WO2022236724A1 - 一种具有加强条的风机叶片及其制造方法 - Google Patents
一种具有加强条的风机叶片及其制造方法 Download PDFInfo
- Publication number
- WO2022236724A1 WO2022236724A1 PCT/CN2021/093217 CN2021093217W WO2022236724A1 WO 2022236724 A1 WO2022236724 A1 WO 2022236724A1 CN 2021093217 W CN2021093217 W CN 2021093217W WO 2022236724 A1 WO2022236724 A1 WO 2022236724A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fan blade
- reinforcing
- shell
- core material
- strips
- Prior art date
Links
- 230000003014 reinforcing effect Effects 0.000 title claims abstract description 87
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 20
- 239000011162 core material Substances 0.000 claims abstract description 47
- 239000004744 fabric Substances 0.000 claims abstract description 17
- 230000002787 reinforcement Effects 0.000 claims description 63
- 239000000463 material Substances 0.000 claims description 29
- 238000000034 method Methods 0.000 claims description 29
- 239000003365 glass fiber Substances 0.000 claims description 13
- 239000000835 fiber Substances 0.000 claims description 4
- 230000008569 process Effects 0.000 description 14
- 238000010586 diagram Methods 0.000 description 11
- 206010040844 Skin exfoliation Diseases 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000002657 fibrous material Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000006260 foam Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 240000007182 Ochroma pyramidale Species 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000003351 stiffener Substances 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D1/00—Wind motors with rotation axis substantially parallel to the air flow entering the rotor
- F03D1/06—Rotors
- F03D1/065—Rotors characterised by their construction elements
- F03D1/0675—Rotors characterised by their construction elements of the blades
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/30—Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
- B29C70/36—Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and impregnating by casting, e.g. vacuum casting
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the invention relates to the technical field of wind power, in particular to a fan blade with reinforcing strips and a manufacturing method thereof.
- a wind generator includes a tower, a nacelle rotatably connected to the tower and supporting a hub.
- Two or more fan blades are arranged on the hub, wherein the fan blades drive the rotor arranged in the hub to rotate around the axis under the action of wind force, wherein the rotation of the rotor of the generator relative to the stator will generate electric energy.
- the fan blade is a key component in the fan.
- the manufacturing cost of fan blades is high due to various factors such as high-cost materials and complex structures, and the manufacturing cost of fan blades often determines the cost competitiveness of a fan.
- the key components are main girder, trailing edge girder, web and shell.
- the shell is a sandwich structure composed of core material and upper and lower skins, which accounts for the largest proportion of the fan blade area, and the core material in the sandwich structure is one of the key materials of the fan blade. Since the core material is the most expensive material in fan blades that needs to be used in large quantities and per unit weight, in order to reduce the total price of fan blades, it is necessary to reduce the use of core materials as much as possible on the basis of ensuring the performance of fan blades.
- Patent US 2009/0140527 A1 discloses a rib structure, which is fixed inside the fan blade shell after the fan blade is formed.
- the shell formed by the rib structure and the thin core material can achieve the same effect as the traditional thick core material shell. resistance to buckling.
- the reinforcing ribs formed by this method protrude from the original shell surface, are not in the same continuous structure as the shell, and cannot completely fit the surface of the fan blades. There is a greater risk of peeling off, and the longer the rib length, the more difficult it will be when positioning. The greater the influence of rigid non-conformity, the more difficult it is to arrange in the optimal position.
- Patent US20180345603 discloses a manufacturing method of fan blades, which interleaves multiple dry plies and pre-impregnated plies to form a hybrid shell structure of the fan blade, thereby improving the buckling resistance of the fan blade shell.
- the process of this method is relatively complicated, and it needs to meet the double standards of fabric infusion and prepreg curing at the same time, resulting in an increase in processing costs.
- Patent CN 203515969 U achieves the purpose of improving the buckling resistance of the core material itself by improving the way the core material is slotted. Comparatively speaking, the effect of this method in terms of cost reduction is not significant.
- the present invention provides a fan blade with reinforcing strips, including:
- One or more reinforcing strips which are arranged on the upper side, lower side or both sides of the fan blade and are poured together with the core material through the pouring material, wherein any one of the reinforcing strips includes each other in the thickness direction of the core material
- Multi-layer sheets arranged one above the other, and at least two layers of the multi-layer sheets are arranged staggered from each other in the chord direction and/or span direction of the fan blade.
- the material of the reinforcing strip is dry fiber.
- the material of the reinforcing bar is glass fiber biaxial fabric and/or glass fiber triaxial fabric and/or glass fiber uniaxial fabric.
- the sizes of the sheets of the reinforcement strips are the same or different.
- the reinforcing strip is poured and solidified together with the core material.
- the arrangement positions of the reinforcement strips are determined through finite element analysis.
- Another aspect of the present invention provides the manufacturing method of described fan blade, comprising:
- the initial buckling resistance performance of each part of the fan blade is determined, and according to the initial buckling resistance performance, the position and thickness of the core material of the shell are preliminarily determined, and the layout method of adding reinforcement strips is correspondingly determined to meet the The purpose of the optimized shell to have the same buckling performance as the initial design;
- the laying method of the reinforcing strip includes: the laying position, the laying angle, the number of layers of the reinforcing strip sheets, and the length and width of each layer of sheets.
- the specified value is determined according to the industry certification standard DNVGL-ST-0376 ROTOR BLADES FOR WIND TURBINES, EDITION DECEMBER 2015.
- the invention provides a fan blade with reinforcing strips and its manufacturing method, which utilizes more cheap glass fiber materials to form reinforcing strips to replace expensive shell core materials and reduce the use of core materials for blades.
- the overall cost of the blade is reduced, and at the same time, the shell with thin core material and stiffener can achieve the same buckling resistance as the original thick core material shell.
- the present invention is based on the following insight of the inventor: since the core material is the most expensive material per unit weight in the fan blade, in order to reduce the total price of the fan blade, it can be considered to replace the core material with a more cost-effective material to achieve the same level of functionality. To achieve this goal, the inventors optimized the topology of the blades and arranged them more reasonably to make the best use of materials.
