,实测值166。
第十一步
将化合物1m(400mg,2.42mmol)溶于无水四氢呋喃(10mL),向反应液中加入三乙胺(0.674mL,4.84mmol),特戊酰氯(350mg,4.84mmol)。反应液在0℃下搅拌1小时,反应液用水(10mL)洗涤,乙酸乙酯萃取(10mL×5),合并有机相,有机相用饱和食盐水(10mL×1)洗涤,无水硫酸钠干燥,过滤,减压浓缩,粗产物经过薄层色谱层析法分离(2/1,石油醚/乙酸乙酯,Rf=0.63)得到化合物1n。MS-ESI计算值[M+H] +250,实测值250。 1H NMR(400MHz,CD 3OD)δ7.61(s,1H),7.47(s,1H),2.34(s,3H),1.38(s,9H)。
第十二步
将化合物1n(450mg,1.81mmol)溶于三氯氧磷(8.85mL)中。反应液在100℃下搅拌1小时。将反应液降至室温,倒入饱和碳酸氢铵溶液(300mL)中。混合物用二氯甲烷萃取(50mL×3),合并有机相,有机相用饱和食盐水(20mL×1)洗涤,无水硫酸钠干燥,过滤,浓缩得到化合物1o。MS-ESI计算值[M+H] +268,实测值268。
第十三步
将化合物1o(2.00g,7.47mmol),2,4-二甲氧基苄胺(1.87g,11.21mmol),三乙胺(2.27g,22.4mmol)溶于无水四氢呋喃(30mL)中。反应液在70℃下搅拌1小时。反应液减压浓缩得到粗品化合物1p。MS-ESI计算值[M+H] +399,实测值399。
第十四步
将化合物1p(3.50g,8.78mmol)溶于甲醇(3mL)和四氢呋喃(20mL)中,向反应液中加入氢氧化钠(703mg,17.6mmol)的水(20mL)溶液。反应液在25℃下搅拌0.5小时。反应液浓缩除去有机溶剂,水相用稀盐酸水溶液(1M)调节至pH=7,混合物用二氯甲烷萃取(50mL×3),合并有机相,有机相用饱和食盐水(10mL×1)洗涤,无水硫酸钠干燥,过滤,减压浓缩,粗产物经过柱层析法分离(2/1,石油醚/乙酸乙酯,Rf=0.32)得到化合物1q。MS-ESI计算值[M+H] +315,实测值315。 1H NMR(400MHz,CD 3OD)δ7.67(s,1H),7.21(d,J=8.4Hz,1H),7.07(s,1H),6.56(d,J=2.4Hz,1H),6.47(dd,J=2.4,8.4Hz,1H),4.66(s,2H),3.90(s,3H),3.79(s,3H),2.36(s,3H)。
第十五步
将化合物1t(250mg,795μmol)溶于N,N-二甲基甲酰胺(4mL)中,然后加入化合物1q(187mg,875μmol)和氢氧化钠(63.6mg,1.59mmol),并于50℃下搅拌0.5小时。反应完成后,向反应液中加入水(50mL)稀释,用乙酸乙酯萃取(30mL×3),合并的有机相用无水硫酸钠干燥,过滤,滤液减压浓缩,经柱层析分 离(1:1,石油醚/乙酸乙酯,Rf=0.1)得到化合物1r。MS-ESI计算值[M+H] +448,实测值448。
第十六步
将化合物1r(300mg,670μmol)溶于三氟乙酸(3.0mL)中,反应液在100℃下搅拌1小时。反应完成后,将反应液浓缩,剩余物经过高效液相色谱法(盐酸体系)纯化得化合物1s的盐酸盐。MS-ESI计算值[M+H] +298,实测值298。
第十七步