- a reinforcing bar structure is added to the fan blades.
- the inventor chose to use dry fiber materials such as glass fiber commonly used in blades to make reinforcement strips.
- the use of such raw materials is low in cost and does not need to meet the harsh environmental and process requirements of prepreg molding. , without additional processing costs.
- the inventor arranges the sheets of reinforcing strips together with the original shell cloth layer on one or both sides (such as the upper side, the lower side, and possible sides) in the thickness direction of the core material, and combines them with the shell core material and Other cloth layers are poured and solidified together, while in the prior art, the reinforcement strips are made separately and attached to the blade after the blade is formed.
- the present invention only increases the Some additional layering processes are consistent with the forming process of the blade itself, without adding additional bonding processes, which are simple and easy, and do not add additional process types and material types.
- the inventors have also found that the reinforcing bar of the present invention has the following unexpected effects: First, because the reinforcing bar can be laid and poured together with other materials of the blade, the parameters of the reinforcing bar, such as position , ply number, ply angle, and ply width can be well matched with other materials, thereby ensuring that it is arranged at the most effective part for improving the buckling performance of the structure; for example, according to the analysis, it can be along the inner and outer sides of the core material thickness At the same time, reinforcing strips are arranged to ensure the symmetry of the sandwich structure.
- reinforcing strips on only one side along the thickness of the core material, thereby improving the laying efficiency; Therefore, the shape of the blade will not cause a sudden change in the geometry of the blade due to the addition of the reinforcement strip, so that the reinforcement strip will not bulge or even fall off; again, the reinforcement strip is made of the same dry material as the blade itself. Fiber, etc., so that it is not limited by the curved surface of the airfoil, and the rigidity is good. Compared with the pre-cured and formed reinforcing bar structure, its own rigidity is smaller, which greatly reduces the risk of peeling off the reinforcing bar.
- Fig. 1 shows the schematic diagram of the applied wind generator of the present invention
- Fig. 2 shows a schematic side view of a fan blade with reinforcing bars according to an embodiment of the present invention
- Fig. 3 shows a schematic cross-sectional view of a fan blade with reinforcing bars according to an embodiment of the present invention
- Fig. 4 shows the key flow diagram of the design and manufacture of a kind of fan blade with reinforcing bar of manufacturing an embodiment of the present invention
- Fig. 5 shows a schematic diagram of the process of manufacturing a fan blade with reinforcing strips according to an embodiment of the present invention
- Fig. 6a shows a two-dimensional schematic diagram of the arrangement of reinforcing bars of a fan blade with reinforcing bars according to an embodiment of the present invention
- Fig. 6b shows a three-dimensional schematic diagram of the arrangement of reinforcement strips of a fan blade with reinforcement strips according to an embodiment of the present invention
- Fig. 7a shows a two-dimensional schematic diagram of the arrangement of reinforcement strips of a fan blade with reinforcement strips according to another embodiment of the present invention.
- Fig. 7b shows a three-dimensional schematic diagram of an arrangement of reinforcement strips of a fan blade with reinforcement strips according to another embodiment of the present invention.
- the invention provides a fan blade with a reinforcing strip, which uses a glass fiber material to form the reinforcing strip.
- the reinforcing bar is integrally formed with the casing of the fan blade.
- the forming method of the reinforcing strip is based on the inventor’s insight as follows: in the prior art, although some fan blades have added reinforcing strip structures, these reinforcing strips are all solidified in advance and attached to the In the blade, on the one hand, an additional bonding process is added, and a new type of material is required, which increases the processing cost; If it fits the surface of the fan blade completely, there will be a greater risk of peeling off, and the longer the length of the rib, the greater the impact of rigidity and non-conformity during positioning, and it cannot be arranged in the optimal position.
- the inventor found that if the reinforcing strip is made of the same material as the fan blade shell, the reinforcing strip can be made using the same process as the blade itself, and the reinforcing strip and the blade itself can be poured and solidified together. Significantly reduce process types and material types while avoiding the risk of peeling off. In addition, this type of material has low rigidity and good conformability, and can be seamlessly fitted with the three-dimensional curved surface of the shell, and is suitable for various airfoil curved surfaces.
- FIG. 1 shows a schematic diagram of a wind power generator 200 to which the present invention is applied.
- the wind power generator 200 shown in FIG. 1 includes a tower 201 , a nacelle 202 connected to the tower 201 and supporting a hub 203 .
- Two or more fan blades 204 are arranged on the hub 203, wherein the fan blades 204 drive the rotor (not shown) arranged in the hub 203 to rotate around the axis (not shown) under the wind force, wherein the generator The rotation of the rotor relative to the stator generates electrical energy.
- Fig. 2 and Fig. 3 respectively show a side view and a schematic cross-sectional view of a fan blade with reinforcing strips according to an embodiment of the present invention.
- a fan blade with reinforcing bars is provided with one or more reinforcing bars 101 of different sizes and lengths on the housing, and the reinforcing bars 101 can be arranged on the windward side shell of the fan blade.
- the windward shell refers to the side facing the wind direction during the rotation of the fan blades
- the leeward shell refers to the side facing away from the wind direction during the rotation of the fan blades.
- the middle part of the windward side shell 121 and the middle part of the leeward side shell 122 are provided with a blade main beam 123 , meanwhile, the middle part is also provided with a blade auxiliary beam 124 , and the trailing edge is provided with a blade trailing edge beam. 125, wherein the blade main beam 123 is connected by the blade leading edge web 126, and the blade auxiliary beam 124 is connected by the blade trailing edge web 127.
- the blade main beam 123 is connected by the blade leading edge web 126
- the blade auxiliary beam 124 is connected by the blade trailing edge web 127.
- the reinforcing strips 101 are arranged on both the inside and outside of the casing of the fan blade, wherein, on the front, middle, and rear casings of the windward side and the leeward side, Each arrangement has a set of reinforcing bars.
- the reinforcing strips may also be arranged only on the inside or outside of the casing of the fan blade, and as required at the leading edge and/or middle and/or One or more reinforcement bars are arranged on the rear edge shell.
- the reinforcing bar 101 can start and end at any position along the span of the blade, and its position, number of cloth layers, cloth layer angle, and cloth layer width can be flexibly designed.
- Any of the reinforcing strips includes multi-layer sheets arranged on top of each other in the thickness direction of the core material, and at least two layers of the multi-layer sheets are staggered from each other in the chord direction and/or span direction of the fan blade Arranged to form staggered layers, the size and/or shape of each layer of sheets constituting a set of reinforcing strips can be the same or different, and the number of layers of sheets of reinforcing strips at different positions can also be the same or different.
- the reinforcement bar is made of dry fiber materials commonly used in fan blade materials, such as glass fiber biaxial fabric, glass fiber triaxial fabric, and glass fiber uniaxial fabric.
- the reinforcing bar is poured and solidified together with the core material of the shell of the fan blade and other cloth layers. After curing, the upper and lower panels of the sandwich structure obtained by the partial part of the fan blade with the reinforcing bar will be thicker than other parts, so , the core material can be replaced by reinforcing strips to achieve the same buckling resistance.
- the core material of fan blades is usually composed of light materials such as Balsa wood, PVC foam or PET foam, and the unit price is much higher than that of dry fiber materials used in reinforcing bars.
- the reinforcement bar made of material can increase the buckling resistance of the designated part of the fan blade, which can effectively reduce the use of core materials, thereby achieving the purpose of reducing the total cost of the fan blade.
- the specific arrangement position of the reinforcement strips, the number of layers of sheets and the parameters of each layer of sheets can be determined through finite element analysis.
- Fig. 4 shows a schematic diagram of the key process flow of the design and manufacture of a fan blade with reinforcing strips according to an embodiment of the present invention.
- the manufacturing method of the fan blade with reinforcing strips includes:
- the way of laying out the reinforcement strips is preliminarily determined.
- the initial buckling performance of each part of the fan blade without reinforcement strips is analyzed, and according to the initial buckling performance, the position and thickness of the shell core material thinning are preliminarily determined, and the corresponding reinforcement strips are added
- the buckling factor of the lowest part of the fan blade should be greater than 1.965, therefore, in one embodiment of the present invention, the preliminary determination of the thinning position and thickness of the core material of the shell, and the layout of the corresponding increase in reinforcement include: when the buckling resistance performance margin is large, that is, the buckling factor is large Thinning the core material of the shell at the position of 1.965, and according to the buckling factor after thinning, increase the reinforcement bar accordingly, specifically, when the core material of the shell is thin
- step 402 the arrangement manner of the reinforcing bars is adjusted.
- the anti-buckling performance of each part of the fan blade after adding reinforcement strips is obtained by analysis:
- the adjustment of the layout of the reinforcement strips Including: adjusting the thinning position and thickness of the shell core material and/or increasing the laying position and laying angle of the reinforcing strip, as well as the number of layers of the reinforcing strip and the length and width of each layer of sheet; and
- the term "meets the requirements” means that the buckling resistance performance of the fan blade after the reinforcement bar is added meets the requirements.
- FIG. 5 shows a schematic diagram of the process of manufacturing a fan blade with reinforcement strips according to an embodiment of the present invention.
- Figure 5 shows, for example, the laying sequence from bottom to top, other laying sequences are also conceivable.
- the laying of reinforcement bars and shell structures includes:
- the casing outer reinforcement strip 1011 on the designated part of the main mold 001 of the fan blade, lay the casing outer reinforcement strip 1011, wherein the casing outer reinforcement strip 1011 includes multi-layer sheets, and each layer of sheet is along the chord or span direction of the fan blade. Staggered layers are formed, that is, the layers of sheets are staggered from each other in the chord or span direction.
- the number of layers of sheets of different reinforcement strips may be the same or different, and the size and/or shape of each layer of sheets may also be the same or different. It should be understood that if the arrangement of reinforcement strips determined in step 402 does not include If reinforcement strips are laid on the outside of the shell, this step should be omitted;
- the original shell structure 102 is laid, and the original shell structure 102 covers the outer reinforcement bar 1011 of the shell, wherein the original shell structure 102 includes a core material and upper and lower cover skin, etc., the thickness of the core material can be reduced according to the finite element analysis results at the place where the reinforcing strip is laid;
- the shell inner reinforcing bar 1012 wherein the shell inner reinforcing bar 1012 includes multi-layer sheets, and each layer of sheets is along the chord direction of the fan blade. Staggered layers are formed in the spanwise direction, the number of layers of sheets of different reinforcement strips may be the same or different, and the size and/or shape of each layer of sheets may be the same or different. It should be understood that if the reinforcement strips determined in step 402 If the laying method does not include the laying of reinforcing bars inside the shell, this step shall be omitted; and
- step 404 the fan blade is infused and cured.
- the shell outer reinforcing bar 1011 , the original shell structure 102 and the shell inner reinforcing bar 1012 are poured and solidified together to complete the manufacture of the fan blade.
- 6a-6b and 7a-7b respectively show two-dimensional and three-dimensional schematic diagrams of fan blades with reinforcing strips with two different airfoil curved surfaces manufactured by the above-mentioned manufacturing method.
- the reinforcing strips 101 are all arranged outside the casing of the fan blade, and there is a row of reinforcement strips 101 arranged on the front, middle, and rear edge casings of the windward side and the leeward side, wherein, The length of some reinforcement strips is shorter than the length of the fan blades, and is not completely parallel to the span direction of the blades, and the width of each reinforcement strip and the number of sheet layers are also different.
- each reinforcing bar can start and end at any position along the span of the blade, and have different widths and sheet layers.