将化合物1s的盐酸盐(90mg),化合物1f(72mg,241μmol)溶于无水二氧六环(2mL)中,然后加入碳酸铯(250mg,766μmol)和甲烷磺酸(2-二环己基膦)-3,6-二甲氧基-2,4,6-三异丙基-1,1-联苯)(2-氨基-1,1-联苯-2-基)钯(II)(20mg,21.9μmol),反应液在氮气保护下105℃搅拌12小时。减压浓缩反应液,经柱层析分离(10:1,二氯甲烷/甲醇,Rf=0.3)纯化得到粗品化合物。向粗品中加入甲醇和乙醇混合溶液(4/1,10mL),20℃搅拌16小时,过滤,滤饼用甲醇洗涤(2mL×2),水洗涤(2mL×2),干燥得到式(I)化合物。MS-ESI计算值[M+H] +514,实测值514。 1H NMR(400MHz,DMSO-d 6)δ10.00(s,1H),8.84(s,1H),8.64(s,1H),8.08(s,1H),7.70(s,1H),4.08(t,J=5.6Hz,2H),3.00(t,J=13.5Hz,2H),2.91-2.78(m,6H),2.47(s,3H),2.46(s,3H),2.31-2.18(m,2H),2.04-1.92(m,2H),1.91-1.78(m,2H),1.76-1.62(m,2H)。
实施例2:式(Ⅱ)化合物制备及其单晶培养
合成路线:
Figure PCTCN2022091452-appb-000015
第一步
将式(I)化合物(2g,3.89μmol)与六氟异丙醇(40mL)搅拌混匀,向溶液中加入一水合对甲苯磺酸(814.89mg,4.28mmol),反应液在40℃下搅拌3小时,将反应液滴加入异丙醇中(160mL),过滤,滤饼真空干燥得到式(Ⅱ)化合物。 1H NMR(400MHz,DMSO-d 6)δ10.02(s,1H),8.86(br s,1H),8.64(s,1H),8.11(s,1H),7.78(s,1H),7.48(d,J=8.0Hz,2H),7.10(d,J=8.0Hz,2H),4.31(br d,J=4.4Hz,2H),4.08-3.62(m,6H),2.89-2.78(m,2H),2.72-2.57(m,2H),2.51(br s,3H),2.46(s,3H),2.28(s,3H),1.95-1.97(m,2H),1.89-1.79(m,2H),1.73-1.64(m,2H)。MS-ESI计算值[M+H] +514,实测值514。
取适量式(Ⅱ)化合物在室温条件下溶解于1mL的二氯甲烷/甲醇(1:1)中,将样品溶液置于4mL半密封样品瓶中,在室温条件下缓慢挥发。第二天得到无色块状晶体,送X-ray单晶衍射测试,单晶结构解析结果如图7所示。
实施例3:式(Ⅱ)化合物A晶型的制备
控制内温20-30℃,向反应釜中依次加入乙腈(7.0L)、式(I)化合物(700.22g)和一水合对甲苯磺酸(272.25g),将反应釜内温升至45-55℃搅拌4.5小时。过滤,滤饼用乙腈(0.7L)漂洗。将所得滤饼转移至反应釜,加入乙腈(7.0L)后在45-55℃下搅拌20小时。过滤,滤饼依次用乙腈(0.7L)和叔丁基甲基醚(1.4L)漂洗后在温度不高于45℃,压力≤-0.1MPa下真空减压干燥17小时得到式(Ⅱ)化合物A晶型。其XRPD,DSC,TGA检测结果如图1、图2和图3所示。
实施例4:式(Ⅱ)化合物在不同溶剂中的晶型筛选试验
分别称取约50mg的式(Ⅱ)化合物和于不同溶剂中,在50℃下搅拌3小时,反应液冷却至室温,过滤收集并真空干燥后所得固体并进行XRPD测试,实验结果如下表10所示:
表10 式(Ⅱ)化合物在不同溶剂中的稳定性试验结果
编号 溶剂 显现 晶型
1 甲醇 悬浊液 晶型A
2 乙腈 悬浊液 晶型A