- the buckling resistance of the fan blade designed and manufactured by the method in the embodiment of the present invention is basically the same as that of the original fan blade structure, or even better, but the cost of raw materials is significantly reduced.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Composite Materials (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Wind Motors (AREA)
Abstract
一种具有加强条的风机叶片及其制造方法,该风机叶片包括多组加强条(101),加强条布置于风机叶片(204)的芯材厚度方向的上侧、下侧或双侧,且包括多层片材,且各层片材沿风机叶片(204)的弦向和展向形成错层。该加强条(101)与风机叶片(204)的芯材及其它布层一同灌注固化。这种具有加强条的风机叶片及其制造方法减少了叶片的芯材使用量,降低叶片总成本,同时,采用薄芯材和加强条的壳体与原始厚芯材壳体能够达到相同的抗屈曲能力。
Description
本发明涉及风电技术领域,特别涉及一种具有加强条的风机叶片及其制造方法。
风力发电机包括塔架、可旋转地连接到塔架并且支承轮毂的机舱。在轮毂上布置有两个或更多个风机叶片,其中风机叶片在风力作用下带动布置在轮毂中的转子绕轴线旋转,其中发电机的转子相对于定子的旋转将生成电能。可以看出,风机叶片是风机中的关键部件。目前,风机叶片的制造成本因高成本的材料、复杂的结构等多种因素而较高,而风机叶片的制造成本往往决定了一款风机的成本竞争性。
在风机叶片结构中,关键部件有主梁、尾缘梁、腹板和壳体。其中,壳体是由芯材和上下蒙皮组成的夹心结构,其占风机叶片面积的比例最大,而夹心结构中的芯材材料是风机叶片的关键材料之一。由于芯材是风机叶片中需大量应用且单位重量下最贵的材料,因此,为了使风机叶片总价下降,需要在保证风机叶片性能的基础上,尽可能地减少芯材的使用。
专利US 2009/0140527 A1公开了一种加强筋结构,其在风机叶片成型后固定于风机叶片壳体的内部,所述加强筋结构配合薄芯材形成的壳体可以达到与传统厚芯材壳体相同的抗屈曲能力。但是这种方法形成的加强筋突出于原本壳体型面,与壳体不是同一个连续结构,且无法完全贴合风机叶片表面,存在较大的剥离脱落风险,并且加强筋长度越长,定位时受到刚性不随型的影响越大,无法布置在最优位置。
专利US20180345603则公开了一种风机叶片的制作方法,其将多个干层片以及预浸渍层片间插,以形成风机叶片的混合壳结构,进而提升风机叶片壳体的抗屈曲能力。但这种方法工艺较为复杂,需要同时满足织物灌注以及预浸料固化的双重标准,导致加工成本上升。
专利CN 203515969 U则通过改进芯材开槽的方式,达到提高芯材 本身的抗屈曲性能的目的。相较而言,这种方法在降低成本方面的效果并不显著。
发明内容
针对现有技术中的部分或全部问题,本发明一方面提供一种具有加强条的风机叶片,包括:
芯材及上下壳体,其形成风机叶片的主体;以及
一个或多个加强条,其布置于风机叶片的上侧、下侧或双侧并且与所述芯材通过灌注材料灌注在一起,其中任一所述加强条包括在芯材的厚度方向上彼此相叠布置的多层片材,且所述多层片材中的至少两层在风机叶片的弦向和/或展向上彼此错开布置。
进一步地,所述加强条的材料为干纤维。
进一步地,所述加强条的材料为玻璃纤维双轴织物和/或玻璃纤维三轴织物和/或玻璃纤维单轴织物。
进一步地,所述加强条的各层片材大小相同或不同。
进一步地,所述加强条与芯材一同灌注固化成型。
进一步地,所述加强条的布置位置通过有限元分析确定。
本发明另一方面提供所述风机叶片的制造方法,包括:
通过有限元分析软件,确定风机叶片各部位的初始抗屈曲性能,并根据所述初始抗屈曲性能,初步确定壳体芯材减薄的位置及厚度,以及对应增加加强条的布设方式,以满足优化后的壳体与初始设计具有等同的屈曲性能的目的;
若减薄芯材且增加加强条后的风机叶片的抗屈曲性能低于指定值,则调整加强条的布设方式,直至满足要求;以及根据确定的布设方式,设置加强条,包括:
在风机叶片主模具的指定部位,铺设壳体外侧加强条;
在风机叶片主模具中,铺设壳体原结构;
在所述壳体原结构上的指定部位,铺设壳体内侧加强条;以及将壳体外侧加强条、壳体原结构以及壳体内侧加强条一同灌注固化。
进一步地,所述加强条的布设方式包括:铺设位置、铺设角度、以及加强条片材的层数以及各层片材的长度以及宽度。
进一步地,所述指定值根据行业认证标准DNVGL-ST-0376 ROTOR BLADES FOR WIND TURBINES,EDITION DECEMBER 2015确定。
本发明提供的一种具有加强条的风机叶片及其制造方法,利用了更多的便宜的玻纤材料组成加强条,以替换下昂贵的壳体芯材材料,减少叶片的芯材使用量,降低叶片总成本,同时,采用薄芯材和加强条的壳体与原始厚芯材壳体能够达到相同的抗屈曲能力。本发明基于发明人的如下洞察:由于芯材是风机叶片中单位重量下最贵的材料,因此,为了使风机叶片的总价下降,可以考虑采用性价比更高的材料替换芯材,以达到同样的功能水平。为达到这个目的,发明人对叶片的拓扑进行了优化和更加合理的排布,以使材料物尽其用。具体来说,在风机叶片上增加了加强条结构。为了尽可能地减少工艺类型和材料类型,发明人选择采用叶片常用的玻纤等干纤维材料制作加强条,采用这类原材料成本低,且无需达到采用预浸料成型的苛刻的环境和工艺要求,不会产生额外的加工费用。同时,发明人将加强条的片材与原有壳体布层一同布置于芯材厚度方向的一侧或双侧(如上侧、下侧、以及可能的侧面),并与壳体芯材和其它布层一同灌注固化,而在现有技术中,加强条是单独制作成型的,并在叶片成型后额外附着于叶片内,相较而言,本发明仅在铺层工序中,仅增加了一些额外铺层工序,且与叶片本身的成型工艺一致,无需增加另外粘接的工序,简单易行,没有增加额外的工艺类型及材料类型。除了上述成本的优势,本发明人还发现了本发明的加强条具有下列令人意想不到的效果:首先,由于加强条能够与叶片的其它材料一起铺层和灌注,因此加强条的参数、如位置、布层层数、布层角度、布层宽度可与其它材料良好地匹配,进而保证其布置在对提升结构抗屈曲性能最有效的部位;例如,根据分析,可以沿芯材厚度的内外侧同时布置加强条,以保证夹心结构的对称性,也可沿芯材厚度,仅在单侧布置加强条,从而提升铺层效率;其次,由于所有加强条以及风机叶片的布层均在叶片壳体模具中成型,因此,并不会造成叶片外形由于增设加强条而产生几何凸起突变,使得基本不会发生加强条鼓包、甚至脱落的情况;再次,加强条采用与叶片本身材料相同的干纤维等制成,使得其不受翼型曲面限制,刚性随型性好,在风机叶片的展向和弦向均可以与壳体的三维曲面无缝贴合,可以根据需要布置于所需的最优位置,相较于提前固化成型的加强条结构,其本身存在刚性更小,大大减小了加强 条的剥离脱落风险。
为进一步阐明本发明的各实施例的以上和其它优点和特征,将参考附图来呈现本发明的各实施例的更具体的描述。可以理解,这些附图只描绘本发明的典型实施例,因此将不被认为是对其范围的限制。在附图中,为了清楚明了,相同或相应的部件将用相同或类似的标记表示。
图1示出了本发明的所应用于的风力发电机的示意图;
图2示出本发明一个实施例的一种具有加强条的风机叶片的侧面示意图;
图3示出本发明一个实施例的一种具有加强条的风机叶片的截面示意图;
图4示出制造本发明一个实施例的一种具有加强条的风机叶片的设计及制造的关键流程示意图;
图5示出制造本发明一个实施例的一种具有加强条的风机叶片的过程示意图;
图6a示出本发明一个实施例的一种具有加强条的风机叶片的加强条布设方式二维示意图;
图6b示出本发明一个实施例的一种具有加强条的风机叶片的加强条布设方式的三维示意图;
图7a示出本发明又一个实施例的一种具有加强条的风机叶片的加强条布设方式二维示意图;以及
图7b示出本发明又一个实施例的一种具有加强条的风机叶片的加强条布设方式的三维示意图。
以下的描述中,参考各实施例对本发明进行描述。然而,本领域的技术人员将认识到可在没有一个或多个特定细节的情况下或者与其它替换和/或附加方法、材料或组件一起实施各实施例。在其它情形中,未示出或未详细描述公知的结构、材料或操作以免模糊本发明的发明点。类似地,为了解释的目的,阐述了特定数量、材料和配置,以便提供对本发明的实施例的全面理解。然而,本发明并不限于这些特定细节。 此外,应理解附图中示出的各实施例是说明性表示且不一定按正确比例绘制。
在本说明书中,对“一个实施例”或“该实施例”的引用意味着结合该实施例描述的特定特征、结构或特性被包括在本发明的至少一个实施例中。在本说明书各处中出现的短语“在一个实施例中”并不一定全部指代同一实施例。
需要说明的是,本发明的实施例以特定顺序对工艺步骤进行描述,然而这只是为了阐述该具体实施例,而不是限定各步骤的先后顺序。相反,在本发明的不同实施例中,可根据工艺的调节来调整各步骤的先后顺序。
为了能够在减少风机叶片的芯材使用量,降低风机叶片总成本的基础上,保证风机叶片的抗屈曲能力,本发明提供一种具有加强条的风机叶片,其采用玻纤材料组成加强条,且所述加强条与风机叶片的壳体一体成型。所述加强条的形成方法基于发明人的如下洞察:现有技术中,虽然也有一些风机叶片中增设了加强条结构,但这些加强条均是提前固化成型,并在风机叶片成型后额外附着于叶片内,一方面,额外增加了粘接的工序,并且需要新的材料类型,增加了加工费用,另一方面,这类提前固化成型的加强条结构本身存在较大刚性,在风机叶片中无法完全贴合风机叶片表面,会有较大的剥离脱落风险,并且加强筋长度越长,定位时受到刚性不随型的影响越大,无法布置在最优位置。针对这一问题,发明人发现,如采用与风机叶片壳体相同的材料制作加强条,就可以采用与叶片本身成型工艺相同的工艺制作加强条,且可以将加强条和叶片本身一同灌注固化,大大减少工艺类型和材料类型,同时避免剥离脱落风险。此外,这类材料刚性小、随型性好,可以与壳体的三维曲面无缝贴合,适用于各类翼型曲面。下面结合实施例附图,对本发明的方案做进一步描述。
图1示出了本发明的所应用于的风力发电机200的示意图。图1所示风力发电机200包括塔架201、连接到塔架201并且支承轮毂203的机舱202。在轮毂203上布置有两个或更多个风机叶片204,其中风机叶片204在风力作用下带动布置在轮毂203中的转子(未示出)绕轴线(未示出)旋转,其中发电机的转子相对于定子的旋转将生成电能。
图2及图3分别示出本发明一个实施例的一种具有加强条的风机叶 片的侧面及截面示意图。如图2所示,一种具有加强条的风机叶片,其壳体上设置有大小、长度不一的一个或多个加强条101,所述加强条101可布置在风机叶片的迎风面壳体的内侧或外侧或双侧,和/或风机叶片的背风面壳体的内侧或外侧或双侧。其中,所述迎风面壳体是指在风机叶片旋转过程中,面向风力方向的一侧,以及背风面壳体是指在风机叶片旋转过程中,背向风力方向的一侧。
如图3所示,所述迎风面壳体121的中部与背风面壳体122的中部设置有叶片主梁123,同时,中部还设置有叶片辅梁124,以及后缘设置有叶片尾缘梁125,其中叶片主梁123通过叶片前缘腹板126连接,以及叶片辅梁124通过叶片后缘腹板127连接。在图3所示的实施例中,所述加强条101在风机叶片的壳体的内外两侧均有布置,其中,在迎风面和背风面的前缘、中部、和后缘壳体上均各布置有一组加强条。在本发明的其他实施例中,所述加强条也可以仅布置于风机叶片的壳体的内侧或外侧,且根据需要在风机叶片的迎风面和背风面的前缘和/或中部和/或后缘壳体上布置一个或多个加强条。
在本发明的实施例中,所述加强条101可以沿叶片展向,在任何位置起止,且其位置、布层层数、布层角度、布层宽度均可灵活设计。任一所述加强条均包括在芯材的厚度方向上彼此相叠布置的多层片材,且所述多层片材中的至少两层在风机叶片的弦向和/或展向上彼此错开布置,形成错层,构成一组加强条的各层片材的大小和/或形状可相同或不同,不同部位加强条的片材层数也可相同或不同。如前所述,在本发明的实施例中,所述加强条采用风机叶片材料常用的干纤维材料,例如玻璃纤维双轴织物、玻璃纤维三轴织物、以及玻璃纤维单轴织物等。所述加强条与风机叶片的壳体的芯材和其它布层一同灌注固化成型,固化后,风机叶片上具有加强条的局部部位所得到的夹心结构,其上下面板会比其它部位厚,因此,可以利用加强条替换芯材来达到同等的抗屈曲性能。相较而言,风机叶片的芯材通常是由Balsa木、PVC泡沫或PET泡沫等轻质材料组成,单位价格均大大高于加强条所采用的干纤维材料,因此,利用例如玻璃纤维等纤维材料制造的加强条,增加风机叶片指定部位的抗屈曲性能,可以有效地减少芯材的使用量,从而达到降低风机叶片总成本的目的。所述加强条的具体布置位置、片材层数以及各层片材的参数均可通过有限元分析确定。
图4示出制造本发明一个实施例的一种具有加强条的风机叶片的设计及制造的关键流程示意图。如图4所示,所述具有加强条的风机叶片的制造方法,包括:
首先,在步骤401,初步确定加强条布设方式。通过有限元分析软件,分析得到未铺设加强条的风机叶片各部位的初始抗屈曲性能,并根据所述初始抗屈曲性能,初步确定壳体芯材减薄的位置及厚度,以及对应增加加强条的布设方式,以满足优化后的壳体与初始设计具有等同的屈曲性能的目的;根据行业认证标准DNVGL-ST-0376 ROTOR BLADES FOR WIND TURBINES,EDITION DECEMBER 2015,风机叶片最低部位的屈曲因子应大于1.965,因此,在本发明的一个实施例中,所述初步确定壳体芯材减薄的位置及厚度,以及对应增加加强条的布设方式包括:在抗屈曲性能余量大,即屈曲因子远大于1.965的部位进行壳体芯材的减薄,并根据减薄后的屈曲因子,相应地增加加强条,具体来说,是当壳体芯材减薄后,屈曲因子低于1.965时,增加加强条,在本发明的实施例中,所述加强条的布设方式包括加强条的铺设位置、铺设角度、以及加强条的片材层数及各层片材的长度以及宽度;
接下来,在步骤402,调整加强条的布设方式。通过有限元分析软件,分析得到增加加强条后的风机叶片各部位的抗屈曲性能:
若增加加强条后的风机叶片的抗屈曲性能不满足要求,则调整加强条的布设方式,直至满足要求后,进入步骤403;在本发明的一个实施例中,所述调整加强条的布设方式包括:调整壳体芯材的减薄的位置、厚度和/或增加加强条的铺设位置、铺设角度、以及加强条的片材层数及各层片材的长度以及宽度;以及
若增加加强条后的风机叶片的抗屈曲性能满足要求,则直接进入步骤403,在本发明的一个实施例中,所用术语“满足要求”是指增加加强条后的风机叶片的抗屈曲性能满足行业标准DNVGL-ST-0376 ROTOR BLADES FOR WIND TURBINES,EDITION DECEMBER 2015标准规定的最小屈曲系数,所述最小屈曲系数取值为1.965;
接下来,在步骤403,铺设加强条及壳体结构。根据步骤402中所确定的加强条的布设方式,进行加强条及壳体结构的铺设,图5示出制造本发明一个实施例的一种具有加强条的风机叶片的过程示意图。图5 例如是从下到上的铺设顺序,其它铺设顺序也是可设想的。如图5所示,加强条及壳体结构的铺设包括:
首先,在风机叶片主模具001的指定部位,铺设壳体外侧加强条1011,其中,所述壳体外侧加强条1011包括多层片材,且各层片材沿风机叶片的弦向或展向形成错层,也就是说,各层片材在弦向或展向上彼此错开布置。不同加强条的片材层数可相同或不同,且各层片材的大小和/或形状也可相同或不同,应当理解的是,若通过步骤402所确定的加强条布设方式中不包含在壳体外侧铺设加强条,则应省略该步骤;
接下来,在风机叶片主模具001中,铺设壳体原结构102,所述壳体原结构102覆盖所述壳体外侧加强条1011,其中,所述壳体原结构102包括芯材以及上下蒙皮等,在铺设加强条的部位,可根据有限元的分析结果,减薄芯材的厚度;以及
最后,在所述壳体原结构102上的指定部位,铺设壳体内侧加强条1012,其中,所述壳体内侧加强条1012包括多层片材,且各层片材沿风机叶片的弦向和展向形成错层,不同加强条的片材层数可相同或不同,且各层片材的大小和/或形状可相同或不同,应当理解的是,若通过步骤402所确定的加强条布设方式中不包含在壳体内侧铺设加强条,则应省略该步骤;以及
最后,在步骤404,风机叶片灌注固化。将所述壳体外侧加强条1011、壳体原结构102以及壳体内侧加强条1012一同灌注固化,完成风机叶片的制造。
图6a-6b以及7a-7b分别示出采用上述制造方法制造得到的,两种不同翼型曲面的具有加强条的风机叶片的二维和三维示意图。
如图6a-6b所示的风机叶片,加强条101全部布置于风机叶片的壳体外侧,在迎风面和背风面的前缘、中部、和后缘壳体上均各有一列布置,其中,部分加强条的长度小于风机叶片的长度,且并不完全平行于叶片的展向,各加强条的宽度及片材层数也存在差别。
如图7a-7b所示的风机叶片,加强条101在风机叶片的壳体的内外两侧均有布置,其中,在迎风面的前缘、中部、和后缘壳体上均各有两列布置,而在背风面仅在前缘和后缘有所布置。同样的,根据实际应用需求,各加强条可以沿叶片展向在任何位置起止,并具备不同的宽度和 片材层数。
经过分析验证,采用本发明实施例中的方法设计并制造的风机叶片,抗屈曲性能与原始风机叶片结构基本相同,甚至更优,但原材料成本显著降低。
尽管上文描述了本发明的各实施例,但是,应该理解,它们只是作为示例来呈现的,而不作为限制。对于相关领域的技术人员显而易见的是,可以对其做出各种组合、变型和改变而不背离本发明的精神和范围。因此,此处所公开的本发明的宽度和范围不应被上述所公开的示例性实施例所限制,而应当仅根据所附权利要求书及其等同替换来定义。
Claims (10)
- 一种具有加强条的风机叶片,其特征在于,包括:芯材,其形成风机叶片的主体;以及一个或多个加强条,其布置于风机叶片的上侧、下侧或双侧并且与所述芯材通过灌注材料灌注在一起,其中任一所述加强条包括在芯材的厚度方向上彼此相叠布置的多层片材,且所述多层片材中的至少两层在风机叶片的弦向和/或展向上彼此错开布置。
- 如权利要求1所述的风机叶片,其特征在于,所述加强条的材料为干纤维。
- 如权利要求1所述的风机叶片,其特征在于,所述加强条的材料为玻璃纤维双轴织物和/或玻璃纤维三轴织物和/或玻璃纤维单轴织物。
- 如权利要求1所述的风机叶片,其特征在于,所述加强条的各层片材的大小相同或不同。
- 如权利要求1所述的风机叶片,其特征在于,所述加强条与风机叶片的芯材及上下蒙皮一同灌注固化成型。
- 如权利要求1所述的风机叶片,其特征在于,所述加强条的布置位置通过有限元分析确定。
- 一种如权利要求1至6任一所述的风机叶片的制造方法,其特征在于,包括步骤:通过有限元分析软件,确定风机叶片各部位的初始抗屈曲性能,并根据所述初始抗屈曲性能,初步确定壳体芯材减薄的位置及厚度,以及对应增加加强条的布设方式;通过有限元分析软件,确定增加加强条后的风机叶片的抗屈曲性能:若增加加强条后的风机叶片的抗屈曲性能不符合预设要 求,则调整加强条的布设方式,直至符合预设要求;根据确定的加强条布设方式,设置加强条,包括:在风机叶片主模具的指定部位,铺设壳体外侧加强条;在风机叶片主模具中,铺设壳体原结构;以及在所述壳体原结构上的指定部位,铺设壳体内侧加强条;以及将壳体外侧加强条、壳体原结构以及壳体内侧加强条一同灌注固化。
- 如权利要求7所述的制造方法,其特征在于,所述加强条的布设方式包括:加强条的铺设位置、铺设角度、以及加强条片材的层数及各层片材的长度以及宽度。
- 如权利要求7所述的制造方法,其特征在于,所述预设要求根据行业认证标准DNVGL-ST-0376 ROTOR BLADES FOR WIND TURBINES,EDITION DECEMBER 2015确定。
- 一种风力发电机,其特征在于,包括如权利要求1至5任一所述的风机叶片。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202180002139.8A CN113454334A (zh) | 2021-05-12 | 2021-05-12 | 一种具有加强条的风机叶片及其制造方法 |