3 叔丁基甲基醚 悬浊液 晶型A
4 乙醇 悬浊液 晶型B
5 正庚烷 悬浊液 晶型B
结论:式(Ⅱ)化合物在甲醇、乙腈和叔丁基甲基醚中形成的是A晶型,在乙醇和正庚烷中形成的是B晶型。
其中B晶型的XRPD、DSC检测结果依次如图4和图5。
实施例5:式(Ⅱ)化合物A晶型的吸湿性研究
实验材料:
SMS DVS intrinsic动态气体吸附仪
实验方法:
取式(Ⅱ)化合物A晶型10~15mg置于DVS样品盘内进行测试。
实验结果:
式(Ⅱ)化合物A晶型的DVS谱图如图6所示,△W=1.179%。
实验结论:
式(Ⅱ)化合物A晶型在25℃和80%RH下的吸湿增重为1.179%,吸湿性较弱,且吸湿前后晶型未发生改变,故为稳定晶型。
实验例6:本发明化合物的A晶型固体稳定性试验研究
参考中国药典2020年版四部9001“原料药物与制剂稳定性试验指导原则”和国家食品药品监督管理局药品审评中心颁布的《化学药物(原料药和制剂)稳定性研究技术指导原则(修订)》以及ICH Q1B的规定要求,对本发明化合物的A晶型进行加速放样稳定性试验和长期放样稳定性研究。
1.长期加速放样稳定性试验:
每份样品分别装入双层LDPE袋,每层LDPE袋分别用扎扣密封,再放入铝箔袋中热封,然后放入相应条件的稳定性箱中考察。化合物的A晶型的固体稳定性试验结果见表11。
表11 本发明化合物的A晶型的固体稳定性试验结果
Figure PCTCN2022091452-appb-000016
结论:本发明化合物的A晶型在长期加速放样稳定性试验条件下具有良好的稳定性,A晶型属于稳定晶型。
生物活性测试
测试例1:体外评价本发明化合物对MNK2蛋白激酶的抑制活性
实验目的:检测化合物的MNK2蛋白激酶抑制活性
实验材料:测定缓冲溶液:8mM 3-(N-吗啉)丙磺酸,0.2mM的乙二胺四乙酸二钠,0.01%月桂醇聚氧乙烯醚,5%甘油,0.1%β-巯基乙醇,1mg牛血清蛋白
实验操作:使用Eurofins Pharma Discovery Services UK Limited的KinaseProfilerTM服务进行Mnk2蛋白激酶抑制活性测定。将含有待测化合物的系列DMSO稀释液(始于10μM,按3倍系列稀释),MNK2(h)蛋白激酶和0.33mg/mL的髓鞘碱性蛋白加入到将新鲜制备的缓冲溶液(pH=7.0)中,均匀搅拌。加入 33P-ATP(放射强度10μCi/μL)和10mM乙酸镁混合物引发反应,室温反应40分钟,加入磷酸稀释到0.5%的浓度停止反应。10μL的反应液使用P30过滤机(P30 filtermat)过滤,用0.425%磷酸洗涤四次,每次4分钟,甲醇洗涤一次,干燥后使用Filter-Binding方法检测放射强度。
化合物的蛋白激酶抑制活性表达为相对空白底物(单纯DMSO)残存的蛋白激酶活性的百分比。利用Prism4软件包(GraphPad)计算IC 50值和曲线,具体信息如下表12所示。
表12 本发明化合物对MNK2蛋白激酶抑制活性的IC 50
化合物编号 对MNK2的IC 50(nM)
式(I)化合物 17
实验结论:本发明式(I)化合物表现出优异的对MNK2蛋白激酶的抑制活性。
测试例2:体外评价本发明化合物对eIF4E磷酸化的抑制活性
实验目的:检测化合物对HCT116细胞株的eIF4E磷酸化抑制IC 50值。
实验材料:HCT116细胞(ATCC),RPMl1640培养基(Life technology),胎牛血清(Hyclone),双抗(青霉素、链霉素)(Millipore),磷酸盐缓冲液(Corning),384孔细胞板(PerkinElmer),