PCT/CN2021/093217 WO2022236724A1 (zh) | 2021-05-12 | 2021-05-12 | 一种具有加强条的风机叶片及其制造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2021/093217 WO2022236724A1 (zh) | 2021-05-12 | 2021-05-12 | 一种具有加强条的风机叶片及其制造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022236724A1 true WO2022236724A1 (zh) | 2022-11-17 |
Family
ID=77819413
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/093217 WO2022236724A1 (zh) | 2021-05-12 | 2021-05-12 | 一种具有加强条的风机叶片及其制造方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113454334A (zh) |
WO (1) | WO2022236724A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114580247A (zh) * | 2022-04-12 | 2022-06-03 | 中国科学院工程热物理研究所 | 一种水平轴风力机叶片抗屈曲增强结构设计方法 |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101446263A (zh) * | 2007-11-30 | 2009-06-03 | 通用电气公司 | 风力涡轮机叶片加强件 |
WO2009095175A2 (de) * | 2008-02-02 | 2009-08-06 | Nordex Energy Gmbh | Rotorblatt für windenergieanlagen |
CN102141001A (zh) * | 2011-03-25 | 2011-08-03 | 中国科学院工程热物理研究所 | 一种风力机叶片及其设计方法 |
CN102230448A (zh) * | 2011-05-25 | 2011-11-02 | 北京世纪威能风电设备有限公司 | 一种竹纤维增强复合材料的风力发电机叶片及制造方法 |
CN203515969U (zh) * | 2013-07-18 | 2014-04-02 | 航天材料及工艺研究所 | 基于网格桁条结构的复合材料风机叶片 |
CN104114856A (zh) * | 2011-12-16 | 2014-10-22 | 维斯塔斯风力系统有限公司 | 风轮机叶片 |
CN104948392A (zh) * | 2014-03-31 | 2015-09-30 | 西门子公司 | 用于风力涡轮机的转子叶片 |
GB2530072A (en) * | 2014-09-12 | 2016-03-16 | Vestas Wind Sys As | Improvements relating to the manufacture of wind turbine blades |
CN106795864A (zh) * | 2015-09-03 | 2017-05-31 | 积水化成品工业株式会社 | 风车用桨叶 |
CN108472902A (zh) * | 2015-11-26 | 2018-08-31 | 维斯塔斯风力系统有限公司 | 关于风轮机叶片制造的改进 |
CN111396244A (zh) * | 2020-03-19 | 2020-07-10 | 上海电气风电集团股份有限公司 | 一种风电叶片及其桁条加强结构与方法 |
WO2020144054A1 (de) * | 2019-01-08 | 2020-07-16 | Senvion Gmbh | Rotorblatt mit wenigstens einem gurt mit einer mehrzahl an pultrudaten und ein verfahren zu seiner herstellung |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101749194B (zh) * | 2009-12-11 | 2011-09-14 | 重庆通用工业(集团)有限责任公司 | 一种大型风力发电机组风轮叶片及其成型方法 |
CN102619705A (zh) * | 2012-04-25 | 2012-08-01 | 国电联合动力技术有限公司 | 一种带加强筋结构的抗屈曲风力发电机风轮叶片 |
CN211230696U (zh) * | 2019-10-25 | 2020-08-11 | 明阳智慧能源集团股份公司 | 一种一体成型风力发电机叶片 |
CN110990945B (zh) * | 2019-11-15 | 2022-05-06 | 武汉理工大学 | 一种汽车车顶盖加强筋仿生结构设计方法 |
CN112267970A (zh) * | 2020-10-22 | 2021-01-26 | 三一重能有限公司 | 风力机主梁、叶片及风力发电机组 |
-
2021
- 2021-05-12 WO PCT/CN2021/093217 patent/WO2022236724A1/zh active Application Filing
- 2021-05-12 CN CN202180002139.8A patent/CN113454334A/zh active Pending
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101446263A (zh) * | 2007-11-30 | 2009-06-03 | 通用电气公司 | 风力涡轮机叶片加强件 |
WO2009095175A2 (de) * | 2008-02-02 | 2009-08-06 | Nordex Energy Gmbh | Rotorblatt für windenergieanlagen |
CN102141001A (zh) * | 2011-03-25 | 2011-08-03 | 中国科学院工程热物理研究所 | 一种风力机叶片及其设计方法 |
CN102230448A (zh) * | 2011-05-25 | 2011-11-02 | 北京世纪威能风电设备有限公司 | 一种竹纤维增强复合材料的风力发电机叶片及制造方法 |
CN104114856A (zh) * | 2011-12-16 | 2014-10-22 | 维斯塔斯风力系统有限公司 | 风轮机叶片 |
CN203515969U (zh) * | 2013-07-18 | 2014-04-02 | 航天材料及工艺研究所 | 基于网格桁条结构的复合材料风机叶片 |
CN104948392A (zh) * | 2014-03-31 | 2015-09-30 | 西门子公司 | 用于风力涡轮机的转子叶片 |
GB2530072A (en) * | 2014-09-12 | 2016-03-16 | Vestas Wind Sys As | Improvements relating to the manufacture of wind turbine blades |
CN106795864A (zh) * | 2015-09-03 | 2017-05-31 | 积水化成品工业株式会社 | 风车用桨叶 |
CN108472902A (zh) * | 2015-11-26 | 2018-08-31 | 维斯塔斯风力系统有限公司 | 关于风轮机叶片制造的改进 |
WO2020144054A1 (de) * | 2019-01-08 | 2020-07-16 | Senvion Gmbh | Rotorblatt mit wenigstens einem gurt mit einer mehrzahl an pultrudaten und ein verfahren zu seiner herstellung |
CN111396244A (zh) * | 2020-03-19 | 2020-07-10 | 上海电气风电集团股份有限公司 | 一种风电叶片及其桁条加强结构与方法 |
Also Published As
Publication number | Publication date |
---|---|
CN113454334A (zh) | 2021-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11454208B2 (en) | Pultruded fibrous composite strips having non-planar profiles cross-section for wind turbine blade spar caps | |
US11231008B2 (en) | Pultruded fibrous composite strips having corrugated profiles for wind turbine blade spar caps | |
EP3137291B1 (en) | A wind turbine blade and an associated manufacturing method | |
EP2788176B1 (en) | Method of manufacturing a wind turbine blade and a wind turbine blade | |
US20110100540A1 (en) | Methods of manufacture of wind turbine blades and other structures | |
EP2778393A2 (en) | Wind turbine blade design and associated manufacturing methods using rectangular spars | |
DK2363599T3 (en) | A rotor blade for a wind turbine, wind turbine and method of producing a rotor blade | |
US20110142661A1 (en) | Trailing edge bonding cap for wind turbine rotor blades | |
CN109790817A (zh) | 具有平背段的风轮机叶片及相关方法 | |
US20110103965A1 (en) | Wind turbine blades | |
WO2017126287A1 (ja) | 風力発電装置またはブレードの製造方法 | |
US20230003186A1 (en) | Equipotential bonding of wind turbine rotor blade | |
CN104204510B (zh) | 具有导片的用于风力涡轮机的叶片 | |
EP3501808A1 (en) | A pre-formed spar cap assembly for embedding in a wind turbine rotor blade | |
BR102016015249B1 (pt) | Tampa de viga para uma pá de rotor de uma turbina eólica | |
EP3436256A1 (en) | Rotor blade tip mold assembly including expandable bladders and method for forming rotor blade tip | |
CN111587178A (zh) | 制造具有打印的网格结构的风力涡轮转子叶片面板的方法 | |
DK177744B1 (en) | Wind turbine having external gluing flanges near flat back panel | |
CN113508226A (zh) | 风力涡轮机叶片和用于生产风力涡轮机叶片的方法 | |
WO2022236724A1 (zh) | 一种具有加强条的风机叶片及其制造方法 | |
CN108495739B (zh) | 用于制造风轮机叶片本体的方法与设备 | |
WO2017171703A1 (en) | Rotor blade tip mold assembly including solid core and method for forming rotor blade tip | |
EP3710692B1 (en) | Wind turbine blade assembly | |
KR101620924B1 (ko) | 풍력 발전기용 결합형 블레이드 | |
US20240301860A1 (en) | A wind turbine blade |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21941299 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21941299 Country of ref document: EP Kind code of ref document: A1 |