Figure PCTCN2022091452-appb-000017
p-eIF4E(Ser209)Assay Kit(PerkinElmer)。
实验操作:将HCT116细胞消化后制成细胞悬液,铺板于96孔板中。然后将细胞板放到培养箱中培养过夜。将化合物稀释到相应浓度加入到细胞培养板中,继续培养3小时。随后用lysis buffer将细胞裂解,并将裂解液转移到384孔板中。按照试剂盒说明书新鲜配制混合受体,并加入384孔板中,室温孵育1小时,按照试剂盒说明书新鲜配制混合供体,并加入到384孔板中,室温孵育1小时,在EnVision上用标准AlphaLISA程序读取信号,用Graphpad prism进行曲线拟合并计算IC 50,具体信息如下表13所示。
表13 本发明化合物对eIF4E磷酸化抑制活性的IC 50
化合物编号 对HCT116细胞株p-eIF4E的IC 50(nM)
式(I)化合物 8.6
实验结论:本发明式(I)化合物表现出优异的对eIF4E磷酸化抑制活性。
测试例3:本发明化合物在CT-26小鼠移植瘤中的体内药效实验
实验目的:测试化合物在CT-26小鼠移植瘤中的体内药效实验
实验材料:CT-26细胞,RMPI-1640培养基,含10%胎牛血清,小鼠(雌性,上海必凯实验动物有限公司)
实验操作:CT-26细胞培养于RMPI-1640培养基,含10%胎牛血清,在5%CO 2的37℃培养箱中进行培养。经传代生长至合适浓度且肿瘤细胞在对数生长期进行收集肿瘤细胞,计数重悬于DPBS(磷酸盐缓冲溶液),调整细胞悬液浓度至3×10 6/mL用于接种。
小鼠结肠癌移植瘤的建立:收集细胞,调整浓度为3×10 6细胞/毫升(用DPBS重悬成细胞悬液),在无菌条件下,于小鼠的右侧背部皮下注射0.1mL的肿瘤细胞,每只小鼠接种的细胞数为3×10 5。待肿瘤生长至一定大小后用数显游标卡尺来测定肿瘤的长(a)和宽(b),计算肿瘤体积,肿瘤体积(Tumor volume, TV)的计算公式为:TV=a×b 2/2。
CT-26肿瘤细胞接种:接种当天按照动物体重进行分组给药,每组8只动物,接种当天视为D0。待肿瘤大小长至60mm 3左右按照肿瘤大小及体重对抗体组进行分组。实验期间每周三次测定动物的体重和肿瘤大小,同时每天观察和记录动物的临床症状,每次给药均参考最近一次称量的动物体重。测定化合物在30mg/Kg QD(一天一次),90mg/Kg QD(一天一次),200mg/Kg QD(一天一次)的剂量下,给药21天,对小鼠结肠癌移植瘤抑制效果,具体信息如下表14所示。
抗肿瘤活性的评价指标为相对肿瘤增殖率T/C(%),T/C(%)>40%为无效,T/C(%)≤40%,并经统计学处理P<0.05为有效,T/C(%)的计算公式为:T/C(%)=(T RTV/C RTV)×100%。T RTV为治疗组的相对肿瘤体积,C RTV为阴性对照组的相对肿瘤体积;TGI(%) a=(1-处理组给药结束时平均瘤体积/溶剂对照组治疗结束时平均瘤体积)×100%。
表14 本发明化合物在CT-26移植瘤模型中的抗肿瘤体内药效
化合物 给药剂量 TGI% T/C%
式(I)化合物 30mg/Kg,QD 63.57 36.43
式(I)化合物 90mg/Kg,QD 68.89 31.11
式(I)化合物 200mg/Kg,QD 68.51 33.31
实验结论:本发明式(I)化合物对小鼠结肠癌移植瘤抑制效果显著。

Claims (20)

  1. 式(Ⅱ)化合物,
    Figure PCTCN2022091452-appb-100001
  2. 式(Ⅱ)化合物的A晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.78±0.20°、11.38±0.20°和20.58±0.20°;
    Figure PCTCN2022091452-appb-100002
  3. 根据权利要求2所述的A晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.78±0.20°、9.44±0.20°、11.38±0.20°、19.84±0.20°、20.58±0.20°、21.56±0.20°、22.86±0.20°和24.82±0.20°。
  4. 根据权利要求3所述的A晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.58±0.20°、7.78±0.20°、9.44±0.20°、11.38±0.20°、14.38±0.20°、18.66±0.20°、19.84±0.20°、20.58±0.20°、21.56±0.20°、22.86±0.20°、23.54±0.20°和24.82±0.20°。
  5. 根据权利要求4所述的A晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.78°、6.58°、7.78°、9.44°、11.38°、13.48°、14.38°、14.80°、16.42°、17.00°、17.32°、18.34°、18.66°、19.08°、19.60°、19.84°、20.28°、20.58°、21.56°、21.84°、22.52°、22.86°、23.26°、23.54°、24.46°、24.82°、25.50°、26.04°、26.58°、27.42°、27.82°、28.07°、28.42°、29.08°、29.66°、30.08°、31.20°、31.42°、38.22°和39.04°。
  6. 根据权利要求5所述的A晶型,其XRPD图谱基本如图1所示。
  7. 根据权利要求2-6任意一项所述的A晶型,其差示扫描量热曲线在287.17±3℃具有吸热峰。
  8. 根据权利要求7所述的A晶型,其DSC图谱如图2所示。
  9. 根据权利要求2-6任意一项所述的A晶型,其热重分析曲线在200.0±3℃时失重达0.075%。
  10. 根据权利要求9所述的A晶型,其TGA图谱如图3所示。
  11. 式(Ⅱ)化合物A晶型的制备方法,步骤包含如下:
    (a)将式(Ⅱ)化合物加入溶剂中使其成悬浊液;
    (b)悬浊液在40~55℃下搅拌2~25小时;
    (c)过滤后在30~45℃下真空干燥10~24小时;
    其中,所述溶剂选自甲醇、乙腈和叔丁基甲基醚。
  12. 式(Ⅱ)化合物的B晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.55±0.20°、15.13±0.20°和19.82±0.20°;
    Figure PCTCN2022091452-appb-100003
  13. 根据权利要求12所述的B晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.89±0.20°、7.55±0.20°、9.50±0.20°、11.35±0.20°、12.72±0.20°、15.13±0.20°、19.82±0.20°和26.63±0.20°。
  14. 根据权利要求13所述的B晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.89±0.20°、7.55±0.20°、9.50±0.20°、11.35±0.20°、12.24±0.20°、12.72±0.20°、15.13±0.20°、18.94±0.20°、19.82±0.20°、23.25±0.20°、26.63±0.20°和27.27±0.20°。
  15. 根据权利要求14所述的B晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.98°、6.89°、7.55°、8.46°、9.50°、10.12°、11.35°、12.24°、12.72°、14.05°、15.13°、15.65°、16.20°、17.79°、18.94°、19.82°、20.76°、21.61°、23.25°、23.87°、26.09°、26.63°、27.27°、28.45°、29.12°、30.95°、32.32°、34.62°和38.41°。
  16. 根据权利要求15所述的B晶型,其XRPD图谱基本如图4所示。
  17. 根据权利要求12-16任意一项所述的B晶型,其差示扫描量热曲线在300.0±3℃处具有吸热峰。
  18. 根据权利要求17所述的B晶型,其DSC图谱如图5所示。
  19. 权利要求1所述的式(Ⅱ)化合物、权利要求2-10任意一项所述A晶型、权利要求12-18任意一项所述B晶型以及权利要求11的方法制备得到的晶型在制备MNK1/2抑制剂药物中的应用。
  20. 权利要求1所述的式(Ⅱ)化合物、权利要求2-10任意一项所述A晶型、权利要求12-18任意一项所述B晶型以及权利要求11的方法制备得到的晶型在制备治疗结直肠癌药物中的应用。
PCT/CN2022/091452 2021-05-08 2022-05-07 吡咯并三嗪类化合物的盐型、其晶型及其制备方法 WO2022237682A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN202280032805.7A CN117355528B (zh) 2021-05-08 2022-05-07 吡咯并三嗪类化合物的盐型、其晶型及其制备方法
EP22806648.6A EP4335850A4 (en) 2021-05-08 2022-05-07 SALT FORM OF A PYRROLOTRIAZINE COMPOUND, CRYSTAL FORM THEREOF AND METHOD OF PREPARING THE SAME
KR1020237041463A KR20240004828A (ko) 2021-05-08 2022-05-07 피롤로트리아진 화합물의 염 형태, 이의 결정형 및 이의 제조 방법
BR112023023189A BR112023023189A2 (pt) 2021-05-08 2022-05-07 Composto, formas cristalinas a e b de um composto, método de preparação para a forma cristalina a de um composto, e, uso do composto, das formas cristalinas a e b e de formas cristalinas preparadas pelo método
AU2022271540A AU2022271540A1 (en) 2021-05-08 2022-05-07 Salt form of pyrrolotriazine compound, crystal form thereof, and preparation method therefor
US18/558,731 US20240254144A1 (en) 2021-05-08 2022-05-07 Salt form of pyrrolotriazine compound, crystal form thereof, and preparation method therefor
JP2023568714A JP2024516885A (ja) 2021-05-08 2022-05-07 ピロロトリアジン系化合物の塩形、その結晶形及びその製造方法
ZA2023/10368A ZA202310368B (en) 2021-05-08 2023-11-07 Salt form of pyrrolotriazine compound, crystal form thereof, and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110501179.9 2021-05-08
CN202110501179 2021-05-08

Publications (1)

Publication Number Publication Date
WO2022237682A1 true WO2022237682A1 (zh) 2022-11-17

Family

ID=84027979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/091452 WO2022237682A1 (zh) 2021-05-08 2022-05-07 吡咯并三嗪类化合物的盐型、其晶型及其制备方法

Country Status (9)

Country Link
US (1) US20240254144A1 (zh)
EP (1) EP4335850A4 (zh)
JP (1) JP2024516885A (zh)
KR (1) KR20240004828A (zh)
CN (1) CN117355528B (zh)
AU (1) AU2022271540A1 (zh)
BR (1) BR112023023189A2 (zh)
WO (1) WO2022237682A1 (zh)
ZA (1) ZA202310368B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015200481A1 (en) 2014-06-25 2015-12-30 Effector Therapeutics, Inc. Mnk inhibitors and methods related thereto
WO2016172010A1 (en) 2015-04-20 2016-10-27 Effector Therapeutics, Inc. Inhibitors of immune checkpoint modulators for use in treating cancer and infections
WO2017075412A1 (en) 2015-10-29 2017-05-04 Effector Therapeutics, Inc. Pyrrolo-, pyrazolo-, imidazo-pyrimidine and pyridine compounds that inhibit mnk1 and mnk2
WO2017075394A1 (en) 2015-10-29 2017-05-04 Effector Therapeutics, Inc. Isoindoline, azaisoindoline, dihydroindenone and dihydroazaindenone inhibitors of mnk1 and mnk2
WO2017087808A1 (en) 2015-11-20 2017-05-26 Effector Therapeutics, Inc. Heterocyclic compounds that inhibit the kinase activity of mnk useful for treating various cancers
WO2017117052A1 (en) 2015-12-31 2017-07-06 Effector Therapeutics, Inc. Mnk biomarkers and uses thereof
WO2018134335A1 (en) * 2017-01-20 2018-07-26 Bayer Pharma Aktiengesellschaft Substituted imidazopyridinpyrimidines
WO2018152117A1 (en) 2017-02-14 2018-08-23 Effector Therapeutics, Inc. Piperidine-substituted mnk inhibitors and methods related thereto
WO2018218038A1 (en) 2017-05-24 2018-11-29 Effector Therapeutics, Inc. Methods and compositions for cellular immunotherapy
WO2021098691A1 (zh) * 2019-11-18 2021-05-27 南京明德新药研发有限公司 作为mnk抑制剂的吡咯并三嗪类化合物

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201831479A (zh) * 2017-01-20 2018-09-01 德商拜耳製藥公司 經取代二氫咪唑并吡啶二酮
EP3845532B1 (en) * 2018-09-30 2022-12-21 Medshine Discovery Inc. Quinolino-pyrrolidin-2-one derivative and application thereof
WO2020238802A1 (zh) * 2019-05-24 2020-12-03 南京明德新药研发有限公司 一种c-MET/AXL抑制剂的晶型

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015200481A1 (en) 2014-06-25 2015-12-30 Effector Therapeutics, Inc. Mnk inhibitors and methods related thereto
CN106795162A (zh) * 2014-06-25 2017-05-31 效应治疗股份有限公司 Mnk抑制剂及其相关方法
WO2016172010A1 (en) 2015-04-20 2016-10-27 Effector Therapeutics, Inc. Inhibitors of immune checkpoint modulators for use in treating cancer and infections
WO2017075412A1 (en) 2015-10-29 2017-05-04 Effector Therapeutics, Inc. Pyrrolo-, pyrazolo-, imidazo-pyrimidine and pyridine compounds that inhibit mnk1 and mnk2
WO2017075394A1 (en) 2015-10-29 2017-05-04 Effector Therapeutics, Inc. Isoindoline, azaisoindoline, dihydroindenone and dihydroazaindenone inhibitors of mnk1 and mnk2
WO2017087808A1 (en) 2015-11-20 2017-05-26 Effector Therapeutics, Inc. Heterocyclic compounds that inhibit the kinase activity of mnk useful for treating various cancers
WO2017117052A1 (en) 2015-12-31 2017-07-06 Effector Therapeutics, Inc. Mnk biomarkers and uses thereof
WO2018134335A1 (en) * 2017-01-20 2018-07-26 Bayer Pharma Aktiengesellschaft Substituted imidazopyridinpyrimidines
WO2018152117A1 (en) 2017-02-14 2018-08-23 Effector Therapeutics, Inc. Piperidine-substituted mnk inhibitors and methods related thereto
WO2018218038A1 (en) 2017-05-24 2018-11-29 Effector Therapeutics, Inc. Methods and compositions for cellular immunotherapy
WO2021098691A1 (zh) * 2019-11-18 2021-05-27 南京明德新药研发有限公司 作为mnk抑制剂的吡咯并三嗪类化合物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4335850A4

Also Published As

Publication number Publication date
JP2024516885A (ja) 2024-04-17
CN117355528A (zh) 2024-01-05
BR112023023189A2 (pt) 2024-01-30
US20240254144A1 (en) 2024-08-01
CN117355528B (zh) 2024-06-21
EP4335850A1 (en) 2024-03-13
EP4335850A4 (en) 2024-09-25
AU2022271540A1 (en) 2023-11-16
ZA202310368B (en) 2024-05-30
KR20240004828A (ko) 2024-01-11

Similar Documents

Publication Publication Date Title
WO2020015745A1 (zh) 一种lsd1抑制剂的盐及其晶型
CA3147322C (en) Crystalline form of atr inhibitor and use thereof
WO2021023194A1 (zh) 吡嗪-2(1h)-酮类化合物的c晶型和e晶型及其制备方法
WO2022237682A1 (zh) 吡咯并三嗪类化合物的盐型、其晶型及其制备方法
CN117797146A (zh) Sarm1酶活性抑制剂及其在神经退行性疾病中的应用
EP3896063A1 (en) Salt of syk inhibitor and crystalline form thereof
CN117247382A (zh) 吡啶并嘧啶酮化合物的晶型
AU2019260240A1 (en) Crystal form of c-MET inhibitor and salt form thereof and preparation method therefor
WO2022048545A1 (zh) 一种吡啶并嘧啶化合物的晶型
WO2020192637A1 (zh) 固体形式的brd4抑制剂化合物及其制备方法与应用
WO2020228729A1 (zh) 喹唑啉酮类化合物的晶型及其制备方法
EA047813B1 (ru) Солевая форма пирролотриазинового соединения, ее кристаллическая форма и способ ее получения
WO2022237808A1 (zh) 吡咯并嘧啶类化合物的晶型及其制备方法
US20230365596A1 (en) Crystal forms of pyridopyrazole compounds and preparation method therefor
WO2020221358A1 (zh) Wee1抑制剂化合物的晶型及其应用
US11708357B2 (en) Crystal form of pyrrolidinyl urea derivative and application thereof
CN114096541B (zh) 一种p53-MDM2抑制剂的晶型及其制备方法
RU2810214C2 (ru) Кристалл диарилтиогидантоинового соединения
WO2022048685A1 (zh) 苯并四氢呋喃肟类化合物的晶型及其制备方法
WO2020224585A1 (zh) 一种mTORC1/2双激酶活性抑制剂的盐型、晶型及其制备方法
WO2023072263A1 (zh) 5-取代的吡啶-2(1h)-酮类化合物及其应用
WO2022242688A1 (zh) 一种含氰基取代的大环类化合物的晶型及其制备方法
WO2023185869A1 (zh) 一种吡咯并杂环类衍生物的富马酸盐的晶型及其制备方法
CN111825690B (zh) 一种phd抑制剂的新晶型及其制备方法
WO2023104107A1 (zh) 3,4-二氢异喹啉类化合物的盐及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22806648

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022271540

Country of ref document: AU

Ref document number: AU2022271540

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 202280032805.7

Country of ref document: CN

Ref document number: 18558731

Country of ref document: US

Ref document number: 202392778

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: 2023568714

Country of ref document: JP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023023189

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2022271540

Country of ref document: AU

Date of ref document: 20220507

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237041463

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022806648

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022806648

Country of ref document: EP

Effective date: 20231208

WWE Wipo information: entry into national phase

Ref document number: 11202308275Y

Country of ref document: SG

ENP Entry into the national phase

Ref document number: 112023023189

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20231106